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1 Introduction

The basic reproduction number R0, defined as the expected number of secondary infections

generated by a single (representative) infected individual in a fully susceptible population,

plays an outsized role in managing COVID-19 risks. On the public health front, leading

large-scale computational epidemiological models emphasize that R0 is greater than one

and recommend lockdown measures to keep the reproduction number below one (see, e.g.,

Ferguson et al. (2020), Kucharski et al. (2020), and Li et al. (2020)).

On the economic front, an emerging macroeconomic literature focuses on economic trade-

o↵s—the costs to flatten the curve—and conducts policy analysis (e.g., Alvarez, Argente

and Lippi (2020), Atkeson (2020), Eichenbaum, Rebelo and Trabant (2020), and Gourinchas

(2020)). These papers take R0 estimates from leading epidemiological studies in generating

infection forecasts from deterministic epidemic models that economic agents use as a coun-

terfactual infection scenario absent interventions such as social distancing. Interventions are

assumed to vary R0 and hence flatten the forecasts of infections from a deterministic model.

Largely ignored is that estimates of R0 come with wide standard error bands, as we show

below. Such wide bands are not simply due to innocuous measurement error. Rather, a large

epidemiology literature (see Andersson and Britton (2012)) points to aggregate transmission

rate shocks reflecting super-spreading events such as mass gatherings, weather events that

inhibit or promote transmission, or changes in social interactions that govern contact rates.

We show that R0 is an insu�cient statistic for managing COVID-19 risks, be it health

or economic, because aggregate transmission volatility is significant. This is particularly

the case when one considers financial risks of the sort mentioned by the Federal Reserve

Board Financial Stability Report (2020): “Asset prices remain vulnerable to significant price

declines should the pandemic take an unexpected course...” That is, economic and financial

modeling of pandemics needs to feature an epidemic model with stochastic transmission

shocks that agents can use to generate counterfactual forecasts for infections.

Towards this end, we consider an extension of a widely-used deterministic epidemic

model of COVID-19 (Kermack and McKendrick (1927)) featuring aggregate transmission-
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rate shocks that are intended to capture that viral contagiousness is unpredictable due to

environmental factors.1 Epidemic models of COVID-19 typically entertain multiple com-

partments in terms of tracking susceptible, infected, and resistant (including the recovered

and dead). In order to transparently highlight the importance of transmission volatility,

we focus on modeling just the infected population It, via a susceptible-infected-susceptible

(SIS) as opposed to a susceptible-infected-recovered (SIR) setting.2 There is also no con-

sensus at this point that COVID-19 infection confers long-lasting immunity. For a number

of economic and financial applications, the focus is typically on horizons of many years and

the infected population is often the main state variable of interest since damages are likely

to be proportional to infections.

We model the aggregate transmission shocks via a stochastic transmission rate, e�. This

key input is modeled as a random variable with constant mean (predictable transmission

captured by parameter �) and transmission shocks (mean zero but with volatility captured

by parameter �).3 The exit rate from the infected state back into the susceptible state is

additionally assumed to be a constant �. The resulting dynamics of the fraction of infected

then follows a three-parameter non-linear di↵usion process.

We calculate analytical conditional distributions from the Kolmogorov forward equation

associated with our epidemic process to characterize the transition risk of epidemics. In the

limit of no volatility, our model becomes the deterministic SIS model solution. While it is

understood by mathematical epidemiologists that introducing noise into the transmission

process will lead to a dampening of stationary distribution of infections,4 we show that

the inherent value of this parsimonious model lies in the characterization of the conditional

distributions up to a di↵erential equation including the stationary distribution.

1By environmental factors, epidemiologists broadly refer to weather, behavioral, cultural, and geograph-
ical factors.

2This SIS setting is useful for modeling viruses where recovery does not grant long-lasting immunity,
which includes potentially many types of viruses.

3This parameter perturbation approach has been used in the mathematical epidemiology literature (see,
e.g., Gray et.al. (2011)) and in statistical models of epidemics (see, e.g., Dureau et.al. (2013)).

4See Andersson and Britton (2012) and Brauer, Driessche, and Wu (2008). Even if the reproduction
number R0 > 1, the epidemic process might nonetheless die out due to the uncertainty of transmissions as
opposed to in the deterministic setting.
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We can compare the infection forecasts from this stochastic epidemic model (which de-

pends on �, � and �) to those generated by a deterministic model which depends just on R0,

i.e. the ratio of � to �. Moreover, we tractably introduce a stochastic vaccine arrival to our

epidemic model as a jump with a Poisson arrival rate. When the vaccine arrives, we assume

the epidemic is over and infections go to zero. Hence, we can also calculate conditional

forecasts assuming di↵erent vaccine arrival rates �.

We then model the financial impact of infection forecasts through the lens of a dynamic

asset-pricing model. We allow COVID-19 to impact both the drift and volatility of an asset’s

earnings process as well as the market price of pandemic risk. The stochastic discount

factor (SDF) during a pandemic should depend not just on business-as-usual shocks but

also aggregate transmission shocks and stochastic vaccine arrival. We obtain a generalized

dividend discount model (as a special case of our asset-pricing model) that allows infections

to adversely a↵ect earnings. Our pricing formula transparently links valuation to epidemic

data (infections, reproduction numbers, transmission volatility, and vaccine arrival rate).

This formula allows us to assess the valuation damage of COVID-19 under infection forecasts

from a deterministic model versus our stochastic epidemic model.

We can straightforwardly estimate our epidemic model by pooling COVID-19 case data

from 16 countries (regions) that are at high risk during the period of January - February of

2020. These countries had among the most air travel connections to the city of Wuhan in

China and have been the basis of the modeling of the early dynamics of COVID-19 absent

government lockdowns. Given the noisiness and brief time series of the data and our goal of

demonstrating the influence of shocks, we fit one model for all 16 countries.

Our estimate of � is 6.62 per month, which translates to an infected individual infecting

one susceptible on average every five days (⇡ 30/6.62.) Our estimate of monthly � is 1.69,

which translates to a standard deviation of plus or minus 1.69 individuals per month. The

exit rate � is equal to the inverse of the expected duration that an infected is sick and

infective; it is typically not estimated based on aggregate data early in epidemics since there

is a delay in when individuals leave the infected state. There is no consensus on this number.5

5It ranges from around 7 days to 14 days at the individual level but with a fat-tail in terms of an infectious
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For our estimation of a population average, we simply use 14 days as the duration to infer

the exit rate � at 1/(14 days), which is 2.17 per month. But we also consider 10 days as a

robustness check.6

These estimates then imply that our (basic) reproduction number R0 using case data

from January-February is 3.05 and the 90% confidence interval (CI) is (1.12, 6.52) based on

the empirical distribution. The wide standard errors of course reflect our significant estimate

of �. Despite constraining one model for all countries (regions), our estimates are in line

with leading studies of COVID-19.7 Using these estimates, we then calculate the analytical

conditional distributions for the fraction of infected for each of the 16 countries (regions)

in March-April taking as an initial condition the fraction infected in each country at the

beginning of March.8 Our epidemic model generates sensible out-of-sample forecasts in line

with leading epidemiological studies.9

But the value of our model lies in its implications for managing COVID-19 risks. We

assess the economic and financial damage along side damage to health from COVID-19 in

a couple of ways. We input parameter estimates form January-February 2020 and contrast

infection and valuation forecasts from the deterministic and stochastic models. We can also

vary the key parameters of R0 and �2 — these infection and valuation forecasts can be used

by agents to assess intervention scenarios in the spirit of Atkeson (2020) and Gourinchas

(2020).

To start, R0 and forecasts generated by a deterministic epidemic model mismeasures

the benefits of economy-wide lockdowns, especially modeled in the recent macroeconomic

literature on flattening the curve highlighted above. There are two reasons for why this

period across individuals.
6In leading models, this parameter is typically assumed to follow an Erlang distribution (Kucharski et al.

(2020)).
7Kucharsi et al. (2020) estimate a reproduction number of 2.35 [95% CI 1.15-4.77], while Imai et al.

(2020) estimate that it is 3.1 [95% CI 1.7-4.3].
8Recently, Fernandez-Villerde and Jones (2020) estimate epidemic processes focusing on death rates while

Toda (2020) estimates a SIR epidemic model for COVID-19 allowing for heterogeneous transmission rates
across regions. Our SIS model in contrast focuses on how volatility a↵ects transition dynamics and how
health and financial outcomes depend on volatility of transmission rates.

9Following these studies, our baseline infection forecasts assume that the vaccine arrival rate is set to zero
since a viable vaccine is not expected for several years.
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is the case. The first reason is that R0 does not capture initial transmission shocks being

permanent. When the initial fraction of infected is low, the It process is approximately a

Geometric Brownian motion with outsized drift � and volatility � parameters. This means

that shocks early on have permanent and very large e↵ects. The permanence of initial

shocks can explain why a large amount of the variance in 1918 Flu spatial outcomes cannot

be explained (see Almond (2006) for a review of the evidence). It can also explain why early

action on social distancing might be useful in shutting down stochastic transmission shocks

(Adda (2016), Fang, Wang and Yang (2020), Hsiang et al. (2020)).

Second, deterministic model infection forecasts based on R0 are poor approximations

of our model’s conditional forecasts. For instance, when R0 is 1.75, the conditional mean

forecast is 0.05 and the conditional standard deviation is 0.135 at 24 months out. In contrast,

a deterministic model would forecast 42.9% of the population would be infected at the

same horizon. Another way of framing this overshooting is that while discussions regarding

government interventions have focused on bringing the reproduction number below one, our

analytical conditional distribution calculations suggest that even at a fairly high reproduction

number R0 such as 1.75 COVID-19 will likely be a slow burn as opposed to an outbreak.

A key piece of intuition for this result comes from Gray et al. (2011) who characterize the

stationary distribution of our non-linear di↵usion process absent a vaccine. Whereas R0 > 1

determines epidemic outbreak in a deterministic model, the analogous outbreak point R0 is

equal (� � �2/2)/� in our stochastic model. Therefore, even at a reproduction number R0

above 1, an epidemic cannot be sustained when �2 is large.

Since the infection forecasts are significantly di↵erent across the deterministic and stochas-

tic models, forecasts of damage to valuation will of course also di↵er markedly. That is, R0

not only mismeasures the benefits of economy-wide lockdowns but also misestimates COVID-

19 damage to financial markets. Indeed, our fundamental asset pricing formula highlights

not just the role of the reproduction number of COVID-19 but how its transmission volatility

influences valuations via at least three channels: 1) earnings growth e↵ect; 2) the convexity

e↵ect of pandemic risk; and 3) the risk premium channel. The risk premium channel arises

since COVID-19 has an impact on aggregate consumption (wealth) and hence the price of
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COVID-19 risk determines the discount rate applied to cashflow betas. Relatedly, Gormsen

and Koijen (2020) also use a fundamentals-based asset-pricing model along with dividend

futures to isolate a large impact of COVID-19 via the earnings growth channel but do not

link as we do asset pricing to stochastic transmission shocks.

