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1 Introduction

Over the last three decades, policy makers have increasingly relied on market-based environ-

mental policies - such as pollution trading and taxes - to address environmental problems.

Expanded use of market-based policies followed each major amendment to the U.S. Clean

Air Act since the 1970s (Schmalensee and Stavins, 2019). Widespread adoption has occurred

in other environmental domains: today, market-based policies cover 30% of global fisheries

(Costello et al., 2016), account for over $36 billion in global ecosystem service payments

(Salzman et al., 2018), and govern 20% of global greenhouse gas (GHG) emissions (World

Bank Group, 2019).

The central appeal of market-based environmental policies is allocative efficiency. In

theory, such policies reduce the total abatement cost of meeting an environmental objective

by inducing less abatement from polluters with higher abatement costs (Crocker, 1966; Dales,

1968; Montgomery, 1972). This contrasts with traditional command-and-control regulations,

which typically require heterogeneous polluters to adopt uniform abatement actions.

At the same time, the reallocation induced by market-based environmental policies also

spatially alters where pollution occurs and thus who are harmed by it. This is of particular

concern as a growing “environmental justice” (EJ) literature has documented that com-

munities with lower income, greater minority share, and/or otherwise disadvantaged, are

systematically exposed to higher levels of pollution than other communities, a statistic we

refer to as the environmental justice gap (or EJ gap).1 Could the adoption of environmental

markets be compounding existing EJ gaps?

Whether a market-based environmental policy widens or narrows the EJ gap depends on

the joint spatial distribution of polluting facilities, their abatement costs, and disadvantaged

communities. Market-based policies induce relatively less abatement from facilities with

steeper marginal abatement cost curves. If these facilities are upwind of disadvantaged

communities, such policies will widen an existing EJ gap. Conversely, if these facilities are

upwind of non-disadvantaged communities, a market-based policy will narrow the EJ gap

(Burtraw et al., 2005).2 Unfortunately, facility-level marginal abatement cost curves are

usually unobserved, making it hard to anticipate the direction of EJ gap effects ex-ante.3

1EJ gaps across many settings have been shown through case (Bullard, 2000; Bowen, 2002; Ringquist,
2005; Mohai, Pellow and Roberts, 2009; Banzhaf, Ma and Timmins, 2019) and population-level (Tessum
et al., 2019; Colmer et al., 2020; Currie, Voorheis and Walker, 2020) studies.

2Additionally, for a policy regulating global pollutants like greenhouse gases, the EJ gap effect depends
on the extent in which GHG and local pollutants are co-produced.

3 This observational challenge is not unique to market-based environmental policies. Consider a 2-agent
pure exchange economy where agents receive initial endowments. Anticipating whether the welfare gap
widens or narrows under the competitive equilibrium compared with autarky requires knowing each agent’s
preferences.
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This difficulty underscores the need for ex-post empirical approaches, for which prior studies

of cap-and-trade programs have largely found inconclusive EJ effects (Fowlie, Holland and

Mansur, 2012; Grainger and Ruangmas, 2018; Shapiro and Walker, 2021).

This paper estimates the EJ gap consequences of California’s greenhouse gas (GHG) cap-

and-trade (C&T) program, which since 2013 has created the world’s second largest carbon

market. This program has also been a focal point of EJ concerns.4 Because GHG emissions

are typically co-produced with local air pollutants, the possibility that the program could

widen California’s existing EJ gaps in local air pollution has, among other critiques, led

to political opposition that temporary paused the program’s initial development in 2011

and nearly halted renewal efforts in 2017. However, to date, there has been limited causal

evidence on whether the program has indeed widened EJ gaps.

We make two contributions, one empirical and one methodological, in order to establish

the EJ gap consequences of California’s C&T program. First, we find that the C&T program

has lowered GHG and criteria air pollution (i.e., PM2.5, PM10, NOx, and SOx) emissions.

To estimate these effects, we exploit the program’s facility-level eligibility rule based on

historical emissions and the program’s timing to estimate a break in differential emission

trends between regulated and unregulated facilities after 2013. This empirical strategy is

possible because the emissions-based eligibility threshold for the program is well above the

emissions data reporting threshold, allowing us to observe facility-level GHG and criteria air

pollution emissions for regulated and unregulated facilities across California, as well as for

periods before and after the program’s introduction.

These data features are not common across previously studied cap-and-trade programs.

For example, facility-level pre-program emissions are not directly observed for the European

Union Emissions Trading System (EU-ETS), the world largest carbon market (Martin, Muûls

and Wagner, 2016), with researchers having to impute facility emissions using data on fuel

inputs and aggregate emissions intensities (Petrick and Wagner, 2014; Colmer et al., 2020).

Even when emissions are directly observed, there may not be enough of a difference between

program eligibility and data reporting thresholds for there to be sufficient control units

within the same jurisdiction. For example, studies of the RECLAIM NOx C&T program

in the Los Angeles region use polluting facilities elsewhere in California as control units,

matching treated and control units based on historical emissions levels (Fowlie, Holland and

Mansur, 2012). Our approach has the advantage of comparing regulated and unregulated

units within the same jurisdiction. However, because treatment is defined according to

4Similar EJ concerns have arisen elsewhere. Recent efforts to introduce state-level U.S. climate policies
and renew the European Union Emissions Trading System were opposed on EJ grounds (Leber, 2016; Herron,
2019; Transnational Institute, 2013).
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historical emissions levels, we cannot expect regulated and unregulated facilities to exhibit

similar pre-program emissions levels or even similar pre-program emission trends. Instead,

our identifying assumption requires that any existing differential emission pre-trends between

regulated and unregulated facilities would have continued after 2013 if not for the C&T

program.

We estimate that between 2012-2017, the program reduced emissions annually at a rate

of 3-9% across GHG and criteria air pollutants for sample facilities. Demonstrating that

California’s GHG C&T program has lowered GHG and criteria air pollution emissions is

noteworthy by itself. In particular, when an economy-wide C&T program coexists with

sector-specific climate regulations, as is the case in California, it is possible that overall

GHG reductions are largely, or only, induced by these other regulations, undermining the al-

locative efficiency argument for using market-based policies (Borenstein et al., 2019). Indeed,

because of these “overlapping” regulations, it remains unclear whether the C&T program has

contributed to the observed overall decline in California’s GHG emissions (Burtraw et al.,

2018). We find that it has. We demonstrate that our emissions effects are robust to various

model specification and sample restriction choices, concerns about spillover effects between

regulated and unregulated facilities, and does not exhibit meaningful heterogeneity according

to a facility’s average emissions. In a placebo test that systematically imposes trend breaks

across sample years, we detect the largest trend break in 2013, the year when the program

was actually introduced.

Our second contribution is to develop an empirical approach for determining how policy-

driven changes in pollution emissions alter the spatial distribution of pollution exposure. The

canonical framework in economics for evaluating any environmental policy requires knowing

the link between a pollution’s “source” and its “receptors” (Baumol and Oates, 1988). In

practice, however, one rarely knows this mapping. This is particularly true for air pollution:

once pollution leaves a smokestack, it is very hard to know where it goes, and therefore who is

affected by it. Instead, researchers typically assume a particular mapping between emissions

and exposure. For example, it is common to assume that a facility’s emissions disperse only

within the same geographic unit or within a distance circle around that facility (Banzhaf, Ma

and Timmins, 2019). These approaches, however, overlook the complex nature of pollution

dispersal which, depending on atmospheric conditions and topography, can disperse pollution

in varying directions and distances. Failure to accurately account for pollution dispersal

can lead to treatment spillovers that could bias estimates even in otherwise valid quasi-

experimental settings (Deschenes and Meng, 2018).

To address this challenge, we explicitly embed pollution dispersal into our estimation

framework. We employ an atmospheric dispersal model to convert C&T-driven facility-level
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emissions into resulting pollution exposure across all locations in California. This atmo-

spheric dispersal model takes into account topographical features and time-varying atmo-

spheric conditions every four hours within our sample period, a computationally-intensive

procedure involving over two million pollution trajectories. We further apply a bootstrap

procedure to account for uncertainty in estimated C&T emissions effects. Altogether, our

approach extends prior uses of atmospheric dispersal models (Sullivan, 2017; Grainger and

Ruangmas, 2018) by combining causal estimates of C&T effects on emissions with a location-

specific analysis to examine resulting changes in EJ gaps.

Employing a definition of a “disadvantaged” zip code that serves as a basis for California’s

EJ policies, we report three EJ gap findings. First, consistent with EJ concerns in the lead up

to the C&T program’s introduction, we show that not only were there baseline EJ gaps across

criteria air pollutants in 2008, but that gaps were widening in the 2008-2012 period before the

program. Second, since 2013, EJ gaps have been narrowing because of the C&T program.

Third, while EJ gaps have narrowed, they have not been eliminated: by 2017, the C&T

program returned EJ gaps roughly to where they were in 2008. We show that our EJ gap

results are stable across a variety of robustness checks. In particular, we demonstrate similar

EJ gap effects when employing an alternative atmospheric dispersal model that generates

secondary pollution exposure. Spatial heterogeneity analysis reveals that post-C&T EJ gaps

narrowed the most for disadvantaged zip codes in California’s Central Valley, while a few

disadvantaged zip codes in Los Angeles County experienced widening EJ gaps.

We demonstrate the importance of modeling pollution dispersal for our results. We show

that our EJ gap findings become unstable if instead of modeling pollution dispersal, we were

to employ more conventional approaches for assigning pollution emissions to exposure, such

as restricting areas of exposure to within a facility’s zip code or within distance circles (of

varying radii) of a facility. We posit that our approach for embedding a pollution dispersal

model within a program evaluation framework has broader applicability. In particular, there

is a common need across many environmental policy settings to track how policy-driven

changes in pollution emissions alter the spatial distribution of pollution exposure (Greenstone

and Gayer, 2009; Graff Zivin and Neidell, 2013; Deschenes and Meng, 2018).

The paper is structured as follows: Section 2 provides a conceptual framework for how a

C&T program could widen or narrow an existing EJ gap and offers background on Califor-

nia’s GHG C&T program. Section 3 summarizes our data. Section 4 details our empirical

approach. Section 5 presents our results. Section 6 provides a concluding discussion.
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2 Background

This section discusses how the introduction of a cap-and-trade (C&T) program can either

widen or narrow existing pollution exposure gaps between disadvantaged and other com-

munities. We then provide institutional background for California’s greenhouse gas (GHG)

cap-and-trade program.

2.1 Cap-and-trade and the environmental justice gap

In a textbook C&T program, the regulator establishes a limit (or cap) on total emissions

within a jurisdiction by issuing a fixed supply of emission permits. Regulated facilities are

then either given, or must purchase, permits to cover their emissions. Permit trading allows

the marginal abatement cost (MAC) of emissions to be equalized amongst regulated facilities

to the permit price.5

The economics literature has emphasized two key consequences of C&T. First, by placing

a price on pollution, a C&T program induces polluting facilities to internalize (some of) the

social costs of their emissions.6 Second, by equalizing MACs across facilities, a C&T program

allocates emissions by inducing relatively less abatement from facilities with steeper MAC

curves and more abatement from facilities with flatter MAC curves. In theory, the resulting

allocation of abatement achieves the aggregate emissions cap at the lowest total abatement

cost across regulated facilities (Montgomery, 1972).

