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1 Introduction

The basic reproduction number R0, defined as the expected number of secondary infections

generated by a single (representative) infected individual in a fully susceptible population,

plays an outsized role in managing Covid-19 risks. On the public health front, leading

large-scale computational epidemiological models emphasize that R0 is greater than one

and recommend lockdown measures to keep the reproduction number below one (see, e.g.,

Ferguson et al. (2020), Kucharski et al. (2020), and Li et al. (2020)).

On the economic front, an important macroeconomic literature focuses on economic

trade-offs and conduct policy analysis—the economic costs to flatten the curve (e.g., Al-

varez, Argente and Lippi (2020), Atkeson (2020), Eichenbaum, Rebelo and Trabant (2020),

and Gourinchas (2020)). These papers take R0 estimates from leading epidemiological stud-

ies in generating infection forecasts from deterministic epidemic models that economic agents

use as a counterfactual infection scenario absent social distancing.

Largely ignored is that estimates of R0 come with wide standard error bands, as we show

below. Such wide bands are not simply due to innocuous measurement error. Rather, a large

epidemiology literature (see Andersson and Britton (2012)) points to aggregate transmission

rate shocks reflecting super-spreading events such as mass gatherings, weather events that

inhibit or promote transmission, or changes in social interactions that govern contact rates.

We show that R0 is an insufficient statistic for managing Covid-19 risks, be it health or

economic, because aggregate transmission volatility is significant. This is particularly the

case when one considers financial risks, of the sort mentioned by Federal Reserve Board Fi-

nancial Stability Report (2020): “Asset prices remain vulnerable to significant price declines

should the pandemic take an unexpected course...”

Towards this end, we consider an extension of a widely-used deterministic epidemic model

of Covid-19 (Kermack and McKendrick (1927)) featuring aggregate transmission-rate shocks

that are intended to capture that viral contagiousness is unpredictable due to environmental

factors. Epidemic models of Covid-19 typically entertain multiple compartments in terms

of tracking susceptible, infected, and resistant (including the recovered and dead). In order
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to transparently highlight the importance of transmission volatility, we focus on modeling

just the infected population It, via a susceptible-infected-susceptible (SIS) as opposed to a

susceptible-infected-recovered (SIR) setting.1 There is also no consensus at this point that

Covid-19 infection confers long-lasting immunity. For a number of economic and financial

applications, the focus is typically on horizons of many years and the infected population

is often the main state variable of interest since damages are likely to be proportional to

infections.

We model the aggregate transmission shocks via a stochastic transmission rate, β̃. This

key input is modeled as a random variable with constant mean (predictable transmission

captured by parameter β) and transmission shocks (mean zero but with volatility captured

by parameter σ).2 The exit rate from the infected state back into the susceptible state

is additionally assumed to be a constant γ. Hence, β̃ largely drives the magnitude of the

reproduction number. The resulting dynamics of the fraction of infected then follows a

three-parameter non-linear diffusion process.

We calculate analytical conditional distributions from the Kolmogorov forward equation

associated with our epidemic process to characterize the transition risk of epidemics. In the

limit of no volatility, our model becomes the deterministic SIS model solution. While it is

understood by mathematical epidemiologists that introducing noise into the transmission

process will lead to a dampening of stationary distribution of infections,3 we show that

the inherent value of this parsimonious model lies in the characterization of the conditional

distributions up to a tractable differential equation including the stationary distribution.

We assess the financial risks that worry regulators by developing a dynamic asset-pricing

model which allows Covid-19 to impact both the drift and volatility of an asset’s earnings

process as well as the market price of pandemic risk. In our numerical exercise, we obtain a

1This SIS setting is useful for modeling viruses where recovery does not grant long-lasting immunity,
which includes potentially many types of viruses.

2This parameter perturbation approach has been used in the mathematical epidemiology literature (see,
e.g., Gray et.al. (2011)) and in statistical models of epidemics (see, e.g., Dureau et.al. (2013)).

3See Andersson and Britton (2012) and Brauer, Driessche, and Wu (2008). Even if the reproduction
number R0 > 1, the epidemic process might nonetheless die out due to the uncertainty of transmissions as
opposed to in the deterministic setting.
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generalized dividend discount model (as a special case of our asset-pricing model) that allows

infections to adversely affect earnings so as to assess the valuation damage of Covid-19.

Our pricing formula transparently links epidemic data (infections, reproduction numbers,

transmission volatility) and two parameters linking earnings growth to infections. Risk

managers can input these parameters and calculate the financial damage from Covid-19.

We can straightforwardly estimate our epidemic model by pooling Covid-19 case data

from 16 countries (regions) that are at high risk during the period of January - February

of 2020. These countries had among the most air travel connections to the city of Wuhan

in China and have been the basis of the modeling of the early dynamics of Covid-19 absent

government lockdowns. Given the noisiness and brief time series of the data and our goal of

demonstrating the influence of shocks, we fit one model for all 16 countries.

Our estimate of β is 6.62 per month, which translates to an infected individual infecting

one susceptible on average every five days (≈ 30/6.62.) Our estimate of monthly σ is 1.69,

which translates to a standard deviation of plus or minus 1.69 individuals per month. The

exit rate γ is equal to the inverse of the expected duration that an infected is sick and

infective; it is typically not estimated based on aggregate data early in epidemics since there

is a delay in when individuals leave the infected state. There is no consensus on this number.4

For our estimation of a population average, we simply use 14 days as the duration to infer

the exit rate γ at 1/(14 days), which is 2.17 per month. But we also consider 10 days as a

robustness check.5

These estimates then imply that the estimate of our (basic) reproduction numberR0 using

case data from January-February is 3.05 and the 90% confidence interval (CI) is (1.12, 6.52)

based on the empirical distribution. The wide standard errors of course reflect our significant

estimate of σ. Despite constraining one model for all countries (regions), our estimates are in

line with leading studies of Covid-19.6 Using these estimates, we then calculate the analytical

4It ranges from around 7 days to 14 days at the individual level but with a fat-tail in terms of an infectious
period across individuals.

5In leading models, this parameter is typically assumed to follow an Erlang distribution (Kucharski et al.
(2020)).

6Kucharsi et al. (2020) estimate a reproduction number of 2.35 [95% CI 1.15-4.77], while Imai et al.
(2020) estimate that it is 3.1 [95% CI 1.7-4.3].
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conditional distributions for the fraction of infected for each of the 16 countries (regions)

in March-April taking as an initial condition the fraction infected in each country at the

beginning of March.7 While our epidemic model generates sensible out-of-sample forecasts

in line with leading epidemiological models, its value lies in its implications for managing

Covid-19 risks.

To start, R0 mismeasures the benefits of economy-wide lockdowns, especially modeled

in the recent macroeconomic literature on flattening the curve highlighted above. There are

two reasons for why this is the case. The first reason is that R0 does not capture initial

transmission shocks being permanent. When the initial fraction of infected is low, the It

process is approximately a Geometric Brownian motion with outsized drift β and volatility

σ parameters. This means that shocks early on have permanent and very large effects. The

permanence of initial shocks can explain why a large amount of the variance in 1918 Flu

spatial outcomes cannot be explained (see Almond (2006) for a review of the evidence). It

can also explain why early action on social distancing might be useful in shutting down

stochastic transmission shocks (Adda (2016), Fang, Wang and Yang (2020), Hsiang et al.

(2020)).

Second, deterministic model infection forecasts based on R0 are poor approximations of

our model’s conditional forecasts. A key piece of intuition for this result comes from Gray

et al. (2011) who characterize the stationary distribution of our non-linear diffusion process.

Whereas R0 > 1 determines epidemic outbreak in a deterministic model, the analogous

outbreak point is lowered by the magnitude of σ2. In other words, even at a reproduction

number above 1, an epidemic cannot be sustained when σ2 is large.

Another way of framing this overshooting is that while discussions regarding government

interventions have focused on keeping the reproduction number near one, our analytical

conditional distribution calculations suggest that even at fairly high reproduction numbers

the outbreak will likely be a slow burn. When R0 is 1.75, even at 24 months out, the

7Recently, Fernandez-Villerde and Jones (2020) estimate epidemic processes focusing on death rates
while Toda (2020) estimates a SIR epidemic model for Covid-19 allowing for heterogeneous transmission
rates across regions. Our SIS model in contrast focuses on how volatility affects transition dynamics and
how health and financial outcomes depend on volatility of transmission rates.
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conditional mean forecast is 0.05 with a conditional standard deviation of 0.135.

While R0 mismeasures the benefits of economy-wide lockdowns, it understates Covid-19

risk to financial markets. Our pricing formula highlights not just the role of the reproduction

number of Covid-19 but how its transmission volatility influences valuations via at least

three channels: 1) earnings growth effect; 2) the convexity effect of pandemic risk; and 3)

the risk premium channel. The risk premium channel arises since Covid-19 has an impact on

aggregate consumption (wealth) and hence the price of Covid-19 risk determines the discount

rate applied to cashflow betas.

We can introduce a vaccine to our epidemic model as a jump with a Poisson arrival

rate. When the vaccine arrives, we assume the epidemic is over and infections go to zero.

We can calculate the value of a vaccine with different arrival rates. While vaccines that

are expected to arrive in a couple of years have little influence on conditional distribution

of infections in short-run, they matter greatly, along with transmission volatility, for firm

valuations nonetheless since markets are forward looking — discounting cashflow damage

from Covid-19 far into the future. Even slight changes in vaccine arrival rates have large

implications for valuations.

Our paper proceeds as follows. We present our epidemic model in Section 2 and the

valuation model in Section 3. We describe our data in Section 4. We explain our calibration,

estimation and forecast procedures in Section 5. In Section 6, we characterize the risk of our

epidemic process by studying the analytical conditional distribution of It. In Section 7, we

highlight the role of transmission volatility in Covid-19’s damage to earnings growth. We

account for the possibility of vaccination in Section 8. We conclude in Section 9.

