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1 Introduction

In the current battle against COVID-19, South Korea stands out. The number of COVID-19

cases and deaths in South Korea is among the lowest in the world. South Korea also never

implemented the strict social isolation policies followed by China, Europe, and many US

states. Instead of locking down its population, South Korea chose to combat the pandemic

by testing, tracing the contacts of infected individuals, and quarantining. The limitation of

this approach is that, even when done on a massive scale as Korea did, it is likely that many

infected individuals, particularly those that are asymptomatic, are missed and can continue

to spread the disease.

However, a key innovation in South Korea is that in addition to the yeoman’s work of

testing and contact tracing, it also publicly disclosed detailed information on the individuals

that had tested positive for COVID-19. South Koreans received text messages whenever new

cases were discovered in their neighborhood, as well as information and timelines of infected

people’s travel. If the location of infected individuals that have not yet been detected is

correlated with the location of people who tested positive, then disclosure can help people

“target” their social distancing. Instead of reducing social activity across the board, indi-

viduals can avoid neighborhoods where the probability of becoming infected is high. The

endogenous reduction in social interaction in high risk neighborhoods can help reduce the

transmission rate. At the same time, individuals can continue to travel to places where the

transmission risk is low, so social interactions in low risk neighborhoods do not have to be

affected.

Second, compared to a lock-down strategy, South Korea’s strategy allows individuals to

self select into social distancing. The selection can be based on a person’s health risk from

exposure or from their economic losses from social isolation. Individuals with a high health

risk from commuting to a neighborhood with many detected cases can change their commut-

ing pattern, while individuals with low health risk can make a different choice. Individuals

that can easily substitute between working in the office and working at home can do that,

while others where the substitution is costly can continue to commute to work. In contrast,

a lockdown applies to all individuals and does not discriminate between individuals with

different cost/benefit ratios for social isolation.

In this paper, we measure the welfare effect of the disclosure of public information of

COVID-19 cases in Seoul, where one fifth of South Korea’s population lives. We combine

detailed foot-traffic data in Seoul from South Korea’s largest mobile phone company with

publicly disclosed information on the location of individuals who had tested positive. The

data indicates that density of foot-traffic data declines in neighborhoods with a larger number

1



of infected patients. This pattern is particularly pronounced during the weekends and among

those over the age of 60.

We then filter this data through the lenses of SIR model augmented in two ways. First,

we include several sub-populations (neighborhoods) where the epidemic transmits across

neighborhoods due to the flow of people across these neighborhoods. Second, we assume that

the flow of people across neighborhoods is the outcome of individuals maximizing their utility

by choosing a neighborhood to work and to enjoy their leisure time. The flow of people across

neighborhoods generates economic gains from the optimal match of people with the place of

work and leisure, but it is precisely this flow that transmit the virus across neighborhoods.

We use the model to simulate the effect of the change in commuting patterns in response to

the disclosure of public information on two key outcomes. First, we simulate how the change

in commuting patterns lowers the transmission of the virus across neighborhoods. Second, we

measure the economic losses from the fact that some individuals have changed their place of

work or leisure. Our estimate is that over the next two years, South Korea’s current strategy

will lead to a cumulative 925 thousand cases in Seoul, 17 thousand deaths, and economic

losses that average 1.2% of GDP.

We then consider three alternative scenarios. The first scenario is no disclosure of infor-

mation, which we model as a scenario in which there is no change in commuting patterns.

We estimate that, compared to the case of complete disclosure, non-disclosure results in 400

thousand more infected people and 13 thousand additional deaths in Seoul (over the next

two years). The economic losses (not including the value of lost lives), on the other hand, are

lower compared to full disclosure. Over the next two years, the loss in economic welfare are

0.33 percentage points lower for those under 60 and 0.22 percentage points lower for those

older than 60.

A second scenario is a lockdown, which we model as a uniform reduction in the movement

of the population across districts in Seoul and in which a certain fraction of the population

is forced to stay at home. To ease the comparison, we calibrate the length and intensity of

the lockdown in Seoul so that it results in the total number of cases under the full disclosure

of information case. The lockdown would have to last for approximately 100 days and at

least 40% of the population would have to stay at home in order to have the same number of

confirmed cases as in the full disclosure case. The welfare losses for those under 60 years of

age, on the other hand, are almost twice as large as the full disclosure case. This is because

the “optimal” commuting patterns are severely disrupted for a large number of people in the

lockdown.

The last scenario is a partial shutdown. We simulate a partial shutdown as a policy

that stops people from commuting to the first four districts that had a confirmed case in
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Seoul and that prohibits the residents of those districts to commute outside them. We show

that shutdowns are very costly policies in terms of welfare and not very effective at delaying

the spread of the disease. Seoul is a city that is very inter-connected with vast amount of

commuting across districts. Even if the shutdown is implemented very rapidly after the first

few cases are detected, undetected cases commute across districts; this interaction, albeit

short-lasting, is enough to spread the disease in the entire city over time.

We use a standard SIR epidemiology model where movements of the population transmit

the virus across space. Such models have been used in epidemiology to analyze disease

outbreaks and to forecast the geographical spread of epidemics.1 We extend the epidemic

meta-population models in two ways. First, in addition to residential districts, we allow for

an additional partition and model the SIR dynamics for individuals of different ages as in

Acemoglu et al. (2020). This allows us to consider not only different SIR parameters and

contact rates across groups but also to study their differential response to policies, even those

not specifically targeted towards particular groups. Second, we allow the contact rates across

groups to be endogenous outcomes of a commuting choice model. The quantitative model

of internal city structure draws heavily from Ahlfeldt et al. (2015), Monte et al. (2018), and

Tsivanidis (2019). The model includes stochastic shocks to commuting decisions, which yield

a gravity equation for commuting flows, which in addition to distance includes the disclosed

information of the recent confirmed cases of the disease as well as the visits of infected people

to different districts.

The rest of the paper is organized as follows. We first describe the background of the

pandemic in South Korea, particularly in Seoul. The next section describes the foot traffic

data we use to estimate the model. We then describe the commuting patterns of Seoul

during the pandemic and in response to the disclosed cases. Section 5 presents the spatial

SIR model that allows us to consider the geographic spread of the disease. Section 6 presents

the spatial model with commuting choices and Section 7 its calibration. In Section 8 we

perform several counter-factual exercises such as comparing our benchmark economy with

one with no disclosure and one with a lockdown.

2 Background

South Korea was once considered one of the epicenters of the COVID-19 outbreak. However,

the country has been remarkably successful in containing the pandemic. As of May 13 of

2020, South Korea had 10,962 confirmed cases of COVID-19 and 259 deaths. The city of

1See, for example, Danon et al. (2009), Keeling et al. (2010), Brockmann and Helbing (2013), Hufnagel
et al. (2004) and Wesolowski et al. (2012).
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Seoul, a city of almost 10 million inhabitants, had only 707 confirmed cases and 3 deaths.

