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1 Introduction

Over the last three decades, policy makers have increasingly relied on market-based environ-

mental policies - such as pollution trading and taxes - to address environmental problems.

Expanded use of market-based policies followed each major amendment to the U.S. Clean

Air Act since the 1970s (Schmalensee and Stavins, 2019). Widespread adoption has occurred

in other environmental domains: today, market-based policies cover 30% of global fisheries

(Costello et al., 2016), account for over $36 billion in global ecosystem service payments

(Salzman et al., 2018), and govern 20% of global greenhouse gas (GHG) emissions (World

Bank Group, 2019).

The central appeal of market-based environmental policies is allocative efficiency. In

theory, such policies reduce the total abatement cost of meeting an environmental objective

by inducing less abatement from polluters with higher abatement costs (Crocker, 1966; Dales,

1968; Montgomery, 1972). This contrasts with traditional command-and-control regulations,

which typically require heterogeneous polluters to adopt uniform abatement actions.

At the same time, the particular reallocation of emissions induced by market-based poli-

cies also spatially alters who is harmed by pollution. This is of particular concern as a grow-

ing “environmental justice” (EJ) literature has documented that communities with lower

income, higher minority share, and/or otherwise disadvantaged, systematically experience

higher pollution concentrations than other communities, a statistic we refer to as the en-

vironmental justice gap (or EJ gap).1 Could the adoption of environmental markets be

compounding existing EJ gaps?

Whether a market-based environmental policy widens or narrows the EJ gap depends on

the joint spatial distribution of polluting facilities, their abatement costs, and disadvantaged

communities. Market-based policies induce relatively less abatement from facilities with

steeper marginal abatement cost curves. If these facilities are upwind of disadvantaged

communities, such policies will widen an existing EJ gap. Conversely, if these facilities are

upwind of non-disadvantaged communities, a market-based policy will narrow the EJ gap

(Burtraw et al., 2005).2 Unfortunately, facility-level marginal abatement cost curves are

usually unobserved, making it hard to anticipate the direction of EJ gap effects ex-ante.

This difficulty underscores the need for ex-post empirical approaches, for which prior studies

have largely found inconclusive EJ gap effects (Fowlie, Holland and Mansur, 2012; Grainger

1EJ gaps across many settings have been shown through case (Bullard, 2000; Bowen, 2002; Ringquist,
2005; Mohai, Pellow and Roberts, 2009; Banzhaf, Ma and Timmins, 2019) and population-level (Tessum
et al., 2019; Colmer et al., 2020; Currie, Voorheis and Walker, 2020) studies.

2Additionally, for a policy regulating global pollutants like greenhouse gases, the EJ gap effect depends
on the extent in which GHG and local pollutants are co-produced.
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and Ruangmas, 2018; Shapiro and Walker, 2021).

This paper estimates the EJ gap consequences of California’s greenhouse gas (GHG) cap-

and-trade (C&T) program, which since 2013 has created the world’s second largest carbon

market. This program has also been a focal point of EJ concerns, as local air pollution

emissions are typically co-produced with GHG emissions.3 The possibility that the program

could widen California’s existing EJ gaps in local air pollution has, among other critiques,

led to political opposition that temporary paused the program’s initial development in 2011

and nearly halted renewal efforts in 2017. However, to date, there has been limited causal

evidence on whether the program has indeed widened EJ gaps.

We make two contributions, one empirical and another methodological, in order to es-

tablish the EJ gap consequences of California’s C&T program. First, we find that the C&T

program has lowered GHG and criteria air pollution (i.e., PM2.5, PM10, NOx, and SOx)

emissions for sample facilities. Specifically, we exploit the program’s facility-level eligibility

rule based on historical emissions and its timing to estimate a break in differential emission

trends between regulated and unregulated facilities after 2013. This research design is pos-

sible because we observe facility GHG and criteria air pollution emissions for both regulated

and unregulated facilities, and for periods before and after the program’s introduction, data

availability that is not common across cap-and-trade programs. For example, facility-level

pre-program emissions are not directly observed for the European Union Emissions Trad-

ing System (EU-ETS), the world largest carbon market (Petrick and Wagner, 2014; Martin,

Muûls and Wagner, 2016; Colmer et al., 2020). Even in settings where emissions data is avail-

able, emissions-based eligibility thresholds can sometimes be too low for there to be sufficient

control units within the same jurisdiction, as in the case of Southern California’s RECLAIM

NOx C&T program (Fowlie, Holland and Mansur, 2012). We compare regulated and un-

regulated units within the same jurisdiction. Our identifying assumption requires that any

existing differential emission pre-trends between regulated and unregulated facilities would

have continued after 2013 if not for the C&T program.

We estimate that C&T reduced emissions annually at a rate of 3-9% across GHG and

criteria air pollutants during 2012-2017. To isolate the C&T effect from that of other con-

current climate programs in California, such as renewable portfolio and low carbon fuel

standards, we restrict attention to facilities that were only directly regulated by C&T. Emis-

sions abatement induced by these complementary climate programs have in general made it

difficult to discern whether C&T contributed to the recent 27.1 million ton CO2e decline in

3Similar EJ concerns have arisen elsewhere. Recent efforts to introduce state-level U.S. climate policies
and renew the European Union Emissions Trading System were opposed on EJ grounds (Leber, 2016; Herron,
2019; Transnational Institute, 2013).
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total California GHG emissions between 2012-2017 (Burtraw et al., 2018; Borenstein et al.,

2019). Our estimates imply that GHG emissions across sample facilities declined by 3.2

million tons of CO2e during this period. The exclusion of C&T-regulated facilities subject

to complementary program from our analysis suggests that this figure is a weak lower bound

on the effect of C&T on total California GHG emissions.

We demonstrate that C&T emissions effects are robust to various model specification

and sample restriction choices; to concerns about spillover effects between regulated and

unregulated facilities; and to heterogeneity in emission effects as a function of a facility’s

average emissions. In a placebo test that systematically imposes trend breaks across sample

years, we detect the largest trend break in 2013, the year when the program was actually

introduced.

Our second contribution is to develop an empirical approach for determining how policy-

driven changes in pollution emissions alter the spatial distribution of pollution concentra-

tions. The canonical economics framework for evaluating environmental policies requires

knowing the link between pollution “source” and “receptors” (Baumol and Oates, 1988).

In practice, however, this mapping is rarely characterized and is instead assumed to follow

simple spatial patterns such as assigning pollution concentrations to areas within the same

geographic unit of a facility or within a distance circle centered at a facility (Banzhaf, Ma

and Timmins, 2019). In reality, the spatial and temporal patterns of pollution dispersal

are far more complex and depend on topography and time-varying atmospheric conditions.

Failure to accurately account for actual dispersal patterns can lead to bias estimates even in

otherwise valid quasi-experimental settings (Deschenes and Meng, 2018).

To address this challenge, our estimation framework explicitly embeds an atmospheric

dispersal model, a computationally-intensive procedure that involves running over two mil-

lion pollution trajectories. Specifically, our approach combines estimates of C&T emissions

effects (and its uncertainty) at the facility level with an analysis of resulting EJ gap changes

at the location level, as determined by the atmospheric dispersal model. In doing so, we

build on prior studies using dispersal models which typically only conduct analysis at the

location-level (e.g., Sullivan (2017)) or facility-level (e.g., Grainger and Ruangmas (2018)).

Location-only studies insert observed (not policy-driven) emissions into a dispersal model

and thus do not consider changes in pollution concentration arising from specific policies.

Facility-only studies typically examine whether a policy’s effect on emissions varies with de-

mographic characteristics of downwind locations from a facility. We formally demonstrate

that estimates from such facility-level regressions do not in general equal the EJ gap effect

and need not even be of the same sign. We further show that for the EJ gap effect to be

recovered from facility-level estimates, one must assume a highly simplistic spatial pattern
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of pollution dispersal, an assumption which we can reject for our setting.

Employing a definition of a “disadvantaged” zip code that serves as a basis for California’s

EJ policies, we detect three EJ gap findings. First, consistent with EJ concerns in the

lead up to the C&T program’s introduction, we find not only were there baseline EJ gaps

across criteria air pollutants in 2008, but that gaps were widening in the 2008-2012 period

before the program. Second, the C&T program has narrowed EJ gaps since 2013. Third,

while EJ gaps have narrowed, they have not been eliminated: by 2017, the C&T program

returned EJ gaps roughly to 2008 levels. These EJ gap effects are robust across a variety of

checks. In particular, we find that allowing for heterogeneous emissions effects as a function

of a facility’s average emissions leads to slightly larger declines in EJ gaps. We further

demonstrate similar EJ gap effects when employing an alternative atmospheric dispersal

model that generates secondary PM2.5 concentrations. An analysis of spatial heterogeneity

reveals that EJ gaps narrowed most for disadvantaged zip codes in California’s Central Valley,

while a few disadvantaged zip codes in Los Angeles County experienced widening gaps.

We demonstrate the importance of modeling pollution dispersal for our results. Our EJ

gap effects become unstable if instead of modeling pollution dispersal, we were to employ

more conventional approaches for assigning pollution emissions to concentrations. We posit

that our empirical approach may have broader applicability. In particular, there is a com-

mon need across many environmental policy settings to track how policy-driven changes in

pollution emissions alter the spatial distribution of pollution concentration (Greenstone and

Gayer, 2009; Graff Zivin and Neidell, 2013; Deschenes and Meng, 2018).

The paper is structured as follows: Section 2 considers a conceptual framework for how a

C&T program could widen or narrow an existing EJ gap and offers background on Califor-

nia’s GHG C&T program. Section 3 summarizes our data. Section 4 details our empirical

approach. Section 5 presents our results. Section 6 provides a discussion.

2 Background

We begin by discussing how the introduction of a cap-and-trade (C&T) program can either

widen or narrow existing pollution concentration gaps between disadvantaged and other

communities. We then review California’s greenhouse gas (GHG) cap-and-trade program.

2.1 Cap-and-trade and the environmental justice gap

In a textbook C&T program, the regulator establishes a limit (or cap) on total emissions

within a jurisdiction by issuing a fixed supply of emission permits. Regulated facilities are
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then either given, or must purchase, permits to cover their emissions. Permit trading allows

the marginal abatement cost (MAC) of emissions to be equalized amongst regulated facilities

to the permit price.4

Two key consequences of C&T are often emphasized. First, by placing a price on pol-

lution, a C&T program induces polluting facilities to internalize (some of) the social costs

of their emissions.5 Second, by equalizing MACs across facilities, a C&T program allocates

emissions by inducing relatively less abatement from facilities with steeper MAC curves and

more abatement from facilities with flatter MAC curves. In theory, the resulting allocation

of abatement achieves the aggregate emissions cap at the lowest total abatement cost across

regulated facilities (Montgomery, 1972).

What is less clear is how the allocative efficiency achieved by C&T alters the spatial

distribution of pollution concentration. In particular, there is growing concern that the

same market forces resulting in allocative efficiency may also be altering the difference in

pollution concentrations experienced between disadvantaged and other communities. This

difference, which we call the “environmental justice gap” (or EJ gap) has been shown to be

positive in the many settings (Bullard, 2000; Bowen, 2002; Ringquist, 2005; Mohai, Pellow

and Roberts, 2009; Banzhaf, Ma and Timmins, 2019; Tessum et al., 2019; Colmer et al.,

2020; Currie, Voorheis and Walker, 2020).

The introduction of C&T can either widen or narrow an existing EJ gap. Figure 1

illustrates this ambiguous effect for a stylized two-facility setting with emissions (e) on the

horizontal axis and permit prices (τ) on the vertical axis. The first facility is upwind of

a disadvantaged community (DAC) with a marginal abatement curve labeled “DAC” (in

orange). The second facility is upwind of a non-disadvantaged community and has a marginal

abatement curve labeled “non-DAC” (in gray).6 To establish an existing positive EJ gap

prior to the introduction of C&T, we allow the DAC facility to have larger emissions in the

absence of C&T, or when τ = 0. When C&T is introduced, each facility’s MAC is equated

to the equilibrium permit price τ = τ ∗. What happens to the EJ gap?

In the left panel of Figure 1, the DAC facility has a steeper MAC curve than the non-

DAC facility, causing the DAC facility to abate less than the non-DAC facility under C&T.

In this case, C&T widens the EJ gap. The right panel of Figure 1 shows an alternative case

whereby the DAC facility has a flatter MAC curve than the non-DAC facility. Following

C&T, the DAC facility abates more than the non-DAC facility, narrowing the EJ gap.

Thus, in settings with an existing positive EJ gap, whether C&T widens or narrows the

4The modern C&T framework was initially developed by Crocker (1966) and Dale (1968).
5Whether social costs are fully internalized depends on if the cap is set at the socially optimal level.
6The horizontal axes in Figure 1 indicates emissions rather than abatement in order to illustrate emissions

levels prior to C&T when τ = 0.
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EJ gap depends on whether facilities upwind of DAC communities have relatively steeper or

flatter MAC curves. Furthermore, for a cap-and-trade system regulating a global pollutant

such as greenhouse gases, the EJ gap effect depends on the extent in which GHG and local

air pollutants are co-produced.

