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1 Introduction

The COVID-19 crisis has renewed concerns about the dangers of misinformation and its persua-

sive effects on behavior. The US response to the pandemic is deeply divided along partisan lines,

with Republicans more skeptical about the risks of the pandemic and less engaged in social dis-

tancing than Democrats (Barrios and Hochberg, 2020; Allcott et al., 2020). Correlations between

these differences in reactions and beliefs and exposure to the left- and right-leaning news sources

(PewResearch, 2020) are suggestive, albeit inconclusive, of an effect of differential messaging by

politicians (Beauchamp, 2020) and the major media outlets that support them (Aleem, 2020). The

largest US cable news channel, Fox News, finds itself at the heart of this controversy, with a class

action1 alleging that Fox News and other defendants “willfully and maliciously disseminate false

information denying and minimizing the danger posed by the spread of the novel Coronavirus,

or COVID-19, which is now recognized as an international pandemic” (Ecarma, 2020). The per-

suasive effect of a leading news media channel could have harmful consequences for the public

if viewers disregard the social-distancing practices recommended by leading health experts and

health organizations (CDC, 2020b; Kissler et al., 2020a). In addition to personal health risks, non-

compliance could also create a negative health externality through the transmission of disease to

others in the community (Ferguson et al., 2020).

We test for and measure the potential persuasive effect of Fox News viewership on social

distancing compliance during the early stages of the COVID-19 pandemic in the US.2 The COVID-

19 outbreak is not the first instance where a US media outlet like Fox News finds itself accused

of broadcasting misinformation.3 However, a persuasive effect during the COVID-19 crisis allows

us to test whether Fox can affect behavior in a way that defies the recommendations of health

experts. An extant literature has found how slanted news coverage can cause viewers to doubt or

reject well-established scientific expert advice on policies for global warming (Hmielowski et al.,

2014) and vaccinations (Lewandowsky et al., 2017). The literature on advice-taking has found in

lab studies that decision-makers tend to overweight their opinions relative to those of an advisor

leading to inferior outcomes, even when the advisor is recognized as a highly-trained expert (e.g,

Harvey and Fischer (1997) and survey by Bonaccio and Dalal (2006)). Our case study therefore

1Claim #604 171 241, filed on April 2, 2020 by the Washington League For Increased Transparency and Ethics.
See https://www.sos.wa.gov/corps/business.aspx?ubi=604171241.

2See also the contemporaneous study by Bursztyn et al. (2020).
3A recent literature has analyzed what appears to be an increase in the supply of fake news, especially online

(Flynn et al., 2017; Lazer et al., 2018; Allcott et al., 2019). Some studies have demonstrated that fake news is seen
and recalled by consumers and, in some cases, changes their beliefs. During the 2016 elections, Allcott and Gentzkow
(2017) estimate that the average US voter saw and remembered at least one fake news story. Media misinformation
can also have a persuasive impact on beliefs (Allcott and Gentzkow, 2017; Guess et al., 2018).
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offers a novel opportunity both to test for a persuasive effect of news media and its potential to

impact behavior in a manner that defies expert advice during a crisis.

Our key data consist of Nielsen’s NLTV panel, measuring differences across US cable sys-

tems in the viewership of the three leading cable news channels: FOX News, CNN and MSNBC;

although in the main analysis we focus on the first two due to their higher viewership levels.

Nielsen’s FOCUS data tracking the line-up of channels across US cable markets will also play a

key role in our empirical strategy. We match viewership with a specific form of social distancing

behavior: the propensity to stay at home. Stay-at-home behavior is not only easier to measure, it

also matches more closely with state and municipal measures to manage compliance with social-

distancing behavior (hereafter “SD”). Since most social distancing policies allow for some forms

of essential trips away from home, we use SafeGraph data that track multiple forms of stay-at-

home behavior derived from cellphone location data. We then measure SD as the within-market

evolution in daily stay-at-home propensity relative to the baseline level in January 2020, before the

US outbreak of COVID-19. To measure the impact of social distancing on economic outcomes,

we use transaction data from Facteus and firm closure data and employee counts from Homebase.

Our key empirical challenge arises from the likely self-selection of consumers’ cable news

viewing choices. Consumers base their television viewership choices on preferences that are likely

to be correlated with the factors influencing their SD choices. Following Martin and Yurukoglu

(2017), we exploit the quasi-random assignment of each news channel’s relative position across

cable markets. We find that channel position is a strong instrument and that a 1 standard deviation

decrease in position (towards 0) increases viewership by 0.158 rating points for Fox, and 0.091

rating points for CNN. News channel position across markets is also independent of the socio-

demographic factors that predict differences in SD behavior, consistent with our assumption of

random position assignment. Our IV approach will only use the incremental viewership across

markets induced by differences in channel position to measure the persuasive effect of viewership

on SD.

OLS analysis of our SD measures generate a positive and statistically significant effect of Fox

News viewership from early March onwards. However, our IV estimates are considerably larger

and indicate a take-off in the Fox News effect in early March and a stabilization in mid March,

almost immediately after the declaration of a national emergency. We find that a 10% increase in

Fox News cable viewership (approximately 0.13 viewer rating points), which is approximately the

viewership change induced by a one standard deviation change in the Fox News channel position,

leads to a 1.3 percentage point reduction in the propensity to stay at home. The corresponding

average partial effect of Fox news viewership implies that 1 rating point increase (near doubling)
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in cable viewership of Fox News reduces the propensity to stay at home by 10.3 percentage points

compared to the pre-pandemic average. Since the supply-side measures, such as business closures,

start to happen only two weeks later after the take-off of Fox News effects, the magnitudes of the

viewership effects reflect the persuasive effect of Fox News on viewers and not a feedback effect

from the equilibrium response of firms, at least early on. Our findings for CNN are inconclusive,

with imprecise point estimates centered near zero. Our findings imply a persuasion rate of Fox

News on non-compliance with stay-at-home behavior during the crisis of about 11.9%− 25.7%

across our various social distancing metrics. This magnitude aligns with the persuasion rate of

Fox News on voting behavior in the 2004 and 2008 presidential elections (Martin and Yurukoglu,

2017). An exploratory analysis of transaction data from debit cards produces inconclusive findings

regarding an effect of Fox News viewership on consumer shopping behavior.

Our data do not enable us to test the underlying mechanism through which Fox News view-

ership generates a persuasive effect on social distancing compliance. DellaVigna and Gentzkow

(2010) discuss two potential mechanisms. First, Fox News may change viewers’ beliefs in ways

that diverge from those expressed by leading health experts, causing a divergence from the rec-

ommended behavior or “egocentric advice discounting” (e.g. Yaniv and Kleinberger (2000) and

Yaniv (2004)). For instance, the coverage of COVID-19 may persuade viewers that social dis-

tancing is less effective than experts claim.4 Independently of the content of current broadcasts,

long-term exposure to Fox News may simply cause broad distrust in scientific experts (Hmielowski

et al., 2014) or in institutions (Sapienza and Zingales, 2012), including government agencies like

the CDC, perhaps destroying local social capital (Guiso et al., 2004) and, in turn, reducing the

propensity to internalize the externality from leaving home during the pandemic. Second, Fox

News viewership may reduce a viewer’s utility from SD compliance.5 An additional, third expla-

nation is that Fox News viewership polarizes republican sentiment (Martin and Yurukoglu, 2017)

and that our viewership effects on SD are partially mediated by such political polarization (All-

cott et al., 2020). Conservatives are also known to have exhibited a striking decline in trust in

scientific research since the 1970s (Gauchat, 2012); although cultural worldviews have been found

to be stronger predictors of trust in scientific experts than political opinions (Weaver et al., 2017;

Leiserowitz et al., 2013).

In addition, we do not attempt to attribute the Fox News effects to health outcomes, namely

4Several studies have studied the impact of fake news on beliefs (Allcott and Gentzkow, 2017; Barrera et al., 2020)
and its potential persuasive effect on voting behavior (Guess et al., 2018).

5For instance, Tuchman et al. (2018) find a complementary effect of brand advertising on consumer propensity to
buy the advertised brand, and Kamenica et al. (2013) find a physiological effect of advertising on the efficacy of a
drug. Viewership of Fox News might value the defiant aspects of non-compliance in social distancing behavior.
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cases and deaths, for several reasons. First, to the best of our knowledge, COVID-19-related cases

and deaths are tracked at the more aggregate county level and not at the zipcode level. Second, ex-

perts still disagree about the accuracy and reliability of current data which limits the interpretabilty

of any association we might find with our behavioral outcomes (e.g., Nishiura et al. (2020) and

Akhmetzhanov et al. (2020)); although Hortacsu et al. (2020) have developed a promising ap-

proach to infer the number of unreported infections. Multiple studies have pointed towards the

importance of social distancing for containing the disease (Matrajt and Leung, 2020; Kissler et al.,

2020b). Therefore, we believe our findings of FOX News effect on compliance should inform

epidemiological models on the extent to which, if any, these viewership effects are large enough to

impact transmission rates of the disease.

Our findings add to a rapidly-emerging body of literature studying differential rates of com-

pliance in social distancing across the US in response to the Covid-19 pandemic. Several studies

have looked at differences associated with political partisanship, such as the correlation between

perceptions of risk, Trump support and social distancing (Barrios and Hochberg, 2020; Allcott

et al., 2020), beliefs associated with support for the Republican versus Democratic party (Painter

and Qiu, 2020), income (Wright et al., 2020), ethnic diversity (Egorov et al., 2020), or internet

access (Chiou and Tucker, 2020). Our work complements these findings by establishing a causal

effect of Fox News viewership on SD, which may account for some of these other correlates to the

extent that Fox viewership is correlated with political beliefs and other factors.6

Closest to our work is the contemporaneous study by Bursztyn et al. (2020) to compare the

effects of viewership for Hannity and Tucker Carlson Tonight, two shows with different coverage

of COVID-19 coverage, on social distancing behavior. Our work differs in three important ways.