What is less clear is how the allocative efficiency achieved by a C&T system alters the

spatial distribution of pollution exposure. In particular, there is growing concern that the

same market forces resulting in allocative efficiency may also be altering the difference in

pollution exposure between disadvantaged and other communities. This difference, which we

call the “environmental justice gap” (or EJ gap) has been shown to be positive in the many

settings (Bullard, 2000; Bowen, 2002; Ringquist, 2005; Mohai, Pellow and Roberts, 2009;

Banzhaf, Ma and Timmins, 2019; Tessum et al., 2019; Colmer et al., 2020; Currie, Voorheis

and Walker, 2020).

The introduction of C&T can either widen or narrow an existing EJ gap. Figure 1

illustrates this ambiguous effect for a stylized two-facility setting with emissions (e) on the

horizontal axis and permit prices (τ) on the vertical axis. The first facility is upwind of

a disadvantaged community (DAC) with a marginal abatement curve labeled “DAC” (in

orange). The second facility is upwind of a non-disadvantaged community and has a marginal

5The modern C&T framework was initially developed by Crocker (1966) and Dale (1968).
6Whether social costs are fully internalized depends on if the cap is set at the socially optimal level.
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abatement curve labeled “non-DAC” (in gray).7 To establish an existing positive EJ gap

prior to the introduction of C&T, we allow the DAC facility to have larger emissions in the

absence of C&T, or when τ = 0. When C&T is introduced, each facility’s MAC is equated

to the equilibrium permit price τ = τ ∗. What happens to the EJ gap?

In the left panel of Figure 1, the DAC facility has a steeper MAC curve than the non-

DAC facility, causing the DAC facility to abate less than the non-DAC facility under C&T.

In this case, C&T widens the EJ gap. The right panel of Figure 1 shows an alternative case

whereby the DAC facility has a flatter MAC curve than the non-DAC facility. Following

C&T, the DAC facility abates more than the non-DAC facility, narrowing the EJ gap.

Thus, in settings with an existing positive EJ gap, whether C&T widens or narrows the

EJ gap depends on whether facilities upwind of DAC communities have relatively steeper or

flatter MAC curves. Additionally, for a cap-and-trade system regulating a global pollutant

such as greenhouse gases, the EJ gap effect depends on the extent in which GHG and local

air pollutants are co-produced.

Figure 1: EJ gap under cap-and-trade

DAC-upwind facility with steeper MAC

e

τ

DAC

non-DAC

τ ∗

pre-EJ gappost-EJ gap

DAC-upwind facility with flatter MAC

e

τ

DAC

non-DAC
τ ∗

pre-EJ gappost-EJ gap

Notes: Panels illustrate how the introduction of a C&T program can widen or narrow an existing EJ gap
in a two facility setting. Horizontal axes indicate emissions. Vertical axes indicate marginal abatement
costs, and equivalently the permit price under C&T. The marginal abatement cost curve for facility upwind
of a disadvantaged community (labeled DAC) is shown in orange. The marginal abatement cost curve for
facility upwind of a non-disadvantaged community (labeled non-DAC) is shown in gray. τ∗ indicates the
permit price under C&T. In the left panel, the DAC-upwind facility has a relatively steeper MAC curve.
In the right panel, the DAC-upwind facility has a relatively flatter MAC curve.

7The horizontal axes in Figure 1 indicates emissions rather than abatement in order to illustrate emissions
levels prior to C&T when τ = 0.
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There are several empirical challenges to resolving this ambiguity. First, facility-level

MAC curves are rarely observed, which limits the ability to anticipate EJ gap consequences

of proposed C&T programs. Instead, one can empirically estimate EJ gap consequences

following the introduction of a C&T program ex-post. To do so, one needs to first obtain

causal estimates of the impact of C&T on facility-level emissions, map C&T-driven facility-

level emissions onto location-based pollution exposure, and then examine who the resulting

exposure is distributed between disadvantaged and non-disadvantaged communities. Section

4 details our procedure for overcoming these challenges.

2.2 California’s GHG cap-and-trade program

California’s has one of the world’s most sophisticated and ambitious climate policies. In

2006, California passed Assembly Bill 32 (AB 32), requiring state-wide GHG emissions to

reach 1990 emissions level by 2020. AB 32 was, and remains, the first of its kind: all other

climate policies in the U.S. (state or national) regulate specific sectors, whereas AB 32 covers

all GHG emission sources in California.

To meet this GHG target, AB 32 established a suite of climate programs. One key

program was cap-and-trade, introduced in 2013 and administered by the California Air Re-

sources Board (CARB). The program requires participation by all stationary GHG-emitting

facilities producing at least 25,000 metric tons of annual carbon dioxide equivalent emissions,

or CO2e, during any year between 2009-2012.8 This eligibility criteria covers all sectors that

directly emit GHGs from stationary sources and is unique amongst other AB 32 climate

programs.9,10 California’s C&T program has since created the world’s second largest carbon

market by permit value, following the European Union Emissions Trading System (EU-ETS).

In 2016, California met AB 32’s 2020 GHG target four years early. That same year, the

state extended its GHG target to 40% below 1990 levels by 2030. This was shortly followed

by a 2030 extension of the C&T program. However, critical questions remain regarding the

performance and consequences of the C&T program.

First, it remains unclear whether the C&T program has caused lower GHG emissions. In

particular, when a C&T program coexists with other climate programs, as is the case under

AB 32, an overall GHG emissions cap can be met with little or no abatement induced by

8 Greenhouse gases covered by the program were CO2, CH4, N2O, HFCs, PFCs, SF6, NF3 and other
fluorinated GHGs.

9The 2013 timing of the C&T program is also unique. Most other AB 32 climate programs were introduced
earlier.

10It should be noted that the GHG C&T program does not directly regulate emissions of local criteria air
pollutants. Any changes in the spatial distribution of local air pollution exposure due to the program is thus
driven by the program’s reallocation of GHG emissions and the co-production of local air pollutants with
GHGs.
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the C&T program if most or all abatement is dictated by these complementary programs.11

Indeed, an ex-ante analysis of California’s GHG C&T program demonstrate a potentially

large role played by such complementary programs on overall GHG abatement (Borenstein

et al., 2019).12 Second, even if the C&T program had lowered GHG and related local air

pollution emissions, it remains to be established whether the resulting distribution of air

pollution exposure has caused existing pollution exposure gaps between disadvantaged and

other communities in California to widen or narrow.

3 Data

Our analysis involves two primary datasets: 1) emissions of criteria air pollutants at the

facility-by-year level and 2) an indicator of whether a zip code is assigned to be “disadvan-

taged” according to a policy-relevent definition defined by California.

Air pollution emissions We obtain 2008-2017 facility-level annual emissions of GHG (in

CO2e), PM2.5, PM10, NOx, and SOx from CARB’s Pollution Mapping Tool.13 Stationary

facilities with annual emissions past a certain threshold must report emissions to CARB. For

PM2.5, PM10, NOx, and SOx, the reporting threshold is 10 metric tons per year. For GHGs,

the reporting threshold is 10,000 metric tons of CO2e. Because this reporting threshold is

below the C&T program’s GHG eligibility threshold, we observe GHG as well as criteria air

pollutions emissions for both C&T-regulated and non-regulated stationary facilities, before

and after the introduction of the C&T program.14

Several additional facility-level variables serve as inputs for the atmospheric dispersal

model. CARB provides facility latitude and longitude as well as pollution-specific stack

heights for a subset of facilities. For other facilities, we impute missing pollution-specific

stack heights using sector averages constructed from non-missing observations.

Zip code definition of a disadvantaged community There is no established definition

of a “disadvantaged” community. Previous papers in other settings use a location’s median

11Prominent complementary programs to C&T under AB 32 include a Renewable Portfolio Standard for
electricity generation and a Low Carbon Fuel Standard for refineries.

12Furthermore, even a positive GHG permit price does not ensure that the C&T program caused GHG
emissions to fall. Suppose, for example that there was some form of restriction on GHG emissions prior to
the C&T program leading to a pre-program positive shadow price on GHG abatement. A C&T program
with an overall cap set equal to total emissions under the prior restriction would generate a positive permit
price despite no change in overall GHG emissions.

13Available here: https://ww3.arb.ca.gov/ei/tools/pollution_map/
14Details on CARB’s reporting requirements can be found here: https://ww3.arb.ca.gov/ei/tools/

pollution_map/doc/caveats%20document12_22_2017.pdf
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income or minority share of population as proxy measures (Fowlie, Holland and Mansur,

2012; Grainger and Ruangmas, 2018; Mansur and Sheriff, 2019). For our setting, we select

a policy-relevant definition of a “disadvantaged” community. Senate Bill 535 (SB 535),

passed in 2012, requires a portion of the revenue from the auction of C&T permits to be

directed towards benefiting disadvantaged communities. We employ this definition because

it is the basis for which zip codes receive government funds to offset environmental justice

concerns. SB 535 formally defines a “disadvantaged community” using CalEnviroScreen,

a scoring system based on multiple indicators developed by the California Environmental

Protection Agency. Specifically, a zip code is considered disadvantaged if it contains all or

part of a census tract with a CalEnviroScreen score above the top 25th percentile. Zip codes

designated as disadvantaged are shaded in dark blue in Figure 2a. Importantly, pre-2013

data was used in constructing CalEnviroScreen, which mitigates the concern that cap-and-

trade may have affected zip code designation. We further augment our zip code level data

with average 2008-2012 population obtained from the U.S. Census Bureau.

4 Empirical approach

Our analysis proceeds along three steps. First, we use facility-by-year-level data to estimate

how the GHG C&T program altered GHG, PM2.5, PM10, NOx, and SOx emissions. Second,

we feed C&T-driven PM2.5, PM10, NOx, and SOx emissions predicted from the first step

into an atmospheric dispersal model to generate zip code-by-year-level exposure of these

pollutants due to the program. Finally, we examine whether the C&T program changed the

exposure gap for these pollutants between disadvantaged and other communities following

its 2013 introduction.

Step 1: Estimating C&T effects on emissions We exploit the facility-level eligibility

criteria based on pre-program GHG emissions and the 2013 timing of the C&T program

to identify its effects on GHG, PM2.5, PM10, NOx, and SOx facility-level emissions during

2008-2017. Because the program’s eligibility criteria is based on pre-C&T GHG emissions,

we expect regulated and unregulated facilities to differ in pre-program emissions levels and

perhaps also in pre-program emission trends. Our empirical test therefore examines whether

differential emission trends exhibit a break after 2013. For this test to have a causal interpre-

tation, our identifying assumption requires that any existing differential emission pre-trends

to have continued if not for the introduction of the C&T program.15

15 Note that because there is no overlap in pre-program GHG emissions for regulated and unregulated
facilities, we are unable to implement a matching estimator that matches on pre-program emissions, as is
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Specifically, let j index facilities. Cj ∈ {0, 1} is GHG C&T regulatory status with Cj = 1

indicating facility j is regulated.16 For facility j in year t, Y p
jt is annual emissions of pollutant

p ∈ {GHG,PM2.5, PM10, NOx, SOx}. Because emissions exhibit a skewed distribution and

contain zero values, we apply an inverse hyperbolic sine transformation, which like a log

transformation lends a percentage effect interpretation, but with the added advantage of

retaining zero-valued observations (Bellemare and Wichman, 2020). To examine differential

emission trends driven by the C&T program, we estimate the following specification:

asinh(Y p
jt) = κp1[Cj × t] + κp2[Cj × 1(t ≥ 2013)× t] + φpj + γpt + µpjt (1)

Facility-specific dummy variables φpj removes time-invariant determinants of pollution p for

facility j. Year-specific dummy variables γpt remove common determinants of emissions

affecting all sample facilities in year t, such as California-wide economic conditions.