These numbers are remarkably low in comparison to cities of similar size. What’s more, Seoul

is one of the most densely populated cities in the world. The strategy of the country has

been based on massive testing and extensive contact tracing. In addition, local governments

discloses in real time via text messages information on individuals that had tested positive

for COVID-19. The Seoul Metropolitan Government also developed a dedicated website and

a mobile app to enable residents to access real-time information. The mobile app also allowed

individuals to report on their symptoms.

When a person tests positive, their district sends out an alert to people living nearby

about the movements of the infected individual before being diagnosed. A typical alert can

contain the infected person’s age and gender, and a detailed log of their movements based on

contact tracing combined with data from cell phone and credit card records. The alerts also

included detailed statistics on the status of COVID-19 cases (e.g. confirmed, suspected, being

tested, self-quarantined, under surveillance). In some districts, public information includes

which rooms of a building the person was in and whether or not they wore a mask. The

publicly available database also provides information on “clean zones” - places that have

been disinfected following visits by confirmed patients. Table 1 shows an example of public

disclosure. This is the second case in Seoul confirmed on January 30. This information has

been available on official website and has been circulated by text alerts for people living in

certain districts.

4



Table 1: Example of Public Disclosure

Korean, male, born in 1987, living in Jungnang district.
Confirmed on January 30. Hospitalized in Seoul Medical Center.

January 24 Return trip from Wuhan without symptoms.
January 26 Merchandise store* at Seongbuk district at 11 am,

fortune teller* at Seongdong district by subway at 12 pm,
massage spa* by subway in the afternoon,
two convenience stores* and two supermarkets*.

January 27 Restaurant* and two supermarkets* in the afternoon.
January 28 Hair salon* in Seongbuk district,

supermarket* and restaurant* in Jungnang district by bus,
wedding shop* in Gangnam district by subway,
home by subway.

January 29 Tested at a hospital in Jungnang district.
January 30 Confirmed and hospitalized.

Notes: The table shows example of public disclosure for the second case in Seoul confirmed on January 30.
The * denotes establishments whose exact names have been disclosed.

3 Data

3.1 Foot Traffic Data

We use the foot traffic data in Seoul, provided by Korean telecommunication company SK

Telecom, which has the largest market share in Korean mobile phone market.2 The data

reports the total number of subscribers present in Seoul’s 25 districts each hour. The presence

of subscribers in a given districts is based on any of their cellular phone activity including

calls, texts, and the internet connection. The location of a user is inferred by cellular tower

triangulation. The data splits users by the gender and by age group. We use the data from

January 1st to February 29th. Table 2 shows the structure of the data. The table shows

that on Sunday January 5, 2020, there were 42,570 females between 20 and 29 years of age in

Gangnam district at 3 am. The number increased to 63,330 at 3 pm, due to people visiting

Gangnam district during the day.

2In January 2020, its market share is 41.9%, followed by KT with 26.4% and LG U+ with 20.6% (source:
Korea Communications Commission).
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Table 2: Sample Observations - Foot Traffic Data (Seoul)

Date Time Age group Gender City District Number of people

January 5 3 am 20-30 Female Seoul Gangnam-gu 42,570
January 5 3 am 20-30 Male Seoul Gangnam-gu 41,590

...
January 5 3 pm 20-30 Female Seoul Gangnam-gu 63,330
January 5 3 pm 20-30 Male Seoul Gangnam-gu 54,520

Notes: The table shows sample observations in the foot traffic data. The data reports the number of people
in each district every hour for six age groups (20, 30, 40, 50, 60, 70) and for each gender.

3.2 Seoul Survey

We use the micro-data of the 2018 Seoul Survey. The survey is conducted on a yearly basis

and contains commuting patterns as well as labor information of Seoul’s residents. The

survey targets 20,000 households within the city of Seoul, all household members 15 years

or older participate. The total number of survey participants every year is approximately

around 40,000 and 50,000. In order for the sample to be representative, the survey follows a

spatially stratified sampling strategy considering the household size distribution.

From the survey we obtain, for each of the 25 districts in Seoul, bilateral commuting

patterns. A unique feature of the survey is that it asks the working location of each respon-

dent. Based on that information, we can restore representative origin-destination commuting

patterns at the district level. We also obtain the wage distribution for different demographic

groups across districts as well as estimates of the size of the home sector before the outbreak

of the virus. Importantly, the survey contains information on the fraction of people that do

not commute during weekdays and also the wages that they receive, two important inputs

to the model develop in the next sections.

4 Empirical Patterns

Figure 1 shows the percent change in the average number of people in downtown (at 3pm)

between the months of January and February.3 Recall that the first case in Korea was iden-

3Downtown Seoul includes the following districts: Jung-gu, Jongno-gu, Gangnam-gu, Seocho-gu, and
Yeongdeungpo-gu.
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tified on January 20th and that there were only seven confirmed cases by the end of the same

month. The figure shows that there were significant changes in the commuting patterns of

people before and after the virus outbreak. Not surprisingly, the population that is less than

20 years old decreased their commuting to downtown given that school activities were sus-

pended. More remarkably, the figure shows that the individuals older than 50 years old, those

that are more vulnerable to the virus, significantly decrease their commuting to downtown.

During weekends, individuals of all ages commuted less to downtown during the month of

February; the most vulnerable groups decreased their commuting more substantially.

Figure 1: Percent Change People in Downtown

(a) Weekdays (b) Weekends

Notes: The figure shows the change in the average number of people in downtown in February relative to the
previous month. The total number of people is approximated by the total people in the downtown districts
at 3pm. Panel (a) shows the percent change during the weekdays and Panel (b) show the changes during the
weekends. The downtown districts are: Jung-gu, Jongno-gu, Gangnam-gu, Seocho-gu, and Yeongdeungpo-gu.

This can also be seen if we focus on the commuting patterns as a function of the number

of confirmed cases disclosed by the government in each district. We consider only the cases

that are active, those that have not recovered or died. Panel (a) of Figure 2 shows that

from January to February, people were more likely to commute to the districts with less

confirmed cases and less likely to commute to the districts with more cases. In fact, Panel

(b) shows the relationship is not linear; commuting patterns become more sensitive to the

number of cases disclosed as they increase. Importantly, these changes took place without a

government-imposed lockdown.
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Figure 2: Commuting Changes and Confirmed Cases

(a) Log Cases (b) Log Cases Squared

Notes: The figure shows on the y-axis of both panels the change in the average number of people in each
district in February relative to the previous month. The total number of people is approximated by the
total people in each district at 3pm. The x-axis of Panel (a) shows the natural logarithm of the number of
confirmed cases in each district, after considering only those that are active. The x-axis of Panel (b) shows
the natural logarithm of the number of confirmed cases squared in each district, after considering only those
that are active. The figure shows the relationship between these two variables using a fractional-polynomial
prediction with 95% confidence intervals, where the weights are the total number of users in each demographic
group.