First, we measure the effect of TV viewers’ exposure to Fox News overall, rather than to a specific

show. Second, we measure SD compliance using actual cellphone movement data, allowing us

to attribute the effect of Fox News viewership on realized forms of social distancing. In contrast,

Bursztyn et al. (2020) use self-reported behavior from a survey of approximately 1,000 people.

Similarly, our data and identification strategy uses a granular cross-section of thousands of cable-

system level markets, as opposed to the coarser 210 DMA markets used in Bursztyn et al. (2020).

More broadly, our work contributes to research on the persuasive effects of the news media on

on political opinion (Gerber et al., 2009) and various behaviors including political participation

(Gentzkow, 2006; Cagé, 2019), voting (Chiang and Knight, 2011; Snyder Jr and Strömberg, 2010;

Enikolopov et al., 2011), criminal sentencing decisions (Lim et al., 2015), hurricane evacuations

6Gitmez et al. (2020) discuss this causal effect in the context of a theoretical model with endogenous acquisition
of information by news consumers in the economy.
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(Long et al., 2019), global warming (Hmielowski et al., 2014), and genocide (Yanagizawa-Drott,

2014).7 A subset of this work has found a persuasive effect of Fox News on voting behavior

(DellaVigna and Kaplan, 2007; Martin and Yurukoglu, 2017) and criminal sentencing (Ash and

Poyker, 2019). A related literature has looked at the supply of fake news (e.g., Allcott et al.,

2019) and the persuasive effect of fake news on beliefs (Allcott and Gentzkow, 2017; Guess et al.,

2018); although persuasive effects have mainly been measured for small news outlets and online

social media platforms. Our use of the Martin and Yurukoglu (2017) instrument reflects a broader

literature devising empirical strategies to measure the causal effect of communication media on

sales.8

Sections 2, 3, 4, 5 and 6, respectively, present a discussion of misinformation during the US

COVID-19 outbreak, our empirical model, our data, our results and our conclusions.

2 Fox, Misinformation and Social Distancing During the COVID-
19 Outbreak in the US

Forty-nine percent of the US population uses television news programs as their primary source of

news (Shearer, 2018). It is therefore unsurprising that groups like the WLFITE have concentrated

their concerns about the potential harmful effects of alleged misinformation during the COVID-19

outbreak at Fox News, the largest US cable news channel for the past decade (Wulfsohn, 2020).

Of interest is whether exposure to cable news can persuade viewers to disregard warnings by

the global health community and engage in behaviors deemed risky by most health experts. As

explained above, it is unclear whether viewership effects reflect the impact of specific broadcasts

per se or reflect the effects of long-term exposure on trust in institutions or polarized attitudes

towards a specific political party. Regardless of the mechanism, Fox News’ coverage of COVID-19

has renewed concerns about potential risks from exposure (short or long-term) to misinformation.

On January 30, 2020 the WHO declared COVID-19 as an international public health emergency

(Nedelman, 2020). Meanwhile, FOX News broadcast a series of stories downplaying the potential

risks from Covid-19 in the US throughout March 2020 as the virus began to threaten the US

and as Americans were forming beliefs about the severity of the threat. On February 27, host

7Shapiro (2016b) provides a model of media coverage of scientific information and applies it to the coverage of
climate change.

8These methods include geographic regression discontinuities (e.g., Shapiro, 2016a; Shapiro et al., 2019; Spenkuch
and Toniatti, 2016), timing discontinuities (e.g., Sinkinson and Starc, 2019), instrumental variables (e.g., Gordon and
Hartmann, 2016) and the difference in timing between advertising scheduling and viewership, especially for Superbowl
ads (e.g., Hartmann and Klapper, 2016; Stephens-Davidowitz et al., 2017).
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Laura Ingraham accused the Democratic party of “weaponizing fear,” referring to them as the

“pandemic party” (The Ingraham Angle, 2020c). On March 10, popular Fox News host, Sean

Hannity, downplayed the risks of the outbreak:

“So far in the United States, there’s been around 30 deaths, most of which came from

one nursing home in the state of Washington...Healthy people, generally, 99 percent

recover very fast, even if they contract it...Put it in perspective: 26 people were shot

in Chicago alone over the weekend. I doubt you heard about it. You notice there’s no

widespread hysteria about violence in Chicago.” (MediaMatters, 2020)

On the same day, Ingraham echoed this sentiment of the low risks from COVID-19:

“We need to take care of our seniors. If you’re an elderly person or have a serious

underlying condition, avoid tight, closed places, a lot of people, don’t take a cruise

maybe. Everyone else wash your hands, use good judgment about your daily activi-

ties.” (Farhi and Ellison, 2020)

Some of the Fox News opinions echoed statements from the White House. On February

2, 2020, President Trump explained to Fox New host, Sean Hannity: “We pretty much shut it

[COVID-19] down coming in from China.” (Puhak, 2020). On March 9, the day before the Han-

nity broadcast above, President Trump tweeted: “The Fake News Media and their partner, the

Democrat Party, is doing everything within its semi-considerable power (it used to be greater!)

to inflame the CoronaVirus situation, far beyond what the facts would warrant. Surgeon General,

“The risk is low to the average American.” It was not until President Trump’s declaration of a

National Emergency on March 13 (85 FR 15337) that Hannity suddenly referred to the virus as a

“crisis.”

In spite of these parallels, Fox News coverage frequently diverged from the opinions of the

White House. On March 13, Johns Hopkins recommended social distancing in the US (Pearce,

2020) and, the following day, the CDC recommended cancelling events with more than 50 people

(Kopecki, 2020). Later that week, President Trump explained in a news conference: “we‘re asking

everyone to work at home, if possible, postpone unnecessary travel, and limit social gatherings to

no more than 10 people.” (White House, 2020). Nevertheless, several Fox News hosts continued

to question the efficacy of social distancing and the reliability of health experts’ recommendations.

Ingraham broadcast “Coronavirus crisis is teaching us a lot about so-called experts,” referring

to scientific predictions of the disease spread as “lame panic-inducing models” (The Ingraham

Angle, 2020a). Even as late as April 30, Ingraham continued to dispute the effectiveness of social
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distancing, arguing “Experts don’t like to admit their wrong, do they?” (The Ingraham Angle,

2020b).

The second-largest US cable news channel, CNN, adopted a more dire tone consistent with

the views and recommendations of health experts. For instance, On February 13, CNN broadcast

an interview with CDC Director Dr. Robert Redfield, who predicted a widespread community

transmission. On February 26, CNN highlighted the following warning from a senior CDC official:

“It’s not a question of if coronavirus will spread, but when.” (Darcy, 2020) On March 2, they

published a story criticizing the Trump administration’s response as being out of step with the CDC

(McLaughlin and Almasy, 2020). CNN also warned about potentially misleading information on

Fox News (Cohen and Merrill, 2020). The third-largest channel, MSNBC, broadcast coverage that

was materially similar to CNN, including early warnings about the severity of COVID-19 (The

Rachel Maddow Show, 2020; Deadline: White House, 2020).

A persuasive effect of cable news viewership during the pandemic could potentially generate

important health and economic implications. According to the Imperial College COVID-19 Team

(Ferguson et al. (2020), page 1), an optimal mitigation policy “...might reduce peak healthcare

demand by 2/3 and deaths by half.” (Ferguson et al. (2020), page 14). Similarly, Lewnard and Lo

(2020) describe social distancing as “the only strategy against COVID-19” while pharmaceutical

intervention are not available (p. 1).

A persuasive effect of cable news viewership could also have economic implications:

“In the near term, public health objectives necessitate people staying home from shop-

ping and work, especially if they are sick or at risk. So production and spending must

inevitably decline for a time.” (Bernanke and Yellen, 2020)

Exposure to the virus impacts the economy both through its effect on consumer spending, on the

demand side, and through labor supply, on the supply side. Eichenbaum et al. (2020) demonstrate

how “these [containment] policies exacerbate the recession but raise welfare by reducing the death

toll caused by the epidemic” (p.1). We therefore anticipate that a persuasive effect of cable news

viewership on SD compliance could, in turn, generate both supply and demand-side economic

impacts.

3 Model

The CDC defines social distancing as “keeping space between yourself and other people outside

of your home. To practice social or physical distancing: stay at least 6 feet (2 meters) from other
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people, do not gather in groups, stay out of crowded places and avoid mass gatherings” (CDC,

2020b). To enforce social distancing, many state and local governments adopted stay-at-home and

shelter-in-place orders to increase the local propensity to stay at home.9 We focus the remainder

of our analysis on compliance with increased stay-at-home behavior.

For an individual h in a given market z on day t, the difference in indirect utility from leaving

home versus staying is given by:

Uh
zt = αz + ∑

c∈C
βctratingcz +λz(t)+ξzt + ε

h
zt (1)

where αz captures local differences in amenities like stores and labor opportunities, λz(t) allows

for potentially differential trends across markets such as seasonality and weather as well as changes

in local economic amenities, ξzt is a (unobserved to the researcher) mean-zero, common shock to

the market, and εh
zt is a uniformly-distributed idiosyncratic random utility shock. Finally, ratingcz

measures the time-invariant (long term) viewership measure for news channel c ∈ C in market z.