Finally, while vaccines that are expected to arrive in a couple of years have little influ-

ence on conditional distribution of infections in short-run, they matter greatly, along with

transmission volatility, for firm valuations nonetheless since markets are forward looking —

discounting cashflow damage from COVID-19 far into the future. Even slight changes in

vaccine arrival rates have large implications for valuations.

In short, our paper’s contribution is to demonstrate how an analysis of pandemics fun-

damentally di↵ers when using a stochastic epidemic model as opposed to relying on deter-

ministic models and the R0 heuristic as an approximation. Our stochastic epidemic model

can be used for further analysis such as stochastic control of pandemics or endogenizing the

arrival of vaccines, which we leave for future research.

Our paper proceeds as follows. We present our epidemic model in Section 2 and the

valuation model in Section 3. We describe our data in Section 4. We explain our calibration,

estimation and forecast procedures in Section 5. In Section 6, we characterize the risk of

our epidemic process by studying the analytical conditional distribution of It. In Section 7,

we highlight the role of stochastic transmission shocks and vaccine arrival for COVID-19’s

damage to stock valuations. We conclude in Section 8.

2 Stochastic Epidemic Model

In this section, for pedagogical purposes, we construct our stochastic model by starting with

the classic Kermack and McKendrick (1927) model. Time is continuous and the horizon is

infinite. We normalize the total population size to one and there is no birth nor death in

the population. As a key motivation is to design a tractable and parsimonious model to

conduct risk management applications, we only model two compartments (groups): infected
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and infectious (I) and susceptible (S) (or equivalently uninfected).10 Within each group, the

population is homogeneous and well mixed. Let It and St denote the mass of the infected

population and the susceptible at time t, respectively. As It + St = 1 at all t, we only need

to keep track of the evolution for It, which is the single state variable in our model.

2.1 Deterministic SIS Model

Transmission rate in classic SIS setting. How does the disease get transmitted from an

infected to a susceptible? The probability that an infectious individual meets a susceptible is

proportional to the product of their population mass, It(1�It), with an e↵ective transmission

rate, which we denote by �. Thus over the interval [t, t+ dt) the total number of new

infections is

�ItStdt = �It(1� It)dt .

The infected recovers and becomes susceptible in our model. Let � > 0 denote the rate

at which an infected recovers. Hence, 1/� is the duration for an infected to be infective.

Subtracting the mass for the recovered �Itdt over the interval [t, t+ dt) from the newly

infected �It(1� It)dt, we obtain the following process for dIt, the net change of It:

dIt = �It(1� It)dt� �Itdt . (1)

The solution of (1) satisfies the following logistic function:11

It =


�

� � �

�
1� e�(���)t

�
+

1

I0
e�(���)t

��1

. (2)

Basic reproduction number R0. Next, we introduce the basic reproduction number

R0, which is defined as the expected number of secondary infections generated by a single

(representative) infected individual in a completely susceptible population:

R0 =
�

�
. (3)

10In the epidemiology literature, there are various generalized formulations of these compartmental models.
Widely used ones include SIR (susceptible, infected, recovered) and SEIR (susceptible, exposed, infected,
and recovered) models. See Andersson and Britton (2012) and Brauer, Driessche and Wu (2008) for textbook
treatments.

11If � = �, by applying the L’hopital’s rule to (2), we obtain It =
⇣
�t+ 1

I0

⌘�1
.
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If R0  1 (when �  �), the disease eventually is extinct, as (2) implies limt!1 It = 0.

If R0 > 1, the infected population It reaches the maximum level, I1 = 1 �R�1
0 as t ! 1

provided that I0 6= 1�R�1
0 .

We will use the term basic reproduction number and reproduction number interchange-

ably. The literature sometimes refers to the e↵ective reproduction number at time t, which

is the basic reproduction number multiplied by the susceptible mass. The e↵ective repro-

duction number R0 (1� It) is time-varying in classic deterministic models.
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Figure 1: The infected fraction (It) and the net change (dIt/dt) in deterministic SIS model
with I0 = 2⇥ 10�7 based on the US data as of March 1st and � = 2.173 per month.

Deterministic infection forecasts. In Figure 1, we plot the infected mass It at t in

Panel A and the net change of the infected mass dIt/dt in Panel B with the initial value of

I0 = 66/(3.28⇥ 108) = 2⇥ 10�7 (as there were 66 infective individuals on March 1st in the

US and the US population as of 2019 is 328 million.) The solid blue lines correspond to the

solution for our deterministic case using our estimate of the transmission rate for COVID-19

that we discuss in Section 5. By reducing � by half from 6.616 to 3.308 per month, such

as using economy-wide lockdowns, we lower the basic reproduction number R0 by half from

3.045 to 1.522 (unlike the three structural parameters, R0 is invariant to the time horizon

we choose). As a result, the eventual infected fraction, I1, decreases by half from 67.1% to
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34.3% of the entire population.

Panel B captures the widely discussed flattening the curve argument (see, e.g., Atkeson

(2020) and Gourinchas (2020)). Here, the curve refers to the net change of the infected

population, dIt/dt, as a function of time t. If the government successfully reduces � by half

via social distancing and other interventions, this deterministic evolution curve is indeed

significantly flattened and postponed. Specifically, this curve peaks at a bit over one year

(t = 12.657 months) if � = 3.308 rather than at a bit over one quarter (t = 3.384 months).

The curve of the net change, dIt/dt, is substantially flattened.

Note the very sharp increase of It at the very early stage. This is because early on It is

close to zero and we can thus e↵ectively drop the (1 � It) terms and approximate It as an

exponential process: dIt ⇡ (� � �)It dt with the approximate solution: It ⇡ I0e(���)t.

Obviously, exponential growth at a large rate � � � is incompatible with convergence of

It to I1 = 1�R�1
0 as t ! 1. This is due to the dampening e↵ect of It on its own growth.

As the fraction of the infected increases, fewer are susceptible, which lowers dIt/It. That is,

the higher the level of I, the lower the infection growth rate dIt/It.

2.2 Stochastic SIS Model

Aggregate transmission rate shock. A simple way to model stochastic transmission is

to replace the constant rate � with a stochastic rate, which we denote by e�. For expositional

purposes, consider a discrete-time setting. The simplest choice for a stochastic e� is an inde-

pendently and identically distributed (i.i.d.) random variable. Fix a small time increment

�, we write

e�t � = ��+ �
p
� ✏t , (4)

where both � and � are constant parameters and ✏t is a mean-zero standard normal random

variable.12 Mapping (4) into our continuous-time formulation, we obtain

e�t dt = �dt+ �dZt , (5)

12By assuming ✏t is i.i.d., we make the transmission rate e�t stochastic but without introducing an addi-
tional state variable for the transmission rate. We leave generalizations of our model to allow for a richer
specification of e�t for future work.

9



where Zt is a standard Brownian motion.

By using e� dt given in (5) to replace �dt in (1) and then combining drift and di↵usion

terms, we obtain the following stochastic di↵erential equation (SDE) for It:

dIt = [�(1� It)� �] It dt+ � It(1� It) dZt . (6)

The drift term is the same as in the deterministic SIS model, while the di↵usion term captures

the uncertainty of the epidemiological evolution process. When no one is infected (It = 0),

the disease is extinct: dIt = 0 as both drift and volatility terms in (6) are zero. If the entire

population is infected (It = 1), the volatility has to be zero and the drift has to be negative

so that the model is well posed.13 Unlike It = 0, It = 1 is not an absorbing state as � > 0.

Note that both the drift and volatility of the growth rate for the infected population,

dI/I, depend on (1� I), the population of the susceptible. Specifically, the higher the level

of I, the lower the drift (i.e., the expected infection growth rate) of dIt/It. As the fraction

of the infected increases, fewer are susceptible, which dampens the drift of dI/I.

To complete the description of our compartmental model, below we report the dynamics

for the susceptible population St:

dSt = (� � �St) It dt� � StIt dZt . (7)

Permanence of initial transmission shocks. The process for It given in (6) is not a

Geometric Brownian motion (GBM) process widely used in Economics and Finance. But

at a very early stage, It is close to zero; therefore, we can e↵ectively drop the (1 � It)

terms in both drift and volatility functions and approximate It via a GBM process: dIt ⇡

(� � �)It dt+ � It dZt. That is, in the early stage, It evolves as

It ⇡ I0 exp

✓
� � � � �2

2

◆
t+ �Zt

�
= I0e

(R0�1)�t exp

✓
��2

2
t+ �Zt

◆
. (8)

Unlike the exponential growth approximation for It in the deterministic model, in our

stochastic model, It is not only driven by R0 but also by the (exponential) martingale,

13If volatility is not zero or drift is positive at It = 1, the probability that It exceeds one is strictly positive,
inconsistent with our model’s assumption that the total population is normalized to one.
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the second exponential term in (8). This second term is equally important in driving the

dynamics of It as the first (exponential) term involving R0.

Because very few are infective early on, the change of It is highly idiosyncratic as the

di↵usion term dominates the drift term. A few super-spreader events early on have outsized

permanent e↵ects on the evolution of It. On the other hand, if there are few such events early

on, then the total infected population stays low for an extended period of time causing the

disease to be not that damaging. That is, in the very early stage, it is the sequence of realized

values of e�, not the expected transmission rate � used in the deterministic compartmental

epidemic models, driving how fast the disease spreads.

Epidemiologists also use networks and branching processes to model the disease spread,

especially at the early stage. These network-based models confirm our intuition described

above. Depending on the network structure and the network position of the first few infective,

the disease could turn out to be either superspreading or extinct. See Newman (2018)

for a textbook discussion on how network-based epidemiological models naturally generate

stochastic transmission rates.

While the leading epidemiological models have rich compartmental specifications for

agents and recognize the extreme di�culty of estimating R0 especially at the very beginning

of a disease outbreak, we are among the first to emphasize the quantitative importance of

volatility � on the stochastic transition dynamics of It, which in turn has important impli-

cations on policy recommendations on how to e�ciently manage epidemic risk.

Three-parameter non-linear di↵usion process. We have generalized a two-parameter

(� and �) deterministic SIS model to a three-parameter (�, �, and �) non-linear di↵usion

process.

By applying Ito’s Lemma to (6), we obtain:

d ln It = q(It)dt+ (1� It)� dZt , (9)

where the drift for ln It is a quadratic function in It:

q(I) = �(1� I)� �2

2
(1� I)2 � � . (10)
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Equations (9)-(10) are convenient to work with when we analyze the stationary distribution.

Unlike in the deterministic model, which generates a single number for It at any t, in

order to fully capture the disease transmission dynamics, we next characterize the time-0

conditional distribution of It for all t. Let f(It, t; I0) denote the time-0 conditional density

function for It, the infected mass at t given the initial infected mass I0.

Conditional distribution. The density function, f(I, t), satisfies the following Kolmogorov

forward equation:

0 =
@f(I, t)

@t
+

@ [(�(1� I)� �)If(I, t)]

@I
� 1

2

@2 [(�I(1� I))2f(I, t)]

@I2
. (11)

The first term is the time e↵ect on f(I, t), the second term is the drift e↵ect on f(I, t),

and the last term is the volatility e↵ect on f(I, t). In Section 6, we show how uncertainty

substantially alters the transmission dynamics.

