
NBER WORKING PAPER SERIES

INFORMATION, TECHNOLOGY ADOPTION AND PRODUCTIVITY:
THE ROLE OF MOBILE PHONES IN AGRICULTURE

Apoorv Gupta
Jacopo Ponticelli

Andrea Tesei

Working Paper 27192
http://www.nber.org/papers/w27192

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
May 2020

We received valuable comments from Siwan Anderson, Shawn Cole, Nicola Gennaioli, Sabrina 
Howell, Dean Karlan, Marco Manacorda, Pepita Miquel, Imran Rasul, Gabriella Santangelo, 
Chris Udry and seminar participants at Columbia, Universidad de Los Andes, Universidad 
Javeriana, University of Zurich, University of Bonn, Lancaster University, NYU Stern, Bocconi 
University, Queen Mary University, University of Maryland, Northwestern University, Berkeley 
Haas, UBC, CUNY, BGSE Summer Forum, European Economic Association 2019 and the IPA 
2019 Researcher Gathering. Ponticelli gratefully acknowledges financial support received for this 
project from the Cohen and Keenoy Faculty Research Fund and the Fama-Miller Center at the 
University of Chicago Booth School of Business. The project was developed while Andrea Tesei 
was visiting the Ford Motor Company Center for Global Citizenship at the Kellogg School of 
Management, Northwestern University, whose hospitality is gratefully acknowledged. Pierre 
Jaffard, Gursharan Bhue and Mark He provided excellent research assistance. We are grateful to 
the staff at GSMA for their help with the mobile phones data. The GSMA data used in this study 
are covered by a confidential license agreement. The views expressed herein are those of the 
authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2020 by Apoorv Gupta, Jacopo Ponticelli, and Andrea Tesei. All rights reserved. Short 
sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



Information, Technology Adoption and Productivity: The Role of Mobile Phones in Agriculture 
Apoorv Gupta, Jacopo Ponticelli, and Andrea Tesei
NBER Working Paper No. 27192
May 2020
JEL No. O33,O4,Q16,Q55

ABSTRACT

We study the effect of information on technology adoption and productivity in agriculture. Our 
empirical strategy exploits the expansion of the mobile phone network in previously uncovered 
areas of rural India coupled with the availability of call centers for agricultural advice. We 
measure information on agricultural practices by analyzing the content of 2.5 million phone calls 
made by farmers to one of India's leading call centers for agricultural advice.  We find that areas 
receiving coverage from new towers and with no language barriers between farmers and advisers 
answering their calls experience higher adoption of high yielding varieties of seeds and other 
complementary inputs, as well as higher increase in agricultural productivity. Our estimates 
indicate that information frictions can explain around 25 percent of the agricultural productivity 
gap between the most productive and the least productive areas in our sample.

Apoorv Gupta
Northwestern University
2211 Campus Drive
Room 4470
Evanston, IL 60208
apoorv-gupta@kellogg.northwestern.edu

Jacopo Ponticelli
Kellogg School of Management
Northwestern University
2211 Campus Drive
Evanston, IL 60208
and NBER
jacopo.ponticelli@kellogg.northwestern.edu

Andrea Tesei
School of Economics and Finance
Queen Mary University of London
327 Mile End Road
London E1 4NS
and CEPR, CEP (LSE) & CESifo
a.tesei@qmul.ac.uk



1 Introduction

Agricultural workers in the richest 10 percent of countries produce, on average, 50 times more

output per worker than those in the poorest 10 percent (Gollin, Lagakos, and Waugh 2014). One

often cited explanation for these large productivity differences is the sluggish adoption of modern

agricultural technologies in developing countries. What are the constraints on the adoption of

these technologies and to what extent they contribute to the observed differences in productivity,

however, remains an open question (see reviews in Jack 2013, Foster and Rosenzweig 2010 and

Feder, Just, and Zilberman 1985). Since agriculture employs a significant share of workers in

the developing world, addressing this issue is crucial to our understanding of income inequality

across countries more generally.1

In this paper we focus on the role of information in explaining differences in technology adop-

tion and productivity in the agricultural sector. Several scholars have pointed to the importance

of learning and information frictions in the diffusion of new technologies in agriculture (Foster

and Rosenzweig, 1995; Conley and Udry, 2010). Yet, empirically quantifying the impact of

information in closing productivity differences across farmers remains challenging. This is be-

cause it is usually hard to observe access to information about agricultural technologies, actual

adoption of these technologies and productivity. We address this challenge by bringing together

data on the expansion of the mobile phone network in previously unconnected areas of rural

India, with geo-located data on phone calls made by farmers seeking agricultural advice and

detailed survey data on agricultural inputs and yields covering around 19 million farmers. Our

goal is to investigate whether access to the mobile phone network – coupled with the availabil-

ity of call centers for agricultural advice – helps to disseminate timely and reliable information

about modern agricultural practices and inputs, and whether access to this information fosters

technology adoption and productivity.

We study this question in the context of India, a country where a large share of the population

is employed in agriculture and where differences in agricultural productivity across regions are

large. India offers a unique setting to study the role of information on technology adoption and

productivity. As late as 2003, 60 percent of Indian farmers reported not having access to any

source of information on modern technology to assist them in their farming practices (National

Sample Survey, 2005). In the mid-2000’s, however, the Indian government launched two pro-

grams that plausibly increased farmers’ access to information on agricultural practices. First,

the Shared Mobile Infrastructure Program (SMIP), which brought mobile phone coverage in

previously unconnected areas through the construction of more than 7,000 mobile phone towers.

Second, the Kisan Call Centers (KCC), which provided a free-of-charge, phone-based service of

agricultural advice for Indian farmers. In our empirical analysis we exploit the heterogeneous

exposure of farmers to these two programs to generate plausibly exogenous variation in their

access to information. We measure farmers’ access to information on farming practices based on

the content and location of approximately 2.5 million phone calls made by farmers to the KCC.

The analysis proceeds in two steps. In the first step, we use an event-study design to doc-

1 On the magnitude of labor productivity differences across countries – both in the aggregate and in the agricul-
tural sector – see Caselli (2005) and Restuccia, Yang, and Zhu (2008). On differences in technology adoption
– and the pattern of technology diffusion – across countries see Comin and Hobijn (2004) and Caselli and
Coleman (2001).
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ument the evolution of farmers’ calls to KCC when new mobile phone towers are constructed

in previously uncovered areas. Using high-frequency (monthly) variation, we show a significant

increase in the number of calls following the construction of the first tower in a given area,

which is consistent with a large and underserved demand for agricultural advice among Indian

farmers (Cole and Fernando, 2016). We also show that the increase in the number of calls

varies depending on the local language spoken in an area. The reason is that, although the

agricultural advice provided by KCC is in principle available to all farmers with access to a

phone, KCC agronomists answer calls only in one of the 22 official languages recognized by the

Indian Constitution.2 This effectively creates a language barrier to access the service for around

40 million individuals, mostly concentrated among the rural population, who speak one of the

approximately 100 non-official languages of India. Consistently, we observe a smaller increase

in calls from areas where the majority of the local population speaks a non-official language,

despite these areas are comparable in terms of observable socio-economic characteristics and

pre-existing trends in the outcomes of interest.

In the second step of our analysis, we turn to study the real effects of access to information. To

this end, we match detailed survey data on agricultural inputs and crop yields with geo-located

data on the diffusion of mobile phone coverage. We propose an identification strategy that

compares – within each administrative district – locations where new SMIP mobile phone towers

were proposed and eventually constructed, with locations where new towers were also proposed

but eventually not constructed. In addition, we exploit variation in the spatial diffusion of non-

official languages to capture the farmers’ ability to access phone-based services for agricultural

advice. We think of the combination of mobile phone coverage and absence of language barriers

with agricultural advisers as a positive shock to information about agricultural practices for

farmers. This identification strategy allows us to disentangle the effect of information about

agricultural practices from other potential mechanisms linking the arrival of mobile phones to

technology adoption and productivity in a given area.

We start by documenting that areas with a larger increase in potential access to information

experienced larger adoption of more advanced agricultural technologies. We focus in particular

on farmers’ adoption of high-yielding variety (HYV) seeds, chemical fertilizers and pesticides, as

well as irrigation systems. HYV seeds are commercially developed to increase crop yields and are

one of the most prominent innovations in modern agriculture.3 Chemical fertilizers and reliable

irrigation systems are key complementary inputs to maximize HYV potential. We find that

areas with a one standard deviation larger increase in mobile phone coverage experienced a 1.4

percentage points larger increase in area farmed with HYV seeds between 2007 and 2012.4 This

effect corresponds to a 5.3 percent increase in land cultivated with HYV seeds for the average

cell in our sample.5 This effect is concentrated in areas with no language barriers between

farmers and agricultural advisers. We find positive and significant effects also on the adoption

2 The 2011 Census identifies 121 languages spoken in India, 22 of which are part of the Eight Schedule of the
Constitution, i.e. they are recognized as official languages of the Republic of India.