This model is consistent with a dynamic discrete choice version of the framework in Allcott et al.

(2020) where staying at home reflects the inter-temporal trade-offs between leaving home today

(e.g., for consumption and/or labor purposes captured by αz, λz(t) and ξzt) and the expected, future

health risks to the individual. In that framework, βctratingcz captures the impact of viewership of

channel c on an individual’s expected future health risks.

If individuals make decisions to stay at home to maximize utility, then the probability of staying

at home, yzt , in market z on day t is:

yzt = αz + ∑
c∈C

βctratingcz +λz(t)+ξzt , (2)

the linear probability model (Heckman and Snyder, 1996).

During the base period, before social distancing was relevant in the US, expected stay-at-home

behavior is E(yzτ). We define this base period as {τ|τ < t} where t denotes the first date during

which compliance with social distancing became relevant. We assume that cable news has no

impact on a household’s propensity to stay at home prior to the COVID-19 outbreak in the US

in 2020: βcτ = 0, ∀τ < t. The market fixed-effect αz already accounts for persistent effects

of viewership on behavior and, thus, βct captures deviations over time in channel c’s impact on

behavior. In our analysis below, we will analyze the timing of the start of social distancing as well

9For instance, Sonoma County imposed the following measures: “Stay home and only go out for ’essential activ-
ities,’ to work for an ’essential business,’ or for ’essential travel’ as those terms are defined in the Order” (socoemer-
gency.org, 2020).
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as the potential impact of news on this behavior.

We then define compliance with social distancing as the change in staying-at-home behavior

after the emergence of COVID-19 in the US relative to a base pre-COVID period τ < t. Formally,

we define compliance, SDzt as follows

SDzt ≡ yzt−E(yzτ |τ < t). (3)

Combining (2) and (3), we obtain our model of SDzt and its determinants:

SDzt = βctratingcz +∆λz(t)+ξzt (4)

where ∆λz(t) is a difference relative to the base period τ < (t) allowing for SD to evolve in response

to differential changes across markets such as the timing and stringency of local stay-at-home and

shelter-in-place orders.

Our key parameter, βct , measures the daily effect of cable news channel c viewership on SDzt .

Suppose we compare two markets, A and B, where market B has 1 rating point higher viewership

of channel c, rcz. We would expect to observe |βct | percentage points less SDzt on any given day

t in market B than in market A, measured as the change in stay-at-home behavior relative to the

base, pre-COVID period.

4 Data and Descriptive Analysis

4.1 Cable News Viewership

We use Nielsen’s monthly NLTV data to measure viewership of the three leading US cable news

channels – Fox News, CNN and MSNBC. We obtained the 2015 data through a partnership be-

tween Nielsen and the NBER, and purchased the 2020 data directly from Nielsen. Nielsen tracks

cable television audience sizes using a rotating panel of households with meters and diaries record-

ing their television viewing behavior. We do not have access to the individual-level viewership

behavior. The NLTV data we obtained measure each channel’s viewership as the percentage of

panelists who tune in to the channel for at least five successive minutes during a given quarter-hour

time interval of the day. Each channel’s monthly viewership rating consists of the average cable

viewership for each channel within a market across days and quarter-hour time slots.

Ideally, we would use viewership from 2020. However, recent changes to Nielsen’s survey

methodology limit the scope of geographic regions for which cable system level or zipcode level

data are available. In 2020, only 44 of the 210 DMAs have zipcode-level data and the panelist
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counts are low,10 exacerbating potential classical measurement error in our analyses below. For

instance, we observe zero panelists viewing Fox News in 71.3% of these zipcodes even though Fox

is the most highly-watched cable news channel.

Instead, we use cable system level, or “headend”11, data from November 2015, the most recent

period for which we have access to broad geographic coverage spanning 2,536 unique headends,

representing 30,517 zip codes from the 210 DMAs across the US.12 As we demonstrate below,

channel positions change very infrequently within a cable market. So, as long as the relationship

between viewership and position is persistent over time, our use of 2015 viewership data should

provide a reasonable proxy for 2020. We look at the persistent in this relationship in section 5.1

below. Furthermore, since our channel position instrument only affects cable subscribers in a

market, we use viewership data for cable subscribers in the headend. Analogous cable-subscriber

data were also used in previous work measuring viewership effects (Martin and Yurukoglu, 2017).

In 2019, 71% of US households had access to television13 and, according to 2020 NLTV data,

61% of these households subscribed to cable service. Therefore, our viewership data represent

approximately 43% of the population.

We report descriptive statistics for each channel’s viewership ratings in November 2015 in

Table 1. Fox News stands out in its viewership, with an average monthly rating of 1.32%, higher

than the combined rating of both CNN and MSNBC (0.51% and 0.34% respectively). In other

words, on average, 1.32% of a headend’s viewers tune into Fox News during a given time slot in

a given month. Although not reported in the table, the population-adjusted probability of being

the highest-watched news channel in a headend is 65% for Fox News, 25% for CNN and 10%

for MSNBC. Therefore, the overwhelming majority of US viewers rely on Fox News as their

primary source for news. For the remainder of our analysis, we will focus on the effect of Fox

News viewership, while controlling for CNN and MSNBC as relevant competitors. In each of

our analyses, we will also look at the effect of the second-ranked channel, CNN, as a basis of

comparison.

[Table 1 about here.]
10Only 7,294 zipcodes have at least one panelist and 94% of these zipcodes have less than 10 panelists.
11A cable television headend is a master facility for receiving television signals for processing and distribution over

a cable television system.
12Apppendix A.3 describes how we pre-process the data.
13https://nscreenmedia.com/us-pay-tv/

11

https://nscreenmedia.com/us-pay-tv/


4.2 Cable Systems’ Assignments of Channel Positions

We purchased Nielsen’s 2015 FOCUS data to determine the channel lineups across headends. As

in Martin and Yurukoglu (2017), we use the channel’s ordinal position (hereafter referred to as

“position”) instead of the exact numeric position to which a cable channel is assigned.14 Ordinal

positions correct for the occasional gaps in the lineups in some headends. We observe very little

change in a channel’s position over time within a market. Pooling each year between 2006 and

2015, we find that headend fixed-effects explain between 81% and 85% of the variation in positions

across headends and years for the three channels, whereas time fixed effects explain less than 2.5%.

In Table A6 in the Appendix A.11, we show that only 4% of the headend-channel positions change

from year to year. In sum, 2015 head-end positions should provide a good proxy for 2020.

Table 2 presents summary statistics of the channel positions across headends for each chan-

nel. On average, CNN has the most favorable position, 34.8, relative to Fox News and MSNBC,

with respective average positions of 43.2 and 49.6. However, we also observe variation in each

channel’s position across headends, with standard deviations ranging from 17.7 to 23.4 and coef-

ficients of variation ranging from 0.41-0.53. To demonstrate the variation in positions, we present

the distribution of cable news channel positions across headends in Figure 1. On average, the

population-adjusted probability that each channel has the most favorable position in a given mar-

ket is 74% for CNN, versus 14% for MSNBC and 12% for Fox News. As we show in section 5.1

below, this variation in position is uncorrelated with market characteristics that predict viewership

levels.

[Table 2 about here.]

[Figure 1 about here.]

4.3 Stay-at-Home Rates

We base our SD measures on household propensities to stay at home. Besides being more con-

sistent with state and local orders to enforce social distancing, staying at home is also easier to

measure than social distancing which would require monitoring the geographic proximity of indi-

viduals and the density of gatherings of individuals.15

We use Safegraph data that track the GPS locations from millions of US cellphones to construct

a daily panel of census-block-level aggregate movements measures from January 1 to April 24,

14Our substantive findings do not change if we instead use the numeric positions.
15Bursztyn et al. (2020) circumvent this problem using self-reported rates of social distancing with a survey.
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2020.16 Safegraph makes these data available to academic researchers through their SafeGraph

COVID-19 Data Consortium. During this period, we observe an average daily number of 7.75

million devices overall and 265.17 in a given zipcode. We use these device data to construct three

daily measures of staying at home propensity by zipcode: (1) the share of devices that stayed at

home, (2) the share of devices that traveled to work for a part-time day, and (3) the share of devices

that traveled to work for a full-time day. The measures of full-time and part-time work travel are

inferred by Safegraph as follows. Part-time work is the share of devices in a market-day that dwell

in the same away-from-home location between 3 and 6 hours between 8am and 6pm local time.

Full-time work is measured the same way using a minimum of 6 hours of away-from-home dwell

time in the same location.

Table 3 panel (a) presents summary statistics of within-zipcode means for each of our Safegraph

propensity variables during January 2020. Recall that we will use these means as our baseline stay-

at-home level in each market prior to the COVID-19 outbreak in the US.17 On average, we see that

23% of mobile devices remain at home in January; although we observe a lot of cross-market

heterogeneity. Accordingly, our SD measures account for these heterogeneous baseline behaviors

by looking at the difference in stay-at-home propensity relative to January.

[Table 3 about here.]

To summarize the evolution of stay-at-home behavior, Figure 2(a) reports the cross-zipcode

daily mean for each of our three Safegraph propensity variables. Surprisingly, we see no evidence

of a change in the overall mean daily stay-at-home propensity before March 13th, the date President

Trump declared a national emergency. On March 13th, the level of stay-at-home propensity lies

within the range observed as far back as January 1, 2020. In fact, several states had already issued

their own emergency declarations much earlier: Washington (February 29), California (March 4),

New York (March 7) and Lousiana (March 11) (Lasry et al., 2020). We do not detect a national

increase in SD (i.e., growth in stay-at-home relative to January) until March 14 for each of our

three measures. By April 1, 2020, the share of devices staying home almost doubles relative to

January, an increase of almost 20 percentage points. We see comparable timing in the pattern of

declines in SD measured through work trips; although the magnitudes are smaller at approximately

5 percentage points.