Figure 1: EJ gap under cap-and-trade

DAC-upwind facility with steeper MAC

e

τ

DAC

non-DAC

τ ∗

pre-EJ gappost-EJ gap

DAC-upwind facility with flatter MAC

e

τ

DAC

non-DAC
τ ∗

pre-EJ gappost-EJ gap

Notes: Panels illustrate how the introduction of a C&T program can widen or narrow an existing EJ gap
in a two facility setting. Horizontal axes indicate emissions. Vertical axes indicate marginal abatement
costs, and equivalently the permit price under C&T. The marginal abatement cost curve for facility upwind
of a disadvantaged community (labeled DAC) is shown in orange. The marginal abatement cost curve for
facility upwind of a non-disadvantaged community (labeled non-DAC) is shown in gray. τ∗ indicates the
permit price under C&T. In the left panel, the DAC-upwind facility has a relatively steeper MAC curve.
In the right panel, the DAC-upwind facility has a relatively flatter MAC curve.

Unfortunately, facility-level MAC curves are rarely observed, which limits the ability

to anticipate EJ gap effects of proposed C&T programs. Ex-post studies also face several

empirical challenges. First, isolating the effect of reallocation from cap-and-trade requires re-

stricting attention to facilities that are only regulated by cap-and-trade and not additionally

by complementary climate programs.7 Second, to remove the influence of macroeconomic

conditions, one needs to estimate the effect of cap-and-trade for regulated facilities relative

to unregulated facilities. Third, estimated C&T-driven facility emissions must be mapped

onto location-level pollution concentrations in order to examine resulting EJ gap changes.

Section 4 details how we overcome these challenges.

7Returning to Figure 1, suppose a complementary climate program binds for one facility such that its
emissions are unchanged following the introduction of cap-and-trade. Any subsequent change in the EJ gap
following cap-and-trade now depends on the complementary program, and in particular whether it binds for
the DAC or non-DAC facility and at what emissions level.

7



2.2 California’s GHG cap-and-trade program

California’s has one of the world’s most sophisticated and ambitious climate policies. In 2006,

California passed Assembly Bill 32 (AB 32), requiring total GHG emissions across the state

to reach 1990 emissions level by 2020. AB 32 remains the only economy-wide climate policy

in the U.S.: all other state or national climate policies regulate specific sectors, whereas AB

32 covers all GHG emission sources.

To meet this GHG target, AB 32 established a suite of climate programs. One key

program was cap-and-trade, introduced in 2013 and administered by the California Air Re-

sources Board (CARB).8 The program requires participation by all stationary GHG-emitting

facilities producing at least 25,000 metric tons of annual carbon dioxide equivalent emissions,

or CO2e, during any year between 2009-2012.9 This eligibility criteria covers all sectors that

directly emit GHGs from stationary sources and is unique amongst other AB 32 climate pro-

grams.10,11 California’s C&T program has since created the world’s second largest carbon

market by permit value, following the European Union Emissions Trading System (EU-ETS).

In 2016, California met AB 32’s 2020 GHG target four years early. That same year, the

state extended its GHG target to 40% below 1990 levels by 2030. This was shortly followed

by a 2030 extension of the C&T program. However, critical questions remain regarding the

performance and consequences of the C&T program.

First, it remains unclear whether C&T has lower GHG emissions. In particular, when

C&T coexists with complementary climate programs, an overall GHG emissions cap can be

met with little or no abatement induced by C&T if these complementary programs bind.

Indeed, an ex-ante analysis of California’s GHG C&T program demonstrated a potentially

large role played by such complementary programs on overall GHG abatement (Borenstein

et al., 2019).12 Second, even if C&T lowered GHG and local air pollution emissions, it

remains unclear whether the resulting change in the spatial distribution of air pollution

concentrations widens or narrows California’s EJ gap.

8Prominent complementary programs to C&T under AB 32 include a Renewable Portfolio Standard for
electricity generation and a Low Carbon Fuel Standard for refineries.

9Greenhouse gases covered by the program were CO2, CH4, N2O, HFCs, PFCs, SF6, NF3 and other
fluorinated GHGs. The 25,000 metric ton eligibility criteria is re-evaluated

10The 2013 timing of the C&T program is also unique. Most other AB 32 climate programs were introduced
earlier.

11The GHG C&T program does not directly regulate local criteria air pollution emissions. Any changes
in the spatial distribution of local air pollution concentration due to the program is driven by the program’s
reallocation of local air pollution emissions that is co-produced with GHG emissions.

12Furthermore, even a positive GHG permit price does not ensure that the C&T program caused GHG
emissions to fall. Suppose, for example that there was some form of restriction on GHG emissions prior to
the C&T program leading to a pre-program positive shadow price on GHG abatement. A C&T program
with an overall cap set equal to total emissions under the prior restriction would generate a positive permit
price despite no change in overall GHG emissions.
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3 Data

Our analysis involves two primary datasets: 1) GHG and criteria air pollution emissions

at the facility-by-year level and 2) an indicator of whether a zip code is considered to be

“disadvantaged” according to California legislation.

Facility emissions We obtain 2008-2017 facility-level annual emissions of GHG (or CO2e),

PM2.5, PM10, NOx, and SOx, all in metric tons, from CARB’s Pollution Mapping Tool.13

We observe GHG as well as criteria air pollutions emissions for both C&T-regulated and

non-regulated stationary facilities, before and after the introduction of the C&T program.14

Several additional facility-level variables serve as inputs for the atmospheric dispersal

model. CARB provides facility latitude and longitude as well as pollution-specific stack

heights for a subset of facilities. For other facilities, we impute missing pollution-specific

stack heights using sector averages constructed from non-missing observations.

Definition of a disadvantaged community There is no established definition of a “dis-

advantaged” community. Previous papers in other settings use a location’s median income or

minority share of population as proxy measures (Fowlie, Holland and Mansur, 2012; Grainger

and Ruangmas, 2018; Mansur and Sheriff, 2019). For our setting, we select a policy-relevant

definition of a “disadvantaged” community. Senate Bill 535 (SB 535), passed in 2012, re-

quires a portion of the revenue from the auction of C&T permits to be directed towards

benefiting disadvantaged communities. SB 535 formally defines a “disadvantaged commu-

nity” using CalEnviroScreen, a scoring system based on multiple indicators developed by the

California Environmental Protection Agency. Specifically, a zip code is considered disadvan-

taged if it contains all or part of a census tract with a CalEnviroScreen score above the top

25th percentile. Zip codes designated as disadvantaged are shaded in dark blue in Figure

2a. Importantly, pre-2013 data was used in constructing CalEnviroScreen, which mitigates

the concern that cap-and-trade may have affected zip code designation. We further augment

13Available here: https://ww3.arb.ca.gov/ei/tools/pollution_map/
14Stationary facilities with annual emissions past a certain threshold must report emissions. For GHGs,

the data reporting threshold is 10,000 metric tons of CO2e, set by CARB. For criteria air pollutants, CARB
sets a reporting threshold of 10 metric tons per year, but each air district can set lower data reporting
thresholds. As a consequence, we observe criteria air pollution emissions below 10 metric tons, with no
evidence of bunching at 10 tons (see histograms of sample facility-year emissions in Figure S1). We confirmed
that emissions data in CARB’s Pollution Mapping Tool matches values found in source datasets: CARB’s
Mandatory Reporting Regulation (MRR) dataset for GHG emissions and the California Emissions Inventory
Development and Reporting System (CEIDARS) for criteria air pollution emissions. Details on California’s
emissions reporting requirements can be found: https://ww3.arb.ca.gov/ei/tools/pollution_map/doc/
caveats%20document12_22_2017.pdf
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our zip code level data with average 2008-2012 population obtained from the U.S. Census

Bureau.

4 Empirical approach

Our analysis proceeds along three steps. First, we use facility-by-year-level data to estimate

how the GHG C&T program altered GHG, PM2.5, PM10, NOx, and SOx emissions. Second,

we feed C&T-driven PM2.5, PM10, NOx, and SOx emissions predicted from the first step into

an atmospheric dispersal model to generate zip code-by-year-level concentrations of these

pollutants due to the program. Finally, we examine whether the C&T program changed

the concentration gap for these pollutants between disadvantaged and other communities

following its 2013 introduction.

Step 1: Estimating C&T effects on emissions We exploit the facility-level eligibility

criteria based on pre-program GHG emissions and the 2013 timing of the C&T program

to identify its effects on GHG, PM2.5, PM10, NOx, and SOx facility-level emissions during

2008-2017. Because the program’s eligibility criteria is based on pre-C&T GHG emissions,

we expect regulated and unregulated facilities to differ in pre-program emissions levels and

perhaps also in pre-program emission trends. Our empirical test therefore examines whether

differential emission trends exhibit a break after 2013. For this test to have a causal interpre-

tation, our identifying assumption requires that any existing differential emission pre-trends

to have continued if not for the introduction of the C&T program.15

Specifically, let j index facilities. Cj ∈ {0, 1} is GHG C&T regulatory status with Cj = 1

indicating facility j is regulated.16 For facility j in year t, Y p
jt is annual emissions of pollutant

p ∈ {GHG,PM2.5, PM10, NOx, SOx}. Because emissions exhibit a skewed distribution and

contain zero values, we apply an inverse hyperbolic sine transformation, which like a log

15Because there is no overlap in pre-program GHG emissions for regulated and unregulated facilities,
we are unable to implement a matching estimator that matches on pre-program emissions, as is done in
Fowlie, Holland and Mansur (2012) and Martin, Muûls and Wagner (2016). Implementing such a matching
approach would require emissions data from facilities outside of California. That comparison, however, may
be confounded by systematic unobserved differences between California and non-California facilities.

16All but 39 facilities that emit local air pollution found in CARB’s Pollution Mapping Tool have time-
invariant GHG C&T regulatory status between 2008-2017. These 39 facilities all switched status in 2017.
Under the C&T program, a regulated (unregulated) facility can become unregulated (regulated) if annual
GHG emissions fall below (above) the 25,000 metric tons threshold in any year during a prior compliance
period. Of the 39 facilities that switched status in 2017, 8 switched even though annual GHG emissions
during the previous 2015-2016 compliance period should not have permitted a regulatory status change.
Because we do not know if these switches are due to actual changes in regulatory status or coding errors, we
retain these 39 facilities in our sample and re-assign them their previous (time-invariant) regulatory status
for 2017. In a robustness check, we drop observations from these 39 facilities in our estimation.

10



transformation lends a percentage effect interpretation, but with the added advantage of

retaining zero-valued observations (Bellemare and Wichman, 2020). To examine differential

emission trends driven by the C&T program, we estimate the following specification:

asinh(Y p
jt) = κp1[Cj × t] + κp2[Cj × 1(t ≥ 2013)× t] + φpj + γpt + νpjt (1)

Facility-specific dummy variables φpj removes time-invariant determinants of pollution p for

facility j. Year-specific dummy variables γpt remove common determinants of emissions

affecting all sample facilities in year t, such as California-wide economic conditions.

κp1 captures the differential emission pre-trend for pollutant p between facilities that would

and would not eventually be regulated by the C&T program during 2008-2012, reported in

annual percentage point changes. κp2 is the change, or break, in the differential emission

trend after the program’s introduction during 2013-2017. νpjt is clustered at the county-level

to allow for arbitrary forms of heteroskedasticity and serial correlation within a county.

We employ two sample restrictions to strengthen identification of trend break effects in

equation (1). First, despite the C&T program’s unique eligibility criteria and timing, the

presence of other major climate programs under AB 32, such as the Renewable Portfolio

Standard for electricity generators and the Low Carbon Fuel Standard for refineries, may

confound C&T effects for these facilities. We remove electricity generators and refineries

from our sample to avoid this possibility.17 Second, to ensure better comparability between

treated and control facilities, we restrict our sample to facilities with sample average annual

GHG emissions below the 75th percentile.18 As a robustness check, we consider smaller and

larger cutoff percentiles.

Our benchmark sample contains 106 regulated and 226 unregulated facilities. Each reg-

ulated facility is shown as a black dot in Figure 2a. Table S1 shows average 2008-2012

annual GHG and criteria emissions and sectoral distribution for sample regulated and un-

regulated facilities. Since C&T regulatory status is defined by historical GHG emissions, it is

unsurprising that regulated and unregulated facilities exhibit different average pre-program

emissions, nor does this invalidate our differential emissions trend break design, per se. Ta-

ble S1 also shows a slight sectoral imbalance between regulated and unregulated facilities,

with more regulated facilities in extraction and more unregulated facilities in services. In

a robustness check, we replace year fixed effects in equation (1) with sector-by-year fixed

effects to address concerns that this sectoral imbalance may confound our estimates.

To construct facility-by-year emissions driven by the C&T program (relative to California-

17This restriction also addresses concerns about the the 2013 closure of the San Onofre Nuclear Generating
Station, a power plant in southern California (Davis and Hausman, 2016).