3 On the impact of high-yielding varieties on agricultural productivity and economic development see, among
others, Evenson and Gollin 2002, 2003.

4 Data on farmers’ use of agricultural inputs is sourced from the Agricultural Input Survey of India, which is
carried out at 5 year intervals. The last two waves for which data is available are 2007 and 2012.

5 The units of observation are cells of 0.083 × 0.083 degree resolution, approximately corresponding to areas of
10×10 km at the equator.
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of chemical fertilizers, pesticides and irrigation. In line with an information mechanism, we

show that the same areas also experienced a larger increase in farmers’ calls seeking information

exactly on these technologies.

Next, we study the effect of farmers’ access to information on agricultural productivity, as

measured by average crop yields. Our results indicate that areas where farmers had a larger

increase in potential access to information experienced a larger increase in agricultural produc-

tivity. In particular, our estimates indicate that areas with a one standard deviation larger

increase in mobile phone coverage and no language barriers between farmers and agricultural

advisers experienced a 1.3 percent larger increase in agricultural yields between 2007 and 2012.

Within our sample of rural areas with no initial mobile phone coverage there is large variation

in the baseline level of agricultural productivity. In 2007, the average yield of an area at the

75th percentile of agricultural productivity was around twice as large as the one observed at the

25th percentile. This is a yield gap similar to the one observed in rice and wheat production

between the richest 10 percent and the poorest 10 percent of countries (Gollin, Lagakos, and

Waugh, 2014). Our estimates indicate that differences in access to information on agricultural

practices can explain around 25 percent of this productivity gap. We also show that the effect

of access to information is heterogeneous across areas with different initial productivity, and it

is the largest for those in the lowest productivity quartile. This indicates that access to informa-

tion on agricultural practices can reduce productivity differences across farmers by increasing

the productivity of the initially less productive ones.

Our results are robust to a number of checks and alternative specifications. First, we show that

there are no pre-existing trends in technology adoption and crop yields between cells that received

coverage from new towers and cells that did not. In addition, we show that the lower adoption

of modern agricultural technologies and the smaller productivity gains in areas characterized

by language barriers between farmers and KCC agricultural advisers are not driven by other

factors, such as geographical isolation or income levels, that may potentially be correlated with

the diffusion of non-official languages in a given area. We also discuss and test for other potential

mechanisms linking mobile coverage with technology adoption and productivity. In particular,

previous studies have shown that by providing detailed and timely information on prices, mobile

phones can reduce price dispersion, favor a more efficient allocation of goods across markets and

generate higher incomes for goods producers (Jensen, 2007). This, in turn, can help farmers pay

the fixed cost of adopting new technologies. We test to what extent our results might be driven

by the effect of mobile phones on price dispersion by augmenting our main specification with

fixed effects for the closest agricultural market to each cell in our sample (in addition to the

district fixed effects included in all specifications). This allows us to compare outcomes across

farmers who plausibly face the same prices for their products and experience the same changes

in local demand. We show that all our main results are robust to this augmented specification.

Related Literature

Our paper is related to different strands of literature. An influential body of work in macroeco-

nomics and development has documented the existence of substantial differences in productivity

across countries and investigated their determinants. Some studies have focused on productivity

differences in the manufacturing sector and the extent to which they can be explained by the
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misallocation of factors of production across heterogeneously productive firms (Restuccia and

Rogerson 2008, Hsieh and Klenow 2009). Other studies have focused on productivity differences

in the agricultural sector (Gollin, Lagakos, and Waugh 2014). These are larger than differences in

aggregate labor productivity, suggesting that the productivity gap in agriculture is particularly

important for our understanding of income differences across countries (Caselli 2005, Restuccia,

Yang, and Zhu 2008). Several potential explanations of this productivity gap have been pro-

posed, including land misallocation, lack of insurance markets, or frictions in the reallocation

of workers from agriculture to the non-agricultural sectors (Adamopoulos and Restuccia 2014,

Lagakos and Waugh 2013, Gollin, Lagakos, and Waugh 2014, Donovan 2016). Relative to these

studies, we emphasize and quantify the role played by information frictions.

Our work also contributes to a large literature studying the impact of technology on productiv-

ity growth (Aghion and Howitt, 1992; Comin and Hobijn, 2010). Empirical studies in this area

have tried to understand the determinants of technology adoption in the manufacturing sector

across and within countries. Cross-country studies have documented the role played by finan-

cial development and management practices (Comin and Nanda, 2019; Bloom and Van Reenen,

2007), while studies at a finer level of geographical detail have pointed to organizational barri-

ers and misaligned incentives (Atkin, Chaudhry, Chaudry, Khandelwal, and Verhoogen, 2017).

Compared to these studies, we document the role of information diffusion on technology adop-

tion in agriculture, a sector plausibly characterized by higher information barriers and lower

organizational levels than the manufacturing sector.

Our paper is also related to the micro-development literature investigating the role of modern

agricultural technologies – such as high-yielding variety seeds – in the process of development.

This literature has studied several potential frictions to the adoption of modern technologies

by farmers in developing countries, including credit constraints (Duflo, Kremer, and Robinson

2004), missing insurance markets (Karlan, Osei, Osei-Akoto, and Udry 2014), lack of access to

high-quality inputs (Bold, Kaizzi, Svensson, and Yanagizawa-Drott 2017), or lack of a reliable

transportation infrastructure (Asher and Novosad 2020).6 Among these frictions, the lack of

information on new technologies or how to use them has received extensive attention (see De

Janvry, Sadoulet, Manzoor, and Kyle 2016 for a recent review). This literature includes work

grounded on learning models of new technologies based on farmers’ own experience or the expe-

rience of others in their social network (Foster and Rosenzweig, 1995; Conley and Udry, 2010;

Munshi, 2004; Hanna, Mullainathan, and Schwartzstein, 2014; Beaman, BenYishay, Magruder,

and Mobarak, 2018).7 Studies in this area have also highlighted the mixed record of traditional

agricultural extension programs (Duflo, Kremer, and Robinson, 2008). In particular, researchers

and policy makers have long identified the lack of timely and personalized information as obsta-

cles to the effectiveness of the communication between farmers and extension workers (Anderson

and Feder, 2004). In this respect, our findings indicate that mobile phone-based extension pro-

grams that can provide timely and far-reaching information to farmers, adapted to their individ-

ual needs at different points in the production cycle and the specific agro-climatic characteristics

6 Suri (2011) emphasizes how low adoption rates in developing countries mask large disparities in returns from
adoption across farmers.

7 The extent to which social networks represent a reliable source of information on agricultural practices and
technologies is unclear, as neighboring farmers and agricultural input dealers may be either poorly informed
or misinform farmers due to misaligned incentives (Anderson and Birner, 2007).
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of their area, can have real effects on agricultural practices and productivity. At the same time,

our findings emphasize that language barriers can have a significant role in preventing part of

the rural population employed in agriculture from benefiting from these programs.

Our results complement those in the recent experimental literature studying the impact of

mobile phone-based extension programs on the diffusion of information about agricultural prac-

tices and farmers’ behavior. Casaburi, Kremer, Mullainathan, and Ramrattan (2014) show that

sending text messages containing agricultural advice has significant positive effect on yields of

small sugarcane farmers in Kenya. Cole and Fernando (2016) randomize access to a hot line for

agricultural advice to households in the Indian state of Gujarat, finding evidence that the use

of this phone service has a significant impact on agricultural practices, although relatively small

effects on yields. They also find that information provided through mobile phones spread within

farmers’ network, amplifying the effect of the agricultural extension program.8 These studies

are part of a larger literature on the impact of mobile phones in developing countries (see Aker,

Ghosh, and Burrell 2016 and Nakasone, Torero, and Minten 2014 for recent reviews).9

The rest of the paper is organized as follows. Section 2 introduces the data used in the

analysis, and provides institutional background on the diffusion of mobile phones in India and

on the two government programs – the Shared Mobile Infrastructure Program and the Kisan Call

Centers for agricultural advice – that are central to our empirical analysis. Section 3 presents

our identification strategy and all the empirical results. Section 4 provides concluding remarks.

2 Data, Institutional Background, and Stylized Facts

In this section we describe the main datasets used in the empirical analysis, provide some

institutional background for the government programs used for identification, and present a set

of stylized facts that emerge from the raw data. The unit of observation in our empirical analysis

are areas of 10×10 km, which we refer to as cells. We use a grid of 10×10 km cells to match

information from the datasets presented below, which come at different levels of geographical

aggregation, which could be an administrative division such as a village or a subdistrict, or a

geo-referenced polygon in the case of mobile phone coverage data.10

8 Relatedly, Fafchamps and Minten (2012) study the impact of a text message-based agricultural information
system providing market and weather information to Indian farmers and find non significant effects on culti-
vation practices or productivity.

9 Jensen (2007) and Aker (2010) show that mobile phone coverage can reduce price dispersion in, respectively,
fisheries in Southern India and agricultural goods markets in Niger. Jack and Suri (2014) study the impact
of lowering transaction costs to transfer money among individuals on risk sharing. They find that households
using a mobile phone system that reduces transaction costs are better able to smooth consumption when
facing negative income shocks.