Next, we incorporate the impact of stochastic vaccine arrival.

2.3 Stochastic Vaccine Arrival

We assume that COVID-19 will disappear following a successful vaccine development.14

Specifically, we use the following SDE to model the evolution of It:

dIt = [�(1� It�)� �] It� dt+ � It�(1� It�) dZt � It�dJt . (12)

We capture this vaccine arrival e↵ect on It via the third term, where Jt is a (pure) jump

process with a constant arrival rate, which we denote by �. When a vaccine is successfully

developed, i.e., dJt = 1, the pandemic is extinct. We can generalize our model to allow

for a multiple-stage vaccine development process with a gradual reduction of the infected

population without losing much analytical tractability.15

14The assumption that vaccine takes e↵ect immediately is clearly made for simplicity. In reality, it may
take a while for the population to be vaccinated and not everyone will be vaccinated. We can generalize our
vaccine model to allow for a (large) fraction of the population to be vaccinated leaving a (small) fraction
still susceptible (at the cost of additional complexity.) But the core of our analysis will remain valid.

15For brevity, we leave this extension out.
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3 Modeling COVID-19 Damage to Valuations

In this section, we develop a parsimonious yet operational model to capture the impact of

pandemic shocks on fundamentals-based valuation. We show how COVID-19 parameters

� (equivalently R0) and � together with asset-pricing specifications impact valuation. The

purpose of our analysis to compare the financial impact of infection forecasts generated

from a deterministic versus a stochastic epidemic model of COVID-19 through the lens of a

dynamic asset-pricing model.

In Section 3.1, we propose a valuation model before unanticipated pandemic arrival.

In Section 3.2, we propose a valuation model after unanticipated pandemic arrival and no

expectation of vaccine down the road. In Section 3.3, we incorporate stochastic vaccine

arrival into the pricing model of Section 3.2.

3.1 Valuation Before Unanticipated Pandemic Arrival

To ease our exposition and set up the basic apparatus into which we later incorporate

COVID-19 shocks, we first introduce a simple asset-pricing framework with no pandemic

shocks, i.e., under normal business-as-usual environment or when It = 0. We start with the

following widely-used simple stochastic discount factor (SDF), Mt, in the normal times:16

dMt

Mt
= �r dt� ⌘B dBt , (13)

where Bt is the standard Brownian motion for the aggregate shock.17 Here, r is the risk-free

rate and ⌘B is the market price of risk for the aggregate shock. For simplicity, let r and ⌘B

be constant. Equation (13) implies a one-factor model where the factor can be the aggregate

consumption growth shock as in Lucas-style representative-agent general-equilibrium models

or the market portfolio return in Sharpe (1964) CAPM and Merton-Samuelson’s portfolio

choice problem. Here, ⌘B is positive as a positive shock dBt to the aggregate consump-

tion growth or market return is good news which lowers the investor’s marginal utility or

equivalently Mt.

16This is the SDF in Black and Scholes (1973), Merton (1973), and Lucas (1978), among other models.
See Du�e (2001) and Cochrane (2009) for textbook treatments.

17No arbitrage requires that the drift of Mt is equal to the minus interest rate, �r.
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Next, we turn to the cash-flow (earnings) process Yt for the asset. As in the literature,

we assume that Yt follows a geometric Brownian motion (GBM) process:

dYt

Yt
= g0dt+ ⇢� dBt +

p
1� ⇢2 � dWt , (14)

where Bt is the aggregate shock introduced in (13) and Wt is the standard Brownian motion

driving the idiosyncratic earnings risk. By construction, Bt and Wt are orthogonal. In

(14), g0 is the expected earnings growth (drift), � is the volatility of earnings growth, which

includes the aggregate component ⇢� and the idiosyncratic component
p
1� ⇢2 �. That is, ⇢

is the correlation coe�cient between the aggregate shock Bt and the asset’s earnings process.

For simplicity, we let g0, �, and ⇢ all be constant.

Let P denote the asset’s value. The standard asset-pricing equation holds (Du�e, 2001):

Pt = Et

✓Z 1

t

Ms

Mt
Ys ds

◆
. (15)

In Appendix C, using (13) and (14) and solving (15), we show that the asset’s value is

proportional to its earnings, Pt = p0Yt, where the price-earnings ratio, p0, is a constant:

p0 =
1

r + ⇢�⌘B � g0
. (16)

Equation (16) is the well-known Gordon growth model where
�
r + ⇢�⌘B

�
is the asset’s con-

stant cost of capital (discount rate) and g0 is the earnings growth rate. This asset earns

a risk premium of ⇢�⌘B, which is given by the the product of the market price of risk ⌘B

and ⇢�, the systematic volatility component of � and consistent with the one implied by the

widely used CAPM.18

3.2 Valuation After Pandemic Arrival and with no Vaccine

Next, we incorporate pandemic shocks into our pricing model. As COVID-19 is clearly an

aggregate shock, it changes the equilibrium SDF. To highlight the role of aggregate stochastic

18In Black and Scholes (1973), Merton (1973), and Lucas (1978), ⌘B is the ratio between the (expected)
excess stock market return, rm � r, divided by the market portfolio return volatility, �m, i.e., ⌘B = (rm �
r)/�m. Therefore, CAPM holds here and the asset’s CAPM beta, �A, is equal to ⇢�/�m and the asset’s
excess return is thus �A(rm � r) = ⇢�(rm � r)/�m = ⇢�⌘B, as ⌘B = (rm � r)/�m.
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transmission shocks, we assume that at both the micro and the aggregate levels, parameters

for the business-as-usual aggregate variables and idiosyncratic risks, e.g., market price of

business-as-usual risk ⌘B, the risk-free rate r, the asset’s idiosyncratic volatility
p

1� ⇢2�

and its business-as-usual volatility ⇢�, do not change with the unexpected pandemic arrival.

We can of course also allow the business-as-usual parameters to also change as well without

any technical di�culties.

SDF. We generalize the SDF by incorporating pandemic shocks into Mt given in (13):

dMt

Mt
= �rdt� ⌘Z dZt � ⌘B dBt . (17)

As a positive pandemic shock dZt (which increases I) is bad news for the aggregate economy,

the marginal utility of the investor (and hence the SDF Mt) should increase with It, which

means ⌘Z < 0, in contrast to a positive ⌘B for the business-as-usual aggregate shock.

At the micro level, pandemic may change both an asset’s cash-flow and discount-rate

processes. Some assets, e.g., airline assets, are more exposed to pandemics than others.

Asset’s earnings process. We generalize the earnings model in normal times given in

(14) to incorporate the impact of pandemic on earnings as follows:

dYt

Yt
= g(It)dt+ v(It) dZt + ⇢� dBt +

p
1� ⇢2 � dWt . (18)

Pandemic shocks have two direct e↵ects on earnings: 1) it changes the growth rate forecast

from g0 to g(It); and 2) it may also expose earnings to additional volatility, captured by

the function v(It), which measures the earnings risk exposure to the pandemic shock dZt.

For airline companies, the earnings growth is negatively impacted by It: g(It)  g0 and

g0(It)  0. Additionally, the earnings volatility function (the loading on the pandemic shock

Bt) may also be negative (v(It)  0), because an unexpected increase of It may lower earnings

growth dYt/Yt.
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Generalized equity valuation (Gordon growth) model. Because of the geometric

feature of the earnings process, the asset’s value is proportional to its earnings Yt:

Pt = P (Yt, It) = p(It)Yt , (19)

where p(It) is the equilibrium price-earnings ratio. In Appendix C, we show that p(I) solves

the following valuation equation:

⇥�
r + ⇢�⌘B + v(I)⌘Z

�
� g(I)

⇤
p(I) = 1 +

⇥
�Q (1� I)� �

⇤
Ip0(I)

+v(I)� (1� I)Ip0(I) +
(�I(1� I))2

2
p00(I) , (20)

where �Q is the (risk-adjusted) transmission rate (i.e., under the risk-neutral measure Q):

�Q = � � ⌘Z� . (21)

The pricing equation (20) reveals that stochastic transmission rates generate the following

several e↵ects on the valuation ratio p(I). First, volatility induces a convexity e↵ect on

valuation p(I), which is captured by the last term on the right side of (20). Second, COVID-

19 changes the earnings expected growth rate g(I).

Finally, being an aggregate shock, COVID-19 has rich implications on the asset’s risk

premium. Specifically, there are three risk-premium channels. First, the risk-adjusted trans-

mission rate, �Q, is larger than � (Recall that ⌘Z < 0 as a pandemic shock increasing It is

bad news for the representative agent.) Put simply, for valuation purposes, for a fixed value

of transmission rate �, Wall Street should use a higher transmission rate �Q to account for

the fact that the pandemic shock is an aggregate shock.

Second, the covariance between the asset’s pandemic-specific risk exposure and the pan-

demic component of the SDF generates an instantaneous pandemic risk premium term v(I)⌘Z

on the left side of (20). Third, the instantaneous covariance between earnings volatility and

I also contributes to the risk premium, captured by the third term on the right side of (20).

When I = 0, we expect to uncover our solution under normal times as I = 0 is an

absorbing state in our stochastic SIS model.19 We show that

p(0) = p0 , (22)

19To be consistent with our pricing in normal times, we set g(0) = g0 and v(0) = 0.
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where p0 is given in (16). Turning to the other boundary when everyone is infected (I = 1).

The ODE (20) is simplified as follows:

⇥
r � g(1) + v(1)⌘Z + ⇢�⌘B

⇤
p(1) = 1� �p0(1) . (23)

Unlike I = 0, I = 1 is not an absorbing state as the recovery rate � > 0. The term, ��p0(1)

on the right side of (23), reflects the e↵ect of recovery on valuation.

In summary, the generalized (Gordon growth) equity valuation model for the price-

earnings ratio, p(I), over [0, 1] is characterized by the ODE pricing equation (20) together

with boundary conditions (22)-(23).

Next, we incorporate the e↵ect of vaccine arrival on valuation. A successful vaccine devel-

opment will significantly influence both corporate earnings and the pricing of the aggregate

pandemic shock.

3.3 Pricing with Stochastic Vaccine Arrival

To capture the impact of vaccine arrival on the earnings process, we generalize (18) as:

dYt

Yt�
= g(It�)dt+ v(It�) dZt + ⇢� dBt +

p
1� ⇢2 � dWt +

�
en(It�) � 1

�
dJt , (24)

where n(It�) is the instantaneous logarithmic change of earnings from the pre-jump to the

post-jump level conditional on the vaccine arrival, i.e., n(It�) = ln(Yt/Yt�), if dJt = 1.