16For a detailed description of the data, please visit: https://docs.safegraph.com/docs/

social-distancing-metrics.
17The CDC reports the first US case of COVID-19 on January 22, 2020 (CDC, 2020a). But as we show below, we

find no discernible change in SD behavior until March 2020.
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For the remainder of our analysis, we use equation (3) to define SD for each of our three

Safegraph measures where January 2020 is our base, per-COVID-19 period:

SDzt = yzt− ȳz,Jan (5)

where ȳz,Jan is the within-market-z mean SD across each of the days in January, 2020. Table 3

presents summary statistics of the daily SD measures across zipcodes between February 1 and

April 24, 2020. This period pools days before and after the start of the COVID-19 crisis in the US.

On April 1, 2020, we find that the average SD is 16.5, -7.3 and -4.4 percentage points based on the

share of homebound devices, share of devices at work full time and share of devices at work part

time, respectively. That same day, we observe a positive SD based on homebound devices in more

than 98% of zipcodes. Therefore, by April all zipcodes have experienced at least some compliance

in the sense of higher stay-at-home rates than in January 2020.

[Figure 2 about here.]

4.4 Business Closures and the Supply Side

By reducing consumption, social distancing compliance also generates a demand shock to local

businesses, as well as a potential labor supply shock. We use local US business data from Home-

base,18 a scheduling and timesheet company that tracks the hours worked by the employees of

small businesses. The data track the daily hours worked for 695,782 employees and managers

from 68,307 firms and 78,850 business locations, across 9 industries. The data span 14,981 zip-

codes for the period from January 1, 2020 to April 25th, 2020. The largest industries represented

are food and beverages, retail, and health care and fitness. For each zipcode and day, we compute

the total number of firms reported “still open” (at least one worker checked in) and the total num-

ber of workers that sign into work. We report descriptive statistics in the part (c) of Table 3. The

average zipcode-day has 2.6 open firms and 11.53 signed-in workers.

To analyze the potential impact of COVID-19, we plot the time-series of the cross-zipcode aver-

age daily number firms open and number of workers signed-in in Figure 2, panel (b). As expected,

our two supply-side variables track our three SD variables closely, with a large negative shock on

March 13, the timing of the declaration of a national emergency. We observe a gradual decline

that stabilizes in late March. Prior to March 13, both number of businesses open and number of

workers that sign into work are stable from January until mid March, except for the systematic

18https://joinhomebase.com/data/
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day-of-week effects. This coincidence of changes in supply-side and demand-side variables with

the emergency declaration raises a potential concern about the exact interpretation of a persuasive

effect of Fox News Viewership on SD. To the extent that a Fox News effect on SD contributes to

incremental local business closures, our estimates of a Fox News effect on SD might be over-stated

if they also capture an indirect feedback effect through business closures on the supply-side of the

market. We discuss this issue in our analysis of the results in section 5.3 below.

4.5 Consumer Spending

The recent macroeconomic literature analyzing the economic and health trade-offs from COVID-

19 and containment policies recognizes the direct impact of social distancing on consumer demand

and consumption behavior. We use Facteus, a provider of financial data for business analytics,

to obtain measures of consumer spending activity by zipcode. The Facteus debit card transac-

tion panel contains approximately 10 million debit cards issued by “Challenger Banks,”19 payroll

cards,20 and government cards.21 Therefore, the cardholder panelists tend to come from middle

and lower income brackets, a segment of the population that is likely more affected by COVID-19

financially. The transactions are aggregated each day for each of 321 Merchant Category Codes

(MCCs) and 1,484 brand names. Table 3, panel (d), presents descriptive statistics of the number of

observed transactions, debit cards used, and total expenditure.

5 Empirical Results

We analyze the determinants of SD, social distance compliance, and the role of cable news view-

ership. A concern with OLS estimates of equation (4) is the potential endogeneity bias in βct ,

which arises if cable news viewership behavior, ratingcz, is self-selected on aspects of viewers’

preferences that also influence their SD compliance: E(ξzt · ratingcz|Xz) 6= 0.

To obtain consistent estimates of βct , we instrument for viewership using the channel line-ups

in local cable systems (Martin and Yurukoglu, 2017). Our key identifying moment condition is

E(ξzt ·positioncz|Xz) = 0 ∀c ∈C. (6)

We discuss our instrument and the first stage analysis in the next subsection. We then discuss

19Challenger banks tend to be newer banks that serve underbanked consumers.
20Payroll cards are employer-issued debit cards for direct debit of wages to employees.
21Government cards are primarily issued to alimony recipients to access funds from garnished wages.
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our IV and OLS results for the determinants of SD.

5.1 First Stage: Channel Positions and Viewership

We now discuss our position instruments and the first-stage regression results for our IV estima-

tor. We refer the interested reader to Martin and Yurukoglu (2017) for a thorough discussion of

the validity of the moment condition (6). Our first and second stages control for the total num-

ber of channels available in a cable system since markets with more channels are more likely to

assign cable news channels to higher-numbered positions. As supporting evidence of the valid-

ity of our instrument, Appendix Tables A2 and A3 show that, conditional on number of channels

available, the ordinal positions of Fox News and CNN channels are uncorrelated with (i) the socio-

demographic factors that predict SD, (ii) pre-COVID-10 stay-at-home behavior (January 2020),

and (iii) timing of the first COVID-19 case in the county.

We run the following first-stage regression of ratingscz on the exogenous variables in the model:

ratingcz = γcpositioncz +ρcXz +ηcz ∀c ∈C (7)

where Xz contains market characteristics including the total number of channels in zipcode z and

state fixed effects. Standard errors are clustered at the headend level. In several specifications, we

weight our observations by the number of panelists in the headend to correct for sampling error in

our viewership variable.

Tables 4 and A1 (latter in the Appendix) report the results from our first-stage regressions

(7) for Fox and CNN, respectively. Consistent with prior literature, higher-numbered channel

positions are associated with lower viewership, a finding that is robust across specifications. In the

preferred specification that accounts for state fixed effects and weights observations by the number

of panelists (Column 1), we find that increasing a channel’s position by one position in the lineup

is associated with 0.0089 and 0.005 lower rating for Fox and CNN, respectively. Therefore, a

one standard-deviation improvement in channel position would increase viewership by over 0.158

rating points for Fox and over 0.092 rating points for CNN, all else equal.22

Our instrument seems to work well. The magnitude of Fox’s own-position effect is robust

across specifications and is slightly larger in our preferred specification (column 1) that includes

controls and weights and generates an incremental F-statistic of 14.22. The effect of Fox News

channel position on viewership is robust to including demographic controls (Column 2), with the

magnitude of the effect and precision almost unchanged. We find a similar result for the role of

22The mean and standard deviation of Fox viewership are 1.32% and 2.6 respectively, and 0.51 and 1.5 for CNN.
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own-position on CNN viewership with a robust, statistically significant magnitude across specifi-

cation and an incremental F-statistic that varies from 7.4 to 13.2 across specifications.

We also verify whether 2015 viewership and position data provide a reasonable proxy for 2020.

As we established in section 4.2 above, channel positions change very infrequently over time.

Since we use these stable channel positions as our instrument, then 2015 data will work well as

long as the relationship between viewership and channel position is also stable over time. In a

separate Appendix,23 we use the November 2010 and November 2015 data on viewership to test

for persistence in the first-stage relationship between positions and viewership. We fail to reject the

hypotheses of equal means (i.e., equal expected viewership) and equal slope coefficients for 2010

and 2015. At the 5% significance level, we can rule out that the difference in means is larger in

absolute value than 25% of one standard deviation in the observed 2015 viewership levels. We can

also rule out that the difference in the predicted effect of a 1 standard deviation change in position

on viewership in 2010 differs from that of 2015 by more than 14% of one standard deviation in

the observed 2015 viewership levels. Using the 2020 viewership data for the first stage generates

inconclusive position effects; although we fail to reject that these effects equal those using 2015

data. Finally, as we show below, the IV point estimates of the Fox News effect are qualitatively

similar when we use 2020 and 2015 viewership data, but are too imprecise to be conclusive when

we use 2020. Collectively, these findings confirm that the position-viewership relationship is stable

over time and that 2015 viewership data provide a reasonable proxy for 2020.

[Table 4 about here.]

5.2 Second Stage: The Persuasive Effects of Cable News Viewership on SD

We now report our results for the determinants of SD and the effects of cable news viewership.

Since the exact timing of emergency declarations varies over time and across states and messaging

from the various news channels also varies over time, we let ∆λz(t) from equation (4) include

state-specific time fixed-effects as well as competitor-channel-position time effects. We use the

following empirical specification of our SD model:

SDzt = βctratingcz +δz + ∑
s∈States

φstI{z∈s}+ ∑
c′∈C−c

ζc′tposition′c +ωtNz +ξzt (8)

where the dependent variable SDzt is measured as described in equation (3) above. Nz denotes the

number of channels in the cable system, and C−c denotes the set of other news channels (i.e., CNN

23Available upon request.
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and MSNBC when c = Fox) since we include time-specific effects of competitor news channel

positions to control for substitution between news channels.