κp1 captures the differential emission pre-trend for pollutant p between facilities that would

and would not eventually be regulated by the C&T program during 2008-2012, reported in

annual percentage point changes. κp2 is the change, or break, in the differential emission

trend after the program’s introduction during 2013-2017. µpjt is clustered at the county-level

to allow for arbitrary forms of heteroskedasticity and serial correlation within a county.

We employ two sample restrictions to strengthen identification of trend break effects in

equation (1). First, despite the C&T program’s unique eligibility criteria and timing, the

presence of other major climate programs under AB 32, such as the Renewable Portfolio

Standard for electricity generators and the Low Carbon Fuel Standard for refineries, may

confound C&T effects for these facilities. We remove electricity generators and refineries

from our sample to avoid this possibility.17 Second, to ensure better comparability between

treated and control facilities, we restrict our sample to facilities with sample average annual

GHG emissions below the 75th percentile.18 As a robustness check, we consider smaller and

larger cutoff percentiles. Our benchmark sample contains 106 regulated and 227 unregulated

facilities. Each regulated facility is shown as a black dot in Figure 2a. Table S1 shows how

done in Fowlie, Holland and Mansur (2012) and Martin, Muûls and Wagner (2016). Implementing such
a matching approach would require emissions data from facilities outside of California. That comparison,
however, may be confounded by systematic unobserved differences between California and non-California
facilities.

16All but 39 facilities that emit local air pollution found in CARB’s Pollution Mapping Tool have time-
invariant GHG C&T regulatory status between 2008-2017. All 39 facilities with time-varying statuses switch
status only in 2017. Because we do not know if these switches are due to actual changes in regulatory status
or coding errors, we drop these 39 facilities from our sample such that all sample facilities have time-invariant
regulatory status.

17 This restriction also addresses concerns about the the 2013 closure of the San Onofre Nuclear Generating
Station, a power plant in southern California (Davis and Hausman, 2016).

18The 75th percentile corresponds to average annual emissions of 62,770 metric tons of CO2e.
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these facilities are distributed across sectors.

To construct facility-by-year emissions driven by the C&T program (relative to California-

wide determinants of pollution), we apply a hyperbolic sine transformation to the first two

terms of equation (1) and the estimated facility-level fixed effect.19 Because facilities differ

by average emission levels, the inclusion of facility-level fixed effects allows us to generate

heterogeneous C&T-driven pollution abatement across regulated facilities despite estimating

a common percentage effect.20 This implicitly assumes that larger emitting facilities abate

more under C&T. To examine this assumption, in a robustness check, we also estimate

variants of equation (1) that allow the post-C&T trend break to vary as linear and quadratic

functions of facility-level average annual emissions.

Step 2: Modeling pollution dispersal Our second step determines how C&T-driven

criteria air pollution disperses spatially across California. The standard approach is for the

researcher to prescribe the set of locations exposed to emissions from a particular source,

either by assuming emissions only affects areas in the same administrative unit of the source

or within a radially uniform distance from the source. For example, one may assume emis-

sions from a facility in Los Angeles County only affect Los Angeles County or areas within

a certain radial distance of that facility. Actual areas affected by pollution from that fa-

cility, however, may not conform to these assumptions and instead may vary depending on

topography or time-varying meteorological conditions. To fully capture the complexity of

pollution dispersal, we turn to modeling it explicitly.

We feed predicted facility-by-year PM2.5, PM10, NOx, and SOx emissions from step 1,

together with the location and stack height of each facility, into the Hybrid Single Parti-

cle Lagrangian Integrated Trajectory Model (HYSPLIT), an atmospheric dispersal model

developed by the U.S. National Oceanographic and Atmospheric Administration (NOAA)

with meteorological conditions from NOAA’s 40-km resolution North American Model Data

Assimilation System (NAMDAS) (Draxler and Hess, 1998). An emerging literature uses

HYSPLIT to convert pollution emissions to exposure (Grainger and Ruangmas, 2018; Hen-

neman, Mickley and Zigler, 2019; Casey et al., 2020).

19 Specifically, C&T-driven emissions is:

Ŷ pjt = sinh
(
κ̂p1[Cj × t] + κ̂p2[Cj × 1(t ≥ 2013)× t] + φ̂pj

)
∗ e(RMSE)2/2)

where hat notation indicates estimated parameters and RMSE is the root mean squared error from equation
(1). In theory, the hyperbolic sine transformation can generate negative emission values. In practice, our
benchmark model predicts negative emissions for 1%, 1%, 0.2%, and 0.3% of sample observations for PM2.5,
PM10, NOx, and SOx, respectively. We replace these negative values with zeros.

20 For example, a 10% abatement effect implies 10 tons of abatement for a facility with 100 tons of average
annual emissions and 5 tons of abatement for a facility with 50 tons of average annual emissions.
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We choose HYSPLIT because it provides a middle-of-the-road approach for our appli-

cation, balancing atmospheric realism with computational tractability. HYSPLIT is less

computationally intensive than chemical dispersal models such as WRF-Chem, but at the

cost of not incorporating atmospheric chemistry which is important for modeling secondary

pollutant formation. At the same time, HYSPLIT is more reliable for modeling pollution

dispersal beyond distances of 50 kilometers, which less computationally-intensive Gaussian-

plume models like AERMOD or APEEP do poorly (EPA, 2015).

We note several features of our HYSPLIT implementation. First, to account for high-

frequency variation in meteorological conditions, we run forward particle trajectories at four

hour intervals, implicitly assuming that annual emissions are distributed uniformly within

the year. Each trajectory runs for 24 hours, a duration long enough to ensure most emitted

particles leave California. Second, because HYSPLIT does not explicitly account for particle

decay, we apply half-life parameters from the atmospheric chemistry literature set at 24

hours for PM2.5 and PM10(U.S. EPA, 2018), 3.8 hours for NOx (Liu et al., 2016), and 13

hours for SOx (Lee et al., 2011). Third, we assume that a particle no longer contributes to

surface pollution concentrations once it exits the planetary boundary layer, beyond which

there is far less turbulent mixing. We conservatively set the boundary layer height at 1

km above the surface, which is about double the typical height for California (Rahn and

Mitchell, 2016). As a robustness check, we also consider boundary layer heights of 0.5 and

2 km. As an illustration of pollution dispersal modeled by HYSPLIT, Figure 2b shows

the trajectories of pollution emitted by a regulated facility in Los Angeles during 2016. In

total, we compute over 2 million particle trajectories from the roughly one hundred regulated

facilities in our sample during the 2008-2017 period. This procedure takes about 24 hours to

complete with over one thousand facility-by-year parallelized nodes on a high-performance

computing cluster.

To obtain zip code-by-year pollution exposure (in µg/m3) due to C&T-driven emissions,

we sum across HYSPLIT trajectories for each zip code and year and divide by the volume of

the atmosphere between a zip code’s surface and the boundary layer. We further divide by

365 to obtain an average daily measure of HYSPLIT-generated pollution exposure. Figure

2c show our benchmark HYSPLIT-generated daily exposure (in µg/m3/day) for each zip

code, averaged across 2008-2017 for PM2.5. Figure S3 similarly shows average 2008-2017

zip-code exposure for PM10, NOx, and SOx.
21

Lastly, as noted, a major limitation with HYSPLIT is that it does not model secondary

21Figure 2, Figure S3, and Table S6 show that criteria air pollution from GHG C&T-regulated facilities
disperses across all of California and not just zip codes designated as disadvantaged. This implies that any
change in average pollution exposure between disadvantaged and other zip codes occurs because the GHG
C&T program alters the differential exposure between disadvantaged and other zip codes.
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Figure 2: Modeling air pollution exposure driven by the cap-and-trade program

Notes: Panels illustrates how facility-level emissions is converted to zip code-level pollution exposure using
an atmospheric dispersal model. Shading in panel (a) shows California zip codes that are designated as
disadvantaged (dark blue) and zip codes that are not (light blue) according to California policy. Black dots
show sample facilities regulated by California’s GHG C&T program. Panel (b) shows HYSPLIT-generated
particle trajectories every 4-hours from a regulated facility during 2016. Panel (c) shows zip code-level
average daily PM2.5 exposure (in µg/m3/day) during 2008-2017 driven by facilities regulated by the C&T
program as modeled by HYSPLIT.

pollution formation. To see if secondary PM2.5 exposure exhibits a different spatial pattern

than primary PM2.5 exposure, in a robustness check, we replace HYSPLIT with InMAP, a

reduced-complexity dispersal model based on the WRF-Chem model which generates sec-

ondary pollutants (Tessum, Hill and Marshall, 2017).

Step 3: Estimating C&T-driven change in EJ gap trends In our third step, we

examine whether the C&T program altered the difference in pollution exposure between

disadvantaged and other communities, or the EJ gap. Let Di ∈ {0, 1} denote disadvan-

taged status, with Di = 1 indicating that zip code i contains all or part of a “Disadvan-

taged Community Census Tract,” as defined by Senate Bill 535. For zip code i in year

t, we take C&T-driven pollution exposure from HYSPLIT, Ep
it for criteria air pollutant

p ∈ {PM2.5, PM10, NOx, SOx}, and estimate the following specification:

Ep
it = βp1 [Di × t] + βp2 [Di × 1(t ≥ 2013)× t] + ψpi + δpt + εpit (2)

where ψpi are zip code-specific dummies and δpt are year-specific dummies. βp1 , or the pre-C&T

EJ gap trend, captures the linear trend in the EJ gap (from facilities that would eventually

be regulated by the C&T program) during 2008-2012, before the program was introduced. A

positive trend (i.e., βp1 > 0) would indicate that the EJ gap was widening prior to the C&T

program. Our main parameter of interest is βp2 , which captures the change in the EJ gap

trend after the program’s introduction, or the post-C&T EJ gap trend break. Conditional
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on βp1 > 0, βp2 < 0 implies that the introduction of the C&T program slowed the previous

positive EJ gap trend. We consider two additional trend break statistics. The first statistic

asks whether the post C&T EJ gap trend break is sufficiently large such that the EJ gap has

actually narrowed in level terms after the C&T program. This would be captured by βp1 +βp2 ,

or the post-C&T EJ gap trend, with βp1 + βp2 < 0 indicating that the EJ gap is narrowing.22

A second statistic examines the relative degree in which C&T program has slowed the prior

EJ gap trend. Specifically,
βp2
βp1
∗ 100 = (

(βp1+βp2 )−βp1
βp1

) ∗ 100 captures the percentage change in

the EJ gap trend following the introduction of the C&T program.

C&T-driven pollution exposure, Ep
it, the outcome variable in equation (2), is predicted

C&T-driven emissions from equation (1) via HYSPLIT. As a consequence, εpit, the error term

in equation (2), does not account for statistical uncertainty in C&T emission effects from

equation (1). Instead, εpit may capture residuals that arise when estimating an average EJ

effect in the presence of heterogeneous EJ effects. To address related concerns over inference,

we conduct two standard error adjustments. First, we cluster εit at the county level to allow

for arbitrary forms of heteroskedasticity and serial correlation when heterogeneous treatment

effects are not independent and identically distributed. Second, to incorporate statistical

uncertainty in predicted C&T-driven emissions from equation (1), we conduct a bootstrap

procedure drawing multiple vectors of C&T-driven emissions from the estimated empirical

distributions of κp1 and κp2, which are then fed into steps 2 and 3. In practice, we implement

250 bootstrap draws to generate a component of the standard error for βp1 and βp2 that

accounts for statistical uncertainty in equation (1). We add this component to the standard

error from directly estimating equation (2) when reporting uncertainty for βp1 and βp2 . Figure

S4 plots the empirical distribution of βp1 and βp2 across bootstrapped draws.23 Appendix A.1

provides more details on this bootstrap procedure.