News about vaccine development is an aggregate shock and thus risk-averse investors de-

mand a risk premium for the stochastic timing of vaccine arrival. Specifically, we incorporate

vaccine arrival timing risk into our pricing model by generalizing the SDF Mt for normal

times given in (17) as follows:

dMt

Mt�
= �rdt� ⌘Z dZt � ⌘B dBt � (1� e) (dJt � �dt) , (25)

where the last term captures the e↵ect of stochastic vaccine arrival on the SDF and it is

a martingale under the physical measure as the drift rate of Mt is equal to the negative

interest rate by no arbitrage (Du�e, 2001). Upon the successful vaccine development at t,

i.e., dJt = 1, the SDF immediately changes from Mt� by Mt = e Mt�. As vaccine arrival
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is good news, investors’ marginal utility (SDF) is lower after vaccine arrival and the market

price of vaccine arrival risk is negative, i.e.,  < 0.

Absent a vaccine, the pandemic persists and its distribution converges to its stationary

distribution. Therefore, it may have long-lasting e↵ects on the economy. But a potential

vaccine e↵ectively truncates the duration of the pandemic and limits the impact of pandemic

shocks up to the moment of vaccine arrival hence making the e↵ect of pandemic shock

transitory.

In Appendix C, we obtain the following ODE for p(I):

⇥�
r + ⇢�⌘B + v(I)⌘Z

�
� g(I) + �Q⇤ p(I) = 1 + �Qen(I)p0 +

⇥
�Q (1� I)� �

⇤
Ip0(I) (26)

+ v(I)� (1� I)Ip0(I) +
(�I(1� I))2

2
p00(I) ,

where �Q = � � ⌘Z� is the risk-adjusted disease transmission rate given in (21) and �Q is

the risk-adjusted vaccine arrival rate:

�Q = �e . (27)

As investors demand a risk premium for the uncertain vaccine arrival timing, the market

price of vaccine arrival risk is negative,  < 0. That is, in equilibrium, the vaccine arrives

at a lower rate under the risk-neutral measure Q, than the rate under the physical measure:

�Q < � (Du�e, 2001).

Vaccine arrival brings two new terms into the pricing equation (20) for the case with no

possibility of vaccine. The term �Qen(I)p0 on the right side of (26) accounts for the anticipated

significant stock market revaluation upon a successful vaccine development. It is equal to

the product of risk-adjusted probability for vaccine arrival per unit of time, �Q, and the size

of valuation revision en(I)p0. (The multiple en(I) reflects the discrete jump of earnings upon

vaccine arrival, e.g., an instantaneous jump of consumer demand for air travel.) The other

new term is �Q on the left side of (26), which recognizes the eventual extinction of the disease

by elevating the discount rate by the risk-adjusted arrival rate of vaccine. The possibility of

vaccine arrival makes the valuation problem much less sensitive to the pandemic process It.
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4 COVID-19 Data

Our data on COVID-19 cases comes from COVID-19 Data Repository by Johns Hopkins

available on github. The data keeps track of confirmed new cases, deaths, recoveries each

day starting from January 22nd, 2020. The measure It in our model maps to the net number

of outstanding infected cases at t, which is equal to the sum of the last period’s It�1 and the

newly (reported) infected cases at t and subtracting deaths and recoveries, divided by the

population of that country.

We follow leading epidemiological studies of COVID-19 and focus on China and countries

(regions) that were at high risk due to air travel connected to China (Kucharski et.al. (2020)).

There are a total of 16 countries in our sample. In Asia (Middle East), there are nine countries

consisting of China, Japan, Malaysia, Singapore, South Korea, Taiwan (China), Thailand,

United Arab Emirates and Vietnam. Among Western countries, these include Australia,

Canada, France, Germany, Italy, United Kingdom, and United States.20 While all these

countries have significant air travel connections to China, they did not experience the same

infection path. This is consistent with our model that each country experienced idiosyncratic

paths (realizations) of transmission shocks at early stages.

In Figure 2, we plot the logarithmic growth rate d ln(It) for four countries of interest,

China, Singapore, US and Italy. We can see that the epidemic curve of China reversed in

the second half, while Singapore which has a fairly flat curve in the first half takes o↵ in

the second half. The same is true for Italy and the US. Again, most of the countries in our

sample only started government lockdowns later in the second half of the sample and it takes

time for these lockdowns to have an e↵ect.
20Five of the original high-risk regions, Cambodia, India, Indonesia, Philippines and Russia, had no cases

in January-February, so we exclude them from our analysis. These countries are thought to be the most
problematic in terms of underreporting of cases. And we need some cases to estimate the model in the first
place.
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(a) China (b) Singapore

(c) Italy (d) US

Figure 2: Daily changes in ln It, logarithmic infected population over time with shaded area
beings the 95-percent confidence intervals.

5 Calibration, Estimation, and Forecasts

In this section, we fit our model to the data for the January-February period. Given the

noisiness and short time series of the data, we do not attempt to capture the potential

heterogeneity in models across regions. Rather we think it is appropriate to fit one model

by pooling the 16 countries. We pursue a robust estimation strategy as follows. For each

country, we can estimate � and � using the brief time series. But we use as our estimate

the mean of the values across the 16 regions weighted by the number of daily observations

in each region. For instance, China has more observations in the first sub-period and will

then get more weight in our estimate. We can then judge the sensibility of our estimates by

comparing them to leading models of the early dynamics of COVID-19.

As we have pointed out a couple of times already, most governments only started inter-
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vening in March. Hence, we view our estimates as representative of the underlying epidemic

process or early COVID-19 dynamics absent government intervention.

Calibration of �: Earlier epidemiological studies typically set � by targeting the expected

duration for an infected and infective individual to 14 days, which implies that the rate � is

equal to 1/14 per day, or � = 365/12/14 ⇡ 2.173 per month. (Recall that in our convention,

one period is one month.) Epidemiological studies typically view � as highly predictable and

relatively easy to estimate. They typically model this parameter as an Erlang distribution

(Kucharski et.al. (2020)). By fixing �, we leave out the impact of uncertainty of the exit

rate on the disease spread.

Estimate of �: In Appendix A, we derive an OLS estimator for � given �:

b� =
1

N � 1
⌃N�2

i=0

Ii+1

Ii
� 1 + �

1� Ii
. (28)

Table 1 reports the distribution of the estimate across regions. We use the mean estimate

from the January-February sample (6.616 per month) as our baseline estimate with a 95%

CI of (2.443, 14.168).

Table 1: The percentiles and moments for the monthly estimates of parameters � and �2

with implied R0 based on the data during the period of January-February 2020.

Percentiles Moments

Estimates 5% 25% 50% 75% 95% Mean Std. Dev.

� 2.443 4.191 6.332 8.246 14.168 6.616 3.242

�2 0.718 1.138 1.436 4.791 8.857 2.851 2.537

R0 1.124 1.928 2.915 3.795 6.521 3.045 1.493

Estimate of �2: In Appendix A, we show that the estimator for �2 is

b�2 =
⌃N�2

i=0 (ln Ii+1 � ln Ii)2

⌃N�2
i=0 (1� Ii)2

. (29)
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Table 1 reports the distribution of the estimate across regions. We use the mean estimate

of �2 from the January-February sample (2.851 per month) as our baseline estimate with a

90% CI of (0.718, 8.857). The implied estimate of � is then 1.689 =
p
2.851 per month.

Estimate of the basic reproduction number R0. Our estimate of the basic reproduc-

tion number R0, shown in Table 1, is 3.045 = 6.616/2.173 with a 90% confidence interval of

(1.12, 6.52) based on data from the period of January-February. As we have mentioned in

the Introduction, our estimates are in line with leading studies.

Out-of-Sample Forecasts. In this section, we use the model estimated in the previous

section to generate out-of-sample forecasts for March-April. For purposes of comparison to

epidemiological studies’ short-run forecasts, we set the vaccine arrival rate � = 0 as our

baseline since a vaccine is quite unlikely to arrive in the short term. In comparative statics

below, we will then vary � and see its e↵ect on infection forecasts.

We can use our model to evaluate the e↵ectiveness of government interventions in March

and April. To the extent actual outcomes lie outside the 95% CI of our out-of-sample

forecasts, we can reject our model presumably attributable to government intervention. In

summary, our model is rejected for only two countries (China and South Korea) that have

bent the curve. Most of the countries infected outcomes in March-April fit within the 95%

CI of our model’s conditional forecast even as there is evidence of flattening of the curves.

But given the large conditional variances of out-of-sample forecasts, it is not possible to

definitely reject the model for most countries.

To see this, among the nine regions in Asia and Middle East (Figure 3), Japan, Singapore,

and Australia line up reasonably with our model projections. The exceptions are China and

South Korea which have successfully bent the curve: China in March already appears to

have broken out of the lower bound of the 95% CI followed by South Korea at the beginning

of April.

We next turn to the seven western countries in Figure 4. For the US, our model does

a reasonable job in early March and then later in April, but in the middle of this period,
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Figure 3: This figure plots the conditional forecast of ln It (means and 95% CIs) for Asian
and Middle Eastern countries in our sample and compares them with March-April data.
We use each region’s data on March 1st to calculate its I0 and use � = 6.616, � = 2.173,
� = 1.689, and � = 0 per month for their conditional distributions.

US cases are far above our 95-th percentile forecasts. But for many of the other Western

countries, including surprisingly Italy, we see that their outcomes for the most part lie

within our 95% CI. So overall, we view our intentionally parsimonious model as capturing

some essential COVID-19 dynamics.

6 Conditional Distributions and Transition Dynamics
of Infections

We now use our estimates from the previous section to calculate the conditional distribution

of It via the Kolmogorov forward equation. We focus on estimates and outcomes for the

US, though our discussion equally applies to the aforementioned regions in our out-of-sample

forecast analyses. We compare these conditional forecasts to the solution for the deterministic
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Figure 4: This figure plots the conditional forecast of ln It (means and 95% CIs) for Western
countries in our sample and compares them with March-April data. We use each region’s
data on March 1st to calculate its I0 and use � = 6.616, � = 2.173, � = 1.689, and � = 0
per month for their conditional distributions.

SIS model (� = 0) so as to draw implications regarding the usefulness of R0.

6.1 Stochastic SIS Model (� > 0)

We now contrast the deterministic model projections with our stochastic model projections.

In Table 2, we report the corresponding conditional means and variances for our stochastic

SIS model with 1, 2, 4, 6, 8 weeks and 3, 4, 6, 9, 12 months time horizons.

As we stated in the Introduction, R0 mismeasures the benefits of lockdowns for two

reasons. The first is the permanence of initial transmission shocks as we explained in deriving

our model. The second reason is seen in this table. The conditional mean increases with

the time horizon, as R0 = 3.045, which is significantly larger than one indicating a highly

infectious and fast spreading disease. Note that at the very early stage, e.g., from 1 week
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Table 2: Means and standard deviations of It over di↵erent time horizons conditional on
I0 = 2⇥ 10�7. This is our baseline case where parameter values are: � = 6.616, � = 2.173,
� = 1.689, and � = 0 per month with an implied value of R0, 3.045.