We explore the response of people to the information of the total number of confirmed

cases in their districts quantitatively implementing the following specification:

lnHM,i,j,t = α + ι1lnCj,t + ι2 (lnCj,t)
2 + ϕ1lnVj,t + ϕ2 (lnVj,t)

2 + θi,j + γt + ei,j,t (1)

where HM,i,j,t is the number of people with characteristics i (i.e. age × gender), present

in district j, on day t. Since we focus on the commuting patterns of people, we count the

number of people present in each district at 3pm in the afternoon, when they are likely to be at

their work location during weekdays or at a given place for leisure during weekends.4 Public

disclosure is captured by the total number of confirmed cases in each district, lnCj,t. We

consider only the cases that are still active; this is, infected people that have not yet recovered

and that acquired the virus less than 14 from day t. To capture the additional information

provided by the travel logs of infected individuals, we also include in the regression the

number of visits they made to each district, lnVj,t. We only include the total visits of the

last 14 days to capture only the visits of the active cases. The specification includes district

4Our results are qualitatively very similar if we focus on other times.
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× age × gender effects, θi,j, and time effects, γt.

The results can be found in Table 3. Column (1) shows that people visit less the districts

with higher number of confirmed cases. Column (2)-(3) show that they also are less likely to

visit districts that were visited by infected individuals. The columns show that the people

of Seoul are responding to the disclosed information about the local cases in their districts.

Importantly, Column (4) shows that the elasticity of the number of commuters to a given

district increases as the number of cases and the number of visits increase. This is relevant

since, as the pandemic progresses, the number of commuters to each district is likely to

decrease substantially. Columns (5) and (6) show that similar patterns occur both during

weekdays and during weekends.

Table 3: Commuting Response to Public Disclosure

(1) (2) (3) (4) (5) (6)

ln Cases -0.011*** -0.012*** 0.010*** 0.011*** 0.008
(0.002) (0.002) (0.003) (0.003) (0.007)

(ln Cases)2 -0.015*** -0.013*** -0.020***
(0.002) (0.002) (0.004)

ln Visits -0.004*** -0.003*** 0.005*** 0.001 0.016***
(0.001) (0.001) (0.002) (0.002) (0.005)

(ln Visits)2 -0.003*** -0.003*** -0.002*
(0.000) (0.000) (0.001)

Observations 9,600 8,640 8,640 8,640 6,048 2,592
R-squared 0.994 0.994 0.994 0.994 0.996 0.988
District-Age-Gender Y Y Y Y Y Y
Time Y Y Y Y Y Y
Days All All All All Weekdays Weekends

Notes: The table shows the results of estimating equation (1). The dependent variable is the total number
of people present at a given district j on day t. The independent variables are the cumulative number of
confirmed cases on a given day in district j (net of those that have recovered) and total number of visits to
district j by infected people. Columns (1)-(4) include all the days of the week, Column (5) only weekdays
and Column (6) only weekends.

Table 4 splits individuals by their age group: those under 60 years of age and those above

60 years of age. We do so to quantify, more formally, the evidence presented in Figure 1 and

to understand whether the elasticity of commuting to the public information of the cases is

larger for the more fragile groups. The table also splits the days of the week into weekdays
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and weekends given that individuals between 20 and 60 years of age are more likely to have

work responsibilities during the weekdays. The table shows similar patterns as those depicted

in Figure 2 and in Table 3; commuting decreases as the information of the number of cases

or visits by infected people increase. Importantly, Column (2) shows that people above 60

years of age respond more drastically to the information on the total number of cases and less

to the visits to their district by infected people. These patterns are more noticeable during

weekends as shown in Columns (3)-(4). Given the differences in the commuting response by

people of different age groups, who also differ in how vulnerable they are to the virus, as well

as across days of the week, we allow for heterogeneity along these dimensions in the model

developed in Section 6.5

Table 4: Commuting Response to Public Disclosure by Age Group

(1) (2) (3) (4)

ln Cases 0.009** 0.016*** 0.004 0.016
(0.004) (0.004) (0.008) (0.012)

(ln Cases)2 -0.011*** -0.017*** -0.018*** -0.023***
(0.003) (0.003) (0.005) (0.008)

ln Visits 0.002 -0.001 0.020*** 0.008
(0.002) (0.002) (0.005) (0.008)

(ln Visits)2 -0.003*** -0.001** -0.003** 0.000
(0.000) (0.001) (0.001) (0.002)

Observations 4,032 2,016 1,728 864
R-squared 0.996 0.995 0.985 0.982
District-Age-Gender Y Y Y Y
Time Y Y Y Y
Days Weekdays Weekdays Weeekends Weeekends
Group Under 60 Above 60 Under 60 Above 60

Notes: The table shows the results of estimating equation (1). The dependent variable is the total number
of people present at a given district j on day t. The independent variables are the cumulative number of
confirmed cases on a given day in district j (net of those that have recovered) and total number of visits to
district j by infected people. Columns (1)-(2) include only weekdays and Columns (3)-(4) only weekends.
Columns (1)-(3) include only people under the age of 60 and Columns (2)-(4) only those above 60 years of
age.

5In Section A.1, we show that similar patterns emerge if we consider a commuting measures that counts
the number of visitors to a given district net of the residents in the district.
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5 Modeling Spread of Disease

The typical approach in the epidemiology literature is to study the dynamics of the pandemic,

for infected, deaths, recovered, as functions of some exogenously chosen diffusion parameters

β, which are in turn related to various policies (e.g. the partial lockdown of schools, universi-

ties, offices, and other measures of diffusion mitigation), and where the diffusion parameters

are stratified by age and other individual covariates. In the model, individuals are classified

into three types: susceptible (S; at risk of contracting the disease), infectious (I; capable of

transmitting the disease), and recovered (R; those who recover or die from the disease). In

this model, the reproduction number R, which measures the transmissibility of a virus, rep-

resents the average number of new infections generated by each person is defined as R = β
γ
.

The basic SIR model focuses on the epidemic propagation in a single population.

We consider a simple SIR meta-population model that allows for the spatial dissemination

of the epidemic across regions and takes into account the movements of the population from

one district to another (Keeling et al., 2010; Keeling and Rohani, 2011). The dynamics are

discrete and deterministic. We consider individuals of different ages, young and old, and

residing in different locations. No additional substructure of the population is considered

(e.g. schools or workplaces), as our aim is to introduce a rather simple epidemic model to

test the adequacy of different commuting sources for the simulation of dissemination within

a city. Subpopulations are coupled by directed weighted links representing the commuting

fluxes between two locations, thus defining the meta-population structure of the model. No

other type of movement is considered.