We report both OLS and IV estimates of equation (8).24 To facilitate the large number of fixed

effects, we collapse our daily time series into two-day periods so that t indexes the 41 two-day

intervals between February 1, 2020 and April 24, 2020.25 For identification purposes, we restrict

βc,Feb1 = 0 for the first time period in the sample (February 1, 2020). In placebo regressions, using

only the cross-section of markets on a given date in early February, we systematically find null

effects for βct , typically rejecting values larger than 0.01 (i.e., less than 1 percentage point of SD

propensity). Therefore, we interpret non-zero values of βct later in our sample as actual changes in

compliance in social distancing, and not relative to a base period.

[Table 5 about here.]

Table 5 summarizes our analysis of variation in the SD measure, based on the share of home-

bound devices, using the panel regression (8).26 Column (1) shows that market characteristics

including demographics, Xz, explain only 3% of the variation in SD. However, several of these

characteristics turn out to have large effects on SD, in particular population density and median

income. These findings could be due to the fact that the outbreak started earlier in urban areas than

in rural areas (Dingel and Neiman, 2020) thereby lowering the urban cost of SD for a household,

and the fact that income may correlate with professions that are more conducive to working from

home. Column (2) replaces these demographics with the zipcode fixed-effects, which increase the

explained variation to 20%, suggesting substantial additional unexplained persistent heterogeneity

across markets. Column (3) adds time-specific state fixed effects to control for differential tim-

ing and stringency of stay-at-home orders, increasing the share of explained variation in SD to

85%. Columns (4) through (6) report OLS results that include the viewership effects. Column

(4) adds time-varying viewership effects, increasing the explained variation to 88%. Column (5)

also includes time-specific position effects for competitor news channels, CNN and MSNBC, re-

spectively.27 Finally, column (6) controls for zipcode-level differential trends in SD by including

24Our IV estimator includes the interaction effects between our position instruments and two-day time fixed effects.
The first-stage results are the same for each interaction since we use cross-sectional data on Fox News viewership and
channel positions.

25Using a daily frequency would double the number of viewership×time interaction coefficients and time effects
for each channel, in addition to the 27,173 zip code and 2,091 state by time fixed effects already in the model. The IV
regression would require a very high-dimensional set of instruments, substantially increasing computational costs.

26See Appendix A.4 for analogous tables for SD measured using Full-Time and Part-Time Work Travel.
27Although not reported herein, we find similar results if we use own viewership of CNN or MSNBC instead, and

position of competitors.
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time-specific effects of median income and population density, two factors that we find (in col-

umn 1) to be important drivers of SD. For the remainder of this section, unless we state otherwise,

assume results are based on the specification in column (5).

Defining SD as the overall share of homebound devices, Figure 3 displays the time-specific

estimates of the effect of viewership on SD, βct , for Fox News and CNN, respectively. We report

both the IV and the OLS estimates along with their respective 95% confidence intervals. Standard

errors are clustered at the headend level.28 The systematically smaller magnitude of the OLS esti-

mates most likely reflects attenuation bias from measurement error in the use of 2015 viewership

levels as noisy proxies for 2020. In Appendix A.12, we use a simulation exercise to show how

we expect the measurement error in our empirical setting to create a larger attenuation bias than

the endogeneity bias. The OLS estimates should be multiplied by a factor of 1/0.0.753 or more to

correct for this attenuation bias.

Even with this attenuation bias, our OLS estimates indicate a significant pattern of Fox News

viewership effects on SD compliance. The IV and OLS point estimates of βct first become negative

and statistically significant on March 1, 2020, the day after the Governor of the State of Washing-

ton issued the first emergency declaration in the US.29 These Fox News viewership results are

robust to a “saturated” OLS specification that includes time-specific effects for a large number of

demographic variables that predict SD; although the magnitudes fall by about 50% (see Figure A4

in Appendix A.7.).

[Figure 3 about here.]

Before discussing our IV estimates, we first run reduced-form regressions of model (8) using

the channel position instrument in the place of viewership for the specifications corresponding to

column (5) of Table 5. The estimates and confidence intervals for the effect of Fox’s, CNN’s and

MSNBC’s respective positions on share of homebound devices are plotted in Figure A3 in the

Appendix A.6. For Fox News, we find significant position effects that closely track the cross-

time patterns of our IV estimates discussed below. In contrast, our point estimates for CNN and

MSNBC positions, respectively, are not significant. For MSNBC, the magnitudes are also quite

small.

The interpretation of the IV estimates requires some care. The IV estimate of βFOX ,t measures a

local average treatment effect (hereafter “LATE”), which we interpret as the average partial effect

28Figure A5 in Appendix A.8 shows that our main results are robust to clustering the standard errors at the state
level.

29See Proclamation 20-25 (2020).
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(hereafter “APE”) of Fox News viewership by cable subscribers on overall SD for date t across

markets.30 As we discussed above in section 4, we use viewership for the subset of the population

with cable subscriptions since this is the sub-population affected by our position instrument.

Turning to our IV estimates of βFOX ,t , we observe some interesting dynamics in the viewership

APE on SD compliance that seem too systematic to be driven by chance alone. As anticipated, we

find extremely small and statistically insignificant viewership effects throughout February, prior to

the first emergency declaration. Only after March 1st, the day after the first emergency declaration

in the US as explained above, do the IV estimates become systematically negative and statistically

significant. The magnitudes increase between March 1st and March 13th, after which the point

estimates appear to stabilize. As explained earlier, President Trump declared a national emergency

on March 13th. At least two mechanisms might lead to the evolution in βFOX ,t during those two

first two weeks of March. First, the Fox News effect may have become more persuasive over time

early on during the crisis, possibly due to evolving messaging. Alternatively, if the causal effect

of Fox News viewership on SD only activates when local residents perceive a risk, the evolution

in βFOX ,t may reflect geographic differences in the timing of a perceived need for SD and/or of

a statewide emergency declaration. We explore the role of emergency declarations and timing in

more detail in section 5.3 below. For most of the analysis below, we will focus on the post-March

13th period when the Fox News effect appears to have stabilized.

As late as February 28, the day before Washington became the first state to declare an emer-

gency, our point estimate is still very small, −6.54×10−5, and we can conclude that, on average

across markets, a 1 rating point increase in Fox News viewership among cable subscribers would

not decrease SD by more than 0.98 percentage points at the 5% significance level. However, on

March 1, 2020, the average across markets decrease in SD due to a 1 rating point increase in Fox

Viewership among cable subscribers jumps to 2 percentage points, and we cannot rule out a de-

crease as large as −3.5 percentage points at the 5% significance level. By March 15th (includes

first business day after national emergency declaration), when the Fox viewership effects have sta-

bilized, our point estimate implies that a 1 rating point increase in Fox News viewership among

cable subscribers would decreases SD by −10.3 percentage points and we can rule out decreases

smaller than 4.4 percentage points at the 5% significance level.

As a robustness check, Figure A7 in Appendix A.10 compares the panel IV regression (8)

estimates of βFox,t corresponding to columns (5) and (6) of Table 5. The latter specification controls

30If we assume a homogeneous effect of position on viewership in our first stage, then IV is a consistent estimate of
the average partial effect (e.g., Wooldridge (2008)). This assumption rules out, for instance, that markets with a high
taste for Fox News, including non-cable-subscribers such as satellite, do not have a larger incremental viewership due
to position.
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for zipcode-level differential trends through time-specific effects of population density and median

income, in addition to our time-specific state fixed effects. These demographic interactions add

82 more parameters to the regression model. As expected, our viewership effects become more

precise; although the point estimates become smaller in magnitude. Nevertheless, for each date,

we fail to reject the equality of our point estimates with versus without the demographic-time

interactions.

As a final robustness check, Figure A6 in Appendix A.9 plots the time-series of IV point

estimates using our 2020 viewership data, which span a more limited set of zipcodes. As expected,

the point estimates are extremely imprecise. However, they follow the same qualitative pattern as

our results using the 2015 viewership data. Besides demonstrating robustness, the persistence in

the point estimates using 2015 and 2020 data may point towards a longer-term mechanism driving

our Fox News effects. While the extant literature has considered persuasive effects through beliefs

and preferences (e.g., DellaVigna and Gentzkow, 2010), the robustness from using either 2015 or

2020 viewership levels may also indicate a longer-term effect of viewership that is not driven by

specific messaging on a given day. For instance, long-term exposure to Fox News may generate

broad distrust in institutions and a taste for defiance.

In contrast, our results for CNN are mixed at best. Our OLS estimates become positive and

significant shortly after March 1, 2020. These findings could be suggestive of a positive causal

effect of CNN viewership on SD, that reinforces the recommendations of health experts. However,

OLS could be incidentally correlated with SD purely due to self-selected viewership choices. Our

IV estimates are extremely imprecise and inconclusive. While we fail to reject that IV is the same

as OLS, we also fail to reject that IV is zero or even negative.

In Appendix A.5, we report the analogous results for SD measured as share of people working

full time and share of people working part time, in Figures A1 and A2, respectively. Although

more imprecise, our qualitative findings are consistent with the stay-at-home rates above, with

the point estimates stabilizing around March 15. Our OLS estimates are significant and positive:

Fox News viewership decreases compliance by increasing the propensity to go to work relative to

the (unreported) negative estimated time effects. OLS is again much smaller than IV. On March

15, our APE interpretation of our IV estimates imply that a 1 rating point increase in Fox News

viewership among cable subscribers would increase the share of devices leaving home for work

by 2.7 percentage points for full-time work and 2.2 percentage points for part-time work; although

we fail to reject increases as small as 0.7 percentage points and 0.8 percentage points for full- and

part-time work respectively at the 5% significance level. These deviations are smaller in magnitude

than the overall stay-at-home effects above, but nevertheless confirm the negative impact of Fox
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News viewership on compliance with social distancing.