18The 75th percentile corresponds to average annual emissions of 62,770 metric tons of CO2e.
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wide determinants of pollution), we apply a hyperbolic sine transformation to the first two

terms of equation (1) and the estimated facility-level fixed effect.19 Because facilities differ

by average emission levels, the inclusion of facility-level fixed effects allows us to generate

heterogeneous C&T-driven pollution abatement across regulated facilities despite estimating

a common percentage effect.20 This implicitly assumes that larger emitting facilities abate

more under C&T. To examine this assumption, in a robustness check, we estimate variants of

equation (1) that allow the post-C&T trend break to vary as linear and quadratic functions

of facility-level average annual emissions.

Step 2: Modeling pollution dispersal Our second step determines how C&T-driven

criteria air pollution disperses spatially across California. The standard approach is for the

researcher to prescribe the set of locations affected by emissions from a particular source,

either by assuming emissions only disperses within areas in the same administrative unit

of the source or within a radially uniform distance from the source. For example, one may

assume emissions from a facility in Los Angeles County only affect Los Angeles County or

areas within a certain radial distance of that facility. Actual affected areas, however, may

not conform to these assumptions and instead may vary depending on topography or time-

varying meteorological conditions. To fully capture the complexity of pollution dispersal, we

turn to an atmospheric dispersal model.

We feed predicted facility-by-year PM2.5, PM10, NOx, and SOx emissions from step 1,

together with the location and stack height of each facility, into the Hybrid Single Parti-

cle Lagrangian Integrated Trajectory Model (HYSPLIT), an atmospheric dispersal model

developed by the U.S. National Oceanographic and Atmospheric Administration (NOAA)

with meteorological conditions from NOAA’s 40-km resolution North American Model Data

Assimilation System (NAMDAS) (Draxler and Hess, 1998). An emerging literature uses

HYSPLIT to convert pollution emissions to concentrations (Grainger and Ruangmas, 2018;

Henneman, Mickley and Zigler, 2019; Casey et al., 2020).

We choose HYSPLIT because it provides a middle-of-the-road approach for our appli-

cation, balancing atmospheric realism with computational tractability. HYSPLIT is less

19 Specifically, C&T-driven emissions is:

Ŷ pjt = sinh
(
κ̂p1[Cj × t] + κ̂p2[Cj × 1(t ≥ 2013)× t] + φ̂pj

)
∗ e(RMSE)2/2)

where hat notation indicates estimated parameters and RMSE is the root mean squared error from equation
(1). In theory, the hyperbolic sine transformation can generate negative emission values. In practice, our
benchmark model predicts negative emissions for 1%, 1%, 0.2%, and 0.3% of sample observations for PM2.5,
PM10, NOx, and SOx, respectively. We replace these negative values with zeros.

20For example, a 10% abatement effect implies 10 tons of abatement for a facility with 100 tons of average
annual emissions and 5 tons of abatement for a facility with 50 tons of average annual emissions.
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computationally intensive than chemical dispersal models such as WRF-Chem, but at the

cost of not incorporating atmospheric chemistry which is important for modeling secondary

pollutant formation. At the same time, HYSPLIT is more reliable for modeling pollution

dispersal beyond distances of 50 kilometers, which less computationally-intensive Gaussian-

plume models like AERMOD or APEEP do poorly (EPA, 2015).

We note several features of our HYSPLIT implementation. First, to account for high-

frequency variation in meteorological conditions, we run forward particle trajectories at

four hour intervals, implicitly assuming that annual emissions are distributed uniformly

within the year. Each trajectory runs for 24 hours, a duration long enough to ensure most

emitted particles leave California.21 Second, because HYSPLIT does not explicitly account

for particle decay, we apply half-life parameters from the atmospheric chemistry literature set

at 24 hours for PM2.5 and PM10(U.S. EPA, 2018), 3.8 hours for NOx (Liu et al., 2016), and

13 hours for SOx (Lee et al., 2011). Third, we assume that a particle no longer contributes

to surface pollution concentrations once it exits the planetary boundary layer, beyond which

there is far less turbulent mixing. We conservatively set the boundary layer height at 1

km above the surface, which is about double the typical height for California (Rahn and

Mitchell, 2016). As a robustness check, we also consider boundary layer heights of 0.5 and

2 km. As an illustration of pollution dispersal modeled by HYSPLIT, Figure 2b shows

the trajectories of pollution emitted by a regulated facility in Los Angeles during 2016. In

total, we compute over 2 million particle trajectories from the roughly one hundred regulated

facilities in our sample during the 2008-2017 period. This procedure takes about 24 hours to

complete using over one thousand facility-by-year parallelized nodes on a high-performance

computing cluster.

HYSPLIT generates particle-level trajectories. To convert this into concentration units,

we sum HYSPLIT trajectories for each zip code and year and divide by the volume of the

atmosphere between a zip code’s surface and the boundary layer. We further divide by

365 days. This gives us a zip code-by-year measure of average daily C&T-driven pollution

concentration for the 1 km-high air column above each zip code in units of µg/m3/day.22

Figure 2c shows our benchmark HYSPLIT-generated daily concentration (in µg/m3/day) for

each zip code, averaged across 2008-2017 for PM2.5. Figure S4 similarly shows average 2008-

21Unlike Henneman et al. (2019), we do not discard the first hour of each particle trajectory because doing
so may omit highly localized pollution concentrations that may be important for our distributional analysis.

22Other HYSPLIT applications convert HYSPLIT particles into concentration units by regressing HYS-
PLIT output onto concentration output from a different atmospheric dispersal model using the same emis-
sions sources (see for example: Henneman, Choirat and Zigler (2019)) to obtain predicted concentrations
using that fitted relationship. We are unable to perform that adjustment as there are no alternative measures
of C&T-driven pollution concentrations in the literature.
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Figure 2: Modeling air pollution concentrations driven by the cap-and-trade program

Notes: Panels illustrates how facility-level emissions is converted to zip code-level pollution concentrations
using an atmospheric dispersal model. Shading in panel (a) shows California zip codes that are designated as
disadvantaged (dark blue) and zip codes that are not (light blue) according to California policy. Black dots
show sample facilities regulated by California’s GHG C&T program. Panel (b) shows HYSPLIT-generated
particle trajectories every 4-hours from a regulated facility during 2016. Panel (c) shows zip code-level
average daily PM2.5 concentrations (in µg/m3/day) during 2008-2017 driven by facilities regulated by the
C&T program as modeled by HYSPLIT.

2017 zip-code concentrations for PM10, NOx, and SOx.
23 Note that pollution concentration

levels in Figure S4 are generally below those recorded in ambient monitors because we

are only considering pollution concentrations driven by C&T-driven emissions from sample

regulated facilities.

Lastly, as noted, a major limitation with HYSPLIT is that it does not model secondary

pollution formation. To see if secondary PM2.5 concentrations exhibits a different spatial

pattern than primary PM2.5 concentrations, in a robustness check, we replace HYSPLIT

with InMAP, a reduced-complexity dispersal model based on the WRF-Chem model which

generates secondary pollutants (Tessum, Hill and Marshall, 2017).

Step 3: Estimating C&T-driven change in EJ gap trends In our third step, we

examine whether the C&T program altered the difference in pollution concentrations between

disadvantaged and other communities, or the EJ gap. Let Di ∈ {0, 1} denote disadvantaged

status, with Di = 1 indicating that zip code i contains all or part of a “Disadvantaged

Community Census Tract,” as defined by Senate Bill 535. For zip code i in year t, we

take C&T-driven pollution concentration from HYSPLIT, Ep
it, for criteria air pollutant p ∈

{PM2.5, PM10, NOx, SOx}, and estimate the following specification:

Ep
it = βp1 [Di × t] + βp2 [Di × 1(t ≥ 2013)× t] + ψpi + δpt + εpit (2)

23Figure 2, Figure S4, and Table S6 show that criteria air pollution from GHG C&T-regulated facilities
disperses across all of California and not just zip codes designated as disadvantaged.
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where ψpi are zip code-specific dummies and δpt are year-specific dummies. βp1 , or the pre-C&T

EJ gap trend, captures the linear trend in the EJ gap (from facilities that would eventually

be regulated by the C&T program) during 2008-2012, before the program was introduced. A

positive trend (i.e., βp1 > 0) would indicate that the EJ gap was widening prior to the C&T

program. Our main parameter of interest is βp2 , which captures the change in the EJ gap

trend after the program’s introduction, or the post-C&T EJ gap trend break. Conditional

on βp1 > 0, βp2 < 0 implies that the introduction of the C&T program slowed the previous

positive EJ gap trend. We consider two additional trend break statistics. The first statistic

asks whether the post C&T EJ gap trend break is sufficiently large such that the EJ gap has

actually narrowed in level terms after the C&T program. This would be captured by βp1 +βp2 ,

or the post-C&T EJ gap trend, with βp1 + βp2 < 0 indicating that the EJ gap is narrowing.24

A second statistic examines the relative degree in which C&T program has slowed the prior

EJ gap trend. Specifically,
βp2
βp1
∗ 100 = (

(βp1+βp2 )−βp1
βp1

) ∗ 100 captures the percentage change in

the EJ gap trend following the introduction of the C&T program.

C&T-driven pollution concentration, Ep
it, the outcome variable in equation (2), is pre-

dicted C&T-driven emissions from equation (1) via HYSPLIT. As a consequence, εpit, the

error term in equation (2), does not account for statistical uncertainty in C&T emission

effects from equation (1). Instead, εpit may capture residuals that arise when estimating an

average EJ effect in the presence of heterogeneous EJ effects. To address inference con-

cerns, we conduct two standard error adjustments. First, we cluster εit at the county level

to allow for arbitrary forms of heteroskedasticity and serial correlation when heterogeneous

treatment effects are not independent and identically distributed. Second, to incorporate

statistical uncertainty in predicted C&T-driven emissions from equation (1), we conduct a

bootstrap procedure drawing multiple vectors of C&T-driven emissions from the estimated

empirical distributions of κp1 and κp2, which are then fed into steps 2 and 3. In practice, we

implement 250 bootstrap draws to generate a component of the standard error for βp1 and

βp2 that accounts for statistical uncertainty in equation (1). We add this component to the

standard error from directly estimating equation (2) when reporting uncertainty for βp1 and

βp2 . Figure S5 plots the empirical distribution of βp1 and βp2 across bootstrapped draws.25

24Observe that while βp2 < 0 alone implies that the C&T program resulted in EJ gap benefits by slowing
the growth in the EJ gap, it does not necessarily imply that this post-trend break effect is strong enough to
offset the magnitude of the pre-trend such that EJ gap is narrowing in absolute terms following the program.
For that to occur, one needs βp2 < −β

p
1 , or βp1 + βp2 < 0.

25As with prior literature, we omit uncertainty associated with atmospheric dispersal, or the mapping
between facility-level emissions and zip code-level concentration. One possibility involves resampling mete-
orological conditions in HYSPLIT via a bootstrapping algorithm. Given that our use of HYSPLIT takes 24
hours, overlaying such an approach to the existing 3-step procedure is currently unrealistic under available
computational resources.
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Appendix A.1 provides more details on this bootstrap procedure.

Finally, to estimate an average EJ gap effect across individuals in California, we weight

each zip code-by-year observation in equation (2) by average zip code population during

2008-2012, the period prior to the program.

Comparison with prior uses of pollution dispersal models Our empirical approach

is part of a broader effort across natural and social sciences to use atmospheric dispersal

models to map pollution emissions to concentrations. Prior studies can be broadly classified

into two groups: whether the analysis is done at the location-level or at the facility-level.

Location-level analyses typically feed observed emissions into a dispersal model, but

without first estimating the emissions effects of environmental policies (Ash and Fetter,

2004; Morello-Frosch and Jesdale, 2006; Sullivan, 2017; Cummiskey et al., 2019; Henneman

et al., 2019; Henneman, Choirat and Zigler, 2019; Kim et al., 2020). Because these studies

omit estimation of policy-driven emissions (i.e., our Step 1), they cannot attribute changes

in pollution concentrations to specific policies.26

Facility-level studies examine whether a policy’s effect on emissions varies with the de-

mographic characteristics of households downwind of facilities, as determined by the atmo-

spheric dispersal model (Grainger and Ruangmas, 2018; Mansur and Sheriff, 2019). This

approach augments the facility-level in equation (1) by adding a term that interacts the

policy treatment with demographic characteristics of downwind locations. However, given

the complex spatial nature of pollution disperal whereby concentrations in multiple loca-

tions may be affected by emissions from multiple facilities, it is not obvious whether one can

recover EJ gap changes, the estimand of interest, from such an approach.