Mobility is described in terms of recurrent daily movements between place of residence

and workplace so that the infection dynamics can be separated into two components, each of

them occurring at each location. πaij is the probability of people whose age is a and who reside

in i of choosing working location j. The commuting probabilities, πaij, determine the contact

rate between groups and will be endogenous outcomes of the commuting model developed in

the next section. The epidemic dynamics are described by the following equations:

Ṡai (t) = −β
∑
j

[ ∑
a,s π

a
sj(t)I

a
s (t)∑

a,s π
a
sj(t)N

a
s (t)
× πaij(t)Sai (t)

]

İai (t) = β
∑
j

[∑
a,s π

a
sj(t)I

a
s (t)∑

a,s π
a
sj(t)Ns(t)

× πaij(t)Sai (t)

]
− γIai (t)− dIIai (t)

Q̇a
i (t) = dII

a
i (t)− τaQa

i (t)

Ṙa
i (t) = γIai (t) + τaQa

i (t) (2)
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As in Acemoglu et al. (2020), individuals are partitioned into groups; we partitioned in-

dividuals based on their age and their district of residence. Susceptible individuals of age a

residing in district i may become infected by coming into contact with infected individuals

at their working location j. The first equation describes the change in the number of sus-

ceptible individuals residing in district i, after taking into account their commuting patterns

determined by the age-specific commuting probabilities πaij.

Notice that the equation aggregates across all districts j to which susceptible individuals

of age a residing in district i commute. The “matching technology” is the same as in the basic

SIR model, which in turn is similar to the quadratic matching technology in Diamond and

Maskin (1979, 1981), where the number of matches between two groups is the product of the

size of the two groups. The matching technology can be made more general, but we believe

this is a good starting point given the geographic context of our model. The parameter β is

the number of susceptible agents per unit of time to whom an infected agent can transmit

the virus after contact. All susceptible agents that get the virus become infected. A fraction

of infected individuals recover or die at rate γ. We assume that recovered agents that did

not die are immune thereafter. We assume non-zero fatality rate, ψ > 0.

Infected individuals can also be detected at rate dI and removed to quarantine. In this

case, the average time they spend in isolation is 1/τa and after that they either recover or

die. We allow τa to be age-specific since older individuals are more likely to require critical

care.

6 Spatial Model

We develop a simple model to guide our empirical analysis. The model includes commuting

choice decisions as in Ahlfeldt et al. (2015). Each district i in Seoul is populated by an

exogenous measure of Ha
Ri workers of age a. For simplicity, we abstract from residential

location choice. A worker decides where to work after observing the realization for her

idiosyncratic utility, and picks the employment district within the city that maximizes her

utility. The price of the final traded good is chosen as the numeraire (p = 1). Districts differ

in terms of their final goods productivity, number of infected individuals and access to the

transport network, which determines travel times between any two districts in the city.

6.1 Workers

Workers are risk neutral and have preferences that are linear in a consumption index: Ua
ijo =

Ca
ijo, where Ca

ijo denotes the consumption index for worker o of age a residing in district i
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and working in district j. This consumption index depends on the consumption of the traded

good (caijo); the disutility from commuting from residence district i to workplace district j

(daij ≥ 1); and an idiosyncratic shock that is specific to individual workers and varies with

the worker’s district of employment and residence (zajo). This idiosyncratic shock captures

the idea that individual workers can have idiosyncratic reasons for working in different parts

of the city. The aggregate consumption index is simply:

Ca
ijo =

zajoc
a
ijo

daij
(3)

where the iceberg commuting cost daij = eκτij+δ
a(ln Cj)

2+ξa(ln Vj)
2

increases with the travel time

(τij) between district i and j. Travel time is measured in distance. The commuting costs,

daij ∈ [1,∞), also increase with the total number of detected cases Cj that are active in the

district where workers work, and with the total number of visits by detected cases Vj. Given

our empirical evidence, we allow Cj and Vj to affect the commuting costs non-linearly. The

parameter κ control the impact of distance on the commuting costs and the parameters δa

and ξa the sensitivity of the commuting costs to the disclosed information on the detected

cases, given our empirical evidence, both parameters are allowed to vary by age.

We model the heterogeneity in the utility that workers derive from living and working in

different parts of the city following McFadden (1974) and Eaton and Kortum (2002). For

each worker o of age a living in district i and commuting to district j, the idiosyncratic

component of utility (zaijo) is drawn from an independent Fréchet distribution:

F (zajo) = eE
a
j (z

a
jo)

ε

, Ej > 0, ε > 1

where the scale parameter Ea
j determines the average utility derived from working in district

j; and the shape parameter ε > 1 controls the dispersion of idiosyncratic utility.

The indirect utility from residing in district i and working in district j can be expressed

in terms of the wage paid at this workplace (waj ), commuting costs (daij) and the idiosyncratic

shock (zajo):

uaijo =
zajow

a
j

daij
(4)

where we have used utility maximization and price for traded goods is normalized to 1 as a

numeraire.6

6Commuting costs are proportional to wages to capture changes over time in the opportunity cost of travel
time.
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Since indirect utility is a monotonic function of the idiosyncratic shock (zajo), which has a

Fréchet distribution, it follows that indirect utility for workers living in district i and working

in district j also has a Fréchet distribution. Each worker chooses the commute that offers her

the maximum utility, where the maximum of Fréchet distributed random variables is itself

Fréchet distributed. Workers can choose to work at the home sector. The home sector has

its own Ea
home and wahome. We assume that dai,home = eκτi,home+δ

a(ln Chome)
2+ξa(ln Vhome)

2

= e0 = 1

for all age groups; this is, no commuting cost is incurred either by physical distance or by

risk of being infected if a worker stays at home.

Weekdays: After observing her realizations for idiosyncratic utility for the employment

districts, each worker chooses where to work to maximize her utility, taking as given factor

prices and the location decisions of other workers. Therefore, workers, given their residence,

sort across employment districts depending on their idiosyncratic preferences and the char-

acteristics of these locations. Other things equal, workers are more likely to work in district

j, the higher its wage waj , the higher its average idiosyncratic utility as determined by Ea
j ,

and the lower its commuting costs daij from residential locations. Conditional on living in

district i, the probability that a worker commutes for work to district j is

πa,weekdays
ij|i =

Ea
j (waj /d

a
ij)

ε∑
sE

a
s (was/d

a
is)

ε
(5)

The commuting market clearing condition that equates the measure of workers employed

in district j (Ha
Mj) with the measure of workers choosing to commute to district j:

Ha,weekdays
Mj =

∑
i

πa,weekdays
ij|i Ha

Ri =
∑
i

Ea
j (waj /d

a
ij)

ε∑
sE

a
s (was/d

a
is)

ε
Ha
Ri

Due to the disease, certain fraction of people are quarantined, and they cannot work.

We assume that all others, susceptible, infected, and recovered people, can work. Residence

employment (Ha
Ri) is defined as:

Ha
Ri ≡ Na

i −Qa
i −Da

i . (6)

Expected worker income conditional on living in district i is equal to the wages in all

possible employment locations weighted by the probabilities of commuting to those locations
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conditional on living in i:

E[waj |i] =
∑
i

Ea
j (waj /d

a
ij)

ε∑
sE

a
s (ws/dais)

ε
waj

Weekends: During the weekends, the destination of each worker is not tied to their work

(wages) and only tied to their idiosyncratic preference for each location. Thus, after observing

her realizations for idiosyncratic utility, each worker chooses where to visit to maximize her

utility, taking as given factor prices and the location decisions of other workers. Other

things equal, workers are more likely to visit district j, the higher its average idiosyncratic

utility as determined by Ea
j , and the lower its commuting costs daij from residential locations.

