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1 Introduction

Deterministic epidemic models play a valuable role in the study of COVID-19 and its impact

on the economy. On the public health front, epidemiologists recommend lockdown measures

to keep R0, defined as the expected number of secondary infections generated by a single

(representative) infected individual in a fully susceptible population, below one (see, e.g.,

Ferguson et al. (2020)). On the economic front, economists model trade-offs of mitiga-

tion, where agents assume infection dynamics are deterministic (see, e.g., Atkeson (2020),

Gourinchas (2020)).

Yet, both epidemiologists and economists recognize deterministic models are potentially

crude approximations of stochastic epidemic dynamics. Aggregate transmission rate shocks

due to environmental factors can play a large role in the evolution of infection dynamics (see

Andersson and Britton (2012)). A case in point is the resurgence of COVID-19 in a number

of countries during the summer of 2020, including countries with prudent mitigation such as

South Korea. While epidemiologists recognize such stochasticity in fitting statistical models

(see, e.g., Kucharski et al. (2020), Li et al. (2020)), it would be valuable to explicitly model

how transmission volatility influence infection dynamics and optimal mitigation strategies.

This is especially important when one considers financial damage of the sort mentioned

by the Federal Reserve Board Financial Stability Report (2020): “Asset prices remain vulner-

able to significant price declines should the pandemic take an unexpected course...” Indeed,

standard asset-pricing theory suggests that aggregate transmission shocks ought to play a

critical role in asset prices through a risk premium channel.

Towards this end, we start with an extension of a widely-used deterministic epidemic

model of COVID-19 (Kermack and McKendrick (1927)) featuring aggregate transmission-

rate shocks that are intended to capture that viral contagiousness is unpredictable due to

environmental factors.1 Epidemic models of COVID-19 typically entertain multiple compart-

ments in terms of tracking susceptible, infected, and resistant (including the recovered and

dead). In order to transparently highlight the importance of transmission volatility and for

1By environmental factors, epidemiologists broadly refer to weather, behavioral, cultural, and geograph-
ical factors.
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tractability purposes, we focus on modeling just the infected population It, via a susceptible-

infected-susceptible (SIS) as opposed to a susceptible-infected-recovered (SIR) setting.2 For

a number of economic and financial applications, the focus is typically on horizons of many

years and the infected population is often the main state variable of interest since damages

are likely to increase with infections. There is also no consensus at this point that COVID-19

infection confers long-lasting immunity.

Following Gray et.al. (2011), who have used this approach for other viruses, we model

the COVID-19 aggregate transmission shocks via a stochastic transmission rate, β̃t. This

key input is modeled as a random variable with constant mean (predictable transmission

captured by parameter β) and transmission shocks (mean zero but with volatility captured

by parameter σ). The exit rate from the infected state back into the susceptible state

is assumed to be a constant γ. We further introduce a stochastic vaccine arrival into our

epidemic model as a jump with a Poisson arrival rate λ. When the vaccine arrives, we assume

the pandemic is over and infections go to zero. The resulting dynamics of the fraction of

infected then follows a four-parameter non-linear diffusion process.

We then model the financial impact of infection forecasts through the lens of a dynamic

asset-pricing model. The unexpected arrival of COVID-19 directly affect earnings through

three channels. First, there is a significant negative jump in earnings for firms in most

industries, except for a few such as technology (Landier and Thesmar (2020)). Second,

earnings growth is also potentially adversely affected by higher COVID-19 infections since

higher infection rates mean their workers are sick and less productive. Third, stochastic

transmission shocks also increase risk premia.

However, firms have access to a mitigation technology to reduce the drift of infections

by paying both (flow) fixed and variable costs. Taking the stochastic discount factor used

to price earnings as given, a representative firm optimally mitigates infections to reduce

the damage on valuation via earnings, while taking into account the arrival of a vaccine.

For instance, MarketWatch reported on May 2, 2020 that even a technology company like

2This SIS setting is useful for modeling viruses where recovery does not grant long-lasting immunity,
which includes potentially many types of viruses.
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Amazon will spend $4 billion or more on COVID-19 mitigation responses such as testing for

its workers, potentially wiping out the company’s Q2 profit.

Reducing the disease spread incurs costs and hence lowers earnings in the short term

but increases the expected earnings in the future by sufficient amounts so that it is optimal

for the firm even from a value-maximizing perspective. As a result, even absent any health

considerations, there are economic benefits to controlling COVID-19. Our model is a partial-

equilibrium one and ignores externalities associated with mitigation. Our focus is justified

by a number of studies including Andersen et.al. (2020) and Farboodi, Jarosch and Shimer

(2020) that point to the importance of voluntary mitigation in terms of social distancing

by households and firms even before government imposed lockdowns.3 Our model hence

links risk management and valuation to epidemic data (infections, mitigation, reproduction

numbers, transmission volatility, and vaccine arrival rate).

To relate our model to data, we first estimate our epidemic model by pooling COVID-19

case data from 16 countries (regions) that are at high risk during the period of January -

February of 2020. These countries had among the most air travel connections to the city of

Wuhan in China and have been the basis of the modeling of the early dynamics of COVID-19

before the onset of mitigation strategies. Given the noisiness and brief time series of the data

and our goal of demonstrating the influence of shocks, we fit one model for all 16 countries.

Our estimate of β is 6.62 per month, which translates to an infected individual infecting

one susceptible on average every five days (≈ 30/6.62.) Our estimate of monthly σ is 1.69,

which translates to a standard deviation of plus or minus 1.69 infected individuals per month.

The exit rate γ is equal to the inverse of the expected duration that an infected is sick and

infective; it is typically not estimated based on aggregate data early in epidemics since there

is a delay in when individuals leave the infected state. For our estimation of a population

average, we simply use 14 days as the duration to infer the exit rate γ at 1/(14 days), which

is 2.17 per month.4

3Externalities are also modeled in the COVID-19 context in Eichenbaum, Rebelo and Trabant (2020) and
more generally for disasters in Hong, Wang and Yang (2020).

4This estimate ranges from around 7 days to 14 days at the individual level but with a fat-tail in terms of
an infectious period across individuals. In empirical analysis, this parameter is typically assumed to follow
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These estimates then imply that our (basic) reproduction number R0 using case data

from January-February is 3.05 and the 90% confidence interval (CI) is (1.12, 6.52) based on

the empirical distribution. Despite constraining one model for all countries (regions), our

estimates are in line with leading studies of COVID-19.5

Along with these estimates that characterize the pre-mitigation COVID-19 process, we

choose the remaining parameters to target asset-pricing moments and the magnitude of the

decline in current earnings, which is nearly 40% for the typical firm (see Landier and Thesmar

(2020)), and a post-mitigation reproduction number of around 1. We assume that the initial

jump in earnings comes about equally from customers, who stop consuming when COVID-19

arrives and will not return until a vaccine arrives, and optimal mitigation on the firm. Our

calibration assumes that the two channels contribute equally to the reduction transmission

rates. We set the vaccine arrival rate λ to one per year, so that the expected pandemic

duration is around one year based on surveys of vaccine experts and scientists.6

Our calibration generates a number of new insights. First, how well a deterministic

model’s infection forecasts approximates those of our stochastic model depends on vaccine

arrival. Deterministic model infection forecasts tend to overshoot our model’s conditional

forecasts. The reasoning is understood by mathematical epidemiologists that introducing

noise into the transmission process will lead to a dampening of stationary distribution of

infections (Andersson and Britton (2012) and Brauer, Driessche, and Wu (2008)). Even if

the reproduction number R0 > 1, the epidemic process might nonetheless die out due to the

uncertainty of transmissions as opposed to in the deterministic setting. The further out the

vaccine, the less good of an approximation is the deterministic model.

Second, our stochastic model yields rich optimal strategies beyond those from purely de-

terministic considerations. Because our estimated reproduction number is high, the optimal

strategy always involves incurring fixed costs over a large range of infections rates, starting

an Erlang distribution (Kucharski et al. (2020)).
5Kucharsi et al. (2020) estimate a reproduction number of 2.35 [95% CI 1.15-4.77], while Imai et al.

(2020) estimate that it is 3.1 [95% CI 1.7-4.3].
6For such a timeline, see McKinsey Report (July 29, 2020) “On pins and needles: Will COVID-19 vaccines

save the world”.

4



at even a tiny fraction of the population being infected. However, transmission volatility

generates an option value of waiting reflected by the optimal mitigation policy in the infec-

tion rate It on the intensive margin. Optimal mitigation policy can hence be non-monotonic

in infection rates: initially increasing due to this option value of waiting and then declining

due to standard congestion effects, since as infections rise, less of the population will then be

susceptible. These implications match well with a standard epidemiological playbook that

we have observed as we discuss below.

Third, however, the infection process cannot be perfectly controlled due to aggregate

transmission shocks in contrast to deterministic models. Hence, mitigation at the intensive

margin can then fluctuate with infection rates. But the optimally-mitigated COVID-19

infection process will tend to be pulled toward a constant reproduction number over time.

These features match well the experience of a number of countries including the US that

had to deal with unexpected resurgence of COVID-19 in early March, followed by a period

where the reproduction number fell but then unexpectedly rose in the Summer of 2020.

Fourth, we show that the price-to-earnings (net of mitigation costs) can actually be higher

during a pandemic than in a normal period consistent with data assuming there is optimal

mitigation. The median annual price-to-earning ratio in the stock market has risen from

around 19 before the pandemic to 24 during the pandemic. With both optimal mitigation

and an expected vaccine arrival around one per year, mitigation while costly is temporary,

earnings reduction is thus also temporary and moreover earnings is expected to discretely

jump upward (due to both the elimination of mitigation costs and customers return once

the pandemic is over. For these reasons, prices being the present value of all future earnings,

fall much less than earnings do.

Fifth, we calculate a counterfactual for what would happen to stock prices absent any

mitigation. The market would be down 15% relative to the optimal mitigation scenario.

Our counterfactual can provide an account of asset price dynamics around COVID-19 —

dramatic plunge in late February 2020 and equally dramatic rebound in March 2020. For

instance, investors might have thought that society failed to control the virus initially (which

corresponds to our counterfactual of no mitigation leading to lower stock market values) but
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subsequently learned that they were going to (and hence the market rebounded to the equi-

librium prices under optimal mitigation). Finally, we consider comparative statics exercises

that further speak to observed asset price dynamics. Asset valuations are highly sensitive to

the vaccine arrival rate, consistent at least with anecdotes of stock market response to news

on vaccine developments.

Our paper proceeds as follows. We place our paper in related literatures in Section 2.

We present our epidemic model in Section 3 and the valuation and risk management model

in Section 4. We explore the early (pre-mitigation) dynamics of COVID-19 in Section 5.

In Section 6, we highlight the role of stochastic transmission shocks, optimal mitigation

and vaccine arrival for COVID-19’s damage to stock valuations. In Section 7, we conduct

counterfactual and comparative statics exercises. We conclude in Section 8.

2 Related Literatures

Our paper contributes to several literatures. In epidemiology, aggregate transmission shocks

are used in epidemiological forecasting models to capture deviations of infections from deter-

ministic projections (see Dureau et.al. (2013) for how parameter perturbation is employed).