To estimate an average pollution exposure effect across individuals in California, we

weight each zip code-by-year observation in equation (2) by average zip code population

during 2008-2012, the period prior to the program.

Before turning to our results, we note that our approach is part of a broader effort

across natural and social science disciplines to use pollution dispersal modeling to map pol-

22 Observe that while βp2 < 0 alone implies that the C&T program resulted in EJ gap benefits by slowing
the growth in the EJ gap, it does not necessarily imply that this post-trend break effect is strong enough to
offset the magnitude of the pre-trend such that EJ gap is narrowing in absolute terms following the program.
For that to occur, one needs βp2 < −β

p
1 , or βp1 + βp2 < 0.

23 As with prior literature, we omit uncertainty associated with atmospheric dispersal, or the mapping
between facility-level emissions and zip code-level exposure. One possibility involves resampling meteoro-
logical conditions in HYSPLIT via a bootstrapping algorithm. Given that our use of HYSPLIT takes 24
hours, overlaying such an approach to the existing 3-step procedure is currently unrealistic under available
computational resources.
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lution emissions to exposure. Studies in this literature can be broadly classified into two

classes. The first group of studies conduct location-level analyses after feeding emissions

into a dispersal model but do not explicitly estimate the effects of environmental policies

(Ash and Fetter, 2004; Morello-Frosch and Jesdale, 2006; Sullivan, 2017; Cummiskey et al.,

2019; Henneman, Mickley and Zigler, 2019; Kim et al., 2020). As such, these studies do not

examine policy-driven changes in pollution exposure. A second group of studies estimate

whether a policy’s effect on facility-level emissions varies with the demographic character-

istics of downwind households, as determined by the pollution dispersal model (Grainger

and Ruangmas, 2018; Mansur and Sheriff, 2019). However, in these studies it is not obvious

how facility-level effects convert to location-specific changes in pollution exposure. Instead,

one must explicitly conduct a location-level analysis using pollution exposure arising from

policy-driven emissions, as is done with our approach.

5 Results

This section presents our results. Section 5.1 shows the effect of the GHG C&T program

on differential emission trends between regulated and unregulated facilities. Section 5.2

examines how these C&T-driven emissions altered trends in the pollution exposure gap

between disadvantaged and other communities across California.

5.1 Cap-and-trade effects on emissions

Main results Table 1 reports the pre-C&T differential emissions trend (i.e., κp1 from equa-

tion (1)) and the post-C&T differential emissions trend break (i.e., κp2 from equation (1))

for GHG and criteria air pollutants. Column 1 shows a statistically significant trend break

in GHG emissions, indicating that the C&T program led to a reduction in GHG emissions.

Prior to the program, the gap in GHG emissions between regulated and unregulated facili-

ties increased at an annual rate of 19 percentage points. Following the introduction of the

program, this trend slowed by 30 percentage points such that the gap in GHG emissions

actually falls at an annual rate of 11 percentage points between 2012-2017. For criteria air

pollutants, columns 2-4 show that there was also a statistically significant, negative emis-

sions trend break following the 2013 introduction of the program for PM2.5, PM10, NOx. For

SOx, the trend break is negative but not statistically significant. Given uncertainty in SOx

emission effects, all subsequent SOx results should be interpreted with caution.

We predict C&T-driven emissions using estimates in Table 1 together with facility-level

fixed effects. This generates heterogeneous facility-level C&T-driven abatement between
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2012-2017, or Ŷ p
j,2017 − Ŷ

p
j,2012 as defined in footnote 19, and shown in Figure S2 for GHG,

PM2.5, PM10, NOx, and SOx. Averaged across sample facilities, between 2012 and 2017, the

C&T program reduced emissions annually at a rate of 9%, 5%, 4%, 3%, and 9% for GHG,

PM2.5, PM10, NOx, and SOx, respectively.24,25

Table 1: Trend break in emissions

Outcome is (asinh) emissions
(1) (2) (3) (4) (5)

GHG PM2.5 PM10 NOx SOx

κp1 0.187 0.058 0.083 0.075 0.006
(0.052) (0.043) (0.033) (0.039) (0.035)
[0.001] [0.183] [0.016] [0.061] [0.875]

κp2 -0.297 -0.097 -0.117 -0.104 -0.037
(0.077) (0.048) (0.039) (0.050) (0.043)
[0.000] [0.053] [0.005] [0.042] [0.393]

κp1 + κp2 -0.111 -0.039 -0.034 -0.029 -0.031
(0.036) (0.018) (0.018) (0.019) (0.019)
[0.004] [0.039] [0.068] [0.138] [0.108]

Facilities 316 302 302 303 303
Counties 41 40 40 40 40
Observations 2,054 1,968 1,968 1,970 1,965
Notes: Estimates of pre-C&T differential emissions trend (i.e., κp1
from equation (1)) and post-C&T differential emissions trend break
(i.e., κp2 from equation (1)) for GHG, PM2.5, PM10, NOx, and SOx

across columns. All models include facility-specific and year-specific
dummy variables. Standard errors clustered at the county-level in
parentheses, p-value in brackets.

Robustness checks We subject these emission effects to several robustness checks. First,

Figure S1 considers placebo program start years, plotting κp2 for GHG, PM2.5, PM10, NOx,

24 This is calculated by averaging (
Ŷ p
j,2017−Ŷ

p
j,2012

Ŷ p
j,2012

)/5, as defined in footnote 19, across regulated sample

facilities for each pollutant p.
25 GHG permit prices for California C&T program has largely hovered above the program’s price floor

since its inception. We observe detecting emissions abatement from sectors directly regulated by only the
C&T program is consistent with permit prices at the price floor when other C&T-covered sectors are further
regulated by complementary climate programs, as in the case in California with electricity generators under
the Renewable Portfolio Standard and refineries under the Low Carbon Fuel Standard. When such comple-
mentary programs bind, aggregate demand for GHG permits fall, causing permit prices to hit the price floor.
However, provided that abatement driven by complementary policies are insufficient to meet the GHG cap,
the C&T program will still induce abatement from sectors that are regulated only by the C&T program.
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and SOx emissions from variants of equation (1) that impose alternative years for the start

of the C&T program across 2009-2016. With the exception of the SOx models, we detect the

strongest trend break coefficient when we assign the treatment year to its actual occurrence

in 2013. Second, Table S2 varies the cutoff rule we use on sample average annual GHG

emissions when restricting our facility sample. We detect similar trend breaks when we

change our benchmark 75th percentile cutoff to the 70th or 80th percentiles.26

Third, our predicted C&T-driven emissions which includes facility fixed effects from

equation (1), implicitly assumes more pollution abatement from facilities that emit more on

average. To examine whether this assumption is reasonable, column 2 of Table S3 reports a

variant of equation (1) that further includes an interaction between the trend break term and

a linear function of facility-level average emissions. A positive interaction coefficient would

imply that larger emitting facilities are abating less, contradicting our assumption. With

the exception of GHG emissions for which the linear interaction term is positive but of very

small magnitude, the average emissions interaction term for every criteria air pollution is

negative. This suggests that our benchmark model, which estimates an average trend break

coefficient across facilities (regardless of size) is understating the degree in which facilities

that emit more on average are also abating more under C&T. To examine how much, as a

robustness check we feed predicted emissions from column 2 of Table S3 into steps 2 and

3 to examine resulting EJ gap effects. Column 3 of Table S3 shows that heterogeneity

by average emissions does not exhibit nonlinearity, as indicated by statistically imprecise

quadratic interaction terms.

Finally, there may be a Stable Unit Treatment Value Assumption (SUTVA) as pollution

may shift from a regulated to unregulated facilities following the introduction of C&T. If so,

the resulting increase in unregulated facility emissions may lead to more negative estimates

of the trend break parameter κp2. Following Fowlie, Holland and Mansur (2012), we consider

two robustness checks in Table S4 to examine this possibility, both of which restrict attention

to subsamples of unregulated facilities for which pollution reallocation is harder to undertake.

In the first test, we observe that a facility located in a county under U.S. Clean Air Act

nonattainment for a particular pollutant is largely unable to increase pollution levels. This

idea is implemented in column 2, which restricts the sample of unregulated facilities to those

located in nonattainment counties for that pollutant under the Clean Air Act.27 Our second

26The 70th and 80th percentiles for sample average annual GHG emissions corresponds to 48,834 and
82,173 tons of CO2e, respectively.

27In Table S4, column 2 does not apply to GHG emissions because it is not a criteria pollutant regulated
under the Clean Air Act. For SOx, there are no counties in nonattainment during our sample period. For
NOx, because there were not enough counties under NO2 nonattainment to construct a control group, we
follow Fowlie, Holland and Mansur (2012) by looking at nonattainment under Clean Air Act’s one-hour
ozone standard as NOx is a precursor pollutant to ozone.

18



test notes that firms with multiple facilities can more readily reallocate pollution across their

facilities. In column 3, we restrict the control group of unregulated facilities to those whose

parent company only operates a single plant.28 If treatment spillovers were present, the

trend break coefficient κp2 should be of smaller magnitude in columns 2 and 3 than in our

benchmark estimate, shown in column 1. This is not the case.

5.2 Cap-and-trade effects on EJ gaps

Validating pollution dispersal modeling We first consider two sensibility checks for

our measure of C&T-driven pollution exposure via HYSPLIT before turning to our main

EJ gap results. First, we examine whether HYSPLIT-generated criteria air pollution expo-

sure correlates with monitored ambient air pollution. Specifically, we match zip code-level

HYSPLIT-generated pollution exposure averaged over 2008-2017 to the average ambient

pollution of that zip code as recorded by pollution monitors averaged over the same period,

obtained from the U.S. Environmental Protection Agency.29 Note that a perfect fit between

these two variables is not expected as ambient pollution at any location is composed of

emissions originating from many more sources (i.e., stationary and non-stationary, within

and beyond California) than our subset of stationary sources regulated by California’s GHG

C&T program. However, a positive correlation between the two pollution exposure measures

would provide reassurance that HYSPLIT-generated pollution exposure from C&T regulated

facilities is being detected by ambient pollution monitors. The positive correlations shown

in Table S5 indicate that is indeed the case.30

Next, we examine the EJ gap in 2008 driven by facilities that would eventually be regu-

lated by the C&T program. Prior work has documented strong baseline EJ gaps in California

(Cushing et al., 2018). Indeed, this baseline EJ gap informed initial EJ concerns regarding

California’s C&T program. Table S6 shows that steps 1 and 2 of our approach reproduces EJ

gaps in 2008. Disadvantaged communities experienced higher levels of PM2.5, PM10, NOx,

and SOx exposure in 2008 than other communities on average due to emissions from facilities

that would eventually be regulated by the C&T program.

28We link each facility from CARB with its parent company as indicated by the EPA. We employ a fuzzy
string matching algorithm as facility names are not standardized across the two datasets.

