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I. Introduction

Failure to achieve climate mitigation goals puts increasing pressure on climate adaptation
strategies.! Therefore, it is crucial to develop methods to measure climate impacts and
adaptation, and examine heterogeneity in adaptive response. Inspired by the macroeconomic
literature on the effects of unanticipated versus anticipated shocks on the economy (e.g.,
Lucas, 1972, 1976), the labor literature on the importance of distinguishing transitory versus
permanent income shocks (e.g., Solon, 1992, 1999), and the properties of the Frisch-Waugh-
Lovell theorem (Frisch and Waugh, 1933; Lovell, 1963), we develop a unifying approach
to measuring climate impacts and adaptation. The proposed approach is then applied to
examine the impact of climate change on ambient “bad” ozone concentration in U.S. counties
over the period 1980-2013. Ozone is not emitted directly into the air, but rather formed by a
Leontief-like production function of Nitrogen Oxides (NOx) and Volatile Organic Compounds
(VOCs) in the presence of sunlight and warm temperatures; hence, affected by climate
change (e.g., Jacob and Winner, 2009). Exposure to ambient ozone has important economic
implications because it leads to increases in hospitalization, medication expenditure, and
mortality (e.g., Neidell, 2009; Moretti and Neidell, 2011; Deschenes, Greenstone and Shapiro,
2017).

Our unifying approach overcomes key challenges of the literature by decomposing me-
teorological conditions into climatic variation and weather shocks, and estimating climate
and weather effects in the same panel fixed-effects equation. The pioneer cross-sectional
approach to estimate the impact of climate change on economic outcomes (Mendelsohn,
Nordhaus and Shaw, 1994) has relied on permanent, anticipated components behind me-
teorological conditions, but may suffer from omitted variable bias. In contrast, the panel
fixed-effects approach (Deschenes and Greenstone, 2007) exploits transitory, unanticipated

weather shocks, and deals with that bias, but identification of climate effects using weather

! According to the Fifth Assessment Report from the Intergovernmental Panel on Climate Change (IPCC,
2013), the warming of the climate system is unequivocal, and global temperatures are likely to rise from 1.5
to 4 degree Celsius over the 21st century, depending on the emissions scenario.



variation is not trivial. Current hybrid approaches combining cross-sectional and panel data
variation also face challenges (see a recent review by Kolstad and Moore, 2020). The parti-
tioning variation approach also decomposes meteorological conditions and estimates climate
and weather effects jointly, but typically does not include spatially-disaggregated fixed ef-
fects leaving it susceptible to omitted variable bias (e.g., Kelly, Kolstad and Mitchell, 2005;
Moore and Lobell, 2014; Merel and Gammans, 2021). The long differences approach lever-
ages panel data variation in weather over a range of timescales (e.g., annual, decadal, and
multi-decadal) to identify climate impacts, but does not estimate climate and weather ef-
fects jointly (e.g., Dell, Jones and Olken, 2012; Moore and Lobell, 2015; Burke and Emerick,
2016). Our unifying approach combines the strengths of the prior methods while addressing
their shortcomings by relying on the properties of the Frisch-Waugh-Lovell theorem.

Influential studies have proposed measuring adaptation as the difference between the
estimates of impacts in fixed-effects and cross-sectional approaches (Dell, Jones and Olken,
2009, 2012, 2014). Estimates of climate impacts based on cross-sectional analysis are usually
inclusive of adaptation, whereas those from fixed-effects are typically not. While this measure
of adaptation is rather intuitive and theoretically sound, if one relies on biased cross-sectional
estimates of climate impacts, this derived measure will likely be biased as well.

Our unifying approach estimates the short- and long-run impacts in the same equation.
As a result, our approach enables a straightforward test for the statistical significance of the
measure of adaptation. Further, our approach to identifying adaptation addresses two other
shortcomings from existing approaches. First, it recovers a measure of adaptation directly
from the jointly estimated impacts of weather and climate. In contrast, a common approach
in the literature tackles adaptation indirectly, by flexibly estimating economic damages due
to weather shocks, then assessing climate damages by using shifts in the future weather
distribution predicted by climate models (e.g., Deschenes and Greenstone, 2011).

Second, and analogous to the Lucas Critique (Lucas, 1976), our approach overcomes the

challenges of identifying adaptation by comparing the profiles of weather responses across



time and space, under the assumption that preferences are constant across those dimen-
sions. For example, Barreca et al. (2016), Auffhammer (2018a), Carleton et al. (2020), and
Heutel, Miller and Molitor (2021) allow for differences across time or location in the rela-
tionship between temperature and economic outcomes when dealing with adaptation. But,
the assignment of a profile of temperature responses to another time or place solely based on
observed attributes and the future weather distribution may be imprecise due to unobserved
differences in preferences, beliefs, and experience with the local climate that may affect
adaptive behavior (e.g., Olmstead and Rhode, 2011; Bleakley and Hong, 2017).? Instead,
we identify adaptation by comparing how economic agents in the same season and location
respond to weather shocks — which, by definition, limit opportunities to adapt — with their
own response to climatic changes, which should incorporate adaptive behavior.

We apply our unifying approach to the context of daily temperature and ambient ozone
concentration across the continental United States. In a typical climate impact setting, the
outcome of interest is (i) affected by temperature, (ii) something of value to the agent, and
(iii) responsive to adaptive behavior that dampens the temperature effect. For example,
farmers worried about temperature damage may mitigate profit losses by switching crops.
Although the consequences of climate change on local air pollution have been understudied
(Pestel and Oswald, 2021), it has been pointed out that ambient ozone concentration will
increase with rising temperatures (e.g., Jacob and Winner, 2009; Fu and Tian, 2019). In fact,
ozone is formed in the atmosphere by combining NOx, VOCs, sunlight and heat. This should
be reason for concern due to the well-documented impacts on public health, particularly on
those groups of the population with increased vulnerability to air pollution such as children
and the elderly. In our context, agents can be individuals responding to pollution informa-
tion, firms adjusting to environmental regulation, and local regulators implementing federal

laws. Our unifying approach should capture these responses altogether, without separating

20ne way to address this issue is to use experimental or quasi-experimental variation in those attributes
in order to causally capture the extent to which they offset weather effects. One example is Garg, McCord
and Montfort (2020), who leverage quasi-experimental variation in eligibility to a cash transfer program in
Mexico to identify how income may mitigate the temperature-homicide relationship.



them out.

By definition, adaptation involves adjusting to or coping with climatic change with the
goal of reducing vulnerability to its harmful effects.® In our setting, for agents to be adapting
to rising temperatures in a way that changes atmospheric ozone levels, one needs all of the
following: (i) agents must be worried about ozone’s detrimental impacts, (ii) agents have
some knowledge of the process of ozone formation such that they are aware not only of
temperature’s role but also the impact of an agent’s emissions, and (iii) agents believe their
actions can sufficiently alter ozone concentrations. There is evidence that on high ozone days,
individuals may avoid outdoor exposure (e.g., Neidell, 2009; Graff Zivin and Neidell, 2009)
and buy medicines to remediate exposure (e.g., Deschenes, Greenstone and Shapiro, 2017).
Also, they may drive less and use public transit in smog alert days (e.g., Cummings and
Walker, 2000; Cutter and Neidell, 2009). Indeed, the alerts educate the public on the impact
of temperature and the agents’ actions on ambient ozone levels. Hence, it not unreasonable
to assume that our research setting satisfies the three conditions for adaptation enumerated
above.

Our approach has two key features. The first is the decomposition of meteorological vari-

7

ables into “climate” and “weather.” The second is identifying responses to weather shocks
and longer-term climatic changes in the same estimating equation. The difference between
those short- and long-run responses is what the literature refers to as adaptation.* Indeed,
ozone, as with most climate-related outcomes of interest, responds to realized temperature
— regardless of how that temperature may be decomposed into weather or climate. It is

only agents, by virtue of being able to adjust, e.g., their level of precursor emissions, in

response to expected climate, that may affect the ozone response to climate. In the absence

3Specifically, the IPCC defines adaptation as “the process of adjustment to actual or expected climate
and its effects in order to moderate harm or take advantage of beneficial opportunities,” and further states
that “[a]daptation plays a key role in reducing exposure and vulnerability to climate change. (...) In human
systems, adaptation can be anticipatory or reactive, as well as incremental and /or transformational.” (TIPCC,
2022).

4Although we focus on adaptive behavior, we are agnostic about the true impacts. There may be adap-
tation or intensification effects (Dell, Jones and Olken, 2014).



of any adaptive behavior, the ozone response to equivalent changes in weather or climate
would be the same. In our analysis, we merge location-by-day ozone concentration data with
temperature data across the United States for the period 1980-2013. For the first feature of
our approach, the daily temperature variable is used to construct two variables. The first,
TempC®, is operationalized as a 30-year moving average of month-specific average tempera-
tures (e.g., take the average of January daily temperatures for each year and location and
then apply a 30 year moving average). This is what we interpret as “climate.”® The second
temperature variable, Temp" , is daily temperature with Temp® subtracted, interpreted as
“weather.”

For the second feature of our approach, both variables enter linearly in our estimating
equation along with a set of location-by-season-by-year fixed effects, ¢;; (e.g., Chicago-Spring
1990, Chicago-Summer 1990, etc.).5 Because we create the variable “weather” as a first
step, the Frisch-Waugh-Lovell theorem guarantees we do not need to include granular time
fixed effects to identify weather effects (Lovell, 1963, Theorem 4.1, p.1001). On the other
hand, the inclusion of ¢;, allows us to leverage two sources of climatic variation to identify
climate impacts. Conditional on location-by-season fixed effects, the first source of variation
comes from adding the most recent year’s monthly weather information and dropping the
oldest portion from the 30-year moving average. The underlying idea is similar to filtering
different frequencies of temperature, as has been done in the time series literature (e.g.,
Baxter and King, 1999; Christiano and Fitzgerald, 2003). Note that this updating feature
of the moving average mimics the ideal “climate experiment,” as, for example, it may make
the April climate norm in one year appear more like the May climate norm. For instance,

if the average temperature in April 31-years ago was particularly cold, while the average

>Climate normals are, by definition, 30-year averages of weather variables such as temperature (WMO,
2017). The monthly frequency for the moving averages in our empirical decomposition is without loss of
generality. All we need is a time frame that economic agents can easily remember information from the past.
Our robustness checks using daily moving averages provide nearly identical results.

SNote that while we focus on a linear estimating equation for simplicity in explanation of the method
and inferring the implied measure of average adaptation, Section IV.D shows how the approach can be
easily extended to a nonlinear setting, examining the nonlinear effects of weather and climate on ozone
concentration under multiple nonlinear specifications.



temperature in April of last year was particularly warm, the 30-year moving average climate
norm in this year’s April may be meaningfully warmer than last year’s April climate norm.
In other words, we identify the agents’ response to their new climate expectation. The
second source of variation arises from demeaning Temp® from a location-specific season-by-
year fixed effect.” Take, for example, days in April, May, and June in Chicago, all within
the spring season of the same year. After demeaning from a spring fixed effect, the average
April moving-average measure of climate will likely be a negative value and the average
June climate a positive value. Intuitively, it works as if the “climate experiment” assigns
changes in the average Chicago May temperature to make it closer to the average April or
June temperature, for example. Lastly, the 30-year moving average is purposely lagged in
our estimating equation to reflect all the information available to individuals and firms up
to the year prior to the measurement of the outcome variables.

Our methodology contributes to the estimation of climate damage functions and the costs
of climate change (e.g., Tol, 2009, 2018; Auffhammer, 2018b; Miller et al., forthcoming). Our
unifying approach to uncover climate impacts and adaptation should be of interest to a broad
set of applications due to its simplicity. Our novel application to the impact of climate change
on ambient ozone adds an overlooked force behind recent determinants of ozone pollution
(e.g., He, Gouveia and Salvo, 2018; Salvo and Wang, 2017; Salvo and Geiger, 2014).

This paper proceeds as follows: Section II provides an overview of the previous method-
ological approaches used to identify climate impacts and proposes our unifying approach
and the resulting measure of adaptation. Section III provides a conceptual framework of an
agent’s adaptation decision-making, describes our data, and presents our empirical strategy.
Section IV reports our main findings, examines the robustness of our estimates, and general-
izes our approach to nonlinear settings. Section V further explores aspects of heterogeneity.

Finally, Section VI concludes.

"Note that we use “location” here in the general sense as the spatial unit of analysis. For example, in our
empirical setting location is taken as an individual ozone monitor.



II. Prior Methods and Our Unifying Approach to Measuring
Climate Change Impacts and Adaptation

A. Prior Methods

Prior literature on estimating climate impacts and adaptation has usually relied on two ap-
proaches. The first is the cross-sectional approach (e.g., Mendelsohn, Nordhaus and Shaw,
1994; Schlenker, Hanemann and Fisher, 2005), which exploits permanent, anticipated com-
ponents behind meteorological conditions, leveraging climate variation across locations to
estimate climate impacts inclusive of adaptation, but may suffer from omitted variable bias.
The other is the panel fixed-effects approach (e.g., Deschenes and Greenstone, 2007; Schlenker
and Roberts, 2009), which deals with that bias but identifies the effect of transitory, unan-
ticipated weather shocks, most likely exclusive of adaptation, making the transition to es-
timated climate effects nontrivial.® By using either the short- or long-run variation behind
meteorological conditions to identifying climate impacts, those research designs trade off key
assumptions.” More recent literature (e.g., Dell, Jones and Olken, 2009, 2012, 2014) has
proposed various hybrid approaches for combining these two strands of the literature, but
face issues of their own (Kolstad and Moore, 2020).

The cross-sectional (CS) approach estimates the following equation:

y; = o+ Besxi + (i + v3) = a+ Pesx; + €, (1)

where y; is an outcome variable measured at location ¢, and is affected by the climatological
variable of interest, x; — typically taken as temperature. p; represents the vector of all
time-invariant unobserved covariates that are correlated to x;, while v; reflects the standard

idiosyncratic error term. Thus, if y; is non-empty and cov(x;, ;) # 0, Beg suffers from

80nly in certain conditions does weather variation exactly identify the effects of climate (e.g., Hsiang,
2016; Lemoine, 2020).

9All this literature takes climate variation as given, under the assumption that relatively small spatial
units of analysis can be thought of as “climate takers” rather than “climate setters.” Notwithstanding, there
is a literature that carries out analyses at a global scale, and accounts for the bi-directional feedback between
climate and the economy (e.g., Kaufmann, Kauppi and Stock, 2006; Pretis, 2020).



omitted variable bias (OVB).

The panel fixed-effects (FE) approach instead estimates the following equation:

Yit = @ + BreTi + i + A\ + Vi, (2)

where the outcome variable, y;;, and climatic variable of interest, z;;, are now additionally
measured at some recurring time interval ¢. By averaging each variable in Equation (2) for

each unit 7 over time, we obtain:

Ui = a + Bre®; + 1 + Ui, (3)

where ; = 1/T XL, yi1, and the other variables are defined similarly.'® Subtracting Equation

(3) from Equation (2), we highlight the source of variation in the identification of Srg:

(Yit — Ui) = Bre(Ti — ;) + M + (Vi — ;). (4)

Because (z; — Z;) is the deviation of observed temperature from its local long-run value,
BrE is clearly identified from temperature shocks. Thus, in this approach, although most
OVB problems are resolved by the pu; term, Brp now identifies the impact of meteorological,
rather than climatological, phenomena.

Recently, focus has expanded from simply estimating climate impacts to estimating adap-
tation to climate change. Some authors have noted that Scg identifies climate impacts in-
clusive of any adaptation, while Srg, by its nature, identifies meteorological impacts which
can be taken as an approximation of climate impacts ezclusive of any adaptation (e.g., Dell,
Jones and Olken, 2009, 2012, 2014). Thus, they propose measuring adaptation as the differ-
ence between BFE and BOS. Although this principle to recovering a measure of adaptation
is accurate, the approach faces two empirical challenges. First, to the extent that OVB may

impact /écs in the cross-sectional model, this will translate directly into bias in the estimate

1ONote that via the inclusion of the intercept, the A\, and u; fixed effects are both relative to the same
baseline, «, and thus the A; term drops out when averaging over time by the restriction that ), Ay = 0
(Suits, 1984; Baltagi, 2008).



of climate adaptation. Second, even if an unbiased estimate of Scg could be obtained, BOS
and BFE arise from two different estimating equations. While OLS, equation by equation,
allows us to easily test hypotheses about the coefficients within an equation, it does not
provide a convenient way for testing hypotheses involving coefficients from different equa-
tions. Thus, in practice, one must resort to seemingly unrelated regression (SUR) models to
explicitly test whether the measure of adaptation is statistically distinguishable from zero.!
Aside from SUR, it would be possible to statistically test the difference between coefficients
recovered via the CS and FE models using re-sampling methods — i.e., block bootstrap or
Bayesian bootstrap with random weights assigned at the block-level (Rubin, 1981). However,
while these methods may solve the hypothesis testing issue for inferring the significance of

adaptation, they would not address the issue of potential bias in the underlying estimating

equations, making it difficult to interpret the magnitude of adaptation.

B.  Our Unifying Approach

Our unifying approach nests both of those strands of the climate-economy literature in the
same estimating equation. It simultaneously identifies long-run climatological impacts and
short-run effects of meteorological shocks, and thus allows for an explicitly testable measure
of adaptation in the spirit of prior comparisons between short- and long-run effects (e.g., Dell,
Jones and Olken, 2009, 2012, 2014). Specifically, we begin by posing the ideal estimating

equation, although infeasible:

Yir = oo+ Bw (ziy — T;) + BoZi + pi + M + Vi (5)

If this infeasible equation were estimable, Sy, — the effect of weather shocks — would exactly

11 Ag is well known, a SUR system is a generalization of a linear regression model that consists of several
regression equations — each having its own dependent variable and potentially different sets of exogenous
explanatory variables — that has cross-equation error correlation, that is, the error terms in the regression
equations are correlated. Also recall that all equations in a SUR system are estimated jointly, but that such
estimation usually requires feasible generalized least squares with a specific assumption on the form of the
variance-covariance matrix regarding the structure of the correlation among the error terms. Hence, further
structural assumptions are needed for statistical inference of the measure of adaptation.



identify Brg by the Frisch-Waugh-Lovell theorem. On the other hand, o — the effect of
changes in climate — would identify Sog minus OVB due to the inclusion of fixed effects.
Unfortunately, Sc cannot be identified because z; is perfectly collinear with ;.

Notice that emerging hybrid approaches have also relied on such “partitioning variation”
(e.g., Kelly, Kolstad and Mitchell, 2005; Moore and Lobell, 2014; Merel and Gammans,
2021). They have attempted to address this collinearity issue by dropping the unit fixed-
effect, p;, instead including a set of location controls, ¢;, in their estimating equation, taking
the general form of y; = f(xy — &;) + g(Z;) + ¢y + €, where f(.) and g(.) can take flexible
functional forms. While this approach can include spatially-aggregate and time fixed-effects,
identification would still ultimately rely on cross-sectional variation within the spatially-
aggregate region, and thus may suffer from similar OVB concerns as the CS model.