The analytical treatment of transmission volatility is fully articulated in Gray et al. (2011)

who characterize the stationary distribution of our non-linear diffusion process absent a vac-

cine. Whereas R0 > 1 determines epidemic outbreak in a deterministic model, the analogous

outbreak condition is R0 > 1, where R0 = (β − σ2/2)/γ in our stochastic model. There-

fore, even at a reproduction number R0 above one, a sufficiently large value of σ2 can cause

R0 < 1, which in turn implies that the epidemic becomes distinct in the limit. Zhao and

Jiang (2014) extend the baseline model set-up in Gray et al. (2011) by allowing for a third

compartment for the vaccinated. In their paper, a fraction of the population can become

vaccinated. They explore stationary distributions in this setting.

Given that a goal of our analysis is to analyze the impact of an effective vaccine arrival

on both disease spread and also valuation, we model vaccine via a Poisson jump process and

explore the impact on conditional distributions, particularly how the deterministic model
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approximations depend on this Poisson arrival rate, and also valuation. Hence, our model’s

contribution to epidemiology is that it simultaneously accounts for a stochastic vaccine ar-

rival, studies conditional distributions through Kolmogorov equations far from steady state,

and derives the optimal mitigation strategy. Our optimally-mitigated stochastic SIS pro-

cess is new to the epidemiology literature as there is limited work on stochastic control in

epidemics.

There are other approaches to stochastic epidemics using Markov Chains. For instance,

Allen and Burgin (2000) work with Markov Chain models with a discrete state space and

one absorbing state so eventual disease extinction is guaranteed. That is, the stationary

distribution is degenerate. Our model (with no vaccine) has a non-degenerate stationary

distribution, which is better suited to explore implications of stochastic transmission shocks.

Also our model features vaccine while theirs does not. Clancy (2005) also considers a Markov

Chain SIS model set-up with no diffusion shocks where indirect transmissions (e.g., environ-

mental bacteria and from animals to human) are possible. While this channel is relevant for

some types of diseases (e.g., Zika, a mosquito borne flavivirus), it does not seem important

for COVID-19.

In economics, recent theoretical models on controlling epidemics uses deterministic SIR

models. The work closest to ours is Kruse and Strack (2020) where they show using a deter-

ministic SIR model that the optimal solution is typically to act early unless herd immunity is

within reach.7 Our contribution is to show how aggregate transmission shocks significantly

influence optimal mitigation strategies in an SIS setting.

For tractability, we work with an SIS set-up rather than an SIR model as doing so yields

an ODE rather than a PDE for the price-earnings ratio. While R0 is no longer a sufficient

statistic in richer SIR, SEIR, and other even richer models with multiple compartments8

Our SIS model nonetheless captures first-order insights and mechanisms. As the mitigated

I process tends to be low (near zero) most of the time in our calculations, the recovered

7Other models of optimal mitigation using a deterministic SIR model include among others Alvarez,
Argente and Lippi (2020).

8A model with N compartments naturally calls for N − 1 state variables as the only restriction across
the N compartments is that the population adds up to one (as a normalization).
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fraction (in an SIR model) would also be close to zero. As a result, our approximation

(which is effectively ignoring the recovered population) is likely to be sensible and hence

our insights regarding R0 and deterministic approximations also have implications for SIR

analysis.

In finance, our contribution is to link asset prices to underlying epidemiological data.

Our model is consistent with Gormsen and Koijen (2020) who use a fundamentals-based

asset-pricing model along with dividend futures to isolate a large impact of COVID-19 via

the earnings growth channel. Hong, Kubik, Wang, Xiao and Yang (2020) combine our model

with analyst forecasts to infer market expectations regarding the arrival rate of an effective

vaccine that returns earnings to normal and to estimate the direct effect of infections on

growth rates of earnings.

3 Stochastic Epidemic Model

In this section, for pedagogical purposes, we construct our stochastic model by starting with

the classic Kermack and McKendrick (1927) model. Time is continuous and the horizon is

infinite. We normalize the total population size to one and there is no birth nor death in

the population. As a key motivation is to design a tractable and parsimonious model to

conduct risk management applications, we only model two compartments (groups): infected

and infectious (I) and susceptible (S) (or equivalently uninfected).9 Within each group, the

population is homogeneous and well mixed. Let It and St denote the mass of the infected

population and the susceptible at time t, respectively. As It + St = 1 at all t, we only need

to keep track of the evolution for It, which is the single state variable in our model.

3.1 Deterministic SIS Model

Transmission rate in classic SIS setting. How does the disease get transmitted from an

infected to a susceptible? The probability that an infectious individual meets a susceptible is

9In the epidemiology literature, there are various generalized formulations of these compartmental models.
Widely used ones include SIR (susceptible, infected, recovered) and SEIR (susceptible, exposed, infected,
and recovered) models. See Andersson and Britton (2012) and Brauer, Driessche and Wu (2008) for textbook
treatments.
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proportional to the product of their population mass, It(1−It), with an effective transmission

rate, which we denote by β. Thus over the interval [t, t+ dt) the total number of new

infections is

βItStdt = βIt(1− It)dt .

The infected recovers and becomes susceptible in our model. Let γ > 0 denote the rate

at which an infected recovers. Hence, 1/γ is the duration for an infected to be infective.

Subtracting the mass for the recovered γItdt over the interval [t, t+ dt) from the newly

infected βIt(1− It)dt, we obtain the following process for dIt, the net change of It:

dIt = βIt(1− It)dt− γItdt . (1)

The solution of (1) satisfies the following logistic function:10

It =

[
β

β − γ
(
1− e−(β−γ)t

)
+

1

I0

e−(β−γ)t

]−1

. (2)

Basic reproduction number R0. The basic reproduction number, R0 is defined as the

expected number of secondary infections generated by a single (representative) infected in-

dividual in a completely susceptible population:

R0 =
β

γ
. (3)

If R0 ≤ 1 (when β ≤ γ), the disease eventually is extinct, as (2) implies limt→∞ It = 0.

If R0 > 1, the infected population It reaches the maximum level, I∞ = 1 − R−1
0 > 0 as

t→∞, provided that I0 6= 1−R−1
0 .

We will use the term basic reproduction number and reproduction number interchange-

ably. The literature sometimes refers to the effective reproduction number at time t, which

is the basic reproduction number multiplied by the susceptible mass. The effective repro-

duction number R0 (1− It) is time-varying in classic deterministic models.

10If β = γ, by applying the L’hopital’s rule to (2), we obtain It =
(
βt+ 1

I0

)−1
.
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Figure 1: The infected fraction (It) and the net change (dIt/dt) in a deterministic SIS model
with I0 = 2× 10−7 based on the US data as of March 1st and γ = 2.173 per month.

Deterministic infection forecasts. In Figure 1, we plot the infected mass It at t in

Panel A and the net change of the infected mass dIt/dt in Panel B with the initial value of

I0 = 66/(3.28× 108) = 2× 10−7 (as there were 66 infective individuals on March 1st in the

US and the US population as of 2019 is 328 million.) The solid blue lines correspond to the

solution for our deterministic case using our estimate of the transmission rate for COVID-19

that we discuss in Section 5.2. By reducing β by half from 6.616 to 3.308 per month, such

as using economy-wide lockdowns, we lower the basic reproduction number R0 by half from

3.045 to 1.522 (unlike the three structural parameters, R0 is invariant to the time horizon

we choose). As a result, the eventual infected fraction, I∞, decreases by half from 67.1% to

34.3% of the entire population.

Panel B captures the widely discussed flattening the curve argument (see, e.g., Atkeson

(2020) and Gourinchas (2020)). Here, the curve refers to the net change of the infected

population, dIt/dt, as a function of time t. If the society successfully reduces β by half

via social distancing and other interventions, this deterministic evolution curve is indeed

significantly flattened and postponed. Specifically, this curve peaks at a bit over one year

(t = 12.657 months) if β = 3.308 rather than at a bit over one quarter (t = 3.384 months).

The curve of the net change, dIt/dt, is substantially flattened.
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Note the very sharp increase of It at the very early stage. This is because early on It is

close to zero and we can thus effectively drop the (1 − It) terms and approximate It as an

exponential process: dIt ≈ (β − γ)It dt with the approximate solution: It ≈ I0e
(β−γ)t.

Obviously, exponential growth at a large rate β − γ is incompatible with convergence of

It to I∞ = 1−R−1
0 as t→∞. This is due to the dampening effect of It on its own growth.

As the fraction of the infected increases, fewer are susceptible, which lowers dIt/It. That is,

the higher the level of I, the lower the infection growth rate dIt/It.

3.2 Stochastic SIS Model

Aggregate transmission rate shock. Following Gray et al. (2011), a simple way to

model stochastic transmission is to replace the constant rate β with a stochastic rate, which

we denote by β̃. For expositional purposes, consider a discrete-time setting. The simplest

choice for a stochastic β̃ is an independently and identically distributed (i.i.d.) random

variable. Fix a small time increment ∆, we write

β̃t ∆ = β∆ + σ
√

∆ εt , (4)

where both β and σ are constant parameters and εt is a mean-zero standard normal random

variable.11 Mapping (4) into our continuous-time formulation, we obtain

β̃t dt = βdt+ σdZt , (5)

where Zt is a standard Brownian motion.

By using β̃ dt given in (5) to replace βdt in (1) and then combining drift and diffusion

terms, we obtain the following stochastic differential equation (SDE) for It:

dIt = [β(1− It)− γ] It dt+ σ It(1− It) dZt . (6)

The drift term is the same as in the deterministic SIS model, while the diffusion term

captures the uncertainty of the epidemiological evolution process. When no one is infected

11By assuming εt is i.i.d., we make the transmission rate β̃t stochastic but without introducing an addi-
tional state variable for the transmission rate. We leave generalizations of our model to allow for a richer
specification of β̃t for future work.
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(It = 0), the disease is extinct: dIt = 0 as both drift and volatility terms in (6) are zero. If

the entire population is infected (It = 1), the volatility has to be zero and the drift has to

be negative so that the model is well posed.12 Unlike It = 0, It = 1 is not an absorbing state

as γ > 0.

Note that both the drift and volatility of the growth rate for the infected population,

dI/I, depend on (1− I), the population of the susceptible. Specifically, the higher the level

of I, the lower the drift (i.e., the expected infection growth rate) of dIt/It. As the fraction

of the infected increases, fewer are susceptible, which dampens the drift of dI/I.

To complete the description of our compartmental model, below we report the dynamics

for the susceptible population St:

dSt = (γ − βSt) It dt− σ StIt dZt . (7)

Permanence of initial transmission shocks. The process for It given in (6) is not a

Geometric Brownian motion (GBM) process widely used in Economics and Finance. But

at a very early stage, It is close to zero; therefore, we can effectively drop the (1 − It)

terms in both drift and volatility functions and approximate It via a GBM process: dIt ≈

(β − γ)It dt+ σ It dZt. That is, in the early stage, It evolves as

It ≈ I0 exp

[(
β − γ − σ2

2

)
t+ σZt

]
= I0e

(R0−1)γt exp

(
−σ

2

2
t+ σZt

)
. (8)

Unlike the exponential growth approximation for It in the deterministic model, in our

stochastic model, It is not only driven by R0 but also by the (exponential) martingale,

the second exponential term in (8). This second term is equally important in driving the

dynamics of It as the first (exponential) term involving R0.