29Available here: https://www.arcgis.com/home/item.html?id=8d2012a2016e484dafaac0451f9aea24
30 We are interested in modeling where C&T-driven pollution is dispersed. As such, we do not directly use

ambient pollution data (either from ground-based monitoring stations or remotely-sensed satellites) in our
analysis as it is often difficult to determine which component of any location’s ambient pollution originates
from C&T-regulated facilities. Such “backwards” atmospheric modeling often yield indeterminate results.
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Main results We now turn to our main results examining the time evolution of EJ gaps

between 2008-2017. They are shown in Table 2 and Figure 3. Across PM2.5, PM10, NOx, and

SOx, the EJ gap widens during 2008-2012, the period prior to the C&T program, as indicated

by the positive pre-C&T EJ gap trend (i.e., βp1 from equation (2)). Following 2013, the EJ

gap trend falls: the post-C&T EJ gap trend break (i.e., βp2 from equation (2)) is negative

and statistically significant. This drop in the EJ gap trend is sufficiently large such that

the EJ gap is actually narrowing following C&T, as indicated by the negative post-C&T EJ

gap trend across pollutants (i.e., βp1 + βp2). In percentage terms (i.e.,
βp2
βp1
∗ 100), the EJ gap

trend fell between 140-270% across pollutants after the program’s introduction. Figure 3

plots this trend break as well as annual EJ gap coefficients from a more flexible version of

equation (1) using year-specific EJ gap coefficients.31 Figure 3 also highlights that while the

C&T program has led EJ gaps to narrow since 2012, it has not eliminated them. By 2017,

EJ gaps are roughly at 2008 levels across pollutants.

Spatial heterogeneity Estimates from equation (2) shown in Table 2 and Figure 3 ex-

amine the time evolution of EJ gaps averaged across disadvantaged and other zip codes.

Additionally, one may be interested in how EJ gap effects vary spatially, particularly given

the localized nature of EJ concerns. To examine spatial heterogeneity in trend break effects

across disadvantaged zip codes, we estimate a variant of equation (2) allowing zip code-

specific post-C&T EJ gap trend break coefficients.32 Figure 4 shows the percentage change

in the EJ gap trend following the introduction of C&T for each disadvantaged zip code for

PM2.5, PM10, NOx, and SOx. Across pollutants, post-C&T EJ gaps narrowed the most for

disadvantaged zip codes in California’s Central Valley. For PM2.5, PM10, and NOx, Figure 4

also shows a cluster of zip codes in Los Angeles County that experienced widening post-C&T

EJ gaps. Figure S5 shows histograms for the distribution of percentage changes in EJ gap

trends across disadvantaged zip codes.

31Specifically, the annual coefficients in Figure 3 are βpτ from

Epit =
∑

2008≤τ≤2017
τ 6=2012

βpτ [Di × 1(t = τ)] + ψpi + δpt + εpit

32 Specifically, we estimate the following variant of equation (2)

Epit = βp1 [Di × t] +
∑
i

βp2i[Di × 1(t ≥ 2013)× t] + ψpi + δpt + εpit

where βp2i is the post-C&T trend break for zip code i. Figures 4 and S5 plot
βp
2i

βp
1
∗100, the percentage change

in the EJ gap trend following the introduction of the C&T program for zip code i relative to the average
pre-C&T EJ gap trend across disadvantaged zip codes.
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Table 2: Trend break in the environmental justice gap

(1) (2) (3) (4)
PM2.5 PM10 NOx SOx

βp1 0.042 0.065 0.085 0.037
(0.015) (0.017) (0.037) (0.025)
[0.006] [0.000] [0.026] [0.151]

βp2 -0.063 -0.090 -0.143 -0.101
(0.022) (0.029) (0.074) (0.051)
[0.006] [0.003] [0.060] [0.053]

βp1 + βp2 -0.021 -0.026 -0.058 -0.064
(0.015) (0.020) (0.050) (0.027)
[0.159] [0.203] [0.252] [0.024]

(βp2/β
p
1) ∗ 100 -149.699 -139.739 -168.282 -272.291

(36.368) (29.971) (53.375) (66.043)
[0.000] [0.000] [0.002] [0.000]

Zip codes 1649 1649 1649 1649
Counties 58 58 58 58
Observations 16,416 16,416 16,416 16,416
Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp1 from
equation (2)), the post-C&T EJ gap trend break (i.e., βp2 from
equation (2)), the post-C&T EJ gap trend (i.e, βp1 +βp2), and the
percentage change in the EJ gap trend following the introduc-

tion of the C&T program (i.e.,
βp
2

βp
1
∗100) for PM2.5, PM10, NOx,

and SOx, across columns. All models include zip code-specific
and year-specific dummy variables. Observations weighted by
zip code-level average population during 2008-2012. Parenthe-
ses indicate standard errors that account for statistical uncer-
tainty in C&T predicted emissions (µpit from equation (1) via
the bootstrap procedure in Appendix A.1) and county-level het-
erogeneity in EJ gap effects of arbitrary form (εpit from equation
(2)). P-value in brackets.

Robustness checks We subject our EJ gap trend effects to several robustness checks.

Most robustness checks forgo the bootstrap procedure across steps 1-3 (detailed in Appendix

A.1) given the computational demands of that procedure. Instead, Figure 5 presents only

point estimates of the percentage change in the EJ gap trend following C&T (i.e.,
βp2
βp1
∗ 100)

for each robustness check and compares that with the point estimate and 95% confidence

interval of our benchmark result for which inference does account for statistical uncertainty
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Figure 3: Environmental justice gap before and after the cap-and-trade program
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Notes: Panels show the estimated average daily pollution exposure gap (in µg/m3/day) between disadvan-
taged and other zip codes (i.e., “EJ gap”) during 2008-2017 for PM2.5, PM10, NOx, and SOx, respectively.
Dots show year-specific EJ gap. Solid lines show linear fit for EJ gap trend before (2008-2012) and after
(2013-2017) the C&T program. Associated text indicates point estimates and standard errors for the pre-
C&T linear trend, post-C&T trend break, post-C&T linear trend, and the percentage change in the EJ

gap trend (i.e., βp1 , βp2 , βp1 + βp2 ,
βp
2

βp
1
∗ 100 ). 95% confidence interval and p-values (in brackets) account for

statistical uncertainty in C&T predicted emissions (µpit from equation (1) via the bootstrap procedure in
Appendix A.1) and county-level heterogeneity in EJ gap effects of arbitrary form (εpit from equation (2)).
Trend break estimates also reported in Table 2.

in equation (1) via our bootstrap procedure.33

Within step 1, we conduct six robustness checks. Equation (1) models changes in the

emissions difference between C&T regulated and non-regulated facility as linear trends. We

find a similar result when we estimate a more flexible version of equation (1) with year-

specific emission differences (M2 of Figure 5 and column 1 of Table S7). Next, we consider

restricting facilities to those with sample average annual GHG emissions below the 70th and

80th percentiles, respectively (M3-4 of Figure 5 and columns 2-3 of Table S7, using equation

(1) estimates in columns 1 and 3 of Table S2). These alternative facility sample restrictions

33 Coefficients βp1 and βp2 in accompanying Tables S7 and S8 cluster standard errors εpit from equation (2)
at the county-level but are not adjusted for statistical uncertainty in equation (1).
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Figure 4: Spatial heterogeneity in EJ gap effects

Notes: Panels maps the zip code-specific percentage change in the EJ gap trend following the introduction
of the C&T program for disadvantaged zip codes across PM2.5, PM10, NOx, and SOx. Blue (red) shading
indicates reduced (increased) EJ gap trends following C&T for disadvantaged zip codes. Gray shading
shows non-disadvantaged zip codes.

do not alter EJ gap trend effects. We further allow the post C&T emissions trend break to

vary as a linear function of sample average emissions, as shown in column 2 of Table S3.

For PM2.5, PM10, and NOx, the percentage change in the EJ gap trend has a slightly larger

magnitude, consistent with column 2 of Table S3 indicating that our benchmark model, which

assumes the same percentage emissions effect across regulated facilities, is understating the

level of abatement for facilities that emit more on average. For SOx, this dimension of

heterogeneity implies much larger drops in the post-C&T EJ gap trend. Lastly, we examine
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EJ gap effects after restricting the set of unregulated C&T facilities to those in counties

under Clear Air Act nonattainment and those whose parent company only operates a single

facility (M6-7 of Figure 5 and columns 5 and 6 of Table S7, using equation (1) estimates in

columns 2 and 3 of Table S4). SUTVA concerns do not alter EJ gap trend effects.

We conduct four robustness checks within step 2. We use pollution half-life parameters

taken from the atmospheric chemistry literature because HYSPLIT does not model pollution

decay over time. Our results are relatively stable to whether we allow for a 10% larger half-

life parameter which implies a slower decay rate (M8 of Figure 5 and column 1 Table S8)

or a 10% smaller half-life parameter which implies a faster decay rate (M9 of Figure 5 and

column 2 of Table S8). Likewise our results are little affected when we lower the height of

the planetary boundary layer to 0.5 km (M10 of Figure 5 and column 3 Table S8) or raise it

to 2 km (M11 of Figure 5 and column 4 Table S8).

We conduct three robustness checks within step 3. The first set of checks consider al-

ternative error structures for εpit. We find that precision increases when we allow εpit to be

spatially correlated within a uniform kernel across a distance of 500 km distance (Conley,

1999), roughly the longitudinal width of California, and serially correlated across 5 years

(Newey and West, 1987) (column 5 of Table S8). Likewise, precision increases when we

allow for error terms to be correlated across the four local pollutants using a Seemingly

Unrelated Regression (SUR) procedure (column 6 of Table S8). Equation (2) examines the

EJ gap in daily pollution levels of µg/m3/day, the unit of exposure typically used for air

pollution policy and by the public health literature. In Table S9, we detect a post-C&T

EJ gap trend break after applying an inverse hyperbolic sine transformation to our outcome

variable, showing C&T-driven exposure in disadvantaged communities decreased as a per-

centage of exposure in other communities after 2013. Standard errors reported in Table S9

are adjusted for statistical uncertainty from equation (1) using our bootstrap procedure.