10 Overall, India can be split into 41,495 cells distributed over 524 districts. Since cell borders do not typically
correspond to district administrative borders, we assign cells spanning over more than one district to the
district which occupies the largest area. One challenge that we face is that Indian districts have been changing
shape, or were created or dissolved during the period under study. In order to define districts consistently
over time, we created minimum comparable areas (MCAs) encompassing one or more districts that cover the
same geographical space between 1997 and 2012. The main source used to re-construct district changes over
time is the Population Census Map, which contains a short history of how each district was created.
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2.1 Data on Mobile Phone Coverage and its Diffusion in India

We use data on the diffusion of mobile phone coverage in India provided by the Global System

for Mobile Communication Association (GSMA), the association representing the interests of

the mobile phone industry worldwide.11 The data is collected by GSMA directly from mobile

operators and refers to the GSM network, which is the dominant standard in India with around

89 percent of the market share in 2012 (Telecom Regulatory Authority of India, 2012). The data

licensed to us provide, for all years between 1998 and 2012, geo-located information on mobile

phone coverage aggregated across all operators.12 Our analysis focuses on the 2G technology,

the generation of mobile phones available in India during the period under study, which allows

for phone calls and text messaging.13

Figure 1 reports the geographical diffusion of 2G GSM mobile phone coverage in India at five-

year intervals between 1997 and 2012. As shown, India had virtually no mobile phone coverage

as of 1997. From then on, the mobile phone network expanded rapidly, covering 22 percent of

the population in 2002, 61 percent in 2007 and 89 percent in 2012.14 Data from the World Bank

(2014) indicate that mobile phone subscriptions per 100 people in India went from 0.08 in 1997

to 68.4 in 2012.

Following a standard pattern of diffusion (Buys, Dasgupta, Thomas, and Wheeler, 2009; Aker

and Mbiti, 2010), the spatial roll-out of mobile phone coverage in India started in urban areas

and only later reached rural ones. We document this pattern in Figure C.1, which reports - at

5-year intervals between 1997 and 2012 - the average share of land covered by mobile phones

across cells with different initial levels of urbanization. As a proxy for urbanization we use night

light intensity in 1996. As shown, in 1997, there was virtually no mobile phone coverage in

either urban or rural areas. By 2002, areas in the highest decile of night light intensity had, on

average, 40 percent of their area covered by the mobile phone network, more than 80 percent

in 2007, and close to full coverage by 2012. On the other hand, mobile phone coverage in the

lowest decile was, on average, still almost non-existent in 2002, around 20 percent by 2007 and

around 40 percent by 2012.

2.2 Construction of mobile phone towers under the SMIP Government Program

The Indian government played an important role in the expansion of the mobile phone net-

work in rural areas, where market demand did not justify infrastructural investment by private

telecommunication companies. In 2007, the government launched the Shared Mobile Infrastruc-

11 The data collection effort is in partnership with Collins Bartholomew, a digital mapping provider.
12 The extent of geographical precision of the original data submissions ranges between 1 km2 on the ground for

high-quality submissions based on GIS vector format, and 15-23 km2 for submissions based on the location of
antennas and their corresponding radius of coverage (GSMA, 2012; Sauter, 2006).The data have been used by
Manacorda and Tesei (2020) to study the effects of mobile phone coverage expansion on political mobilization
in Africa.

13 The 3G spectrum was allocated to private operators only at the end of 2010 and the roll-out of commercial
operations was very slow. By 2015, 3G penetration was just 20 percent in urban areas and much lower in
rural areas (Ericsson, 2015).

14 We use data from the Gridded Population of the World, Version 4. We assume that population is uniformly
distributed within each 10×10 km cell and we use information on the share of each cell’s area that is covered
by mobile phone technology to compute the fraction of individuals reached by the mobile phone signal in each
cell/year. We then aggregate across cells to obtain the share of population covered by mobile phone signal in
the country in a given year.
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ture Program (SMIP), aimed at providing subsidies to telecom operators for the construction

and maintenance of mobile towers in identified rural areas without existing mobile coverage. Un-

der Phase-I of the program, a total of 7,871 sites across 500 districts were initially identified as

potential locations for new towers. Villages or cluster of villages not covered by the mobile phone

network and with a population of at least 2,000 were prioritized. Telecom operators receiving

government subsidies were responsible for installing and maintaining the towers between 2007

and 2013.15 Of the 7,871 proposed towers under Phase-I, 7,353 were eventually constructed.

We obtained data on the towers constructed under SMIP from the Center for Development

of Telematics (C-DoT) - the consulting arm of the Department of Telecommunications of India.

The C-DoT provided us with the geographical coordinates of the location of the 7,871 initially

proposed towers, the geographical coordinates of the location of the 7,353 effectively constructed

towers, and the operational date of each tower. The latter is the date in which the construction

of the tower is completed and the tower becomes operational. For simplicity, in the remainder

of the paper we refer to this date as the date of construction. From the 7,353 towers constructed

under Phase I of the SMIP program we remove 350 towers for which the construction date

is missing. This leaves us with 7,003 mobile towers used in our empirical analysis. Figure

2 shows a timeline of construction of these towers by month. As shown, the construction of

towers effectively started in January of 2008 and ended in May of 2010, with most towers being

introduced between the second half of 2008 and the first half of 2009. To estimate the potential

coverage of each tower, we assume a 5-km radius of coverage around the towers’ location, based

on information reported in tender documents obtained from the C-DoT officials responsible for

the Phase I implementation (tender document No. 30-148/2006-USF).

2.3 Data on farmers’ calls to Kisan Call Centers

To investigate the role of information on agricultural practices we use data on farmers’ calls to

Kisan Call Centers (KCC), which we obtained from the Department of Agriculture, Cooperation

and Farmers Welfare. Calls are geo-located at the subdistrict (or block) level and we assign them

proportionally to all cells whose centroid is contained in the subdistrict.16

KCC were introduced in January 2004 by the Indian Ministry of Agriculture and were the

first providers of general agricultural advice to farmers via mobile phone in India.17 KCC are

15 A second Phase of the scheme was also planned to be launched shortly after Phase-I to cover even more
sparsely populated areas, but was never implemented.

16 On average, there are 27 cells per subdistrict. Whenever information on the subdistrict from which the call is
originated is missing, we use information on the district of the call and the crop for which the caller is seeking
information to assign calls to a given cell. Our probabilistic assignment rule is described in the following
equation:

Callsidt =
∑
c∈Oi

(Calls)cdt ×
(
Areaidc,t=2000

Areadc,t=2000

)
The first element of the product captures the number of calls about a given crop c that are originated from

district d, while the second element of the product captures the share of crop c that is farmed in cell i over the
total area farmed with the same crop in district d (sourced from the FAO-GAEZ data). Thus, this assignment
rule implies that if 10 percent of the area farmed with rice in district d is farmed in cell i, 10 percent of the
calls about rice received from farmers located in district d will be assigned to cell i.

17 Figure C.2 shows the timing of introduction of the largest Indian providers of agricultural advice via mobile
phones. Other early development extensions, like aAQUA and NanoGanesh, established in 2003 and 2004
respectively, focused on SMS-based advice on agricultural practices and irrigation techniques, respectively.
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available in all Indian states and allow farmers to call a toll-free number to get answers to their

questions. In total, during the 2006-2012 period, farmers made around 2.5 million calls to KCC.

The number of calls increased substantially starting in 2009, reaching over half a million per

year between 2009 and 2011, and over eight hundred thousands in 2012.18

For every call received in one of the 25 call centers that are part of the KCC network, the

agronomist collects basic information on the farmer (name, location and contact information),

date and time of the call, a brief description of the question, the crop for which the query is made,

and the response provided.19 The calls are answered by trained KCC agricultural graduates,

who address the query based on their knowledge and on a database of previous answers to similar

queries. Approximately 98 percent of the calls are answered using this database. In case the

agronomist is unable to answer the question, the call is forwarded to a senior expert.20

Around 50 percent of the calls to KCC are about pests and how to deal with them. In the

responses, farmers receive detailed advice on which pesticide (if any) they should use, as well

as information on dosage and number of applications. The second most represented category is

calls about how to improve yields or – more specifically – which varieties of seeds to use in order

to obtain higher yields (13 percent of calls). In these cases, farmers often receive suggestions

on which HYV seeds to use based on crop, location, and irrigation system available. Other

topics farmers consistently ask about are: fertilizers (10.5 percent of calls), weather conditions

(5.7 percent), advice for field preparation (4.6 percent), market price information (3.6 percent),

credit information (2.3 percent), and irrigation (1 percent).21

In Figure 3 we report the breakdown by month and topic of the call for the two largest crops

by cultivated area in India, rice – panel (a) – and wheat – panel (b). A number of patterns

emerge. First, the distribution of calls reflects the different farming season of the two crops. Rice

is mainly grown during the kharif season, where crops are grown between June and September

and harvested between October and February. On the other hand, wheat is mainly grown in

the rabi season, where crops are grown between October and November and harvested between

December and the Spring months. Second, the composition of the calls is consistent with the

agricultural calendar just described. For example, rice farmers mostly ask questions about which

seeds to use in May and June – at the beginning of the growing season. Instead, when crops are

fully grown, most of the calls are about how to defend the plants from pests. Similar patterns

can be observed for wheat.