Deterministic Stochastic

t It E(It)
p
Var(It)

1 wk 5.6 ⇤ 10�7 5.6 ⇤ 10�7 5.4 ⇤ 10�7

2 wk 1.6 ⇤ 10�6 1.6 ⇤ 10�6 2.6 ⇤ 10�6

4 wk 1.2 ⇤ 10�5 1.2 ⇤ 10�5 4.3 ⇤ 10�5

6 wk 9.3 ⇤ 10�5 9.2 ⇤ 10�5 6.0 ⇤ 10�4

8 wk 7.1 ⇤ 10�4 6.8 ⇤ 10�4 5.2 ⇤ 10�3

3 mo 0.104 0.031 0.095

4 mo 0.630 0.165 0.235

6 mo 0.671 0.519 0.251

9 mo 0.671 0.636 0.151

12 mo 0.671 0.639 0.146

1 0.671 0.639 0.144

up to 6-8 weeks, the conditional mean forecast of I in our stochastic model is essentially

the same as in the deterministic model – this is because the stochastic exponential growth

approximation works well when It is very low. Starting from 3 months, this approximation

no longer works. Deterministic model infection forecasts based on R0 overshoot our model’s

conditional forecasts by a significant mount (0.104 for the deterministic model and 0.031 for

our stochastic model). This is due to Jensen’s inequality.

Furthermore, the conditional volatility is highly nonlinear and non-monotonic in the

time horizon. For example, for the 3-month-ahead forecast, the monthly volatility of It

(9.5%) is more than three times the mean (3.1%). Even with 6 months out, while the

expected infected mass is 51.9% of the population, the two-standard-deviation bound for

this estimate is still wide: from 27% to 77% of the population. The volatility declines once

we go beyond 5 months out (Around 5 months, the volatility peaks at 0.287.) In other

words, infection forecasts based on a deterministic model are poor approximations for the

conditional forecasts of our model for a large range of periods.
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Figure 5: Conditional distributions of It in stochastic SIS model with I0 = 2 ⇥ 10�7 based
on the US data as of March 1st. The parameter values are � = 6.616, � = 2.173, � = 1.689,
and � = 0 per month.

In Figure 5, rather than simply reporting the conditional means and variances, we plot

the conditional distributions of It with various time horizons: 1, 2, 4, 6 and 8 weeks (see

Panels A and C for pdfs and Panels B and D for cdfs.) We plot the conditional distributions

also with the initial value of I0 = 2⇥ 10�7. Panel A shows that the conditional distribution

for both one-week and two-week ahead are humped shaped. Panel B shows that the two-

week-ahead distribution dominates the one-week-ahead distribution in the sense of first-order

stochastic dominance (FOSD). For example, the one-week-ahead conditional probability that

the infected mass exceeds 1 ⇥ 10�6 of the population is 12.9%, two-week-ahead probability

(without intervention) significantly increases to 42.3%.

Panels C and D plot the conditional density and cumulative distribution functions respec-
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tively for 4, 6 and 8 weeks out. We see continued shift of probability distributions to higher

values of I as we increase the forecasting horizon. Indeed, the 8-week-ahead distribution

dominates the 6-week-ahead distribution, which in turn dominates the 4-week-ahead distri-

bution in the sense of FOSD. As an example, the probability that the infected mass (4-weeks

ahead) exceeds 0.01% of the population is 1.7%, two and four extra weeks (without inter-

vention) increase this probability to 15.1% and 38.6%, respectively. (Note the substantial

scale change on the horizontal axis across panels in Figure 5.)

Stochastic Steady State (SS) and Stationary Distribution. Next we turn to the

stochastic steady state and stationary distribution to gain some intuition for why R0 is an

insu�cient statistic for managing COVID-19 risks. The long-run distributional properties

of the infected fraction I depend on all three parameters in a nonlinear way. Simply relying

on R0, which is ratio between the expected transmission rate � and exit rate � can be quite

misleading.

It is useful to define the following variance-adjusted basic reproduction number:

R0 =
1

�

✓
� � �2

2

◆
. (30)

Gray et al. (2011) show that whetherR0 exceeds one or not dictates the long-run convergence

property of the model. There are two scenarios for the stationary distribution: 1) the

persistence case where R0 > 1: disease persists in the long run; 2) the extinction case where

R0  1: disease is extinct in the long run. That is, it is R0, rather than R0 that describes

whether the epidemic goes extinct in the long run.

While we have focused on how volatility � significantly alters the pandemic transmission

dynamics, it is also crucial for the long-run distribution of I. When R0 > 1, there exists a

unique stochastic SS at the level of It = ISS, where ISS is the unique positive root in (0, 1)

for the quadratic equation q(I) = 0 with q(I) given in (10):

ISS =
1

�2

hp
�2 � 2�2� �

�
� � �2

�i
. (31)

In this case, the infected mass It crosses its stochastic SS ISS infinitely often with probability
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one. The value of ISS corresponds to the threshold of I to reach herd immunity in our

stochastic SIS model.

In Figure 6, we plot the density function for the stationary distribution in Panel A and

the quadratic equation for q(I) in Panel B. For this case, R0 = 2.39 > 1. As a result, there is

a unique positive root ISS = 0.644. The single mode of the stationary distribution is 0.723.
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Figure 6: Panel A plots the stationary distribution of the infected population I for our
baseline case. The mode of the distribution is 0.723. Panel B shows that there is a unique
positive root, ISS = 0.644, for q(I) = 0, the fundamental quadratic equation (10). Parameter
values are � = 6.616, � = 2.173, � = 1.689, and � = 0 per month.

6.2 Comparative Statics

Another way to see why R0 is an insu�cient statistic to manage COVID-19 risks is to

consider a comparative statics on � which directly maps to changes in R0. Discussions

regarding government interventions have focused on keeping the reproduction number near

one. But our comparative static calculations in Table 3 suggest that even at fairly high

reproduction numbers the outbreak will likely be a slow burn.

Changing � or equivalently R0. Recall that when our baseline reproduction number is

3.045, our model predicts that at nine months out 63.6% of the US population will be infected

with a conditional standard deviation of 15.1%. But reducing � and taking the reproduction
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Table 3: E↵ects of Changing R0 on Conditional Distributions of It. The parameter values
are: � = 2.173, � = 1.689, and � = 0 per month. By definition, � = R0�.

A. R0 = 2.75 B. R0 = 2.25

Deterministic Stochastic Deterministic Stochastic

t It E(It)
p
Var(It) It E(It)

p
Var(It)

1 wk 4.8 ⇤ 10�7 4.8 ⇤ 10�7 4.7 ⇤ 10�7 3.8 ⇤ 10�7 3.8 ⇤ 10�7 3.6 ⇤ 10�7

2 wk 1.2 ⇤ 10�6 1.2 ⇤ 10�6 1.9 ⇤ 10�6 7.0 ⇤ 10�7 7.0 ⇤ 10�7 1.2 ⇤ 10�6

4 wk 6.7 ⇤ 10�6 6.7 ⇤ 10�6 2.4 ⇤ 10�5 2.5 ⇤ 10�6 2.5 ⇤ 10�6 8.8 ⇤ 10�6

6 wk 3.8 ⇤ 10�5 3.8 ⇤ 10�5 2.6 ⇤ 10�4 8.6 ⇤ 10�6 8.6 ⇤ 10�6 5.9 ⇤ 10�5

8 wk 2.2 ⇤ 10�4 2.2 ⇤ 10�4 2.0 ⇤ 10�3 3.0 ⇤ 10�5 3.0 ⇤ 10�5 3.5 ⇤ 10�4

3 mo 0.018 0.008 0.043 6.9 ⇤ 10�4 5.6 ⇤ 10�4 7.2 ⇤ 10�3

4 mo 0.353 0.056 0.139 0.010 0.004 0.029

6 mo 0.636 0.302 0.282 0.451 0.038 0.117

9 mo 0.636 0.546 0.211 0.556 0.166 0.235

12 mo 0.636 0.587 0.172 0.556 0.298 0.264

1 0.636 0.590 0.166 0.556 0.456 0.213

C. R0 = 1.75 D. R0 = 1.25

Deterministic Stochastic Deterministic Stochastic

t It E(It)
p
Var(It) It E(It)

p
Var(It)

1 wk 2.9 ⇤ 10�7 2.9 ⇤ 10�7 2.8 ⇤ 10�7 2.3 ⇤ 10�7 2.3 ⇤ 10�7 2.2 ⇤ 10�7

2 wk 4.3 ⇤ 10�7 4.3 ⇤ 10�7 7.0 ⇤ 10�7 2.6 ⇤ 10�7 2.6 ⇤ 10�7 4.3 ⇤ 10�7

4 wk 9.0 ⇤ 10�7 9.0 ⇤ 10�7 3.2 ⇤ 10�6 3.3 ⇤ 10�7 3.3 ⇤ 10�7 1.2 ⇤ 10�6

6 wk 1.9 ⇤ 10�6 1.9 ⇤ 10�6 1.3 ⇤ 10�5 4.3 ⇤ 10�7 4.3 ⇤ 10�7 3.0 ⇤ 10�6

8 wk 4.0 ⇤ 10�6 4.0 ⇤ 10�6 5.3 ⇤ 10�5 5.5 ⇤ 10�7 5.5 ⇤ 10�7 7.5 ⇤ 10�6

3 mo 2.7 ⇤ 10�5 2.6 ⇤ 10�5 7.6 ⇤ 10�4 1.0 ⇤ 10�6 1.0 ⇤ 10�6 5.2 ⇤ 10�5

4 mo 1.4 ⇤ 10�4 1.1 ⇤ 10�4 0.003 1.8 ⇤ 10�6 1.7 ⇤ 10�6 1.6 ⇤ 10�4

6 mo 0.004 0.001 0.014 5.2 ⇤ 10�6 4.1 ⇤ 10�6 5.4 ⇤ 10�4

9 mo 0.224 0.005 0.039 2.7 ⇤ 10�5 0.8 ⇤ 10�5 1.1 ⇤ 10�3

12 mo 0.426 0.012 0.066 1.4 ⇤ 10�4 0.1 ⇤ 10�5 1.4 ⇤ 10�3

18 mo 0.429 0.031 0.108 0.004 8.9 ⇤ 10�6 1.4 ⇤ 10�3

24 mo 0.429 0.050 0.135 0.063 5.1 ⇤ 10�6 1.1 ⇤ 10�3

36 mo 0.429 0.077 0.163 0.199 1.3 ⇤ 10�6 5.6 ⇤ 10�4

1 0.429 0.131 0.197 0.20 0 0
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number to 1.75 radically changes projections. Even at 24 months out, the conditional mean

forecast is 5% with a (relatively) large conditional standard deviation of 13.5%. In contrast,

in a deterministic model, the fraction infected with a reproduction number of 1.75 would be

much higher: 42.6% of the entire population even in 12 months.

With R0 = 1.25, in our stochastic formulation, the disease goes into extinction on its

own with probability one with no intervention nor vaccine. In contrast, the deterministic

model predicts 20% of the US population to be infected in three years. Again, this sig-

nificant conditional forecasts di↵erences and opposite infection forecasts (extinction versus

persistence) in the long run are due to the significant pandemic spread uncertainty (�). In

summary, heuristics garnered from a deterministic model can fundamentally skew cost and

benefit assessments.