Finally, to examine the potential role of secondary PM2.5, we replace HYSPLIT in step 2

of our procedure with InMAP, a reduced-complexity dispersal model based on output from

WRF-Chem, which incorporates atmospheric chemistry in order to model total (i.e., primary

and secondary) PM2.5 exposure from C&T-driven facility-level PM2.5, NOx, and SOx, emis-

sions (Tessum, Hill and Marshall, 2017).34 InMAP, however, has one major limitation: it uses

dispersal patterns in 2005, whereas our sample period is 2008-2017. Because InMAP does

not model dispersal patterns during our sample period, we are unable to directly compare

34 In addition to the inputs used in HYSPLIT, InMap requires the diameter, temperature, and emissions
velocity for each smokestack. We obtained these inputs from CARB. In the case of facilities with more than
one stack, we use the mean value across stacks. In the case of facilities with missing observations, we use
the industry-level average.
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Figure 5: Robustness checks for EJ gap effects
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M1: benchmark M7: single facility firms
M2: year−specific emission effects M8: slower pollution decay
M3: 70% avg. CO2e cutoff M9: faster pollution decay
M4: 80% avg. CO2e cutoff M10: lower boundary layer
M5: heterogeneity in avg. emissions M11: higher boundary layer
M6: nonattainment counties

Notes: Percentage change in the EJ gap trend following the introduction of the C&T program (i.e.,
βp
2

βp
1
∗ 100) for PM2.5, PM10, NOx, and SOx across robustness checks. M1: benchmark model point estimate

and 95% confidence interval accounting for uncertainty in equations (1) and (2). Point estimate shown
for all other models. M2: using year-specific effects to estimate C&T-driven emissions. M3: restricting
sample to facilities with average annual GHG emissions below the 70th percentile. M4: restricting sample
to facilities with average annual GHG emissions below the 80th percentile. M5: allowing heterogeneous
emissions effects by average annual emissions. M6: restricting unregulated facilities to those in counties
under Clear Air Act nonattainment. M7: restricting unregulated facilities to those whose parent company
only operates a single plant. M8: applying a slower pollution decay (i.e., 10% larger half-life parameter).
M9: applying a faster pollution decay (i.e., 10% smaller half-life parameter). M10: applying a planetary
boundary layer set at 0.5 km. M11: applying planetary boundary layer set at 2 km. Point estimates also
reported in Tables S7-S8.

estimates using InMAP-generated exposure with that using HYSPLIT-generated exposure.35

Instead, we examine the role of secondary PM2.5 by comparing how EJ gap trend estimates

differ between InMAP-generated primary PM2.5 exposure and InMAP-generated total PM2.5

exposure. If these two sets of estimates using InMap are similar, it is plausible that the true

EJ gap effects for secondary PM2.5 are similar to effects using HYSPLIT-generated primary

PM2.5 exposure. Table S10 replicates the structure of Table 2. Column 1 examines InMAP-

35 Furthermore, there is a difference in units between HYSPLIT and InMap. For any given location,
HYSPLIT produces the stock of pollution exposure during a given period, whereas InMAP produces that
period’s average flow of pollution exposure.
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generated primary PM2.5 exposure while column 2 examines InMAP-generated total PM2.5

exposure. EJ gap trend effects are very similar across these two columns.

The importance of modeling pollution dispersal Our empirical approach explicitly

embeds an atmospheric dispersal model within a causal inference framework. Compared with

conventional methods for assigning pollution exposure from emission sources, this approach

lends two benefits. It accounts for actual pollution dispersal patterns as dictated by to-

pography and time-varying meteorological conditions. It also determines resulting pollution

exposure across all locations in California, rather than a subset of locations assumed to be ex-

posed to policy-driven emissions. To explicitly demonstrate the importance of accounting for

pollution dispersal for our results, we now compare estimates from using our approach with

that of more conventional methods of assigning pollution exposure from emission sources.

Figure 6: Importance of modeling pollution dispersal
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M1: benchmark
M2: facility zip code
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Notes: Left panel shows estimates of pre-C&T trend (i.e., βp1) and right panel shows estimates of post-
C&T trend break (i.e., βp2) for PM2.5, PM10, NOx, and SOx across different methods for assigning pollution
exposure from emissions. M1: benchmark model with point estimate and 95% confidence interval accounting
for uncertainty in equations (1) and (2). Point estimate shown for all other models. M2: pollution exposure
assigned only to zip code of emitting facility. M3-5: pollution exposure assigned to zip codes with centroid
within 1.6 km, 4 km and 10 km circle of emitting facility, respectively. Point estimates also reported in
Table S11.

Figure 6 plots estimates of the pre-C&T trend, or β1
p (left panel), and the post-C&T

trend break, or β2
p (right panel), across criteria pollutants under different assumptions about

how facility-level emissions alter location-specific exposure.36 In M1, we show our benchmark

estimate where pollution dispersal is modeled by HYSPLIT every 4 hours throughout the

36Unlike Figure 5, Figure 6 does not plot
βp
2

βp
1
∗ 100 because βp1 and βp2 do not have consistent sign across

the different methods for assigning emissions to exposure.
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2008-2017 period. In M2 (and column 1 of Table S11), we assume that pollution exposure

from a facility is limited to the zip code of that facility, referred to in the literature as

“unit-hazard coincidence” (Banzhaf, Ma and Timmins, 2019). In M3-5 (and columns 2-4 of

Table S11), we employ a distance-based measure by assuming that pollution exposure from a

facility is limited to zip codes with centroids that are within 1.6, 4, and 10 km circles around

the facility. These radial distances appear in the literature but nonetheless are chosen largely

arbitrarily. Point estimates of β1
p and β2

p vary greatly across these alternative methods for

assigning pollution exposure. Not only do some estimates fall well outside the 95% confidence

intervals of our benchmark results, they also have different signs.

6 Discussion

Many market settings are characterized by efficiency-equity tradeoffs. We find that Cali-

fornia’s carbon market led to an equity co-benefit by narrowing the pollution exposure gap

between disadvantaged and other communities. This result brings causal evidence to a long-

standing debate that continues to shape one of the world’s most ambitious climate policies.

Moreover, the integration of pollution dispersal modeling and causal inference developed

in this paper to map program-driven emissions onto pollution exposure may have broader

applications across a variety of environmental valuation questions.

Equity concerns regarding California’s cap-and-trade program remain. First, while we

show that the program has led the pollution exposure gap between disadvantaged and other

communities to fall, this gap has not been eliminated five years into the program. Second,

pollution exposure constitutes only one component of the many distributional consequences

of California’s cap-and-trade program. Questions remain regarding how the program may

have altered the distribution of health outcomes as well as the distribution of the program’s

cost burden. A comprehensive understanding of welfare inequality must also account for

sorting as households move in response to changes in the pollution exposure gap (Depro,

Timmins and O’Neil, 2015; Banzhaf, Ma and Timmins, 2019). Third, a broader notion of

equity must also consider the ability of disadvantaged communities to partake in decision-

making around environmental policies. Such procedural justice issues remain in California

though recent policies such as AB 617 are beginning to engage disadvantaged communities

directly in local pollution regulation design (Fowlie, Walker and Wooley, 2020).

More generally, despite these findings for California, market-based environmental poli-

cies should not be used explicitly to address environmental justice concerns. Market-based

policies are intended for allocative efficiency and not distributional objectives, per se. The

EJ gap consequences detected in California emerges from the state’s spatial distribution of

27



polluting facilities and demographic characteristics. In other settings where facilities with

steeper marginal abatement cost curves are upwind of disadvantaged communities, an envi-

ronmental market could increase the environmental justice gap. Given the difficulties with

observing facility-level marginal abatement cost curves, it is hard to anticipate ex-ante how

market-based policies will alter existing EJ gaps. As a safeguard, market-based policies

should therefore be considered in tandem with policies that specifically address environmen-

tal justice concerns. In short, environmental justice problems need environmental justice

policies.
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A Appendix Methods

A.1 Bootstrap procedure for incorporating uncertainty in C&T

emission effects

This section details our bootstrap procedure over steps 1-3 to account for statistical uncer-

tainty in C&T-driven emission effects from equation (1), reproduced here:

asinh(Y p
jt) = κp1[Cj × t] + κp2[Cj × 1(t ≥ 2013)× t] + φpj + γpt + µpjt

We obtain point estimates κ̂p1, κ̂p2 and standard errors σ̂κp1 and σ̂κp2 from equation (1). We

then iterate the following procedure for draws b = 1...250:

1. Draw κ̂p1(b) ∼ N(κ̂p1, σ̂κp1) and κ̂p2(b) ∼ N(κ̂p2, σ̂κp2)

2. Construct Ŷ p
jt(b) = sinh

(
κ̂p1(b)[Cj × t] + κ̂p2(b)[Cj × 1(t ≥ 2013)× t] + φ̂pj

)
∗e(RMSE)2/2),

where RMSE is the root mean squared error from equation (1)

3. Feed Ŷ p
jt(b) into HYSPLIT to generate zip code-by-year pollution exposure, Ep

it(b)

4. Estimate equation (2) using Ep
it(b) as the outcome variable to obtain β̂p1(b) and β̂p2(b)

Figure S4 plots the empirical distributions for β̂p1(b) and β̂p2(b) for p ∈ {PM2.5, PM10, NOx, SOx}.
Denote standard errors across 250 bootstrap runs as σ̂βp1 (µpjt) and σ̂βp2 (µpjt) where the µpjt argu-

ment indicates the dependence on statistical uncertainty from equation (1). Denote σ̂βp1 (εpjt)

as the estimated standard error arising from heterogeneity in βp1 obtained by directly esti-

mating equation (2) with county-level clustered errors. Our reported standard error for βp1

is σ̂βp1 = σ̂βp1 (εpjt) + σ̂βp1 (µpjt). Likewise, for βp2 . σ̂βp1 and σ̂βp2 are reported in Table 2 and used

to construct the confidence intervals displayed in Figure 3.
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Appendix Figures

Figure S1: Emissions robustness: placebo C&T program timing
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Notes: Panels show estimated (true and placebo) emissions trend break coefficients (i.e., κ2 from eq. (1))
for GHG, PM2.5, PM10, NOx, and SOx emissions from varying the start year of the C&T program. Vertical
line at 2013 indicates actual introduction of the program. Shaded areas indicate 95% confidence intervals.
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Figure S2: Facility-level C&T-driven abatement between 2012-2017
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NOTES: Panels show the distribution of facility-level change in C&T-driven pollution between 2012-2017
(or abatement) predicted from step 1 for GHG, PM2.5, PM10, NOx, and SOx emissions, respectively.
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Figure S3: Average pollution exposure driven by C&T regulated facilities

Notes: Panels show daily exposure (in µg/m3/day) for each zip code averaged across 2008-2017 from GHG
C&T-regulated facilities as modeled in step 2 by HYSPLIT for PM2.5, PM10, NOx, and SOx, respectively.
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Figure S4: Empirical distribution of βp1 and βp2 from bootstrapping step 1
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Notes: Panels show the empirical distribution of βp1 and βp2 from equation (1) (across columns) for PM2.5,
PM10, NOx, and SOx (across rows) using the bootstrap procedure detailed in Section A.1 with 250 draws.
Solid black line shows parameter from directly estimating equation (1). Solid colored line shows the mean
parameter value from the empirical bootstrapped distribution. Dotted colored lines show the 2.5% and
97.5% percentiles of the empirical bootstrap distributions.
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Figure S5: Zip code-level percent change in EJ gap trend following C&T

Notes: Panels show the distribution of zip code-level percentage change in the EJ gap trend following the
introduction of the C&T program, for each disadvantaged zip code across PM2.5, PM10, NOx, and SOx.