Conditional on living in district i, the probability that a worker visits district j on the

weekend is

πa,weekends
ij|i =

Ea
j

(
daij
)−ε∑

sE
a
s

(
daij
)−ε (7)

The commuting market clearing condition that equates the measure of workers visiting

district j (Ha
Mj) with the measure of workers choosing to visit to district j:

Ha,weekends
Mj =

∑
i

πa,weekends
ij|i Ha

Ri =
∑
i

Ea
j

(
daij
)−ε∑

sE
a
s

(
daij
)−εHa

Ri

6.2 Production

Production of the final good occurs under conditions of perfect competition. We assume that

the production technology for the traded good is age-specific

Y a
j = AajH

a,weekdays
Mj (8)

As a result, waj = Aaj . The aggregate production in the economy is defined as:

Y ≡
∑
a,j

Y a
j =

∑
a,j

AajH
a,weekdays
Mj (9)

where the sum across j incorporates all districts including the home sector.
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6.3 Equilibrium

In this section, we characterize the properties of the model. Given the model’s parameters

β, ε,κ, δ, ξ and vectors of exogenous location characteristics A,E, τ , the general equilibrium

of the model is referenced by the vectors w,πM , τ and total city population in each city Hi.

These components of the equilibrium vector are determined by the following system of three

equations: the workplace choice probability, profit maximization, and zero profits.

Proposition 1. Assuming exogenous, finite, and strictly positive location characteristics,

E, τij ∈ (0,∞) × (0,∞), and exogenous, finite, and non-negative final goods productivity,

A, there exists a unique general equilibrium vector w,πM .

There is also a unique mapping from the observed variables to unobserved location char-

acteristics. These unobserved location characteristics include production and residential

fundamentals and several other unobserved variables. Let the transformed wage for each

employment location be denoted as ωaj =
(
waj
)ε
Ea
j , which captures the wage and the Fréchet

scale parameter for that location because these both affect the relative attractiveness of an

employment location to workers.

Proposition 2. Given known values for the parameters β, ε,κ, δ, ξ and the observed data

w,HM , τ , there exist unique vectors of the unobserved location characteristics E that are

consistent with the data being an equilibrium of the model.

The economics underlying this identification result are as follows. Given our assumptions

on the production side, the data of observed wages pin down the vector of productivity. Given

observed workplace, and our measures of travel times, worker commuting probabilities can

be used to solve for unique transformed wages consistent with commuting market clearing.

7 Calibration and Simulation of the Model

7.1 Gravity

From the commuting probabilities, one of the model’s key predictions is a semi-log gravity

equation for commuting flows from residence i to workplace j. Before the outbreak of the

virus the gravity equation can be written as:

lnπij = −ντij + θi + θj + eij (10)

where θi and θj are residence and workplace fixed effects. Commuting costs are daij = eκτij for

all age groups and travel times τij are measured in kilometers. The parameter ν = εκ is the
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semi-elasticity of commuting flows with respect to travel distance and is a combination of the

commuting cost parameter κ and the commuting heterogeneity parameter ε. We augment the

gravity equation with a stochastic error that captures measurement error in travel distances

eij.

We estimate equation (10) using a linear fixed effects estimator. We find that the semi-

elasticity of commuting with respect to travel time is 0.1765 which is statistically significant

at the one percent level. This estimate implies that each additional kilometer of travel

reduces the flow of commuters by around 1.7 percent. From the regression R2, this gravity

equation specification explains around 70 percent of the variation in bilateral commuting

patterns. Taken together, these results suggest that the gravity equation predicted by the

model before the outbreak of the virus provides a good approximation to observed commuting

behavior.

As in Ahlfeldt et al. (2015), we define adjusted wages as w̃aj = waj (E
a
j )1/ε, which captures

the wage and the Fréchet scale parameter for that location because both affect the relative

attractiveness of an employment location to workers. For simplicity, we introduce two age

groups: the young (age 20-59) and the old (age 60+) Using our estimate for ν, the model’s

labor market clearing condition can be solved for a transformation of wages ωaj = (w̃aj )
ε =

Ea
j (waj )

ε in each location using observed workplace employment (Ha
Mj), residence employment

(Ha
Ri), and bilateral travel times (τij):

Ha
Mj =

S∑
i=1

ωaj /e
ντij∑S

s=1 ω
a
s/e

ντij
Ha
Ri (11)

From the labor market clearing condition, transformed wages (ωaj ) are determined inde-

pendently of ε from workplace employment and travel times. Therefore, ε merely determines

the monotonic transformation that maps transformed wages into adjusted wages and only

scales the dispersion of log adjusted wages relative to the dispersion of log transformed wages:

σ2
ln w̃ai

=
(
1
ε

)2
σ2
ln ωai

.

Following Ahlfeldt et al. (2015), we jointly estimate mean parameters Ea
j and shape

parameter ε using the following moment conditions:

E

[
Ha
Mj −

S∑
i=1

ωaj /e
ντij∑S

s=1 ω
a
s/e

ντij
Ha
Ri

]
= 0

E

[(
1

ε

)2

σ2
ln ωai
− σ2

ln wai

]
= 0

The first moment conditions requires that the total number of workers, belonging to
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each age-group, corresponds to that in the data before the outbreak of the virus. The

second moment condition requires that the variance of log transformed wages is equal to the

variance of log wages in the data obtained from the Seoul Survey. The shape parameters ε

are estimated to be 3.5427. These values of ε for commuting decisions are broadly in line

with the range of estimates for the Fréchet shape parameter for international trade flows (the

range of estimates in Eaton and Kortum (2002) is from 3.6 to 12.8) and for commuting flows

(estimates in Ahlfeldt et al. (2015), Monte et al. (2018), Tsivanidis (2019) are 6.8, 3.3 and

2.7-3.2, respectively).7

7.2 Calibration of COVID-19-specific Parameters

There is considerable uncertainty about infection, recovery, and mortality rates of the virus.

For this reason, we calibrate γ and τ borrowing the most common estimates used in the

recent literature and confirming they are consistent with the data from the World Health

Organization (WHO) compiled by the Johns Hopkins University Center for Systems Science

and Engineering (JHU CCSE). The parameter γ governing the rate (per day) at which

infected people either recover or die is considered a fixed parameter of the disease and is set

to γ=1/18 reflecting an estimated duration of illness of 18 days as in Atkeson (2020), but

also consistent with the fraction of infected agents that recovered or died according to the

WHO.

The estimates for τ are borrowed from Ferguson et al. (2020), who calculated that the

average duration of stay in hospital is of 8 days if critical care is not required, and 16 days

(with 10 days in ICU) if critical care is required. Ferguson et al. (2020) also estimates that

6.3% of those between the ages of 40-49 require critical care whereas 27% of those between the

ages of 60-69 require it. Using these estimates, we set τ=1/8.5 for the young and τ=1/10.2

for the old so that in the model they spend 8.5 days and 10.2 days quarantined respectively.