2 Stochastic Epidemic Model

In this section, for pedagogical purposes, we construct our stochastic model by starting with

the classic Kermack and McKendrick (1927) model. Time is continuous and the horizon is

infinite. We normalize the total population size to one and there is no birth nor death in

the population. As a key motivation is to design a tractable and parsimonious model to
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conduct risk management applications, we only model two compartments (groups): infected

and infectious (I) and susceptible (S) (or equivalently uninfected).8 Within each group, the

population is homogeneous and well mixed. Let It and St denote the mass of the infected

population and the susceptible at time t, respectively. As It + St = 1 at all t, we only need

to keep track of the evolution for It, which is the single state variable in our model.

2.1 Deterministic SIS Model

Transmission rate in classic SIS setting. How does the disease get transmitted from an

infected to a susceptible? The probability that an infectious individual meets a susceptible is

proportional to the product of their population mass, It(1−It), with an effective transmission

rate, which we denote by β. Thus over the interval [t, t+ dt) the total number of new

infections is

βItStdt = βIt(1− It)dt .

The infected recovers and becomes susceptible in our model. Let γ > 0 denote the rate

at which an infected recovers. Hence, 1/γ is the duration for an infected to be infective.

Subtracting the mass for the recovered γItdt over the interval [t, t+ dt) from the newly

infected βIt(1− It)dt, we obtain the following process for dIt, the net change of It:

dIt = βIt(1− It)dt− γItdt . (1)

The solution of (1) satisfies the following logistic function:9

It =

[
β

β − γ
(
1− e−(β−γ)t

)
+

1

I0

e−(β−γ)t

]−1

. (2)

Next, we introduce the basic reproduction number R0, which is defined as the expected

number of secondary infections generated by a single (representative) infected individual in

a completely susceptible population:

R0 =
β

γ
. (3)

8In the epidemiology literature, there are various generalized formulations of these compartmental models.
Widely used ones include SIR (susceptible, infected, recovered) and SEIR (susceptible, exposed, infected,
and recovered) models. See Andersson and Britton (2012) and Brauer, Driessche and Wu (2008) for textbook
treatments.

9If β = γ, by applying the L’hopital’s rule to (2), we obtain It =
(
βt+ 1

I0

)−1
.
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If R0 ≤ 1 (when β ≤ γ), the disease eventually is extinct, as (2) implies limt→∞ It = 0.

If R0 > 1, the infected population It reaches the maximum level, I∞ = 1 −R−1
0 as t → ∞

provided that I0 6= 1−R−1
0 .
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Figure 1: The infected fraction (It) and the net change (dIt/dt) in deterministic SIS model
with I0 = 2× 10−7 based on the US data as of March 1st and γ = 2.173 per month.

In Figure 1, we plot the infected mass It at t in Panel A and the net change of the infected

mass dIt/dt in Panel B with the initial value of I0 = 66/(3.28× 108) = 2 × 10−7 (as there

were 66 infective individuals on March 1st in the US and the US population as of 2019 is 328

million.) The solid blue lines correspond to the solution for our deterministic case using our

estimate of the transmission rate for COVID-19 that we discuss in Section 5. By reducing

β by half from 6.616 to 3.308 per month, such as using economy-wide lockdowns, we lower

the basic reproduction number R0 by half from 3.045 to 1.522 (unlike the three structural

parameters, R0 is invariant to the time horizon we choose.) As a result, the eventual infected

fraction, I∞, decreases by half from 67.1% to 34.3% of the entire population.

Panel B captures the widely discussed flattening the curve argument, e.g., Atkeson (2020)

and Gourinchas (2020). Here, the curve refers to the net change of the infected population,

dIt/dt, as a function of time t. If the government successfully reduces β by half via social

distancing and other interventions, this deterministic evolution curve is indeed significantly

flattened and postponed. Specifically, this curve peaks at a bit over one year (t = 12.660
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months) if β = 3.308 rather than at a bit over one quarter (t = 3.384 months). The curve

of the net change, dIt/dt, is substantially flattened.

Note the very sharp increase of It at the very early stage. This is because early on It is

close to zero and we can thus effectively drop the (1 − It) terms and approximate It as an

exponential process: dIt ≈ (β − γ)It dt with the approximate solution: It ≈ I0e
(β−γ)t.

Obviously, exponential growth at a large rate β − γ is incompatible with convergence of

It to I∞ = 1−R−1
0 as t→∞. This is due to the dampening effect of It on its own growth.

As the fraction of the infected increases, fewer are susceptible, which lowers dIt/It. That

is, the higher the level of I, the lower the infection growth rate dIt/It. The value of I∞

corresponds to the threshold to reach herd immunity in the deterministic model.

2.2 Stochastic SIS Model

Aggregate transmission rate shock. A simple way to model stochastic transmission is

to replace the constant rate β with a stochastic rate, which we denote by β̃. For expositional

purposes, consider a discrete-time setting. The simplest choice for a stochastic β̃ is an inde-

pendently and identically distributed (i.i.d.) random variable. Fix a small time increment

∆, we write

β̃t ∆ = β∆ + σ
√

∆ εt , (4)

where both β and σ are constant parameters and εt is a mean-zero standard normal random

variable.10 Mapping (4) into our continuous-time formulation, we obtain

β̃t dt = βdt+ σdZt , (5)

where Zt is a standard Brownian motion.

By using β̃ dt given in (5) to replace βdt in (1) and then combining drift and diffusion

terms, we obtain the following stochastic differential equation (SDE) for It:

dIt = [β(1− It)− γ] It dt+ σ It(1− It) dZt . (6)

10By assuming εt is i.i.d., we make the transmission rate β̃t stochastic but without introducing an addi-
tional state variable for the transmission rate. We leave generalizations of our model to allow for a richer
specification of β̃t for future work.
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The drift term is the same as in the deterministic SIS model, while the diffusion term captures

the uncertainty of the epidemiological evolution process. When no one is infected (It = 0),

the disease is extinct: dIt = 0 as both drift and volatility terms in (6) are zero. If the entire

population is infected (It = 1), the volatility has to be zero and the drift has to be negative

so that the model is well posed.11 Unlike It = 0, It = 1 is not an absorbing state as γ > 0.

Note that both the drift and volatility of the growth rate for the infected population,

dI/I, depend on (1− I), the population of the susceptible. Specifically, the higher the level

of I, the lower the drift (i.e., the expected infection growth rate) of dIt/It. As the fraction

of the infected increases, fewer are susceptible, which dampens the drift of dI/I.

To complete the description of our compartmental model, below we report the dynamics

for the susceptible population St:

dSt = (γ − βSt) It dt− σ StIt dZt . (7)

Permanence of initial transmission shocks. Although It given in (6) is not a Geometric

Brownian motion (GBM) process widely used in Economics and Finance, at very early stage,

It is close to zero. Therefore, we can effectively drop the (1 − It) terms in both drift and

volatility functions and approximate It via a GBM process: dIt ≈ (β − γ)It dt + σ It dZt.
That is, in the early stage, It evolves as

It ≈ I0 exp

[(
β − γ − σ2

2

)
t+ σZt

]
= I0e

(R0−1)γt exp

(
−σ

2

2
t+ σZt

)
. (8)

Unlike the exponential growth approximation for It in the deterministic model, in our

stochastic model, It is not only driven by R0 but also by the (exponential) martingale,

the second exponential term in (8). This second term is equally important in driving the

dynamics of It as the first (exponential) term involving R0.

Because very few are infective early on, the change of It is highly idiosyncratic as the

diffusion term dominates the drift term. A few super-spreader events early on have outsized

permanent effects on the evolution of It. On the other hand, if there are few such events early

11If volatility is not zero or drift is positive at It = 1, the probability that It exceeds one is strictly positive,
inconsistent with our model’s assumption that the total population is normalized to one.
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on, then the total infected population stays low for an extended period of time causing the

disease to be not that damaging. That is, in the very early stage, it is the sequence of realized

values of β̃, not the expected transmission rate β used in the deterministic compartmental

epidemic models, driving how fast the disease spreads.

Epidemiologists also use networks and branching processes to model the disease spread,

especially at the early stage. These network-based models confirm our intuition described

above. While the leading epidemiological models have rich compartmental specifications for

agents and recognize the extreme difficulty of estimating R0 especially at the very beginning

of a disease outbreak, we are among the first to emphasize the quantitative importance

of volatility σ on the stochastic transition dynamics of It, which in turn has important

implications on policy recommendations on how to efficiently manage epidemic risk.

Three-parameter non-linear diffusion process. We have generalized a two-parameter

(β and γ) deterministic SIS model to a three-parameter (β, γ, and σ) non-linear diffusion

process.

By applying Ito’s Lemma to (6), we obtain:

d ln It = q(It)dt+ (1− It)σ dZt , (9)

where the drift for ln It is a quadratic function in It:

q(I) = β(1− I)− σ2

2
(1− I)2 − γ . (10)

Equations (9)-(10) are convenient to work with when we analyze the stationary distribution.

Unlike in the deterministic model, which generates a single number for It at any t, in

order to fully capture the disease transmission dynamics, we next characterize the time-0

conditional distribution of It for all t. Let f(It, t; I0) denote the time-0 conditional density

function for It, the infected mass at t given the initial infected mass I0.

Conditional distribution. The density function, f(I, t), satisfies the following Kolmogorov

forward equation:

0 =
∂f(I, t)

∂t
+
∂ [(β(1− I)− γ)If(I, t)]

∂I
− 1

2

∂2 [(σI(1− I))2f(I, t)]

∂I2
. (11)
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The first term is the time effect on f(I, t), the second term is the drift effect on f(I, t),

and the last term is the volatility effect on f(I, t). In Section 6, we show how uncertainty

substantially alters the transmission dynamics.

3 Modeling Covid-19 Damage to Valuations

In this section, we develop a parsimonious yet operational model to capture the impact

of pandemic shocks on fundamentals-based valuation. The purpose of our analysis is to

demonstrate the usefulness of a parsimonious stochastic epidemic model in quantifying the

economic impact of Covid-19 on asset and firm valuation. We show how Covid-19 parameters

β (equivalently R0) and σ together with asset-pricing specifications impact valuation.