Finally, in Figure C.3 we report the overall distribution of calls to KCC by month, by time

of the day and by crop. The figure shows that most calls are received during Summer months

Until 2010, no other provider of general agricultural advice entered the market.
18 The availability of this service has been largely advertised by the Indian government. The advertising campaign

mostly took the form of TV ads. Ads were broadcasted in both public and private TV channels, and at times
matching farmer’s preferences in different states.

19 The version of the data provided to us by the Department of Agriculture, Cooperation and Farmers Welfare
does not contain farmers’ names or contact information. Thus, we cannot identify farmers that call multiple
times.

20 According to an external evaluation of the KCC program, 84% of farmers expressed satisfaction with the
advice received, 99% said they would call again if there was a problem, and 96% were willing to recommend
the service to their friends.

21 In Appendix A we provide a detailed description of the keywords that we use to categorize calls to KCC by
topic. We classify calls by categories based on the description provided by the operator. Based on these
descriptions, we are able to classify 93 percent of the calls to KCC between 2006 and 2012.

8



(panel a), that the peak number of calls is around late morning hours (panel b) and that most

questions are about rice and wheat (panel c).

2.4 Data on Technology Adoption and Agricultural Productivity

Our measures of technology adoption come from the Agricultural Input Survey (AIS), con-

ducted at five-year intervals by the Ministry of Agriculture in coincidence with the Agricultural

Census to collect information on input use by Indian farmers. In the survey, all operational hold-

ings from a randomly selected 7 percent sample of all villages in a sub-district are interviewed

about their input use.22 Data from the AIS is aggregated and made available by the Ministry

of Agriculture at the district-crop level. Our main empirical analysis focuses on the last two

waves of the AIS, 2007 and 2012, while we use earlier survey waves to document pre-existing

trends.23 The main objective of the survey is to collect information on agricultural inputs. In

particular, the survey covers the following inputs: seeds – distinguished between traditional

and high-yielding varieties – chemical fertilizers, organic manures and pesticides, agricultural

machinery and agricultural credit.

Our main measure of technology adoption in agriculture is the share of land farmed with high-

yielding varieties (HYV) of seeds. These are hybrid seeds developed via cross-breeding in order

to increase crop yields. They combine desirable characteristics of different breeds, including

improved responsiveness to fertilizers, dwarfness, and early maturation in the growing season.24

HYV seeds have been available in India since the Green Revolution (the IR8 rice, flagship of

the Green Revolution, was introduced in 1966), but new varieties are constantly developed and

introduced in the market. In the period between 2002 and 2013, 47 new varieties of different

oilseeds, cereals and vegetables including rice, groundnut, wheat, millet, soy and cotton were

introduced to the Indian market. Despite their early introduction and rapid adoption in many

areas of the country, a large share of the Indian agricultural land is still not farmed using HYV

seeds. The average share of HYV area across cells in our sample in 2007 was 26 percent.

The data on agricultural productivity (yield) also come from the Ministry of Agriculture. The

data provide yearly information on covered area and production for all crops at the district level.

The yield for each crop is defined as production (in tons) per unit of area farmed (hectares).

3 Empirics

Our empirical analysis proceeds in two steps. First, we use an event-study design to document

the evolution of farmers’ calls to KCC when new mobile phone towers are introduced in areas

without previous coverage. This evidence relies on monthly-level variation in the number of

farmers’ calls originated from a given location, around the month of construction of the first

tower in the area. The event-study also allows us to document the role of language barriers in

the diffusion of information. In particular, we show that geographical differences in the diffusion

22 The AIS was not conducted in the states of Bihar and Maharastra before 2012. Thus, we exclude these states
from our analysis.

23 The Agricultural Input Survey which runs from 1st July, to June 30th of the following year. In the paper, we
use the terminology 2007 when referring to the survey carried out between July of 2006 and June of 2007.

24 Dwarfness makes the plant consume less nutrients for growth and instead use those nutrients to increase
production of grains.
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of non-official languages among the rural population affect the spatial availability of agricultural

advice provided by KCC. We present these results in section 3.1.

Next, we study the real effects of access to information on technology adoption and agricul-

tural productivity. Since technology adoption and productivity are not observed at the same

high frequency as farmers’ calls, we cannot use the event-study design just described for these

outcomes.25 Instead, we propose an identification strategy that compares locations where new

mobile phone towers were proposed and constructed under the SMIP program with similar lo-

cations where new towers were proposed but eventually not constructed. We exploit variation

in tower construction along with variation in local languages spoken by farmers to capture their

ability to access phone-based services for agricultural advice. We focus on the change in tech-

nology adoption and productivity between 2007 and 2012, with 2007 being the last wave in the

AIS before the SMIP program, and 2012 the first wave after the SMIP program. We discuss

the identification strategy in section 3.2 and present the results in sections 3.3 to 3.5. Finally,

in section 3.6 we present a set of additional robustness tests.

3.1 Event-Study Evidence on Farmers’ Access to Information

We estimate the evolution of farmers’ calls to KCC around the introduction of new mobile

phone towers using the following specification:

Ln (1 + Calls)it = αi + αt +

+36∑
k=−12

βkD
k
it + εit (1)

The outcome variable in equation (1) is the natural logarithm of the total number of calls

originated from cell i in month t. Dk
it is a dummy equal to 1 if month t = k for cell i, and

captures the time relative to the month of introduction of the first tower covering cell i, which

we set at k = 0. We include the 12 months prior to the introduction of the first tower and the

36 months after. The specification has calendar time and cell fixed effects, denoted by αt and

αi, respectively. Standard errors are clustered at the district level.

The objective of this exercise is to exploit the different timing of construction of mobile phone

towers in different cells to document their impact on farmers’ calls. Notice that we focus on cells

that will eventually receive a mobile phone tower under the SMIP program described in section

2. Notice also that in this first analysis we focus on the number of calls, while the analysis of

their content is discussed in detail in section 3.3.

Panel (a) of Figure 4 reports the estimated coefficients βk along with their 95 percent con-

fidence intervals. Several findings emerge. First, the coefficients are precisely estimated zeros

in the months preceding the introduction of the first tower in a cell. This indicates that the

timing of tower introduction is not correlated with pre-existing trends in calls.26 Second, within

4 months of the construction of the first tower we observe a significant increase in calls for

agricultural advice. The magnitude of the estimated coefficients indicates, on average, a 5 to 10

percent increase in the number of calls to KCC in the first year post tower construction. Third,

25 Data on adoption of agricultural technologies is observed at 5-year intervals in the Agricultural Input Survey,
while agricultural yields are observed at yearly level.

26 Note that farmers can call KCC before the introduction of mobile phone towers using landlines, when available.
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this differential continues to grow over the next 18 months, reaching a 40 percent increase in

calls three years after the construction of the first tower in a cell.

As discussed in section 2, KCC agricultural advice can in principle be accessed by any farmer

with either a landline or a mobile phone connection. KCC agronomists, however, answer farmers’

calls only in one of the 22 official languages recognized in the Indian Constitution.27 This

effectively creates a barrier to the service for around 40 million individuals, whose mother tongue

is one of the about 100 additional non-official languages spoken in India. Thus, even among

areas that receive mobile phone coverage via new SMIP towers, the ability of farmers to access

dedicated information on agricultural practices might vary by local language. In panel (b)

of Figure 4 we explore this possibility, by estimating equation (1) separately for cells where

the majority of the local population speaks one of the 22 official languages and cells where the

majority speaks one of the non-official languages.28 The figure shows that, after the construction

of the first mobile phone tower, calls to KCC increase in both groups. However, the increase

is much more pronounced in areas where the majority of the local population speaks the same

languages as KCC agronomists. Within 3 years from the construction of the first tower, calls in

these cells increase by around 30 percentage points more than in those where the majority of

the local population speaks a non-official language.

Taken together, the evidence in Figure 4 suggests that the expansion of mobile phone coverage

represents a large information shock to farmers, which is larger in areas where farmers may

benefit from agricultural advice on best practices and inputs. In the next section, we study how

this information shock translates into both technology adoption and agricultural productivity.

3.2 The Real Effects of Access to Information - Identification Strategy

In this section, we present our identification strategy to study the effect of farmers’ access

to information on real outcomes, namely agricultural technology adoption and productivity.

Our identification strategy relies on the two sources of cross-sectional variation that emerge

as important determinants of farmers’ calls in the event-study setting: availability of mobile

phone coverage and share of local population speaking non-official languages. We think of

the combination of mobile phone coverage and absence of language barriers with agricultural

advisers as a positive shock to information about agricultural practices for farmers. As we

discuss in more detail below, the use of both sources of variation allows us to disentangle the

effect of information about agricultural practices from other potential mechanisms linking the

arrival of mobile phones with technology adoption and productivity.