Importantly, in South Korea all the confirmed cases have been hospitalized.

Lastly, although we focus mainly on comparing the total number of cases in each of the

counter-factual exercises, we set the fatality rate to be 0.21 % for the young and 2.73% for the

old. We obtain these estimates from the Korean Centers for Disease Control & Prevention,

which estimate a fatality rate those fatality rates for the groups between 40-49 years of age

and 60-69 years of age.

7The estimated value for κ = ν/ε is 0.0498.
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7.3 Internally Calibrated Parameters

The rest of the parameters are calibrated internally by targeting data compiled and made

public by the local government of Seoul on the total number of cases, including detailed

information of the confirmed cases such as their demographic characteristics as well as their

travel logs during the days before they were quarantined. The data includes their contacts

with previous confirmed cases, the district where they reside, and the districts that they

visited before being quarantined.

We calibrate 10 parameters, β, dI , δ
a,weekdays, δa,weekends, ξa,weekdays, and ξa,weekends (for

each age group), jointly using 10 moments from the data. First, we target total number of

detected cases in Seoul (530) until April 6th, which captures the overall spread of the disease.

Second, we target the fraction of infections from the estimates in Stock et al. (2020), who

use results from Iceland’s two testing programs and estimate that the fraction of undetected

infections range from 88.7% to 93.6%. We target a fraction of 90% undetected infections,

which are also consistent with the estimates for the US in Hortaçsu et al. (2020). Lastly, we

target the responsiveness of the commuting decisions in Seoul to information on the total

cases at the district level and the total visits by infected individuals presented in Table 4.

Specifically, we estimate the following regression in the data and in the model:

logHa
Mj,t = α + ιa1lnCj,t + ιa2 (lnCj,t)

2 + ϕa1lnVj,t + ϕa2 (lnVj,t)
2 + θj + γt + eaj,t (12)

where HMj,t denotes the total number of workers commuting to district j, Cj,t denotes the

total number of confirmed cases in district j at time t and Vj,t is the total number of visits

by infected individuals to district j prior to being quarantined. The regression includes both

district effects, θj, and time effects, γt. We estimate equation (12) in our model separately

for weekend and weekends and choose the parameters the minimize the distance between

the coefficients in the data and those estimated in the data. The calibrated parameters are

shown in Table 5.
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Table 5: Parameter Values

Parameter Value (young, old) Definition/Target Moments

Externally Calibrated
γ 1/18 Daily rate at which active cases recover.
τa 1/8.5, 1/10.2 Mean duration of hospitalization.
ψa 0.21%, 2.73% Case fatality rate.

Internally Calibrated
β 0.1758 Total # of detected case in two months.
dI 0.0193 The fraction of undetected infections.

δa,weekdays 0.0043, 0.0053 Semi-elasticity to confirmed cases (weekdays).
δa,weekends 0.0040, 0.0064 Semi-elasticity to confirmed cases (weekends).
ξa,weekdays 0.00098, 0.000315 Semi-elasticity to visits by infected (weekdays).
ξa,weekends 0.00094, 0.000027 Semi-elasticity to visits by infected (weekends).

7.4 Simulation

Our initial conditions are the first 4 cases confirmed in the city of Seoul placed at the districts

where the people infected reside. All of these cases can be traced back to people that at some

point visited Wuhan, China. Since 90% of the cases are undetected, our initial conditions

are a total of 4 cases in quarantine and 36 cases undetected. The infected people that are

undetected follow the predicted commuting patterns of the model. The first day of the

simulation is January 30th, 2020.

We simulate the model to evaluate its performance relative to the actual data of confirmed

cases in Seoul. Panel (a) of Figure 3 shows the performance of the model predicting the data

of confirmed cases in each of the districts of Seoul. Each dot in the figure represents the

confirmed cases in each district by April 6th, 2020. The figure shows that the model is able

to replicate well the geographical spread of the disease, as most dots are close to the 45 degree

line. Panel (b) of Figure 3 shows the SIR dynamics that will take place in the upcoming

months as predicted by the model. The figure shows that according to our model over the

next two years approximately half of the population of Seoul will be infected. This can be

seen by the fraction of people that eventually recover or die from the disease. The peak of

infection will take place approximately 8 months after the outbreak of the virus. Given the

policies so far implemented in the city of Seoul, the peak of infection will involve less than 5%

of the population at the same time. The fraction of confirmed and subsequently quarantined
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cases is even lower as shown by the black line in the figure.

Figure 3: Predicted Spread of Disease

(a) Data vs Model (b) SIR Dynamics

Notes: Panel (a) shows the total number of confirmed cases in the data (y-axis) and in the model (x-axis).
Each dot is a district of Seoul. The blue line indicates the 45 degree line. Panel (b) shows the epidemic
dynamics of the city of Seoul. They are simulated using a SIR compartmental mode across the districts of
Seoul. The figure shows the fraction of the population that is susceptible (green line), infected (red line),
quarantined (black line), recovered (blue line), or death (yellow line).

Figure 4 shows the share of infected and quarantined population by age groups. Panel (a)

shows that the share of people infected is, at its peak, approximately 6% of the young and

2% of the old. Panel (b) shows that at the peak around 1% of the young and 0.4% of the old

are quarantined. Relative to the people below 60 years of age, there are less people above 60

years of age that are infected or quarantined at a given point in time. This is because, on

average, they are more likely to work at the home sector and they respond more drastically

to the information related to the number of confirmed cases in each district.
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Figure 4: Infected and Quarantined Population by Age Groups

(a) Share of Infected People (b) Share of Quarantined People

Notes: Panel (a) shows the share of infected population for the young (age 20-59) and the old (age 60+).
Panel (b) shows the share of quarantined population for the young (age 20-59) and the old (age 60+).

Figure 5 shows the commuting patterns of the people in Seoul according to the model.

Panel (a) shows the fraction of the people that choose the home sector. From the data,

we know that, before the outbreak of the virus, during weekdays approximately 18% of the

young and 61% of the old stay at home during weekdays. Using the same amenity level

across destinations, we predict that the home sector shares are approximately 33% for the

young and 80% for the old during the weekends. The figure shows that as the virus spreads

in the city, at the peak of the infections, approximately 32% of the young and 79% of the old

will choose to stay at home during the weekdays.

Panel (b) of Figure 5 shows the change in commuting to downtown. We first compute

the fraction of the total population that commutes to each of the districts that are part of

downtown Seoul (i.e. Jung-gu, Jongno-gu, Gangnam-gu, Seocho-gu, and Yeongdeungpo-gu).