3.1 Valuation in normal business-as-usual times (It = 0).

To ease our exposition and set up the basic apparatus into which we later incorporate Covid-

19 shocks, we first introduce a simple asset-pricing framework with no pandemic shocks, i.e.,

under normal business-as-usual environment. We start with the following widely-used simple

stochastic discount factor (SDF), Mt, in the normal times:12

dMt

Mt

= −r dt− ηB dBt , (12)

where Bt is the standard Brownian motion for the aggregate shock.13 Here, r is the risk-free

rate and ηB is the market price of risk for the aggregate shock. For simplicity, let r and ηB

be constant. Equation (12) implies a one-factor model where the factor can be the aggregate

consumption growth shock as in Lucas-style representative-agent general-equilibrium models

or the market portfolio return in Sharpe (1964) CAPM and Merton-Samuelson’s portfolio

choice problem. Here, ηB is positive as a positive shock dBt to the aggregate consump-

tion growth or market return is good news which lowers the investor’s marginal utility or

equivalently Mt.

12This is the SDF in Black and Scholes (1973), Merton (1973), and Lucas (1978), among other models.
See Duffie (2001) and Cochrane (2009) for textbook treatments.

13No arbitrage requires that the drift of Mt is equal to the minus interest rate, −r.
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Next, we turn to the cash-flow (earnings) process Yt for the asset. As in the literature,

we assume that Yt follows a geometric Brownian motion (GBM) process:

dYt
Yt

= g0dt+ ρφ dBt +
√

1− ρ2 φ dWt , (13)

where Bt is the aggregate shock introduced in (12) andWt is the standard Brownian motion

driving the idiosyncratic earnings risk. By construction, Bt and Wt are orthogonal. In

(13), g0 is the expected earnings growth (drift), φ is the volatility of earnings growth, which

includes the aggregate component ρφ and the idiosyncratic component
√

1− ρ2 φ. That is, ρ

is the correlation coefficient between the aggregate shock Bt and the asset’s earnings process.

For simplicity, we let g0, φ, and ρ all be constant.

Let P denote the asset’s value. The standard asset-pricing equation holds (Duffie, 2001):

Pt = Et
(∫ ∞

t

Ms

Mt

Ys ds

)
. (14)

In Appendix C, using (12) and (13) and solving (14), we show that the asset’s value is

proportional to its earnings, Pt = p0Yt, where the price-earnings ratio, p0, is a constant:

p0 =
1

r + ρφηB − g0

. (15)

Equation (15) is the well-known Gordon growth model where
(
r + ρφηB

)
is the asset’s con-

stant cost of capital (discount rate) and g0 is the earnings growth rate. This asset earns

a risk premium of ρφηB, which is given by the the product of the market price of risk ηB

and ρφ, the systematic volatility component of φ and consistent with the one implied by the

widely used CAPM.14

3.2 Pricing Fundamentals with Pandemic Shocks

Next, we incorporate pandemic shocks into our pricing model. As Covid-19 is clearly an

aggregate shock, it changes the equilibrium SDF.

14In Black and Scholes (1973), Merton (1973), and Lucas (1978), ηB is the ratio between the (expected)
excess stock market return, rm − r, divided by the market portfolio return volatility, σm, i.e., ηB = (rm −
r)/σm. Therefore, CAPM holds here and the asset’s CAPM beta, βA, is equal to ρφ/σm and the asset’s
excess return is thus βA(rm − r) = ρφ(rm − r)/σm = ρφηB, as ηB = (rm − r)/σm.
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SDF. We generalize the SDF by incorporating pandemic shocks into Mt given in (12):

dMt

Mt

= −rdt− ηZ dZt − ηB dBt . (16)

As a positive pandemic shock dZt (which increases I) is bad news for the aggregate economy,

the marginal utility of the investor (and hence the SDF Mt) should increase with It, which

means ηZ < 0, in contrast to a positive ηB for the business-as-usual aggregate shock.

At the micro level, pandemic may change both an asset’s cash-flow and discount-rate

processes. Some assets, e.g., airline assets, are more exposed to pandemics than others.

Asset’s earnings process. We generalize the earnings model in normal times given in

(13) to incorporate the impact of pandemic on earnings as follows:

dYt
Yt

= g(It)dt+ v(It) dZt + ρφ dBt +
√

1− ρ2 φ dWt . (17)

Pandemic shocks have two direct effects on earnings: 1) it changes the growth rate forecast

from g0 to g(It); and 2) it may also expose earnings to additional volatility, captured by

the function v(It), which measures the earnings risk exposure to the pandemic shock dZt.
For airline companies, the earnings growth is negatively impacted by It: g(It) ≤ g0 and

g′(It) ≤ 0. Additionally, the earnings volatility function (the loading on the pandemic shock

Bt) may also be negative (v(It) ≤ 0), because an unexpected increase of It may lower earnings

growth dYt/Yt.

Generalized equity valuation (Gordon growth) model. Because of the geometric

feature of the earnings process, the asset’s value is proportional to its earnings Yt:

Pt = P (Yt, It) = p(It)Yt , (18)

where p(It) is the equilibrium price-earnings ratio. In Appendix C, we show that p(I) solves

the following valuation equation:

[(
r + ρφηB + v(I)ηZ

)
− g(I)

]
p(I) = 1 +

[
βQ (1− I)− γ

]
Ip′(I)

+v(I)σ (1− I)Ip′(I) +
(σI(1− I))2

2
p′′(I) , (19)
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where βQ is the (risk-adjusted) transmission rate (i.e., under the risk-neutral measure Q):

βQ = β − ηZσ . (20)

The pricing equation (19) reveals that stochastic transmission rates generate the following

several effects on the valuation ratio p(I). First, volatility induces a convexity effect on

valuation p(I), which is captured by the last term on the right side of (19). Second, Covid-

19 lowers the earnings expected growth rate g(I).

Finally, being an aggregate shock, Covid-19 has rich implications on the asset’s risk

premium. Specifically, there are three risk-premium channels. First, the risk-adjusted trans-

mission rate, βQ, is larger than β (Recall that ηZ < 0 as a pandemic shock increasing It is

bad news for the representative agent.) Put simply, for valuation purposes, for a fixed value

of transmission rate β, Wall Street should use a higher transmission rate βQ to account for

the fact that the pandemic shock is an aggregate shock.

Second, the covariance between the asset’s pandemic-specific risk exposure and the pan-

demic component of the SDF generates an instantaneous pandemic risk premium term v(I)ηZ

on the left side of (19). Third, the instantaneous covariance between earnings volatility and

I also contributes to the risk premium, captured by the third term on the right side of (19).

When I = 0, we expect to uncover our solution under normal times as I = 0 is an

absorbing state in our stochastic SIS model.15 We show that

p(0) = p0 , (21)

where p0 is given in (15). Turning to the other boundary when everyone is infected (I = 1).

The ODE (19) is simplified as follows:

[
r − g(1) + v(1)ηZ + ρφηB

]
p(1) = 1− γp′(1) . (22)

Unlike I = 0, I = 1 is not an absorbing state as the recovery rate γ > 0. The term, −γp′(1)

on the right side of (22), reflects the effect of recovery on valuation.

15To be consistent with our pricing in normal times, we set g(0) = g0 and v(0) = 0.
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In summary, the generalized (Gordon growth) equity valuation model for the price-

earnings ratio, p(I), over [0, 1] is characterized by the ODE pricing equation (19) together

with boundary conditions (21)-(22).

4 Covid-19 Data

Our data on Covid-19 cases comes from Covid-19 Data Repository by Johns Hopkins avail-

able on github. The data keeps track of confirmed new cases, deaths, recoveries each day

starting from January 22nd, 2020. The measure It in our model maps to the net number of

outstanding infected cases at t, which is equal to the sum of the last period’s It−1 and the

newly (reported) infected cases at t and subtracting deaths and recoveries, divided by the

population of that country.

We follow leading epidemiological studies of Covid-19 and focus on China and countries

(regions) that were at high risk due to air travel connected to China (Kucharski et.al. (2020)).

There are a total of 16 countries in our sample. In Asia (Middle East), there are nine countries

consisting of China, Japan, Malaysia, Singapore, South Korea, Taiwan (China), Thailand,

United Arab Emirates and Vietnam. Among Western countries, these include Australia,

Canada, France, Germany, Italy, United Kingdom, and United States.16 While all these

countries have significant air travel connections to China, they did not experience the same

infection path. This is consistent with our model that each country experienced idiosyncratic

paths (realizations) of transmission shocks at early stages.

In Figure 2, we plot the logarithmic growth rate d ln(It) for four countries of interest,

China, Singapore, US and Italy. We can see that the epidemic curve of China reversed in

the second half, while Singapore which has a fairly flat curve in the first half takes off in

the second half. The same is true for Italy and the US. Again, most of the countries in our

sample only started government lockdowns later in the second half of the sample and it takes

time for these lockdowns to have an effect.

16Five of the original high-risk regions, Cambodia, India, Indonesia, Philippines and Russia, had no cases
in January-February, so we exclude them from our analysis. These countries are thought to be the most
problematic in terms of underreporting of cases. And we need some cases to estimate the model in the first
place.
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(a) China (b) Singapore

(c) Italy (d) US

Figure 2: Daily changes in ln It, logarithmic infected population over time with shaded area
beings the 95-percent confidence intervals.

5 Calibration, Estimation and Forecasts

In this section, we fit our model to the data for the January-February period. Given the

noisiness and short time series of the data, we do not attempt to capture the potential

heterogeneity in models across regions. Rather we think it is appropriate to fit one model

by pooling the 16 countries. We pursue a robust estimation strategy as follows. For each

country, we can estimate β and σ using the brief time series. But we use as our estimate

the mean of the values across the 16 regions weighted by the number of daily observations

in each region. For instance, China has more observations in the first sub-period and will

then get more weight in our estimate. We can then judge the sensibility of our estimates by

comparing them to leading models of the early dynamics of Covid-19.

As we have pointed out a couple of times already, most governments only started inter-

16



vening in March. Hence, we view our estimates as representative of the underlying epidemic

process or early Covid-19 dynamics absent government intervention.

Calibration of γ: Earlier epidemiological studies typically set γ by targeting the expected

duration for an infected and infective individual to 14 days, which implies that the rate γ is

equal to 1/14 per day, or γ = 365/12/14 ≈ 2.173 per month. (Recall that in our convention,

one period is one month.) Epidemiological studies typically view γ as highly predictable and

relatively easy to estimate. They typically model this parameter as an Erlang distribution

(Kucharski et.al. (2020)). By fixing γ, we leave out the impact of uncertainty of the exit

rate on the disease spread.