Because very few are infective early on, the change of It is highly idiosyncratic as the

diffusion term dominates the drift term. A few negative shocks early on have outsized

permanent effects on the evolution of It. On the other hand, if there are few such shocks early

on, then the total infected population stays low for an extended period of time causing the

12If volatility is not zero or drift is positive at It = 1, the probability that It exceeds one is strictly positive,
inconsistent with our model’s assumption that the total population is normalized to one.
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disease to be not that damaging. That is, in the very early stage, it is the sequence of realized

values of β̃, not the expected transmission rate β used in the deterministic compartmental

epidemic models, driving how fast the disease spreads.

Three-parameter non-linear diffusion process. We now have a three-parameter (β, γ,

and σ) non-linear diffusion process. By applying Ito’s Lemma to (6), we obtain:

d ln It = q(It)dt+ (1− It)σ dZt , (9)

where the drift for ln It is a quadratic function in It:

q(I) = β(1− I)− σ2

2
(1− I)2 − γ . (10)

Equations (9)-(10) are convenient to work with when we analyze the stationary distribution.

Stochastic Steady State (SS) and Stationary Distribution. Next we turn to the

stochastic steady state and stationary distribution to gain some intuition for why R0 is an

insufficient statistic for managing COVID-19 risks. The long-run distributional properties

of the infected fraction I depend on all three parameters in a nonlinear way. Simply relying

on R0, which is ratio between the expected transmission rate β and exit rate γ can be quite

misleading.

Unlike in the deterministic model, which generates a single number for It at any t, in

order to fully capture the disease transmission dynamics, we next characterize the time-0

conditional distribution of It for all t. Let f(It, t; I0) denote the time-0 conditional density

function for It, the infected mass at t given the initial infected mass I0.

Conditional distribution. The density function, f(I, t), satisfies the following Kolmogorov

forward equation:

0 =
∂f(I, t)

∂t
+
∂ [(β(1− I)− γ)If(I, t)]

∂I
− 1

2

∂2 [(σI(1− I))2f(I, t)]

∂I2
. (11)

The first term is the time effect on f(I, t), the second term is the drift effect on f(I, t),

and the last term is the volatility effect on f(I, t). In Section 5.3, we show how uncertainty

substantially alters the transmission dynamics.
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Next, we incorporate the impact of stochastic vaccine arrival.

3.3 Stochastic Vaccine Arrival

We assume that COVID-19 will disappear following a successful vaccine development.13

Specifically, we use the following SDE to model the evolution of It:

dIt = [β(1− It−)− γ] It− dt+ σ It−(1− It−) dZt − It−dJt . (12)

We capture this vaccine arrival effect on It via the third term, where Jt is a (pure) jump

process with a constant arrival rate, which we denote by λ. When a vaccine is successfully

developed, i.e., dJt = 1, the pandemic is extinct. We can generalize our model to allow

for a multiple-stage vaccine development process with a gradual reduction of the infected

population without losing much analytical tractability.14

4 Managing COVID-19 Risks

In this section, we develop a parsimonious yet operational model to capture the impact of

pandemic shocks on fundamentals-based valuation. We show how COVID-19 parameters β

(equivalently R0) and σ together with asset-pricing specifications impact valuation.

In Section 4.1, we propose a valuation model before unanticipated pandemic arrival. In

Section 4.2, we consider optimal mitigation after an unanticipated pandemic arrival in an

asset-pricing framework. We explicitly allow for stochastic vaccine arrival in our analysis.

4.1 Valuation Before Unanticipated Pandemic Arrival

To ease our exposition and set up the basic apparatus into which we later incorporate

COVID-19 shocks, we first introduce a simple asset-pricing model with no pandemic shocks,

i.e., under normal business-as-usual environment or when It = 0.

13The assumption that vaccine takes effect immediately is clearly made for simplicity. In reality, it may
take a while for the population to be vaccinated and not everyone will be vaccinated. We can generalize our
vaccine model to allow for a (large) fraction of the population to be vaccinated leaving a (small) fraction
still susceptible (at the cost of additional complexity.) But the core of our analysis will remain valid.

14For brevity, we leave this extension out.
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We start by specifying the following process for the widely-used simple stochastic discount

factor (SDF), M̂t, in the normal regime:

dM̂t

M̂t

= −r dt− ηB dBt , (13)

where Bt is the standard Brownian motion for the aggregate shock. Here, r is the risk-free

rate and ηB is the market price of risk for the aggregate shock.15 For simplicity, let r and ηB

be constant. Equation (13) implies a one-factor model where the factor can be the aggregate

consumption growth shock as in a representative-agent general-equilibrium model of Lucas

(1978), or the market portfolio return in the CAPM of Sharpe (1964), the option pricing

model of Black and Scholes (1973), or the portfolio choice problem of Merton (1971). Here,

ηB is positive as a positive shock dBt to the aggregate consumption growth or market return

is good news which lowers the investor’s marginal utility or equivalently M̂t.

Earnings process. We assume that the earnings process in the normal regime, Ŷt, follows:

dŶt

Ŷt
= ĝdt+ ρφ dBt +

√
1− ρ2 φ dWt , (14)

where Bt is the aggregate shock introduced in (13) andWt is the standard Brownian motion

driving earnings idiosyncratic risk. By construction, Bt and Wt are orthogonal. In (14),

ĝ is the expected earnings growth (drift) and φ is the volatility of earnings growth, which

includes the aggregate component ρφ and the idiosyncratic component
√

1− ρ2 φ. That is, ρ

is the correlation coefficient between the aggregate shock Bt and the asset’s earnings process.

For simplicity, we let ĝ, φ, and ρ all be constant.

Pricing formula. Under the assumption that investors price earnings without expecting

the possibility of a pandemic arrival, the firm’s value in the normal regime (pre- and post-

pandemic) satisfies the following standard asset-pricing equation (Duffie, 2001):

P̂t = Et

(∫ ∞
t

M̂s

M̂t

Ŷs ds

)
. (15)

15No arbitrage requires that the drift of Mt is equal to the minus interest rate, −r.
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In Appendix C, using (13) and (14) and solving (15), we show that the firm’s value is

proportional to its earnings, P̂t = p̂ Ŷt, where the price-earnings ratio, p̂, is a constant:

p̂ =
1

r + ρφηB − ĝ
. (16)

Equation (16) is the well-known Gordon growth model where
(
r + ρφηB

)
is the firm’s con-

stant cost of capital (discount rate) and ĝ is the earnings growth rate. This firm earns a risk

premium of ρφηB, which is given by the the product of the market price of risk ηB and ρφ,

the systematic volatility component of φ and consistent with the one implied by the widely

used CAPM.

4.2 Optimal Mitigation and Vaccine Arrival

Next, we incorporate pandemic shocks into our valuation model and consider the effect of

mitigation responses by both customers (consumers) and firms.

After COVID-19 arrived unexpectedly in the U.S. late February, 2020, a fraction of

consumers voluntarily engaged in social distancing and took various other precautionary

measures reducing the spread of the disease. These voluntary actions by consumers (cus-

tomers) substantially cut the transmission rate but also lower corporate earnings. Let Yt

denote the earnings process during the pandemic regime. To capture this phenomenon, we

assume that logarithmic earnings drop at the moment of COVID-19 arrival time t0 by a

stochastic fraction n(It0). That is,

Yt0 = e−n(It0 ) Yt0− , (17)

where Yt0− is the pre-pandemic arrival earnings and Yt0 is the post-pandemic arrival earnings.

The transmission rate is also lowered due to people’ change of behaviors, e.g., quarantine,

work from home, and social distancing reduce the speed of disease spreading. Let

βt0 = (1− ψ)βt0− , (18)

where βt0− is the disease’s transmission rate β (when the disease is not contained at all, and

in the absence of any behavioral response.) The parameter ψ measures the fraction of β

reduction due to customers’ voluntary behavioral adjustments.
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Next, we discuss the earnings process in the pandemic regime after t0.

Earnings process. Before the vaccine arrival at τ , we assume that Yt is given by:

dYt
Yt−

= g(It−)dt+ v(It−) dZt + ρφ dBt +
√

1− ρ2 φ dWt +
(
en(It−) − 1

)
dJt . (19)

COVID-19 influences Yt as follows. First, the infection shock dZt directly causes additional

earnings growth volatility, v(I). Second, the expected earnings growth rate (absent vaccine

arrival) is changed to g(I) from ĝ. Third, the stochastic arrival of vaccine (dJt = 1) at

t = τ causes an instantaneous (logarithmic) change of earnings from the pre-jump level,

Yt−, to the post-jump level Ŷt at t = τ . For expositional simplicity, we assume that the

percentage of earnings upward jump at the moment of vaccine arrival τ is equal to the

percentage of earnings downward decrease at the moment of pandemic arrival time t0. That

is, ln( Ŷτ/Yτ−) = n(Iτ−), where n( · ) is the same as the n( · ) function in equation (17). We

set n(0) = 0 so that earnings is continuous (Ŷτ = Yτ−), when Iτ− = 0.

Now consider a counter-factual case that helps us understand the mechanism of the

model. Suppose τ− = t0, which occurs if λ→∞. For this case, earnings is not impacted at

all by the two jumps (unexpected pandemic and vaccine arrivals) as the pandemic becomes

extinct in no time Yτ = en(Iτ−)Yτ− = en(It0 )Yt0 = en(It0 )e−n(It0 )Yt0− = Yt0−.

Additionally, earnings is still subject to the business-as-usual aggregate shock dBt and

idiosyncratic shock dWt with volatility ρφ and
√

1− ρ2 φ, respectively. All shocks are or-

thogonal to each other.16 To highlight the role of stochastic transmission shocks on both

earnings and valuation in a simple way, we assume that parameters for the business-as-usual

aggregate variables and idiosyncratic risks, do not change with the unexpected pandemic

arrival. We can of course also allow the business-as-usual parameters to also change as well

without technical difficulties, but leave these extensions out for brevity.

16Indeed, [Wt,Bt,Zt]
> is a 3 × 1 standard Brownian motion and is independent of the vaccine arrival

process Jt.
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SDF in the pandemic regime. As COVID-19 is clearly an aggregate shock, it changes

the equilibrium SDF. We model the SDF Mt in the pandemic regime as follows:

dMt

Mt−
= −rdt− ηZ dZt − ηB dBt − (1− eκ) (dJt − λdt) . (20)

As a positive pandemic shock dZt (which increases I) is bad news for the aggregate econ-

omy, investors’ marginal utility (the SDF Mt) should increase with It, which means ηZ < 0,

in contrast to a positive ηB for the business-as-usual aggregate shock dBt. The last term

captures the effect of stochastic vaccine arrival on the SDF Mt and this jump term is a

martingale under the physical measure (to be consistent with no arbitrage.17 Upon the suc-

cessful vaccine development at t = τ , i.e., dJt = 1, the SDF immediately changes discretely

from Mτ− by Mτ = eκMτ−. As a vaccine arrival is good news for the aggregate economy,

investors’ marginal utility (SDF) should decrease after vaccine arrival, which implies that

the market price of vaccine arrival risk is negative, i.e., κ < 0.