In Appendix A.2, we formally demonstrate that the coefficient on the interaction term

from such dispersal-augmented facility-level regressions does not in general equal the EJ

gap effect, nor does it necessarily have the same sign, making it hard to draw EJ gap

conclusions from such regressions. We then show one special case where equality does hold

but which requires - among other assumptions - a particularly strong assumption on the

spatial pattern of pollution dispersal: emissions from each regulated facility must affect

either only disadvantaged communities or only non-disadvantaged communities. That is,

facilities cannot alter pollution concentrations in both types of locations. This assumption

can be rejected in our setting: panels a and b of Figure 2 show how emissions from one

regulated sample facility alters pollution concentrations in both disadvantaged and other

26For example, Henneman et al. (2019) and Henneman, Choirat and Zigler (2019) insert observed air
pollution emissions from coal-fired power plants into a version of HYSPLIT to examine how much U.S.
PM2.5 concentrations are due emissions from these plants, but cannot speak to the policies that are affecting
coal-fired power plant emissions.
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communities.

Our approach combines both facility- and location-level analyses. As such, we are able to

attribute changes in emissions due to the C&T program and quantify the resulting change

in the EJ gap as a consequence of these emissions.

5 Results

This section presents our results. Section 5.1 shows the effect of C&T on differential emission

trends between regulated and unregulated facilities. Section 5.2 examines how these C&T-

driven emissions altered trends in the pollution concentration gap between disadvantaged

and other communities across California.

5.1 Cap-and-trade effects on emissions

Main results Table 1 reports the pre-C&T differential emissions trend (i.e., κp1 from equa-

tion (1)) and the post-C&T differential emissions trend break (i.e., κp2 from equation (1))

for GHG and criteria air pollutants. Column 1 shows a statistically significant trend break

in GHG emissions, indicating that the C&T program led to a reduction in GHG emissions.

Prior to the program, the gap in GHG emissions between regulated and unregulated facili-

ties increased at an annual rate of 19 percentage points. Following the introduction of the

program, this trend slowed by 30 percentage points leading the gap in GHG emissions to

fall at an annual rate of 11 percentage points between 2012-2017. For criteria air pollutants,

columns 2-4 show a statistically significant, negative emissions trend break following the

program’s introduction for PM2.5, PM10, NOx. For SOx, the trend break is negative but

not statistically significant, suggesting that all subsequent SOx results should be interpreted

with caution.

We predict C&T-driven emissions using estimates in Table 1 together with facility-level

fixed effects. This generates heterogeneous facility-level C&T-driven abatement between

2012-2017, or Ŷ p
j,2017 − Ŷ

p
j,2012 as defined in footnote 19, and shown in Figure S3 for GHG,

PM2.5, PM10, NOx, and SOx. Averaged across sample regulated facilities, between 2012 and

2017, the C&T program reduced emissions annually at a rate of 9%, 5%, 4%, 3%, and 9%

for GHG, PM2.5, PM10, NOx, and SOx, respectively.27 GHG permit prices for the California

C&T program have largely hovered above the program’s price floor since 2013. Detecting

emissions abatement from sectors directly regulated by only C&T, however, is consistent

27This is calculated by averaging (
Ŷ p
j,2017−Ŷ

p
j,2012

Ŷ p
j,2012

)/5, as defined in footnote 19, across regulated sample

facilities for each pollutant p.
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Table 1: Trend break in emissions

Outcome is (asinh) emissions
(1) (2) (3) (4) (5)

GHG PM2.5 PM10 NOx SOx

κp1 0.187 0.058 0.083 0.075 0.006
(0.052) (0.043) (0.033) (0.039) (0.035)
[0.001] [0.183] [0.016] [0.061] [0.875]

κp2 -0.297 -0.097 -0.117 -0.104 -0.037
(0.077) (0.048) (0.039) (0.050) (0.043)
[0.000] [0.053] [0.005] [0.042] [0.393]

κp1 + κp2 -0.111 -0.039 -0.034 -0.029 -0.031
(0.036) (0.018) (0.018) (0.019) (0.019)
[0.004] [0.039] [0.068] [0.138] [0.108]

Facilities 316 302 302 303 303
Counties 41 40 40 40 40
Observations 2,054 1,968 1,968 1,970 1,965
Notes: Estimates of pre-C&T differential emissions trend (i.e., κp1
from equation (1)) and post-C&T differential emissions trend break
(i.e., κp2 from equation (1)) for GHG, PM2.5, PM10, NOx, and SOx

across columns. All models include facility-specific and year-specific
dummy variables. Standard errors clustered at the county-level in
parentheses, p-value in brackets.

with permit prices at the price floor when complementary climate programs bind for other

C&T-covered sectors. When such programs bind, aggregate demand for GHG permits fall,

causing permit prices to hit the price floor. However, provided that total abatement driven

by complementary programs is insufficient for meeting the total GHG cap, C&T will still

induce abatement from sectors that are only regulated by C&T.

In total, sample regulated facilities reduced 3.2 million tons of CO2e between 2012-2017.

This figure is likely a weak lower bound on the effect of C&T on total California GHG

emissions as C&T is likely to have weakly negative emissions effects on regulated facilities

subject to complementary climate programs but are excluded from our analysis, As a point

of reference, California’s statewide GHG emissions fell by 27.1 million tons of CO2e (Board,

2020) between 2012-2017.

Robustness checks We subject these emission effects to several robustness checks. First,

Figure S2 considers placebo program start years, plotting κp2 for GHG, PM2.5, PM10, NOx,

and SOx emissions from variants of equation (1) that impose alternative C&T start years
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across 2009-2016. With the exception of the SOx results, we detect the strongest trend break

coefficient when we assign the treatment year to its actual occurrence in 2013.

Table S2 considers several alternative specification and sample restriction choices. Table

S1 shows that regulated and unregulated facilities are not perfectly balanced across sectors.

To address concerns that differential trends across sectors may confound our estimates,

column 1 of Table S2 replaces year fixed effects with sector-by-year fixed effects. Column

2 drops the handful of facilities whose treatment status switched only in 2017. Columns

3 and 4 change the 75th percentile average GHG emissions cutoff to the 70th and 80th

percentiles.28 None of these robustness checks produces estimates that differ meaningfully

from our benchmark estimates in Table 1.

Our C&T-driven emissions which includes facility fixed effects, implicitly assumes more

pollution abatement from facilities that emit more on average. To examine whether this

assumption is reasonable, column 2 of Table S3 reports a variant of equation (1) that further

includes an interaction between the trend break term and a linear function of facility-level

average emissions. A positive interaction coefficient would imply that larger emitting facil-

ities are abating less, contradicting our assumption. With the exception of GHG emissions

for which the linear interaction term is positive but of very small magnitude, the coefficient

on this interaction term for every criteria air pollution is negative. This suggests that our

benchmark model, which estimates an average trend break coefficient across facilities (re-

gardless of size) is understating the degree in which large-emitting facilities are also abating

more under C&T. Column 3 of Table S3 shows that heterogeneity by average emissions does

not exhibit nonlinearity, as indicated by statistically imprecise quadratic interaction terms.

Finally, there may be a Stable Unit Treatment Value Assumption (SUTVA) as pollution

may shift from a regulated to unregulated facilities following the introduction of C&T. If so,

the resulting increase in unregulated facility emissions may lead to more negative estimates

of the trend break parameter κp2. Following Fowlie, Holland and Mansur (2012), we consider

two robustness checks in Table S4 to examine this possibility. In the first test, we observe

that a facility located in a county under U.S. Clean Air Act nonattainment for a particular

pollutant is largely unable to increase pollution levels. This idea is implemented in column

2, which restricts the sample of unregulated facilities to those located in nonattainment

counties for that pollutant under the Clean Air Act.29 Our second test notes that firms with

28The 70th and 80th percentiles for sample average annual GHG emissions corresponds to 48,834 and
82,173 tons of CO2e, respectively.

29In Table S4, column 2 does not apply to GHG emissions because it is not a criteria pollutant regulated
under the Clean Air Act. For SOx, there are no counties in nonattainment during our sample period. For
NOx, because there were not enough counties under NO2 nonattainment to construct a control group, we
follow Fowlie, Holland and Mansur (2012) by looking at nonattainment under Clean Air Act’s one-hour
ozone standard as NOx is a precursor pollutant to ozone.
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multiple facilities can more readily reallocate pollution across their facilities. In column 3,

we restrict the control group of unregulated facilities to those whose parent company only

operates a single plant.30 If treatment spillovers were present, the trend break coefficient κp2

should be of smaller magnitude in columns 2 and 3 than in our benchmark estimate, shown

in column 1. This is not the case.

5.2 Cap-and-trade effects on EJ gaps

Validating pollution dispersal modeling We consider two sensibility checks for our

measure of C&T-driven pollution concentrations via HYSPLIT before turning to our main

EJ gap results. First, we examine whether HYSPLIT-generated criteria air pollution con-

centrations correlate with monitored ambient air pollution concentrations. Specifically, we

match zip code-level HYSPLIT-generated pollution concentration averaged over 2008-2017

to the average ambient pollution concentration of that zip code as recorded by pollution

monitors averaged over the same period, obtained from the U.S. Environmental Protection

Agency.31 we do not expect a perfect fit between these two variables as ambient pollution at

any location is composed of emissions originating from many more sources (i.e., stationary

and non-stationary, within and beyond California) than our subset of stationary sources reg-

ulated by California’s GHG C&T program. However, a positive correlation between the two

pollution concentration measures would provide reassurance that HYSPLIT-generated pollu-

tion concentration from C&T regulated facilities is detected by ambient pollution monitors.

The positive correlations shown in Table S5 indicate that is indeed the case.32

Next, we examine the EJ gap in 2008 driven by facilities that would eventually be reg-

ulated by the C&T program. Prior work documented strong baseline EJ gaps in California

(Cushing et al., 2018). Indeed, this baseline EJ gap informed initial EJ concerns regarding

California’s C&T program. Table S6 shows that steps 1 and 2 of our approach reproduces EJ

gaps in 2008. Disadvantaged communities experienced higher levels of PM2.5, PM10, NOx,

and SOx concentrations in 2008 than other communities on average due to emissions from

facilities that would eventually be regulated by the C&T program.

30We link each facility from CARB with its parent company as indicated by the EPA. We employ a fuzzy
string matching algorithm as facility names are not standardized across the two datasets.

31Available here: https://aqs.epa.gov/aqsweb/airdata/download_files.html
32We are interested in modeling where C&T-driven pollution is dispersed. As such, we do not directly use

ambient pollution data (either from ground-based monitoring stations or remotely-sensed satellites) in our
analysis as it is often difficult to determine which component of any location’s ambient pollution originates
from C&T-regulated facilities. Such “backwards” atmospheric modeling often yield indeterminate results.
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Table 2: Trend break in the environmental justice gap

(1) (2) (3) (4)
PM2.5 PM10 NOx SOx

βp1 0.042 0.065 0.085 0.037
(0.015) (0.017) (0.037) (0.025)
[0.006] [0.000] [0.026] [0.151]

βp2 -0.063 -0.090 -0.143 -0.101
(0.022) (0.029) (0.074) (0.051)
[0.006] [0.003] [0.060] [0.053]

βp1 + βp2 -0.021 -0.026 -0.058 -0.064
(0.015) (0.020) (0.050) (0.027)
[0.159] [0.203] [0.252] [0.024]

(βp2/β
p
1) ∗ 100 -149.699 -139.739 -168.282 -272.291

(36.368) (29.971) (53.375) (66.043)
[0.000] [0.000] [0.002] [0.000]

Zip codes 1649 1649 1649 1649
Counties 58 58 58 58
Observations 16,416 16,416 16,416 16,416
Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp1 from
equation (2)), the post-C&T EJ gap trend break (i.e., βp2 from
equation (2)), the post-C&T EJ gap trend (i.e, βp1 +βp2), and the
percentage change in the EJ gap trend following the introduc-

tion of the C&T program (i.e.,
βp
2

βp
1
∗100) for PM2.5, PM10, NOx,

and SOx, across columns. All models include zip code-specific
and year-specific dummy variables. Observations weighted by
zip code-level average population during 2008-2012. Parenthe-
ses indicate standard errors that account for statistical uncer-
tainty in C&T predicted emissions (νpit from equation (1) via the
bootstrap procedure in Appendix A.1) and county-level hetero-
geneity in EJ gap effects of arbitrary form (εpit from equation
(2)). P-value in brackets.

Main results We now turn to our main results examining the time evolution of EJ gaps

between 2008-2017, shown in Table 2 and Figure 3. Across PM2.5, PM10, NOx, and SOx,

the EJ gap widens during 2008-2012, the period prior to the C&T program, as indicated

by the positive pre-C&T EJ gap trend (i.e., βp1 from equation (2)). Following 2013, the EJ

gap trend falls: the post-C&T EJ gap trend break (i.e., βp2 from equation (2)) is negative

and statistically significant. This drop in the EJ gap trend is sufficiently large such that

the EJ gap is actually narrowing following C&T, as indicated by the negative post-C&T EJ

gap trend across pollutants (i.e., βp1 + βp2). In percentage terms (i.e.,
βp2
βp1
∗ 100), the EJ gap
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trend fell between 140-270% across pollutants after the program’s introduction. Figure 3

plots this trend break as well as annual EJ gap coefficients from a more flexible version of

equation (1) using year-specific EJ gap coefficients.33 Figure 3 also highlights that while the

C&T program has led EJ gaps to narrow since 2012, it has not eliminated them. By 2017,

EJ gaps are roughly at 2008 levels across pollutants.