Infectious period of 10 days instead of 14 days. We also experimented with how our

analysis changes if we assume that the average duration for an infected to be infective is 10

days, i.e., � = 1/10 per day. The reproduction number is then 2.17. This is still a very high

reproduction number. But our conclusions are similar to before. We omit these results for

brevity.

Consequences of higher volatility �. To see why transmission volatility matters so

much when managing COVID-19 risks, it is useful to consider the impact of a higher volatility

on the model’s prediction. We choose � = 2 per month.21 In Figure 7, we plot the conditional

distributions of It for t = 1, 2, 4, 6, 8 weeks and 9, 12, 18 months. First, we see that for the

near-term conditional distribution (t = 1, 2 weeks), the density is peaked close to zero. As

we increase t, the density function shifts to the right and becomes flatter (for t = 4, 6, 8

weeks). As we further increase the forecasting horizon (e.g., to 9 and 12 months), we observe

two modes for the conditional distribution. For example, for the one-year-ahead forecast:

one mode is near zero (at 4.8 ⇤ 10�9) and the other mode is at 0.747.

21This value is in the 95% confidence interval for estimated �2, i.e. (2.851�1.96⇥2.537, 2.851+1.96⇥2.537)
based on the data of 16 regions from January to February (the mean of �2 is 2.851 and the standard deviation
is 2.537).
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Figure 7: Conditional distributions of It with I0 = 2 ⇥ 10�7 based on the US data as of
March 1st.) Monthly parameter values are � = 6.616, � = 2.173, � = 2, and � = 0.

It takes about one year and half for the conditional distribution to converge to the

stochastic steady state where ISS = 0.630 with a single mode at 0.747. Compared with the

case where � = 1.689, the drift q(I) for the logarithmic infected ln(I) is substantially lower.

As a result, the force (and hence the likelihood) for the mass It to move to the left is stronger

when � = 2 than when � = 1.689. Also, we see that with a higher volatility, convergence to

the stationary distribution also takes more time.
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Table 4: E↵ects of Vaccine Arrival Rate, �, on Conditional Distributions of It. Other
parameter values are: � = 6.616, � = 2.173, and � = 1.689 per month with an implied value
of R0, 3.045.

A. Six Months B. One Year

Deterministic Stochastic Deterministic Stochastic

t It E(It)
p
Var(It) It E(It)

p
Var(It)

1 wk 5.4 ⇤ 10�7 5.4 ⇤ 10�7 5.4 ⇤ 10�7 5.5 ⇤ 10�7 5.5 ⇤ 10�7 5.4 ⇤ 10�7

2 wk 1.4 ⇤ 10�6 1.4 ⇤ 10�6 2.5 ⇤ 10�6 1.5 ⇤ 10�6 1.5 ⇤ 10�6 2.5 ⇤ 10�6

4 wk 1.0 ⇤ 10�5 1.0 ⇤ 10�5 4.0 ⇤ 10�5 1.1 ⇤ 10�5 1.1 ⇤ 10�5 4.1 ⇤ 10�5

6 wk 7.3 ⇤ 10�5 7.3 ⇤ 10�5 5.4 ⇤ 10�4 8.2 ⇤ 10�5 8.2 ⇤ 10�5 5.7 ⇤ 10�4

8 wk 5.2 ⇤ 10�4 5.0 ⇤ 10�4 4.5 ⇤ 10�3 6.1 ⇤ 10�4 5.8 ⇤ 10�4 4.9 ⇤ 10�3

3 mo 0.061 0.019 0.076 0.078 0.024 0.085

4 mo 0.323 0.084 0.188 0.450 0.117 0.213

6 mo 0.248 0.191 0.294 0.408 0.314 0.321

9 mo 0.150 0.142 0.275 0.318 0.300 0.334

12 mo 0.091 0.086 0.225 0.247 0.235 0.321

24 mo 0.012 0.012 0.088 0.091 0.086 0.225

1 0 0 0 0 0 0

C. Two Years D. Forty Months

Deterministic Stochastic Deterministic Stochastic

t It E(It)
p
Var(It) It E(It)

p
Var(It)

1 wk 5.5 ⇤ 10�7 5.5 ⇤ 10�7 5.4 ⇤ 10�7 5.6 ⇤ 10�7 5.6 ⇤ 10�7 5.4 ⇤ 10�7

2 wk 1.5 ⇤ 10�6 1.5 ⇤ 10�6 2.5 ⇤ 10�6 1.5 ⇤ 10�6 1.5 ⇤ 10�6 2.5 ⇤ 10�6

4 wk 1.2 ⇤ 10�5 1.2 ⇤ 10�5 4.2 ⇤ 10�5 1.2 ⇤ 10�5 1.2 ⇤ 10�5 4.2 ⇤ 10�5

6 wk 8.7 ⇤ 10�5 8.7 ⇤ 10�5 5.9 ⇤ 10�4 8.9 ⇤ 10�5 8.9 ⇤ 10�5 5.9 ⇤ 10�4

8 wk 6.6 ⇤ 10�4 6.3 ⇤ 10�4 5.1 ⇤ 10�3 6.8 ⇤ 10�4 6.5 ⇤ 10�4 5.1 ⇤ 10�3

3 mo 0.089 0.027 0.090 0.093 0.029 0.093

4 mo 0.531 0.138 0.225 0.568 0.148 0.230

6 mo 0.523 0.403 0.310 0.578 0.446 0.296

9 mo 0.462 0.437 0.321 0.537 0.507 0.289

12 mo 0.407 0.387 0.333 0.497 0.473 0.308

24 mo 0.247 0.235 0.320 0.369 0.350 0.336

36 mo 0.150 0.143 0.275 0.273 0.260 0.328

1 0 0 0 0 0 0
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Varying vaccine arrival rate �. In Table 4, we calculate the impact of vaccine arrival

on the conditional mean and standard deviation of It for varying expected arrival rates. For

simplicity, we set n(I) = 0 for this calculation. While an eventual vaccine arrival will make

the disease extinction, the conditional moments of It vary significantly with the expected

arrival vaccine rate �.

Panel A shows that if the vaccine is expected to arrive soon (e.g., six months), the current

conditional forecast of It for any horizon t is much lower than without vaccine arrival and

peaks around 6 months at 19%. Panel B shows that if the vaccine is expected to arrive in

one year, the current conditional forecast of It for any horizon t is much lower than without

vaccine arrival and also peaks around 6 months but obviously at a higher rate of 31.4%.

Similarly, as we increase the expected waiting time for vaccine to two years (Panel C) or 40

months (Panel D), the expected infected fraction can reach as high as 44% and 51% around

9 months. These are very high numbers and indicate that waiting for vaccine to arrive will

cause a very large fraction of the population to be infected, even though in the long run

COVID-19 goes extinct in our model due to the eventual arrival of vaccine by assumption.

7 Stochastic Transmission Shocks and Financial Risks

While we have shown that R0 overstates the benefits of economy-wide lockdowns, we now

show that it also mismeasures COVID-19 damage to financial markets. To do so, we analyze

the quantitative e↵ects of COVID-19 on earnings growth, the market price of pandemic risk,

and vaccine arrival on valuation. Our strategy is to analyze each of these three e↵ects in

turn, so as to contrast how conclusions di↵er between the classic deterministic SIS model

and our stochastic SIS model.

7.1 Earnings Growth Channel

In this subsection, we focus solely on the earnings growth channel by shutting down earnings

volatility and market price of pandemic risk channels, v(It) = 0 and ⌘Z = 0, and assuming

that the vaccine arrival rate � = 0. As a result, the pricing equation (20) is substantially
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simplified as follows:

�
r + ⇢�⌘B � g(I)

�
p(I) = 1 + [� (1� I)� �] Ip0(I) +

(�I(1� I))2

2
p00(I) , (32)

where I impacts p(I) via its drift and volatility e↵ects on g(I).

To contrast how valuation implications di↵er between deterministic and stochastic epi-

demic models, we choose key parameter values for our asset pricing model following the

literature. We set the annual risk-free rate at 4%, the annual stock-market risk premium

at 6%, and the annual stock market volatility at 20% (with an implied annual Sharpe ratio

⌘B = 30%). Suppose that the asset’s CAPM beta is one. Then, the cost of capital for this

asset is equal to 4% + 1⇥ 6% = 10%. We set the (annual) earnings growth rate (in normal

times), g0, to 5%, so that we obtain a price-earnings ratio of p0 = 1/(10% � 5%) = 20 in

normal times.

We next specify the impact of the pandemic shock on the asset’s earnings growth (drift)

function g(It) as follows:

g(It) = g0
⇣
1� ⇣1I

⇣2
t

⌘
, (33)

where g0 > 0 is the drift in normal times. The two new parameters are ⇣1 and ⇣2. First, as

It = 0 is an absorbing state, we set g(0) = g0 so that our pricing equation model is consistent

with that under normal times. Second, earnings growth g(It) is decreasing with It but at a

slower rate as It increases implying ⇣1 > 0 and 0 < ⇣2 < 1. For our quantitative illustration,

we focus on the parameter ⇣1, which captures the sensitivity of earnings growth to I.

Table 5 summarizes the parameter values used for our earnings growth channel analy-

sis. We consider a range of values for ⇣1. We pay particular attention to severely a↵ected

industries such as airlines and hotels. The valuation of these industries collapsed by nearly

75% following the arrival of COVID-19. While there is no historical data with which we can

nail down these parameters, we will intentionally pick a range of parameters to reflect the

severity of the COVID-19 shock to these important industries. As our baseline we choose

⇣1 = 3. As we demonstrate below, ⇣1 = 3 corresponds to fairly mild long-run declines in

growth rates of around 5%.
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Table 5: This table summarizes the parameter values for our epidemic and asset valuation
analyses assuming no pandemic price of risk and no vaccine arrival. Parameter values are
based on one period being one month.

Parameters Symbol Value

A. Epidemic

transmission rate � 6.616
recovery rate � 2.173
volatility of infected population � 1.689

B. Asset pricing

risk-free rate r 4%/12
market price of business-as-usual risk ⌘B 30%/12
market price of pandemic risk ⌘Z 0
earnings growth volatility � 20%/

p
12

correlation coe�cient ⇢ 1
normal-time earnings growth rate g0 5%/12
growth reduction level parameter ⇣1 3
growth reduction curvature parameter ⇣2 0.25
arrival rate of vaccine � 0

In Table 6, we report for the damage to valuations for this baseline case. This table is

the economic damage analog to Table 3, which calculated the conditional expectations of

infections, i.e. COVID-19 damage to health. We see in this table that COVID-19 damage

for stock valuations also di↵ers markedly between a deterministic versus a stochastic model.

The deterministic model would imply severe damage to valuation ratios for all the values

of R0 greater than 1 (across Panels A-D). For instance, in Panel D for R0 = 1.25, the

price-earnings ratio p(I) is 7.64 in the beginning and dropping to 6.66 in the limit. That is,

the valuation is substantially impaired according to deterministic model infection forecasts.