Optimal stochastic control. Let {Xt; t0 < t < τ} denote the mitigation process, which

reduces the transmission rate, during the pandemic regime. Recall our assumption that the

transmission rate is immediately reduced from the level of β (absent any behavioral response)

to βt0 by ψ fraction of β (see equation (18)). By spending Xt, the firm further lowers the

transmission rate from βt0 to βt0 − ht, where ht ≥ 0. This additional reduction obtained by

mitigation Xt captures the effects of corporate actions.

Let xt = Xt/Yt denote the scaled mitigation. We assume

ht = h(xt) , (21)

where h(x) is increasing and concave in x. The motivation for the homogeneity (in earnings

Yt) assumption underpinning equation (21) is that to cut the transmission rate by the same

magnitude h(xt), one firm whose earnings is twice the size of another needs to spend twice

as much to achieve the same levels of reduction of the transmission rate. This assumption

is reasonable as the benefit scales up with earnings and also makes our analysis tractable.

17Again, note that the drift rate of Mt is equal to the negative interest rate by no arbitrage (Duffie, 2001).
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The evolution of It given in (12) with mitigation is:

dIt = [(βt0 − h(xt−))(1− It−)− γ] It− dt+ σ It−(1− It−) dZt − It−dJt . (22)

Note that βt0 is the constant transmission rate after customers respond to the pandemic by

taking precautionary measures. That is, absent mitigation but with customers’ response,

the transmission rate is lowered from βt0− to βt0 . The basic reproduction number is then

R0(xt−) =
βt0 − h(xt−)

γ
. (23)

Additionally, we assume that mitigation is costly and lowers earnings by more than the level

of mitigation X. For simplicity we assume that mitigation incurs a (flow) fixed cost that is

proportional to Y , i.e., πYt where π > 0 is a constant measuring the size of flow fixed costs.

Let Y ∗t denote the firm’s earnings netting out of both fixed and variable costs. With the

above assumptions, the net earnings is

Y ∗t = Yt − (πYt +Xt)1Xt>0 , (24)

where 1Xt>0 is an indicator function that equals one if mitigation is strictly positive (Xt > 0)

and zero otherwise.

Next, we state the optimization problem. The firm chooses mitigation X to maximize

the following risk-adjusted present value in the pandemic regime:

Pt = max
X

Et

(∫ τ

t

Ms

Mt

(Ys − (πYs +Xs)1Xs>0) ds+
Mτ−

Mt

∫ ∞
τ

M̂s

M̂τ

Ŷs ds

)
, (25)

where τ is the stochastic vaccine arrival time. Inside the expectation operator in equation

(25), there are two terms contributing to the discounted stochastic value of earnings: the

first term is the value before the arrival of vaccine at τ and the second term is the value of

after τ . Note that there is no need to spend on mitigation after τ but anticipation of vaccine

arrival at τ fundamentally impacts the agent’s optimal mitigation before τ .

Let Ct denote the corresponding present value of mitigation costs:

Ct = Et
∫ τ

t

Ms

Mt

((πYs +Xs)1Xs>0) ds . (26)
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4.3 Solution

Valuation in the pandemic regime. Because the earnings process features geometric

growth, the firm’s value is proportional to its earnings Yt:

Pt = P (Yt, It) = p(It)Yt , (27)

where p(It) is the equilibrium price-earnings ratio.

As mitigating the disease involves a fixed flow cost πYt, the firm may choose not to

mitigate when the benefit of doing so is sufficiently low. Conditional on choosing X > 0, the

optimal scaled mitigation, x = X/Y , satisfies the following first-order condition (FOC):

1 = −h′(x(I))I(1− I)p′(I) . (28)

The level of mitigation Xt > 0 at the margin lowers the infected population mass It by

h′(xt)It(1−It)/Yt. Since the marginal increase of value from a lower level of I is −PI(Yt, It) =

−p′(It)Yt > 0, the marginal benefit of choosing Xt > 0 is equal to −PI(Yt, It)×h′(x(It))It(1−

It)/Yt = −h′(x(It))It(1 − It)p
′(It), the right side of equation (28). Optimal mitigation is

chosen so that the marginal benefit of mitigation is equal to the marginal cost (which is

one), i.e., x(I) satisfies equation (28).

In Appendix C, we obtain the following ODE for p(I):

0 = max
x≥0

−
[(
r + ρφηB + v(I)ηZ + λQ

)
− g(I)

]
p(I) + 1− (π + x)1x>0 + λQen(I)p̂

+
[
(βQ − h(x) + v(I)σ) (1− I)− γ

]
Ip′(I) +

(σI(1− I))2

2
p′′(I) , (29)

where

βQ = β(1− ψ)− ηZσ (30)

is the risk-adjusted disease transmission rate (i.e., under the risk-neutral measure Q) and λQ

is the risk-adjusted vaccine arrival rate (under the risk-neutral measure Q):

λQ = λeκ . (31)

We expect the risk-adjusted duration of the pandemic (under the risk-neutral measure Q),

1/λQ, to be longer than 1/λ, which is the expected duration of the pandemic (under the
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physical measure P). This is because vaccine arrival is good news for the aggregate economy,

which means κ < 0, as we discussed early.

Next, we turn to boundary conditions. First, as the no-infection state is absorbing, the

price-earnings ratio at I = 0 is equal to the value in the normal regime:

p(0) = p̂ . (32)

Second, consider the extreme (and counter-factual case) where everyone is infected, I = 1.

In this case, naturally there is no need to spend on mitigation, x = 0. The ODE (49) is then

simplified as[(
r + ρφηB + v(1)ηZ + λQ

)
− g(1)

]
p(1) = 1 + λQen(1)p̂− γp′(1) . (33)

This boundary condition ties p′(I) with p(I) at I = 1.

Next, we go back to the optimal mitigation choice x. As the effective transmission rate

depends on the product of I and S = 1− I, mitigation is more valuable in an interior region

of I, ceteris paribus. Given the fixed cost πYt of mitigation, it is optimal for the firm to

mitigate only when I is neither too high nor too low.

The preceding reasoning implies that the solution features three mutually exclusive re-

gions: two inaction regions and one mitigation region. Denote I and I as the endogenously

determined cutoff levels of the infected population mass for the three regions. In the regions

0 ≤ I < I and I < I ≤ 1, we have x = 0. In the region I < I < I, x > 0. The ODE for p(x)

in the mitigation region, i.e. I < I < I, is:[(
r + ρφηB + v(I)ηZ + λQ

)
− g(I)

]
p(I) = 1− (π + x(I)) + λQen(I)p̂+

(σI(1− I))2

2
p′′(I)

+
[
(βQ − h(x(I)) + v(I)σ) (1− I)− γ

]
Ip′(I) ,

(34)

where x(I) satisfies equation (28).

For the two inaction regions, i.e. 0 < I < I and I < I < 1, p(I) satisfies:[(
r + ρφηB + v(I)ηZ + λQ

)
− g(I)

]
p(I) = 1 + λQen(I)p̂+

[
(βQ + v(I)σ) (1− I)− γ

]
Ip′(I)

+
(σI(1− I))2

2
p′′(I) . (35)
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Finally, the endogenously cutoff levels, I and I, defining the three regions, satisfy:

p(I−) = p(I+), p(I−) = p(I+) , (36)

p′(I−) = p′(I+), p′(I−) = p′(I+) , (37)

p′′(I−) = p′′(I+), p′′(I−) = p′′(I+) , (38)

where I− and I+ are the left limit and right limit of I, and where I− and I+ are the left

limit and right limit of I. That is, p(I) is twice continuously differentiable across all the

three regions over the entire support [0, 1].

In summary, p(I) and the optimal mitigation policy x(I) satisfy ODE (34) and equation

(28) in the mitigation region I ∈ (I, I), and p(I) satisfies ODE (35) in the inaction regions

I ∈ (0, I) and I ∈ (I, 1), where x(I) = 0. Solving equations (34), (28), and (35) subject

to the five sets of boundary conditions given in equation (32) at I = 0, (33) at I = 1, and

(36), (37), and (38) at the endogenously chosen thresholds, I and I, we fully characterize

the model’s solution over the entire support I ∈ [0, 1] including I and I.

PV of mitigation costs. Once we have solved our optimization problem, we can calculate

the present value of mitigation costs, C(Y, I). Let c(I) = C(Y, I)/Y . Taking optimal x(I),

I, and I as given, and using essentially the same reasoning to calculate p(I), we obtain the

following ODE for c(I):[(
r + ρφηB + v(I)ηZ + λQ

)
− g(I)

]
c(I) = (π + x(I)) +

(σI(1− I))2

2
c′′(I) (39)

+
[
(βQ − h(x(I)) + v(I)σ) (1− I)− γ

]
Ic′(I) .

Because I and I are given for the purpose of calculating c(I), we only require c(I) to be once

continuously differentiable at I and I:

c(I−) = c(I+), c(I−) = c(I+) , (40)

c′(I−) = c′(I+), c′(I−) = c′(I+) . (41)

Finally, the following boundary conditions hold at I = 0 and I = 1:

c(0) = 0 , (42)[(
r + ρφηB + v(1)ηZ + λQ

)
− g(1)

]
c(1) = 1− γc′(1) . (43)
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5 Early Dynamics of COVID-19

5.1 Data

Our data on COVID-19 cases comes from COVID-19 Data Repository by Johns Hopkins

available on github. The data keeps track of confirmed new cases, deaths, recoveries each

day starting from January 22nd, 2020. The measure It in our model maps to the net number

of outstanding infected cases at t, which is equal to the sum of the last period’s It−1 and the

newly (reported) infected cases at t and subtracting deaths and recoveries, divided by the

population of that country.

We follow leading epidemiological studies of COVID-19 and focus on China and countries

(regions) that were at high risk due to air travel connected to China (Kucharski et.al. (2020)).

There are a total of 16 countries in our sample. In Asia (Middle East), there are nine

consisting of China, Japan, Malaysia, Singapore, South Korea, Taiwan (China), Thailand,

United Arab Emirates and Vietnam. Among Western countries, these include Australia,

Canada, France, Germany, Italy, United Kingdom, and United States.18

While all these countries have significant air travel connections to China, they did not

experience the same infection path. This is consistent with our model that each country

experienced idiosyncratic paths (realizations) of transmission shocks at early stages.

In Figure 2, we plot the logarithmic growth rate d ln(It) for four countries of interest,

China, Singapore, US, and Italy. We can see that the epidemic curve of China reversed in

the second half, while Singapore which had a fairly flat curve in the first half took off in

the second half. The same is true for Italy and the US. Again, most of the countries in our

sample only started mitigation responses later in the second half of the sample and it took

time for them to have an effect.