Estimate of β: In Appendix A, we derive an OLS estimator for β given γ:

β̂ =
1

N − 1
ΣN−2
i=0

Ii+1

Ii
− 1 + γ

1− Ii
. (23)

Table 1 reports the distribution of the estimate across regions. We use the mean estimate

from the January-February sample (6.616 per month) as our baseline estimate with a 95%

CI of (2.443, 14.168).

Table 1: The percentiles and moments for the monthly estimates of parameters β and σ2

with implied R0 based on the data during the period of January-February 2020.

Percentiles Moments

Estimates 5% 25% 50% 75% 95% Mean Std. Dev.

β 2.443 4.191 6.332 8.246 14.168 6.616 3.242

σ2 0.718 1.138 1.436 4.791 8.857 2.851 2.537

R0 1.124 1.928 2.915 3.795 6.521 3.045 1.493

Estimate of σ2: In Appendix A, we show that the estimator for σ2 is

σ̂2 =
ΣN−2
i=0 (ln Ii+1 − ln Ii)

2

ΣN−2
i=0 (1− Ii)2

. (24)
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Table 1 reports the distribution of the estimate across regions. We use the mean estimate

of σ2 from the January-February sample (2.851 per month) as our baseline estimate with a

90% CI of (0.718, 8.857). The implied estimate of σ is then 1.689 =
√

2.851 per month.

Estimate of the basic reproduction number R0. Our estimate of the basic reproduc-

tion number R0, shown in Table 1, is 3.05 = 6.616/2.173 with a 90% confidence interval of

(1.12, 6.52) based on data from the period of January-February. As we have mentioned in

the Introduction, our estimates are in line with leading studies.

Out-of-Sample Forecasts In this section, we use the model estimated in the previous

section to generate out-of-sample forecasts for March-April. We can use our model to eval-

uate the effectiveness of government interventions in March and April. To the extent actual

outcomes lie outside the 95% CI of our out-of-sample forecasts, we can reject our model

presumably attributable to government intervention. In summary, our model is rejected for

only two countries (China and South Korea) that have bent the curve. Most of the countries

infected outcomes in March-April fit within the 95% CI of our model’s conditional forecast

even as there is evidence of flattening of the curves. But given the large conditional variances

of out-of-sample forecasts, it is not possible to definitely reject the model for most countries.

To see this, among the nine regions in Asia and Middle East (Figure 3), Japan, Singapore,

and Australia line up reasonably with our model projections. The exceptions are China and

South Korea which have successfully bent the curve: China in March already appears to

have broken out of the lower bound of the 95% CI followed by South Korea at the beginning

of April.

We next turn to the seven western countries in Figure 4. For the US, our model does

a reasonable job in early March and then later in April, but in the middle of this period,

US cases are far above our 95-th percentile forecasts. But for many of the other Western

countries, including surprisingly Italy, we see that their outcomes for the most part lie

within our 95% CI. So overall, we view our intentionally parsimonious model as capturing
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Figure 3: This figure plots the conditional forecast of ln It (means and 95% CIs) for Asian
and Middle Eastern countries in our sample and compares them with March-April data. We
use each region’s data on March 1st to calculate its I0 and use β = 6.616, γ = 2.173, and
σ = 1.689 per month for their conditional distributions.

some essential Covid-19 dynamics.

6 Conditional Distributions and Transition Dynamics

of Infections

We now use our estimates from the previous section to calculate the conditional distribution

of It via the Kolmogorov forward equation. We focus on estimates and outcomes for the

US, though our discussion equally applies to the aforementioned regions in our out-of-sample

forecast analyses. We compare these conditional forecasts to the solution for the deterministic

SIS model (σ = 0) so as to draw implications regarding the usefulness of R0.
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Figure 4: This figure plots the conditional forecast of ln It (means and 95% CIs) for Western
countries in our sample and compares them with March-April data. We use each region’s
data on March 1st to calculate its I0 and use β = 6.616, γ = 2.173, and σ = 1.689 per month
for their conditional distributions.

6.1 Stochastic SIS Model (σ > 0)

We now contrast the deterministic model projections with our stochastic model projections.

In Table 2, we report the corresponding conditional means and variances for our stochastic

SIS model with 1, 2, 4, 6, 8 weeks and 3, 4, 6, 9, 12 months time horizons.

As we stated in the Introduction, R0 mismeasures the benefits of lockdowns for two

reasons. The first is the permanence of initial transmission shocks as we explained in deriving

our model. The second reason is seen in this table. The conditional mean increases with

the time horizon, as R0 = 3.045, which is significantly larger than one indicating a highly

infectious and fast spreading disease. Note that at the very early stage, e.g., from 1 week

up to 6-8 weeks, the conditional mean forecast of I in our stochastic model is essentially

the same as in the deterministic model – this is because the stochastic exponential growth
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Table 2: Means and standard deviations of It over different time horizons conditional on
I0 = 2× 10−7. This is our baseline case where parameter values are: γ = 2.173, β = 6.616,
and σ = 1.689 per month with an implied value of R0, 3.045.

Deterministic Stochastic

t It E(It)
√

Var(It)

1 wk 5.6 ∗ 10−7 5.6 ∗ 10−7 5.4 ∗ 10−7

2 wk 1.6 ∗ 10−6 1.6 ∗ 10−6 2.6 ∗ 10−6

4 wk 1.2 ∗ 10−5 1.2 ∗ 10−5 4.3 ∗ 10−5

6 wk 9.3 ∗ 10−5 9.2 ∗ 10−5 6.0 ∗ 10−4

8 wk 7.1 ∗ 10−4 6.8 ∗ 10−4 5.2 ∗ 10−3

3 mo 0.104 0.031 0.095

4 mo 0.630 0.165 0.235

6 mo 0.671 0.519 0.251

9 mo 0.671 0.636 0.151

12 mo 0.671 0.639 0.146

∞ 0.671 0.639 0.144

approximation works well when It is very low. Starting from 3 months, this approximation

no longer works. Deterministic model infection forecasts based on R0 overshoot our model’s

conditional forecasts by a significant mount (0.104 for the deterministic model and 0.031 for

our stochastic model). This is due to the Jensen’s inequality.

Furthermore, the conditional volatility is highly nonlinear and non-monotonic in the

time horizon. For example, for the 3-month-ahead forecast, the monthly volatility of It

(9.5%) is more than three times the mean (3.1%). Even with 6 months out, while the

expected infected mass is 51.9% of the population, the two-standard-deviation bound for

this estimate is still wide: from 27% to 77% of the population. The volatility declines once

we go beyond 5 months out (Around 5 months, the volatility peaks at 0.287.) In other

words, infection forecasts based on a deterministic model are poor approximations for the

conditional forecasts of our model for a large range of periods.

In Figure 5, rather than simply reporting the conditional means and variances, we plot

the conditional distributions of It with various time horizons: 1, 2, 4, 6 and 8 weeks (see
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Panels A and C for pdfs and Panels B and D for cdfs.) We plot the conditional distributions

also with the initial value of I0 = 2× 10−7. Panel A shows that the conditional distribution

for both one-week and two-week ahead are humped shaped. Panel B shows that the two-

week-ahead distribution dominates the one-week-ahead distribution in the sense of first-order

stochastic dominance (FOSD). For example, the one-week-ahead conditional probability that

the infected mass exceeds 1 × 10−6 of the population is 12.9%, two-week-ahead probability

(without intervention) significantly increases to 42.3%.

Panels C and D plot the conditional density and cumulative distribution functions respec-

tively for 4, 6 and 8 weeks out. We see continued shift of probability distributions to higher

values of I as we increase the forecasting horizon. Indeed, the 8-week-ahead distribution

dominates the 6-week-ahead distribution, which in turn dominates the 4-week-ahead distri-

bution in the sense of FOSD. As an example, the probability that the infected mass (4-weeks

ahead) exceeds 0.01% of the population is 1.7%, two and four extra weeks (without inter-

vention) increase this probability to 15.1% and 38.6%, respectively. (Note the substantial

scale change on the horizontal axis across panels in Figure 5.)

Stochastic Steady State (SS) and Stationary Distribution. Next we turn to the

stochastic steady state and stationary distribution to gain some intuition for why R0 is an

insufficient statistic for managing Covid-19 risks. The long-run distributional properties of

the infected fraction I depend on all three parameters in a nonlinear way. Simply relying

on R0, which is ratio between the expected transmission rate β and exit rate γ can be quite

misleading.

It is useful to define the following variance-adjusted basic reproduction number:

R0 =
1

γ

(
β − σ2

2

)
. (25)

Gray et al. (2011) show that whetherR0 exceeds one or not dictates the long-run convergence

property of the model. There are two scenarios for the stationary distribution: 1) the

persistence case where R0 > 1: disease persists in the long run; 2) the extinction case where

R0 ≤ 1: disease is extinct in the long run. That is, it is R0, rather than R0 that describes
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Figure 5: Conditional distributions of It in stochastic SIS model with I0 = 2×10−7 based on
the US data as of March 1st. The parameter values are γ = 2.173, β = 6.616, and σ = 1.689
per month.

whether the epidemic goes extinct in the long run.

While we have focused on how volatility σ significantly alters the pandemic transmission

dynamics, it is also crucial for the long-run distribution of I. When R0 > 1, there exists a

unique stochastic SS at the level of It = ISS, where ISS is the unique positive root in (0, 1)

for the quadratic equation q(I) = 0 with q(I) given in (10):

ISS =
1

σ2

[√
β2 − 2σ2γ −

(
β − σ2

)]
. (26)

In this case, the infected mass It crosses its stochastic SS ISS infinitely often with probability

one. The value of ISS corresponds to the threshold of I to reach herd immunity in our

stochastic SIS model.

In Figure 6, we plot the density function for the stationary distribution in Panel A and
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the quadratic equation for q(I) in Panel B. For this case, R0 = 2.39 > 1. As a result, there is

a unique positive root ISS = 0.644. The single mode of the stationary distribution is 0.723.
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Figure 6: Panel A plots the stationary distribution of the infected population I for our
baseline case. The mode of the distribution is 0.723. Panel B shows that there is a unique
positive root, ISS = 0.644, for q(I) = 0, the fundamental quadratic equation (10). Parameter
values are β = 6.616, γ = 2.173, and σ = 1.689 per month.