The reason of course is that markets are forward looking and valuations are determined by

cashflows discounted far into the future. The valuation damage becomes progressively worst

as we move to higher levels of R0.

In sharp contrast, Panel D shows that whenR0 is 1.25, our stochastic model predicts that
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Table 6: E↵ects of Changing R0 on Conditional Distributions of p(It) assuming no pandemic
risk premium or vaccine. Other parameter values are: � = 6.616, � = 2.173, and � = 1.689
per month with an implied value of R0, 3.045.

A. R0 = 3.045 B. R0 = 2.25

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
p
Var(p(It)) p(It) E(p(It))

p
Var(p(It))

1 wk 5.527 5.673 0.016 5.805 6.411 0.036

2 wk 5.513 5.660 0.022 5.791 6.399 0.051

4 wk 5.487 5.634 0.031 5.765 6.374 0.072

6 wk 5.461 5.608 0.037 5.739 6.349 0.088

8 wk 5.438 5.583 0.041 5.714 6.324 0.102

3 mo 5.393 5.527 0.044 5.654 6.263 0.131

4 mo 5.384 5.491 0.037 5.611 6.213 0.148

6 mo 5.384 5.461 0.015 5.572 6.121 0.160

9 mo 5.384 5.456 0.003 5.571 6.020 0.139

12 mo 5.384 5.456 0.002 5.571 5.964 0.104

1 5.384 5.456 0.002 5.571 5.915 0.017

C. R0 = 1.75 D. R0 = 1.25

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
p
Var(p(It)) p(It) E(p(It))

p
Var(p(It))

1 wk 6.215 12.670 0.337 7.640 19.966 0.008

2 wk 6.202 12.664 0.477 7.628 19.967 0.011

4 wk 6.176 12.651 0.678 7.606 19.969 0.014

6 wk 6.151 12.639 0.834 7.583 19.971 0.017

8 wk 6.126 12.627 0.967 7.560 19.973 0.019

3 mo 6.064 12.595 1.245 7.504 19.977 0.022

4 mo 6.013 12.567 1.439 7.455 19.980 0.023

6 mo 5.920 12.502 1.737 7.357 19.985 0.024

9 mo 5.843 12.382 2.024 7.215 19.990 0.022

12 mo 5.836 12.247 2.195 7.077 19.993 0.020

18 mo 5.836 11.969 2.359 6.838 19.996 0.014

24 mo 5.836 11.713 2.402 6.691 19.997 0.010

36 mo 5.836 11.298 2.343 6.656 19.997 0.006

1 5.836 10.446 1.813 6.656 20 0
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the expected price-earnings ratios at all horizons are above 19.9, barely di↵erent from the

p0 = 20 benchmark for the case with no COVID-19. The reason is that infection forecasts

in our stochastic model are only slightly above zero, (the largest value of It is 0.8 ⇤ 10�5 as

we demonstrated in Panel D of Table 3.) These low values of It means that the epidemic

breaks out with zero probability and is due to � being significant. This markedly di↵erent

forecasts of It dynamics between the deterministic model and our stochastic epidemic model

explains the valuation di↵erences implied by these two models. s

As we increase R0 to 1.75 (Panel C), we can see that there is now damage to valuation

even for our stochastic model. Since markets are forward-looking, we see significant economic

damage to valuation ratios in week 1 after COVID-19’s arrival—the price-earnings ratio

declines to 12.67, which is a significant drop from the pre-COVID-19 value of 20. Moreover,

valuations ratios continue to drop over time, reaching a steady-state of 10.45 as infected

masses increase.

As R0 continues to rise in Panels A and B, we see that valuation ratios get closer to the

predictions from the deterministic model. Nonetheless, even at our estimate of a reproduction

number of 3.045 for COVID-19 (i.e. the scenario in Panel A), predictions are not exactly

the same across the two models.

In Figure 8, we plot p(I) and g(I) for various values of ⇣1. The p(I) plots are graphical

illustrations of how results from Table 3 change as we move away from our baseline case

with ⇣1 = 3, assuming an R0 = 3.045. We see increasingly severe damage to valuations as

⇣1 increases. The e↵ects are highly non-linear in ⇣1. We can see how g(I) declines with I

but non-linearly. This non-linearity essentially imparts a non-linearity of economic damage

to valuation with R0. The drop in the valuation ratio occurs for even low levels of infection

given that markets are forward-looking. To see this result more clearly, we plot p(I) and g(I)

with respect to ln(I) on the horizontal axis in Panels C and D. The damage to valuation is

convex in I.
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Figure 8: E↵ects of Changing ⇣1 on price-earnings ratio p(I) and the expected earnings
growth rate g(I). Panels A and B plot against I 2 [0, 1] and Panels C and D plot against
ln I 2 (�1, 0]. Other parameter values are: � = 6.616, � = 2.173, and � = 1.689 per month
with an implied value of R0, 3.045.

7.2 Market Price of Pandemic Risk

Next, we evaluate the impact of market price of pandemic risk on the conditional mean and

standard deviation of It for varying values of ⌘Z . For simplicity, we set v(I) = 0 so that the

pricing equation (20) is simplified as follows:

�
r + ⇢�⌘B � g(I)

�
p(I) = 1 +

⇥
�Q (1� I)� �

⇤
Ip0(I) +

(�I(1� I))2

2
p00(I) , (34)

where we use �Q = � � �⌘Z rather than � for the valuation purpose (the key di↵erence

from the analysis in the preceding subsection.) That is, we under-estimate the impact of

pandemic risk on valuation, as we ignore two correction terms involving v(I) in (20).

In Table 7, we choose R0 = 1.25 to make the point that even if the disease is mildly con-
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Table 7: E↵ects of Changing ⌘Z on Conditional Distributions of p(It). Here, R0 = 1.25 (as
� = 2.716, � = 2.173 and � = 1.689 per month) and � = 0. The risk-adjusted transmission
rate is �Q = � � ⌘Z�.

A. �Q/� = 1 (⌘Z = 0) B. �Q/� = 1.5 (⌘Z = �2.786)

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
p

Var(p(It)) p(It) E(p(It))
p
Var(p(It))

1 wk 7.640 19.966 0.008 7.640 8.761 0.206

2 wk 7.628 19.967 0.011 7.628 8.832 0.314

4 wk 7.606 19.969 0.014 7.606 8.993 0.525

6 wk 7.583 19.971 0.017 7.583 9.183 0.770

8 wk 7.560 19.973 0.019 7.560 9.409 1.070

3 mo 7.504 19.977 0.022 7.504 10.131 1.954

4 mo 7.455 19.980 0.023 7.455 10.875 2.625

6 mo 7.357 19.985 0.024 7.357 12.310 3.370

9 mo 7.215 19.990 0.022 7.215 13.840 3.543

12 mo 7.077 19.993 0.020 7.077 14.719 3.360

24 mo 6.691 19.997 0.010 6.691 15.696 2.834

36 mo 6.656 19.997 0.006 6.656 15.797 2.751

1 6.656 20 0 6.656 20 0

C. �Q/� = 2 (⌘Z = �5.571) D. �Q/� = 3 (⌘Z = �11.142)

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
p

Var(p(It)) p(It) E(p(It))
p
Var(p(It))

1 wk 7.640 6.058 0.025 7.640 5.486 0.011

2 wk 7.628 6.065 0.036 7.628 5.488 0.015

4 wk 7.606 6.078 0.055 7.606 5.494 0.021

6 wk 7.583 6.097 0.118 7.583 5.499 0.050

8 wk 7.560 6.130 0.310 7.560 5.509 0.165

3 mo 7.504 6.365 1.155 7.504 5.595 0.719

4 mo 7.455 6.754 1.924 7.455 5.765 1.255

6 mo 7.357 7.700 2.969 7.357 6.211 2.052

9 mo 7.215 8.830 3.593 7.215 6.763 2.644

12 mo 7.077 9.500 3.767 7.077 7.094 2.894

24 mo 6.691 10.245 3.815 6.691 7.462 3.107

1 6.656 20 0 6.656 20 0
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tagious, its impact on valuation could still be substantial when the market price of pandemic

risk causes the risk-adjusted transmission rate �Q to be significantly larger from �.

Panel A shows that if investors attach zero market price of pandemic risk, i.e., ⌘Z = 0,

It essentially has no impact on p(I). But introducing market price of pandemic risk, e.g.,

setting ⌘Z to -5.571, so that �Q = 2 ⇥ � = 5.43, significantly damages valuation. For

example, valuation forecasts for the first three months on average drop by about 70% and

two-year-ahead forecast decreases to about half of the price-earnings ratio in normal times,

p0 = 20. Note that even if the basic reproduction number is only 1.25 and the pandemic

goes into extinction with no intervention in the long run on its own, for valuation purposes,

risk-averse investors may still attach a high risk premium so that they view the epidemic

is persistent after risk adjustment (i..e, under the risk-neutral measure Q). As a result,

valuation is much reduced. That is, health and financial health implications can be quite

di↵erent.

Additionally and perhaps surprisingly, the forecast of p(It) as a function of time horizon

t in the stochastic model is opposite to that in the deterministic model. In the deterministic

model, p(It) decreases with t as It increases over time. In contrast, in our stochastic model,

the conditional forecast E(p(It)) increases with t as the disease eventually goes extinct, even

though R0 = 1.25 and hence the growth rate g(It) rebounds in our stochastic model (despite

the market price of pandemic risk).

7.3 Valuing Potential Arrival of Vaccine

Finally, we show that the expectation of vaccine arrival in the foreseeable future (compared

with the no-vaccine scenario) significantly mitigates the negative impact of COVID-19 on

valuation. For our illustration, we choose �Q/� = 1/2 and equivalently  = � ln 2. That is,

risk-averse investors perceive the arrival rate for pricing purposes, �Q at the half of �, the

(physical) vaccine arrival rate. For simplicity, we set n(I) = 0 in this subsection.

In Table 8, we calculate the value of a vaccine arrival by using p(It) for the four scenarios,

where the expected arrival time for vaccine is six months, one year, two years, and forty
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Table 8: E↵ects of Changing Vaccine Arrival Rate, �, on Conditional Distributions of p(It).
Other parameter values are: � = 6.616, � = 2.173, and � = 1.689 per month with an implied
value of R0, 3.045. Panels A, B, C, and D correspond to the expected vaccine arrival time
to be six months, one year, two years, and forty months.