We therefore propose the following feasible approximation of the ideal Equation (5),
which allows for the inclusion of unit fixed-effects by letting the measure of climate vary

across time within the sample:!?

Vit = o+ Bw (zy — Tip) + BoZip + i + As + Vir. (6)

As time can be aggregated into multiple subset levels — day, month, season, year, decade,
etc. — we first define a time period, p, as a weakly larger aggregation of . Agents, however,
may observe and react to the slow evolution of climate. Thus, we define p to incorporate
data from the same time period p in the past. Furthermore, agents may need time to adjust,
so we additionally restrict p to exclude contemporaneous data. We also replace \; with A\, —
where s is a one-level higher aggregation in time than p —in order to retain relevant variation
in Z;5."* Depending on the study context, y; and A\ may be interacted to flexibly control for

unit-level effects that may vary over time.

12Qbserve that for simplicity, and to keep the comparison with the prior CS and FE strands of the literature
as clear as possible, our unifying approach uses a linear specification, which should also capture the first-
order effects of potentially nonlinear responses. Later, in Section IV.D, we show how this approach can be
easily extended to include higher order nonlinear effects.

I3Note that just as ¢, by convention, represents a specific time-step of the sample, e.g. day-of-the-sample,
we take s as similarly representing a more aggregate time-step of the sample, e.g. season-of-the-sample.

10



Defined in this way, variation in Z;; comes from two separate sources. First, although
more aggregate than ¢, p still varies across time within the the higher level time period s.
Second, p is defined to include historical data, and thus “updates” its value from year to
year. Following the same steps as with the fixed-effects model and averaging each variable

in Equation (6) for each cross-sectional unit ¢ over time, we obtain:

Ui = 4 Pw(Ti — Ti) + BoTi + pi + Vi = a4 Poli + i + Vi, (7)

where, once again, 4; = 1/T L | yi;, and the other variables are defined similarly.'* Sub-
tracting Equation (7) from Equation (6), we highlight the source of variation that allows for

the identification of both Sy, and S¢:

(Yir — Ui) = Bw(wir — Tip) + Be(Tip — Ti) + A + (Ve — Ty). (8)

In Equation (8) we can observe that BW is identified from temperature shocks, therefore
approximately equivalent to BFE, whereas Bc is identified from climatic changes, approxi-
mately equivalent to BOS, though now critically free from a number of OVB concerns. We
thus naturally define adaptation as the difference BW — BC. Because both coefficients of
interest are estimated in a single equation, statistical inference on the measure of adaptation
is straightforward. Furthermore, observe that while our method does require the researcher
to take a stance on the temporal granularity of the climate variable, Z;5;, and time fixed-
effects, \,, the recovered measure of adaptation leverages the behavioral responses of the
same economic agents to both weather shocks and climatic changes via the inclusion of unit

fixed effects, ;.

“Note that in Equation (7) the Z; derived from the Z;; term would rely on a longer time-series of in-
formation than the z; derived from the x;; term. Still, they are approximately equivalent, with correlation
between these two terms above 0.95 in our empirical application.

11



C.  Decomposition of Meteorological Variables: Climate Norms vs. Weather Shocks

As mentioned above and seen in Equation (6), implementing our approach requires that we
first decompose x;; into its long-run component, Z;5, and its short-run deviation from this
value, (2 — Z;5). Econometrically, from the Frisch-Waugh-Lovell theorem, we can decom-
pose x; into its longer term seasonal component and a contemporaneous de-seasonalized
component. For example, as weather varies day-to-day, ¢, and local climate varies both sea-
sonally (e.g., month-to-month within a year) and over time (e.g., year-to-year), we could take

7

“month-of-the-sample,” my, as representing the seasonal component and pose the following

first-stage regression:

Tit = Yimy T €its (9)

such that temperature in location ¢ on day ¢ (of month m in year y) is regressed on a
set of location-by-month-by-year fixed effects. In this case, the matrix of coefficients ¥,
would constitute the matrix of monthly average temperature values Z;,,, while the estimated
residuals (i — Timy) (= €:) would reflect the de-seasonalized daily local deviations of tem-
perature. Because this regression simply de-means x;; over the my period in the time-series
dimension for each individual location %, we could instead recover the x;; — Z;m, values in

Equation (9) arithmetically via the following:

Temp = Temp® + Temp" (10)
~—— — v
Tit Timy (xit*jimy)

such that Temp® (= Zmy) represents climate patterns, and Temp" (= @it — Timy) deviations
from those longer-run patterns. Notice that although the above example uses daily temper-
atures, de-seasonlized at the monthly level, the choice of timing can be selected to match the
study context. To use the example of agriculture, a common focus in the climate literature,
it may be that a year, or the growing seasons within a year, would be better suited to the

analysis than the months of the year example illustrated in equations (9) and (10).

12



Economically, however, this presents a potential problem. As mentioned in the previous
section, agents may need time to adapt, and prior information sets likely inform agents’
beliefs. Thus, Z., is not strictly equivalent to z;; as defined in Equation (6). To address

this, we propose, as a first step, replacing Z;,, with a lagged function of its historical values:

A
<

1J
Jj

(]

fiﬁ = wjjimj ~ j:imyu (11)

1

where w; represents a scalar weighting of Z;,;, such that the function defining z;; can be
generalized to fit various contexts.!® Returning to the agriculture example, it’s possible that
farmers need more than a single year to adjust production processes or change crop choice, in
which case the (wy_p, ..., wy—1) weighting scalars of Equation (11) could all simply be set to
zero, with k£ > 1. Furthermore, the functional form of Equation (11) itself can be chosen to
best suit the application by changing the specific values of w;. Myopic and Bounded agents
may simply assume that contemporaneous monthly temperature will be equal to what it
was in the previous year, that is, w; simply evaluates to zero for all j € {1,...,y — 2}.
Other agents may flexibly fit values of w; to the historical data in an attempt to predict
Z;5 through statistical means. A similar idea has been used in macroeconomics to measure
business cycles since the seminal contribution of Bums and Mitchell (1946),'% and in the
literature of intergenerational mobility following Solon’s (1992) seminal work.!” Note that
Z;5 can be calculated from a longer time-series of x to take into account historical information

beyond the sample period of the outcome variable.

15These weights, w;, can be defined by values derived from other literatures, such as climatology for exam-
ple, which defines a climate normal as the average temperature over the last 30 years: “The 30 year interval
was selected by international agreement, based on the recommendations of the International Meteorological
Conference in Warsaw in 1933. The 30 year interval is sufficiently long to filter out many of the short-term
interannual fluctuations and anomalies, but sufficiently short so as to be used to reflect longer term climatic
trends” (Climatology Office, 2003). Alternative filtering techniques could also be implemented (e.g., Baxter
and King, 1999; Christiano and Fitzgerald, 2003), and would implicitly follow from this expression by varying
the values of w;.

16See, for example, Hodrick and Prescott (1981, 1997), Baxter and King (1999), Christiano and Fitzgerald
(2003) and Hsiang (2016).

"Tn Solon’s context, observed income is noisy: it includes a permanent and a transitory component. To
establish a relationship between permanent income of sons and fathers, Solon proposes averaging fathers’
income for a number of years to reduce the errors-in-variables bias.

13



We then return to Equation (10), substituting Z;; for Z;., in representing Temp®, and
recovering zy — Ti (R Tig — Tipmy) for Temp", giving us all the components necessary for
estimating Equation (6).!® Notice that by the properties of the Frisch-Waugh-Lovell theorem
(specifically, point 4 of Lovell (1963, Theorem 4.1, p.1001)) it is unnecessary to de-seasonalize
the outcome variable y;; in the same way as (x; — Z;5), which allows us to estimate both
effects of interest in the same equation.'®

This decomposition highlights the two sources of variation that have been used in the
climate-economy literature. Temp® and Temp" in the decomposition above are associated
with different sets of information. On the one hand, Temp® includes climate patterns that
economic agents can only gather by experiencing weather realizations over a long period
of time, and can be thought of as the “climate normal” temperature. On the other hand,
Temp"' represents weather shocks, which by definition are revealed to economic agents
virtually at the time of the weather realization. Usually one adjusts to something they
happen to know by experience. Therefore, adaptation can be measured as the difference
between responses to changes in Temp® relative to effects of weather shocks Temp"'. This
is analogous to Lucas’ powerful insight that economic agents respond differently depending
on the set of information that is available to them. Lucas (1977), for instance, provides
an example of a producer that makes no changes in production or works less hard when
facing a permanent increase in the output price, but works harder when the price increase
is transitory.°

It is also important to emphasize that this decomposition does not make any assumption

on how individuals and firms process and use the information from the past. Rational agents

18In our preferred decomposition detailed in the following section, Cor(Z;z, Timy) > 0.95 and Cor((z; —
:Eip), (.T,;t — fimy)) > 0.90.

Y« Theorem 4.1: Consider the following alternative regression equations, where the subscript o indicates
that the data have been adjusted by the least squares procedure with D as the matriz of explanatory variables:
1. Y =Xbi+Dp14e1 2. Yy, =Xabates 3. Y = Xbs+es 4. Y = Xoby+ey ... The identity bo = by reveals
that it is immaterial whether the dependent variable is adjusted or not, provided the explanatory variables
have been seasonally corrected” (Lovell, 1963).

20Notably, in our context the behavior would be reversed. Due to the contemporaneous nature of transitory
weather shocks, little to no change in production is possible, while the producer would be able to change
behavior in response to permanent changes in climate.
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would respond optimally to all information at hand when deciding the degree of adaptation,
while myopic and inattentive agents (e.g., Gabaix and Laibson, 2006; Reis, 2006a,b), on the
other hand, may find it costly to absorb and process all the information at all times, and
may respond only to partial information or only sporadically. Our measure of adaptation
is agnostic to either type of behavior; the goal of our approach is to empirically assess the
economic and statistical significance of adaptation, regardless of how economic agents make
decisions on whether to adapt, or the extent of adaptation.

Finally, notice that this decomposition represents a first-order Taylor approximation of
a potentially nonlinear relationship between climate and realized temperature. Two types
of variation are often associated with a changing climate: changes in averages, and changes
in the frequency of extreme weather events (IPCC, 2013). For simplicity, and to keep the
comparison with prior approaches as clear as possible, our temperature decomposition focuses
on increases in averages, not on variability. In fact, in the following section we show that
our weather data, comprised of the comprehensive set of national weather monitors, suggests
a gradual increase in average temperature, but that the magnitude of temperature shocks,
defined as deviations from the 30-year moving averages, are relatively stable over time, and
narrowly bounded. Therefore, in our approach, dispersion shows up only implicitly in the
sense that long-run norms take into account the frequency and intensity of daily temperature

extremes.?!

III. Empirical Application: Climate Impacts on Ambient Ozone

We apply our unifying approach to measure climate impacts on ambient ozone concentration,
and adaptation to climate change in this context, and examine the heterogeneity in adaptive
behavior. This application is ideal for three reasons. First, ozone is not emitted directly into

the air, but rather rapidly formed by Leontief-like chemical reactions between nitrogen oxides

21Tt is imperative to recognize, however, that variability may be crucial in some settings. Kala (2019), for
example, studies adaptation under different learning models. Hence, variance of climatological variables is a
key element of her framework.
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(NOx) and volatile organic compounds (VOCs) in the presence of sunlight and warm tem-
peratures.?? Hence, meteorological conditions do matter in determining surface ozone levels,
and climate change may increase ozone concentration in the near future (e.g., Jacob and
Winner, 2009). Furthermore, ozone is rapidly destroyed during the night; thus, correlation
between ambient concentrations across two consecutive days is limited. Second, nationwide
high-frequency data on ambient ozone and meteorological conditions are publicly available
for a long period of time in the United States: we use daily measurements for the typical
ozone season from 1980-2013.2% Third, this is a highly policy-relevant issue. The so-called
“climate penalty” on ozone means that climate change might deteriorate air quality in the
near future, with important implications for public health and labor productivity.?*

In this section, we present a conceptual framework for why agents may undertake adaptive
measures, describe the data used in our analysis, and the empirical strategy used to carry
out the estimation of the impacts of weather shocks and longer-term climatic changes on

ambient ozone concentration.

A.  Conceptual Framework

In the context of ozone, economic agents could be polluting firms, households engaging in
consumption that produces precursor pollutants, or local regulators concerned with pollution
and public health. For example, households may respond to an ozone alert day by mowing
their lawns or refueling their cars earlier or later in the day — or on a different day altogether —
to avoid VOC emissions, taking public transit, carpooling, or working from home to reduce
emissions altogether, or purchasing hybrid or electric vehicles to reduce local emissions.

On the other hand, firms may (i) reshuffle their production activities within the day to

22See Appendix A.1 for further details.

2The ozone season varies by state and usually consists of only six months (typically April-September),
but concerns are mounting that longer spring and fall would expand the ozone season in some states (e.g.,
Zhang and Wang, 2016).

24Exposure to ambient ozone has been causally linked to asthma hospitalization, pharmaceutical expen-
ditures, mortality, and labor productivity (e.g., Neidell, 2009; Moretti and Neidell, 2011; Graff Zivin and
Neidell, 2012; Deschenes, Greenstone and Shapiro, 2017).
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avoid VOC emissions in peak hours, such as painting in construction sites, or even between
different months, increasing emissions during colder months in order to reduce emissions
during hotter months; (ii) install pollution abatement technologies, or otherwise change their
production function, for instance by electrifying emissions-intensive production processes
such as switching from oil or gas furnaces to electric. Additionally, local regulators may
provide ground-level ozone information to at-risk populations to avoid intense ozone exposure
on hot days, e.g., by issuing an ozone alert when a heat wave is forecasted, and coordinating
local actions with households and firms to reduce permanently or shift emissions-intensive
activities within the day or across days, weeks, or months. Importantly, these agents could
be reacting to either the realized or anticipated outcome of climate change, and could be
undertaking small or large actions — adjusting behaviors within a day might be a small action
that adds up across many agents, for example, while the switch to alternative commuting or
production methods may be more transformational .

For simplicity of exposition, consider the case of a polluting firm. The agent minimizes
cost by selecting the optimal production schedule for the given input costs, climate, and
other local factors faced by the agent. But, ambient ozone itself can impose an additional
shadow price on the agent’s chosen production schedule, implied by, e.g., public or regula-
tory pressures. Specifically, for the agent engaging in dirty production, the emission of ozone
precursor pollutants (VOCs and NOx) are de facto “inputs” into the agent’s production
schedule.?6 Any shadow price on ozone faced by the agent would thus translate into an im-
plicit shadow price on the emission of either of these precursors as inputs in their production

process, conditional on local climate and atmospheric composition.?” Ceteris paribus, the

250bserve that some local regulators are making a direct case for reducing precursor pollutants to control
climate change driven increases in ozone (e.g., BAAQMD, 2017), and that the EPA also acknowledges the
role of climate change in worsening ozone concentrations, stating that “[ijn addition to being affected by
changing emissions, future O3 concentrations may also be affected by climate change” (USEPA, 2015).

26That is, they are emitted in proportion to the choice, and quantity used, of actual production inputs.

2"TNaturally, there may also be regulatory pressures for the precursors themselves, therefore explicitly
defining (shadow) prices for them as well (Auffhammer and Kellogg, 2011; Deschenes, Greenstone and
Shapiro, 2017). In the robustness checks, however, we provide evidence that these regulations do not seem
to play an important role in agents’ adaptation measures regarding climatic changes. This is not surprising,
given that it is ozone formation, not the precursors, that primarily depends on climate.
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agent would thus minimize costs taking into account the implicit shadow prices on these
precursors.?® In practice, the optimizing decisions are often over changes in input mix or
timing of production (Henderson, 1996). In other words, the agent is implicitly considering
ozone levels whenever they choose the cost-minimizing inputs for production of goods and
services.?

To better understand why agents may adapt to climatic changes in ways that reduce
ambient ozone, compare the ozone context to a standard agricultural setting. As has been
shown in that context (e.g., Mendelsohn, Nordhaus and Shaw, 1994; Schlenker, Hanemann
and Fisher, 2005; Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009), the agent
maximizes profit by optimizing over their choice of crop and other inputs such as irrigation,
conditional on anticipated or realized climate, controlling for other local factors such as soil
quality. Restated, the agent minimizes cost by selecting the optimal production schedule for
the given set of input costs, climate, and other local factors faced by the agent.

Figure 1 illustrates this “cost-minimizing” optimization decision agents face with respect
to ozone and its precursors, depicting the envelope of minimum-cost production schedules,
conditional on realized climate, in the spirit of Deschenes and Greenstone (2007). Cost of
production is on the left y-axis, associated ozone concentration is on the right y-axis, and
temperature is on the x-axis.?® For simplicity in illustration, we assume that factors such
as precipitation and other exogenous determinants have been adjusted for. The production
schedule 1 and 2 cost functions reveal the relationship between cost and temperature, as well

as ozone and temperature, when these production schedules are chosen. It is evident that

28Unlike in the agriculture setting, a common focus of prior studies, where markets exist for most inputs,
in our context markets for ozone precursors (de facto inputs in production) existed only in some areas and in
specific periods of time. Notwithstanding, the implicit shadow prices — reflecting social valuation of ambient
ozone reductions — may provide incentives for producers similar to those provided by market prices.

290f course there are other factors that may affect ambient ozone concentrations, climate being the obvious
one, but precursor emissions are the only source that is controllable by the agent. While this could lead to
measurement error in the direct relationship between agents’ decisions and ozone concentration, ozone — in
this context — is the outcome variable, and any measurement error in ozone would simply be absorbed by
the error term in a reduced form model.

30Notice that from the cost minimization problem, we observe a derived demand function for VOCs and
NOx, conditional on the agent’s chosen level of output. In turn, that demand for precursors maps into
resultant ambient ozone levels, conditional on the temperature.
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schedule specific costs, and associated ozone concentrations, vary with temperature. Further,
the cost-minimizing production schedule varies with temperature. For example, production
schedule 1 minimizes cost between T and T5; the agent would be indifferent between the
two at Ty where the cost functions cross (i.e., point B); and production schedule 2 minimizes
cost between Ty and T3. The long-run equilibrium is denoted by the dashed gray line and
represents the long-run optimum when the agent can freely adjust their production schedule
in response to changes in temperature.

Consider first an agent that is initially faced with a climate normal temperature of 7.
Their optimal choice would thus be to minimize cost under production schedule 1, at point
A. Now consider two alternative scenarios: one in which the agent is faced with a transitory
temperature shock of T3, and a second in which the agent is faced with a permanent change
to a new climate normal temperature of T3. Under the first scenario, the agent would be
unable, or unwilling,®' to adapt to the temperature shock and would temporarily produce at
point C’, with higher associated ozone concentration and higher cost of production. Under
the second scenario, the agent would adjust to this permanent change in the climate normal
temperature and change to production schedule 2, now producing at point C rather than
C'. Notice, however, that while point C' is lower cost than point C”, it still implies a higher
cost of production and associated ozone concentration than point A. This is to be expected.
Adaptation is typically not costless (e.g., Kelly, Kolstad and Mitchell, 2005; Carleton et al.,
2020) — as production schedule 1 was cost-minimizing under the original climate norm of 77,
this implies that schedule 2 must be (weakly) more costly to implement in the absence of
any climatic changes.