Figure 3: Environmental justice gap before and after the cap-and-trade program
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Notes: Panels show the estimated average daily pollution concentration gap (in µg/m3/day) between
disadvantaged and other zip codes (i.e., “EJ gap”) during 2008-2017 for PM2.5, PM10, NOx, and SOx,
respectively. Dots show year-specific EJ gap. Solid lines show linear fit for EJ gap trend before (2008-2012)
and after (2013-2017) the C&T program. Associated text indicates point estimates and standard errors for
the pre-C&T linear trend, post-C&T trend break, post-C&T linear trend, and the percentage change in the

EJ gap trend (i.e., βp1 , βp2 , βp1 + βp2 ,
βp
2

βp
1
∗ 100 ). 95% confidence interval and p-values (in brackets) account

for statistical uncertainty in C&T predicted emissions (νpit from equation (1) via the bootstrap procedure
in Appendix A.1) and county-level heterogeneity in EJ gap effects of arbitrary form (εpit from equation (2)).
Trend break estimates also reported in Table 2.

33Specifically, the annual coefficients in Figure 3 are βpτ from

Epit =
∑

2008≤τ≤2017
τ 6=2012

βpτ [Di × 1(t = τ)] + ψpi + δpt + εpit
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Figure 4: Spatial heterogeneity in EJ gap effects

Notes: Panels maps the zip code-specific percentage change in the EJ gap trend following the introduction
of the C&T program for disadvantaged zip codes across PM2.5, PM10, NOx, and SOx. Blue (red) shading
indicates reduced (increased) EJ gap trends following C&T for disadvantaged zip codes. Gray shading
shows non-disadvantaged zip codes.

Spatial heterogeneity Estimates from equation (2) shown in Table 2 and Figure 3 ex-

amine the time evolution of EJ gaps averaged across disadvantaged and other zip codes.

Additionally, one may be interested in how EJ gap effects vary spatially, particularly given

the localized nature of EJ concerns. To examine spatial heterogeneity in trend break effects

across disadvantaged zip codes, we estimate a variant of equation (2) allowing zip code-
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specific post-C&T EJ gap trend break coefficients.34 Figure 4 shows the percentage change

in the EJ gap trend following the introduction of C&T for each disadvantaged zip code for

PM2.5, PM10, NOx, and SOx. Across pollutants, post-C&T EJ gaps narrowed the most for

disadvantaged zip codes in California’s Central Valley. For PM2.5, PM10, and NOx, Figure 4

also shows a cluster of zip codes in Los Angeles County that experienced widening post-C&T

EJ gaps. Figure S6 shows histograms for the distribution of percentage changes in EJ gap

trends across disadvantaged zip codes.

Robustness checks We subject our EJ gap trend effects to several robustness checks.

Most robustness checks forgo the bootstrap procedure across steps 1-3 (detailed in Appendix

A.1) given the computational demands of that procedure. Instead, Figure 5 presents only

point estimates of the percentage change in the EJ gap trend following C&T (i.e.,
βp2
βp1
∗ 100)

for each robustness check and compares that with the point estimate and 95% confidence

interval of our benchmark result for which inference does account for statistical uncertainty

from equation (1) via our bootstrap procedure.35

Within step 1, we conduct eight EJ gap robustness checks, drawing on C&T emissions

effects shown in Tables S2-S4. Equation (1) models changes in the emissions difference be-

tween C&T regulated and non-regulated facility as linear trends. We find a similar result

when we estimate a more flexible version of equation (1) with year-specific emission differ-

ences (M2 of Figure 5 and column 1 of Table S7); when we replace year fixed effects with

sector-by-year fixed effects in equation (1) (M3 of Figure 5 and column 2 of Table S7); and

when we drop facilities that switched regulatory status in 2017 (M4 of Figure 5 and column

3 of Table S7). Next, we consider restricting facilities to those with sample average annual

GHG emissions below the 70th and 80th percentiles, respectively (M5-6 of Figure 5 and

columns 4-5 of Table S7). These alternative facility sample restrictions do not alter EJ gap

trend effects.

We further allow the post C&T emissions trend break to vary as a linear function of

sample average emissions. Recall from the heterogeneous emissions effects shown in column

2 of Table S3 that large-emitting facilities are abating more than is assumed in our baseline

34Specifically, we estimate the following variant of equation (2)

Epit = βp1 [Di × t] +
∑
i

βp2i[Di × 1(t ≥ 2013)× t] + ψpi + δpt + εpit

where βp2i is the post-C&T trend break for zip code i. Figures 4 and S6 plot
βp
2i

βp
1
∗100, the percentage change

in the EJ gap trend following the introduction of the C&T program for zip code i relative to the average
pre-C&T EJ gap trend across disadvantaged zip codes.

35Coefficients βp1 and βp2 in accompanying Tables S7 and S8 cluster standard errors εpit from equation (2)
at the county-level but are not adjusted for statistical uncertainty in equation (1).
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model which assumes a common percentage emissions change. For PM2.5, PM10, and NOx,

allowing for heterogeneity in emissions effects results in a slightly larger, though not statisti-

cally different, percentage change in the EJ gap trend (M7 of Figure 5 and column 6 of Table

S7). That is, our baseline model without heterogeneous emissions effects is slightly under-

stating the EJ gap fall as a consequence of C&T. For SOx, this dimension of heterogeneity

implies much larger drops in the post-C&T EJ gap trend. Lastly, we examine EJ gap effects

after restricting the set of unregulated C&T facilities to those in counties under Clear Air

Act nonattainment and those whose parent company only operates a single facility (M8-9

of Figure 5 and columns 7 and 8 of Table S7). SUTVA concerns do not alter EJ gap trend

effects.

We conduct four robustness checks within step 2. We use pollution half-life parameters

taken from the atmospheric chemistry literature because HYSPLIT does not model pollution

decay over time. Our results are relatively stable to whether we allow for a 10% larger half-

life parameter which implies a slower decay rate (M10 of Figure 5 and column 1 Table S8)

or a 10% smaller half-life parameter which implies a faster decay rate (M11 of Figure 5 and

column 2 of Table S8). Likewise our results are little affected when we lower the height of

the planetary boundary layer to 0.5 km (M12 of Figure 5 and column 3 Table S8) or raise it

to 2 km (M13 of Figure 5 and column 4 Table S8).

We conduct three robustness checks within step 3. The first set of checks consider al-

ternative error structures for εpit. We find that precision increases when we allow εpit to be

spatially correlated within a uniform kernel across a distance of 500 km distance (Conley,

1999), roughly the longitudinal width of California, and serially correlated across 5 years

(Newey and West, 1987) (column 5 of Table S8). Likewise, precision increases when we

allow for error terms to be correlated across the four local pollutants using a Seemingly

Unrelated Regression (SUR) procedure (column 6 of Table S8). Equation (2) examines the

EJ gap in daily pollution levels of µg/m3/day, the concentration unit typically used for air

pollution policy and by the public health literature. In Table S9, we detect a post-C&T

EJ gap trend break after applying an inverse hyperbolic sine transformation to our outcome

variable, showing C&T-driven concentrations in disadvantaged communities decreased as

a percentage of concentration in other communities after 2013. Standard errors reported

in Table S9 are adjusted for statistical uncertainty from equation (1) using our bootstrap

procedure.

Finally, to examine the potential role of secondary PM2.5, we replace HYSPLIT in step

2 of our procedure with InMAP, a reduced-complexity dispersal model based on output

from WRF-Chem, which incorporates atmospheric chemistry in order to model total (i.e.,

primary and secondary) PM2.5 concentrations from C&T-driven facility-level PM2.5, NOx,
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Figure 5: Robustness checks for EJ gap effects
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M1: benchmark M8: nonattainment counties
M2: year−specific emission effects M9: single facility firms
M3: sector−specific emission effects M10: slower pollution decay
M4: drop switchers M11: faster pollution decay
M5: 70% avg. CO2e cutoff M12: lower boundary layer
M6: 80% avg. CO2e cutoff M13: higher boundary layer
M7: heterogeneity in avg. emissions

Notes: Percentage change in the EJ gap trend following the introduction of the C&T program (i.e.,
βp
2

βp
1
∗ 100) for PM2.5, PM10, NOx, and SOx across robustness checks. M1: benchmark model point estimate

and 95% confidence interval accounting for uncertainty in equations (1) and (2). Point estimate shown
for all other models. M2: using year-specific effects to estimate C&T-driven emissions. M3: C&T-driven
emissions effects estimated using sector-by-year fixed effects. M4: C&T-driven emissions effects estimated
without facilities that switched status in 2017. M5: restricting sample to facilities with average annual GHG
emissions below the 70th percentile. M6: restricting sample to facilities with average annual GHG emissions
below the 80th percentile. M7: allowing heterogeneous emissions effects by average annual emissions. M8:
restricting unregulated facilities to those in counties under Clear Air Act nonattainment. M9: restricting
unregulated facilities to those whose parent company only operates a single plant. M10: applying a slower
pollution decay (i.e., 10% larger half-life parameter). M11: applying a faster pollution decay (i.e., 10%
smaller half-life parameter). M12: applying a planetary boundary layer set at 0.5 km. M13: applying
planetary boundary layer set at 2 km. Point estimates also reported in Tables S7-S8.

and SOx, emissions (Tessum, Hill and Marshall, 2017).36 InMAP, however, has one ma-

jor limitation: it uses dispersal patterns in 2005, whereas our sample period is 2008-2017.

Because InMAP does not model dispersal patterns during our sample period, we are un-

able to directly compare estimates using InMAP-generated concentrations with that using

36In addition to the inputs used in HYSPLIT, InMap requires the diameter, temperature, and emissions
velocity for each smokestack. We obtain these inputs from CARB. In the case of facilities with more than
one stack, we use the mean value across stacks. In the case of facilities with missing observations, we use
the industry-level average.
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HYSPLIT-generated concentrations.37 Instead, we examine the role of secondary PM2.5 by

comparing how EJ gap trend estimates differ between InMAP-generated primary PM2.5 con-

centration and InMAP-generated total PM2.5 concentrations. If these two InMap estimates

are similar, it is plausible that the true EJ gap effect for secondary PM2.5 is similar to effects

using HYSPLIT-generated primary PM2.5 concentrations. Table S10 replicates the structure

of Table 2. Column 1 examines InMAP-generated primary PM2.5 concentrations while col-

umn 2 examines InMAP-generated total PM2.5 concentrations. Both show similar EJ gap

effects.

The importance of modeling pollution dispersal Our empirical approach explicitly

embeds an atmospheric dispersal model within a causal inference framework. Compared

with conventional methods for assigning pollution concentration from emission sources, this

approach lends two benefits. It accounts for actual pollution dispersal patterns as dictated

by topography and time-varying meteorological conditions. It also determines resulting pol-

lution concentrations across all locations in California, rather than a subset of locations

assumed to be exposed to policy-driven emissions. To demonstrate the importance of ac-

counting for pollution dispersal for our results, we compare estimates from using our approach

with that of more conventional methods of assigning pollution concentrations from emission

sources.

Figure 6 plots estimates of the pre-C&T trend, or β1
p (left panel), and the post-C&T trend

break, or β2
p (right panel), across criteria pollutants under different assumptions about how

facility-level emissions alter location-specific concentrations.38 In M1, we show our bench-

mark estimate where pollution dispersal is modeled by HYSPLIT every 4 hours throughout

the 2008-2017 period. In M2 (and column 1 of Table S11), we assume that the area affected

by a facility’s emissions is limited to the zip code of that facility, referred to in the literature

as “unit-hazard coincidence” (Banzhaf, Ma and Timmins, 2019). In M3-5 (and columns 2-4

of Table S11), we employ a distance-based measure by assuming that the area affected by a

facility’s emissions is limited to zip codes with centroids that are within 1.6, 4, and 10 km

circles around the facility. These radial distances appear in the literature but nonetheless are

chosen largely arbitrarily. Point estimates of β1
p and β2

p vary greatly across these alternative

methods for assigning pollution concentrations. Not only do some estimates fall well outside

the 95% confidence intervals of our benchmark results, but they also have different signs.

37Furthermore, there is a difference in units between HYSPLIT and InMap. For any given location,
HYSPLIT produces the stock of pollution concentration during a given period, whereas InMAP produces
that period’s average flow of pollution concentration.