6.2 Comparative Statics

Another way to see why R0 is an insufficient statistic to manage Covid-19 risks is to consider

a comparative statics on β which directly maps to changes in R0. Discussions regarding

government interventions have focused on keeping the reproduction number near one. But

our comparative static calculations in Table 3 suggest that even at fairly high reproduction

numbers the outbreak will likely be a slow burn.

Changing β or equivalently R0. Recall that when our baseline reproduction number

is 3.045, our model predicts that at nine months out 63.6% of the US population will be

infected with a conditional standard deviation of 15.1%. But reducing β and taking the

reproduction number to 1.75 radically changes projections. Even at 24 months out, the

conditional mean forecast is 5% with a (relatively) large conditional standard deviation of

13.5%.

24



Table 3: Effects of Changing R0 on Conditional Distributions of It. The parameter values
are: γ = 2.173 and σ = 1.689 per month. By definition, β = R0γ.

A. R0 = 2.75 B. R0 = 2.25

Deterministic Stochastic Deterministic Stochastic

t It E(It)
√
Var(It) It E(It)

√
Var(It)

1 wk 4.8 ∗ 10−7 4.8 ∗ 10−7 4.7 ∗ 10−7 3.8 ∗ 10−7 3.8 ∗ 10−7 3.6 ∗ 10−7

2 wk 1.2 ∗ 10−6 1.2 ∗ 10−6 1.9 ∗ 10−6 7.0 ∗ 10−7 7.0 ∗ 10−7 1.2 ∗ 10−6

4 wk 6.7 ∗ 10−6 6.7 ∗ 10−6 2.4 ∗ 10−5 2.5 ∗ 10−6 2.5 ∗ 10−6 8.8 ∗ 10−6

6 wk 3.8 ∗ 10−5 3.8 ∗ 10−5 2.6 ∗ 10−4 8.6 ∗ 10−6 8.6 ∗ 10−6 5.9 ∗ 10−5

8 wk 2.2 ∗ 10−4 2.2 ∗ 10−4 2.0 ∗ 10−3 3.0 ∗ 10−5 3.0 ∗ 10−5 3.5 ∗ 10−4

3 mo 0.018 0.008 0.043 6.9 ∗ 10−4 5.6 ∗ 10−4 7.2 ∗ 10−3

4 mo 0.353 0.056 0.139 0.010 0.004 0.029

6 mo 0.636 0.302 0.282 0.451 0.038 0.117

9 mo 0.636 0.546 0.211 0.556 0.166 0.235

12 mo 0.636 0.587 0.172 0.556 0.298 0.264

∞ 0.636 0.590 0.166 0.556 0.456 0.213

C. R0 = 1.75 D. R0 = 1.25

Deterministic Stochastic Deterministic Stochastic

t It E(It)
√
Var(It) It E(It)

√
Var(It)

1 wk 2.9 ∗ 10−7 2.9 ∗ 10−7 2.8 ∗ 10−7 2.3 ∗ 10−7 2.3 ∗ 10−7 2.2 ∗ 10−7

2 wk 4.3 ∗ 10−7 4.3 ∗ 10−7 7.0 ∗ 10−7 2.6 ∗ 10−7 2.6 ∗ 10−7 4.3 ∗ 10−7

4 wk 9.0 ∗ 10−7 9.0 ∗ 10−7 3.2 ∗ 10−6 3.3 ∗ 10−7 3.3 ∗ 10−7 1.2 ∗ 10−6

6 wk 1.9 ∗ 10−6 1.9 ∗ 10−6 1.3 ∗ 10−5 4.3 ∗ 10−7 4.3 ∗ 10−7 3.0 ∗ 10−6

8 wk 4.0 ∗ 10−6 4.0 ∗ 10−6 5.3 ∗ 10−5 5.5 ∗ 10−7 5.5 ∗ 10−7 7.5 ∗ 10−6

3 mo 2.7 ∗ 10−5 2.6 ∗ 10−5 7.6 ∗ 10−4 1.0 ∗ 10−6 1.0 ∗ 10−6 5.2 ∗ 10−5

4 mo 1.4 ∗ 10−4 1.1 ∗ 10−4 0.003 1.8 ∗ 10−6 1.7 ∗ 10−6 1.6 ∗ 10−4

6 mo 0.004 0.001 0.014 5.2 ∗ 10−6 4.1 ∗ 10−6 5.4 ∗ 10−4

9 mo 0.224 0.005 0.039 2.7 ∗ 10−5 0.8 ∗ 10−5 1.1 ∗ 10−3

12 mo 0.426 0.012 0.066 1.4 ∗ 10−4 0.1 ∗ 10−5 1.4 ∗ 10−3

18 mo 0.429 0.031 0.108 0.004 8.9 ∗ 10−6 1.4 ∗ 10−3

24 mo 0.429 0.050 0.135 0.063 5.1 ∗ 10−6 1.1 ∗ 10−3

36 mo 0.429 0.077 0.163 0.199 1.3 ∗ 10−6 5.6 ∗ 10−4

∞ 0.429 0.131 0.197 0.20 0 0
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In contrast, in a deterministic model, the fraction infected with a reproduction number

of 1.75 would be 42.6% of the entire population even in 12 months. With R0 = 1.25, the

disease goes into extinction without intervention. Again, this is different from the conven-

tional wisdom due to pandemic spread uncertainty. In summary, heuristics garnered from a

deterministic model can fundamentally skew cost and benefit assessments.

Infectious period of 10 days instead of 14 days. We also experimented with how our

analysis changes if we assume that the average duration for an infected to be infective is 10

days, i.e., γ = 1/10 per day.The reproduction number is then 2.5. This is still a very high

reproduction number. But our conclusions are similar to before. We omit these results for

brevity.

Consequences of higher volatility σ. To see why transmission volatility matters so

much when managing Covid-19 risks, it is useful to the impact of a higher volatility on the

model’s prediction. We choose σ = 2 per month.17 In Figure 7, we plot the conditional

distributions of It for t = 1, 2, 4, 6, 8 weeks and 9, 12, 18 months. First, we see that for the

near-term conditional distribution (t = 1, 2 weeks), the density is peaked close to zero. As

we increase t, the density function shifts to the right and becomes flatter (for t = 4, 6, 8

weeks).

It takes about one year for the conditional distribution to converge. This is because

R0 = 1.174 > 1. But importantly we see two modes for the stationary distribution: one

near zero and the other near 0.816 (which is far from the positive root for the quadratic

equation: ISS = 0.543.) That is, limt→∞ f(It, t) is no longer single peaked as in our baseline

case where σ = 1.689. This is because with a higher volatility σ, the drift q(I) for the

infected is substantially lower. As a result, the force (and likelihood) for the mass It move

to the left is thus stronger. Also, we see that with a higher volatility, convergence to the

stationary distribution also takes more time.

17This value is in the 95% confidence interval for estimated σ2, i.e. (2.850−1.96×2.537, 2.850+1.96×2.537, )
based on the data of 16 regions from January to February (the mean of σ2 is 2.850 and the standard deviation
is 2.537.)
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Figure 7: Conditional distributions of It with I0 = 2 × 10−7 based on the US data as of
March 1st.) Monthly parameter values are γ = 2.173, β = 6.616, and σ = 2.

7 Transmission Volatility and Financial Risks

While we have shown that R0 overstates the benefits of economy-wide lockdowns, we now

show that it understates Covid-19 risk to financial markets to the extent that transmission

volatility significantly affects almost every aspect of how Covid-19 affects firm valuations. To

do so, we analyze the quantitative effects of earnings growth, the market price of pandemic

risk, and vaccine arrival on valuation.
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7.1 Earnings Growth Channel

In this subsection, we focus solely on the earnings growth channel by shutting down earnings

volatility and market price of pandemic risk channels: v(It) = 0 and ηZ = 0. As a result,

the pricing equation (19) is substantially simplified as follows:

(
r + ρφηB − g(I)

)
p(I) = 1 + [β (1− I)− γ] Ip′(I) +

(σI(1− I))2

2
p′′(I) , (27)

where I impacts p(I) via its drift and volatility effects on g(I), which in turn influences p(I).

Despite shutting down the potentially important earnings volatility and SDF channels, we

still find that pandemic shocks have large quantitative effects on stock market valuation via

its impact on earnings growth absent intervention and vaccine.

Next, we choose key parameter values for our asset pricing model following the literature.

We set the annual risk-free rate at 4%, the annual stock-market risk premium at 6%, and

the annual stock market volatility at 20% (with an implied annual Sharpe ratio ηB = 30%).

Suppose that the asset’s CAPM beta is one. Then, the cost of capital for this asset is equal

to 4% + 1× 6% = 10%. We set the (annual) earnings growth rate (in normal times), g0, to

5%, so that we obtain a price-earnings ratio of 1/(10%− 5%) = 20 in normal times.

We then specify the impact of the pandemic shock on the asset’s earnings growth (drift)

function g(It) as follows:

g(It) = g0

(
1− ζ1I

ζ2
t

)
, (28)

where g0 > 0 is the drift in normal times. The two new parameters are ζ1 > 0 and 0 < ζ2 < 1.

First, as It = 0 is an absorbing state, we set g(0) = g0 so that our pricing equation model is

consistent with that under normal times. Second, earnings growth g(It) is decreasing with

It but at a slower rate as It increases implying ζ1 > 0 and 0 < ζ2 < 1. Quantitatively, the

key parameter is ζ1, which captures the sensitivity of earnings growth to infected masses.

Table 4 summarizes the parameter values used for our baseline calculation. We consider

a range of values for ζ1. We pay particular attention to severely affected industries such as

airlines and hotels. The valuation of these industries collapsed by nearly 75% following the

arrival of Covid-19. While there is no historical data with which we can nail down these
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Table 4: This table summarizes the parameter values for our baseline epidemic and asset
valuation analyses. Parameter values are based on one period being one month.