Finally, notice that our unifying approach estimates simultaneously both of these reduced
form relationships between ambient ozone concentration and temperature, accounting for

agents’ differential responses to temperature shocks versus changes in the climate norm.

31From a purely mechanical standpoint, the agent may be technologically unable to adjust their production
schedule on such short notice — i.e., daily. From an economic standpoint, even if such adjustments were
technologically feasible, they may not be economically sound, as such adjustments would likely incur greater
costs than could be saved by avoiding the additional cost associated with transitory sub-optimal production.
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The recovered estimate for temperature shocks — Sy in Equation (6) — reflects the difference
between the ozone concentrations associated with points C” and A, while the recovered
estimate for changes in the climate norm — f¢ in Equation (6) — reflects the difference
between points C' and A, and thus adaptation can be clearly taken as the difference between

C" and C.

B. Data

Weather Data — For meteorological data, we use daily measurements of maximum tem-
perature as well as total precipitation from the National Oceanic and Atmospheric Admin-
istration’s Global Historical Climatology Network database (NOAA, 2014). This data-set
provides detailed weather measurements at over 20,000 weather stations across the country
for the period 1950-2013. Figure 2 presents the yearly temperature fluctuations and over-
all climate trend in the US as measured by these weather stations, relative to a 1950-1979
baseline average temperature, while Figure Al, in Appendix A, illustrates the geographical
location of the complete sample of weather stations from 1950-2013. Figure 3, by compari-
son, depicts the variation and trend of our decomposed temperature variables, Temp® and
Temp" | between 1980 and 2013 for the comprehensive set of national weather stations, indi-
cating that while average temperature has been gradually increasing, temperature variability
has remained relatively stable.?? These weather stations are typically not located adjacent
to the ozone monitors. Hence, we develop an algorithm to obtain a weather observation
at each ozone monitor in our sample.?®> Our preferred matching algorithm uses information
from the two closest weather stations within 30 km of each ozone monitor, as these stations
are likely to better reflect the local environment than stations that are further away. The
final sample under this matching algorithm includes 97.25% of all daily ozone observations

(97.91% of all ozone monitors). However, we also expand the matching algorithm to include

32Figures A2 and A3 in Appendix A present similar patterns using a semi-balanced sample of weather
stations, and our final sample of weather stations once matched to ozone monitors.

33We detail the steps taken in Appendix A.2 as well as conduct robustness checks on the sensitivity of our
results to changes in the algorithm in Appendix B.1.
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the closest five weather stations within 80 km, for a final sample that includes over 99.99% of
all daily ozone observations (100% of all ozone monitors). Table A1, in Appendix A, reports
the summary statistics for daily temperature and our decomposed variables, for each year

in our sample from 1980-2013.

Ozone Data — For ground-level ozone concentrations, we use daily readings from the
nationwide network of the EPA’s air quality monitoring stations. In our preferred specifi-
cation we use an unbalanced panel of ozone monitors.** Appendix A Figure A4 illustrates
the evolution of ambient ozone concentrations over our sample period for both the full un-
balanced panel of monitors, as well as a smaller balanced panel. Figure A5, in Appendix A,
depicts the evolution of our sample of ozone monitors over the three decades in our data,
and illustrates the expansion of the network over time. Table A2, in Appendix A, describes
some features of the sample of ozone monitors used in our analysis, for every year between

1980 and 2013.

Consolidating information from the above sources, we reach our final unbalanced sam-
ple of ozone monitors over the period 1980-2013.3> Appendix A Figure A6 illustrates the
proximity of our final sample of ozone monitors to the matched weather stations.

We carry out the analysis focusing on the effect of daily maximum temperature on daily
maximum ozone concentration since 1980. We choose this relationship because increases
in temperature are expected to be the principal factor driving increases in ambient ozone
concentrations (Jacob and Winner, 2009). Indeed, data on ozone and temperature from our
sample, plotted in Appendix A Figure A7, highlights the close correlation between these
two variables. Interestingly, we see that not only does contemporaneous temperature have
an effect on ambient ozone, but the long-term climate normal temperature also seems to
be affecting it, although perhaps to a lesser extent. We leverage both relationships in the

empirical framework we now describe.

34We discuss the reasoning for this approach as well as our results using a balanced panel in Appendix
B.1.
35For further details regarding the construction of the final dataset for our analysis, see Appendix A.2.
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C.  Empirical Strategy

Decomposition of Meteorological Variables: An Empirical Counterpart — Focusing on tem-
perature (T'emp), our primary variable of interest, we express it around ozone monitor i in
day t of month m and year y, and decompose it into Temp® (= Z;;) and Temp" (= i —Zip)

as in Section II. For our application, we define:

1
71" = A 7im'7 12
z P 30 j:;:))ox J ( )

Implicitly defining w; as equal one for all j € {y — 30,...,y — 1} — where y denotes the
contemporaneous year — and zero otherwise, such that Temp® (= Z;;) is equal to the 30-
year monthly moving average (MA) of past temperatures.®

We choose a one-year lag to make this variable part of the information set held by
economic agents at the time that the outcome of interest is measured. At the same time,
we average temperature over 30 years because it is how climatologists usually define climate
normals, and because we wanted individuals and firms to be able to observe climate patterns
for a long period of time, enough to potentially make adjustments.?” For example, the 30-
year MA associated with May 1982 is the average of May temperatures for all years in the
period 1952-1981. Therefore, economic agents should have had at least one year to respond
to unexpected changes in climate normals at the time ambient ozone is measured. We use
monthly MAs, rather than daily or seasonal, because it is likely that individuals recall climate

patterns by month, not by day of the year. Indeed, meteorologists on TV and social media

often talk about how a month has been the coldest or warmest in the past 10, 20, or 30 years,

360ur decomposition of meteorological variables into a 30-year moving average (norms) and deviations
from it (shocks), as discussed in Section II, is a data filtering technique to separate the “signal” from the
“noise.” This should not be confused with (a special case of) an autoregressive integrated moving average
(ARIMA) model of climate change.

37t is possible, however, that agents form beliefs regarding expected climate over much shorter and more
recent time windows (e.g., Kaufmann et al., 2017), or that organizational inertia slows the rate at which
firms adapt to a changing climate (e.g., Kelly and Amburgey, 1991). In our robustness checks we provide
similar estimates using 3-, 5-, 10-, and 20-year moving averages, as well as longer lag lengths between the
contemporaneous weather shock and the defined climate normal.
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but not how a particular day of the year has deviated from the norm for that specific day.?®
Taking this approach, Temp" represents weather shocks and is defined as the deviation of
the daily temperature from the lagged 30-year monthly MA.

By definition, these shocks are revealed to economic agents only at the time ambient
ozone is being measured. Thus, in this case agents may have had only a few hours to
adjust, limiting their ability to respond to unexpected temperatures.?® Figure 4 provides an
illustrative example of our preferred decomposition in Panel A, compared to a traditional
fixed-effects decomposition in Panel B, using data for Los Angeles in 2013.4°

Econometric Model — Given the decomposition of meteorological variables into two
sources of variation, our parsimonious econometric specification to estimate the impact of

temperature on ambient ozone is the following:

Ozoney, = PwTempl + BcTempi(;; + X},0 + ¢is + €t (13)

where i represents an ozone monitor, ¢ stands for day, and s for season-of-the-sample (Spring
or Summer, in each year). As mentioned in the prior section, our analysis focuses on the most
common ozone season in the U.S. — April to September — in the period 1980-2013.*' The
dependent variable Ozone captures daily maximum ambient ozone concentration. Temp’s

represent the two components of the decomposition proposed for meteorological variables.*?

38There may be a concern that because temperature can have a within-month trend, defining temperature
as a monthly average (climate norm) with daily (weather) shocks could mechanically lead to a stronger
relationship between ozone and weather than between ozone and climate. As another robustness check, we
redefine Z;5 in Equation (12) to the special case in which p = ¢, using daily instead of monthly moving
averages, discussed further in the following subsection. Economic agents, however, may still associate a day
with its corresponding month when making adjustment decisions.

39Because precise weather forecasts are made available only a few hours before its realization, economic
agents may have limited time to adjust prior to the ozone measurement. This might be true even during
Ozone Action Days (OAD). An OAD is declared when weather conditions are likely to combine with pollution
emissions to form high levels of ozone near the ground that may cause harmful health effects. Individuals
and firms are urged to take action to reduce emissions of ozone-causing pollutants, but usually only a day in
advance or in the same day. Unlike what happens in a few developing countries, however, neither production
nor driving is forced to stop in those days, limiting the impact of short-run adjustments. In the robustness
checks, we find no evidence of any additional adaptation occurring due to OAD announcements. That is,
short-run adjustments, if any, do not seem large enough to be comparable to what happens in the long run.

4OFigure A8, in Appendix A, illustrates this same concept but over the entire 34-year sample period.

41Table A3 in Appendix A lists the official ozone season by state following USEPA (2006).

42We further explore the nonlinear effects of temperature on ozone in Section IV.D, providing two alter-
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The matrix of additional control covariates X;; contains a similar decomposition of precipi-
tation.*3 Finally, we replace the monitor fixed effects, p;, and time fixed effects, A, from the
generalized model presented in Equation (6) with ¢;s — fixed effects for monitor-by-season-
by-year, and include €;, an idiosyncratic term.** From a theoretical standpoint this change
is not necessary — and in fact the empirical results are qualitatively similar in our context
when implemented using p; and A, as separate fixed effects. We nevertheless combine them
to more flexibly control for local factors that may have changed across seasons and years,
allowing us to more closely approximate the ideal experiment.*

Analogous to Isen, Rossin-Slater and Walker (2017), notice that by including fixed effects
for monitor-by-season-by-year, it is as if we regressed our main specification monitor by
monitor, individually, for each season of the sample, and then took the weighted average
of all recovered coefficients. Conceptually, consider the following thought experiment that
we observe in our data many thousands of times for both daily temperature shocks and
monthly climate norms: Take two days (months) in the same location, same season, and
same year. Now, suppose that one of the days (months) experiences a larger temperature
shock (hotter climate norm) than the other. Our estimation strategy quantifies the extent to
which this difference in temperature shock (climate norm) affected the ozone concentration
observed on that day (month). Therefore, this approach controls for a number of potential
time-invariant and time-varying confounding factors that one may be concerned with, such
as the composition of the local atmosphere, regulatory burden, and technological progress.

Measuring Adaptation — Once we credibly estimate the impact of the two components

native approaches for extending the linear model to allow for nonlinearities in the response function of ozone
to weather shocks and climate norms.

43 Although Dawson, Adams and Pandisa (2007) find it to be less important than temperature, Jacob and
Winner (2009) point out that higher water vapor in the future climate may decrease ground-level ozone
concentration. Our estimates are in line with those authors’ assessment, and are available upon request.

44 Appendix C details how both sources of monitor-level variation in Z;5, within-season and across-year,
are still leveraged within this monitor-by-season-by-year fixed-effects structure.

450ne may be concerned that we do not include fixed effects for “predictable” within-season variation such
as the “ozone weekend effect.” As a robustness check we re-estimated Equation (13) after further extending
our monitor-by-season-by-year fixed effects, ¢;5, to monitor-by-season-by-year-by-weekday/end. Our results
were quantitatively unchanged to the third decimal digit.
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of temperature — daily shocks and within-season changes in climate normals — on ambient
ozone concentration, we uncover our measure of adaptation. The average adaptation across
all monitored locations in our sample is the difference between the coefficients BW and fo
estimated in Equation (13). If economic agents engaged in full adaptive behavior, BO would
be zero, and the magnitude of the average adaptation would be equal to the size of the

46 As previously discussed, agents

weather shock effect on ambient ozone concentration.
would react to “permanent” increases in temperature by reducing ozone precursor emissions
to offset potential increases in ozone concentration.

In our preferred econometric specification, behavioral responses are allowed to occur only
in the year after the change in temperature norm is observed. Those adjustments, however,
might be related to innovations in temperature happening both in the previous year and 30
years before. Indeed, the “moving” feature of the 30-year MA is, by definition, associated
with the removal of the earliest observation included in the average — 31 years before, and the

inclusion of the most recent observation — one year before. Nevertheless, in the robustness

checks we consider cases where economic agents can take a decade or two to adjust.

IV. Results

In this section we report our findings of the application of our unifying approach to the
impact of temperature changes on ambient ozone concentration, and the extent to which

economic agents adapt to climate change in the context of ambient ozone pollution.

A.  Impacts of Temperature on Ambient Ozone Concentration

Column (1) of Table 1 presents the effects on ambient ozone of the two components of

observed temperature: climate norm, represented by the lagged 30-year monthly MA, and

46This outcome is unlikely because, as noted previously, adaptation is typically not costless and thus the
costs of engaging in ‘full adaptive behavior’ likely outweigh the benefits (Kelly, Kolstad and Mitchell, 2005;
Carleton et al., 2020).
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temperature shock, represented by the deviation from that long-run norm.*” Although the
effects are uncovered by estimating Equation (13), columns (2) and (3), respectively, bench-
mark them against effects that would have been found if one had exploited either only the
panel (e.g., Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009) or only the cross-
sectional (e.g., Mendelsohn, Nordhaus and Shaw, 1994; Schlenker, Hanemann and Fisher,
2005) structure of the data.

Column (2) reports the effect of temperature on ozone identified by exploiting within-
monitor daily variation in maximum temperature after controlling for monitor-by-month-by-
year fixed effects. The coefficient indicates that a 1°C increase in maximum temperature leads
to a 1.66 parts per billion (ppb) increase in maximum ambient ozone concentration. Column
(3) reports results from a cross-sectional estimation of daily maximum ozone concentration
on daily maximum temperature around each monitor, averaged over the entire period of
analysis 1980-2013. These variables capture information for all the years in our sample and
are good proxies for the average pollution and climate around each monitor. The estimate
suggests that a 1°C increase in average maximum temperature is associated with an increase
of 1.17 ppb in ozone concentration, approximately. When we decompose daily maximum
temperature into our two components in column (1), as expected the estimated effect of
temperature shocks on ambient ozone is statistically the same as the fixed-effects approach
in column (2). Coincidentally, the effect for the lagged 30-year MA climate norm is also
statistically the same as its counterpart in column (3). Specifically, a 1°C temperature shock
increases ozone concentration by 1.68 ppb, and a 1°C change in climate norm increases ozone
concentration by 1.16 ppb. To be clear, this does not imply that the cross-sectional approach
is free of omitted variable bias concerns. More likely there happens to simply be both upward
and downward bias simultaneously affecting the estimate in this specific context (Griliches,

1977). In fact, when we re-estimate our model on a more balanced sample of monitors as a

47 As mentioned before, even though we use monthly moving averages in our main analysis, as a robustness
check we also estimate our preferred specifications using daily moving averages. The results are virtually
identical, and are reported in Appendix B.1 Table B3.
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robustness check the bias in the cross-sectional approach becomes much more evident, leading
to an over-estimation of the implied measure of adaptation by more than 100 percent.*®

It is widely recognized that the cross-sectional approach is plagued with omitted variable
bias. In our context, if more informed/concerned local monitoring agencies inspect heavy
emitters of ozone precursors more often when average temperature rises, and more intense
enforcement of environmental regulations induces reductions in ozone concentration, then
this unobserved behavior might lead to underestimation of the long-run impact of temper-
ature. On the other hand, as emphasized in the conceptual framework, estimates from the
standard panel data fixed-effects methodology and our approach should be statistically the
same due to the properties of the Frisch-Waugh-Lovell theorem. The deseasonalization em-
bedded in the fixed-effects model is approximately equivalent to the use of deviations from
30-year norms in our regression model.

Our estimates imply a so-called “climate penalty” on ozone on the lower end of the
ranges found in the literature. Indeed, Jacob and Winner (2009), in their review of the
effects of climate change on air quality, find that climate change alone may lead to a rise
in summertime surface ozone concentrations by 1-10 ppb — a wide interval partly driven
by the different regional focuses of the studies they review. The U.S. EPA, in its 2009
Interim Assessment, claims that “the amount of increase in summertime average ... O3
concentrations across all the modeling studies tends to fall in the range 2-8 ppb” (USEPA,
2009, p.25). Combining our estimates in column (1) with climate projections from the U.S.
Fourth National Climate Assessment (Vose et al., 2017) under a business-as-usual scenario
(RCP 8.5), one would predict an increase in ambient ozone concentrations by the mid and end

of the century in the range of 1.9-5.6 ppb, approximately.* To be clear, “climate penalty”

48Gee estimates in Appendix B.1 Table B2.

49To be clear, while our estimate of adaptation does not rely on extrapolation, any prediction of the
future “climate penalty” must do so by construction. In that sense, the “climate penalty” implied by our
estimates may still be an upper bound. As we will show in Section V, although our measure of adaptation
has remained relatively constant over time, the impact of the climate norm on ozone has decreased. This
could imply that long-run changes in the economic or regulatory landscape, driven, e.g., by technological
advancement or shifting preferences, could lead to further decreases in this impact in the future. At the
same time, we also find non-linear and increasing effects of temperature on ozone formation, indicating that
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in our setting is the response of economic agents to longer-term climatic changes, which is
inclusive of adaptation, as it will be discussed below. If one would wrongly use the response
to temperature shocks as the penalty, which is exclusive of adaptation, the range would be
2.7-8 ppb, a nontrivial shift to the right. In fact, this may be one of the reasons why our
estimate of the penalty is on the lower ranges of the values produced by simulation studies
(again, for a review, see Jacob and Winner, 2009); they usually do not take into account
behavioral responses. To put those values in perspective, each of the last few times EPA

revised the air quality standards for ambient ozone, they decreased it by 5 ppb.

B.  Measuring Adaptation to Climate Change

Our results indicate that short-run temperature shocks have a larger impact on ozone levels
compared to long-run temperature norms. The comparison between the short- and long-run
effects of temperature may provide a measure of adaptive responses by economic agents (Dell,
Jones and Olken, 2009, 2012, 2014). Our measure of adaptation — also a comparison between
the impact of changes in the long-run climate normal temperature (lagged 30-year MA) and
the effect of the temperature shock (deviation from the MA) — is 0.51 ppb, suggesting that
economic agents may be adapting to climate change. In the case of polluting firms, for
example, they might be making adjustments to their production processes so that whenever
average temperature rises, the emissions of ozone precursors reduce to keep ambient ozone
at controllable levels. Such adjustments might be driven by public and regulatory pressures
and/or technological innovation.

If we ignored such adaptive responses by economic agents, then we would be overestimat-
ing the “climate penalty” on ozone by more than 44 percent. Again, we would be making the
mistake of taking the effect of weather shocks as the penalty, when we should be looking at
the impact of climatic changes, which incorporates adaptive responses by economic agents.

Using the climate projections from the U.S. Fourth National Climate Assessment under the

there may be counter-acting intensification effects.
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business-as-usual scenario (RCP 8.5), we would overestimate the climate penalty by 0.82

ppb by mid-century, and 2.47 ppb by the end of the century.