38Unlike Figure 5, Figure 6 does not plot
βp
2

βp
1
∗ 100 because βp1 and βp2 do not have consistent sign across

the different methods for assigning emissions to concentrations.
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Figure 6: Importance of modeling pollution dispersal

PM2.5 PM10 NOx SOx

−.
4

−.
2

0
.2

Pr
e−

C
&T

 tr
en

d 
(β

1)

 

M1: benchmark
M2: facility zip code
M3: 1.6 km circle
M4: 4 km circle
M5: 10 km circle

PM2.5 PM10 NOx SOx

−.
4

−.
2

0
.2

.4
.6

Po
st

−C
&T

 tr
en

d 
br

ea
k 

(β
2)

 

M1: benchmark
M2: facility zip code
M3: 1.6 km circle
M4: 4 km circle
M5: 10 km circle

Notes: Left panel shows estimates of pre-C&T trend (i.e., βp1) and right panel shows estimates of post-
C&T trend break (i.e., βp2) for PM2.5, PM10, NOx, and SOx across different methods for assigning pollution
concentrations from emissions. M1: benchmark model with point estimate and 95% confidence interval
accounting for uncertainty in equations (1) and (2). Point estimate shown for all other models. M2:
pollution concentration assigned only to zip code of emitting facility. M3-5: pollution concentration assigned
to zip codes with centroid within 1.6 km, 4 km and 10 km circle of emitting facility, respectively. Point
estimates also reported in Table S11.

6 Discussion

Many market settings are characterized by efficiency-equity tradeoffs. We find that Cali-

fornia’s carbon market led to an equity co-benefit by narrowing the criteria air pollution

concentration gap between disadvantaged and other communities. This result brings causal

evidence to a debate that continues to shape one of the world’s most ambitious climate poli-

cies and climate policies elsewhere. Moreover, the integration of pollution dispersal modeling

and causal inference employed in this paper may have broader applications across a variety

of environmental valuation settings.

Equity concerns regarding California’s cap-and-trade program remain. First, while we

show that the program has led the pollution concentration gap between disadvantaged and

other communities to fall, this gap has not been eliminated five years into the program.

Second, pollution concentration constitutes only one component of the many distributional

concerns regarding the program. Questions remain over how the program may have altered

the distribution of health outcomes as well as the distribution of the program’s cost bur-

den. A comprehensive understanding of welfare inequality must also account for sorting as

households move in response to changes in pollution concentrations (Depro, Timmins and

O’Neil, 2015; Banzhaf, Ma and Timmins, 2019) and for entry decisions by polluters (Weber,
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2020). Third, a broader notion of equity must also consider the ability of disadvantaged

communities to partake in decision-making around environmental policies. Such procedural

justice issues remain in California though recent policies such as AB 617 are beginning to en-

gage disadvantaged communities directly in the design of local pollution regulations (Fowlie,

Walker and Wooley, 2020).

More generally, despite these findings for California, market-based environmental poli-

cies should not be used explicitly to address environmental justice concerns. Market-based

policies are intended for allocative efficiency and not distributional objectives, per se. The

EJ gap consequences detected in California emerges from the state’s spatial distribution of

polluting facilities and demographic characteristics. In other settings where facilities with

steeper marginal abatement cost curves are upwind of disadvantaged communities, an en-

vironmental market could widen the environmental justice gap. Difficulties with observing

facility-level marginal abatement cost curves make it hard to anticipate ex-ante how pro-

posed market-based policies will alter existing EJ gaps. As a safeguard against potential

widening EJ gaps, policies that specifically address environmental justice concerns should be

considered in tandem with market-based policies. In short, environmental justice problems

need environmental justice policies.

References

Ash, Michael, and T. Robert Fetter. 2004. “Who Lives on the Wrong Side of the Environmen-

tal Tracks? Evidence from the EPA’s Risk-Screening Environmental Indicators Model.”

Social Science Quarterly, 85(2): 441–462.

Banzhaf, Spencer, Lala Ma, and Christopher Timmins. 2019. “Environmental Justice: The

Economics of Race, Place, and Pollution.” Journal of Economic Perspectives, 33(1): 185–

208.

Baumol, William J., and Wallace E. Oates. 1988. The Theory of Environmental Policy,

Second Edition. Cambridge University Press.

Bellemare, Marc F, and Casey J Wichman. 2020. “Elasticities and the inverse hyperbolic

sine transformation.” Oxford Bulletin of Economics and Statistics, 82(1): 50–61.

Board, California Air Resources. 2020. “California Greenhouse Gas Emissions for 2000 to

2018: Trends of Emissions and Other Indicators .”

Borenstein, Severin, James Bushnell, Frank A. Wolak, and Matthew Zaragoza-Watkins. 2019.

29



“Expecting the Unexpected: Emissions Uncertainty and Environmental Market Design.”

American Economic Review, 109(11): 3953–77.

Bowen, William. 2002. “An Analytical Review of Environmental Justice Research: What do

we Really Know?” Environmental Management, 29(1): 3–15.

Bullard, Robert. 2000. Dumping in Dixie: Race, Class, and Environmental Quality. West-

view Press.

Burtraw, Dallas, A Carlson, D Cullenward, Q Foster, and M Fowlie. 2018. “2018 Annual

Report of the Independent Emissions Market Advisory Committee.”

Burtraw, Dallas, David A Evans, Alan Krupnick, Karen Palmer, and Russell Toth. 2005.

“Economics of Pollution Trading for SO2 and NO x.” Annu. Rev. Environ. Resour.,

30: 253–289.

Casey, Joan A, Jason G Su, Lucas RF Henneman, Corwin Zigler, Andreas M Neophytou,

Ralph Catalano, Rahul Gondalia, Yu-Ting Chen, Leanne Kaye, Sarah S Moyer, et al.

2020. “Improved asthma outcomes observed in the vicinity of coal power plant retirement,

retrofit and conversion to natural gas.” Nature Energy, 5(5): 398–408.
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A Appendix

A.1 Bootstrap procedure for incorporating uncertainty in C&T

emission effects

This section details our bootstrap procedure over steps 1-3 to account for statistical uncer-

tainty in C&T-driven emission effects from equation (1), reproduced here:

asinh(Y p
jt) = κp1[Cj × t] + κp2[Cj × 1(t ≥ 2013)× t] + φpj + γpt + νpjt

We obtain point estimates κ̂p1, κ̂p2 and standard errors σ̂κp1 and σ̂κp2 from equation (1). We

then iterate the following procedure for draws b = 1...250:

1. Draw κ̂p1(b) ∼ N(κ̂p1, σ̂κp1) and κ̂p2(b) ∼ N(κ̂p2, σ̂κp2)

2. Construct Ŷ p
jt(b) = sinh

(
κ̂p1(b)[Cj × t] + κ̂p2(b)[Cj × 1(t ≥ 2013)× t] + φ̂pj

)
∗e(RMSE)2/2),

where RMSE is the root mean squared error from equation (1)

3. Feed Ŷ p
jt(b) into HYSPLIT to generate zip code-by-year pollution concentration, Ep

it(b)

4. Estimate equation (2) using Ep
it(b) as the outcome variable to obtain β̂p1(b) and β̂p2(b)

Figure S5 plots the empirical distributions for β̂p1(b) and β̂p2(b) for p ∈ {PM2.5, PM10, NOx, SOx}.
Denote standard errors across 250 bootstrap runs as σ̂βp1 (νpjt) and σ̂βp2 (νpjt) where the νpjt argu-

ment indicates the dependence on statistical uncertainty from equation (1). Denote σ̂βp1 (εpjt)

as the estimated standard error arising from heterogeneity in βp1 obtained by directly esti-

mating equation (2) with county-level clustered errors. Our reported standard error for βp1

is σ̂βp1 = σ̂βp1 (εpjt) + σ̂βp1 (νpjt). Likewise, for βp2 . σ̂βp1 and σ̂βp2 are reported in Table 2 and used

to construct the confidence intervals displayed in Figure 3.
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A.2 Can the EJ gap effect be recovered using dispersal-augmented

facility-level regressions?

Facility-level analyses examine how a policy’s emissions effects vary with characteristics of

locations that are downwind of facilities, as determined by an atmospheric dispersal model

(Grainger and Ruangmas, 2018; Mansur and Sheriff, 2019). For example, one may esti-

mate the following dispersal-augmented facility-level regression for the change in facility j

emissions before and after the introduction of a policy:

∆Yj = φ0Cj + φ1Cjsj + φ2sj + εj (A.1)

where Cj ∈ {0, 1} is regulatory status and sj ∈ [0, 1] is the share of affected downwind

locations that is disadvantaged, as determined by the dispersal model. In these models, the

coefficient of interest is φ̂1, the added emissions effect for facilities that disproportionately

affect disadvantaged communities.

How does φ̂1 relate to the EJ gap effect, the estimand of interest? As in Section 4, let

i index locations (e.g., California zip codes in our setting) and Di ∈ {0, 1} denote disad-

vantaged status. For simplicity, assume there are the same number of disadvantaged and

non-disadvantaged locations, N =
∑

i:Di=0(1 −Di) =
∑

i:Di=1Di. The EJ gap effect is the

difference between the change in pollution concentration for disadvantaged communities and

that of non-disadvantaged communities, due to C&T-driven emission changes from regulated

facilities (relative to unregulated facilities), or ∆̂Y j. Formally, this estimand is

θ =
1

N

∑
j

∆̂Y jsj︸ ︷︷ ︸
avg. DAC concentration

from C&T-driven
emissions

− 1

N

∑
j

∆̂Y j(1− sj)︸ ︷︷ ︸
avg. non-DAC concentration

from C&T-driven
emissions

=
1

N

∑
j

∆̂Y j(2sj − 1)

=
1

N

∑
j

(φ̂0 + φ̂1sj)(2sj − 1) (A.2)

The last line applies C&T-driven relative emissions change for regulated facilities as ∆̂Y j =

φ̂0 + φ̂1sj, where φ̂0 and φ̂1 are estimated coefficients from equation (A.1).

It is clear from (A.2) that φ̂1 does not generally equal θ. But is the sign of φ̂1 at

least consistently the same as the sign of θ? The following example rejects this claim. For

simplicity, let φ̂0 = 0. Next, suppose s1 = 1 for the first facility and sj>1 < 0.5 for all other
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facilities. The estimand is then:

θ =
1

N

(
φ̂1 +

∑
j>1

φ̂1sj(2sj − 1)

)

=
φ̂1

N

1 +
∑
j>1

sj(2sj − 1)︸ ︷︷ ︸
<0︸ ︷︷ ︸

R0


indicating that θ and φ̂1 can be of different signs. Thus, simply showing, for example,

that emissions are relatively higher for facilities that disproportionately affect disadvantaged

communities (i.e., φ̂1 > 0) does not imply that the EJ gap has widened (i.e., θ > 0).

Lastly, can φ̂1 ever equal θ? Returning to equation (A.1), we explore one such special

case. Assume that exactly N facilities only affect disadvantaged communities (i.e., sj = 0),

and that another N facilities only affect non-disadvantaged communities (i.e., sj = 1). Then

the estimand becomes:

θ =
1

N

∑
j:sj=0

−φ̂0 +
∑
j:sj=1

(φ̂0 + φ̂1)


=

1

N
(−Nφ̂0 +Nφ̂0 +Nφ̂1)

= φ̂1

Observe how restrictive the assumptions are for this special case. It requires that facilities

only affect disadvantaged communities or only affect non-disadvantaged communities, that

is sj ⊂ {0, 1} ∀j. Facilities cannot alter pollution concentrations in both types of locations.

Furthermore, this case requires that the number of facilities in both groups equal the number

of disadvantaged communities, which must also equal the number of non-disadvantaged

communities.
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Appendix Figures

Figure S1: Distribution of sample facility-year emissions
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NOTES: Panels show the distribution of facility-year GHG, PM2.5, PM10, NOx, and SOx emissions for
sample observations. Observations above the 95th percentile are truncated.
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Figure S2: Emissions robustness: placebo C&T program timing
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Notes: Panels show estimated (true and placebo) emissions trend break coefficients (i.e., κ2 from eq. (1))
for GHG, PM2.5, PM10, NOx, and SOx emissions from varying the start year of the C&T program. Vertical
line at 2013 indicates actual introduction of the program. Shaded areas indicate 95% confidence intervals.
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Figure S3: Facility-level C&T-driven abatement between 2012-2017
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NOTES: Panels show the distribution of facility-level change in C&T-driven pollution between 2012-2017
(or abatement) predicted from step 1 for GHG, PM2.5, PM10, NOx, and SOx emissions, respectively.
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Figure S4: Average pollution concentrations driven by C&T regulated facilities

Notes: Panels show daily concentrations (in µg/m3/day) for each zip code averaged across 2008-2017
from GHG C&T-regulated facilities as modeled in step 2 by HYSPLIT for PM2.5, PM10, NOx, and SOx,
respectively.
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Figure S5: Empirical distribution of βp1 and βp2 from bootstrapping step 1
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Notes: Panels show the empirical distribution of βp1 and βp2 from equation (1) (across columns) for PM2.5,
PM10, NOx, and SOx (across rows) using the bootstrap procedure detailed in Section A.1 with 250 draws.
Solid black line shows parameter from directly estimating equation (1). Solid colored line shows the mean
parameter value from the empirical bootstrapped distribution. Dotted colored lines show the 2.5% and
97.5% percentiles of the empirical bootstrap distributions.
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Figure S6: Zip code-level percent change in EJ gap trend following C&T

Notes: Panels show the distribution of zip code-level percentage change in the EJ gap trend following the
introduction of the C&T program, for each disadvantaged zip code across PM2.5, PM10, NOx, and SOx.