Parameters Symbol Value

A. Epidemic

transmission rate β 6.616
recovery rate γ 2.173
volatility of infected population σ 1.689

B. Asset pricing

Risk-free rate r 4%/12
market price of business-as-usual risk ηB 30%/12
market price of pandemic risk ηZ 0

earnings growth volatility φ 20%/
√

12
correlation coefficient ρ 1
normal-time earnings growth rate g0 5%/12
growth reduction level parameter ζ1 3
growth reduction curvature parameter ζ2 0.25
arrival rate of vaccine λ 1/12

parameters, we will intentionally pick a range of parameters to reflect the severity of the

Covid-19 shock to these important industries. As our baseline we choose ζ1 = 3. As we

demonstrate below, ζ1 = 3 corresponds to fairly mild long-run declines in growth rates of

around 5%.

In Table 5, we report for the damage to valuations for this baseline case. We can think

of this table as the economic damage analog to Table 3 which calculated the conditional

expectations of infections, i.e. Covid-19 to health. Our key message here is that our tractable

process allows for a simple and simultaneous calculation of both harm to health and harm

to important industries for various values of R0. Notice that in Panel D, when R0 is 1.25

and the epidemic remains at a lower level due to σ being significant, the expected valuation

ratio is always above 19.5, i.e. near the 20 benchmark that we had started with assuming

no Covid-19. Of course, if σ = 0, the deterministic model would imply severe damage
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Table 5: Effects of Changing R0 on Conditional Distributions of p(It).

A. R0 = 2.75 B. R0 = 2.25

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
√

Var(p(It)) p(It) E(p(It))
√
Var(p(It))

1 wk 5.603 5.829 0.020 5.805 6.411 0.036

2 wk 5.589 5.816 0.028 5.791 6.399 0.051

4 wk 5.563 5.790 0.039 5.765 6.374 0.072

6 wk 5.537 5.764 0.047 5.739 6.349 0.088

8 wk 5.513 5.739 0.053 5.714 6.324 0.102

3 mo 5.460 5.679 0.061 5.654 6.263 0.131

4 mo 5.438 5.635 0.060 5.611 6.213 0.148

6 mo 5.436 5.579 0.041 5.572 6.121 0.160

9 mo 5.436 5.556 0.014 5.571 6.020 0.139

12 mo 5.436 5.553 0.005 5.571 5.964 0.104

∞ 5.436 5.553 0.003 5.571 5.915 0.017

C. R0 = 1.75 D. R0 = 1.25

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
√

Var(p(It)) p(It) E(p(It))
√
Var(p(It))

1 wk 6.215 12.670 0.337 7.640 19.966 0.008

2 wk 6.202 12.664 0.477 7.628 19.967 0.011

4 wk 6.176 12.651 0.678 7.606 19.969 0.014

6 wk 6.151 12.639 0.834 7.583 19.971 0.017

8 wk 6.126 12.627 0.967 7.560 19.973 0.019

3 mo 6.064 12.595 1.245 7.504 19.977 0.022

4 mo 6.013 12.567 1.439 7.455 19.980 0.023

6 mo 5.920 12.502 1.737 7.357 19.985 0.024

9 mo 5.843 12.382 2.024 7.215 19.990 0.022

12 mo 5.836 12.247 2.195 7.077 19.993 0.020

18 mo 5.836 11.969 2.359 6.838 19.996 0.014

24 mo 5.836 11.713 2.402 6.691 19.997 0.010

36 mo 5.836 11.298 2.343 6.656 19.997 0.006

∞ 5.836 10.446 1.813 6.656 20 0

to valuation ratios—around 3 in the beginning and dropping to 1.867 in the steady state.

That is, the valuation of the industry is effectively wiped out. The reason of course is that
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markets are forward looking and valuations are determined by cashflows discounted far into

the future.

In Panel C, as we increase R0 to 1.75, we can see that there is now damage to valuation

even in the stochastic model. Since markets are forward-looking, we see significant economic

damage to valuation ratios in week 1 after Covid-19’s arrival—12.67, which is a significant

drop from the benchmark of 20 pre-arrival of Covid-19. Moreover, valuations ratios continue

to drop over time, reaching a steady-state of 10.46 as infected masses increase.

As R0 continues to rise in Panels A and B, we see that valuation ratios effectively are the

same as if the model were deterministic. That is, at our estimate of a reproduction number of

3 for Covid-19 (i.e. the scenario in panel A), the airline industry would be effectively wiped

out. In other words, intervention to reduce the reproduction number to a manageable number

is good for industry valuation. As a point of reference, the relative decline in valuation ratios

captured by Panels C is not too far off from what the airline industry has experienced.

We would of course make the strongest caveats possible regarding these numbers in that

interpreting market valuations is complicated since there are many latent factors we do not

observe — namely expectations that the market might have regarding vaccines as we analyze

in Section 8. At the same time, we have intentionally shut down a risk premium channel.

Our only point of emphasis here is that the tractability of the epidemic model has lent itself

for a simple integration into economic and financial analysis and thereby given us some sense

of how reproduction numbers and volatility map into economic damage.

In Figure 8, we plot p(I) and g(I) for various values of ζ1. The p(I) plots are graphical

illustrations of how results from Table 3 change as we move away from our baseline case

with ζ1 = 3, assuming an R0 = 2.75. We see increasingly severe damage to valuations as

ζ1 increases. The effects are highly non-linear in ζ1. We can see how g(I) declines with I

but non-linearly. This non-linearity essentially imparts a non-linearity of economic damage

to valuation with R0. The drop in the valuation ratio occurs for even low levels of infection

given that markets are forward-looking. To see this result more clearly, we plot p(I) and g(I)

with respect to ln(I) on the horizontal axis in Panels C and D. The damage to valuation is

convex in I.
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Figure 8: Effects of Changing ζ1 on price-earnings ratio p(I) and the expected earnings
growth rate g(I). Panels A and B plot against I ∈ [0, 1] and Panels C and D plot against
ln I ∈ (−∞, 0].

7.2 Market Price of Pandemic Risk

Next, we evaluate the impact of market price of pandemic risk on the conditional mean and

standard deviation of It for varying values of ηZ . For simplicity, we set v(I) = 0 so that the

pricing equation (19) is simplified as follows:(
r + ρφηB − g(I)

)
p(I) = 1 +

[
βQ (1− I)− γ

]
Ip′(I) +

(σI(1− I))2

2
p′′(I) , (29)

where we use βQ = β − σηZ rather than β for the valuation purpose (the key difference

from the analysis in the preceding subsection.) That is, we under-estimate the impact of

pandemic risk on valuation, as we ignore two correction terms involving v(I) in (19).

In Table 6, we choose R0 = 1.25 to make the point that even if the disease is mildly con-

tagious, its impact on valuation could still be substantial when the market price of pandemic
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Table 6: Effects of Changing ηZ on Conditional Distributions of p(It). Here, R0 = 1.25 (as
β = 2.716 and γ = 2.173 per month.) The risk-adjusted transmission rate is βQ = β − ηZσ.

A. βQ/β = 1 (ηZ = 0) B. βQ/β = 1.5 (ηZ = −1.95)

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
√

Var(p(It)) p(It) E(p(It))
√
Var(p(It))

1 wk 7.640 19.966 0.008 7.640 8.761 0.206

2 wk 7.628 19.967 0.011 7.628 8.832 0.314

4 wk 7.606 19.969 0.014 7.606 8.993 0.525

6 wk 7.583 19.971 0.017 7.583 9.183 0.770

8 wk 7.560 19.973 0.019 7.560 9.409 1.070

3 mo 7.504 19.977 0.022 7.504 10.131 1.954

4 mo 7.455 19.980 0.023 7.455 10.875 2.625

6 mo 7.357 19.985 0.024 7.357 12.310 3.370

9 mo 7.215 19.990 0.022 7.215 13.840 3.543

12 mo 7.077 19.993 0.020 7.077 14.719 3.360

24 mo 6.691 19.997 0.010 6.691 15.696 2.834

36 mo 6.656 19.997 0.006 6.656 15.797 2.751

∞ 6.656 20 0 6.656 20 0

C. βQ/β = 2 (ηZ = −3.95) D. βQ/β = 3 (ηZ = −7.85)

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
√

Var(p(It)) p(It) E(p(It))
√
Var(p(It))

1 wk 7.640 6.058 0.025 7.640 5.486 0.011

2 wk 7.628 6.065 0.036 7.628 5.488 0.015

4 wk 7.606 6.078 0.055 7.606 5.494 0.021

6 wk 7.583 6.097 0.118 7.583 5.499 0.050

8 wk 7.560 6.130 0.310 7.560 5.509 0.165

3 mo 7.504 6.365 1.155 7.504 5.595 0.719

4 mo 7.455 6.754 1.924 7.455 5.765 1.255

6 mo 7.357 7.700 2.969 7.357 6.211 2.052

9 mo 7.215 8.830 3.593 7.215 6.763 2.644

12 mo 7.077 9.500 3.767 7.077 7.094 2.894

24 mo 6.691 10.245 3.815 6.691 7.462 3.107

∞ 6.656 20 0 6.656 20 0
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risk causes the risk-adjusted transmission rate βQ to be significantly larger from β.

Panel A shows that if investors attach zero market price of pandemic risk, i.e., ηZ = 0,

It essentially has no impact on p(I). But introducing market price of pandemic risk, e.g.,

setting ηZ to -3.95, so that βQ = 2× β = 2.5, significantly damages valuation. For example,

valuation forecasts for the first three months on average drop by about 70% and two-year-

ahead forecast decreases to about half of the price-earnings ratio in normal times, p0 = 20.

Note that even if the basic reproduction number is only 1.25 and the pandemic goes into

extinction with no intervention in the long run on its own, for valuation purposes, risk-averse

investors may still attach a high risk premium so that they view the epidemic is persistent

after risk adjustment (i..e, under the risk-neutral measure Q. As a result, valuation is much

reduced. That is, health and financial health implications can be quite different.

Additionally and perhaps surprisingly, the forecast of p(It) as a function of time horizon

t in the stochastic model is opposite to that in the deterministic model. In the deterministic

model, p(It) decreases with t as It increases over time. In contrast, in our stochastic model,

the conditional forecast E(p(It)) increases with t as the disease eventually goes extinct, even

though R0 = 1.25 and hence the growth rate g(It) rebounds in our stochastic model (despite

the market price of pandemic risk).