C. Robustness Checks

Measurement Error € Agents’ Ezxpectations — A concern regarding our decomposition of
meteorological variables in Equation (10) might be measurement error. Because both com-
ponents are intrinsically unobserved, we define the long-run climate norm as the 30-year
MA, and weather shocks as deviations from that moving average. If there is classical mea-
surement error, the estimates of the coefficients of interest in Equation (13) will suffer from
attenuation bias. Moreover, the bias will be magnified in fixed-effect regressions.

To investigate the robustness of our results to measurement error, we carry out analyses
using moving averages of different length. We start by using a 3-year MA, then 5-, 10-, and
20-year MAs, relative to our preferred specification using 30 years. As argued seminally by
Solon (1992), as we increase the time window of a moving average, the permanent component
of a variable that also includes a transitory component will be less mismeasured. If this is the
case, we should observe the coefficients of interest increasing as longer windows are used for
the moving averages. Our estimates in Table 2 remain remarkably stable over the different
lengths of the moving averages, but if anything they get slightly larger until the 20-year
moving average.

As pointed out by Angrist and Pischke (2009) and Blanc and Schlenker (2017), a fixed-
effects regression with variables under classical measurement error is plagued by larger at-
tenuation bias. The identifying variation in a standard panel analysis comes from deviations
from the cross-sectional averages in the panel structure. Once the variables of interest are
demeaned, the share of measurement error variation is magnified, and the coefficients of
interest will be even more attenuated. Again, our estimates in Table 2 remain largely un-
changed over the different lengths of the moving averages, with a slight attenuation of the

coefficient of the moving average when we move from the 20- to the 30-year moving average.
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This latter result suggests that the widely used climate normals are close to the “optimal”
long-run norms. The improvements from reducing measurement error might be offset by the
panel-driven attenuation bias between 20- and 30-year time windows.

At the same time, it is possible that agents form climate expectations in a way that
exhibits recency weighting (e.g., Kaufmann et al., 2017). This presents a second trade-off.
Longer, 20- to 30-year MAs, guided by climatology, appear “optimal” in our setting for
navigating the first trade-off between potential measurement error and fixed effect induced
attenuation bias for the purposes of estimating a long-run climate impact. Shorter, 3- to
5-year MAs, however, may better reflect agents’ internalized information set with regards to
forming expectations over the current climate conditions and thus better capture medium-
run adaptive behavior (Moore et al., 2019). It is plausible, therefore, that the observed
increases, however slight, in the coefficient on climate norm as we move from a 3- to a 20-
year MA are, at least in part, due to agents’ stronger adaptive response to recent events

than to longer-run trends in the climate norm.

Lagged € Short-run Adaptive Responses — Another potential concern with our preferred
specification might be the fact that we have used the 1-year lagged 30-year moving average
to capture the long-term climate norm, implying that agents adapt within one year. Hence,
we check the sensitivity of our results when agents have 10 or 20 years to adapt, instead
of just one. In columns (1) and (2) of Table 3, we provide estimates from our preferred
specification but using respectively 20-year moving averages of temperature lagged by 10
years, and 10-year moving averages lagged by 20 years. By doing so, we are providing agents
more time to potentially adjust to climate change. Even though we would expect that the
effects of the weather shocks to be similar, we anticipate the effects of the climate norm to
be slightly smaller than before, as agents should now be able to adapt more than before.
This is what we find from our estimates reported in Table 3, although the magnitude of the
coefficients is remarkably close to that of our main results.

Alternatively, one might be concerned that agents are in fact able to respond rapidly and
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adapt to weather shocks, in which case the coefficient on temperature deviations would be
inclusive of any such adaptive responses, and thus our estimate of adaptation would be biased
downwards. In column (3) we make use of a widespread policy of “Ozone Action Day” (OAD)
alerts, where a local air pollution authority would issue an alert, usually a day in advance,
that meteorological conditions are expected to be more conducive to a high concentration
of ambient ozone in the following day. If agents are adapting to contemporaneous weather
shocks, these “action days” would be the days we would be most likely to observe an adaptive
response. Indeed, individuals are urged to take voluntary action to reduce emissions of ozone
precursors such as working from home, carpooling to work, or using public transportation;
combining auto trips while running errands; and reducing home landscaping projects. Firms
are also urged to provide work schedule flexibility, reduce refueling of the corporate fleet
during daytime, and save AC-related energy usage by adjusting indoor temperature (USEPA,
1997, 2004). Interacting an indicator variable for days in which OAD alerts were issued
for a given county with our other covariates, we find that such alerts have a negligible
and statistically insignificant impact on the effect of a 1°C change in the contemporaneous
temperature shock.’® Although previous studies have provided evidence of some decline in
driving and increases in the use of public transportation in a few locations (e.g., Cummings
and Walker, 2000; Cutter and Neidell, 2009; Sexton, 2012), we find little indication that

agents engage in meaningful short-run adaptive responses across the country.

Accounting for Policies Targeting Ozone Precursors — During our period of analysis
(1980-2013) there were two other major policies aimed at reducing ambient ozone concentra-
tions implemented in the United States: (i) regulations restricting the chemical composition
of gasoline, intended to reduce VOC emissions from mobile sources (Auffhammer and Kel-

logg, 2011), and (ii) the NOx Budget Trading Program (Deschenes, Greenstone and Shapiro,

50Although the recovered coefficients of temperature shock, climate norm, and implied adaptation are
quantitatively different for column (3) than columns (1) and (2), this is due to a difference in the underlying
sample. EPA data on “action day” alerts were only provided from 2004 onwards, leading to a restricted
overall sample (approximately 36% of our full sample).
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2017). There may be concern that these input regulations targeted at ozone precursors could
be influencing our results.

Table 4 examines the sensitivity of our results to the exclusion of the regions and periods
affected by these regulations from our estimating sample. Column (1) reports the results of
our main specification re-estimated on a sample excluding all observations from California
starting in 1996, when new state-wide regulations went into effect — aimed at reducing VOC
emissions between April and September by requiring a more stringently regulated type of
reformulated gasoline (RFG) be sold.”* Column (2) reports the results of re-estimating our
main specification after excluding all states that participated in the NOx Budget Trading
Program (NBP) starting in 2003, when the program went into effect. Finally, column (3)
re-estimates our model on a sample excluding both subsets of observations. In all three
cases the recovered estimates of temperature shock, climate norm, and implied adaptation
are statistically indistinguishable from our full-sample estimates. This is not too surprising,
because predominantly it is ozone formation, rather than precursors, that depend on climate.
Thus, while these policies may have affected precursor levels, they would not necessarily have

affected how agents respond to changes in climate.

Further Robustness Checks — We conduct additional robustness checks regarding fea-
tures in the construction of the data, selection of the estimating sample, and alternative
econometric specifications in Appendix B.1 Tables B1, B2, and B3. Specifically, Table B1
examines the sensitivity of our results to our algorithm for matching ozone and temperature
monitoring stations. Table B2 restricts our sample of ozone monitors to a semi-balanced
panel, including only monitors with data for every year of our sample; however, as pointed
out by Muller and Ruud (2018), our preferred unbalanced panel is likely more nationally rep-
resentative. Finally, Table B3 contains four additional robustness checks: (i) implementing

a daily MA rather than monthly; (ii) purposefully aggregating our data to the monthly level

5'We exclude only California in this exercise because Auffhammer and Kellogg (2011) only found effects
of gasoline standards on air quality in California. They found no effects for the federal gasoline standards.
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to simulate our methodology with lower frequency data; (iii) controlling for wind speed and
sunlight with the subset of data for which that information is available; and (iv) examining
the sensitivity of our results to inter-regional NOx transport by restricting the estimating
sample to exclude, or conversely, only include, the states designated by the EPA as part of
the “ozone transport region” (OTR). Across all of these models results remain qualitatively
similar to our central findings. Finally, Appendix B.1 Table B4 provides bootstrapped stan-
dard errors for our main estimates, finding little difference relative to the standard errors
clustered at the county level. In addition, that table presents standard errors clustered at the
state level. Although they double in magnitude, they do not affect the statistical inference
in any meaningful way because the standard errors are still small relative to the magnitude

of the estimated coeflicients.

D. Estimating Nonlinear Effects of Temperature

In many empirical settings there has been a focus in the economics literature on allowing for
nonlinear effects of temperature or climate on the outcome of interest. Thus, while our central
model adopts a linear specification for simplicity in interpretation and comparison with prior
methods, we note that our proposed approach is easily extendable to any nonlinear setting
with nth order polynomial effects. The following equations present the quadratic model as
well as the cubic, which appears to fit our empirical setting better due to the “s-shaped”
relationship between ozone and temperature. Specifically, one can simply include higher-
order polynomial terms for both the weather shock, (;; — Z;5), and climate norm, Z;;, such

that a quadratic model would be estimated as:

Yi = o+ Pw (@i — Tip) + Bolip + Bwa(@u — Tip)® + BoaZss + 1i + As + Vit (14)

3

while a cubic model would add the terms By 3(z; — Z;5)° and BesTiy, and so on up to any

arbitrary nth degree. Adaptation could then be inferred for the quadratic model as:
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Adaptation = (Bw — Be) + 2(Bwa(xi — Tip) — Bo2(Tip)), (15)

while adaptation for a cubic model would add the term 3(Bws(zi — Zi5)* — Bes(Tip)?), and
so on. Notably, for a marginal deviation of the daily temperature from the climate norm,

i.e., x4 — Ty = 0, Equation (15) simplifies to:

Adaptation = By — o — 2Pca(Tip), (16)

with marginal adaptation in the cubic model additionally including the term —38c3(Z;5)?%,
and so on.

Note that estimating the impacts of climate and weather in a setting with nonlinear effects
will also inherently include the interaction of these two channels of temperature response, as
discussed by Mendelsohn (2016), because the marginal impact of weather will vary with the
underlying climate norm from which it is deviating. To see this mathematically, one need
only expand the higher order weather terms to see that they include the interaction effects.
For example, the expansion of (z; — 9‘5@)2 includes the term —2z;:Z;5.

Alternatively, one could construct a set of indicator variables denoting whether realized
temperature at location ¢ on day ¢ fell within a certain temperature bin. By interacting
these indicators with the shock, norm, and control variables in a linear model, the response
function of the outcome variable to both weather and climate would be allowed to flexibly
adjust across the temperature distribution in a piece-wise linear fashion.’® Allowing for a
more flexible response function may be especially desirable in settings where the underlying
functional form is unknown. Furthermore, by estimating a (locally) linear relationship within
each bin, the specification allows for intuitive and easily interpretable measures of weather
and climate impacts, and implied measure of adaptation, across the temperature distribution.

Because ozone formation may be intensified with higher temperatures, but also exhibits

52In this way, the marginal effect of a 1°C change in either component of temperature is constrained to
be constant within its respective 5°C temperature bin, but is allowed to vary across each bin.
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a shorter half-life (McClurkin, Maier and Ileleji, 2013), we examine the nonlinear effects of
weather shocks and climate norms on ambient ozone concentrations across the temperature
distribution. The exact functional form of the ozone-temperature relationship is unknown,
although we can infer from observed data, e.g., via naive local polynomial smoothing regres-
sions, that it generally follows an “s”-shape. This may be due to competing intensification
and shorter half-life effects, or due to higher levels of adaptation at higher temperatures.
Thus, in addition to estimating quadratic and cubic models of Equation (13) by including
the additional terms outlined in Equation (14), we also estimate a “binned” specification
as described above. We start by creating indicator variables denoting whether the contem-
poraneous daily maximum temperature at a given ozone monitor falls within a certain 5°C
temperature bin. The lowest bin is below 20°C (just over the 10th percentile of our temper-
ature distribution), and the highest bin is above 35°C (90th percentile of our temperature
distribution), with the middle bin, 25-30°C, approximately centered around the temperature
distribution median and mean of 27.8°C and 27.1°C, respectively.

Figure 5 depicts the ozone relationship and marginal response to climate and weather, as
well as marginal adaptation, across the temperature distribution for the linear, quadratic,
cubic, and “binned” specifications. Recall that the effects of either climate or weather
under higher order models depend on the level of the other variable. For the climate norm
we assume a weather shock of zero — approximately the sample average as the shocks are
constructed as deviations from the norm. Conversely, for the weather shocks we assume the
sample average climate norm of approximately 27.5°C. The linear specification appears to
provide an adequate first-order approximation of the nonlinearities captured by the cubic
and binned specifications, while the quadratic model appears to miss-specify the ozone-
weather relationship compared to the other models, implying that adaptation decreases
with temperature. Although both the cubic and binned specifications appear to closely
match each other over the majority of the temperature distribution, implying a higher level

of adaptation when agents face a higher climate norm as might be expected, due to the
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functional form restrictions of the cubic it also implies a large, and rather unintuitive, level
of adaptation at lower temperatures.

With this in mind, our preferred approach for capturing potential nonlinearities in our
empirical context is the binned specification. Table B5, column (1), in Appendix B presents
the results of our preferred specification when interacting each of the independent variables
with the 5°C temperature bin indicators. The implied measure of adaptation is then pre-
sented in column (2). Table B6 additionally compares the implied level of adaptation under
the linear, binned, quadratic, and cubic specifications. Similar to Figure 5, we find that the
ozone/temperature response is increasing at an increasing rate at lower temperature ranges,
but increases at a decreasing rate at higher temperatures, particularly for increases in the
climate norm. Specifically, below 20°C, a 1°C temperature shock would raise ozone levels
by an additional 0.69 ppb, while a similar increase in the climate norm would raise ozone
concentrations by 0.14 ppb. Above 20°C, however, both effects drastically increase, with
temperature shocks increasing ozone by 1.69 ppb between 20-25°C, and by over 2 ppb above
25°C. While the effect of a 1°C increase in the climate norm is increasing with temperature
up to 30°C — at 1.28 ppb and 1.83 ppb for 20-25 and 25-30°C, respectively — the magnitude of
the impact is decreasing with temperature above 30°C — at 1.50 ppb and 0.90 ppb for 30-35
and above 35°C, respectively. This would imply a more than doubling of our full-sample
measure of adaptation above 35°C, at 1.15 ppb, suggesting that agents may make extra effort
to reduce ozone precursor emissions when temperatures are the highest and may otherwise
lead to greater ozone formation under business-as-usual precursor levels.

This relatively high level of adaptation above 35°C can be plausibly explained by at least
two reasons. First, regions having temperatures above 35°C might have higher incidence
of sunlight which might lead to more extensive use of solar panels to generate electricity.
Since the U.S. as a whole is predominantly NOx limited, we would expect that changes in

electricity usage drastically affect ozone concentrations.?® Higher temperatures might be

53Electricity generation is a major source of NOx, and, since ozone formation has a Leontief-like production
function in terms of NOx and VOCs, changes in electricity use in a NOx limited region would imply large
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creating an environment that is more suited to shifts away from conventional and dirtier
sources of power generation, thus leading to higher levels of adaptation. Second, absent any
adaptation, days that are exceptionally hot are more likely to cause exceptionally high levels
of ozone, which could trigger additional regulatory oversight. In order to avoid this, firms
would be most likely to concentrate adaptation efforts on days where the climate normal

temperature is itself the hottest.

V. Exploring Heterogeneity

Earlier studies have inferred adaptation indirectly, by flexibly estimating economic damages
due to weather shocks, then assessing climate damages through shifts in the future weather
distribution. We have pointed out the shortcomings of that time/space extrapolation ap-
proach in the spirit of the Lucas Critique (Lucas, 1976). Importantly, once we have recovered
a measure of adaptation from responses to weather shocks and longer-term climatic changes
by the same economic agents, then we are able to explore the heterogeneity in their degree of
adaptation. The following section examines heterogeneity in adaptive behavior over time in
Figure 6 and Appendix B.2 Table B7, and across beliefs in Table 5. Additionally, Appendix
B.2 Table B8 examines how the effect of temperature on ozone may be attenuated if the local
atmosphere has limited levels of one of the key ozone precursors (NOx or VOCs) relative to

the other.

A.  Results Over Time

Figure 6 Panel A illustrates the evolution of temperature’s impacts on ozone formation
across our sample period in 5-year increments, while Panel B reports the resulting level of
adaptation. As seen in Panel A, the effects of both temperature shocks and the climate
norms on ambient ozone concentration are decreasing over time, likely due — at least in part

— to regulations (see, for example, our companion paper Bento et al., 2020). The early 1980’s,

changes in ozone formation.
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which marked the initial phases of ozone monitoring and awareness, and when the average
pollution levels were also higher, exhibit the largest impacts of climate on ambient ozone.?*

Notice in Panel A that responses to temperature shocks a decade ahead approximately
mirror responses to longer-term climatic changes a decade before. Nevertheless, the difference
between those responses at any single point in time since the 1980’s has been relatively stable,
as illustrated by Panel B. This suggests that there may be limits to adaptation unless new
technologies are able to affect atmospheric composition, such as in the case of geoengineering
(e.g., Heutel, Moreno-Cruz and Ricke, 2016; Flegal et al., 2019). It also highlights the
risks of extrapolating flexibly-estimated weather responses over time to estimate adaptation

(Olmstead and Rhode, 2011; Bleakley and Hong, 2017), analogous to the Lucas Critique
(Lucas, 1976).

B. Adaptation by Beliefs in Climate Change Across Counties

Using the results of a relatively recent county-level survey regarding residents beliefs in
climate change (Howe et al., 2015), we split the set of counties in our sample into terciles of
high, median, and low beliefs. Table 5 presents the results of our preferred specification when
interacting indicator variables for high- and low-belief counties with our temperature and
control variables in column (1). The implied measure of adaptation is reported in column
(2). We find that low-belief counties, on average, observe a smaller ozone response to a
1°C temperature shock, relative to the median set of counties, but that this difference is
statistically insignificant with regards to changes in the climate norm. High-belief counties,
by comparison, observe approximately 31-35 percent larger and statistically significant ozone
responses to a 1°C increase in both components of temperature. As might be expected of
counties at opposite ends of the spectrum regarding beliefs that climate is changing, we

find that adaptation is roughly 42 percent lower in low-belief counties than median ones,

54Table B7 in Appendix B.2 reports similar results to Figure 6 in tabular format, segmenting the sample
into only three time periods for brevity.
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while this effect is similar in magnitude but of opposite sign for high-belief counties.>® This
evidence suggests that greater caution is called for when extrapolating flexibly-estimated
weather responses over space when dealing with adaptation to climate change. Economic
agents might respond heterogeneously according to unobserved preferences, beliefs, and the

experience with the local climate.

VI. Concluding Remarks

We have developed a unifying approach to measuring climate change impacts and adaptation
that considers both responses to weather shocks and longer-term climatic changes in the same
estimating equation. By bridging the two earlier strands of the climate-economy literature
— cross-sectional studies that relied on permanent, anticipated components behind meteoro-
logical conditions (e.g., Mendelsohn, Nordhaus and Shaw, 1994; Schlenker, Hanemann and
Fisher, 2005), and panel fixed effects that exploit transitory, unanticipated weather shocks
(e.g., Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009) — we have overcome
identification concerns from earlier cross-sectional studies, improved on the measurement of
adaptation, provided a test for the statistical significance of this measure, and addressed the
changing relationship between meteorological variables and economic outcomes, in the spirit
of the Lucas Critique (Lucas, 1976). Our approach rests on two rather simple but powerful
ideas. First, the decomposition of meteorological variables into long-run climate norms and
contemporaneous weather shocks. Second, the properties of the Frisch-Waugh-Lovell theo-
rem, which enables the simultaneous identification of short- and long-run impacts of climate

change.