Our identification strategy exploits variation in the construction of mobile phone towers under

the Shared Mobile Infrastructure Program, or SMIP, described in section 2. In the initial phase of

this program, the Department of Telecommunications identified 7,871 potential locations for the

27 See https://mkisan.gov.in/aboutkcc.aspx. Agronomists answering in each KCC location answer calls in
one (or more) of the official languages.

28 Data on the share of local population speaking non-scheduled languages is sourced from the 2011 Indian Census
and available at the subdistrict level. We assign to all cells whose centroid falls within a given subdistrict
the share of local population speaking non-official languages in that subdistrict. The 22 languages recognized
by the Indian Constitution as official are: Hindi, Bengali, Marathi, Telugu, Tamil, Gujarati, Urdu, Kannada,
Odia, Malayalam, Punjabi, Assamese, Maithili, Santali, Kashmiri, Nepali, Sindhi, Dogri, Konkani, Manipuri,
Bodo, and Sanskrit.
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construction of mobile phone towers. All the locations in this initial list responded to certain

specific criteria, including lack of existing mobile phone coverage and number of individuals

potentially covered by the new tower. For identification purposes, we exploit the fact that not

all the locations in the initial list eventually received a tower. In some cases, towers were either

relocated or not constructed. Thus, we compare cells where towers were initially proposed and

eventually constructed with cells in the same administrative district where towers were initially

proposed but eventually not constructed. Figure C.4 provides a visual example of how we

classify cells into treatment and control group based on proposed and actual tower location.29

Our final sample consists of 6,320 cells, of which 4,569 in the treatment group and 1,751 in the

control group. The summary statistics for the main variables of interest are reported in Table

1. Figure 5 presents the geographical distribution of treatment (in red) and control (in blue)

cells across India, while Figure 6 zooms onto Rajasthan – the largest Indian state by area –

superimposing the lattice of 10 × 10 km cells to show the level of geographical detail allowed by

our data. On average, our sample includes 27 cells per district – 20 treated and 7 control. We

further combine this variation with data on the share of local population speaking non-official

languages. We report the geographical distribution of the share of local population speaking

non-official languages in Figure 7.

The identification relies on the assumption that locations where a tower was proposed but

eventually not constructed are a good control group for those that eventually received a tower.30

The main challenge to our identification is that, although all proposed locations had to meet

specific criteria, the decision to relocate or cancel a tower is not random. For example, based on

conversations with the C-DoT officials responsible for the implementation of the program, towers

were sometimes relocated (or canceled) when, upon visiting the actual site, technicians realized

that a relocation would increase the total population covered, or when they discovered logistical

issues related to terrain characteristics or lack of an available connection to the electricity grid to

power the tower. In what follows, we formally test for differences in the probability of receiving

coverage from new SMIP towers based on cell observable characteristics and on pre-existing

trends in technology adoption and productivity. We also perform this balance test across cells

with different shares of the local population speaking a non-official language, conditional on

receiving coverage from new SMIP towers.

The results of the balance tests are reported in Table 2. The outcome in columns (1) to (4)

is an indicator variable – 1 (Tower) – which is equal to 1 for cells where a new SMIP tower was

proposed and eventually constructed, and 0 for cells where a new SMIP tower was proposed but

eventually not constructed. Column (1) shows that, in line with the C-DoT officials’ account,

the conditional probability of eventually receiving a new tower is higher for cells with higher

initial population and with flatter terrain, while it does not depend on the availability of a

connection to the power grid. Next, in column (2) we study whether pre-trends in agricultural

technology adoption or productivity affect the probability of eventually receiving a SMIP tower.

As shown, we find no significant differences in technology or productivity growth across treated

29 We compute coverage for each new tower based on its technical specifications, which corresponds to a 5 km
coverage radius around its centroid. As discussed in Section 3.6, our analysis is robust to using the share of
land covered by SMIP towers instead of an indicator variable.

30 This is similar in spirit to, e.g., Greenstone, Hornbeck, and Moretti (2010).
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and control cells in the 5 years preceding the tower construction program. In column (3) we then

explore the correlation with a number of cell characteristics sourced from the Village Survey of

the Population Census of India.31 Treatment and control cells appear to be comparable along a

large set of observable characteristics including: agricultural employment share, share of irrigated

land, presence of a school, hospital or bank branch, availability of landline phone connections,

night lights intensity, income and expense per capita. The only exception is average distance

to the nearest town, which is shorter for the treatment group, although very small in terms of

magnitude. In column (4) we consider all previous variables together. The main takeaway is

that population and terrain ruggedness remain strong predictors of tower construction, while

the other variables are by and large statistically insignificant. In the empirical analysis we add

these controls to our specification and show that all our estimates are stable when including the

observable cell characteristics reported in Table 2. Finally, in column (5) we condition on cells

eventually receiving coverage from new SMIP towers, and explore the correlation between all

observable cell characteristics and an indicator variable equal to one for cells where the majority

of the population speaks a non-official language, and zero otherwise. As shown, among the

treated cells in our sample, the distribution of non-official language speakers is uncorrelated

with observable characteristics and pre-trends in technology adoption and productivity.

3.2.1 First Stage

Our first-stage regression is as follows:

∆Covid = αd + γ 1 (Tower)id + δXid + uid (2)

The outcome variable is the change in the share of land covered by the mobile phone network

between 2007 and 2012 in cell i, district d. It is important to underline that this variable is

constructed using actual mobile coverage data as reported by Indian telecommunication com-

panies to GSMA, i.e. it is not the predicted increase in coverage constructed using SMIP tower

location.32 The coefficient of interest is γ, which captures the effect of tower construction under

the SMIP program on the change in coverage in a given cell. Xid is a vector of initial cell-level

controls, which includes all the cell characteristics reported in Table 2. We include in our speci-

fication district fixed effects (αd) and we cluster standard errors at the district level. Finally, in

all specifications we weight each cell by its population at baseline (2001).

Table 3 reports the first-stage results. The estimated coefficient in column (1) indicates that

cells covered by new SMIP towers experienced a 11 percentage points larger increase in the

share of land covered by mobile phones between 2007 and 2012 relative to the control group.

In column (2) we include the three main determinants of tower relocation according to C-DoT

officials: population, availability of power supply and terrain ruggedness.33 The magnitude of

31 We assign villages to 10 × 10 km cells based on the geographical coordinates for the centroid of the village.
The coordinates are obtained from http://india.csis.u-tokyo.ac.jp. Village-level information is then
aggregated to obtain cell-level characteristics.

32 The tower construction program we use for identification is not the only driver of changes in mobile phone
coverage in these areas. During the same period, private companies also built mobile phone towers across
India to extend their services and expand their market shares. Thus, we do not expect tower construction
under SMIP to be the sole source of variation in change in GSMA coverage, even in rural regions.

33 We construct a measure of cell-level terrain ruggedness using the Terrain Ruggedness Index obtained from
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the estimated coefficient decreases from 0.11 to 0.073, and remains highly significant. Finally,

in column (3) we add all the observable socio-economic cell characteristics. Consistent with

the results presented in Table 2, the size of the point estimate is unaffected by including these

additional controls. According to the specification in column (3), cells covered by new SMIP

towers have, on average, 7.4 percentage points larger share of land covered by mobile phones

in 2012 relative to the control group (recall that all these cells have no coverage at baseline).

Below the regressions we report the Kleibergen and Paap (2006) first stage F-statistics for the

validity of the instrument. We can safely reject that the first stage is weak.

3.2.2 Second Stage: Empirical Specifications

We start by modelling the overall effect of mobile phone coverage on the outcomes of interest

– such as the number of calls for agricultural advice, the adoption of agricultural technologies

or productivity. If we denote a generic cell by i, with i ∈ d, where d denotes a district, our

regression model is:

∆yid = αd + β ∆̂Covid + δXid + uid (3)

where ∆yid denotes the change in a given outcome between 2007 and 2012 and ∆̂Covid rep-

resents the change in the share of land covered by the mobile phone network over the same

period, instrumented with the variable 1 (Tower) from equation (2). Xid is the vector of cell

characteristics discussed in Table 2 and αd are district fixed effects.

The main coefficient of interest is β, which will be positive if mobile phones have a positive

impact on technology adoption and agricultural productivity. Clearly, this coefficient subsumes

different mechanisms linking mobile phone coverage with technology adoption and productivity.

For example, the arrival of mobile phone coverage might promote local economic opportunities

more generally, increasing local income and thus demand for agricultural products. Farmers

might adopt new technologies to serve this increased demand.34

To make progress in the direction of isolating the role of information, we expand equation (3)

to account for the share of population in the cell speaking a non-official language, hence with

limited access to information about inputs and best agricultural practices provided by the KCC.