18Five of the original high-risk regions, Cambodia, India, Indonesia, Philippines and Russia, had no cases
in January-February, so we exclude them from our analysis. These countries are also thought to be the most
problematic in terms of underreporting of cases. See Manski and Monlinari (2020) for a discussion of biases
in estimates of transmission rates associated with underreporting.
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(a) China (b) Singapore

(c) Italy (d) US

Figure 2: Daily changes in ln It, logarithmic infected population over time with shaded area
beings the 95-percent confidence intervals.

5.2 Estimation

We fit our model to the data for the January-February period. Given the noisiness and short

time series of the data, we do not attempt to capture the potential heterogeneity in models

across regions. Rather we think it is appropriate to fit one model by pooling the 16 regions.

We pursue a robust estimation strategy as follows. For each region, we can estimate β and

σ using the brief time series. But we use as our estimate the mean of the values across the

16 regions weighted by the number of daily observations in each region. For instance, China

has more observations in the first sub-period and thus gets more weight in our estimate. We

can then judge the sensibility of our estimates by comparing them to leading models of the

early dynamics of COVID-19.

As we have pointed out a couple of times already, most mitigation responses only started
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in March. Hence, we view our estimates as representative of the underlying epidemic process

or early COVID-19 dynamics absent any mitigation responses.

Calibration of γ. Earlier epidemiological studies typically set γ by targeting the expected

duration for an infected and infective individual to 14 days, which implies that the rate γ is

equal to 1/14 per day, or γ = 365/12/14 ≈ 2.173 per month. (Recall that in our convention,

one period is one month.) Epidemiological studies typically view γ as highly predictable and

relatively easy to estimate. They typically model this parameter as an Erlang distribution

(Kucharski et.al. (2020)). By fixing γ, we leave out the impact of uncertainty of the exit

rate on the disease spread.

Estimate of β. In Appendix A, we derive an OLS estimator for β given γ:

β̂ =
1

N − 1
ΣN−2
i=0

Ii+1

Ii
− 1 + γ

1− Ii
. (44)

Table 1 reports the distribution of the estimate across regions. We use the mean estimate

from the January-February sample (6.616 per month) as our baseline estimate with a 90%

CI of (2.443, 14.168).

Table 1: The percentiles and moments for the monthly estimates of parameters β and σ2

with implied R0 based on the data during the period of January-February 2020.

Percentiles Moments

Estimates 5% 25% 50% 75% 95% Mean Std. Dev.

β 2.443 4.191 6.332 8.246 14.168 6.616 3.242

σ2 0.718 1.138 1.436 4.791 8.857 2.851 2.537

R0 1.124 1.928 2.915 3.795 6.521 3.045 1.493

Estimate of σ2. In Appendix A, we show that the estimator for σ2 is

σ̂2 =
ΣN−2
i=0 (ln Ii+1 − ln Ii)

2

ΣN−2
i=0 (1− Ii)2

. (45)
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Table 1 reports the distribution of the estimate across regions. We use the mean estimate

of σ2 from the January-February sample (2.851 per month) as our baseline estimate with a

90% CI of (0.718, 8.857). The implied estimate of σ is then 1.689 =
√

2.851 per month.

Estimate of the basic reproduction number R0. Our estimate of the basic reproduc-

tion number R0, shown in Table 1, is 3.045 = 6.616/2.173 with a 90% confidence interval of

(1.12, 6.52) based on data from the period of January-February. As we have mentioned in

the Introduction, our estimates are in line with leading studies.

5.3 Vaccine Arrival Rates and Conditional Infection Distributions

We now focus on estimates and outcomes for the US, though our discussion equally applies

to the aforementioned regions in our out-of-sample forecast analyses. We compare these

conditional forecasts to the solution for the deterministic SIS model (σ = 0). In Table 2, we

calculate the impact of vaccine arrival on the conditional mean and standard deviation of It

for varying expected arrival rates.

We start at Panel A where there is no vaccine. We report the conditional means and

variances for our stochastic SIS model with 1, 2, 4, 6, 8 weeks and 3, 4, 6, 9, 12, 24 months

time horizons. Note that at the very early stage, e.g., from 1 week up to 6-8 weeks, the condi-

tional mean forecast of I in our stochastic model is essentially the same as in the deterministic

model — this is because the stochastic exponential growth approximation works well when

It is very low. Starting from 3 months, this approximation no longer works. Deterministic

model infection forecasts based on R0 overshoot our model’s conditional forecasts by a sig-

nificant mount (0.104 for the deterministic model and 0.031 for our stochastic model). This

is due to Jensen’s inequality. In around one to two years, the conditional distribution gets

sufficiently close to the stationary distribution. While the conditional distribution results

are new in our paper, the stationary distribution was characterized by Gray et al. (2011).

Furthermore, the conditional volatility is highly nonlinear and non-monotonic in the time

horizon. For example, for the 3-month-ahead forecast, the monthly volatility of It (9.5%) is

more than three times the mean (3.1%). Even with 6 months out, while the expected infected
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Table 2: Effects of Vaccine Arrival Rate, λ, on Conditional Distributions of It. Other
parameter values are: β = 6.616, γ = 2.173, and σ = 1.689 per month. The implied value of
R0 is 3.045.

A. No Vaccine (λ = 0) B. Six Months (λ = 2
12)

Deterministic Stochastic Deterministic Stochastic

t It E(It)
√

Var(It) It E(It)
√
Var(It)

1 wk 5.6 ∗ 10−7 5.6 ∗ 10−7 5.4 ∗ 10−7 5.4 ∗ 10−7 5.4 ∗ 10−7 5.4 ∗ 10−7

2 wk 1.5 ∗ 10−6 1.5 ∗ 10−6 2.5 ∗ 10−6 1.4 ∗ 10−6 1.4 ∗ 10−6 2.5 ∗ 10−6

4 wk 1.2 ∗ 10−5 1.2 ∗ 10−5 4.4 ∗ 10−5 1.0 ∗ 10−5 1.0 ∗ 10−5 4.0 ∗ 10−5

6 wk 9.3 ∗ 10−5 9.2 ∗ 10−5 6.0 ∗ 10−4 7.3 ∗ 10−5 7.3 ∗ 10−5 5.4 ∗ 10−4

8 wk 7.1 ∗ 10−4 6.8 ∗ 10−4 5.2 ∗ 10−3 5.2 ∗ 10−4 5.0 ∗ 10−4 4.5 ∗ 10−3

3 mo 0.104 0.031 0.095 0.061 0.019 0.076

4 mo 0.630 0.165 0.235 0.323 0.084 0.188

6 mo 0.671 0.519 0.251 0.248 0.191 0.294

9 mo 0.671 0.636 0.151 0.150 0.142 0.275

12 mo 0.671 0.639 0.146 0.091 0.086 0.225

24 mo 0.671 0.639 0.144 0.012 0.012 0.088

∞ 0.671 0.639 0.144 0 0 0

C. One Year(λ = 1
12) D. Two Years (λ = 0.5

12 )

Deterministic Stochastic Deterministic Stochastic

t It E(It)
√

Var(It) It E(It)
√
Var(It)

1 wk 5.5 ∗ 10−7 5.5 ∗ 10−7 5.4 ∗ 10−7 5.5 ∗ 10−7 5.5 ∗ 10−7 5.4 ∗ 10−7

2 wk 1.5 ∗ 10−6 1.5 ∗ 10−6 2.5 ∗ 10−6 1.5 ∗ 10−6 1.5 ∗ 10−6 2.5 ∗ 10−6

4 wk 1.1 ∗ 10−5 1.1 ∗ 10−5 4.1 ∗ 10−5 1.2 ∗ 10−5 1.2 ∗ 10−5 4.2 ∗ 10−5

6 wk 8.2 ∗ 10−5 8.2 ∗ 10−5 5.7 ∗ 10−4 8.7 ∗ 10−5 8.7 ∗ 10−5 5.9 ∗ 10−4

8 wk 6.1 ∗ 10−4 5.8 ∗ 10−4 4.9 ∗ 10−3 6.6 ∗ 10−4 6.3 ∗ 10−4 5.1 ∗ 10−3

3 mo 0.078 0.024 0.085 0.089 0.027 0.090

4 mo 0.450 0.117 0.213 0.531 0.138 0.225

6 mo 0.408 0.314 0.321 0.523 0.403 0.310

9 mo 0.318 0.300 0.334 0.462 0.437 0.321

12 mo 0.247 0.235 0.321 0.407 0.387 0.333

24 mo 0.091 0.086 0.225 0.247 0.235 0.320

∞ 0 0 0 0 0 0
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mass is 51.9% of the population, one standard-deviation is still 25.1%. The volatility declines

once we go beyond 9 months out (Around 9 months, the volatility peaks at 0.321.) In other

words, infection forecasts based on a deterministic model can be poor approximations for

the conditional forecasts of our model for a large range of periods.

Importantly, the degree to which the deterministic model is a poor approximation de-

pends on the vaccine arrival rate. In Panels B, C, and D, we consider the expected vaccine

arrival time of 6 months, 1 year and 2 years. Consider Panel B where the vaccine is expected

to arrive in six months. In this setting, infections at 4 months is 0.323 for the deterministic

model and expected to be 0.084 for the stochastic model. In Panel A where the vaccine is

not available, the corresponding numbers are 0.630 and 0.165.

Intuitively, when the initial fraction of the infected is low, the It process is approximately

a Geometric Brownian motion with outsized drift β and volatility σ parameters. This means

that shocks early on have permanent and very large effects. A vaccine that quickly arrives

significantly truncates the duration of the pandemic substantially dampening the impact of

shocks to this I process, thereby leading to the deterministic model being a better approxi-

mation.

More generally, while an eventual vaccine arrival will make the disease extinct, the con-

ditional moments of It vary significantly with the expected arrival vaccine rate λ. Panel B

shows that if the vaccine is expected to arrive soon (e.g., six months and hence λ = 2/12),

the current conditional forecast of It for any horizon t is much lower than without vaccine

arrival and peaks around 6 months at 19%. Panel C shows that if the vaccine is expected

to arrive in one year and hence λ = 1/12, the current conditional forecast of It for any

horizon t is much lower than the forecast without vaccine arrival (see Panel A with λ = 0).

It peaks around 6 months at 31.4%, lower than the six-month-ahead forecast of 51.9% for

the no-vaccine case, but higher than the six-month-ahead forecast of 19.1% for the more

optimistic case with λ = 2/12.

Similarly, as we increase the expected waiting time for vaccine to two years (with a

corresponding value of λ = 0.5/12 in Panel D) or no vaccine (Panel A), the expected infected

fraction can reach as high as 44% and 64% around 9 months. These high numbers indicate
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that waiting for vaccine to arrive will cause a very large fraction of the population to be

infected absent behavioral responses even though in the long run COVID-19 goes extinct in

our model due to the eventual arrival of vaccine by assumption.

6 Mitigation, Earnings, and Stock Market Valuation

We now present the solution of our model. We first discuss how we calibrate our model and

then work through the four key predictions.

6.1 Calibration

Table 3 summarizes the parameter values of our calibration.

Earnings process. We set the annual earnings growth rate in normal times, ĝ, to 5% and

the correlation coefficient between earnings growth and business-as-usual risk, ρ, to one.