8 Valuing Potential Arrival of Vaccine

Finally, we integrate the arrival of vaccines into our analysis. We assume that Covid-19 will

disappear following a successful vaccine development.18 Specifically, we use the following

SDE to model the evolution of It:

dIt = [β(1− It−)− γ] It− dt+ σ It(1− It−) dZt − It−dJt . (30)

We capture this vaccine arrival effect on It via the third term, where Jt is a (pure) jump

process with a constant arrival rate, which we denote by λ. If and only if a jump arrives,

18For simplicity, we assume vaccine takes effect immediately. In reality, it may take a while for the
population to be vaccinated and not everyone will be vaccinated. We can generalize our vaccine model to
allow for a (large) fraction of the population to be vaccinated leaving a (small) fraction still susceptible (at
the cost of additional complexity.) But the core of our analysis will remain valid.
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i.e., dJt = 1, the vaccine arrives and the pandemic is extinct.

Table 7: Effects of Vaccine Arrival Rate, λ, on Conditional Distributions of It. Panels A, B,
C, and D correspond to the expected vaccine arrival time to be six months, one year, two
years, and forty months.

A. Six Months B. One Year

Deterministic Stochastic Deterministic Stochastic

t It E(It)
√
Var(It) It E(It)

√
Var(It)

1 wk 5.4 ∗ 10−7 5.4 ∗ 10−7 5.4 ∗ 10−7 5.5 ∗ 10−7 5.5 ∗ 10−7 5.4 ∗ 10−7

2 wk 1.4 ∗ 10−6 1.4 ∗ 10−6 2.5 ∗ 10−6 1.5 ∗ 10−6 1.5 ∗ 10−6 2.5 ∗ 10−6

4 wk 1.0 ∗ 10−5 1.0 ∗ 10−5 4.0 ∗ 10−5 1.1 ∗ 10−5 1.1 ∗ 10−5 4.1 ∗ 10−5

6 wk 7.3 ∗ 10−5 7.3 ∗ 10−5 5.4 ∗ 10−4 8.2 ∗ 10−5 8.2 ∗ 10−5 5.7 ∗ 10−4

8 wk 5.2 ∗ 10−4 5.0 ∗ 10−4 4.5 ∗ 10−3 6.1 ∗ 10−4 6.1 ∗ 10−4 4.9 ∗ 10−3

3 mo 0.061 0.019 0.076 0.078 0.024 0.085

4 mo 0.323 0.084 0.188 0.450 0.117 0.213

6 mo 0.248 0.191 0.294 0.408 0.314 0.321

9 mo 0.150 0.142 0.275 0.318 0.300 0.334

12 mo 0.091 0.086 0.225 0.247 0.235 0.321

24 mo 0.012 0.012 0.088 0.091 0.086 0.225

∞ 0 0 0 0 0 0

C. Two Years D. Forty Months

Deterministic Stochastic Deterministic Stochastic

t It E(It)
√
Var(It) It E(It)

√
Var(It)

1 wk 5.5 ∗ 10−7 5.5 ∗ 10−7 5.4 ∗ 10−7 5.6 ∗ 10−7 5.6 ∗ 10−7 5.4 ∗ 10−7

2 wk 1.5 ∗ 10−6 1.5 ∗ 10−6 2.5 ∗ 10−6 1.5 ∗ 10−6 1.5 ∗ 10−6 2.5 ∗ 10−6

4 wk 1.2 ∗ 10−5 1.2 ∗ 10−5 4.2 ∗ 10−5 1.2 ∗ 10−5 1.2 ∗ 10−5 4.2 ∗ 10−5

6 wk 8.7 ∗ 10−5 8.7 ∗ 10−5 5.9 ∗ 10−4 8.9 ∗ 10−5 8.9 ∗ 10−5 5.9 ∗ 10−4

8 wk 6.6 ∗ 10−4 6.3 ∗ 10−4 5.1 ∗ 10−3 6.8 ∗ 10−4 6.5 ∗ 10−4 5.1 ∗ 10−3

3 mo 0.089 0.027 0.090 0.093 0.029 0.093

4 mo 0.531 0.138 0.225 0.568 0.148 0.230

6 mo 0.523 0.403 0.310 0.578 0.446 0.296

9 mo 0.462 0.437 0.321 0.537 0.507 0.289

12 mo 0.407 0.387 0.333 0.497 0.473 0.308

24 mo 0.247 0.235 0.320 0.369 0.350 0.336

36 mo 0.150 0.143 0.275 0.273 0.260 0.328

∞ 0 0 0 0 0 0
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In Table 7, we calculate the impact of vaccine arrival on the conditional mean and

standard deviation of It for varying expected arrival rates. As the disease eventually goes

into extinction thanks to the eventual vaccine arrival. The time-0 conditional probability of

vaccine arrival by t is 1− e−λt.
Panel A shows that if the vaccine is expected to arrive soon (e.g., six months), the current

conditional forecast of It for any horizon t is much lower than without vaccine arrival and

peaks around 6 months at 19%. Panel B shows that if the vaccine is expected to arrive in

one year, the current conditional forecast of It for any horizon t is much lower than without

vaccine arrival and also peaks around 6 months but obviously at a higher rate of 30%.

Similarly, as we increase the expected waiting time for vaccine to two years (Panel C) or 40

months (Panel D), the expected infected fraction can reach as high as 44% and 51% around

9 months. These are very high numbers and indicate that waiting for vaccine to arrive will

cause a very large fraction of the population to be infected, even though in the long run

Covid-19 goes extinct in our model due to the eventual arrival of vaccine by assumption.

Next, we analyze the impact of the stochastic vaccine arrival on valuation. As a success-

ful vaccine development will significantly change how agents behave, the market perceives

vaccine arrival as a substantial or complete elimination of the aggregate pandemic shock, we

should incorporate the systematic risk premium into the arrival rate of vaccine for valuation

purposes. Let λQ denote the risk-adjusted vaccine arrival rate.19

By using the standard asset pricing theorem, we obtain the following ODE for p(I):[(
r + ρφηB + v(I)ηZ

)
− g(I) + λQ

]
p(I) = 1 + λQp0 +

[
βQ (1− I)− γ

]
Ip′(I) (31)

+ v(I)σ (1− I)Ip′(I) +
(σI(1− I))2

2
p′′(I) .

There are two additional terms compared with the pricing equation (19) for p(I) with no

possibility of vaccine arrival and both terms are intuitive. On the right side of (19), the

possibility of vaccine arrival causes the risk-adjusted (scaled) payoff to increase by λQp0,

which is the product of risk-adjusted probability for vaccine arrival per unit of time, λQ, and

the gross payoff, p0, the (constant) price-earnings ratio in normal times. On the left side of

19Technically speaking, λQ is the arrival rate of vaccine under the risk-neutral measure Q.
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Table 8: Effects of Changing Vaccine Arrival Rate, λ, on Conditional Distributions of p(It).
Panels A, B, C, and D correspond to the expected vaccine arrival time to be six months, one
year, two years, and forty months.

A. Six Months B. One Year

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
√

Var(p(It)) p(It) E(p(It))
√

Var(p(It))

1 wk 18.201 18.405 0.318 16.511 16.750 0.454

2 wk 18.235 18.435 0.445 16.542 16.779 0.639

4 wk 18.303 18.494 0.617 16.605 16.837 0.896

6 wk 18.370 18.553 0.741 16.670 16.896 1.088

8 wk 18.179 18.381 0.667 16.737 16.956 1.244

3 mo 18.370 18.553 0.741 16.935 17.116 1.538

4 mo 18.821 18.895 1.075 17.159 17.273 1.712

6 mo 19.155 19.175 1.080 17.596 17.640 1.898

9 mo 19.487 19.495 0.939 18.126 18.154 1.948

12 mo 19.690 19.695 0.771 18.544 18.565 1.881

24 mo 19.958 19.959 0.302 19.464 19.472 1.334

∞ 20 20 0 20 20 0

C. Two Years D. Forty Months

Deterministic Stochastic Deterministic Stochastic

t p(It) E(p(It))
√

Var(p(It)) p(It) E(p(It))
√

Var(p(It))

1 wk 14.181 14.430 0.548 12.269 12.512 0.570

2 wk 14.204 14.453 0.774 12.285 12.527 0.805

4 wk 14.252 14.498 1.090 12.318 12.558 1.137

6 wk 14.302 14.544 1.330 12.352 12.591 1.391

8 wk 14.355 14.592 1.530 12.390 12.624 1.603

3 mo 14.520 14.725 1.925 12.515 12.722 2.030

4 mo 14.722 14.863 2.183 12.680 12.830 2.320

6 mo 15.145 15.216 2.546 13.038 13.123 2.763

9 mo 15.714 15.768 2.850 13.540 13.610 3.205

12 mo 16.221 16.269 3.005 14.010 14.075 3.505

24 mo 17.708 17.737 2.967 15.563 15.611 3.980

∞ 20 20 0 20 20 0
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(19), investors elevate the discount rate by λQ, the risk-adjusted arrival rate of vaccine.

As investors are risk averse, we expect investors to perceive the vaccine-arrival news,

which is good, with a weight that is lower than the actual weight. That is, the risk-adjusted

arrival rate should be lower than the expected arrival rate, i.e., λQ < λ (See Duffie (2001) for

a textbook treatment on jump risk premium.) For our quantitative illustration, we choose

λQ/λ = 1/2 . That is, risk-averse investors perceive the arrival rate for pricing purposes as if

it were half of the true arrival rate.

In Table 8, we calculate the value of a vaccine arrival by using p(It) for the same four

scenarios, where the expected arrival time for vaccine is six months, one year, two years,

and forty months, respectively.20 We can see that the price-earnings ratio p(It) does not fall

nearly as much when there is a potential for a vaccine in half year or one year (Panels A

and B). However, valuations begin to get significantly impacted even if the expected vaccine

arrival time is two years or forty months out as we see in Panels C and D, respectively.

This is due to a combination of both a longer expected waiting time and a risk premium for

stochastic vaccine arrival.