We then normalize this fraction to one in each of the districts and average these shares across

districts. The figure shows a large decrease in the fraction of people commuting to downtown

at the infectious peak. Consistent with the foot traffic data, commuting is more sensitive

to the disclosure of information during the weekends. The figure shows that commuting

decreases approximately 18% for the young and 44% (age 20-59) for the old (age 60+) to

downtown when the number of infected cases peaks. Importantly both panels show that the

commuting patterns take a long time to recover; as long as there are confirmed cases of the

virus, the commuting patterns of the city will be affected.

22



Figure 5: Home Sector Share and Commuting to Downtown

(a) Home Sector Share (b) Commuting to Downtown

Notes: The figure shows home sector share and commuting to downtown over time. Panel (a) shows the share
of people that work choose to work in the home sector. The black line is the share for the young (age 20-59)
and the red line is the share for the old (age 60+) Panel (b) shows the change in commuting to downtown.

Panel (a) of Figure 6 shows the predicted path of total output for the city of Seoul. The

panel shows that according to the model output is predicted to fall substantially, up to 3.8% at

the peak of infections. This is the results of both, people adjusting their commuting patterns

and moving away from their preferred working locations, and also due to the assumption

that quarantined people do not work (e.g. hospitalized). Similar forces affect the path of

welfare depicted in Panel (b) of Figure 6. Importantly, even if in the model production only

takes place during the weekdays, people adjust their commuting choices significantly during

the weekends to avoid being exposed to the disease.

Both output and welfare take more than 2 years to recover and, in the current calibration,

do not go back to the same levels observed before the outbreak of the virus. This is because

the dead people are not contributing anymore to the output of the economy so that the total

labor force is reduced and also because, as long as there are confirmed cases in the city, the

patterns of commuting will be disrupted.
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Figure 6: Aggregate Output and Welfare

(a) Aggregate Output (b) Aggregate Welfare

Notes: Panel (a) shows the level of output over time in the city of Seoul. Aggregate output is the sum of
the output of each district. Panel (b) shows the level of welfare over time in the city of Seoul with public
disclosure. Aggregate welfare is the sum of the utility of each worker. Black line represents the young (age
20-59) and red line represents the old (age 60+).

8 Counter-factual Exercises

In this section, we evaluate the effectiveness of different non-pharmaceutical mitigation strate-

gies: (i) information disclosure, (ii) lockdown, and (iii) shutdown. First, to quantify the

effectiveness of the disclosure policy, we simulate the model without allowing commuting to

respond to information. This can be interpreted as the case without information disclosure

or, alternatively, the case where people cannot change their commuting behavior despite of

information. We believe the first interpretation is closer to the real world given the observed

changes in commuting behavior from the foot traffic data. Second, we quantify the effective-

ness of a lockdown policy and a shutdown policy, relative to the information disclosure case,

simulating the model implementing the geographic restrictions of such policies and assuming

there is no information disclosure in these cases.

8.1 Information Disclosure

The government of Seoul disclosed to different types of information: (i) the total number

of confirmed cases in each district, Cj, and (ii) total number of visits by confirmed cases

to each of the districts, Vj. We first examine a partial disclosure case by setting ξa = 0.
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This assumes that detailed travel route information by infected individuals is not disclosed.

Workers can still respond to the total number of confirmed cases in their districts. The case

without information disclosure is that in which δa = ξa = 0. In this case, the gravity equation

depends only on the physical distance from origin to destination as it is commonly assumed

in the literature.

Figure 7 shows the share of the population that is infected and detected from day 0 to 800

in Seoul. Under partial and no information disclosure, we find more detected cases. Under full

information disclosure (the current case of South Korea), the city reaches heard immunity

at a point where a substantially lower share of the population is infected. The difference

between the full information disclosure and no disclosure scenarios is also significant when

comparing the total number of deaths shown in Panel (b). The scenario with no disclosure of

information yields approximately twice the number of deaths compared to the full disclosure

scenario. This is because individuals above 60 years of age, those that are more vulnerable

to the virus, are sensitive to the information disclosed and altered their commuting patterns

significantly in response.

Figure 7: Disclosure Policy: Detected Cases and Deaths

(a) Cumulative Detected Cases (b) Cumulative Death

Notes: Panel (a) shows a population share of cumulative detected cases under three scenarios: (i) full
disclosure (South Korea case), (ii) partial disclosure (no travel route information) and (iii) no disclosure.
Panel (b) the share of he population death under the same three scenarios.

Table 6 reports the total number of detected cases, the total number of death, the average

daily output loss, and the welfare losses over two years. For the young, the total number of

death increases by 7 percent under partial disclosure, and 27 percent under no disclosure.

For the old, the total number of death increases by 7 percent under partial disclosure, and
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98 percent under no disclosure.

The public health benefits from information disclosure come at the cost of output and

welfare losses. We calculate the average daily output losses and average daily welfare losses

relative to the period before the outbreak of the virus. Under full disclosure, the average

daily output loss is 1.21 percent over two years and the average daily welfare loss is 0.56

percent for the young (age 20-59) and 0.41 for the old (age 60+). Average daily output

loss decreases by 0.15 percentage points (from 1.21 percent to 1.06 percent) under partial

disclosure and 0.77 percentage points under no disclosure. The average daily welfare loss for

the young (old) decreases by 0.17 (0.11) percentage points under partial disclosure and 0.33

(0.22) percentage points under no disclosure. Under information disclosure, the welfare losses

are substantially smaller than the output losses; workers are able to choose their second or

third best location when they maximize their utility even if their preferred commuting choice

is disrupted by the information obtained about the confirmed cases.

Table 6: Disclosure Policy: Cases, Output and Welfare

Original Model Partial Disclosure No Disclosure

Total # of Cases 971,924 1,041,433 1,314,189

Total # of Death (age 20-59) 7,083 7,591 9,048
Total # of Death (age 60+) 10,819 11,581 21,518

Output Loss per day* 1.21 1.06 0.44

Welfare Loss per day* (age 20-59) 0.56 0.39 0.23
Welfare Loss per day* (age 60+) 0.41 0.30 0.19

Notes: The table reports the total number of detected cases, the total number of death, the average daily
output losses, and the welfare losses over two years in the city of Seoul under full disclosure (original model),
partial disclosure, and no disclosure. The rows with * are shown in percent.

8.2 Lockdown

We impose a lockdown policy assuming that in this case no information about the confirmed

cases is disclosed. Under the lockdown policy, similar to that so far implemented in many

countries including the United States, a certain fraction of the populations is required to stay

at home. In the model, this is implemented by randomly choosing a certain fraction of people

and forcing them to work from home during weekdays and to stay at home during weekends.
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We ignore for now the possibility that the mandated lockdown is only partially effective

(e.g. people ignoring the government’s order). Naturally, the disease does not spread at

home; at home, workers who are susceptible cannot be infected and workers who are infected

but not detected do not spread the disease anymore. We assume that the lockdown policy

is implemented from day 200 to 300, when the spread of disease is the fastest when no

information is disclosed.