Solid line shows the average percentage change across disadvantaged zip codes, or
βp
2

βp
1
∗ 100 from equation

(2). Dashed line marks zero.
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Appendix Tables

Table S1: GHG cap-and-trade regulated and non-regulated facilities

C&T regulated non-C&T regulated
facilities facilities

Number of facilities 106 226

Avg. 2008-2012 emissions (in metric tons):
CO2 38192.62 17566.48
PM2.5 8.08 3.74
PM10 14.47 6.25
NOx 53.42 16.03
SOx 10.86 2.8

Shares by sector:
Agriculture 0 .018
Manufacturing .623 .5
Mining, oil and gas extraction .151 .097
Services .066 .23
Transportation .075 .053
Utilities .075 .093
Wholesale .009 .009

Notes: Sample C&T regulated and non-regulated facilities by count, average 2008-2012 GHG and
criteria air pollution emissions, and by sector shares. Sectors shown adhere to the following def-
initions: Agriculture: NAICS 11; Manufacturing: NAICS 31-33; Mining, oil, and gas extraction:
NAICS 21; Services: NAICS 51, 54, 56, 61, 62, 71, 81, 92; Transportation: NAICS 48, 49; Utilities:
NAICS 22; Wholesale: NAICS 42.
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Table S2: Emissions robustness: specification and sample restrictions
(1) (2) (3) (4)

sector-year Drop Baseline CO2e cutoff (%)
FEs switchers 70 80

Outcome is asinh(CO2e) emissions

κp1 0.172 0.220 0.194 0.174
(0.058) (0.054) (0.055) (0.050)
[0.005] [0.000] [0.001] [0.001]

κp2 -0.273 -0.317 -0.307 -0.260
(0.095) (0.079) (0.085) (0.072)
[0.006] [0.000] [0.001] [0.001]

Facilities 315 298 294 337
Observations 2,052 1,924 1,863 2,234

Outcome is asinh(PM2.5) emissions

κp1 0.059 0.065 0.071 0.046
(0.043) (0.045) (0.043) (0.043)
[0.176] [0.156] [0.111] [0.298]

κp2 -0.099 -0.092 -0.105 -0.079
(0.048) (0.051) (0.050) (0.050)
[0.046] [0.081] [0.044] [0.121]

Facilities 301 285 281 323
Observations 1,966 1,847 1,780 2,147

Outcome is asinh(PM10) emissions

κp1 0.086 0.088 0.097 0.075
(0.034) (0.035) (0.034) (0.035)
[0.014] [0.016] [0.008] [0.039]

κp2 -0.124 -0.108 -0.129 -0.103
(0.040) (0.043) (0.043) (0.042)
[0.003] [0.017] [0.005] [0.018]

Facilities 301 285 281 323
Observations 1,966 1,847 1,780 2,147

Outcome is asinh(NOx) emissions

κp1 0.085 0.057 0.085 0.058
(0.042) (0.039) (0.033) (0.037)
[0.048] [0.158] [0.015] [0.128]

κp2 -0.117 -0.079 -0.126 -0.091
(0.053) (0.050) (0.047) (0.048)
[0.035] [0.123] [0.010] [0.066]

Facilities 302 286 282 324
Observations 1,968 1,849 1,782 2,149

Outcome is asinh(SOx) emissions

κp1 0.005 0.008 -0.005 -0.004
(0.038) (0.036) (0.038) (0.035)
[0.902] [0.817] [0.890] [0.912]

κp2 -0.040 -0.040 -0.025 -0.020
(0.048) (0.046) (0.048) (0.045)
[0.407] [0.386] [0.600] [0.657]

Facilities 302 286 282 324
Observations 1,961 1,847 1,777 2,142

Notes: Estimates of pre-C&T differential emissions trend (i.e., κp1 from equation (1)) and and post-C&T
differential emissions trend break (i.e., κp2 from equation (1)) for GHG, PM2.5, PM10, NOx, and SOx

across panels. All models include facility-specific and year-specific dummy variables (except for column
1). Column 1 replaces year fixed effects with sector-by-year fixed effects with sectors defined as shown
in Table S1. Column 2 drops facilities that switched C&T regulatory status in 2017. Columns 3 and 4
restrict facilities to those with sample average annual GHG emissions below the 70th and 80th percentile,
respectively. Standard errors clustered at the county-level in parentheses, p-value in brackets.
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Table S3: Emissions effect robustness: heterogeneity by average emissions
(1) (2) (3)

Outcome is asinh(GHG) emissions

κp1 0.187 0.176 0.172
(0.052) (0.052) (0.052)
[0.001] [0.002] [0.002]

κp2 -0.297 -0.361 -0.354
(0.077) (0.092) (0.097)
[0.000] [0.000] [0.001]

trend break × avg. emissions 0.000 0.000
(0.000) (0.000)
[0.053] [0.090]

trend break × avg. emissions2 -0.000
(0.000)
[0.158]

Outcome is asinh(PM2.5) emissions

κp1 0.058 0.060 0.060
(0.043) (0.042) (0.043)
[0.183] [0.167] [0.165]

κp2 -0.097 -0.133 -0.146
(0.048) (0.051) (0.068)
[0.053] [0.012] [0.040]

trend break × avg. emissions -0.004 -0.005
(0.003) (0.004)
[0.197] [0.249]

trend break × avg. emissions2 0.000
(0.000)
[0.661]

Outcome is asinh(PM10) emissions

κp1 0.083 0.084 0.086
(0.033) (0.033) (0.033)
[0.016] [0.015] [0.012]

κp2 -0.117 -0.143 -0.172
(0.039) (0.042) (0.048)
[0.005] [0.002] [0.001]

trend break × avg. emissions -0.002 -0.003
(0.001) (0.002)
[0.080] [0.073]

trend break × avg. emissions2 0.000
(0.000)
[0.197]

Outcome is asinh(NOx) emissions

κp1 0.075 0.079 0.080
(0.039) (0.038) (0.039)
[0.061] [0.046] [0.046]

κp2 -0.104 -0.143 -0.157
(0.050) (0.045) (0.079)
[0.042] [0.003] [0.054]

trend break × avg. emissions -0.001 -0.001
(0.000) (0.001)
[0.002] [0.294]

trend break × avg. emissions2 0.000
(0.000)
[0.793]

Outcome is asinh(SOx) emissions

κp1 0.006 0.013 0.013
(0.035) (0.035) (0.035)
[0.875] [0.715] [0.705]

κp2 -0.037 -0.110 -0.074
(0.043) (0.048) (0.077)
[0.393] [0.026] [0.345]

trend break × avg. emissions -0.004 -0.002
(0.002) (0.003)
[0.017] [0.455]

trend break × avg. emissions2 -0.000
(0.000)
[0.438]

Notes: Estimates of pre-C&T differential emissions trend (i.e., κp1 from equation (1)) and and post-C&T
differential emissions trend break (i.e., κp2 from equation (1)) for GHG, PM2.5, PM10, NOx, and SOx across
panels. Columns 1 shows benchmark model. Column 2 (3) further interacts post C&T differential trend
break with a linear (quadratic) function of sample average annual emissions. All models include facility-
specific and year-specific dummy variables. Standard errors clustered at the county-level in parentheses,
p-value in brackets.
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Table S4: Emissions effect robustness: restricting treatment spillovers

(1) (2) (3)
Benchmark Nonattainment Single facilities

Outcome is asinh(GHG) emissions

κp1 0.187 - 0.210
(0.052) - (0.053)
[0.001] - [0.000]

κp2 -0.297 - -0.322
(0.077) - (0.078)
[0.000] - [0.000]

Facilities 316 - 310
Observations 2,054 - 2,029

Outcome is asinh(PM2.5) emissions

κp1 0.058 0.085 0.066
(0.043) (0.049) (0.043)
[0.183] [0.092] [0.137]

κp2 -0.097 -0.119 -0.101
(0.048) (0.052) (0.049)
[0.053] [0.029] [0.046]

Facilities 302 260 299
Observations 1,968 1,729 1,952

Outcome is asinh(PM10) emissions

κp1 0.083 0.101 0.091
(0.033) (0.034) (0.033)
[0.016] [0.006] [0.008]

κp2 -0.117 -0.145 -0.121
(0.039) (0.054) (0.040)
[0.005] [0.012] [0.004]

Facilities 302 140 299
Observations 1,968 1,080 1,952

Outcome is asinh(NOx) emissions

κp1 0.075 0.057 0.065
(0.039) (0.041) (0.039)
[0.061] [0.173] [0.101]

κp2 -0.104 -0.090 -0.098
(0.050) (0.054) (0.050)
[0.042] [0.102] [0.060]

Facilities 303 287 300
Observations 1,970 1,879 1,954

Outcome is asinh(SOx) emissions

κp1 0.006 - 0.005
(0.035) - (0.036)
[0.875] - [0.892]

κp2 -0.037 - -0.036
(0.043) - (0.044)
[0.393] - [0.423]

Facilities 303 - 300
Observations 1,965 - 1,950

Notes: Estimates of pre-C&T differential emissions trend (i.e., κp1 from equation (1)) and and post-C&T
differential emissions trend break (i.e., κp2 from equation (1)) for GHG, PM2.5, PM10, NOx, and SOx across
panels. Columns 1 shows benchmark model. Column 2 restricts unregulated facilities to those in counties
under Clear Air Act nonattainment for pollutant of interest. Nonattainment does not apply for GHG
emissions and there were no counties under SOx nonattainment during our sample period. For NOx, we
use nonattainment in the one-hour ozone standard, for which NOx is a precursor pollutant. Column 3
restricts unregulated facilities to those whose parent company only operates a single facility. All models
include facility-specific and year-specific dummy variables. Standard errors clustered at the county-level in
parentheses, p-value in brackets. 47



Table S5: Correlation between HYSPLIT-driven and ambient pollution concentrations

(1) (2) (3) (4)
Outcome is ambient asinh(concentration)
PM2.5 PM10 NOx SOx

HYSPLIT-driven asinh(concentration) 0.860 0.625 0.436 0.231
(0.154) (0.137) (0.148) (0.207)
[0.000] [0.000] [0.004] [0.272]

Zip codes 133 160 121 39
Notes: Linear coefficient from zip code-level regressions of asinh daily HYSPLIT-driven pollution
concentrations (in µg/m3/day) averaged across 2008-2017 on asinh daily pollution concentrations
from ambient pollution monitors (in µg/m3/day) averaged across 2008-2017. We employ a asinh-
asinh specification because ambient pollution readings, which capture the average daily instanta-
neous stock of pollution, are not directly comparable to our concentration measure, which capture
average daily pollution flow from C&T-driven emissions. Ambient pollution are assumed to be
uniformly distributed within a monitor’s zip code. Standard errors clustered at the county-level in
parentheses, p-value in brackets.
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Table S6: Pollution concentration difference between disadvantaged and other zip codes in
2008

(1) (2) (3)
Disadvantaged Other Difference

PM2.5 0.256 0.093 0.163
(0.888) (0.572) (0.038)

[0.000]

PM10 0.322 0.109 0.214
(1.066) (0.532) (0.043)

[0.000]

NOx 0.451 0.387 0.064
(2.842) (6.856) (0.243)

[0.792]

SOx 0.364 0.091 0.273
(1.092) (0.217) (0.041)

[0.000]

Zip codes 722 984 1,706
Notes: Column 1 shows average 2008 pollution concen-
tration (µg/m3/day) across disadvantaged zip codes, with
standard deviation in parentheses. Column 2 shows av-
erage 2008 pollution concentration (µg/m3/day) across
other zip codes, with standard deviation in parentheses.
Column 3 shows the average difference in 2008 pollu-
tion concentrations between disadvantaged and other zip
codes, with standard error in parentheses and p-value in
brackets. All pollution concentrations generated by HYS-
PLIT from facilities that would eventually be regulated
by the GHG C&T program.
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Table S7: EJ gap effect robustness: step 1

(1) (2) (3) (4) (5) (6) (7) (8)
Year-specific Sector-year Drop GHG cutoff: GHG cutoff: Hetero by SUTVA SUTVA

effects FEs switchers 70% 80% avg. emissions NA Single fac.