The corresponding results for CNN are once again mixed. While our OLS estimates suggest a

positive effect of CNN on social distancing compliance, we fail to reject that our IV estimates have

a zero or even negative effect due to lack of precision.

Although not reported herein, we also applied the same approach to test for and measure a

Fox News viewership effect on the local number of debit card transactions across 45 categories of

businesses using the Facteus data. Our findings were inconclusive, with statistically insignificant

and very imprecise Fox News viewership effects.31

5.3 Supply vs Demand and the Tming of Response to COVID-19

As explained in section 4.4, we observe an almost simultaneous take-off in cross-market, daily

average SD and supply-side variables (e.g., business closures and worker sign-in rates) on March

13th. This co-movement raises some concerns about the exact interpretation of βFOX ,t and a mis-

attribution of the supply side to the persuasive effect of the news. While we cannot fully disentangle

the supply and demand side drivers of SD compliance, we provide some suggestive evidence below

supporting a direct effect of Fox viewership on SD.

We split the zipcodes into two groups: (1) early-case markets that reported at least one case

according to the Johns Hopkins University Center for Systems Science and Engineering (CSSE)

before March 13, 2020; and (2) late-case markets that had not yet reported at least one case by

March 13, 2020. Using overall share of homebound devices, we then compute the daily differ-

ence in the cross-market national average SD between early-case markets and late-case markets.

Using the Homebase data on number of businesses open, we also compute the daily difference in

the cross-market national average number of businesses open between early-case and later-case

markets. Figure 4 displays the time-series for each of these two differences. The difference in SD

between these markets is flat throughout January and February and close to zero. However, only

after February 29th, the date that Washington became the first state to declare an emergency, do

we observe a deviation in the share of people staying at home between the early-case and late-case

markets. The difference grows steadily until just after March 13th, the date of the declaration of a

national emergency, and then stabilizes. In contrast, the difference in number of businesses open

is flat all the way until March 13, after which we see more business closures in early-case than

late-case markets.

[Figure 4 about here.]

31Results available upon request.
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Figure 4 also plots the time-series in our IV estimates of βFox,t . The daily estimates of the

Fox viewership APE closely track the evolution in the difference in SD between early-case and

late-case markets. We see a similar take-off on February 29th, followed by a steady increase until

March 13th, at which point there is a jump and stabilization shortly thereafter. In sum, βFOX ,t

appears to have stabilized by the time business closures are beginning. Once again, the evidence is

suggestive of a direct effect of Fox News on SD compliance since business closures on the supply

side of the market do not appear to be driving our estimated Fox News viewership APEs during

the early days of the pandemic.

5.4 The Persuasion Rate of Cable News

The findings in the previous section contribute to a growing literature documenting the persuasive

effects of media communications. Following DellaVigna and Gentzkow (2010), we compute the

corresponding persuasion rate for Fox News during the early stages of the COVID-19 outbreak.

To determine the persuasion rate, we use our overall propensity to stay-at-home measures of SD.

Recall that SD is measured relative to the baseline rate of staying at home in January, before the

US outbreak had begun.

For consistency with past research measuring the Fox News persuasion rate, we consider the

binary “treatment” of an additional 30 minutes exposure to Fox News per week (DellaVigna and

Kaplan, 2007).32 Increasing the average household’s viewership by thirty minutes per week (0.298

rating points) corresponds to the change in viewership induced by a two-standard-deviation change

in Fox News’ channel position, or a shift from the 10th to 90th percentile position.33

Following DellaVigna and Gentzkow (2010), we measure the persuasion rate of Fox News on

non-compliance with SD as follows:

PFOX ,t = 100× 1
SFox

EFox

SFox
P

(9)

where EFox measures the effect of 30 minutes of Fox News viewership on SD, SFox measures

the share of the population that watches Fox News, and SFox
P measures the expected share of the

population potentially persuadable to cease SD (i.e., SD compliers and would-be SD compliers but

for the treatment of 30 minutes of Fow News viewership).

32Martin and Yurukoglu (2017) report using a “continuous version” of this treatment.
33To convert rating points to minutes watched per week, we follow Martin and Yurukoglu (2017) and let 1 rating

point correspond to 1.68 hours per week of Fox News viewership for the average household. A two-standard-deviation
change in Fox News’ channel position, 17.77∗2= 35.54, induces a viewership change of 0.0089∗35.54= 0.316 rating
points, or 0.316∗100.80 = 31.9 minutes per week.
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Our estimated APE for Fox News corresponds to the sub-population of Fox News viewers

with cable subscriptions, approximately 60% of total television viewership according to the 2020

NLTV data. Therefore, the Fox News viewership effect on SD for cable viewers is βFox,t
0.6 . If

we also assume that all viewers of Fox News, regardless of the source of their service, have the

same average viewership effect, and consider our treatment of additional 0.298 rating points, then

EFox
t =−0.298

0.6 βFox,t .

We do not observe the share of the population exposed to Fox News.34 Therefore, we start

with the assumption that everyone in the US is exposed to Fox News in some way through such

sources as paid television, the internet, or other news sources: SFox = 100%. This assumption is

plausible for at least two reasons. First, Fox News is the most highly-watched news channel in the

US and 49% of US households cite cable news channels as their primary news source (Shearer,

2018). Given that the average Fox News viewership rating is around 1.32% and following Martin

and Yurukoglu (2017)’s conversion rate of viewership points to hours of television, the average

household sees 2.22 hours of Fox News per week. Second, this assumption is conservative in

the sense that the persuasion rate mechanically increases in magnitude if we define the exposed

population more narrowly. For instance, we could use the alternative, narrower definition based on

the 71% of US households that subscribe to a television service in 2019 and, therefore, had access

to Fox News since it is available in 99% of headends: SFox = 71%.35

Finally, we need to determine the share of persuadable viewers who would comply with social-

distancing but-for the Fox News effect. We assume the random utility from staying at home, εh
t

in equation (2), is independent of television viewing behavior so that Fox viewers have the same

expected probability of staying home as the rest of the market. We can measure the expected

persuadable share of the population on date t as follows: SFox
P = ¯SDt − 0.298

0.6 βFOX ,t where ¯SDt is

the cross-market average SD in period t.

The resulting persuasion rate is:

PFOX ,t = 100×
−0.298

0.6 βFox,t

¯SDt− 0.298
0.6 βFox,t

. (10)

We report the time-series of the persuasion rates (10) from March 13, 2020 onwards in Figure

5(a). On March 13, the day President Trump declared a national emergency, our point estimate of

the persuasion rate is 30.9%; although we cannot rule a rate as high as 43.8% and as low as 18.1%

at the 5% significance level. The persuasion rates fall slightly between mid March and early April,

34Based on a 2017 survey, Kennedy and Prat (2017) report that 33% of people report getting news from Fox News
Channel in the last 7 days, providing a lower bound on the number of people exposed to Fox news.

35https://nscreenmedia.com/us-pay-tv/
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although most of these differences are statistically insignificant. For instance, our lowest point

estimate is 16.9% on April 10; although we cannot rule out rates between 8.1% and 25.8% at the

5% significance level. The decline reflects the increase in ¯SDt between mid March and early April

(Figure 2) along with the relative stability of βFOX ,t (Figure 3).

Our average persuasion rate is 25.7% when we use share of homebound devices to measure SD.

If we narrow the viewership population to the 71% of television service subscribers, the average

persuasion rate increases to 36.2%. Defining SD with homebound devices is quite stringent given

that most social distancing policies allow essential trips, such as grocery shopping. In Figure 5(b),

we also report the persuasion rates using full-time and part-time work travel. As expected, the

average persuasion rate is much lower at 15.4% and 18.1% for part-time and full-time, respectively.

As a robustness check, we also compute the average persuasion rate using our Fox viewership

effects that control for zipcode level trends, as in column (6) of Table 5 and Figure A7. The cor-

responding average persuasion rate is 11.9%, ranging from 7.9% to 24.6% throughout the second

part of March and the month of April.

These persuasion rates are larger than the average rate of 9.5% for other communication media

reported in DellaVigna and Gentzkow (2010). Recall that our APE does not account for the poten-

tial heterogeneity in Fox viewership effects across markets. Nevertheless, our persuasion rate for

Fox News on social distancing compliance is comparable to the 58%, 27% and 28% persuasion

rates reported in Martin and Yurukoglu (2017)’s analysis of the ability of Fox News viewership

to convert voters from one party to another in the 2000, 2004 and 2008 federal elections. Some

of this work has measured larger persuasion rates, particularly for negative messages: Enikolopov

et al. (2011) find a voter persuasion rate of 66% from an independent television channel broad-

casting against voting for United Russia in the 1999 Russian parliamentary elections; and Adena

et al. (2015) measure a voter persuasion rate of 36.8% from the radio message “do not vote for the

extremist parties” during Germany’s 1930 elections.36

An important and novel distinction herein is that our persuasion rate arises in spite of the highly-

publicized social-distancing recommendations by leading health experts in the US and globally.

Therefore our findings also contribute to the advice-taking literature which has mostly documented

the “advice discounting” phenomenon in laboratory studies (Bonaccio and Dalal, 2006). Our field

evidence demonstrates how the media can contribute to such advice discounting in a real-world

setting. Our findings also contribute to the growing literature documenting a growing distrust

in scientific experts, especially among conservatives (Gauchat, 2012), and the mediating role of

36Our findings also align with a literature on negative political advertising (Ansolabehere et al., 1999; Wattenberg
and Brians, 1999).
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media in creating this distrust (Hmielowski et al., 2014; Dunlap and McCright, 2010). We cannot

rule out that our Fox News viewership effects reflect political polarization around SD compliance

(Allcott et al., 2020), with long-term viewership primarily polarizing viewers towards Republican

sentiment. That said, the extant literature has found that trust in scientific experts is moderated

more by an individual’s cultural worldviews than by her political orientation (Weaver et al., 2017;

Leiserowitz et al., 2013).