A. Six Months B. One Year

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
p
Var(p(It)) p(It) E(p(It))

p
Var(p(It))

1 wk 18.201 18.405 0.318 16.511 16.750 0.454

2 wk 18.235 18.435 0.445 16.542 16.779 0.639

4 wk 18.303 18.494 0.617 16.605 16.837 0.896

6 wk 18.370 18.553 0.741 16.670 16.896 1.088

8 wk 18.438 18.611 0.838 16.737 16.956 1.244

3 mo 18.627 18.759 1.002 16.935 17.116 1.538

4 mo 18.821 18.895 1.075 17.159 17.273 1.712

6 mo 19.155 19.175 1.080 17.596 17.640 1.898

9 mo 19.487 19.495 0.939 18.126 18.154 1.948

12 mo 19.690 19.695 0.771 18.544 18.565 1.881

24 mo 19.958 19.959 0.302 19.464 19.472 1.334

1 20 20 0 20 20 0

C. Two Years D. Forty Months

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
p
Var(p(It)) p(It) E(p(It))

p
Var(p(It))

1 wk 14.181 14.430 0.548 12.269 12.512 0.570

2 wk 14.204 14.453 0.774 12.285 12.527 0.805

4 wk 14.252 14.498 1.090 12.318 12.558 1.137

6 wk 14.302 14.544 1.330 12.352 12.591 1.391

8 wk 14.355 14.592 1.530 12.390 12.624 1.603

3 mo 14.520 14.725 1.925 12.515 12.722 2.030

4 mo 14.722 14.863 2.183 12.680 12.830 2.320

6 mo 15.145 15.216 2.546 13.038 13.123 2.763

9 mo 15.714 15.768 2.850 13.540 13.610 3.205

12 mo 16.221 16.269 3.005 14.010 14.075 3.505

24 mo 17.708 17.737 2.967 15.563 15.611 3.980

1 20 20 0 20 20 0
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months, respectively.22 We can see that the price-earnings ratio p(It) does not fall nearly

as much when there is a potential for a vaccine in half year or one year (Panels A and B).

However, valuations begin to get significantly impacted even if the expected vaccine arrival

time is two years or forty months out as we see in Panels C and D, respectively. This is due

to a combination of both a longer expected waiting time and a risk premium for stochastic

vaccine arrival.

Importantly, we can relate these benefits to those obtained through government interven-

tion regarding � and reproduction number. For example, consider the conditional forecast of

p(t) for horizons up to one year. The economic benefits of targeting a reproduction number

around 1.75 (shown in Panel C of Table 6) is roughly in line with having a vaccine expected

to arrive in forty months (Panel D).

8 Conclusion

We propose a parsimonious epidemic model that highlights the importance of transmission-

rate shocks due to unpredictable environmental factors. The model is a three-parameter

nonlinear di↵usion process amenable for risk-management applications in areas such as eco-

nomics and finance. We integrate the model into an asset-pricing framework that accounts

for a potential vaccine so that we can quantify the financial damage of COVID-19 and relate

this damage to epidemic data. Our model has a number of implications for the usefulness of

the basic reproduction number.

In short, our contribution is to demonstrate how analysis of pandemics fundamentally

di↵ers when using a stochastic epidemic model as opposed to relying on the classic deter-

ministic epidemic model and the R0 heuristic as an approximation. Our stochastic epidemic

model is tractable enough that it can be used for further analysis such as stochastic control

of pandemics. At the same time, it generates testable predictions that might be of interest

to empiricists. We leave these avenues for future research.

22Note that we ignore the market price of pandemic risk by setting ⌘Z = 0.
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Appendices

A Estimation

Estimation of �. We use ordinary least squares (OLS) method to estimate the parameter

� for a given value of �. Discretizing It in (6) gives

It+� = It + (�(1� It)� �)It�+ � It(1� It)
p
� ✏t+� , (A.35)

where � is the time increment, ✏t+� is a standard normal random variable, and

( It+�

It
� 1)� (�(1� It)� �)�

1� It
= �

p
� ✏t+� ⇠ N (0, �2�) . (A.36)

Let N denote the sample size. We choose an estimate of � to minimize the following:

⌃N�2
i=0

 
(
I(i+1)�

Ii�
� 1)� (�(1� Ii�)� �)�

1� Ii�

!2

. (A.37)

Setting � to one in (A.37) yields b�, which is given by (28). The variance of b� is given by

Var(b�) = E(b� � �)2 = E
 

1

N � 1
⌃N�2

0

Ii+1

Ii
� 1 + �

1� Ii
� �

!2

=
�2

N � 1
. (A.38)

The 95% confidence interval for b� is
⇣
b� � 1.96 �p

N�1
, b� + 1.96 �p

N�1

⌘
.

Estimation of �2. Equation (9) implies that the quadratic variation of ln It, which we

denote by < ln It, ln It >, satisfies d < ln It, ln It >= (1� It)2�2dt . Therefore, we have

�2 =
< ln It, ln It >R t

0 (1� Is)2ds
. (A.39)

Discretizing the preceding equation, we obtain the following estimate of �2:

b�2 =
⌃N�2

i=0 (ln I(i+1)� � ln Ii�)2

⌃N�2
i=0 (1� Ii�)2�

. (A.40)

By setting � to one, we obtain (29).
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B Deterministic SIS Model

Consider the case where � 6= �. (The case with � = � is straightforward.) We have

dIt
dt

=


�

� � �

�
e(���)t/2 � e�(���)t/2

�
+

1

I0
e�(���)t/2

��2✓ 1

I0
� �

� � �

◆
(� � �) .(B.41)

The second derivative of It is

d2It
dt2

= �2


�

� � �

�
e(���)t/2 � e�(���)t/2

�
+

1

I0
e�(���)t/2

��3✓ 1

I0
� �

� � �

◆
(� � �)

⇥

�

2
e(���)t/2 +

✓
�

2
� � � �

2

1

I0

◆
e�(���)t/2

�
. (B.42)

Let t⇤ denote the time at which the peak of the net change dIt/dt is reached, i.e., when

d2It/dt2 = 0. It is immediate to conclude that the curve dIt/dt peaks at t⇤ where

t⇤ =
1

(� � �)
ln

✓
� � �

�

1

I0
� 1

◆
=

1

(� � �)
ln

✓✓
1� 1

R0

◆
1

I0
� 1

◆
(B.43)

C Derivation Details for Pricing and Hedging

Let P denote the value of the asset. The standard asset-pricing theorem implies that the

following holds (Du�e, 2001):

Pt = Et

✓Z 1

t

Ms

Mt
Ys ds

◆
= EQ

t

✓Z 1

t

e�r(s�t)Ys ds

◆
, (C.44)

where the first pricing equation is under the physical (real-world) probability measure P and

the second pricing equation is under the risk-neutral (which means risk-adjusted) probability

measure Q. It is convenient to use Q for pricing purposes.

Risk-neutral dynamics. Let BQ
t and ZQ

t denote the standard Brownian motions for the

business-as-usual and pandemic shocks, respectively. By using Girsanov’s Theorem, we have

the following relations between them under Q and the real-world (physical) measure P:

dBQ
t = dBt + ⌘Bdt (C.45)

dZQ
t = dZt + ⌘Zdt . (C.46)

We thus may write the dynamics for I under the risk-neutral measure Q as follows:

dIt =
⇥
�(1� It)� � � ⌘Z� (1� It)

⇤
It dt+ � It(1� It) dZQ

t (C.47)

=
⇥
�Q (1� It)� �

⇤
It dt+ � It(1� It) dZQ

t , (C.48)
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where �Q = � � ⌘Z�.

The earnings process under the risk-neutral measure Q is:

dYt

Yt
= gQ(It)dt+ v(It) dZQ

t + ⇢� dBQ
t +

p
1� ⇢2 � dWt , (C.49)

where the (risk-adjusted) earnings growth rate gQ(It) is given by:

gQ(It) = g(It)� v(It)⌘
Z � ⇢�⌘B . (C.50)

Note that both business-as-usual and pandemic risks appear in (C.50).

Pricing. The fundamental theorem of asset pricing (Du�e, 2001) implies that

rP (Y, I) = Y +
⇥
g(I)� v(I)⌘Z � ⇢�⌘B

⇤
Y PY (Y, I) +

1

2

⇥
v(I)2 + �2

⇤
Y 2PY Y (Y, I)

+
⇥�
� � ⌘Z�

�
(1� I)� �

⇤
IPI(Y, I) +

1

2
�2 I2(1� I)2PII(Y, I)

+PIY � I(1� I)v(I)Y . (C.51)

As P (Yt, It) = p(It)Yt, we have PY (Y, I) = p(I), PY Y (Y, I) = 0, PI(Y, I) = p0(I)Y,

PII(Y, I) = p00(I)Y, and PIY (Y, I) = p0(I) . Substituting these expressions into (C.51) yields

rp(I) = 1 +
⇥
g(I)� v(I)⌘Z � ⇢�⌘B

⇤
p(I) +

⇥�
� � ⌘Z�

�
(1� I)� �

⇤
Ip0(I)

+
1

2
�2 I2(1� I)2p00(I) + p0(I)� I(1� I)v(I) . (C.52)

Re-organizing (C.52) yields (20).

Return dynamics. The asset’s cum-dividend return process is given by

Ytdt+ dPt

Pt
=

dt

p(It)
+

dYt

Yt
+

dp(It)

p(It)
+

d < p(It), Yt >

p(It)Yt

=
1

p(It)
+

dYt

Yt
+

1

p(It)

✓
p0(It)dIt +

p00(It) < dIt, dIt >

2

◆
+

p0(It) < dIt, dYt >

p(It)Yt

= (r + ✓(It))dt+ �Z
R(It) dZt + ⇢� dBt +

p
1� ⇢2 � dWt , (C.53)

where �Z
R(It) is the asset’s return volatility (due to pandemic risk) given by

�Z
R(It) = v(It) +

p0(It)

p(It)
It(1� It)� (C.54)

and ✓(It) is the asset’s expected excess return (over the risk-free rate r) given by

✓(It) = ⇢� ⌘B + �Z
R(It)⌘

Z . (C.55)
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Pandemic Risk and Risk Premium. There are two terms in return volatility loading

due to pandemic risk, �Z
R(It). The first term is the direct e↵ect of pandemic shocks on the

asset’s cash-flow risk. The second term in (C.54) captures the sensitivity of the equilibrium

pricing-earnings ratio p(It) with respect to It due to the correlation between the SDF and

pandemic shocks.

The asset’s expected excess return ✓(It) given in (C.55) has two components. The first in

✓(It) is the standard term (e.g., implied by CAPM as we discussed earlier) in the absence of

pandemic shocks. The key for our analysis is the second term, which is equal to the product

of the market price of pandemic risk ⌘Z and the quantity (volatility) of pandemic risk �Z
R

defined in (C.54).

Next, we incorporate the risk premium for vaccine arrival. The fundamental theorem of

asset pricing implies that the asset’s value, P (Y, I), satisfies the following pricing equation:

rP (Y, I) = Y +
⇥
g(I)� v(I)⌘Z � ⇢�⌘B

⇤
Y PY (Y, I) +

1

2

⇥
v(I)2 + �2

⇤
Y 2PY Y (Y, I)

+
⇥�
� � ⌘Z�

�
(1� I)� �

⇤
IPI(Y, I) +

1

2
�2 I2(1� I)2PII(Y, I)

+PIY � I(1� I)v(I)Y + �Q(P (Y, 0)� P (Y, I)) . (C.56)

Substituting P (Yt, It) = p(It)Yt into (C.56), we obtain the pricing equation (26) for p(It).
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