We estimate the following augmented specification:

∆yid = αd + β1 ∆̂Covid + β2 ∆Cov̂id×NOLangid + β3NOLangid + δXid + uid (4)

where, compared to equation (3), we also include the share of population speaking a non-official

language (NOLangid) and its interaction with the change in mobile phone coverage.35 The

Nunn and Puga (2012).
34 Previous studies have also shown that, by reducing transaction costs on money transfers, mobile phones can

facilitate risk sharing among farmers (Jack and Suri 2014; Blumenstock et al. 2016). This might, in turn,
incentivize them to experiment with newer but riskier technologies. See Feder, Just, and Zilberman (1985)
for a discussion of the role of farmers’ risk-aversion in adoption models. This mechanism is unlikely to be at
play in our setting given the lack of mobile-based money transfer technologies in rural India during the period
under study.

35 We instrument this latter term by interacting the share of population speaking a non-official language with
the indicator variable for tower construction from equation (2). In section 3.6 we show that our results are
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coefficient β1 captures the effect of mobile coverage when the entire local population speaks an

official language (NOLangid = 0) and hence has full access to information about agricultural

practices and inputs. The coefficient β2 instead captures the differential impact of mobile phone

coverage in cells with different shares of the population speaking a non-official language. Clearly,

the sum of the two coefficients β1 and β2 identifies the effect of mobile coverage on outcomes in

the absence of access to a phone-based service for agricultural advice (NOLangid = 1).

3.3 The Effect of Access to Information on Farmers’ Calls: By Topic of the

Call

We start by documenting the effect of mobile phone coverage on farmers’ calls for agricultural

advice. In particular, we use the identification strategy described in section 3.2 to study farmers’

access to information about specific technologies. Crucially for our purpose, the call-level data

from KCC report the exact question asked by the farmer – as well as the answer provided

by the agronomist. This allows us to distinguish between calls in which farmers seek advice

regarding specific agricultural technologies such as new varieties of seeds, fertilizers, irrigation,

or pesticides. Appendix A reports a detailed description of the keywords used to classify calls

in different categories, as well as several examples.36 Documenting the type of information

acquired by farmers is important in order to trace a link between access to information and

actual adoption of agricultural technologies, which we study in the next section.

In column (1) of Table 4 we estimate the effect of mobile phone coverage on the change in total

number of calls to KCC between 2007 and 2012, as described by equation (3). The magnitude

of the estimated coefficient indicates that cells with one standard deviation larger increase in

mobile phone coverage experienced a 23 percent larger increase in total calls by farmers. Next, in

column (2), we report the results of estimating equation (4) for the same outcome. We interpret

the estimated coefficient β1 as the combined effect of coverage and access to a phone-based

service for agricultural advice on farmers’ calls. Its magnitude suggests that a one standard

deviation increase in coverage in cells where all farmers speak an official language increases the

number of calls by 26.3 percent. The coefficient β2, on the other hand, indicates that this effect

is smaller the larger is the share of population speaking a non-official language. Indeed, in

cells where the entire local population speaks non-official languages, the sum of the estimated

coefficients β1 and β2 (0.828 - 0.716 = 0.112) implies that the increase in calls for a one standard

deviation increase in mobile coverage is only 3.6 percent and not statistically different from zero.

Next, we study the effect of mobile phone coverage on farmers’ calls regarding different tech-

nologies. We focus on the main technologies covered in the AIS, namely: seed varieties, fertilizers,

irrigation, and pesticides. The results are reported in column (3) to (10). Odd columns refer

to the average effect of mobile phone coverage, while even columns allow for the heterogeneous

response across cells characterized by different shares of the population speaking a non-official

language. The results indicate that, across all technologies, areas with higher increase in mobile

robust to include additional interaction terms of ∆̂Covid with other cell characteristics including measures of
agricultural intensity, geographical isolation and local income.

36 For example, we classify as calls about new seed varieties those where farmers ask advice on which seeds to
use to improve yields for a given crop; those in which they ask information on how to use HYV seeds; and
those in which they ask general advice on how to improve yields and the agronomist suggests to try specific
HYV seed varieties.
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phone coverage and where a large share of the population speaks the same language as KCC

agricultural advisers experience larger increases in calls about agricultural technologies. On the

other hand, the negative and statistically significant coefficients on the interaction terms indi-

cate that access to mobile phone coverage has a limited effect on farmers’ calls in areas where a

significant share of local population speaks non-official languages.

Overall, the results reported in Table 4 are consistent with the existence of an underserved

demand for information on farming techniques by Indian farmers. To the extent that the in-

formation provided by call centers for agricultural advice is accurate, we can think of farmers

acquiring mobile phone coverage and having access to a phone-based service for agricultural

advice as receiving a positive shock to their information set on farming techniques. This allows

to study the effect of such shock on the actual adoption of the technologies farmers ask about,

as well as on local agricultural productivity. We focus on these two outcomes in the following

sections.

3.4 The Effect of Access to Information on Technology Adoption

In this section we study the effect of farmers’ access to information via call centers for agricul-

tural advice on technology adoption. We focus in particular on those technologies farmers ask

about in their phone calls to KCC, namely seed varieties, fertilizers, irrigation and pesticides.

To study the effect of mobile phone coverage on adoption of a given technology we estimate

equations (3) and (4) using as outcome variable ∆
(
Areak

Area

)
id

, which is the change in the share of

land farmed with a given technology k (e.g. HYV seeds) in cell i located in district d. Changes

in outcomes are calculated using the last 2 waves of the AIS, which were run in 2007 and 2012.

Before presenting the results, let us discuss our measure of technology adoption. The data from

the AIS reports information on land farmed with a given technology at the district-crop level.

Thus, we compute the share of land farmed with a given agricultural technology k in a given

cell i using the following neutral assignment rule:(
Areak

Area

)
idt

=
∑
c∈Oi

[(
Areak

Area

)
dct

×
(
Areaidc,t=2000

Areaid,t=2000

)]
(5)

The first element in the summation is the share of land farmed with technology k in district d

among the land farmed with crop c. This variable captures the rate of technology adoption for

a given crop in a given district and varies over time. The second element in the summation is

the share of land farmed with crop c in cell i, which is observed at cell level in the FAO-GAEZ

dataset and captures the initial allocation of land across crops in a given cell in the baseline year

2000.37 Thus, the product of first and second element gives us an estimate of the share of land in

cell i that is farmed under technology k and crop c. Summing across the set of crops farmed in

cell i (Oi), we obtain an estimate of the share of land farmed with a given technology in a given

cell.38 In Appendix B we validate this measure by showing that it captures well technology

37 The GAEZ dataset reports information on the amount of land – expressed in hectares – farmed with a specific
crop in a given cell. The data refers to the baseline year 2000. We focus on the 10 major crops by area harvested
in India, namely: rice, wheat, maize, soybean, cotton, groundnut, rape, millet, sugar and sorghum. According
to FAOSTAT, the area harvested with these 10 crops amounts to 135.5 million hectares and accounts for 76
percent of the total area harvested in India in 2000.

38 As an example, suppose that in district d, 20 percent of land farmed with rice and 50 percent of land farmed
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adoption at the cell level using a small sample of cells for which we observe actual adoption

of HYV seeds at the village level from publicly available surveys. Although our technology

adoption outcomes are measured with error at the cell level, note that classical measurement

error in the dependent variable does not generate bias in the estimated coefficients.

Column (1) of Table 5 reports the results of estimating equation (3) when the outcome variable

is the change in the share of land farmed with HYV seeds – as opposed to traditional seeds –

in a given cell. The coefficient is positive and precisely estimated. Its magnitude indicates that

cells with a one standard deviation larger increase in mobile phone coverage experienced a 1.4

percentage points larger increase in the share of area farmed with HYV seeds. Among the cells

in our sample, the average area farmed with HYV seeds in the baseline year 2007 was 26 percent.

Thus, the 1.4 percentage point increase mentioned above corresponds to a 5.3 percent increase

in land cultivated with HYV seeds for the average cell in our sample.

Column (2) reports the results of estimating equation (4), where we allow for an heterogeneous

response to mobile phone coverage depending on the share of local population speaking non-

official languages in an area. The estimated coefficient β1 captures the combined effect of

coverage and access to a phone-based service for agricultural advice. Its magnitude indicates

that areas with full coverage and where all farmers speak official languages experienced a 4.7

percentage points larger increase in share of land farmed with HYV seeds between 2007 and

2012, compared to areas with no coverage (corresponding to 28 percent of the share at baseline).

The negative and statistically significant coefficient on the interaction term β2 indicates that

limited access to information about agricultural practices reduces the impact of mobile phones

on technology adoption. A one standard deviation difference in the share of local population

speaking a non-official language leads to a reduction of 0.8 percentage points (-0.041 × 0.212) in

the technology adoption differential between areas with full and no coverage. This corresponds

to a reduction of 17 percent of the differential observed when the entire population have access

to the KCC agricultural advice.