Solid line shows the average percentage change across disadvantaged zip codes, or
βp
2

βp
1
∗ 100 from equation

(2). Dashed line marks zero.
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Appendix Tables

Table S1: GHG cap-and-trade regulated and non-regulated facilities

C&T regulated non-C&T regulated
facilities facilities

Number 106 227

Shares by sector:
Agriculture 0 .018
Manufacturing .629 .498
Mining, oil, and gas extraction .152 .097
Services .067 .233
Transportation .076 .053
Utilities .076 .093
Wholesale .01 .009

Notes: Total number of sample GHG cap-and-trade regulated and non-regulated facilities and by sec-
tor shares. Sectors shown adhere to the following definitions: Agriculture: NAICS 11; Manufacturing:
NAICS 31-33; Mining, oil, and gas extraction: NAICS 21; Services: NAICS 51, 54, 56, 61, 62, 71, 81, 92;
Transportation: NAICS 48, 49; Utilities: NAICS 22; Wholesale: NAICS 42.
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Table S2: Emissions robustness: average GHG cutoff

(1) (2) (3)
Avg GHG cutoff (%) 70 75 80

Outcome is asinh(GHG) emissions

κp1 0.194 0.187 0.174
(0.055) (0.052) (0.050)
[0.001] [0.001] [0.001]

κp2 -0.307 -0.297 -0.260
(0.085) (0.077) (0.072)
[0.001] [0.000] [0.001]

Facilities 294 316 337
Observations 1,863 2,054 2,234

Outcome is asinh(PM2.5) emissions

κp1 0.071 0.058 0.046
(0.043) (0.043) (0.043)
[0.111] [0.183] [0.298]

κp2 -0.105 -0.097 -0.079
(0.050) (0.048) (0.050)
[0.044] [0.053] [0.121]

Facilities 281 302 323
Observations 1,780 1,968 2,147

Outcome is asinh(PM10) emissions

κp1 0.097 0.083 0.075
(0.034) (0.033) (0.035)
[0.008] [0.016] [0.039]

κp2 -0.129 -0.117 -0.103
(0.043) (0.039) (0.041)
[0.005] [0.005] [0.018]

Facilities 281 302 323
Observations 1,780 1,968 2,147

Outcome is asinh(NOx) emissions

κp1 0.085 0.075 0.058
(0.033) (0.039) (0.037)
[0.015] [0.061] [0.128]

κp2 -0.126 -0.104 -0.091
(0.047) (0.050) (0.048)
[0.010] [0.042] [0.066]

Facilities 282 303 324
Observations 1,782 1,970 2,149

Outcome is asinh(SOx) emissions

κp1 -0.005 0.006 -0.004
(0.038) (0.035) (0.035)
[0.890] [0.875] [0.912]

κp2 -0.025 -0.037 -0.020
(0.048) (0.043) (0.045)
[0.600] [0.393] [0.657]

Facilities 282 303 324
Observations 1,777 1,965 2,142

Notes: Estimates of pre-C&T differential emissions trend (i.e., κp1 from equation (1)) and and post-C&T
differential emissions trend break (i.e., κp2 from equation (1)) for GHG, PM2.5, PM10, NOx, and SOx across
panels. Columns 1, 2, and 3 restrict facilities to those with sample average annual GHG emissions below the
70th, 75th, and 80th percentile, respectively. All models include facility-specific and year-specific dummy
variables. Standard errors clustered at the county-level in parentheses, p-value in brackets.
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Table S3: Emissions effect robustness: heterogeneity by average emissions
(1) (2) (3)

Outcome is asinh(GHG) emissions

κp1 0.187 0.176 0.172
(0.052) (0.052) (0.052)
[0.001] [0.002] [0.002]

κp2 -0.297 -0.361 -0.354
(0.077) (0.092) (0.097)
[0.000] [0.000] [0.001]

trend break × avg. emissions 0.000 0.000
(0.000) (0.000)
[0.053] [0.090]

trend break × avg. emissions2 -0.000
(0.000)
[0.158]

Outcome is asinh(PM2.5) emissions

κp1 0.058 0.060 0.060
(0.043) (0.042) (0.043)
[0.183] [0.167] [0.165]

κp2 -0.097 -0.133 -0.146
(0.048) (0.051) (0.068)
[0.053] [0.012] [0.040]

trend break × avg. emissions -0.004 -0.005
(0.003) (0.004)
[0.197] [0.249]

trend break × avg. emissions2 0.000
(0.000)
[0.661]

Outcome is asinh(PM10) emissions

κp1 0.083 0.084 0.086
(0.033) (0.033) (0.033)
[0.016] [0.015] [0.012]

κp2 -0.117 -0.143 -0.172
(0.039) (0.042) (0.048)
[0.005] [0.002] [0.001]

trend break × avg. emissions -0.002 -0.003
(0.001) (0.002)
[0.080] [0.073]

trend break × avg. emissions2 0.000
(0.000)
[0.197]

Outcome is asinh(NOx) emissions

κp1 0.075 0.079 0.080
(0.039) (0.038) (0.039)
[0.061] [0.046] [0.046]

κp2 -0.104 -0.143 -0.157
(0.050) (0.045) (0.079)
[0.042] [0.003] [0.054]

trend break × avg. emissions -0.001 -0.001
(0.000) (0.001)
[0.002] [0.294]

trend break × avg. emissions2 0.000
(0.000)
[0.793]

Outcome is asinh(SOx) emissions

κp1 0.006 0.013 0.013
(0.035) (0.035) (0.035)
[0.875] [0.715] [0.705]

κp2 -0.037 -0.110 -0.074
(0.043) (0.048) (0.077)
[0.393] [0.026] [0.345]

trend break × avg. emissions -0.004 -0.002
(0.002) (0.003)
[0.017] [0.455]

trend break × avg. emissions2 -0.000
(0.000)
[0.438]

Notes: Estimates of pre-C&T differential emissions trend (i.e., κp1 from equation (1)) and and post-C&T
differential emissions trend break (i.e., κp2 from equation (1)) for GHG, PM2.5, PM10, NOx, and SOx across
panels. Columns 1 shows benchmark model. Column 2 (3) further interacts post C&T differential trend
break with a linear (quadratic) function of sample average annual emissions. All models include facility-
specific and year-specific dummy variables. Standard errors clustered at the county-level in parentheses,
p-value in brackets.
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Table S4: Emissions effect robustness: restricting treatment spillovers

(1) (2) (3)
Benchmark Nonattainment Single facilities

Outcome is asinh(GHG) emissions

κp1 0.187 - 0.210
(0.052) - (0.053)
[0.001] - [0.000]

κp2 -0.297 - -0.322
(0.077) - (0.078)
[0.000] - [0.000]

Facilities 316 - 310
Observations 2,054 - 2,029

Outcome is asinh(PM2.5) emissions

κp1 0.058 0.085 0.066
(0.043) (0.049) (0.043)
[0.183] [0.092] [0.137]

κp2 -0.097 -0.119 -0.101
(0.048) (0.052) (0.049)
[0.053] [0.029] [0.046]

Facilities 302 260 299
Observations 1,968 1,729 1,952

Outcome is asinh(PM10) emissions

κp1 0.083 0.101 0.091
(0.033) (0.034) (0.033)
[0.016] [0.006] [0.008]

κp2 -0.117 -0.145 -0.121
(0.039) (0.054) (0.040)
[0.005] [0.012] [0.004]

Facilities 302 140 299
Observations 1,968 1,080 1,952

Outcome is asinh(NOx) emissions

κp1 0.075 0.057 0.065
(0.039) (0.041) (0.039)
[0.061] [0.173] [0.101]

κp2 -0.104 -0.090 -0.098
(0.050) (0.054) (0.050)
[0.042] [0.102] [0.060]

Facilities 303 287 300
Observations 1,970 1,879 1,954

Outcome is asinh(SOx) emissions

κp1 0.006 - 0.005
(0.035) - (0.036)
[0.875] - [0.892]

κp2 -0.037 - -0.036
(0.043) - (0.044)
[0.393] - [0.423]

Facilities 303 - 300
Observations 1,965 - 1,950

Notes: Estimates of pre-C&T differential emissions trend (i.e., κp1 from equation (1)) and and post-C&T
differential emissions trend break (i.e., κp2 from equation (1)) for GHG, PM2.5, PM10, NOx, and SOx across
panels. Columns 1 shows benchmark model. Column 2 restricts unregulated facilities to those in counties
under Clear Air Act nonattainment for pollutant of interest. Nonattainment does not apply for GHG
emissions and there were no counties under SOx nonattainment during our sample period. For NOx, we
use nonattainment in the one-hour ozone standard, for which NOx is a precursor pollutant. Column 3
restricts unregulated facilities to those whose parent company only operates a single facility. All models
include facility-specific and year-specific dummy variables. Standard errors clustered at the county-level in
parentheses, p-value in brackets. 42



Table S5: Correlation between HYSPLIT-driven and ambient pollution exposure

(1) (2) (3) (4)
Outcome is ambient asinh(exposure)
PM2.5 PM10 NOx SOx

HYSPLIT-driven asinh(exposure) 0.860 0.625 0.436 0.231
(0.154) (0.137) (0.148) (0.207)
[0.000] [0.000] [0.004] [0.272]

Zip codes 133 160 121 39
Notes: Linear coefficient from zip code-level regressions of asinh daily HYSPLIT-driven
pollution exposure (in µg/m3/day) averaged across 2008-2017 on asinh daily pollution
exposure from ambient pollution monitors (in µg/m3/day) averaged across 2008-2017.
We employ a asinh-asinh specification because ambient pollution readings, which cap-
ture the average daily instantaneous stock of pollution, are not directly comparable
to our exposure measure, which capture average daily pollution flow from C&T-driven
emissions. Ambient pollution are assumed to be uniformly distributed within a moni-
tor’s zip code. Standard errors clustered at the county-level in parentheses, p-value in
brackets.
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Table S6: Pollution exposure difference between disadvantaged and other zip codes in 2008

(1) (2) (3)
Disadvantaged Other Difference

PM2.5 0.256 0.093 0.163
(0.888) (0.572) (0.038)

[0.000]

PM10 0.322 0.109 0.214
(1.066) (0.532) (0.043)

[0.000]

NOx 0.451 0.387 0.064
(2.842) (6.856) (0.243)

[0.792]

SOx 0.364 0.091 0.273
(1.092) (0.217) (0.041)

[0.000]

Zip codes 722 984 1,706
Notes: Column 1 shows average 2008 pollution expo-
sure (µg/m3) across disadvantaged zip codes, with stan-
dard deviation in parentheses. Column 2 shows average
2008 pollution exposure (µg/m3) across other zip codes,
with standard deviation in parentheses. Column 3 shows
the average difference in 2008 pollution exposure between
disadvantaged and other zip codes, with standard error
in parentheses and p-value in brackets. All pollution ex-
posure generated by HYSPLIT from facilities that would
eventually be regulated by the GHG C&T program.
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Table S7: EJ gap effect robustness: step 1

(1) (2) (3) (4) (5) (6)
Year-specific GHG cutoff: GHG cutoff: Hetero in SUTVA SUTVA

effects 70% 80% avg. emissions NA Single fac.