55Table B9 in Appendix B.2 conducts a similar analysis, separating counties by their belief in the use of
regulation on carbon emissions, while Table B10 in Appendix B.2 instead splits the sample into two groups
based on whether they leaned Republican or Democrat in the 2008 presidential election using data from
MIT (2018). Results in Table B9 are qualitatively similar to Table 5, while the results in Table B10 paint
a similar picture under the assumption that belief or dis-belief in climate change approximately maps to
Democratic or Republican political affiliation. Table A4 in Appendix A provides summary statistics of basic
characteristics for the three sets of counties used in Table 5. High-belief counties tend to be more populous,
better educated, and richer than low-belief ones.
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In the spirit of Dell, Jones and Olken (2009, 2012, 2014), we recovered a measure of
adaptation defined as the difference between those short- and long-run responses. Unlike
previous studies, however, this measure was derived directly from coefficients estimated in
the same fixed-effects model; hence, less susceptible to omitted variable biases from cross-
sectional estimates. In addition, it compares the responses of the same economic agents to
both weather shocks and climatic changes, overcoming the challenges of identifying adapta-
tion by comparing the profiles of weather responses across time and space (e.g., Deschenes
and Greenstone, 2011; Barreca et al., 2016; Auffhammer, 2018a; Heutel, Miller and Molitor,
2021), which requires that preferences be constant across those dimensions. In other words,
our strategy to identifying adaptation does not require the imprecise assignment of a profile
of temperature responses to other locations solely based on observed attributes and the fu-
ture weather distribution, as pointed out by Olmstead and Rhode (2011) and Bleakley and
Hong (2017).

We applied our unifying approach to study the impact of climate change on ambient “bad”
ozone in U.S. counties over the period 1980-2013. Others have relied on atmospheric-sciences
simulation models to study the so-called “climate penalty” on ozone (see a review in Jacob
and Winner, 2009). By ignoring the adaptive behavior of economic agents, they may have
substantially overestimated the magnitude of this penalty. Based on our central estimates,
we provided evidence that this can be as large as 44 percent. In addition to its atmospheric
and chemistry properties and richness of data, the ozone application is particularly relevant
from a policy perspective. The “climate penalty” on ozone implied in our study suggests that
climate change might deteriorate air quality in the near future, with important implications
for public health and labor productivity.’® Indeed, in a companion paper (Adler et al.,
2020) we examine the role of this “climate penalty” in partially undoing the benefits of the

Clean Air Act Amendments, implying that any future discussions related to the tightening

56Exposure to ambient ozone has been causally linked to asthma hospitalization, pharmaceutical expen-
ditures, mortality, and labor productivity (e.g., Neidell, 2009; Moretti and Neidell, 2011; Graff Zivin and
Neidell, 2012; Deschenes, Greenstone and Shapiro, 2017).
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of ambient ozone standards should pay attention to the magnitude of this penalty.

When considering the impacts of climate change on air pollution, the application of our
unifying methodology led to four main findings. First, a changing climate appears to be
affecting ambient ozone concentrations in two ways. A 1°C shock in temperature increases
ozone levels by 1.68 parts per billion (ppb) on average, which is expectedly what would have
been found in the standard fixed-effects approach. A change of similar magnitude in the
30-year moving average increases ozone concentration by 1.16 ppb.

Second, we found strong evidence of adaptive behavior. For a 1°C change in temper-
ature, our measure of adaptation in terms of ozone concentration is 0.51 ppb, which is
statistically and economically significant. If adaptive responses were not taken into account
in the estimation of the impact of climate change, then the climate penalty on ozone would
be overestimated by approximately 44 percent. Using the climate projections from the U.S.
Fourth National Climate Assessment (Vose et al., 2017) under the business-as-usual scenario
(RCP 8.5), we would overestimate the climate penalty by 0.82 ppb by mid century, and
2.47 ppb by the end of the century. To put these values in perspective, the last few times
EPA revised the air quality standards for ambient ozone, they have decreased it by 5 ppb.
These findings were robust to a wide variety of specification tests and sample restrictions ac-
counting, for instance, for measurement error in climate variables, the timing of adaptation,
policies specifically targeted at reducing ozone precursors, and the potential non-random
siting of ozone monitors.

Third, by extending our central model to flexibly recover estimates accounting for the
nonlinear relationship between ozone and temperature, we found that agents — perhaps
unsurprisingly — tend to focus their adaptive efforts on the hottest days, which would ez
ante be likely to lead to higher levels of ambient ozone.

Finally, we provided evidence of nontrivial heterogeneity in the degree of temperature
response and adaptation across time and space, which highlights the potential biases of

existing approaches in assigning weather responses or adaptation from one period and/or
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location to other periods and locations, consistent with insights by Olmstead and Rhode
(2011) and Bleakley and Hong (2017). We found a larger temperature response for ozone
in the 1980’s which declined over the following decades, but similar magnitudes for the
estimate of adaptation throughout the sample period. We also uncovered an interesting
pattern of adaptation regarding county residents’ beliefs about climate change. Our measure
of adaptation is much larger in counties where those beliefs are stronger. This suggests that
local social norms may play a key role in shaping future responses to climate change.
Notably, although we made use of high frequency data in this study, our unifying frame-
work is generalizable to any empirical setting where one can obtain short-term variation in
weather associated with limited opportunities to adapt, and long-term climatological varia-
tion allowing for adaptation. Settings in which opportunities to adapt are limited at the daily
level, but may exist at the monthly or seasonal level are reliant on temporally disaggregated
data, while those in which such opportunities are limited even at the monthly or seasonal
level may be able to use more aggregate data. Take, for example, the classical application in
agriculture (e.g, Mendelsohn, Nordhaus and Shaw, 1994; Schlenker, Hanemann and Fisher,
2005; Schlenker and Roberts, 2009; Blanc and Schlenker, 2017; Mendelsohn and Massetti,
2017), in which planting decisions are made in advance, crops typically cannot be changed
once planted, and an outcome of interest, harvest yields, are observed seasonally rather than
daily. In this context, weather shocks may be taken as a more coarse measurement of me-
teorological conditions over the growing season, while climate norms could reflect changes

over a number of years or decades.
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Figure 1: Theoretical Relationship Between Marginal Cost of Dirty Production and Tem-
perature
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Notes: This figure illustrates a stylized example of how changes in temperature could affect the cost of
production through the shadow price on ozone, and thus the implicit shadow prices on VOCs or NOx that
are emitted under the chosen production schedule. The profit-maximizing firm minimizes cost — the amounts
inputs used in production multiplied by their respective prices, as well as the quantity of VOCs and NOx
produced under the chosen production schedule multiplied by the shadow prices of these ozone precursor
pollutants implied by the local shadow price on ozone and conditions of the local atmosphere. While in
many cases firms may not face an observable market price for their emissions of VOCs or NOx, they may
face a shadow price for doing so based on, for example, public or regulatory pressures. As depicted, at a
temperature of 77, production schedule one dominates schedule two, and the firm minimizes cost at point A,
with associated daily maximum ozone concentration. At a temperature of T5 the firm is indifferent between
either production schedule one or two at point B. At a temperature of T3, however, production schedule
two now dominates schedule one, and the firm minimizes cost at point C. A firm may not, however, be
capable of adjusting their production schedule on a day-to-day basis. Thus, a firm facing a climate normal
temperature of 77 may opt to produce at point A, but end up producing at point C’, and a much higher ozone
concentration, when faced with a temperature shock of Tsz. A firm that experiences many such shocks would
thus update their beliefs about the underlying climate norm and shift their production schedule towards
schedule two.
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Figure 2: Temperature Relative to Baseline (1950-1979)
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Notes: This figure depicts annual temperature fluctuations and the overall climatic trend for the ozone
season in the US relative to a 1950-1979 baseline average. The baseline and the yearly deviations from
it are constructed from the comprehensive sample of weather stations across the US from 1950 to 2013
following the data construction steps detailed in Appendix A.2. The 1950-1979 baseline represents, generally
speaking, the pre-climate change awareness era. The average temperature, relative to this baseline, has been
slowly but steadily increasing since the early- to mid-1970’s, with an increase in the average temperature
of approximately 0.5 degree Celsius (°C) by 2010. For clarity, the thin solid line, the short-dashed line,
and long-dashed line refer to annual averages for daily average, maximum, and minimum temperature,
respectively, as coded in the legend. The thick solid line smooths out the annual observations for average
temperature over the period covered in the graph.
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Figure 3: Climate Norms and Shocks

Panel A. Average Climate Norm Over Time
26.20

26.151

N

0]

a

o
1

N

o

o

a
1

30-year Moving Average
(Temperature C°)

26.00

25.951

1980 1990 2000 2010

1.51Panel B. Average Temperature Shock Over Time

) 1.0
(®)]
©
o
>
<>
235 051
33
=%
EQ
EE 0.0
st
©
>
[0))
o -0.5+

-1-

T T T T
1980 1990 2000 2010

Notes: This figure depicts US temperature over the years in our sample (1980-2013), decomposed into their
climate norm and temperature shock components. The climate norm (Panel A) and temperature shocks
(Panel B) are constructed from a complete, unbalanced panel of weather stations across the US from 1950 to
2013, restricting the months over which measurements were gathered to specifically match the ozone season
of April-September, the typical ozone season in the US (see Appendix A Table A3 for a complete list of
ozone seasons by state). Recall that the climate norm represents the 30-year monthly moving average of the
maximum temperature, lagged by one year, while the temperature shock represents the difference between
this value and the contemporaneous maximum temperature. The solid line in Panel A smooths out the
annual averages of the 30-year moving averages, and the horizontal dashed lines in Panel B highlights that
temperature shocks are bounded in our period of analysis. Appendix A Figure A2 depicts these same norms
and shocks when restricting the dataset to include only a semi-balanced panel of weather stations, while
Appendix A Figure A3 depicts these when the dataset is restricted to only those weather stations that are
matched to an ambient ozone monitor for our main estimation sample.
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Figure 4: Decomposition of Temperature Norms & Shocks — Illustration (Los Angeles, 2013)
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Notes: This figure compares our preferred temperature decomposition method with a standard fixed-effects
approach using data from the 2013 Los Angeles ozone season, illustrating the benefit of our unifying ap-
proach as outlined in Equation (6) relative to the standard fixed-effects approach outlined in Equation (2).
Specifically, Panel A depicts the daily measure of temperature, as well as its decomposition into climate norm
and temperature shock. By contrast, Panel B depicts the same daily measure of temperature, but instead
decomposed into a typical fixed-effect average temperature and the deviations from this constant value after
additionally controlling for monthly fixed effects. The dashed line at the top of each panel indicates observed
daily maximum temperature while the black solid line represents long-run norms. The gray solid line at the
bottom of each panel indicates temperature shocks. Notice that the temperature shocks in our preferred
decomposition are nearly identical to the deviations in the fixed-effects decomposition, as would be expected
from the Frisch-Waugh-Lovell theorem, and illustrate the source of variation used for identifying Sy and
BrE respectively. Additionally, Panel A highlights the source of variation in climate used to identify S¢
in our proposed approach, while the fixed-effects decomposition lacks any such variation in the measure of
climate, as the LA fixed effect is collinear with average temperature. Recall that for our proposed approach
the climate norm represents the 30-year monthly moving average of the maximum temperature, lagged by
one year, while the temperature shock represents the difference between this value and the contemporaneous
maximum temperature. 53



Figure 5: Comparing Linear, Binned, and Nonlinear Specifications
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Notes: This figure compares our central linear specification with a 5°C binned linear specification, as well
as quadratic and cubic specifications following Equation (14). For clarity in the figures, we trim the top and
bottom one-percent of the temperature distribution. Panels A and B depict the relationship between ozone
and either climate or weather, respectively, across the temperature distribution. While both relationships
exhibit some nonlinearity, the linear specification appears to capture the first-order relationship. Panels C
and D depict the marginal impacts of climate and weather on ozone concentration, with both the flexible
binned specification and the cubic reflecting an “inverted u” shape, suggesting that while ozone increases
with temperature, above a certain temperature it begins to increase at a decreasing rate. Finally, Panel E
shows marginal adaptation, wherein both the binned and cubic specifications exhibit a “normal u” shape,
suggesting that adaptation is larger when temperature is hotter and could lead to higher ozone formation.
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Figure 6: Climate Impacts and Adaptation Over Time
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Notes: This figure displays the impacts of temperature increases on ambient ozone concentrations over time in the US (in Panel A), as well as the
implied measures of adaptation (in Panel B). Splitting the main sample into 5-year periods (e.g., 1980-1984, 1985-1989, etc.), Panel A depicts the
estimated coefficients on the climate norm and temperature shock variables for each of these periods. All these coefficients were estimated by Equation
(13), extended to include interactions between each of the two components of temperature and indicators for each of the 5-year periods considered
here. Panel B, on the other hand, depicts the respective measures of adaptation as the differences between the estimated coefficients associated with
shocks and norms. Recall that the climate norm represents the 30-year monthly moving average of the maximum temperature, lagged by one year,
while the temperature shock represents the difference between this value and the contemporaneous maximum temperature. The solid lines in Panel
A smooth out each set of estimated coefficients plotted in the graph, and the dashed line in Panel B smooths out the implied measures of adaptation.
Appendix B.2 Table B7 examines these same patterns by decade in tabular form. All point estimates included in the figure are statistically significant
at the 1% level.



Table 1: Climate Impacts and Adaptation — Our Unifying Approach vs. Prior Approaches

Daily Max Ozone Levels (ppb)

Unifying Fixed-Effects Cross-Section

(1) (2) (3)

Temperature Shock 1.678%H*

(0.063)
Climate Norm 1.164%**

(0.051)
Max Temperature 1.659%+*

(0.063)
Average Max Temperature 1.166%**
(0.106)

Implied Adaptation 0.514%** 0.493**

(0.041) (0.225)

Fized Effects:

Monitor-by-Season-by-Year Yes
Monitor-by-Month-by-Year Yes
State Yes
Precipitation Controls Yes Yes Yes
Latitude & Longitude Yes
Non-Attainment Control Yes
Observations 5,139,523 5,139,523 2,712
R? 0.481 0.542 0.352

Notes: This table reports the weather and climate impacts on ambient ozone concentrations, estimated by
different methodologies. Column (1) reports the estimates of our unifying approach, in which we decompose
daily maximum temperature into climate norms and weather shocks, and exploit variation in both compo-
nents in the same estimating equation — our Equation (13). Recall that the climate norm represents the
30-year monthly moving average of the maximum temperature, lagged by one year to allow for economic
agents to potentially adapt, while the temperature shock represents the difference between this value and the
contemporaneous maximum temperature. Column (2) reports the effect of daily maximum temperature on
ambient ozone from the panel fixed-effects approach, exploiting day-to-day variation in temperature, hence
capturing the effect of a change in weather. Column (3) reports cross-sectional estimates using average
maximum temperature and ambient ozone concentrations for each ozone monitor in the sample. Having
averaged the variables over all the years from 1980-2013, this estimate captures the effect of a change in
climate. Note that while estimates in column (3) must additionally control for whether a county is in vio-
lation of the CAA ozone standards, this is implicitly controlled for via the fixed-effects in columns (1) and
(2). Combining our estimates in column (1) with climate projections from the U.S. Fourth National Climate
Assessment (Vose et al., 2017) under the business-as-usual scenario (RCP 8.5) — 1.6°C temperature increase
by 2050, and 4.8°C by 2100 — ambient ozone concentrations would rise by 1.9 and 5.6 ppb, respectively. This
should be the so-called “climate penalty” — the response of economic agents to longer-term climatic changes,
which is inclusive of adaptation. Wrongly using the response to temperature shocks as the penalty, which
is exclusive of adaptation, those numbers would be larger: 2.7 and 8 ppb, respectively. For a comparison,
modelling studies find increases in summertime ambient ozone concentrations by 1-10 ppb (for a review, see
Jacob and Winner, 2009). Standard errors are clustered at the county level in columns (1) and (2), while
column (3) uses standard heteroskedastic robust erToFE: *ak k% and * represent significance at 1%, 5% and
10%, respectively.