In columns (3) and (4) we focus on the share of land under chemical fertilizers as an additional

measure of technology adoption. One important characteristic of HYV seeds is that they are

highly respondent to fertilizers (Dalrymple, 1974). Thus, we expect adoption of HYV seeds by

farmers to increase their demand for these complementary inputs of production. Column (4)

shows that cells with larger increase in mobile phone coverage and no language barriers experi-

enced an increase in area farmed with chemical fertilizers of similar magnitude as the increase

documented for HYV seeds. The negative coefficient on the interaction term, although less

precisely estimated compared to column (2), suggests that language barriers with agricultural

advisers limit the impact of mobile phone coverage on adoption of fertilizers.

Next, we test for the effect of access to information on adoption of artificial irrigation. Farming

with HYV seeds does not necessarily require more water than farming with traditional seeds.

However, in order for HYV seeds to attain their full potential, they do require a reliable source

of irrigation (Dalrymple, 1974). Thus, we expect adoption of HYV seeds by farmers to also

increase their demand for irrigation. We study the effect on irrigated area in columns (5) and

with wheat are farmed using high-yielding variety seeds. Suppose also that 40 percent of land in cell i that is
part of district d is farmed with rice, while the remaining 60 percent is farmed with wheat. Under our neutral
assignment rule, we assign 38 percent of land in cell i to high-yielding varieties: (0.2×0.4)+(0.5×0.6) = 0.38.
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(6), and find results that are similar, although smaller in magnitude, to the ones documented

for chemical fertilizers.39 Finally, columns (7) and (8) show a positive and significant effect of

mobile coverage combined with access to a phone-based service for agricultural advice on the

share of land under chemical pesticides.

Overall, the results presented in Tables 4 and 5 are consistent with a positive and significant

effect of mobile phone coverage, coupled with access to a service for agricultural advice, on

technology adoption via the diffusion of information about new technologies. We can use the

estimates to calculate the implied elasticity of technology adoption to access to information about

a given technology. To compute this elasticity we divide the estimated percentage increase in area

farmed with a given technology by the estimated percentage increase in farmers’ calls regarding

that same technology for a given information shock. For HYV seeds, the obtained elasticity

indicates that a 1 percent increase in mobile phone calls about this technology translates into a

0.78 percent increase in its actual adoption. Similarly, we find elasticities of 0.64 for chemical

fertilizers, 1.1 for chemical pesticides and 3 for irrigation.

3.5 The Effect of Access to Information on Productivity

Finally, we study the effect of farmers’ access to information via call centers for agricultural

advice on agricultural productivity. Our measure of agricultural productivity is crop yield, which

is defined as the quantity of crop produced (in metric tons) in a given area divided by the land

farmed with that crop (in hectares) in the same area. We construct our measure of crop yield

similarly to Jayachandran (2006) and Kaur (2019), who use a weighted average of normalized

yields of the major crops farmed in India to generate a district-level measure of agricultural

productivity. We compute yields using data from the Indian Ministry of Agriculture. This

database collects information on the quantity produced and the area farmed with a given crop

in a given district. Agricultural productivity at the cell level is then computed with a neutral

assignment rule similar to the one reported in equation (5) as follows:

log yieldidt =
∑
c∈Oi

[
log

(
quantity produced

area farmed

)
dct

×
(
Areaidc,t=2000

Areaid,t=2000

)]
(6)

Equation (6) defines yield in cell i as the weighted average of log crop yields for the ten major

crops by area farmed, where the weights are the share of area farmed with a given crop in a cell

at baseline.40

The main results on the effects of access to information on productivity are reported in Table

6. In column (1) we estimate equation (3) and find a positive but not precisely estimated effect of

mobile phone coverage on agricultural productivity. Column (2) reports the results of estimating

equation (4), where we allow for an heterogeneous response to mobile phone coverage based on

the share of local population speaking non-official languages. As shown, the combined effect

39 The Agricultural Input Survey reports the use of fertilizers and irrigation by land farmed with HYV vs
traditional seeds. In Table C.6 we estimate our main specifications splitting fertilizers and irrigation use in
land farmed with HYV seeds and with traditional seeds. As shown, the effects of mobile coverage coupled
with the availability of services for agricultural advice on fertilizers and irrigation are concentrated in areas
farmed with HYV seeds. This is consistent with the complementarity between these inputs described above.

40 As in Kaur (2019) we first normalize the yield for each of the 10 major crops in India by the mean yield of
that crop in each district (using the years 1998 to 2012 to construct the mean).
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of coverage and access to a phone-based service for agricultural advice – as captured by β1 –

is positive and statistically significant. Its magnitude indicates that areas with a one standard

deviation increase in coverage and where all farmers speak official languages experienced a 1.3

percent larger increase in agricultural yields between 2007 and 2012. Language barriers between

farmers and agricultural advisers can significantly hinder this effect. The magnitude of the

estimated coefficients on the interaction term β2 and the share of non-official language speakers

indicate that the effect of mobile coverage on productivity is muted in areas where 50 percent

or more of the population speak non-official languages.

We conclude this section by discussing the role of access to information in explaining produc-

tivity differences across regions implied by our estimates. Even within our sample of rural areas

with no initial mobile phone coverage, there is large variation in the baseline level of agricultural

productivity as measured by yields. In 2007, the average yield of a cell at the 75th percentile

of agricultural productivity was almost twice as large as the one observed in a cell at the 25th

percentile. This gap in yield is similar to the one documented in rice and wheat production be-

tween the top decile and the bottom decile of countries in the world income distribution (Gollin,

Lagakos, and Waugh 2014). The estimates presented in column (2) of Table 6 indicate that

providing full mobile phone coverage to the areas in our sample, coupled with the availability of

a phone-based service for agricultural advice, can close around 25 percent of this productivity

gap.

Note that this quantification uses the average effect obtained in Table 6 to compute the pro-

ductivity gain of farmers in the 25th percentile of the initial productivity distribution. However,

the effect of access to information might be heterogeneous across farmers with different initial

productivity. We test for these heterogeneous effects in Table 7, where we estimate equation

(4) separately by quartile of initial productivity. As shown, the effect of access to information

on productivity is largest – and precisely estimated – for farmers with the lowest initial level

of productivity. The point estimate on β1 for this group is 0.058, around 40 percent larger

than the average effect reported in Table 6. The effect is positive but small for farmers in the

middle of the initial productivity distribution and large but extremely noisy for farmers in the

top quartile. The estimate obtained for the lowest quartile indicates that providing access to

information to farmers at the 25th percentile of the productivity distribution can close up to 36

percent of the productivity gap with farmers at the 75th percentile.

3.6 Additional Robustness Tests

The goal of our empirical analysis is to test whether the arrival of mobile phone coverage,

coupled with the availability of phone-based services for agricultural advice, favored farmers’

adoption of modern technologies and – thus – increased agricultural productivity via an infor-

mation mechanism. The idea is that farmers might lack information about the very existence

of a new technology, or how to use it productively. In our data, for example, farmers’ questions

suggest that they often do not know which new seed varieties better meet their specific needs,

or what are the best practices to use them.

Mobile phones, however, promote access to information above and beyond the information

on agricultural practices provided by KCC. Jensen (2007) and Aker (2010), for example, doc-
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ument that mobile phone diffusion reduced price dispersion in, respectively, fishing markets in

the Indian state of Kerala and grain markets in Niger. Similarly, by allowing farmers to share

information on crop prices in different markets, mobile phones could have favored a more effi-

cient allocation of goods across markets in our sample and generate higher incomes for goods

producers, potentially helping them pay the fixed cost of technology adoption. Although our

data does not allow us to measure prices in local agricultural markets, we do observe the precise

location of such markets. Thus, to gauge the importance of higher access to price information

in our setting, we augment our main specification with agricultural market fixed effects. To this

end, we collect data on the latitude and longitude of 3,255 agricultural markets in rural India

from the AGMARKNET service of the Ministry of Agriculture of India. We assign each cell in

our sample to its closest agricultural market based on minimum geographical distance within the

same state. We think of the closest geographical market as capturing the market where produces

farmed in each cell are sold. This gives us 1,017 agricultural markets covering the cells in our

sample, each market serving on average six cells. Including agricultural market fixed effects to

our specification allows us to compare outcomes across farmers who are heterogeneously exposed

to the increase in mobile phone coverage and access to services for agricultural advice, but that

plausibly serve the same local market, and thus face the same prices for their products.

The results of this augmented specification are reported in Table C.7. In terms of outcomes,

we focus on the adoption of the four agricultural technologies studied in section 3.4, and on

agricultural productivity. As shown, all our main results are robust to including agricultural

market fixed effects. In particular, the point estimates on the coefficient β1, which captures

the combined effect of mobile coverage and availability of phone-based services for agricultural

advice, are similar in magnitude to those presented in Tables 5 and 6. This suggests a limited

effect of access to price information on technology adoption and productivity in our sample.

The negative coefficient on the interaction term β2 is also similar in magnitude compared to our

baseline estimates, although less precisely estimated.