Importantly, we can relate these benefits to those obtained through government interven-

tion regarding β and reproduction number. For example, consider the conditional forecast of

p(t) for horizons up to one year. The economic benefits of targeting a reproduction number

around 1.75 (shown in Panel C of Table 5) is roughly in line with having a vaccine expected

to arrive in forty months (Panel D).

9 Conclusion

We propose a parsimonious epidemic model that highlights the importance of transmission-

rate shocks due to unpredictable environmental factors. The model is a three-parameter

nonlinear diffusion process amenable for risk-management applications in areas such as eco-

nomics and finance. We integrate the model into an asset pricing framework so that we can

quantify the financial damage of Covid-19 and relate this damage to epidemic data.

20Note that we ignore the market price of pandemic risk by setting ηZ = 0.
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Pooling January-February Covid-19 data, we estimate a single model for 16 high-risk

countries, pointing to a reproduction number is 3.05 with 95% CI 1.12-6.52. Importantly,

we can use the parsimony of the model and our estimates to calculate analytical conditional

distributions for infected masses going forward, which also affects firm valuations. Despite

the simplicity of the model, it is only rejected using 95% CI for a few countries out of sample,

including two that bent the curve in March-April.

Our model has a number of implications for the usefulness of the basic reproduction

number. To start, R0 mismeasures the benefits of economy-wide lockdowns since infection

forecasts ignoring transmission volatility overshoot our model’s conditional forecasts and

initial transmission shocks drive infection outcomes across locations. At the same time,

it understates Covid-19 risks to financial markets since transmission volatility and vaccine

arrival rate are as important for damages to firm value.
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Appendices

A Estimation

Estimation of β. We use ordinary least squares (OLS) method to estimate the parameter

β for a given value of γ. Discretizing It in (6) gives

It+∆ = It + (β(1− It)− γ)It∆ + σ It(1− It)
√

∆ εt+∆ , (A.32)

where ∆ is the time increment, εt+∆ is a standard normal random variable, and

( It+∆

It
− 1)− (β(1− It)− γ)∆

1− It
= σ
√

∆ εt+∆ ∼ N (0, σ2∆) . (A.33)

Let N denote the sample size. We choose an estimate of β to minimize the following:

ΣN−2
i=0

(
(
I(i+1)∆

Ii∆
− 1)− (β(1− Ii∆)− γ)∆

1− Ii∆

)2

. (A.34)

Setting ∆ to one in (A.34) yields β̂, which is given by (23). The variance of β̂ is given by

Var(β̂) = E(β̂ − β)2 = E

(
1

N − 1
ΣN−2

0

Ii+1

Ii
− 1 + γ

1− Ii
− β

)2

=
σ2

N − 1
. (A.35)

The 95% confidence interval for β̂ is
(
β̂ − 1.96 σ√

N−1
, β̂ + 1.96 σ√

N−1

)
.

Estimation of σ2. Equation (9) implies that the quadratic variation of ln It, which we

denote by < ln It, ln It >, satisfies d < ln It, ln It >= (1− It)2σ2dt . Therefore, we have

σ2 =
< ln It, ln It >∫ t

0
(1− Is)2ds

. (A.36)

Discretizing the preceding equation, we obtain the following estimate of σ2:

σ̂2 =
ΣN−2
i=0 (ln I(i+1)∆ − ln Ii∆)2

ΣN−2
i=0 (1− Ii∆)2∆

. (A.37)

By setting ∆ to one, we obtain (24).
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B Deterministic SIS Model

Consider the case where β 6= γ. (The case with β = γ is straightforward.) We have

dIt
dt

=

[
β

β − γ
(
e(β−γ)t/2 − e−(β−γ)t/2

)
+

1

I0

e−(β−γ)t/2

]−2(
1

I0

− β

β − γ

)
(β − γ) .(B.38)

The second derivative of It is

d2It
dt2

= −2

[
β

β − γ
(
e(β−γ)t/2 − e−(β−γ)t/2

)
+

1

I0

e−(β−γ)t/2

]−3(
1

I0

− β

β − γ

)
(β − γ)

×
[
β

2
e(β−γ)t/2 +

(
β

2
− β − γ

2

1

I0

)
e−(β−γ)t/2

]
. (B.39)

Let t∗ denote the time at which the peak of the net change dIt/dt is reached, i.e., when

d2It/dt
2 = 0. It is immediate to conclude that the curve dIt/dt peaks at t∗ where

t∗ =
1

(β − γ)
ln

(
β − γ
β

1

I0

− 1

)
=

1

(β − γ)
ln

((
1− 1

R0

)
1

I0

− 1

)
(B.40)

C Derivation Details for Pricing and Hedging

Let P denote the value of the asset. The standard asset-pricing theorem implies that the

following holds (Duffie, 2001):

Pt = Et
(∫ ∞

t

Ms

Mt

Ys ds

)
= EQ

t

(∫ ∞
t

e−r(s−t)Ys ds

)
, (C.41)

where the first pricing equation is under the physical (real-world) probability measure P and

the second pricing equation is under the risk-neutral (which means risk-adjusted) probability

measure Q. It is convenient to use Q for pricing purposes.

Risk-neutral dynamics. Let BQ
t and ZQ

t denote the standard Brownian motions for the

business-as-usual and pandemic shocks, respectively. By using Girsanov’s Theorem, we have

the following relations between them under Q and the real-world (physical) measure P:

dBQ
t = dBt + ηBdt (C.42)

dZQ
t = dZt + ηZdt . (C.43)

We thus may write the dynamics for I under the risk-neutral measure Q as follows:

dIt =
[
β(1− It)− γ − ηZσ (1− It)

]
It dt+ σ It(1− It) dZQ

t (C.44)

=
[
βQ (1− It)− γ

]
It dt+ σ It(1− It) dZQ

t , (C.45)
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where βQ = β − ηZσ.

The earnings process under the risk-neutral measure Q is:

dYt
Yt

= gQ(It)dt+ v(It) dZQ
t + ρφ dBQ

t +
√

1− ρ2 φ dWt , (C.46)

where the (risk-adjusted) earnings growth rate gQ(It) is given by:

gQ(It) = g(It)− v(It)η
Z − ρφηB . (C.47)

Note that both business-as-usual and pandemic risks appear in (C.47).

Pricing. The fundamental theorem of asset pricing (Duffie, 2001) implies that

rP (Y, I) = Y +
[
g(I)− v(I)ηZ − ρφηB

]
Y PY (Y, I) +

1

2

[
v(I)2 + φ2

]
Y 2PY Y (Y, I)

+
[(
β − ηZσ

)
(1− I)− γ

]
IPI(Y, I) +

1

2
σ2 I2(1− I)2PII(Y, I)

+PIY σ I(1− I)v(I)Y . (C.48)

As P (Yt, It) = p(It)Yt, we have PY (Y, I) = p(I), PY Y (Y, I) = 0, PI(Y, I) = p′(I)Y,

PII(Y, I) = p′′(I)Y, and PIY (Y, I) = p′(I) . Substituting these expressions into (C.48) yields

rp(I) = 1 +
[
g(I)− v(I)ηZ − ρφηB

]
p(I) +

[(
β − ηZσ

)
(1− I)− γ

]
Ip′(I)

+
1

2
σ2 I2(1− I)2p′′(I) + p′(I)σ I(1− I)v(I) . (C.49)

Re-organizing (C.49) yields (19).

Return dynamics. The asset’s cum-dividend return process is given by

Ytdt+ dPt
Pt

=
dt

p(It)
+
dYt
Yt

+
dp(It)

p(It)
+
d < p(It), Yt >

p(It)Yt

=
1

p(It)
+
dYt
Yt

+
1

p(It)

(
p′(It)dIt +

p′′(It) < dIt, dIt >

2

)
+
p′(It) < dIt, dYt >

p(It)Yt

= (r + θ(It))dt+ σZR(It) dZt + ρφ dBt +
√

1− ρ2 φ dWt , (C.50)

where σZR(It) is the asset’s return volatility (due to pandemic risk) given by

σZR(It) = v(It) +
p′(It)

p(It)
It(1− It)σ (C.51)

and θ(It) is the asset’s expected excess return (over the risk-free rate r) given by

θ(It) = ρφ ηB + σZR(It)η
Z . (C.52)

42



Pandemic Risk and Risk Premium. There are two terms in return volatility loading

due to pandemic risk, σZR(It). The first term is the direct effect of pandemic shocks on the

asset’s cash-flow risk. The second term in (C.51) captures the sensitivity of the equilibrium

pricing-earnings ratio p(It) with respect to It due to the correlation between the SDF and

pandemic shocks.

The asset’s expected excess return θ(It) given in (C.52) has two components. The first in

θ(It) is the standard term (e.g., implied by CAPM as we discussed earlier) in the absence of

pandemic shocks. The key for our analysis is the second term, which is equal to the product

of the market price of pandemic risk ηZ and the quantity (volatility) of pandemic risk σZR
defined in (C.51).

Next, we incorporate the risk premium for vaccine arrival. The fundamental theorem of

asset pricing implies that the asset’s value, P (Y, I), satisfies the following pricing equation:

rP (Y, I) = Y +
[
g(I)− v(I)ηZ − ρφηB

]
Y PY (Y, I) +

1

2

[
v(I)2 + φ2

]
Y 2PY Y (Y, I)

+
[(
β − ηZσ

)
(1− I)− γ

]
IPI(Y, I) +

1

2
σ2 I2(1− I)2PII(Y, I)

+PIY σ I(1− I)v(I)Y + λQ(P (Y, 0)− P (Y, I)) . (C.53)

Substituting P (Yt, It) = p(It)Yt into (C.53), we obtain the pricing equation (31) for p(It).

Numerical Solution. When solving our pricing equation, we use the logarithmic trans-

formation. Let x = ln(I) and h(x) = p(I) = p(ex). Then, h(x) satisfies the following ODE

in the region where x < 0:(
r − g(ex) + v(ex)ηZ + ρφηB

)
h(x) = 1 +

[(
β + (v(ex)− ηZ)σ

)
(1− ex)− γ

]
h′(x)

+
(σ(1− ex))2

2
(h′′(x)− h′(x)) . (C.54)
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