Next, we specify the impact of the pandemic shock on the asset’s earnings growth (drift)

function g(It) as follows:

g(It) = ĝ
(

1− ζ1I
ζ2
t

)
, (46)

where ĝ is the drift in normal times. The two parameters that govern the impact of infection

rates on earnings growth are ζ1 and ζ2. First, as It = 0 is an absorbing state, we set g(0) = ĝ

so that our pricing equation model is consistent with that under normal times. Second,

earnings growth g(It) is decreasing with It but at a slower rate as It increases implying

ζ1 > 0 and 0 < ζ2 < 1. While there is no historical data with which we can nail down these

parameters, for our baseline we choose ζ1 = 3 and ζ2 = 0.25 so that g(0.1) = −2/3× ĝ and

g(1) = −2× ĝ. These are moderate long-run declines in growth rates absent mitigation. We

set v(I) = 0 for simplicity. That is, infections will only affect the drift but not the volatility

of earnings.

Finally, we specify the n(I) function in the earnings process that appear at t0 and τ as:

n(I) = α1I
α2 , (47)
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where α1 > 0 and α2 > 0. Recall that I = 0 is an absorbing state and n(0) = 0. We

obtain α1 = 18% and α2 = ln(2/3)
ln(It0 )

by targeting n(It0) = 12%, where It0 = 2 × 10−7, and

n(1) = 1.5× n(It0) = 18% at the moment of COVID-19 arrival time t0.

Asset-pricing parameters. We set the annual risk-free rate r at 4%, the annual stock

market volatility σm at 20%, and the annual stock-market risk premium (rm−r) at 6%. The

implied annual Sharpe ratio of the stock market ηB = (rm− r)/σm, which is also the annual

market price of business-as-usual risk in our CAPM model for the normal regime, is equal to

6%/20% = 30%. The implied asset’s beta is (ρφ/σm)×(rm−r) = ρηBφ = 1×30%×20% = 6%

and the cost of capital for this asset is equal to 4% + 1× 6% = 10%. As we set ĝ = 5%, the

price-earnings ratio in normal times, p̂, is then equal to 1/(10% − 5%) = 20, given by the

Gordon growth model in equation (16).19

Next we set the pandemic asset pricing parameters. We set the market price of pandemic

risk ηZ at −0.4 and the market price of vaccine arrival timing risk κ at −1. As v(I) = 0,

the only effect of ηZ is that for pricing purposes we need to use the risk-adjusted βQ, which

is different from β under the physical measure. Equation (30) implies the risk-adjusted

transmission rate is larger than the real transmission rate for the pandemic (controlling for

customers’ voluntary precautionary response): βQ = β(1− ψ)− ηZσ > β(1− ψ).

For the vaccine arrival rate λ, we set it at 1.1 per annum, consistent with optimistic

assessment by scientists in the media. With κ = −1, the risk-adjusted vaccine arrival rate is

λQ/λ = 1.1×eκ = 0.404. That is, the risk-adjusted expected duration of the pandemic regime

(under the risk-neutral measure Q), 1/λQ, is about two and half years, which is much longer

than the expected duration of the pandemic regime under the physical measure, 1/λ = .9

years.

Pre-mitigation COVID-19 dynamics, customers’ response, and mitigation tech-

nology. We take the parameter values for COVID-19 dynamics absent mitigation from our

19For expositional simplicity, since we want to focus on the implications of vaccine arrival rates and
stochastic transmission shocks, we have set the risk-free rate and business-as-usual risk to be the same
across the normal and pandemic regimes. Of course, given the government interventions, these risks might
have changed as well and one can adjust the calibration for different parameters in the pandemic regime.
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estimates. For the period t < t0, where t0 is the arrival time of the COVID-19, the basic

reproduction number (absent mitigation) is Rt0− = βt0−/γ = 6.616/2.173 = 3.045.

After the arrival of pandemic, customers’ awareness and their voluntary cautionary mea-

sures automatically lower the speed at which the disease spreads, however, at the cost of

lower earnings. Customers who stop consuming when the pandemic arrives and will not

return until a vaccine arrives is assumed to lead to a decrease of earnings by a fraction of

1− e−n(It0 ) = 1− e−0.12 = 11.3%, i.e., n(It0) = 12% in equation (17).

The reduction of consumption also reduces the transmission rate of COVID-19. Even

absent the firm’s mitigation, the basic reproduction number decreases from Rt0− to Rt0 =

βt0/γ = Rt0−(1−ψ) due to customers’ voluntary precautionary actions. By setting ψ = 0.26,

customer awareness and precaution lower the basic reproduction number to Rt0 = 3.045 ×

0.74 = 2.25 from Rt0− = 3.045.

Next, we parameterize the firm’s mitigation technology. We assume that provided that

the firm spends on mitigation, it incurs a flow fixed cost πYt. We set π = 5%. Conditional

on choosing mitigation, the firm mitigation efficacy function takes the following form:

ht = h(xt) = θ1x
θ2
t . (48)

We set the parameter θ1 to 20 per year (20/12 per month) and the curvature of firm mitigation

efficacy θ2 to 0.032.

6.2 Asset Pricing Absent Mitigation by Customers and Firms

Before analyzing the impact of mitigation (by customers and firms), we first summarize the

asset valuation results absent any mitigation. This counterfactual exercise helps us better

understand the value of mitigation on valuation.

Absent mitigation, the pricing ODE (34) for p(I) can be simplified as:

[(
r + ρφηB + v(I)ηZ + λQ

)
− g(I)

]
p(I) = 1 + λQp̂+

(σI(1− I))2

2
p′′(I) (49)

+
[(
βQ + v(I)σ

)
(1− I)− γ

]
Ip′(I) .

As neither firms nor customers mitigate, R0 = β/γ and βQ = β − ηZσ as ψ = 0.
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In Table 4, we focus on the first case where R0 = 3.045 absent any mitigation at all time

and analyze the conditional dynamics of p(I) as we vary the vaccine arrival rate λ.

Panel A shows that without the possibility of vaccine, the price-earnings ratios with-

out and with stochastic transmission shocks are very close and they decrease from for the

one-week ahead forecasts (5.53 and 5.64) to the long-run forecast (5.38 and 5.43), respec-

tively. Absent vaccine and mitigation of any type, the stock market valuation reduction is

catastrophic.

Moreover, absent a vaccine and mitigation, the valuation ratio declines with the forecast

horizon due to a growth rate effect via a Gordon growth formula. We have assumed that

growth rates are adversely affected by infection levels. Since infections are expected to rise

over time, valuation ratios over time reflect increasingly lower growth rates. This result is

easiest to see in the deterministic model—in the steady state, we have a high infection rate,

negative growth and low valuation ratios.

Absent vaccine and mitigation of any type, the predictions for the deterministic and

stochastic models are quite similar. We use the simpler deterministic model to shed lights

on the mechanism. With no epidemic shocks, the It process converges to the steady state

ISS = 1−R−1
0 as t→∞ and the equilibrium price-earnings ratio p(I) at ISS is given by

p(ISS) =
1

r + ρφηB − g(ISS)
=

1

r + ρφηB − g0 (1− ζ1 · (ISS)ζ2)
, (50)

where g(ISS) is the long-term growth rate, r is the risk-free rate r, and ρφηB is the risk

premium. This is a version of the Gordon growth model where the sum of the latter two

terms is equal to the discount rate.

Quantitatively, with our baseline parameter values, It gets very close to ISS = 0.67 at

around 4.8 months (0.4 year) and the long-run growth rate is g(ISS) = −8.58%. Of course.

this negative long-run growth rate is quite counterfactual. Later we show that vaccine

arrival significantly alters the model’s prediction. With r = 4% and ρφηB = 6%, we obtain

p(ISS) = 5.384 for the deterministic model. This highly counter-factual prediction hints the

importance of the vaccine arrival and/or mitigation.

However, provided that an effective vaccine is expected to arrive and its arrival reverts
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the economy to the normal, even absent any intervention, the price-earnings ratio becomes

much closer to what we observe in the data. This is true even when investors expect an

arrival of an effective vaccine around two years, which is on the longer end of forecasts,

as shown in Panel D. With an expected vaccine arrival time of one year (Panel C) and

stochastic transmission rates, the expected price-earnings ratio p(It) is 15.8 (if t maps to

one week), which is 21% lower than the pre-pandemic price-earnings ratio of 20. Intuitively,

the forecasted p(I) in the long run (steady state) is equal to the pre-pandemic value p̂ of

20. As such, with a vaccine, valuation ratios are rising over time since the vaccine arrival is

expected to be closer the longer the forecast horizon.

Table 4 shows that even without any mitigation, whether the possibility of a vaccine

arrival is priced in or not makes a fundamental difference on valuation. The pricing results

with the possibility of vaccine arrivals are much closer to what we observe in reality. However,

as we show later in this section, purely relying on vaccine without active mitigation by firms

and/or customers, we are still unable to explain a number of other features of stock price

dynamics. Nonetheless, the preceding counterfactual reported in Table 4 serves as a natural

benchmark against which we calculate the value of optimal mitigation.

In Section 7, we conduct the counterfactual for the other case where firms do not mitigate

but customers do. In this case, R0 = β(1− ψ)/γ. We choose ψ to target R0 = 2.25.

6.3 Optimal Mitigation Policy

In Figure 3, we plot the optimal mitigation policy x(I) as a function of ln(I). Because our

estimated reproduction number is high, the benefit of mitigation is sufficiently high. The

firm’s optimal strategy involves incurring fixed costs over a large range of infections rates

(i.e. I → 0 and I = 0.947). In our calibration, the firm mitigates even when infection rates

are tiny. For example, even when I = 2× 10−7, which means 66 infected in the US, the firm

chooses x(I) = 0.02. Adding the fixed cost π = 5%, the initial cost of mitigation is about

7% of the (gross) earnings.

Panel A shows that the optimal mitigation policy x(I) is non-monotonic in infection
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Figure 3: This figure plots the optimal mitigation policy, implied R0(x), price-earnings ratio
pe(I) and scaled mitigation cost ce(I). All parameter values are given in Table 3. The range
for active mitigation is I ∈ (I, I), where I → 0 and I = 0.947.

rates. It is initially increasing with I due to the option value of waiting. Transmission

volatility implies there is a chance that the infections at very early stage will die out so it is

optimal for the firm not to choose too high x(I) for very low levels of I. Mitigation spending

peaks when the (net) infected population reaches I = 1.8% (corresponding to ln(I) = −4),

at which point it then declines due to congestion effects since the susceptible population

(1− I) decreases.

In Panel B, we see that mitigation ensures that the basic reproduction number R0(x)

stays at around 1.56. Only when It ≥ 0.947, the firm no longer mitigates. As a result, R0(x)

goes back up to 2.25 which is the reproduction number when only customers mitigate and

the firm loses around 11.3% of its (gross potential) earnings as a result.
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In Panel C, we plot the price-to-earnings ratio pe(It) = Pt/Y
∗
t where Y ∗t is earnings net of

mitigation costs. Because of optimal mitigation and a vaccine arrival rate of 1.1 per annum,

the price-to-earnings ratio is actually higher during the pandemic than the price-to-earnings

ratio p̂ in the normal period, which is 20 in our baseline specification. The reason is that

earnings are net of mitigation costs which pulls down the denominator in pe(I) but the price

Pt is less affected by mitigation as vaccine arrival effectively shortens the duration of the

pandemic making the COVID-19 shock transitory. Notice that pe(I) first rises and then

decreases with mitigation x, as mitigation x(I) peaks for an interior value of I.