Table 2: Alternative Lengths of Climate Norm

Daily Max Ozone Levels (ppb)
3-yr MA  5-yr MA 10-yr MA  20-yr MA

(1) (2) (3) (4)

Temperature Shock 1.669%** 1.670*** 1.670%** 1.673%%*
(0.063) (0.062) (0.062) (0.062)
Climate Norm 1.158%** 1.166%** 1.176%** 1.175%**

(0.049) (0.050) (0.051) (0.051)

Implied Adaptation 0.511%** 0.504%** 0.495%** 0.499%**
(0.040) (0.040) (0.041) (0.041)
All Controls Yes Yes Yes Yes
Observations 5,139,523 5,139,523 5,139,523 5,139,523
R? 0.481 0.481 0.481 0.481

Notes: This table reports the results for alternative definitions for the climate norm by constructing the
climate norm (moving averages of temperature) using different time windows. Recall that the 3- to 30-yr
moving average is lagged by 1 year, while the temperature shock represents the difference between this value
and the contemporaneous maximum temperature. The full list of controls are the same as in the main model,
depicted in column (1) of Table 1. Standard errors are clustered at the county level. *** ** and * represent
significance at the 1%, 5% and 10%, respectively.
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Table 3: Adaptation Responses

Daily Max Ozone Levels (ppb)

Long-Run  Long-Run Short-Run
10-year Lag 20-year Lag 2004-2013 only

(1) (2) (3)

Temperature Shock 1.6817%** 1.685%** 1.179%**
(0.063) (0.063) (0.029)
Climate Norm 1.155%** 1.143%%* 0.5817***
(0.050) (0.049) (0.034)
Implied Adaptation 0.527#%* 0.542%H* 0.597+**
(0.041) (0.041) (0.029)
Shock x Action Day 0.068
(0.188)
All Controls Yes Yes Yes
Action Day Interaction Yes
Observations 5,131,043 5,127,886 1,879,041
R? 0.481 0.481 0.444

Notes: This table reports estimates when allowing more or less time for economic agents to engage in
adaptive behavior. The estimates in columns (1) and (2) are obtained by Equation (13), but using 10-
and 20-year lags between the moving average and contemporaneous temperature, rather than 1-year lag.
Column (3) continues using the 1-year lag of the main specification, but adds an additional interaction term
on temperature shock using clean air action day announcements (days in which the relevant air quality
authority observes, or expects to observe, unhealthy levels of pollution on the Air Quality Index and releases
a public service announcement to this effect) at the county-level to estimate short-run adaptive behavior.
Note that although action day policies first began in the 1990’s, EPA data only begins from 2004 onwards,
leading to a restricted overall sample (approximatley 35% of our full sample). The full list of controls are the
same as in the main model, depicted in column (1) of Table 1. Standard errors are clustered at the county
level. *** ** and * represent significance at the 1%, 5% and 10%, respectively.
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Table 4: Excluding Areas with Regional Air Pollution Policies

Daily Max Ozone Levels (ppb)
Gasoline Policy (RFG) NOx Budget Program Both

(1) (2) (3)

Temperature Shock 1.672%#* 1.723%#* 1.722%%*
(0.060) (0.073) (0.073)
Climate Norm 1.175%%* 1.218%*** 1.234%%*
(0.045) (0.060) (0.054)
Implied Adaptation 0.498*** 0.506%** 0.488***
(0.040) (0.049) (0.048)
All Controls Yes Yes Yes
Observations 4,631,407 4,338,178 3,830,062
R? 0.463 0.491 0.473

Notes: This table reports results from our main specification in Equation (13) but excluding locations
with input regulations aimed at reducing ozone precursors (VOCs and NOx). Two major regulations were
implemented in the United States over our sample period 1980-2013: (i) regulations restricting the chemical
composition of gasoline, intended to reduce VOC emissions from mobile sources (Auffhammer and Kellogg,
2011), and (ii) the NOx Budget Trading Program (Deschenes, Greenstone and Shapiro, 2017). Here we
examine the sensitivity of our estimates when taking into account these input regulations. Column (1)
excludes California from 1996 onwards, when stringent VOC regulations were in place. Column (2) excludes
the states participating in the NBP from 2003 onwards, when the program was in effect. Column (3) excludes
both subsets of observations. Recall that the climate norm represents the 30-year monthly moving average
of the maximum temperature, lagged by one year, while the temperature shock represents the difference
between this value and the contemporaneous maximum temperature. The full list of controls are the same
as in the main model, depicted in column (1) of Table 1. Standard errors are clustered at the county level.
*** % and * represent significance at the 1%, 5% and 10%, respectively.
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Table 5: Adaptation by Belief in Climate Change

Daily Max Ozone Levels (ppb) Adaptation

(1) (2)

Temperature Shock 1.442%%%
(0.040)
x Low Belief —0.141**
(0.061)
x High Belief 0.503%**
(0.114)
Climate Norm 0.998*** 0.445%**
(0.054) (0.051)
x Low Belief 0.047 —0.188%***
(0.071) (0.063)
x High Belief 0.310%** 0.193**
(0.102) (0.085)
All Controls Yes
Observations 5,139,523
R? 0.484

Notes: This table reports estimates of temperature shock and climate norm interacted with an indicator of
whether the residents of the county generally believed in climate change or not. Specifically, all counties
in the sample were split into terciles based on the results of a survey conducted on climate change beliefs
(Howe et al., 2015). In column (1) the main effect reflects the result for the median tercile of counties, while
the interacted effects reflect the difference from this value observed in the lower and higher tercile counties.
Column (2) reports the implied measure of adaptation for the median counties along with the differential
effect in the low and high belief counties. Recall that the climate norm represents the 30-year monthly
moving average of the maximum temperature, lagged by one year, while the temperature shock represents
the difference between this value and the contemporaneous maximum temperature. The full list of controls
are the same as in the main model, depicted in column (1) of Table 1. Standard errors are clustered at the
county level. *** ** and * represent significance at the 1%, 5% and 10%, respectively.
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Appendix A. Additional Data Discussion

This appendix section provides background information on ozone pollution in Section A.1,
while Section A.2 provides further details on the data sets discussed in Section III, as well as
auxiliary data sets used in alternative specifications. It then includes relevant Figures and

Tables as outlined below.

Figure A1l. Comprehensive Location of Weather Monitors

Figure A2. Climate Norms and Shocks (semi-balanced sample)

Figure A3. Climate Norms and Shocks (main model sample)

Figure A4. Evolution of Maximum Ambient Ozone Concentration
Figure A5. Ozone Monitor Location by Decade of First Appearance
Figure A6. Ozone Monitors and their Matched Weather Monitors
Figure A7. Relationship between Ozone and Decomposed Temperature

Figure A8. Decomposition of Temperature Norms and Shocks (Los Angeles, All Years)

Table Al. Yearly Summary Statistics for Daily Maximum Temperature
Table A2. Yearly Summary Statistics for Ozone Monitoring Network
Table A3. Ozone Monitoring Season by State

Table A4. County Summary Statistics by Belief in Climate Change



A.1.  Background Details on Ozone

Background on Ozone — The ozone the U.S. EPA regulates as an air pollutant is mainly pro-
duced close to the ground (tropospheric ozone).! Tt results from complex chemical reactions
between pollutants directly emitted from vehicles, factories and other industrial sources,
fossil fuel combustion, consumer products, evaporation of paints, and many other sources.
These highly nonlinear Leontief-like reactions involve volatile organic compounds (VOCs)
and oxides of nitrogen (NOx) in the presence of sunlight. In “VOC-limited” locations, the
VOC/NOx ratio in the ambient air is low (NOx is plentiful relative to VOC), and NOx
tends to inhibit ozone accumulation. In “NOx-limited” locations, the VOC/NOx ratio is
high (VOC is plentiful relative to NOx), and NOx tends to generate ozone.

As a photochemical pollutant, ozone is formed only during daylight hours, but is de-
stroyed throughout the day and night. It is formed in greater quantities on hot, sunny, calm
days. Indeed, major episodes of high ozone concentrations are associated with slow moving,
high pressure systems, which are associated with the sinking of air, and result in warm,
generally cloudless skies, with light winds. Light winds minimize the dispersal of pollutants
emitted in urban areas, allowing their concentrations to build up. Photochemical activity
involving these precursors is enhanced because of higher temperatures and the availability
of sunlight. Modeling studies point to temperature as the most important weather variable
affecting ozone concentrations.?

Ambient ozone concentrations increase during the day when formation rates exceed de-

struction rates, and decline at night when formation processes are inactive.®> Ozone concen-

Tt is not the stratospheric ozone of the ozone layer, which is high up in the atmosphere, and reduces the
amount of ultraviolet light entering the earth’s atmosphere.

2Dawson, Adams and Pandisa (2007), for instance, examine how concentrations of ozone respond to
changes in climate over the eastern U.S. The sensitivities of average ozone concentrations to temperature,
wind speed, absolute humidity, mixing height, cloud liquid water content and optical depth, cloudy area,
precipitation rate, and precipitating area extent were investigated individually. The meteorological factor
that had the largest impact on ozone metrics was temperature. Absolute humidity had a smaller but
appreciable effect. Responses to changes in wind speed, mixing height, cloud liquid water content, and
optical depth were rather small.

3In urban areas, peak ozone concentrations typically occur in the early afternoon, shortly after solar noon
when the suns rays are most intense, but persist into the later afternoon.



trations also vary seasonally. They tend to be highest during the late spring, summer and
early fall months.* The EPA has established “ozone seasons” for the required monitoring
of ambient ozone concentrations for different locations within the U.S.5 Recently, there is
growing concern that the ozone season may prolong with climate change (e.g., Zhang and

Wang, 2016).

A.2.  Further Details on the Construction of the Data

Weather Data — Meteorological data was obtained from the National Oceanic and Atmo-
spheric Administration’s Global Historical Climatology Network database (NOAA, 2014).
This data set provides detailed weather measurements at over 20,000 weather stations across
the country, for which we use the period April-September, 1950-2013, for the contiguous 48
states. In constructing our complete, unbalanced panel of weather stations we make only
one restriction: for each weather station in each year, we include only those stations for
which valid measurements of maximum and minimum temperature, as well as precipitation,
exist for at least 75 percent of the days in the ozone monitoring season (April-September).
Figure A1 illustrates the geographical location of the weather stations that we have used
from 1950-2013, while Table A1 reports summary statistics for maximum temperature and
our decomposed measures of climate norm and temperature shock, averaged across our entire
sample for each year 1980-2013. Figure A2 illustrates the variation we have in both compo-
nents of the maximum temperature, namely, the temperature shocks and the climate norms,
using a semi-balanced panel of the comprehensive set of weather stations® while Figure A3
depicts similar variation, but using only the temperature assigned to each ozone monitor
in our final sample. Notice that there seems to be more variation in the 30-year MA in

the latter figure because it includes cross-sectional variation as well. Also, the 30-year MA

4In areas where the coastal marine layer (cool, moist air) is prevalent during summer, the peak ozone
season tends to be in the early fall.

®Appendix Table A3 shows the ozone season for each state during which continuous, hourly averaged
ozone concentrations must be monitored.

5To create this semi-balanced panel, we impose an additional restriction on our complete, unbalanced
sample: for each weather station, we include only those stations with valid readings in every year 1950-2013.



trends down towards the end of the period of our study due to changes in ozone monitor
location over time, as shown in Figure Ab.

These weather stations are typically not located adjacent to the ozone monitors. Hence,
we develop an algorithm to obtain a weather observation at each ozone monitor in our sample.
Using information on the geographical location of ozone monitors and weather stations, we
calculate the distance between each pair of ozone monitor and weather station using the
Haversine formula. Then, for every ozone monitor we exclude weather stations that lie
beyond a 30 km radius of that monitor. Moreover, for every ozone monitor we use weather
information from only the closest two weather stations within the 30 km radius. Once we
apply this algorithm, we exclude ozone monitors that do not have any weather stations
within 30km. We calculate weather at each ozone monitor location as the weighted average
of these two weather stations using the inverse of the squared distance between them. Figure
A6 illustrates the proximity of our final sample of ozone monitors to these matched weather
stations. We additionally assess the robustness of our results to changes in this algorithm
by increasing the radius to 80 km and using the 5 closest weather stations, and by varying
the weights used — unweighted arithmetic mean and simple inverse distance weighting — in
calculating the approximate daily weather at each ozone monitoring location. The results of

our model under these alternative specifications is discussed further in Appendix B.1.

Ozone Data — Ambient ozone concentration data was obtained from the Environmental
Protection Agency’s Air Quality System (AQS) AirData database, which provides daily
readings from the nationwide network of the EPA’s air quality monitoring stations. The
data was made available by a Freedom of Information Act (FOIA) request. In our preferred
specification we use an unbalanced panel of ozone monitors. We make only two restrictions
to construct our final sample. First, we include only monitors with valid daily information.
According to EPA, daily measurements are valid for regulation purposes only if (i) 8-hour
averages are available for at least 75 percent of the possible hours of the day, or (ii) daily

maximum 8-hour average concentration is higher than the standard. Second, as a minimum

4



data completeness requirement, for each ozone monitor we include only years for which at
least 75 percent of the days in the ozone monitoring season (April-September) are valid;
years having concentrations above the standard are included even if they have incomplete
data.

We have valid ozone measurements for a total of 5,284,615 monitor-days covering 1980-
2013 and the conterminus United States.” The number of total valid monitors increased from
1,361 in the 1980s to 1,851 in the 2000s, indicating a growth of 16.6 percent of the ozone
monitoring network per decade.® The number of monitored counties in our main estimating
sample also grew from 585 in the 1980s to 840 in the 2000s. Figure A5 depicts the evolution
of our sample monitors over the three decades in our data, and illustrates the expansion of
the network over time. Table A2 provides some summary statistics regarding the increase

in the number of monitors over time.?

Auziliary Data — In some of our robustness checks and examinations of heterogeneity we
incorporate additional datasets. Sources and any necessary data construction steps are
described below.

In Table B8 we use measures of whether a county is “VOC-limited” or “NOx-limited.”
These measures were constructed using data collected by the EPA’s network of respective
monitoring stations. Note, however, that these are often separate pollution monitors from
our main sample of ozone monitors. Additionally, data — especially for VOCs — is relatively
sparse compared to ozone data. Due to these data constraints, we construct measures of
whether a county is VOC-limited or NOx-limited for each 5-year period in our sample, e.g.

1980-1984, which we then match with our sample of ozone monitors at the county level. To

"Note that this value refers to all valid ozone measurements, the final samples used in estimation will
be smaller due to, e.g., instances where an ozone monitor is not paired with any weather stations under
our matching algorithm. For instance, our main estimating sample contains 5,139,523 valid monitor-day
observations.

8For our main estimating sample, these are 1,285 and 1,701, respectively.

9Note that not all monitored counties were monitored in every year, and not all monitoring stations were
active in every year. Some monitors were phased in to replace others, while others were simply added to the
network over time as needed — thus individual years will generally have less unique monitors and monitored
counties than existed across an entire decade or the sample period.



construct these measures we first combine the EPA’s VOC and NOx data at the county-day
level and generate a daily ratio of VOCs to NOx for each county, where possible. Following
the scientific literature, observations with a ratio less than or equal to 4 are coded as VOC-
limited, while those greater than 15 are coded NOx-limited, and the remainder are coded
as non-limited. We then sum these three measures by county across each 5-year interval
and denote a county as VOC-limited, NOx-limited, or non-limited for that interval based
on whichever measure was the most prevalent. For example, a county with 50 VOC-limited
day, 20 NOx-limited days, and 30 non-limited days would be marked as VOC-limited for this
5-year window. Admittedly, this creates a somewhat coarse measure of whether a county is
VOC- or NOx-limited. Given the available data, however, this appears to be the furthest
this question can be pursued at this time, and, if anything, should be expected to bias the
observed effect from this heterogeneity towards zero.

In Table B3 we include average daily windspeed and total daily sunlight as additional
regressors within our main specification. These data, although recorded less frequently, are
collected at the same weather monitoring stations as our main temperature and precipitation
variables. Due to the sparseness of these data we do not decompose them into a long-run
climate norm and transitory weather shock as we do with temperature and precipitation.

In Tables 5 and B9 we examine heterogeneity in our results when separating counties
into low- median- and high-levels of belief regarding the existence of climate change and the
use of regulation to reduce carbon emissions. These measures were constructed using county
level survey data collected by Howe et al. (2015) in 2013 which estimate the percentage of
each county’s respective population that hold such beliefs. Notably, we do not rely on the
explicitly stated aggregate level of belief, but rather the relative level of belief compared to
the rest of our sample. Specifically, we separate counties into low- median- or high-belief
terciles based on their stated level of belief in the existence of climate change — and separately
by their belief in the use of regulations to reduce carbon emissions. In this way we arrive at

three approximately equal sized groups for which we are able to examine heterogeneity in



climate impacts and adaptive response. For reference, Table A4 provides summary statistics
of basic demographic characteristics across these three county groupings using data from the
2006-2010 5-year American Community Survey.

In Table B10 we approach the question of hetergeneous beliefs from a different angle,
using county-level voting results from the 2008 general presidential election obtained from
MIT’s Election Data and Science Lab (2018). We construct a simple indicator variable for
whether Barack Obama or John McCain won the popular vote in that county and denote a

county as “Democrat” if the former is true.



Figure A1: Comprehensive Location of all Weather Monitors
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Notes: This figure maps the location of all weather stations across the continental U.S. contained in our complete dataset.



Figure A2: Climate Norms and Shocks (semi-balanced sample)
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Notes: This figure depicts US temperature over the years in our sample (1980-2013), decomposed into their
climate norm and temperature shock components. The climate norm (Panel A) and temperature shocks
(Panel B) are constructed from a semi-balanced panel of weather stations across the US from 1950 to 2013,
restricting the months over which measurements were gathered to specifically match the ozone season of
April-September, the typical ozone season in the US (see Appendix Table A3 for a complete list of ozone
seasons by state). Recall that the climate norm represents the 30-year monthly moving average of the
maximum temperature, lagged by one year, while the temperature shock represents the difference between
this value and the contemporaneous maximum temperature. The solid line in Panel A smooths out the
annual averages of the 30-year moving averages, and the horizontal dashed lines in Panel B highlights that
temperature shocks are bounded in our period of analysis. As described in our data construction in Appendix
A.2, our full sample of weather stations includes only weather stations with valid measurements for at least
75% of the days in the ozone season. Here we further restrict this to a semi-balanced sample, including only
those stations with valid readings in every year of our sample.



Figure A3: Climate Norms and Shocks (main model sample)
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Notes: This figure depicts US temperature over the years in our sample (1980-2013), decomposed into their
climate norm and temperature shock components. The climate norm (Panel A) and temperature shocks
(Panel B) are constructed from the panel of weather stations included in our main model sample across
the US from 1950 to 2013, restricting the months over which measurements were gathered to specifically
match the ozone season of April-September, the typical ozone season in the US (see Appendix Table A3 for
a complete list of ozone seasons by state). The unbalanced feature of our main sample, with ambient ozone
monitors moving north over time (see Figure A5), is the likely driving force behind the downward pattern of
the average climate norm at the end of our sample period in Panel A. Recall that the climate norm represents
the 30-year monthly moving average of the maximum temperature, lagged by one year, while the temperature
shock represents the difference between this value and the contemporaneous maximum temperature. The
horizontal dashed lines in Panel B highlights that temperature shocks are bounded in our period of analysis.
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Figure A4: Evolution of Maximum Ambient Ozone Concentration
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Notes: This figure depicts the evolution of the daily maximum 1-hour ambient ozone concentrations over
time in the US for both our complete (unbalanced) sample and our restricted (semi-balanced) sample. For

reference the horizontal line depicts the 1979 National Ambient Air Quality Standard for Ozone, which was
based on an observed 1-hour maximum ambient ozone concentration of 120 ppb or higher.
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Figure A5: Ozone Monitor Location by Decade of First Appearance
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Notes: This figure maps the location of each ozone monitor in our final sample, by decade of first appearance.



€l

Figure A6: Ozone Monitors and their Matched Weather Monitors
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Notes: This figure maps the location of each ozone monitor in our final sample, and their matched weather stations. For each ozone monitor, the
closest 2 stations within a 30 km radius have been used in the matching.