Panel a: PM2.5

βp1 0.040 0.041 0.040 0.025 0.043 0.041 0.048 0.043
(0.011) (0.011) (0.013) (0.006) (0.010) (0.012) (0.012) (0.012)
[0.001] [0.001] [0.003] [0.000] [0.000] [0.001] [0.000] [0.000]

βp2 -0.061 -0.061 -0.058 -0.031 -0.063 -0.075 -0.067 -0.064
(0.019) (0.019) (0.021) (0.008) (0.019) (0.021) (0.021) (0.020)
[0.003] [0.002] [0.007] [0.000] [0.001] [0.001] [0.002] [0.002]

(βp2/β
p
1) ∗ 100 -152.583 -148.723 -144.528 -125.385 -146.581 -182.096 -141.543 -146.262

Observations 16,416 16,416 16,413 16,387 16,426 16,416 16,416 16,416

Panel b: PM10

βp1 0.062 0.063 0.059 0.038 0.069 0.064 0.074 0.066
(0.014) (0.014) (0.017) (0.008) (0.013) (0.014) (0.016) (0.015)
[0.000] [0.000] [0.001] [0.000] [0.000] [0.000] [0.000] [0.000]

βp2 -0.089 -0.089 -0.079 -0.046 -0.093 -0.100 -0.105 -0.091
(0.027) (0.026) (0.028) (0.009) (0.026) (0.028) (0.030) (0.028)
[0.002] [0.001] [0.007] [0.000] [0.001] [0.001] [0.001] [0.002]

(βp2/β
p
1) ∗ 100 -142.447 -140.455 -134.110 -121.310 -134.948 -156.155 -141.932 -136.905

Observations 16,416 16,416 16,413 16,387 16,426 16,416 16,416 16,416

Panel c: NOx

βp1 0.079 0.091 0.077 0.043 0.087 0.079 0.079 0.082
(0.033) (0.037) (0.032) (0.026) (0.031) (0.033) (0.032) (0.034)
[0.019] [0.015] [0.021] [0.108] [0.006] [0.021] [0.018] [0.018]

βp2 -0.132 -0.145 -0.132 -0.055 -0.149 -0.142 -0.138 -0.141
(0.066) (0.070) (0.069) (0.031) (0.069) (0.075) (0.070) (0.071)
[0.051] [0.043] [0.061] [0.084] [0.035] [0.062] [0.052] [0.053]

(βp2/β
p
1) ∗ 100 -167.212 -158.315 -170.919 -128.157 -170.878 -180.760 -175.096 -172.408

Observations 16,416 16,416 16,413 16,387 16,426 16,416 16,416 16,416

Panel d: SOx

βp1 0.036 0.036 0.038 0.023 0.037 0.011 - 0.037
(0.022) (0.022) (0.023) (0.015) (0.020) (0.012) - (0.023)
[0.108] [0.109] [0.104] [0.141] [0.077] [0.349] - [0.108]

βp2 -0.103 -0.099 -0.102 -0.080 -0.099 -0.114 - -0.100
(0.050) (0.049) (0.050) (0.045) (0.046) (0.058) - (0.049)
[0.045] [0.047] [0.046] [0.084] [0.037] [0.054] - [0.047]

(βp2/β
p
1) ∗ 100 -284.826 -275.129 -268.202 -353.380 -267.896 -1003.707 - -272.630

Observations 16,416 16,416 16,413 16,387 16,426 16,416 - 16,416

Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp1 from equation (2)), post-C&T EJ gap trend break (i.e., βp2 from

equation (2)), and the percentage change in the EJ gap trend following the introduction of the C&T program (i.e.,
β
p
2

β
p
1
∗100) for

PM2.5, PM10, NOx, and SOx down panels. All models include zip code-specific and year-specific dummy variables. Observations
weighted by zip code-level average population during 2008-2012. Column 1 uses year-specific effects to estimate C&T-driven
emissions. Column 2 estimates C&T-driven emissions with sector-by-year fixed effects (see column 1 of Table S2). Column 3
estimates C&T-driven emissions after dropping facilities that switched regulatory status in 2017 (see column 2 of Table S2).
Columns 4 and 5 restrict facilities to those with sample average GHG emissions below the 70th and 80th percentile, respectively
to estimate C&T-driven emissions (see columns 3 and 5 of Table S2). Column 6 uses C&T-driven emissions that allow the C&T
differential trend break to vary as a linear function of sample average emissions (see column 2 of Table S3). Column 7 restricts
unregulated facilities to those in counties under Clear Air Act nonattainment for pollutant of interest (see column 2 of Table
S4). Column 8 restricts unregulated facilities to those whose parent company only operates a single facility (see column 3 of
Table S4). Standard errors, in parentheses, cluster εpit from equation (2) at the county-level but are not adjusted for statistical
uncertainty from equation (1). P-value in brackets. Observations apply to all panels.
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Table S8: EJ gap effect robustness: steps 2 and 3

(1) (2) (3) (4) (5) (6)
Slower Faster Lower Higher Spatial Pollution
decay decay boundary boundary corr. err. corr. err.

Panel a: PM2.5

βp1 0.043 0.041 0.037 0.043 0.042 0.042
(0.011) (0.011) (0.010) (0.011) (0.004) (0.006)
[0.000] [0.000] [0.001] [0.000] [0.000] [0.000]

βp2 -0.064 -0.062 -0.055 -0.064 -0.063 -0.063
(0.020) (0.020) (0.019) (0.020) (0.009) (0.010)
[0.002] [0.003] [0.007] [0.002] [0.000] [0.000]

(βp2/β
p
1) ∗ 100 -149.007 -150.533 -148.764 -149.992 -149.699 -149.699

Panel b: PM10

βp1 0.066 0.063 0.057 0.066 0.065 0.065
(0.015) (0.014) (0.013) (0.014) (0.006) (0.008)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

βp2 -0.092 -0.089 -0.079 -0.092 -0.090 -0.090
(0.027) (0.027) (0.027) (0.027) (0.011) (0.013)
[0.001] [0.002] [0.005] [0.001] [0.000] [0.000]

(βp2/β
p
1) ∗ 100 -139.150 -140.448 -137.785 -140.161 -139.739 -139.739

Panel c: NOx

βp1 0.089 0.081 0.083 0.085 0.085 0.085
(0.036) (0.034) (0.035) (0.035) (0.039) (0.021)
[0.018] [0.020] [0.020] [0.018] [0.030] [0.000]

βp2 -0.148 -0.139 -0.140 -0.144 -0.143 -0.143
(0.073) (0.073) (0.073) (0.073) (0.050) (0.033)
[0.048] [0.063] [0.060] [0.054] [0.004] [0.000]

(βp2/β
p
1) ∗ 100 -166.117 -170.804 -168.674 -168.261 -168.282 -168.282

Panel d: SOx

βp1 0.037 0.037 0.030 0.038 0.037 0.037
(0.023) (0.022) (0.019) (0.023) (0.007) (0.006)
[0.109] [0.107] [0.133] [0.103] [0.000] [0.000]

βp2 -0.102 -0.100 -0.087 -0.102 -0.101 -0.101
(0.050) (0.049) (0.044) (0.050) (0.012) (0.010)
[0.047] [0.047] [0.053] [0.045] [0.000] [0.000]

(βp2/β
p
1) ∗ 100 -271.967 -272.688 -295.166 -270.107 -272.291 -272.291

Observations 16,416 16,416 16,359 16,430 16,417 16,417
Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp1 from equation (2)), post-C&T EJ gap trend break (i.e., βp2 from equation

(2)), and the percentage change in the EJ gap trend following the introduction of the C&T program (i.e.,
β
p
2

β
p
1
∗ 100) for PM2.5,

PM10, NOx, and SOx down panels. All models include zip code-specific and year-specific dummy variables. Observations
weighted by zip code-level average population during 2008-2012. Column 1 applies a slower pollution decay to HYSPLIT
pollution trajectories (i.e., 10% larger half-life parameter). Column 2 applies a faster pollution decay to HYSPLIT pollution
trajectories (i.e., 10% smaller half-life parameter). Column 3 applies a lower planetary boundary layer set at 0.5 km. Column
4 applies a higher planetary boundary layer set at 2 km. Column 5 adjusts standard errors for spatial (500 km uniform kernel)
and serial correlation (5 years). Column 6 adjusts standard errors allowing correlation across pollutants using a Seemingly
Unrelated Regression (SUR) procedure. Standard errors, in parentheses, cluster εpit from equation (2) at the county-level but
are not adjusted for statistical uncertainty from equation (1). P-value in brackets. Observations apply to all panels.
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Table S9: EJ gap effect robustness: asinh concentration

(1) (2) (3) (4)
Outcome is (asinh) concentration
PM2.5 PM10 NOx SOx

βp1 0.027 0.037 0.032 0.017
(0.013) (0.014) (0.021) (0.017)
[0.045] [0.009] [0.137] [0.336]

βp2 -0.032 -0.042 -0.038 -0.051
(0.014) (0.015) (0.023) (0.030)
[0.026] [0.009] [0.102] [0.095]

βp1 + βp2 -0.006 -0.004 -0.005 -0.034
(0.005) (0.007) (0.008) (0.015)
[0.302] [0.551] [0.487] [0.029]

Zip codes 1649 1649 1649 1649
Counties 58 58 58 58
Observations 16,416 16,416 16,416 16,416
Notes: Estimates of the pre-C&T EJ gap trend (i.e.,
βp1 from equation (2)), the post-C&T EJ gap trend
break (i.e., βp2 from equation (2)), and the post-C&T EJ
gap trend (i.e, βp1 + βp2) for asinh(PM2.5), asinh(PM10),
asinh(NOx), and asinh(SOx), across columns. All models
include zip code-specific and year-specific dummy vari-
ables. Observations weighted by zip code-level average
population during 2008-2012. Parentheses indicate stan-
dard errors that account for statistical uncertainty in
C&T predicted emissions (νpit from equation (1) via the
bootstrap procedure in Appendix A.1) and county-level
heterogeneity in EJ gap effects of arbitrary form (εpit from
equation (2)). P-value in brackets.
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Table S10: EJ gap effect robustness: total PM2.5 concentration using InMAP

(1) (2)
Primary PM2.5 Total PM2.5

βp1 0.002 0.003
(0.001) (0.001)
[0.001] [0.001]

βp2 -0.003 -0.004
(0.001) (0.001)
[0.000] [0.000]

βp1 + βp2 -0.001 -0.002
(0.000) (0.001)
[0.004] [0.001]

(βp2/β
p
1) ∗ 100 -150.559 -172.948

(16.261) (16.415)
[0.000] [0.000]

Zip codes 1648 1648
Counties 58 58
Observations 16,480 16,480
Notes: Estimates of the pre-C&T EJ gap trend
(i.e., βp1 from equation (2)), the post-C&T EJ gap
trend break (i.e., βp2 from equation (2)), the post-
C&T EJ gap trend (i.e, βp1 + βp2), and the per-
centage change in the EJ gap trend following the

introduction of the C&T program (i.e.,
βp
2

βp
1
∗ 100)

for InMAP-modeled primary PM2.5 concentration
(column 1) and for InMAP-modeled total (i.e., pri-
mary and secondary) PM2.5 concentration (column
2). InMAP employs dispersal patterns for 2005 and
not for the 2008-2017 sample period. All models
include zip code-specific and year-specific dummy
variables. Observations weighted by zip code-level
average population during 2008-2012. Standard er-
rors, in parentheses, cluster εpit from equation (2) at
the county-level but are not adjusted for statistical
uncertainty from equation (1). P-value in brackets.
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Table S11: Importance of modeling pollution dispersal

(1) (2) (3) (4)
Facility 1.6 km 4 km 10 km
zip code circle circle circle

Panel a: PM2.5

βp1 0.052 -0.017 -0.075 -0.140
(0.036) (0.026) (0.040) (0.079)
[0.157] [0.527] [0.075] [0.084]

βp2 -0.076 -0.003 0.067 0.132
(0.049) (0.023) (0.036) (0.072)
[0.134] [0.912] [0.075] [0.076]

Observations 785 1,831 3,573 7,545

Panel b: PM10

βp1 0.105 0.020 -0.069 -0.143
(0.070) (0.030) (0.047) (0.089)
[0.142] [0.509] [0.155] [0.116]

βp2 -0.142 -0.049 0.059 0.137
(0.091) (0.036) (0.055) (0.095)
[0.132] [0.177] [0.294] [0.157]

Observations 785 1,831 3,573 7,545

Panel c: NOx

βp1 0.163 -0.120 -0.292 -0.417
(0.188) (0.110) (0.096) (0.175)
[0.391] [0.285] [0.005] [0.022]

βp2 -0.213 0.103 0.311 0.480
(0.247) (0.132) (0.110) (0.179)
[0.396] [0.442] [0.008] [0.011]

Observations 785 1,831 3,573 7,545

Panel d: SOx

βp1 0.001 -0.156 -0.273 -0.433
(0.004) (0.122) (0.183) (0.250)
[0.688] [0.210] [0.145] [0.091]

βp2 -0.014 -0.007 0.128 0.253
(0.009) (0.030) (0.103) (0.143)
[0.125] [0.813] [0.223] [0.085]

Observations 783 1,823 3,553 7,535
Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp1 from equation (2)) and the post-C&T EJ gap trend break (i.e.,
βp2 from equation (2)) for PM2.5, PM10, NOx, and SOx down panels. All models include zip code-specific and year-specific
dummy variables. Observations weighted by zip code-level average population during 2008-2012. Column 1 assigns pollution
concentration to only the zip code of the emitting facility. Columns 2-4 assign pollution concentration to zip codes with
centroid within a 1.6, 4 km and 10 km circle of emitting facility, respectively. Standard errors in parentheses cluster εpit from
equation (2) at the county-level but are not adjusted for statistical uncertainty from equation (1). P-value in brackets.
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