Finally, in Panel D, we also plot ce(It) = Ct/Y
∗
t , the present value of mitigation costs

scaled by earnings Y ∗t (net of mitigation costs) as a function of ln(I). The present value

of these costs peaks also first increases and then decreases with infection rates. Notice

moreover that even when I ≥ 0.947, c(I) remains positive and high since there is a chance

that infections might fall to a lower value, at which point mitigation becomes valuable again.

6.4 Optimally-Mitigated Infection and Earnings Processes

To better understand our model’s mechanism, we simulate a path of outcomes in Figure 4

with the initial value of Y−0.5 = 1 at t = −0.5. At t = 0, the pandemic unexpectedly arrives

with an initial infection level of I0 = 2×10−7. Panel A show a path of the optimally mitigated

earnings process Y ∗t . It jumps down at t = 0 for two reasons. One is that some customers

withdraw consumption and the other is the firm’s optimal mitigation. As a result, earnings

Y ∗t drops by around 20% at t = 0, remains relatively low during the pandemic (0 < t < 1)

compared with the pre-pandemic period (−0.5 < t < 0), and then rebounds by a discrete

amount when the vaccine arrives at t = 1 for two reasons, customers demand jump back up

and the elimination of mitigation costs.

The infection process It cannot be perfectly controlled due to aggregate transmission

shocks in contrast to deterministic models. While the COVID-19 infection process I is well

managed most of the time, It still once in a while spikes up exceeding 1× 10−3, as we see in

Panel B. Panels E and F show that mitigation at the intensive margin Xt and the present

value of mitigation costs, Ct, fluctuates with infection rate It.
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Figure 4: In this simulation, the pandemic unexpectedly arrived at t = 0 and the vaccine
arrives at t = 1. Customers’ precautionary responses lower the basic reproduction number
from R0− = β0−/γ = 3.045 (based on our pre-mitigation estimates) to R0 = β0/γ = 2.25
absent the firm’s mitigation. The simulation starts with Y−0.5 = 1 and the initial level of the
infection rate is I0 = 2× 10−7 at t = 0. All parameter values are given in Table 3.

6.5 Stock Price and Price-to-Earnings Ratios

We next turn to stock price dynamics. Panel C of Figure 4 shows that the stock price Pt

jumps downward at t = 0 when the pandemic unexpectedly arrives and upward at t = 1

when the vaccine arrives. In the interim, the higher infection realizations lead to lower asset

prices. These features match well the experience of a number of countries including the US

that had to deal with unexpected resurgence of COVID-19 in early March, followed by a

period where the reproduction number fell but then unexpectedly rose in the Summer of

2020.

Moreover, Panel D shows more precisely that the price-to-earnings (net of mitigation
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of costs), pet = Pt/Y
∗
t , is actually higher during the pandemic than in the normal period

consistent with data. The median price-to-earning ratio has risen from around 20 pre-

pandemic to around 23.5 during the pandemic. With both optimal mitigation and a vaccine

expected to arrive around one year, infections rarely get out of hand and the mitigation costs

are temporary. Hence, prices do not fall much even as earnings Y ∗t are temporarily low.

7 Counterfactual and Comparative Statics

7.1 Counterfactual
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Figure 5: Counterfactual analysis: Comparing simulated paths for earnings (net of mitiga-
tion costs) Y ∗t , It, stock price Pt, and price-earnings ratio pet = Pt/Y

∗
t with and without

mitigation. All parameter values are given in Table 3.

Finally, we demonstrate the effect of mitigation via a counterfactual in Figure 5 for

what would happen to stock prices absent mitigation by the firm. This is the second case
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described in Subsection 6.2, where customers’ voluntary and precautionary measures causes

the basic reproduction number R0 to drop from 3.045 to 2.25 once the public becomes

informed about the pandemic at t0. The red lines depict the no-mitigation counterfactual.

First, notice that at t = 0, earnings (net of mitigation costs), Y ∗t , falls less when the firm

does not mitigate. But Y ∗t nonetheless still falls since some customers would withdraw

purchases. Moreover, because the firm does not mitigate, the infection rate is much higher

as we can see from Panel B. The earnings level with mitigation is initially lower than if

the firm did not mitigate. However, earnings under the no-mitigation scenario deteriorates

more than under the mitigation scenario. This of course is because infections get out of

control with about 80% of the population infected at t = 0.6 in this simulation. This higher

level of infections damages earnings growth. Once the vaccine arrives (in our simulation at

t = 1), earnings actually jump more and end up being higher with mitigation than without

mitigation. Because stock price Pt is proportional to earnings in the post-pandemic regime

with the same coefficient given in equation (16), stock price also jumps more with mitigation

than without at t = 1. In summary, the mitigation strategy outperforms the non-mitigation

counterfactual because earnings and price are higher under the mitigation scenario when the

vaccine arrives.

As a result, the stock market absent mitigation would be down by about 15% relative to

the stock price under the optimal mitigation policy (Panel C). In contrast to the mitigation

scenario, where the pe ratio hovers around 23.5, pe ratio is below 20 in the no-mitigation

counterfactual (as seen in Panel D) due to multiple channels: damage to earnings growth

and higher risk premia for stochastic transmissions. Hence, mitigation leads to less damage

to stock markets.

Our model and this counterfactual in particular can give an account of asset price dy-

namics — dramatic plunge in the stock market in late February 2020 and equally dramatic

rebound in late March 2020. An-oft cited explanation for the rebound is that unexpected

government intervention help alleviate elevated risk premia due to COVID-19 (Elenev, Land-

voigt, and Van Nieuwerburgh (2020)). In our model, an important source of elevated risk

premia and stock market volatility is aggregate transmission shocks.
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But interventions by the Federal Reserve Bank in credit markets also coincided with a

strong response by society to mitigate via social distancing. As such, our counterfactual also

points to another explanation. Investors might have thought that society failed to control

the virus initially (which corresponds to our counterfactual of no mitigation leading to lower

stock market values) but subsequently learned that they were going to (and hence the market

rebounded to the equilibrium prices under optimal mitigation).

7.2 Comparative Statics

Next, we consider several key comparative statics to gain further insights about our model.

Effect of transmission volatility σ. In Figure 6, we examine how our solution varies

with transmission volatility σ. Our focus is on x(I). First, Panel A shows that when the

infected population is small, the higher the volatility, the lower the mitigation level x(I).

This is due to the option value of waiting at low levels of I. When I is low, the drift of

I is positive and large. When transmission volatility σ is low, the dynamics of I is similar

to a deterministic model. In the case with both low σ and low I, mitigating early and

aggressively is optimal as it is very likely that I becomes large rather quickly (the drift of

ln(I) is exploding). However, when I is low and σ is large, it is possible that the disease may

die out on its own when there are only a few infected.20 This explains why x(I) decreases

with σ when the infection rate I is low.

While the infected population I is large, the effect of σ on x(I) reverses: the higher the

volatility σ, the higher the level of mitigation x(I). The intuition is as follows. When I is

sufficiently high, the drift of I is negative due to the congestion effect (as the susceptible

population S = 1−I is low) and mitigation decreases with I. Fixing I at a high value, a less

volatile I process is more likely to take I to the left (as the negative drift effect of I plays a

stronger role). As a result, the marginal benefit of mitigating when σ is low is smaller. This

implies that for sufficiently high values of I, mitigation increases with σ.

20Consider the scenario where a few infected all quarantine themselves. In this case, the disease becomes
extinct.
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Figure 6: The effects of volatility σ on mitigation x(I) and R0(x). All parameter values are
given in Table 3.

Panel B demonstrates the effects of volatility on R0(x). As R0(x) decreases with miti-

gation x, the effect of volatility σ on R0(x) is the opposite of that on x(I).
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Figure 7: The effects of vaccine arrival rate λ on mitigation x(I) and R0(x). All parameter
values are given in Table 3.

Effect of vaccine arrival rate λ. Figure 7 shows that the (scaled) mitigation level xt

decreases with the vaccine arrival rate λ (see Panel A). The intuition is as follows: The longer
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the (expected) duration of the disease 1/λ, the more valuable it is for the firm to spend on

mitigation as shocks to I are highly persistent. Mitigating today lowers I which in turn

lowers the future I in expectation. The longer the pandemic, the more valuable mitigation

is and hence the higher the level of mitigation. The general non-monotonic pattern of x(I)

remains for a given λ.

Panel B demonstrates the effects of λ on R0(x). As R0(x) decreases with mitigation x,

which decreases with λ, it is immediate to see that R0(x) increases with λ. However, the

quantitative effect is small. This suggests that the firm has a target R0 when choosing to

mitigate. When the firm chooses not to mitigate, its R0(x) shoots up as we see when I is

near one.
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Figure 8: The effects of vaccine arrival timing risk premium κ on mitigation x(I) and R0(x).
All parameter values are given in Table 3.

Effect of vaccine timing risk premium κ. Panel A of Figure 8 shows that the higher

the vaccine arrival timing risk (a more negative value of κ), the more costly the pandemic

shock is. As a result, the benefit of mitigating the disease increases with vaccine timing

risk |κ| and therefore mitigation x increases with |κ| for a given level of I. The general

non-monotonic pattern of x(I) remains for a given κ.

Panel B demonstrates the effects of κ on R0(x). As R0(x) decreases with mitigation x,
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it is immediate to see that the higher the risk premium (a more negative κ), the lower the

value of R0(x). However, the quantitative effect is small. Again, this suggests that the firm

has a target R0 when choosing to mitigate. When the firm chooses not to mitigate, its R0(x)

shoots up as we see when I is near one.
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Figure 9: The effect of interest rate r on mitigation x(I), R0(x), price-earnings ratio pe(I)
and scaled mitigation cost ce(I). All parameter values are given in Table 3.

Effect of lower interest rate r in the pandemic regime. In Figure 9, we show that

as we decrease the (annualized) interest rate r (from 4% to 1%), the future earnings carry

a greater weight for valuation, and as a result, mitigation x(I) increases (Panel A). Panel

B shows that the endogenous R0 is about the same for both levels of r. Panel C shows

that the equilibrium price-earnings ratio pe(I) as a result increases as r decreases. That is,

as fiscal and monetary intervention measure were taken, pe(I) naturally increases. Panel D
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shows that the (scaled) present value of mitigation cost, ce(I), also increases as the interest

rate decreases, again for the same present-value argument: higher mitigation spending x(I)

discounted at a lower rate.
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Figure 10: The effect of market price of risk ηB in the pandemic regime on mitigation x(I),
R0(x), price-earnings ratio pe(I) and scaled mitigation cost ce(I). All parameter values are
given in Table 3.