Figure A7: Relationship between Ozone and Decomposed Temperature
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Notes: This figure depicts the general relationship between daily maximum ozone concentrations and tem-
perature over the years in our sample (1980-2013) after decomposing temperature into our measure of climate
norm and temperature shock and de-trending the data. Both the climate norm (Panel A) and the tempera-
ture shock (Panel B) appear to have a close correlation with ozone concentrations, although the relationship
in Panel A appears weaker than that in Panel B, providing suggestive evidence of adaptative behavior.
Recall that the climate norm represents the 30-year monthly moving average of the maximum tempera-
ture, lagged by one year, while the temperature shock represents the difference between this value and the
contemporaneous maximum temperature.
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Figure A8: Decomposition of Temp. Norms & Shocks — Illustration (Los Angeles, All Years)
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Notes: This figure compares our preferred temperature decomposition method with a standard fixed-effects
approach using data for the Los Angeles region duging the ozone season across all years in our sample,
illustrating the benefit of our unifying approach as outlined in Equation (6) relative to the standard fixed-
effects approach outlined in Equation (2). Specifically, Panel A depicts the daily measure of temperature,
as well as its decomposition into climate norm and temperature shock. By contrast, Panel B depicts the
same daily measure of temperature, but instead decomposed into a typical fixed-effect average temperature
and the deviations from this constant value after additionally controlling for month-year fixed-effects. The
black solid line at the top of each panel indicates line represents long-run norms. The gray solid line at the
bottom of each panel indicates temperature shocks. Notice that the temperature shocks in our preferred
decomposition are nearly identical to the deviations in the fixed-effects decomposition, as would be expected
from the Frisch-Waugh-Lovell theorem, and illustrate the source of variation used for identifying Sy and
BrE respectively. Additionally, Panel A highlights the source of variation in climate used to identify S¢o
in our proposed approach, while the fixed-effects decomposition lacks any such variation in the measure of
climate, as the LA fixed effect is collinear with average temperature. Recall that for our proposed approach
the climate norm represents the 30-year monthly moving average of the maximum temperature, lagged by
one year, while the temperature shock represents the difference between this value and the contemporaneous
maximum temperature.
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Table Al: Yearly Summary Statistics for Daily Maximum Temperature

Year Max Temp Climate Trend  Temp Shock
(1) (2) (3) (4)
1980 27.0 26.5 0.5
1981 26.9 26.6 0.4
1982 26.1 26.7 -0.6
1983 26.8 26.8 0.0
1984 26.7 26.8 -0.1
1985 27.0 26.6 0.3
1986 26.7 26.4 0.3
1987 27.3 26.6 0.7
1988 274 26.6 0.7
1989 26.4 26.7 -0.3
1990 26.7 26.6 0.1
1991 271 26.6 0.5
1992 26.1 26.7 -0.5
1993 26.6 26.6 0.0
1994 26.9 26.6 0.2
1995 26.8 26.7 0.0
1996 26.5 26.7 -0.2
1997 26.4 26.8 -0.4
1998 27.3 27.0 0.4
1999 27.2 27.0 0.2
2000 27.1 27.1 0.0
2001 27.4 27.2 0.3
2002 27.8 27.2 0.6
2003 26.9 27.3 -0.4
2004 27.0 27.2 -0.2
2005 27.6 27.3 0.3
2006 27.7 27.3 0.4
2007 27.7 27.3 0.4
2008 27.3 27.3 0.0
2009 26.9 27.3 -0.3
2010 27.8 27.2 0.6
2011 27.4 27.1 0.3
2012 28.0 271 0.9
2013 26.4 26.6 -0.3

Notes: This table outlines the evolution of maximum temperature in our sample from the years 1980-2013
in Column (2). Columns (3) and (4) decompose this into our respective measures of climate norm and
temperature shock. Recall that the climate norm represents the 30-year monthly moving average of the
maximum temperature, lagged by one year, while the temperature shock represents the difference between
this value and the contemporaneous maximum temperature.
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Table A2: Yearly Summary Statistics for Ozone Monitoring Network

Year # Observations # Counties # Ozone Monitors
(1) (2) (3) (4)
1980 88426 361 609
1981 100459 399 659
1982 102111 402 661
1983 102429 408 653
1984 103828 390 649
1985 105457 388 648
1986 103820 375 634
1987 110366 392 668
1988 113232 409 686
1989 119938 425 725
1990 126535 443 757
1991 132046 466 792
1992 137754 482 821
1993 146023 511 863
1994 149400 520 876
1995 154230 528 902
1996 153019 530 894
1997 160024 550 931
1998 164491 568 960
1999 168901 585 982
2000 172686 592 999
2001 180872 616 1047
2002 186261 630 1071
2003 188462 641 1082
2004 189868 653 1087
2005 187709 649 1082
2006 188298 650 1075
2007 190824 661 1092
2008 190682 660 1099
2009 194184 678 1116
2010 196439 688 1130
2011 199948 716 1159
2012 199723 703 1148
2013 148306 658 1039

Notes: This table outlines the summary statistics of our main data sample. The construction of our main
sample follows EPA guidelines by including all monitor-days for which 8-hour averages were recorded for at
least 18 hours of the day and monitor-years for which valid monitor-days were recorded for at least 75% of
days between April 1st and September 30th.
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Table A3: Ozone Monitoring Season by State

State Start Month - End State Start Month - End
Alabama March - October Nevada January - December
Alaska April - October New Hampshire  April - September
Arizona January - December New Jersey April - October
Arkansas March - November New Mexico January - December
California January - December New York April - October
Colorado March - September North Carolina ~ April - October
Connecticut April - September North Dakota May - September
Delaware April - October Ohio April - October
D.C. April - October Oklahoma March - November
Florida March - October Oregon May - September
Georgia March - October Pennsylvania April - October
Hawaii January - December Puerto Rico January - December
Idaho April - October Rhode Island April - September
[linois April - October South Carolina April - October
Indiana April - September South Dakota June - September
lowa April - October Tennessee March - October
Kansas April - October Texas! January - December
Kentucky March - October Texas? March - October
Louisiana January - December Utah May - September
Maine April - September Vermont April - September
Maryland April - October Virginia April - October
Massachusetts April - September Washington May - September
Michigan April - September West Virginia April - October
Minnesota April - October Wisconsin April 15 - October 15
Mississippi March - October Wyoming April - October
Missouri April - October American Samoa January - December
Montana June - September Guam January - December
Nebraska April - October Virgin Islands January - December

Notes: This table shows, for each state, the season when ambient ozone concentration is required to be
measured and reported to the U.S. EPA.
!The ozone season is defined differently in different parts of Texas.
Source: USEPA (2006, p.AX3-3).

18



Table A4: County Summary Statistics by Belief in Climate Change

Panel A. Low Belief Counties

Count Mean Std. Dev. Minimum Maximum

Population (1000’s) 334 80.6 106.9 0.8 837.5
Average Education (Years) 334 12.7 0.6 11.0 14.3
Median Income ($1000/year) 334 48.6 10.4 21.9 83.3
Average Income ($1000/year) 334 61.7 11.3 36.9 111.9

Panel B. Median Belief Counties

Population (1000’s) 335 174.7 2974 1.9 3,951.0
Average Education (Years) 335 13.2 0.6 11.8 15.1
Median Income ($1000/year) 335 53.8 12.4 26.3 109.8
Average Income ($1000/year) 335 68.2 14.6 39.2 142.2

Panel C. High Belief Counties

Population (1000’s) 336 466.7 780.8 1.3 9,758.3
Average Education (Years) 336 13.6 0.7 11.5 16.1
Median Income ($1000/year) 336 60.5 16.8 30.4 125.7
Average Income ($1000/year) 336 79.6 21.3 41.1 146.0

Notes: This table reports summary statistics of underlying demographics for each of the terciles of counties
used in Table 5. Demographic data were obtained from the 2006-2010 5-year American Community Survey,
with income reported in 2015 dollars, and average years of education based on a population weighted average
of educational attainment status for the county population over 25 years of age.
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Appendix B. Further Robustness Checks and Heterogeneity

Section B.1 of this appendix provides further elaboration of the alternative specifications
used for robustness checks, as discussed in Section IV, while Section B.2 does so for our
heterogeneity analyses, as discussed in Section V. It then includes relevant Tables as outlined

below.

Table B1. Alternative Criteria for Selection of Weather Stations

Table B2. Comparison to Alternative Estimation Methods (Semi-Balanced Panel)
Table B3. Further Robustness Checks

Table B4. Bootstrapped Standard Errors

Table B5. Non-Linear Effects of Temperature

Table B6. Comparison of Adaptation Under Nonlinear Specifications

Table B7. Results by Decade

Table B8. Adaptation by VOC- or NOx-limited Atmosphere

Table B9. Adaptation by Belief in Climate Change Regulation

Table B10. Adaptation by Political Leaning
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B.1.  Further Robustness Checks

Alternative Criteria for Selection of Weather Stations — While our robustness checks pre-
sented in Table 2 have addressed potential concerns with the manner in which we construct
our regressors by decomposing temperature, a possible additional concern arises from the
fact that temperature monitors are not necessarily sited next to ozone monitors. Because
of this, we do not have an exact measure of temperature at the same geographic point as
our measure of ozone. As discussed in our data section and detailed in Appendix A.2, we
define temperature at an ozone monitoring station as the mean of the reported daily max-
imum temperatures at the two closest weather stations within 30 kilometers, weighted by
the inverse squared distance to the ozone monitor. In so doing, we are likely to approximate
a good measure of the daily maximum temperature for the local region as a whole, while
also maintaining a close geographic boundary around the ozone monitoring station so as
not to influence this approximation with temperature readings from a weather station fur-
ther away that may be subject to a different set of meteorological conditions. It’s possible,
however, that a less strongly distance-weighted mean would provide a more accurate mea-
sure of temperature for the overall local region — although likely less accurate at the ozone
monitoring station itself — or that the 2-station and 30-kilometer cutoffs are too restrictive.
We investigate the effects of lessening the distance weighting in the calculation of expected
temperature at the ozone monitoring station, as well as relaxing the constraints on both
the number of included weather stations and distance from the ozone monitor in Table B1.
Specifically, columns (1) and (2) report results of our main specification when we maintain
the 2-station/30-kilometer restriction, but decrease the weighting scheme to either the sim-
ple arithmetic mean in column (1), or a non-squared inverse distance weight in column (2).
Columns (3) and (4) use the same weighting schemes as in (1) and (2), but now include
temperature readings from the 5 closest weather monitoring stations within 80 kilometers.

Results in all four columns are relatively stable and consistent with our main specification.
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Non-Random Siting of Ozone Monitors — In recent work, Muller and Ruud (2018) argue
that the location of pollution monitors is not necessarily random. The U.S. EPA maintains
a dense network of pollution monitors in the country for two major reasons: (i) to provide
useful data for the analysis of important questions linking pollution to its varied impacts, and
(ii) to check and enforce regulations on criteria pollutants. These are conflicting interests:
while monitors should be placed in regions having different levels of pollution to provide
representative data, they might be placed in areas where pollution levels are the highest to
maintain oversight. Not surprisingly, the authors find that most of the monitors tend to
be in areas where pollution levels have been high, and compliance with the regulation is a
question.

Following those authors’ results, we can expect that ozone monitors that have consistently
been in our sample across all years may be located in areas having very high pollution
levels, thus commanding constant monitoring and regulation by the EPA. To check if this
claim is accurate, we re-run our main analysis using a balanced sample of ozone monitors.
Starting from our original sample, and using only monitors that have been in the data
for every year from 1980-2013, we are left with 89 pollution monitors. The results are
reported in Table B2. We find that a 1°C temperature shock leads to a rise in ozone
concentrations by 2.03 ppb, while a 1°C increase in the climate norm leads to a rise of
1.49 ppb, implying an adaptation level of 0.54 ppb. As expected, the temperature effects
obtained from the balanced panel are larger than those in our main results, although the level
of adaptation remains largely unchanged. The balanced panel leads to an overestimation of
the climate penalty. Therefore, our preferred, unbalanced sample of monitors includes areas
with different levels of air pollution, and our estimates should be more representative of the

entire country.

Additional Robustness Checks — In addition to all prior robustness checks, we conduct four
final checks in Table B3. First, it may be a concern that our climate norm variable structures

the long-run climate normal temperature as the 30-year monthly moving average, despite the
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fact that seasonal — or within-season — shifts in temperature are unlikely to exactly follow
the calendar at a monthly level. We examine the sensitivity of our results to this decision by
alternatively constructing this variable as a 30-year daily moving average, allowing it to vary
arbitrarily within each month. Results of our main specification, substituting daily moving
averages for the standard monthly ones, are presented in column (1). Both coefficients of
interest are nearly identical to our original findings. Ultimately, we prefer the monthly
moving average because it is likely that individuals recall climate patterns by month, not by
day of the year, making the interpretation of adaptation more intuitive. Indeed, broadcast
meteorologists often talk about how a month has been the coldest or warmest in the past
10, 20, or 30 years, but not how a particular day of the year has deviated from a daily norm.

Second, it may be a concern that our proposed methodology is heavily reliant on high-
frequency data in order to successfully decompose temperature into its climatological and
meteorological components. While this concern does not pose a threat to identification in our
context per se, if valid it would reduce the generalizability of our method to other contexts
with less temporally rich data. We examine this concept by aggregating our data to the
monitor-month level, taking the arithmetic mean of all variables for each ozone monitor, by
month, for each year of our sample and running our preferred specification on this aggregate
sample. As the climate norm variable is already identified from variation in monthly moving
averages, we would not expect this coefficient to change other than due to the aggregation
of our dependent variable and the temperature deviations, which both would otherwise
vary daily. It is less clear, however, how this “smoothing” of daily ozone and temperature
deviations might affect the coefficient on temperature shocks. Although our sample size is
greatly reduced, now consisting of 178,175 observations compared to the previous 5,139,523
we find qualitatively similar results, reported in column (2). As expected, the coefficient on
climate norm is nearly identical, while the coefficient on temperature shock is slightly larger
in magnitude than in our full sample model, though statistically very similar.

Third, although temperature is the primary meteorological factor affecting tropospheric
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(ambient) ozone concentrations, other factors such as wind speed and sunlight have also
been noted as potential contributors. High wind speed may prevent the build-up of ozone
precursors locally, and dilute ozone concentrations. Ultraviolet solar radiation should trigger
chemical reactions leading to the formation of more ground-level ozone. To test whether our
main estimates are capturing part of the effects of wind speed and sunlight, we control for
these variables in an alternative specification using a smaller sample containing those vari-
ables. Column (3) presents our main results from estimating Equation (13) plus controls for
average daily wind speed (meters/second) and total daily sunlight (minutes). As expected,
higher wind speeds lead to lower ozone concentrations, and more sunlight leads to higher
concentrations. From column (3), we find that a 1 meter/second increase in average daily
wind speed would decrease ozone concentrations by 2.3 ppb, whereas a 1 minute increase
in daily sunlight leads to 0.02 ppb increase in ozone concentrations. Controlling for these
two effects, we find that a shock in daily maximum temperature of 1°C leads to a 1.75 ppb
increase in daily maximum ozone whereas a 1°C increase in the climate norm leads to a 1.13
ppb increase in ozone, implying a measure of overall adaptation of 0.62 ppb — all statistically
similar to our main results. Our primary estimates of the impact of temperature on ozone
concentrations, and hence our measures of adaptation, do not seem to rely crucially on other
potentially important meteorological factors.

Finally, one may be concerned that inter-regional pollution transport may be affecting
our results. If, for example, pollution was transported into a region, this may affect the
estimated level of adaptation in that region as the local agent would not have full control
over the pollution outcome. We note two key points relating to this concern. First, neither
ozone itself or VOCs, an ozone precursor, are likely to be transported long distances due
to their high reactivity, thus it is primarily NOx transport that would pose a concern.
Second, as with any real-world setting, local agents may need to take exogenous factors
into account when making decisions, such as in a region subject to increased baseline levels

of NOx due to transport from other regions. Agent’s in such a region may, for example,
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opt to prioritize reductions in VOCs, a precursor they have more direct control over, in an
effort to curb ozone formation. Furthermore, a collection of regions which suffer from such
transport concerns may collectively work together to reduce NOx — this may be of their
own volition, or imposed by a higher regulatory body, such as the EPA. In fact, the EPA
designates 12 states, in whole or part, in the Northeast as part of the “ozone transport
region” (OTR).1® As these states represent the region wherein inter-regional NOx transport
poses the greatest concern, we examine the effect of such transport on our central estimates
by both explicitly excluding all OTR states from our estimating sample, and, conversely,
using only these states as the estimating sample. Columns (4) and (5) present these results,
finding that while the coefficients on weather and climate are somewhat higher in the OTR-
only sample, as might be expected of a region where ozone is a particular concern, adaptation

is statistically indistinguishable from our central estimate.

B.2.  Heterogeneity

Results by Decade — To examine temporal heterogeneity, Table B7 mirrors Figure 6 and
reports our results by decade. We split our sample into three “decades” 1980-90, 1991-2001,
and 2002-2013 so that we have roughly the same number of years in each. We find that
the effects of contemporaneous daily maximum temperature, and its two components of our
decomposition, are decreasing over time, as shown in column (1). Nevertheless, looking at
column (2), we find evidence that adaptation by economic agents reduced slightly from the
1980’s to the 1990’s, but stabilized back at its original levels in the 2000’s. The average

adaptation across all counties in our sample drops from 0.54 ppb in the 1980’s to 0.43 ppb

10 “0zone Transport Region boundary. As of March 14, 2022, the boundary for the Ozone Transport
Region consists of the entire States of Connecticut, Delaware, Maryland, Massachusetts, New Hampshire,
New Jersey, New York, Pennsylvania, Rhode Island, and Vermont; portions of Maine identified in this section
under Table 1; and the Consolidated Metropolitan Statistical Area that includes the District of Columbia and
the following counties and cities in Virginia: Arlington County, Fairfaxr County, Loudoun County, Prince
William County, Strafford County, Alexandria City, Fairfax City, Falls Church City, Manassas City, and
Manassas Park City.” (USCFR, 2022).
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in the 1990’s, but increases again to 0.54 ppb in the 2000’s.

Heterogeneity by Precursor “Limited” Atmospheric Conditions — As detailed in Appendix
Section A.1, ozone is formed from precursor pollutants — volatile organic compounds (VOCs)
and oxides of nitrogen (NOx) — in the presence of sunlight and heat. Specifically, ozone
formation appears to follow a Leontief-like production function, implying that regions where
the ambient supply of one of the two precursor pollutants, VOCs or NOx, are limited might
be less susceptible to increased ozone formation when faced with increased temperatures.

To examine potential heterogeneity in the temperature/ozone relationship and adaptation
along this channel we collected all available data on VOC and NOx emissions for each county
in our sample as reported by the EPA. Due to the sparseness of these data, we construct
aggregate indicators of whether a county is VOC-limited, NOx-limited, or neither for each
5-year interval of our overall sample.!!

Column (1) of Table B8 presents the results of our main specification when using this re-
stricted sample — approximately 20% of our full sample — finding results that are qualitatively
similar, albeit larger in magnitude, to our full sample results for the effects of temperature
shock, climate norm, and the resulting measure of adaptation — shown in column (2). The
magnitude is likely larger because VOCs may be monitored in places with potentially high
concentrations. In column (3) we interact the indicators for VOC- and NOx-limited counties
with our other regressors to recover a coarse estimate of the effect that being limited in either
precursor has on the relationship between our two measures of temperature and ozone. Both
main coefficients, and the resulting measure of adaptation — shown in column (4), remain
statistically unchanged for non-limited counties. While the difference from these values is
statistically indistinguishable from zero in NOx-limited counties. In VOC-limited counties

the effects of temperature shock and climate norm are approximately 31 and 79 percent lower

"UBecause ozone formation follows a Leontief-like production function, a county is “VOC-limited” if the
ratio of VOC to NOx is too low, while it would be “NOx-limited” if the ratio is too high, and a middle set
of counties would not be limited as they face levels of both precursor emissions closer to the “optimal” mix.
Further details on this data can be found in Appendix A.2.
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and significant, respectively, although the resulting level of adaptation is not precise enough
to conclude that it is statistically different from other counties. This finding appears to
corroborate the Leontief-like production function of ozone (e.g., Auffhammer and Kellogg,
2011; Deschenes, Greenstone and Shapiro, 2017); when departing from the balanced mix
of ozone precursors, the estimated effects of temperature on ambient ozone concentration

decline.