[Figure 5 about here.]

6 Conclusions

We find strong evidence of a Fox New viewership effect on several measures of the incremental

propensity to stay at home during the early stages of the COVID-19 crisis in the US, relative to Jan-

uary 2020 immediately before the outbreak. While comparable in magnitude to the voting context,

the persuasive effect of Fox Viewership on social distancing compliance is quite large, especially

given that it defies the expert recommendations from leaders of the US and global health com-

munities. Interestingly, we fail to find conclusive effects of CNN viewership on social distancing

compliance.

We do not analyze the implications for the spread of COVID-19 cases or deaths. However,

we believe our findings would be relevant to policies to flatten-the-curve. In particular, news

media appears to be sufficiently persuasive to dissuade many individuals from complying with

containment policies. However, we leave it to health experts to determine whether the magnitude

of these changes in compliance are sufficient to affect health outcomes in a material way.

We also believe our findings are relevant to the on-going macroeconomic research to study

the economic trade-offs associated with social distancing. However, our exploratory analysis of

consumer transactions data were inconclusive. We believe an important direction for future re-

search would use more detailed expenditure data to determine whether and how social distancing

compliance affects demand and consumption behavior.

Our data do not permit us to test the exact mechanism through which Fox News viewership

persuades individuals against complying with social distancing. It is likely the effect stems from

the contrarian and allegedly misleading broadcasts in early March regarding the risks of COVID-

19 and the effectiveness of distancing. However, we cannot rule out that persistent, long-term

differences in exposure to Fox News across region have generated long-term differences in trust in

governments and institutions. Similarly, we cannot rule out that exposure to Fox News is changing
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tastes for defiance of institutions. The qualitative similarities between our point estimates using

2015 viewership data and 2020 viewership data may be suggestive of such a long-term effect. Test-

ing between these mechanisms would represent an interesting and important direction for future

research.

Similarly, we cannot rule out that Fox News viewership effects during the COVID-19 outbreak

reflect public statements by the Republican administration, as opposed to statements by Fox News

anchors. During the 2014 US midterm elections, Campante et al. (2020) show that Republican

candidates’ associations between Ebola virus risks and immigration shifted voter attitudes against

immigration, in spite of the fact that health experts described Ebola risks in the US as very low. In

future research, it could be interesting to study whether news media broadcasts directly influence

viewer beliefs or merely serve as a platform to promote the beliefs of political candidates.
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Figure 1: Distribution of channel positions across headends for each of the three news channels
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Figure 2: Stay-at-home propensity over time
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(b) Homebase Data

The solid lines and the shared regions correspond to the predicted values and confidence regions of the local
polynomial regression, estimated with LOESS method.
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Figure 3: Effect of channel viewership on share of people at home
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We allow for flexible state-level trends by including a state by time fixed effects interactions, as well as for
flexible effects of other news channels’ viewership by including an interaction of time fixed effects with
number of channels in cable system and other news channels’ positions.
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Figure 4: Fox News viewership effects, social distancing compliance and business closures

State of Emergency 
 National 

 (March 13th)

State of Emergency 
 Washington 
 (Feb 29th)

0

2

4

6

8

−0.10

−0.05

0.00

−0.02

0.00

0.02

0.04

0.06

0.08

Jan Feb Mar Apr

D
iff

er
en

ce
 in

 N
um

be
r 

of
 F

ir
m

s 
O

pe
n

β t
,F

ox
D

ifference in S
hare of D

evices H
om

ebound

Number of Firms Open

Share of Devices Homebound

40



Figure 5: Persuasion rates, PFOX ,t
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Table 1: Summary statistics for NLTV data

Mean Median SD Min Max Num Headends

Ratings

CNN 0.51 0.17 1.5 0 40.03 2502
Fox News 1.32 0.49 2.6 0 32.59 2499
MSNBC 0.34 0.03 1.11 0 17.16 2335
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Table 2: Summary statistics for FOCUS data

Mean Median SD Min Max Num Headends

Positions

CNN 34.85 32 18.31 1 163 2502
Fox News 43.2 41 17.77 1 177 2499
MSNBC 49.64 46 23.43 3 182 2335
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Table 3: Summary statistics of the stay-at-home propensity variables

Measure Mean Median SD Min Max # Zips # Days

(a) Baseline (January Average) Stay-at-Home Propensity in Safegraph Data

Share Homebound Devices 0.23 0.23 0.04 0.05 0.49 27,173
Share Devices at Work Full Time 0.19 0.18 0.03 0.08 0.51 27,173
Share Devices at Work Part Time 0.11 0.11 0.02 0.03 0.2 27,173

(b) Social Distancing Compliance based on Safegraph Data (Feb 1st - April 24th)

SD (Share Homebound Devices) 0.06 0.04 0.11 -0.43 0.64 2,282,440 27,173 84
SD (Share Devices at Work Full Time) -0.03 -0.03 0.05 -0.41 0.69 2,282,440 27,173 84
SD (Share Devices at Work Part Time) -0.02 -0.03 0.04 -0.19 0.37 2,282,440 27,173 84

(c) Homebase Data

Number of Workers 11.53 4 20.26 0 523 1,258,404 14,981 84
Number of Firms 2.6 1 3.8 0 61 1,258,404 14,981 84

(d) Facteus Data

Number of Cards 118.27 38 238.65 1 43934 1,439,343 21,947 67
Number of Transactions 145.06 47 293.88 1 48434 1,439,343 21,947 67
Total Spent ($1000) 4.37 1.36 10.01 0 2522.47 1,439,343 21,947 67

Homebound devices are defined as devices that did not leave Geohash-7 of their home. Devices displaying
full-time (respectively, part-time) work behavior are those that spent more than 6 (respectively, 3-6) hours at
Geohash-7 location other than their home. The unit of analysis is zipcode-day.
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Table 4: The effect of channel position on ratings - FOX

Effect of channel position’s on ratings of Fox News

(1) (2) (3) (4)

Ordinal Position of Fox News −0.0089∗∗∗ −0.0083∗∗∗ −0.0067∗∗∗ −0.0057∗∗

(0.0024) (0.0023) (0.0026) (0.0025)

Demographic Controls x x
Intab weights x x
Cable System Controls x x x x
State FEs x x x x
F (pos variables) 14.22 13.34 6.86 5.28
Observations 26,411 22,854 21,234 18,155
Adjusted R2 0.3040 0.3256 0.2016 0.2172

a Stars: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors clustered on cable system level.
Demographic controls include: median zipcode income, share of population with bach-
elor degree, labor force participation, share of population that is white, share of popula-
tion below poverty line, median age, log population density and county-level republican
vote share in 1996 elections. Cable system controls include number of channels in cable
system and positions of competing news channels.
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Table 5: Summary statistics for panel regressions - FOX

(1) (2) (3) (4) (5) (6)

R2 0.03 0.2 0.85 0.88 0.88 0.92
N 330889 330889 330889 330889 330889 330889
# Clusters 2253 2253 2253 2253 2253 2253

Demographic controls x
Zip FE x x x x x
State X Time x x x x
FXNC Viewership X Time x x x
Cable System Controls X Time x x
Basic Demographics X Time x

Standard errors are clustered on cable system level. Observations are weighted by the
number of panelists in the NLTV data. Demographic controls include: median income,
share of population with bachelor degree, labor force participation, share of population
that is white, share of population below poverty line, median age, log population density
and county-level republican vote share in 1996 elections. Cable System Controls include
the positions of competing news channels and number of channels in a system. Basic
Demographics include median income and log population density.
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A Appendix

A.1 First Stage Regressions for CNN

[Table A1 about here.]

A.2 Instrumental Validity

[Table A2 about here.]

[Table A3 about here.]

A.3 Cleaning and Merging NLTV and FOCUS Data

The data were pre-processed for a universe of channels that are available on local cable systems

in the US and recorded in the NLTV and FOCUS datasets. We merge the November 2015 NLTV

viewership data with the annual 2015 FOCUS data on channel positions by headend number and

station name. Following Martin and Yurukoglu (2017), we convert the numeric positions of chan-

nels to their ordinal positions based on the sequential order of each channel in the lineup. Similar

data are available for each February and November between 2006 and 2015.

We follow the procedure outlined by Martin and Yurukoglu (2017) to map headends to zip

codes. 52.7% of the zip codes have a single headend in the NLTV/FOCUS data. For zip codes

with 2 or more headends, we use the headend with the largest number of cable subscribers. This as-

signment rule is unlikely to influence our results since the largest headend accounts for at least half

of total subscribers in 97.2% of the zip codes (subscribers are counted as subscribers of headends

present in each zip code).

For our analysis, we retain the viewership and position information for the three largest ca-

ble news channels: Fox News, CNN, and MSNBC. The data from November 2015 span 2,536

headends, representing 30,517 zip codes from 210 DMAs.

A.4 Additional Tables

[Table A4 about here.]

[Table A5 about here.]
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A.5 Other SD Outcomes

[Figure A1 about here.]

[Figure A2 about here.]

A.6 Reduced Form Estimates

[Figure A3 about here.]

A.7 “Saturated” OLS Estimates Controlling for Demographics

[Figure A4 about here.]

A.8 OLS and IV Estimates with State-Level Clustering

[Figure A5 about here.]