Effect of higher business-as-usual risk premium in the pandemic regime. In Fig-

ure 10, we show that as we increase the (annualized) market price of business as usual risk ηB

(from 30% to 60%), the future earnings carry a smaller weight for valuation, and as a result,

mitigation x(I) decreases (Panel A). Panel B shows that the endogenous R0 is about the

same for both levels of ηB. Panel C shows that the equilibrium price-earnings ratio pe(I) as a

result decreases as ηB increases. Panel D shows that the (scaled) present value of mitigation

cost, ce(I), also decreases as the market price of business as usual risk ηB increases, again
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for the same present-value argument (a higher market price of risk discourages mitigation

spending and lowers the present value, ce(I).)

8 Conclusion

We propose a parsimonious epidemic model that highlights the importance of transmission-

rate shocks due to unpredictable environmental factors and the prospect of stochastic vac-

cine arrival. The model is a four-parameter nonlinear diffusion process amenable for risk-

management applications in areas such as economics and finance. We integrate the model

into an asset-pricing framework that accounts for a potential vaccine and optimal mitiga-

tion so that we can quantify the financial damage of COVID-19 and relate this damage to

epidemic data.

Our model has a number of implications for risk management including (1) the accuracy

of deterministic model approximations depend on the vaccine arrival rate; (2) transmission

volatility introduces an option-value-of-waiting consideration for the firm causing the optimal

mitigation policy to be non-monotonic in infection rates; (3) a pandemic can lead to higher

price-to-earnings ratios; and (4) stock market values would be significantly lower absent

mitigation.
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Appendices

A Estimation

Estimation of β. We use ordinary least squares (OLS) method to estimate the parameter

β for a given value of γ. Discretizing It in (6) gives

It+∆ = It + (β(1− It)− γ)It∆ + σ It(1− It)
√

∆ εt+∆ , (A.51)

where ∆ is the time increment, εt+∆ is a standard normal random variable, and

( It+∆

It
− 1)− (β(1− It)− γ)∆

1− It
= σ
√

∆ εt+∆ ∼ N (0, σ2∆) . (A.52)

Let N denote the sample size. We choose an estimate of β to minimize the following:

ΣN−2
i=0

(
(
I(i+1)∆

Ii∆
− 1)− (β(1− Ii∆)− γ)∆

1− Ii∆

)2

. (A.53)

The preceding equation implies that the estimate of β, β̂, is given by

β̂ =
1

N − 1
ΣN−2
i=0

I(i+1)∆

Ii∆
− 1 + γ∆

1− Ii∆
. (A.54)

And then by setting ∆ = 1 in (A.54) we obtain β̂ given by (44). By setting ∆ = 1, the

variance of β̂ is given by

Var(β̂) = E(β̂ − β)2 = E

(
1

N − 1
ΣN−2

0

Ii+1

Ii
− 1 + γ

1− Ii
− β

)2

=
σ2

N − 1
. (A.55)

The 95% confidence interval for β̂ is therefore
(
β̂ − 1.96 σ√

N−1
, β̂ + 1.96 σ√

N−1

)
.

Estimation of σ2. Equation (9) implies that the quadratic variation of ln It, which we

denote by < ln It, ln It >, satisfies d < ln It, ln It >= (1− It)2σ2dt . Therefore, we have

σ2 =
< ln It, ln It >∫ t

0
(1− Is)2ds

. (A.56)

Discretizing the preceding equation, we obtain the following estimate of σ2:

σ̂2 =
ΣN−2
i=0 (ln I(i+1)∆ − ln Ii∆)2

ΣN−2
i=0 (1− Ii∆)2∆

. (A.57)

By setting ∆ to one, we obtain (45).
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B Deterministic SIS Model

Consider the case where β 6= γ. (The case with β = γ is straightforward.) We have

dIt
dt

=

[
β

β − γ
(
e(β−γ)t/2 − e−(β−γ)t/2

)
+

1

I0

e−(β−γ)t/2

]−2(
1

I0

− β

β − γ

)
(β − γ) .(B.58)

The second derivative of It is

d2It
dt2

= −2

[
β

β − γ
(
e(β−γ)t/2 − e−(β−γ)t/2

)
+

1

I0

e−(β−γ)t/2

]−3(
1

I0

− β

β − γ

)
(β − γ)

×
[
β

2
e(β−γ)t/2 +

(
β

2
− β − γ

2

1

I0

)
e−(β−γ)t/2

]
. (B.59)

Let t∗ denote the time at which the peak of the net change dIt/dt is reached, i.e., when

d2It/dt
2 = 0. It is immediate to conclude that the curve dIt/dt peaks at t∗ where

t∗ =
1

(β − γ)
ln

(
β − γ
β

1

I0

− 1

)
=

1

(β − γ)
ln

((
1− 1

R0

)
1

I0

− 1

)
(B.60)

C Derivation Details for Valuation

Valuation in the normal regime. In the normal regime no arbitrage implies that the

drift under the physical measure for M̂tŶtdt + d(M̂tP̂t) is zero (Duffie, 2001). By applying

Ito’s Lemma to this martingale, we obtain

0 = M̂tŶtdt+ M̂tĝŶtP̂
′(Yt)dt+ M̂t

P̂ ′′(Yt) < dYt, dYt >

2
+ P̂ (Ŷt)(−r)M̂tdt

+ P ′(Ŷt) < dŶt, dM̂t > . (C.61)

The above equation implies P̂ (Ŷ ) satisfies the following pricing equation:

rP̂ (Ŷ ) = Ŷ +
(
ĝ − ρφηB

)
Ŷ P̂ ′(Ŷ ) +

φ2Ŷ 2

2
P̂ ′′(Ŷ ) . (C.62)

By solving the above ODE, we obtain P̂ (Ŷ ) = p̂ Ŷ where p̂ is given by equation (16).

Valuation and mitigation in the pandemic regime. In the pandemic regime, no arbi-

trage implies that the drift under the physical measure for Mt−
(
Yt− − (πYt− +Xt−)1Xt−>0

)
dt+

d (MtPt) is zero. The pricing function depends on both Yt and It. Hence, we write Pt =
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P (Yt, It). By applying Ito’s Lemma to this martingale, we obtain

0 = Mt−
(
Yt− − (πYt− +Xt−)1Xt−>0

)
dt

+ Mt− [((β(1− ψ)− h(xt))(1− It−)− γ)PI(Yt−, It−) + g(It−)Yt−PY (Yt−, It−)] dt

+ Mt−

[
PII(Yt−, It−) < dIt, dIt >

2
+ PIY (Yt−, It−) < dIt, dYt > +

PY Y (Yt−, It−) < dYt, dYt >

2

]
+ P (Yt−, It−)(−r + (1− eκ)λ)Mt−dt+ PI(Yt−, It−) < dIt, dMt > +PY (Yt−, It−) < dYt, dMt >

+ Mt−
[
eκP (en(It−)Yt−, 0)− P (Yt−, It−)

]
λdt .

Simplifying the above equation, we obtain the following pricing equation:

rP (Y, I) = max
x≥0

Y − Y (π + x)1x>0 +
[
g(I)− v(I)ηZ − ρφηB

]
Y PY (Y, I)

+
[(
β(1− ψ)− h(x)− ηZσ

)
(1− I)− γ

]
IPI(Y, I)

+
1

2

[
v(I)2 + φ2

]
Y 2PY Y (Y, I) +

1

2
σ2 I2(1− I)2PII(Y, I)

+PIY σ I(1− I)v(I)Y + λQ
[
P (en(I)Y, 0)− P (Y, I)

]
. (C.63)

By using the homogeneity property, P (Y, I) = p(I)Y , and substituting this expression

into (C.63), we obtain the ODE (49) for p(I). Using the first-order condition (FOC) for the

HJB equation (C.63), we obtain equation (28) for the optimal mitigation x(I).
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Table 3: This table summarizes the parameter values for our epidemic and asset valuation
analyses. One period corresponds to one month.

Parameters Symbol Value

A. Epidemic and Vaccine

transmission rate β 6.616
recovery rate γ 2.173
volatility of infected population σ 1.689
arrival rate of vaccine λ 1.1/12

B. Earnings Process

earnings growth volatility φ 20%/
√

12
correlation coefficient ρ 1
normal-time earnings growth rate ĝ 5%/12
growth reduction level parameter ζ1 3
growth reduction curvature parameter ζ2 0.25

C. Asset Pricing Parameters

risk-free rate r 4%/12

market price of business-as-usual risk ηB 0.3/
√

12

market price of pandemic risk ηZ −0.4/
√

12
vaccine arrival timing risk κ −1

D. Mitigation Technology

flow fixed cost π 0.05
coefficient of the n(I) function α1 0.18
curvature of the n(I) function α2 0.026
customer impact on transmission ψ 0.26
firm mitigation efficacy θ1 20/12
curvature of firm mitigation efficacy θ2 0.032
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Table 4: Effects of Vaccine Arrival Rate, λ, on Conditional Distributions of p(It) without
any Mitigation. In Panels A, B, C, and D, the expected vaccine arrival time 1/λ is ∞, six
months, one year, and two years. α1 = 0 and other parameter values are given in Table 3.

A. No Vaccine (λ = 0) B. Six Months (λ = 2
12)

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
√
Var(p(It)) p(It) E(p(It))

√
Var(p(It))

1 wk 5.527 5.638 0.015 17.565 17.744 0.448

2 wk 5.513 5.626 0.021 17.623 17.799 0.623

4 wk 5.487 5.601 0.029 17.735 17.906 0.855

6 wk 5.461 5.577 0.034 17.844 18.010 1.016

8 wk 5.438 5.553 0.039 17.952 18.109 1.137

3 mo 5.393 5.500 0.041 18.230 18.351 1.331

4 mo 5.384 5.467 0.034 18.486 18.553 1.409

6 mo 5.384 5.439 0.014 18.916 18.933 1.399

9 mo 5.384 5.434 0.002 19.343 19.350 1.213

12 mo 5.384 5.434 0.002 19.601 19.606 0.997

24 mo 5.384 5.434 0.002 19.946 19.947 0.391

∞ 5.384 5.434 0.002 20 20 0

C. One Year(λ = 1
12) D. Two Years (λ = 0.5

12 )

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
√
Var(p(It)) p(It) E(p(It))

√
Var(p(It))

1 wk 15.566 15.762 0.591 13.052 13.245 0.664

2 wk 15.616 15.812 0.830 13.088 13.282 0.936

4 wk 15.717 15.911 1.157 13.162 13.356 1.315

6 wk 15.818 16.010 1.396 13.236 13.431 1.600

8 wk 15.920 16.108 1.588 13.314 13.507 1.835

3 mo 16.200 16.357 1.944 13.538 13.706 2.298

4 mo 16.485 16.583 2.149 13.783 13.897 2.598

6 mo 17.026 17.062 2.366 14.281 14.335 3.019

9 mo 17.684 17.706 2.425 14.953 14.993 3.377

12 mo 18.196 18.213 2.342 15.546 15.581 3.559

24 mo 19.336 19.343 1.661 17.299 17.320 3.513

∞ 20 20 0 20 20 0
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