Panel a: PM2.5

βp1 0.040 0.025 0.043 0.041 0.048 0.043
(0.011) (0.006) (0.010) (0.012) (0.012) (0.012)
[0.001] [0.000] [0.000] [0.001] [0.000] [0.000]

βp2 -0.061 -0.031 -0.063 -0.075 -0.067 -0.064
(0.019) (0.008) (0.019) (0.021) (0.021) (0.020)
[0.003] [0.000] [0.001] [0.001] [0.002] [0.002]

(βp2/β
p
1) ∗ 100 -152.583 -125.385 -146.581 -182.096 -141.543 -146.262

Observations 16,416 16,387 16,426 16,416 16,416 16,416

Panel b: PM10

βp1 0.062 0.038 0.069 0.064 0.074 0.066
(0.014) (0.008) (0.013) (0.014) (0.016) (0.015)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

βp2 -0.089 -0.046 -0.093 -0.100 -0.105 -0.091
(0.027) (0.009) (0.026) (0.028) (0.030) (0.028)
[0.002] [0.000] [0.001] [0.001] [0.001] [0.002]

(βp2/β
p
1) ∗ 100 -142.447 -121.310 -134.948 -156.155 -141.932 -136.905

Observations 16,416 16,387 16,426 16,416 16,416 16,416

Panel c: NOx

βp1 0.079 0.043 0.087 0.079 0.079 0.082
(0.033) (0.026) (0.031) (0.033) (0.032) (0.034)
[0.019] [0.108] [0.006] [0.021] [0.018] [0.018]

βp2 -0.132 -0.055 -0.149 -0.142 -0.138 -0.141
(0.066) (0.031) (0.069) (0.075) (0.070) (0.071)
[0.051] [0.084] [0.035] [0.062] [0.052] [0.053]

(βp2/β
p
1) ∗ 100 -167.212 -128.157 -170.878 -180.760 -175.096 -172.408

Observations 16,416 16,387 16,426 16,416 16,416 16,416

Panel d: SOx

βp1 0.036 0.023 0.037 0.011 - 0.037
(0.022) (0.015) (0.020) (0.012) - (0.023)
[0.108] [0.141] [0.077] [0.349] - [0.108]

βp2 -0.103 -0.080 -0.099 -0.114 - -0.100
(0.050) (0.045) (0.046) (0.058) - (0.049)
[0.045] [0.084] [0.037] [0.054] - [0.047]

(βp2/β
p
1) ∗ 100 -284.826 -353.380 -267.896 -1003.707 - -272.630

Observations 16,416 16,387 16,426 16,416 - 16,416

Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp1 from equation (2)), post-C&T EJ gap trend break (i.e., βp2 from

equation (2)), and the percentage change in the EJ gap trend following the introduction of the C&T program (i.e.,
β
p
2

β
p
1
∗100) for

PM2.5, PM10, NOx, and SOx down panels. All models include zip code-specific and year-specific dummy variables. Observations
weighted by zip code-level average population during 2008-2012. Column 1 uses year-specific effects to estimate C&T-driven
emissions. Columns 2 and 3 restrict facilities to those with sample average GHG emissions below the 70th and 80th percentile,
respectively to estimate C&T-driven emissions (see columns 1 and 3 of Table S2). Column 4 uses C&T-driven emissions that
allow the C&T differential trend break to vary as a linear function of sample average emissions (see column 2 of Table S3).
Column 5 restricts unregulated facilities to those in counties under Clear Air Act nonattainment for pollutant of interest (see
column 2 of Table S4). Column 6 restricts unregulated facilities to those whose parent company only operates a single facility
(see column 3 of Table S4). Standard errors, in parentheses, cluster εpit from equation (2) at the county-level but are not
adjusted for statistical uncertainty from equation (1). P-value in brackets. Observations apply to all panels.
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Table S8: EJ gap effect robustness: steps 2 and 3

(1) (2) (3) (4) (5) (6)
Slower Faster Lower Higher Spatial Pollution
decay decay boundary boundary corr. err. corr. err.

Panel a: PM2.5

βp1 0.043 0.041 0.037 0.043 0.042 0.042
(0.011) (0.011) (0.010) (0.011) (0.004) (0.006)
[0.000] [0.000] [0.001] [0.000] [0.000] [0.000]

βp2 -0.064 -0.062 -0.055 -0.064 -0.063 -0.063
(0.020) (0.020) (0.019) (0.020) (0.009) (0.010)
[0.002] [0.003] [0.007] [0.002] [0.000] [0.000]

(βp2/β
p
1) ∗ 100 -149.007 -150.533 -148.764 -149.992 -149.699 -149.699

Panel b: PM10

βp1 0.066 0.063 0.057 0.066 0.065 0.065
(0.015) (0.014) (0.013) (0.014) (0.006) (0.008)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

βp2 -0.092 -0.089 -0.079 -0.092 -0.090 -0.090
(0.027) (0.027) (0.027) (0.027) (0.011) (0.013)
[0.001] [0.002] [0.005] [0.001] [0.000] [0.000]

(βp2/β
p
1) ∗ 100 -139.150 -140.448 -137.785 -140.161 -139.739 -139.739

Panel c: NOx

βp1 0.089 0.081 0.083 0.085 0.085 0.085
(0.036) (0.034) (0.035) (0.035) (0.039) (0.021)
[0.018] [0.020] [0.020] [0.018] [0.030] [0.000]

βp2 -0.148 -0.139 -0.140 -0.144 -0.143 -0.143
(0.073) (0.073) (0.073) (0.073) (0.050) (0.033)
[0.048] [0.063] [0.060] [0.054] [0.004] [0.000]

(βp2/β
p
1) ∗ 100 -166.117 -170.804 -168.674 -168.261 -168.282 -168.282

Panel d: SOx

βp1 0.037 0.037 0.030 0.038 0.037 0.037
(0.023) (0.022) (0.019) (0.023) (0.007) (0.006)
[0.109] [0.107] [0.133] [0.103] [0.000] [0.000]

βp2 -0.102 -0.100 -0.087 -0.102 -0.101 -0.101
(0.050) (0.049) (0.044) (0.050) (0.012) (0.010)
[0.047] [0.047] [0.053] [0.045] [0.000] [0.000]

(βp2/β
p
1) ∗ 100 -271.967 -272.688 -295.166 -270.107 -272.291 -272.291

Observations 16,416 16,416 16,359 16,430 16,417 16,417
Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp1 from equation (2)), post-C&T EJ gap trend break (i.e., βp2 from equation

(2)), and the percentage change in the EJ gap trend following the introduction of the C&T program (i.e.,
β
p
2

β
p
1
∗ 100) for PM2.5,

PM10, NOx, and SOx down panels. All models include zip code-specific and year-specific dummy variables. Observations
weighted by zip code-level average population during 2008-2012. Column 1 applies a slower pollution decay to HYSPLIT
pollution trajectories (i.e., 10% larger half-life parameter). Column 2 applies a faster pollution decay to HYSPLIT pollution
trajectories (i.e., 10% smaller half-life parameter). Column 3 applies a lower planetary boundary layer set at 0.5 km. Column
4 applies a higher planetary boundary layer set at 2 km. Column 5 adjusts standard errors for spatial (500 km uniform kernel)
and serial correlation (5 years). Column 6 adjusts standard errors allowing correlation across pollutants using a Seemingly
Unrelated Regression (SUR) procedure. Standard errors, in parentheses, cluster εpit from equation (2) at the county-level but
are not adjusted for statistical uncertainty from equation (1). P-value in brackets. Observations apply to all panels.
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Table S9: EJ gap effect robustness: asinh exposure

(1) (2) (3) (4)
Outcome is (asinh) exposure

PM2.5 PM10 NOx SOx

βp1 0.027 0.037 0.032 0.017
(0.013) (0.014) (0.021) (0.017)
[0.045] [0.009] [0.137] [0.336]

βp2 -0.032 -0.042 -0.038 -0.051
(0.014) (0.015) (0.023) (0.030)
[0.026] [0.009] [0.102] [0.095]

βp1 + βp2 -0.006 -0.004 -0.005 -0.034
(0.005) (0.007) (0.008) (0.015)
[0.302] [0.551] [0.487] [0.029]

Zip codes 1649 1649 1649 1649
Counties 58 58 58 58
Observations 16,416 16,416 16,416 16,416
Notes: Estimates of the pre-C&T EJ gap trend (i.e.,
βp1 from equation (2)), the post-C&T EJ gap trend
break (i.e., βp2 from equation (2)), and the post-C&T EJ
gap trend (i.e, βp1 + βp2) for asinh(PM2.5), asinh(PM10),
asinh(NOx), and asinh(SOx), across columns. All models
include zip code-specific and year-specific dummy vari-
ables. Observations weighted by zip code-level average
population during 2008-2012. Parentheses indicate stan-
dard errors that account for statistical uncertainty in
C&T predicted emissions (µpit from equation (1) via the
bootstrap procedure in Appendix A.1) and county-level
heterogeneity in EJ gap effects of arbitrary form (εpit from
equation (2)). P-value in brackets.
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Table S10: EJ gap effect robustness: total PM2.5 exposure using InMAP

(1) (2)
Primary PM2.5 Total PM2.5

βp1 0.002 0.003
(0.001) (0.001)
[0.001] [0.001]

βp2 -0.003 -0.004
(0.001) (0.001)
[0.000] [0.000]

βp1 + βp2 -0.001 -0.002
(0.000) (0.001)
[0.004] [0.001]

(βp2/β
p
1) ∗ 100 -150.559 -172.948

(16.261) (16.415)
[0.000] [0.000]

Zip codes 1648 1648
Counties 58 58
Observations 16,480 16,480
Notes: Estimates of the pre-C&T EJ gap trend
(i.e., βp1 from equation (2)), the post-C&T EJ gap
trend break (i.e., βp2 from equation (2)), the post-
C&T EJ gap trend (i.e, βp1 +βp2), and the percentage
change in the EJ gap trend following the introduc-

tion of the C&T program (i.e.,
βp
2

βp
1
∗100) for InMAP-

modeled primary PM2.5 exposure (column 1) and for
InMAP-modeled total (i.e., primary and secondary)
PM2.5 exposure (column 2). InMAP employs dis-
persal patterns for 2005 and not for the 2008-2017
sample period. All models include zip code-specific
and year-specific dummy variables. Observations
weighted by zip code-level average population dur-
ing 2008-2012. Standard errors, in parentheses, clus-
ter εpit from equation (2) at the county-level but are
not adjusted for statistical uncertainty from equa-
tion (1). P-value in brackets.
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Table S11: Importance of modeling pollution dispersal

(1) (2) (3) (4)
Facility 1.6 km 4 km 10 km
zip code circle circle circle

Panel a: PM2.5

βp1 0.052 -0.017 -0.075 -0.140
(0.036) (0.026) (0.040) (0.079)
[0.157] [0.527] [0.075] [0.084]

βp2 -0.076 -0.003 0.067 0.132
(0.049) (0.023) (0.036) (0.072)
[0.134] [0.912] [0.075] [0.076]

Observations 785 1,831 3,573 7,545

Panel b: PM10

βp1 0.105 0.020 -0.069 -0.143
(0.070) (0.030) (0.047) (0.089)
[0.142] [0.509] [0.155] [0.116]

βp2 -0.142 -0.049 0.059 0.137
(0.091) (0.036) (0.055) (0.095)
[0.132] [0.177] [0.294] [0.157]

Observations 785 1,831 3,573 7,545

Panel c: NOx

βp1 0.163 -0.120 -0.292 -0.417
(0.188) (0.110) (0.096) (0.175)
[0.391] [0.285] [0.005] [0.022]

βp2 -0.213 0.103 0.311 0.480
(0.247) (0.132) (0.110) (0.179)
[0.396] [0.442] [0.008] [0.011]

Observations 785 1,831 3,573 7,545

Panel d: SOx

βp1 0.001 -0.156 -0.273 -0.433
(0.004) (0.122) (0.183) (0.250)
[0.688] [0.210] [0.145] [0.091]

βp2 -0.014 -0.007 0.128 0.253
(0.009) (0.030) (0.103) (0.143)
[0.125] [0.813] [0.223] [0.085]

Observations 783 1,823 3,553 7,535
Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp1 from equation (2)) and the post-C&T EJ gap trend break (i.e.,
βp2 from equation (2)) for PM2.5, PM10, NOx, and SOx down panels. All models include zip code-specific and year-specific
dummy variables. Observations weighted by zip code-level average population during 2008-2012. Column 1 assigns pollution
exposure to only the zip code of the emitting facility. Columns 2-4 assign pollution exposure to zip codes with centroid within
a 1.6, 4 km and 10 km circle of emitting facility, respectively. Standard errors in parentheses cluster εpit from equation (2) at
the county-level but are not adjusted for statistical uncertainty from equation (1). P-value in brackets.
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