27



Table B1l: Alternative Criteria for Selection of Weather Stations

Daily Max Ozone Levels (ppb)

(1) (2) (3) (4)

Temperature Shock 1.721%%* 1.700%** 1.773%%* 1.764%%*
(0.063) (0.063) (0.067) (0.066)
Climate Norm 1.165%** 1.165%** 1.156%** 1.156%**
(0.051) (0.051) (0.050) (0.050)
Implied Adaptation 0.557%** 0.535%** 0.617*** 0.608***
(0.041) (0.042) (0.044) (0.043)
Distance Cut-off 30 km 30 km 80 km 80 km
Stations Included 2 2 5 5
Weighting Scheme Simple Avg 1/Dist Simple Avg 1/Dist
All Controls Yes Yes Yes Yes
Observations 5,139,523 5,139,523 5284420 5,284,420
R? 0.484 0.483 0.484 0.485

Notes: This table reports estimates from models using alternative criteria to match weather stations to
ozone monitors. These estimates are obtained by our main specification, Equation (13), but using different
distance radii, number of weather stations, and weights when matching ozone monitors to weather stations.
In our main analysis we use a radius of 30 km, the 2 closest stations, and the inverse squared distance as the
weight. In the above columns, we give the same weight to both stations (simple average), or use the inverse
distance as an alternative weight. In columns (3) and (4) we also increase the radius to 80 km and use the
information from the closest 5 weather stations. Recall that the climate norm represents the 30-year monthly
moving average of the maximum temperature, lagged by one year, while the temperature shock represents
the difference between this value and the contemporaneous maximum temperature. The full list of controls
are the same as in the main model, depicted in column (1) of Table 1. Standard errors are clustered at the
county level. *** ** and * represent significance at the 1%, 5% and 10%, respectively.
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Table B2: Comparison to Alternative Estimation Methods (Semi-Balanced Panel)

Daily Max Ozone Levels (ppb)

Unifying Fixed-Effects Cross-Section

(1) (2) (3)

Temperature Shock 2.028*H*

(0.109)
Climate Norm 1.492%**

(0.084)
Max Temperature 2.009%**

(0.109)
Average Max Temperature 0.904
(0.950)

Implied Adaptation 0.536*** 1.105

(0.082) (0.773)

Fized Effects:

Monitor-by-Season-by-Year Yes
Monitor-by-Month-by-Year Yes
State Yes
Precipitation Controls Yes Yes Yes
Latitude & Longitude Yes
Non-Attainment Control Yes
Observations 520,670 520,670 89
R? 0.475 0.534 0.545

Notes: This table reports our main climate impact results using a semi-balanced panel including only those
monitors that exist in every year of our data. Column (1) reports the estimates of our unifying approach,
in which we decompose daily maximum temperature into climate norms and weather shocks, and exploit
variation in both components in the same estimating equation — our Equation (13). Recall that the climate
norm represents the 30-year monthly moving average of the maximum temperature, lagged by one year
to allow for economic agents to potentially adapt, while the temperature shock represents the difference
between this value and the contemporaneous maximum temperature. Column (2) reports the effect of
daily maximum temperature on ambient ozone from the panel fixed-effects approach, exploiting day-to-day
variation in temperature, hence capturing the effect of a change in weather. Column (3) reports cross-
sectional estimates using average maximum temperature and ambient ozone concentrations for each ozone
monitor in the sample. Having averaged the variables over all the years from 1980-2013, this estimate
captures the effect of a change in climate. Note that while estimates in column (3) must additionally control
for whether a county is in violation of the CAA ozone standards, this is implicitly controlled for via the
fixed-effects in columns (1) and (2). Standard errors are clustered at the county level in columns (1) and
(2), while column (3) uses standard heteroskedastic robust errors. *** ** and * represent significance at
the 1%, 5% and 10%, respectively.
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Table B3: Further Robustness Checks

Daily Max Ozone Levels (ppb)

Daily Monthly Meteorological — Excluding  Including Only
Moving Average Aggregation Controls OTR States  OTR States

(1) (2) (3) (4) (5)

Temperature Shock 1.684%** 1.806%** 1.749%** 1.558%** 2.07T7HH*
(0.064) (0.062) (0.078) (0.082) (0.056)
Climate Norm 1.207%** 1.171%%* 1.126%** 1.052%%* 1.476%+*
(0.050) (0.050) (0.070) (0.066) (0.059)
Average Wind Speed —2.325%%*
(0.309)
Total Daily Sunlight 0.015%%*
(0.001)
Implied Adaptation 0.477HH* 0.636*** 0.624%+* 0.506%** 0.6017%**
(0.040) (0.041) (0.064) (0.055) (0.038)
All Controls Yes Yes Yes Yes Yes
Observations 5,139,454 178,175 453,829 4,116,365 1,023,158
R? 0.480 0.859 0.479 0.497 0.426

Notes: This table reports estimates, obtained by Equation (13), from models that replace our monthly moving average with a daily one in column (1),
aggregate our high-frequency daily data to monthly averages in column (2), and include additional meteorological controls in column (3). Specifically,
for column (1) we first decompose contemporaneous maximum temperature into an alternative climate norm, represented by the 30-year daily moving
average, and the respective temperature shock, represented by the difference between this value and the contemporaneous maximum temperature.
We then proceed to estimate our main specification as normal, following Equation (13). For column (2), we first aggregate our final sample to
the monthly level for each ozone monitor before estimating Equation (13) in order to simulate the application of our model to contexts with less
granular data. This reduces our sample from 5,139,523 observations to 178,175. Despite this reduction, our results remain qualitatively similar. In
column (3) we augment our main specification by including further meteorological controls, for daily average windspeed and total daily sunlight, in
our matrix of additional regressors. While both coefficients are strongly significant, they do not meaningfully affect our coefficients of interest, but
drastically restrict our total sample size. Recall that, except for in column (1), the climate norm represents the 30-year monthly moving average of
the maximum temperature, lagged by one year, while the temperature shock represents the difference between this value and the contemporaneous
maximum temperature. The full list of controls are the same as in the main model, depicted in column (1) of Table 1. Standard errors are clustered
at the county level. ***, ** and * represent significance at the 1%, 5% and 10%, respectively.



Table B4: Alternative Clustering and Bootstrapped Standard Errors

Daily Max Ozone Levels (ppb)

(1)

Temperature Shock 1.678%**
(County Cluster) (0.063)
(State Cluster) (0.134)
(Bootstrapped) (0.063)

Climate Norm 1.164%**
(County Cluster) (0.051)
(State Cluster) (0.091)
(Bootstrapped) (0.051)

Implied Adaptation 0.514%**
(County Cluster) (0.041)
(State Cluster) (0.106)
(Bootstrapped) (0.042)

All Controls Yes

R? 0.481

Observations 5,139,523

Notes: This table compares the standard errors of our main estimates with ones obtained by clustering
at the state- rather than county-level, and by bootstrap (block method clustered at the county level, 1000
iterations). The latter addresses the potential concern that because our temperature shocks and norm are
constructed, they could be seen as generated regressors. Recall that the climate norm represents the 30-year
monthly moving average of the maximum temperature, lagged by one year, while the temperature shock
represents the difference between this value and the contemporaneous maximum temperature. The full list of
controls are the same as in the main model, depicted in column (1) of Table 1. Standard errors are clustered
at the county level. *** ** and * represent significance at the 1%, 5% and 10%, respectively.
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Table B5: Non-Linear Effects of Temperature
Panel A. Below 20°C

Daily Max Ozone Levels (ppb) Adaptation

(1) (2)

Temperature Shock 0.691%**
(0.017)
Climate Norm 0.142%%* 0.550%**
(0.034) (0.030)
Panel B. 20-25°C
Temperature Shock 1.694%4*
(0.072)
Climate Norm 1.978%** 0.417%%*
(0.069) (0.031)
Panel C. 25-30°C
Temperature Shock 2.017%**
(0.087)
Climate Norm 1.826*** 0,191 %%
(0.092) (0.041)
Panel D. 30-35°C
Temperature Shock 2.196%**
(0.096)
Climate Norm 1.496%** 0.700%**
(0.128) (0.070)
Panel E. Above 35°C
Temperature Shock 2.049%¥*
(0.135)
Climate Norm 0.901%** 1.148%%*
(0.180) (0.136)
All Controls Yes
Observations 5,139,523
R 0.494

Notes: This table reports the average marginal effect of a 1°Celsius increase in the temperature shock and
climate norm on the daily maximum ambient ozone concentration (ppb) for days in which the daily maximum
temperature fell within different temperature bins. We categorize temperature into 5 bins from < 20°C to
> 35°C with 5°C intervals in between. Estimates in column (1) correspond to Equation (13), interacting
all variables with indicators for each temperature bin, while estimates in column (2) report the implied
measure of adaptation. Recall that the climate norm represents the 30-year monthly moving average of the
maximum temperature, lagged by one year, while the temperature shock represents the difference between
this value and the contemporaneous maximum temperature. The full list of controls are the same as in the
main model, depicted in column (1) of Table 1, plus the un-interacted indicators for each temperature bin
to allow the intercept to vary across bins. Standard errors are clustered at the county level. *** ** and *
represent significance at the 1%, 5% and 10%, respe(étévely.



Table B6: Adaptation Under Linear, Binned, and Nonlinear Specifications
Panel A. Below 20°C

Linear Binned Quadratic Cubic
(1) (2) (3) (4)
Implied Adaptation 0.514%** 0.550%** 0.708%** 1.135%%*
(0.041) (0.030) (0.074) (0.073)
Panel B. 20-25°C
Implied Adaptation 0.514%** 0.417%** 0.541%** 0.587H**
(0.041) (0.031) (0.040) (0.049)
Panel C. 25-30°C
Implied Adaptation 0.514%%* 0.191%%* 0.375%H* 0.420***
(0.041) (0.041) (0.061) (0.048)
Panel D. 30-35°C
Implied Adaptation 0.514%** 0.700%** 0.209* 0.633***
(0.041) (0.070) (0.109) (0.101)
Panel E. Above 35°C
Implied Adaptation 0.514%%* 1.148%** 0.043 1.227%**
(0.041) (0.136) (0.161) (0.210)
All Controls Yes Yes Yes Yes
Observations 5,139,523 5,139,523 5,139,523 5,139,523
R? 0.481 0.494 0.483 0.486

Notes: This table reports implied adaptation estimates across the temperature distribution recovered via
four alternative specifications. Our central linear specification is shown in column (1), while column (2)
depicts the binned specification shown in Table B5, column (3) and (4) show the results of quadratic and
cubic specifications, respectively, following Equation (14). Recall that for the quadratic and cubic models,
calculating marginal adaptation requires choosing a value for the underlying climate norm. Thus, calculations
in columns (3) and (4) use the values of 17.5, 22.5, 27.5, 32.5, and 37.5°Celsius to correspond to the “mid-
points” of the respective temperature bins used in column (2). Additionally, recall that implied adaptation
reflects the difference between the climate norm, represented by the 30-year monthly moving average of
maximum temperature, lagged by one year, and the temperature shock, represented by the difference between
this value and the contemporaneous maximum temperature. The full list of controls are the same as in the
main model, depicted in column (1) of Table 1, plus the un-interacted indicators for each temperature bin
in column (2). Standard errors are clustered at the county level. *** ** and * represent significance at the
1%, 5% and 10%, respectively.
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Table B7: Results by Decade

Panel A. 1980’s

Daily Max Ozone Levels (ppb)

Adaptation

(1)

(2)

Temperature Shock

Climate Norm

Temperature Shock

Climate Norm

Temperature Shock

Climate Norm

All Controls

Observations
R2

2,264
(0.142)

1.726%%*
(0.086)

Panel B. 1990’s

0.539%%*
(0.088)

1.768%**
(0.051)

1.339%++
(0.049)

Panel C. 2000’s

0.428%**
(0.037)

1.280%%*
(0.030)

0.743%%*
(0.034)

Yes

5,139,523
0.490

05374+
(0.030)

Notes: This table reports our main estimates disaggregated by the three “decades” in our sample: 1980-1990;
1991-2001 and 2002-2013. Estimates in column (1) correspond to Equation (13), while estimates in column
(2) report the implied measure of adaptation. Recall that the climate norm represents the 30-year monthly
moving average of the maximum temperature, lagged by one year, while the temperature shock represents
the difference between this value and the contemporaneous maximum temperature. The full list of controls
are the same as in the main model, depicted in column (1) of Table 1. Standard errors are clustered at the

county level. *** ** and * represent significance at the 1%, 5% and 10%, respectively.
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Table B8: Adaptation by VOC- or NOx-limited Atmosphere

Daily Max Ozone Levels (ppb)

Main Specification VOC/NOx-Limited
Restricted Sample Adaptation Restricted Sample Adaptation

(1) (2) (3) (4)

Temperature Shock 2.135%** 2.185%**
(0.165) (0.206)
x VOC-limited —0.674**
(0.281)
x NOx-limited —0.082
(0.115)
Climate Norm 1.378%** 0.757*** 1.347%** 0.838%***
(0.140) (0.119) (0.139) (0.151)
x VOC-limited —1.070%** 0.397
(0.335) (0.284)
x NOx-limited 0.176 —0.258*
(0.108) (0.139)
All Controls Yes Yes
Observations 1,007,563 1,007,563
R? 0.505 0.506

Notes: This table reports estimates of temperature shock and climate norm interacted with an indicator
of whether the county was, on average, more VOC-limited, NOx-limited, or non-limited. Using 5-year bins
(1980-1984, 1985-1989, etc.) a county is designated as VOC-limited, NOx-limited, or neither for each bin
based on whichever of these three categories the county observed the most days of during the 5-year period.
We restrict our sample to only those counties for which data on these precursor pollutants is available
(approximately 20% of our full sample), and depict the results of our main specification under this restricted
sample in column (1) for comparison, with the implied measure of adaption in column (2). In column (3),
the main effect reflects the result for non-limited counties, while the interaction term depicts the relative
difference in the effect of shocks and norms in precursor limited counties. Column (4) reports the implied
measure of adaptation in non-limited counties, and the differential effect in limited ones. Recall that the
climate norm represents the 30-year monthly moving average of the maximum temperature, lagged by one
year, while the temperature shock represents the difference between this value and the contemporaneous
maximum temperature. The full list of controls are the same as in the main model, depicted in column (1)
of Table 1. Standard errors are clustered at the county level. *** ** and * represent significance at the 1%,
5% and 10%, respectively.
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Table B9: Adaptation by Belief in Climate Change Regulation

Daily Max Ozone Levels (ppb)

Adaptation

(1)

(2)

Temperature Shock 1.507***
(0.046)
x Low Belief —0.397#%*
(0.063)
x High Belief 0.483***
(0.118)
Climate Norm 1.115%%* 0.3927%**
(0.061) (0.047)
x Low Belief —(0.344%** —0.053
(0.085) (0.068)
x High Belief 0.210%* 0.273%%*
(0.104) (0.084)
All Controls Yes
Observations 5,139,523
R? 0.486

Notes: This table reports estimates of temperature shock and climate norm interacted with an indicator of
whether the residents of the county generally believed in the use of regulations on carbon emissions to combat
climate change or not. Specifically, all counties in the sample were split into terciles based on the results
of a survey conducted on climate change beliefs (Howe et al., 2015). In column (1) the main effect reflects
the result for the median tercile of counties, while the interacted effects reflect the difference from this value
observed in the lower and higher tercile counties. Column (2) reports the implied measure of adaptation
for the median counties along with the differential effect in the low and high belief counties. Recall that
the climate norm represents the 30-year monthly moving average of the maximum temperature, lagged by
one year, while the temperature shock represents the difference between this value and the contemporaneous
maximum temperature. The full list of controls are the same as in the main model, depicted in column (1)
of Table 1. Standard errors are clustered at the county level. *** ** and * represent significance at the 1%,
5% and 10%, respectively.
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Table B10: Adaptation by Political Leaning

Daily Max Ozone Levels (ppb) Adaptation
(1) (2)

Temperature Shock 1.325%#*
(0.047)
x Democrat 0.558***
(0.100)
Climate Norm 0.975%** 0.349%**
(0.043) (0.042)
x Democrat 0.302%%* 0.256%**
(0.085) (0.071)
All Controls Yes
Observations 5,139,523
R? 0.484

Notes: This table reports estimate of temperature shock and climate norm interacted with an indicator of
whether the county voted Democrat in the 2008 presidential election. Column (1) follows Equation (13), with
an additional interaction term for Democrat political preference depicting the differential effect of shocks
and norms in these counties compared to baseline Republican voting counties. Similarly, column (2) reports
the implied measure of adaptation for Republican leaning counties, with the differential effect in Democrat
leaning counties noted by the interaction effect. Recall that the climate norm represents the 30-year monthly
moving average of the maximum temperature, lagged by one year, while the temperature shock represents
the difference between this value and the contemporaneous maximum temperature. The full list of controls
are the same as in the main model, depicted in column (1) of Table 1. Standard errors are clustered at the
county level. *** ** and * represent significance at the 1%, 5% and 10%, respectively.
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Appendix C. Sources of Variation to Identify Climate Impacts

This appendix provides further elaboration of the two sources of variation used to identify
Bc, the coefficient on Z;; in Equation (13) in our empirical application. That estimating
equation employs monitor-by-season-by-year fixed effects, a more flexible way to control for

a number of unobserved time-varying factors in our ambient ozone setting.
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Many least-squares estimators weight heterogeneity with factors that depend on group
sizes and the within and between variances of explanatory variables. A univariate regres-
sion coefficient, for example, equals an average of coefficients in mutually exclusive (and
demeaned) subsamples weighted by size and subsample z-variance (see Goodman-Bacon,

2018, footnote 11):

= 2y — §)(x; — T)
> i(wi —x)?
2 Al =9 )+ gy — y)(@ — T)
> i@ — 1)

A B
NASg, + MBSy,

2

S

n S npg 8
LN (C.1)

CC$ IZ‘

where A and B are mutually-exclusive subsamples, and as usual,

.8 ‘
Bi=—5 J1=4B. (C.2)

A simpler version of the estimating equation in our empirical application — Equation (13)

— focusing on the time-varying temperature norm, Z;z, is:

Vit = BoZip + Gis + €it, (C.3)

where y represents ambient ozone concentrations, ¢ monitor, ¢t day, and s season-of-the-sample,

and p refers to the aggregation of time — in our case, month — used to construct the climate
normals from past observations — the 30-year monthly moving averages of temperature.

Applying a fixed-effects transformation in Equation (C.3), we obtain
(Wit — 75) = Be(Tip — T;) + (en — &), (C.4)

where j represents subsamples defined by the trio monitor-by-season-by-year is. Using an
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alternative notation, we can express the transformed equation as
Uit = Bolip + €t (C.5)

By running OLS on the transformed equation, analogous to the decomposition in Equa-

tion (C.1), we can express ¢ as:

Z j (C.6)

8 N
Eilu

I‘CL’

Equation (C.6) helps us understand how we are leveraging both variation across months
within the subsample defined by the monitor-by-season-by-year trio, and variation over time
to identify Bc. Indeed, BC incorporates variation in temperature norms within each subsam-
ple j, sz, and variation in how economic agents located around the same monitor respond

to temperature norms in different points in time, which is captured by BOJ-
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