Figure 8 shows the total number of detected cases from day 0 to day 800 when a lockdown

policy is implemented from day 200 to 300.8 We implement lockdowns in which 20% and

40% of the population is mandated to stay at home. The lockdown policy slows down the

spread of the disease right after it is implemented. Once the economy is reopened, the disease

spreads further but the city reaches the point where the virus does not spread anymore after

infecting a lower fraction of the population compared to the case without a lockdown.

Figure 8: Lockdown Policy: Detected Cases and Deaths

(a) Cumulative Detected Cases (b) Cumulative Death

Notes: Panel (a) shows the share of the population that is infected and detected under three scenarios: (i)
no lockdown, (ii) 20% lockdown and (iii) 40% lockdown. For all scenarios, we assume no public information
disclosure. Panel (b) shows the share of the population that dies in each of the three scenarios.

Table 7 reports the total number of detected cases, the total number of deaths, the daily

average output losses and the welfare losses over two years under the different lockdown

policies. Under 40% lockdown, the total number of cases is comparable to the model with

8An lockdown implemented earlier substantially delays infections and herd immunity, but it has virtually
no impact on that total number of infected once herd immunity is achieved. In contrast, a later intervention
substantially reduces the long-run level of infections. There is less overshooting of herd immunity because
the later intervention slows the pandemic’s momentum.
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full disclosure. In this scenario, the total number of deaths is higher, especially among

the old. The welfare losses under a lockdown are substantially higher relative to the full

information disclosure scenario. The lockdown misallocates workers and mitigation efforts.

This is because, under the lockdown policy, workers who do not like working from home are

mandated to do so. On the other hand, under information disclosure, workers who enjoy

working from home select themselves to do so after seeing more confirmed cases and visits

at their preferred districts. Similar circumstances occur with people with low health risks or

that have recovered from the disease as they are mandated to stay home under the lockdown

whereas, under full information, those that have higher health risks are those that choose to

stay at home.

Table 7: Lockdown Policy: Cases, Output and Welfare

No Lockdown 20% Lockdown 40% Lockdown

Total # of Cases 1,314,189 1,139,916 971,077

Total # of Death (age 20-59) 9,048 7,932 6,815
Total # of Death (age 60+) 21,518 17,572 14,216

Output Loss per day* 0.44 1.15 1.63

Welfare Loss per day* (age 20-59) 0.23 0.88 1.68
Welfare Loss per day* (age 60+) 0.19 0.23 0.27

Notes: The table reports the total number of detected cases, the total number of death, the average daily
output losses, and the welfare losses over two years in the city of Seoul under no lockdown, 20% lockdown,
an 40% lockdown. Note that the first column is the same as the last column in table 6. The rows with * are
shown in percent.

8.3 Shutdown

Lastly, we impose a shutdown policy in the model. The initial four confirmed cases in January

2020 where found in four distinct districts. Under a shutdown policy, people living in those

districts cannot commute outside. They could work from home or commute to the same

district. People living in other districts cannot commute to those four districts. As a result,

even if the policy is implemented only in four districts, the commuting choices of all workers

are limited.

Figure 9 shows the total number of detected cases under different shutdown policies. We
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study the effect of two shutdown policies. The first is implemented for 90 days, from day 10

to day 100. The second is implemented for 100 days from days 200 to 300. An early shutdown

delays the spread of the disease but it has virtually no impact on total share of the population

infected in the long run for two reasons. First, Seoul is a city that is very inter-connected

with vast amount of commuting across districts. And, second, undetected cases commute

across districts; this interaction, even if short-lasting, is enough to spread the disease in the

entire city over time. A shutdown policy implemented later is not as effective either; it does

not have a substantial impact reducing the total number of cases in the city since by the

time this policy is implemented, the disease has already spread across all districts.

Figure 9: Shutdown Policy: Detected Cases and Deaths

(a) Cumulative Detected Cases (b) Cumulative Death

Notes: Panel (a) shows a population share of cumulative detected cases under three scenarios: (i) no shut-
down, (ii) shutdown from day 10 to 100 and (iii) shutdown from day 200 to 300. For all scenarios, we assume
no public information disclosure. Panel (b) shows the cumulative share of the population that dies under
each scenario.

Table 8 reports the total number of detected cases, the total number of deaths, the

average daily output losses and the welfare losses over two years under different shutdown

policies. Shutdowns as mitigation strategies are very costly. Relative to the case with no

information disclosure, under the early shutdown scenario, the output loss increases by 0.1

percentage points and the welfare losses increase by 0.77 percentage points for the young

and 0.35 percentage points for the old. However, total number of deaths over two years is

almost the same. A similar picture emerges when we examine a shutdown policy implemented

later. This policy is less effective than a lockdown policy, yielding the same welfare losses, at

decreasing the total number of cases due to Seoul’s level of interconnectedness and the large
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presence of undetected cases at the time the policy is implemented.

Table 8: Shutdown Policy: Cases, Output and Welfare

No Shutdown Shutdown day 10-100 Shutdown day 200-300

Total # of Cases 1,314,189 1,314,097 1,235,337

Total # of Death (age 20-59) 9,048 9,048 8,588
Total # of Death (age 60+) 21,518 21,515 19,145

Output Loss per day* 0.44 0.54 0.52

Welfare Loss per day* (age 20-59) 0.23 1.00 1.07
Welfare Loss per day* (age 60+) 0.19 0.54 0.56

Notes: The table reports the total number of detected cases, the total number of death, the average daily
output losses, and the welfare losses over two years in the city of Seoul under no shutdown, shutdown from day
10 to 100, and shutdown from day 200 to 300. For all scenarios, we assume no public information disclosure.
Note that the first column is the same as the last column in table 6. The rows with * are shown in percent.

9 Conclusion

This paper uses a SIR model with multiple sub-populations and an economic model of com-

muting choice between the sub-populations to measure the effect of the disclosure of informa-

tion about COVID-19 cases in Seoul. We use the model to calibrate the effect of the change

in commuting patterns after the public disclosure of information on the transmission of the

virus and the economic losses due to the change in commuting patterns. We find that com-

pared to a scenario without disclosure, public disclosure reduces the number of COVID-19

cases by 400 thousand and deaths by 13 thousand in Seoul over 2 years. And compared to a

lockdown that results in about the same number of cases as the full disclosure strategy, the

latter results in economic losses that are 50 percent lower.

To be clear, disclosure of public information is infringes upon to the privacy of the affected

individuals. We do not attempt to measure the cost of the loss of privacy, but whenever such

measures are available, they can be weighted against the benefits of public disclosure we

provide here. Also, in our analysis the community (in Seoul) reaches herd immunity within

the next two years. That is, we assume no vaccine will be available in the next two years.

The analysis will obviously be different, and the tradeoffs between the different scenarios we
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model in the paper, will be different as well if a vaccine is available within the next two years.

The broader point is that, in the absence of a vaccine, targeted social distancing may be

a much more effective way to reduce the transmission of the disease while minimizing the

economic cost of social isolation. We view the public dissemination of information in Korea

as one way to accomplish that. We are hopeful that there could be other, perhaps more

effective ways, to target social distancing to get the maximum benefit for the least cost.
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