A.9 IV Estimates with 2020 Viewership

[Figure A6 about here.]

A.10 IV Estimates with Flexible Demographic Controls

[Figure A7 about here.]

A.11 Channel Position Changes

Using the historical FOCUS data going back to 2006, we count, for each of the three news channels,

the number of headends where (numeric) channel position stays exactly the same from one year to

the next (for those headends which are present in both years). Table A6 reports these results. We

see that for the large majority for headends, (numeric) positions of the three news channels remain

constant.

[Table A6 about here.]
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A.12 Simulation of the Attenuation Bias

We present a simulation exercise to demonstrate how attenuation bias in the OLS estimates due to

measurement error in Fox New viewership can overwhelm the endogeneity bias, as in Figure 3. To

mimic our setting where we use the 2015 data to proxy for 2020 viewership, we use the empirically

observed correlation in 2010 and 2015 Fox News viewership from the NLTV data. We assume the

2010 and 2015 viewership are drawn from the same data-generating process.

Let rt
FOX ,z denote the true Fox News viewership in market z in year t. We assume that social

distancing compliance, SDz, is determined by viewership:

SDz = β r2015
FOX ,z + εz +µz

where εz and µz are random disturbances, such that E(r2015
FOX ,zµz) = 0; but E(r2015

FOX ,zεz) 6= 0 as view-

ership is endogenous.

In the data, we observe a noisy measure of viewership, r̃t
FOX ,z = rt

FOX ,z + ξz, where ξz is the

sampling error from the NLTV household sample. Using r̃t
FOX ,z as a proxy for viewership in-

troduces classical measurement error, an additional form of endogeneity bias, into our key SDz

regression:

SDz = β r̃2015
FOX ,z + εz +µz−βξz.

Of interest is whether we expect that the magnitude of endogeneity bias from measurement error in

our setting, βξz, will attenuate the OLS coefficients to an extent that it will offset the endogeneity

bias from εz, leading to OLS estimates that are smaller in magnitude than the IV estimates.

We run the simulation in five steps:

1. Compute the correlation between the observed Fox News viewership in 2010 and 2015:

corr(rating2010
FOX ,z, rating2015

FOX ,z) = 0.07535;

2. Regress the observed 2015 Fox New viewership on channel positions to determine the data-

generating process:

rating2015
FOX ,z = 1.3322−0.0056∗position2015

FOX ,z.

3. Use the data-generating process from (2) to simulate two sets of Fox News viewership ratings

for 2010 and 2015, respectively:

r2010
FOX ,z = 1.33222−0.0056∗position2015

FOX ,z + εz1,
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r2015
FOX ,z = 1.33222−0.0056∗position2015

FOX ,z + εz2,

where εzi∼ i.i.d.N(0, σ̂2), i∈ {1,2}, and σ̂2 = S
S−corr with S = var(−0.0056∗position2015

FOX ,z)

to maintain the empirical correlation of corr(rating2010
FOX ,z, rating2015

FOX ,z) = 0.07535.

Similar to our empirical application, we treat r̃2015
FOX ,z ≡ r2010

FOX ,z = r2015
FOX ,z +ξz, where ξz is the

measurement error, ξz = εz1− εz2.

4. Use r2015
FOX ,z and the IV estimate of βFOX ,t from column (5) of Table 5 for t = March 16

(β =−0.089) to simulate 2015 social distancing data:

SDz =−0.089∗ r2015
FOX ,z +αεz2 +µz

where

• αεz2 is the endogenous component with α moderating the degree of enodgeneity in

Fox News viewership. We run the simulation separately with α = 0 (no endogeneity)

and α =
β sd(r2015

FOX ,z)

sd(εz2)
(variance in SD arising due to the exposure to Fox News is the same

as the variance arising due to the endogenous component); and

• µ ∼ N(0,Σ), where Σ = 0.00405 is the empirical variance of SD on March 16.

5. Run two different OLS regressions of simulated SD on r2015
FOX ,z and r2010

FOX ,z. The OLS estimates

using the “true” r2015
FOX ,z viewership should exhibit an upward bias due to the endogeneity of

viewership, αε2z, in the absence of measurement error. In contrast, the OLS estimates using

the “observed” r2010
FOX ,z viewership could exhibit either an upward or downward bias due to

the combination of the endogeneity of viewership, αε2z, and the measurement error, ξz.

6. Run two different IV regressions of simulated SD on r2015
FOX ,z and r2010

FOX ,z, both using 2015

channel positions as an IV. We expect both IV estimators to produce consistent estimates of

β .

We run 1,000 independent replications, computing the OLS and IV estimates based on the

“2015” (correct) and “2010” (with the measurement error) data. Figures A8 and A9 present his-

tograms of the resulting OLS estimates. The attenuation bias is characterized by the difference

between the two distributions. Subfigure (a) compares the OLS estimates when there is no endo-

geneity, α = 0. As expected, the average scale of the attenuation bias across simulations is 0.0753

(biased OLS / true OLS estimates), which matches corr(rating2010
FOX ,z, rating2015

FOX ,z). Subfigure (b)
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presents results with endogeneity, α =
β sd(r2015

FOX ,z)

sd(εz2)
. The average scale of the attenuation bias across

simulations is larger, making the ratio of biased and true OLS estimates even smaller, 0.0386.

Figure A10 plots the estimates of β from the IV regressions. As expected, the regressions based

on the “2010” and “2015” data both generate consistent estimates of β . Now, the measurement

error in the viewership data only affects the variance, as can be seen by the higher variance in the

“2010”results.

[Figure A8 about here.]

[Figure A9 about here.]

[Figure A10 about here.]
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Figure A1: Effect of channel viewership on share of people working full time
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Figure A2: Effect of channel viewership on share of people working part time
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Figure A3: The effect of channel positions of share of homebound devices
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Figure A4: OLS estimates controlling for extended demographics
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Figure A5: OLS and IV estimates with state-level clustering
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Figure A6: IV estimates using 2015 and 2020 viewership data
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Figure A7: IV with time-varying demographic controls
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Blue points (Main Model) correspond to the results from Figure 3. Green points correspond to the analogous model
with additional controls for time-specific demographic effects from log population density and median income.
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Figure A8: The distribution of the OLS estimates of β using “2010” and “2015” simulated data
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Figure A9: The distribution of the scale of the attenuation bias based on “2010” simulated data
(OLS estimates with 2010 data / OLS estimates with 2015 data)
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Figure A10: The distribution of the IV estimates of β using “2010” and “2015” simulated data
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Table A1: The effect of channel position on ratings - CNN

Effect of channel position’s on ratings of CNN

(1) (2) (3) (4)

Ordinal Position of CNN −0.0050∗∗∗ −0.0047∗∗∗ −0.0053∗∗∗ −0.0052∗∗∗

(0.0018) (0.0016) (0.0015) (0.0014)

Demographic Controls x x
Intab weights x x
Cable System Controls x x x x
State FEs x x x x
F (pos variables) 7.38 8.89 12.73 13.2
Observations 26,411 22,854 21,234 18,155
Adjusted R2 0.2137 0.2292 0.1712 0.1851

a Stars: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors clustered on cable system
level. Demographic controls include: median zipcode income, share of population
with bachelor degree, labor force participation, share of population that is white,
share of population below poverty line, median age, log population density and
county-level republican vote share in 1996 elections. Cable system controls include
number of channels in cable system, and positions of competing news channels.
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Table A4: Summary statistics for panel regressions - SD based on share of full time work
devices

(1) (2) (3) (4) (5) (6)

R2 0 0.27 0.78 0.78 0.78 0.8
N 330889 330889 330889 330889 330889 330889
# Clusters 2253 2253 2253 2253 2253 2253

Demographic controls x
Zip FE x x x x x
State X Time x x x x
FXNC Viewership X Time x x x
Cable System Controls X Time x x
Basic Demographics X Time x

Standard errors are clustered on cable system level. Observations are weighted by the
number of panelists in the NLTV data. Demographic controls include: median income,
share of population with bachelor degree, labor force participation, share of population
that is white, share of population below poverty line, median age, log population density
and county-level republican vote share in 1996 elections. Cable System Controls include
the positions of competing news channels and number of channels in a system. Basic
Demographics include median income and log population density.
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Table A5: Summary statistics for panel regressions - SD based on share of part time work
devices

(1) (2) (3) (4) (5) (6)

R2 0.01 0.17 0.83 0.86 0.86 0.89
N 330889 330889 330889 330889 330889 330889
# Clusters 2253 2253 2253 2253 2253 2253

Demographic controls x
Zip FE x x x x x
State X Time x x x x
FXNC Viewership X Time x x x
Cable System Controls X Time x x
Basic Demographics X Time x

Standard errors are clustered on cable system level. Observations are weighted by the
number of panelists in the NLTV data. Demographic controls include: median income,
share of population with bachelor degree, labor force participation, share of population
that is white, share of population below poverty line, median age, log population density
and county-level republican vote share in 2016 elections. Cable System Controls include
the positions of competing news channels and number of channels in a system. Basic
Demographics include median income and log population density.
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Table A6: Persistence of channel positions

Years
% of headends where

(numeric) position is retained

CNN Fox News MSNBC

2006-2007 95.3 94.8 94.1
2007-2008 96.0 95.5 93.4
2008-2009 95.0 95.9 94.8
2009-2010 95.1 93.2 93.4
2010-2011 98.0 97.0 96.1
2011-2012 96.6 96.5 96.6
2012-2013 98.0 97.7 97.4
2013-2014 97.1 97.0 96.6
2014-2015 96.9 96.9 95.9
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