Another potential concern with our main estimates is that the share of local population speak-

ing non-official languages is not randomly assigned across geographical areas. Our empirical

model interprets the differential impact of mobile phone coverage in areas with different diffu-

sion of official languages as the effect of language barriers between farmers and KCC agricultural

advisers. However, a potential concern with this interpretation is that areas with a greater share

of the local population speaking non-official languages might also be characterized by different

levels of agricultural intensity, might be more geographically isolated or simply be poorer. In

this case one would load on the interaction between local languages and mobile phone coverage

also variations in local economic conditions. In section 3.2 we showed that, among treated cells

in our sample, the distribution of non-official language speakers is uncorrelated with observable

characteristics and pre-trends in technology adoption and productivity. In this section we bring

this analysis one step further and augment our model with a set of additional interaction terms.

Table C.8 presents estimates of the parameters of the model where we include, in addition to the

baseline interaction of mobile phone coverage with the share of population speaking non-official

languages (column 1), also the interaction of coverage with measures of: agricultural intensity

(share of irrigated land and of population employed in agriculture, column 2); geographical iso-
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lation (terrain ruggedness and distance from closest city, column 3); cell income (average income

per capita and night lights intensity, column 4); as well as a fully saturated specification that

includes all the previous dimensions interacted with mobile phone coverage (column 5). The

inclusion of these additional interaction terms makes virtually no difference to our results, irre-

spective of the outcome considered. If anything, estimates of the parameters of interest become

slightly larger compared to our baseline specification.

Finally, we show that all our results are robust to using the share of land covered by SMIP

towers instead of the indicator variable used in the main analysis. Specifically, we estimate

equation (4) by instrumenting the change in mobile phone coverage using the intensive margin

of land covered by a SMIP tower in a given cell. Table C.9 presents the results from this analysis.

Column (1) shows that mobile phone coverage is 7.5 percent higher in cells with a 50 percent

higher share of land covered by a SMIP tower relative to the control group. Column (2) to

(6) confirm that an increase in mobile phone coverage leads to higher number of calls to KCC.

Similarly, the positive and significant coefficient β1 in column (7) to (11) is consistent with the

results from Tables 5 and 6. Finally, the negative coefficient on the interaction term β2 confirm

that the effects are mitigated in areas where the majority of the population does not have access

to the agricultural advice provided by the KCC.

4 Concluding Remarks

Mobile phones have experienced a widespread and fast diffusion in developing countries over

the last 20 years. The benefits – as well as the costs – of this diffusion are still to be understood,

especially in previously unconnected areas, such as rural areas of developing countries. In this

paper we exploit the diffusion of the mobile phone network in rural India to study the role of

information in fostering technology adoption and productivity in the agricultural sector. India

represents a natural setting to investigate this question. The country is characterized by a

large share of the population employed in agriculture and by large differences in agricultural

productivity across regions.

We argue that farmers receiving mobile phone coverage and without language barriers with the

agricultural advisers answering their calls are the ones receiving a positive information shock on

agricultural practices and inputs. We present evidence based on geo-located call data to support

this argument. Our findings indicate that access to information has significant real effects.

Farmers able to receive information from agricultural advisers via mobile phones experienced

faster adoption of modern agricultural technologies, such as high-yielding varieties of seeds, and

of complementary inputs of production, such as chemical fertilizers, pesticides and irrigation, as

well as faster increase in agricultural productivity.

Our findings indicate that lack of access to information on agricultural practices and inputs

can explain a significant fraction of the agricultural productivity gap across Indian regions. In

particular, our estimates indicate that providing full mobile phone coverage to the areas in our

sample, coupled with the availability of a phone-based service for agricultural advice, can close

around 25 percent of the initial gap in agricultural yields between regions in the 25th and the

75th percentile. We also show that the effect of access to information is heterogeneous across

farmers with different initial productivity, and it is the largest for farmers with the lowest initial
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level of productivity.

Although nowadays the mobile phone network covers almost the entirety of India, advance-

ments have been made in recent years towards the expansion of 3G/4G mobile services and

universal availability of broadband Internet. These ICT enhancements have been contempora-

neously met with the rise of social media, online information-sharing websites and smart-phone

applications. These digital platforms can further help the diffusion of information among farm-

ers. We leave the question of how advancements in digital ICT foster technological adoption for

future research.
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Figures and Tables

Figure 1: Mobile Phone Coverage Evolution, India 1997-2012

1997 2002

2007 2012

Notes: The figure reports geo-referenced data on mobile phone coverage for all of India at five-year intervals
between 1997 and 2012. Source: GSMA.
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Figure 2: Timeline of tower construction under SMIP Phase I
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Notes: Source: Department of Telecommunications, India. Month captures the time at which the construction
of the tower is completed and the tower becomes operational.
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Figure 3: Distribution of calls on rice and wheat across agricultural cycle
(a) Rice
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(b) Wheat
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Notes: Source: Kisan Call Center, Ministry of Agriculture
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Figure 4: Farmers’ Calls to KCC relative to Tower Construction - Event Study

(a) Average effects
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(b) Heterogeneous Effects by Language
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Notes: The figure plots the coefficients obtained with the following specification Ln (1 + calls)it = αi + αt +∑+36
k=−12 βkD

k
it + εit. Where i cell, t month, Dk

it dummy equal to 1 if month t = k for cell i. We estimate this
specification separately for two groups of cells based on the share of population speaking non-official languages.
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Figure 5: Treatment and Control cells under SMIP

Missing AIS Data        

Notes: The figure shows the 6,320 10×10 km identification cells distributed across treatment (red) and control (blue) cells for all of India. State borders are marked in black.
Treatment cells are those that are both proposed and covered by mobile tower under SMIP Phase I. Control cells are those that are proposed and not covered by mobile towers
under SMIP Phase I. Grey areas represent states with missing AIS information.
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Figure 6: Treatment and Control Cells
(Rajasthan State)

Notes: 10×10 Km treatment (red) and control (blue) cells for the state of Rajasthan. District boundaries are
labeled in black. Treatment cells are those that are both proposed and covered by mobile tower under SMIP
Phase I. Control cells are those that are proposed and not covered by mobile tower under SMIP Phase I.
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Figure 7: Share of non-official languages in India

Notes: Share of non-official languages is the share of population speaking non-official languages in a given
sub-district. Source: Population Census of India (2011).
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Table 1: Summary Statistics

Mean Median Std. Deviation N

∆ Coverage 0.756 0.926 0.321 6320
Non-official Languages (%) 0.075 0 0.212 6320
∆ HYV Share 0.034 0.018 0.068 6320
∆ Fertilizer Share 0.022 0.023 0.081 6310
∆ Irrigation Share 0.017 0.013 0.043 6320
∆ Pesticides Share 0.025 0.018 0.108 6142
∆ log(yield) 0.058 0.055 0.069 5033
∆ log (1+callsAll) 1.294 1.167 0.918 6320
∆ log (1+callsYield) 0.461 0.222 0.517 6320
∆ log (1+callsFertilizers) 0.374 0.193 0.436 6320
∆ log (1+callsIrrigation) 0.093 0.034 0.13 6320
∆ log (1+callsPesticides) 0.948 0.763 0.777 6320

Notes: Changes in variables are calculated over the 5-year interval 2007-2012. The unit of observation is a 10×10
km cell and the sample includes all cells used for identification. Only cells with non-missing ∆ HYV values are
considered.
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Table 2: SMIP coverage (1 (Tower)) and cell characteristics
(Balance Test)

Dependent variable: 1(Tower) 1(non-off. lang.| Tower)

(1) (2) (3) (4) (5)

Determinants of Tower Relocation
log(Population) 0.097*** 0.097*** 0.014

(0.021) (0.026) (0.024)
Power Supply 0.019 0.010 -0.059

(0.038) (0.049) (0.052)
Ruggedness -0.080*** -0.093*** 0.030

(0.018) (0.023) (0.024)

Pre-trends technology/productivity
∆ log(yield) (2002-2007) -0.034 0.090 0.199

(0.456) (0.435) (0.200)
∆ HYV Share (2002-2007) 0.091 -0.143 -0.355

(0.455) (0.438) (0.300)

Socio-economic characteristics
Agri. Workers/Working Pop. 0.078 0.109 -0.034

(0.076) (0.087) (0.040)
Percent Irrigated 0.060 0.047 -0.031*

(0.043) (0.046) (0.018)
Education Facility 0.071 -0.053 0.020

(0.057) (0.059) (0.022)
Medical Facility 0.026 0.025 -0.003

(0.032) (0.038) (0.016)
Banking Facility -0.032 -0.068 -0.013

(0.061) (0.062) (0.016)
# Phone conn. per 1000 people 0.002 0.003* -0.001

(0.001) (0.002) (0.001)
Dist. to nearest town(kms) -0.001*** -0.001 0.000

(0.000) (0.001) (0.000)
Night Lights (2006) -0.003 -0.012 -0.000

(0.006) (0.007) (0.002)
Income per capita 0.000 0.000 0.000

(0.000) (0.000) (0.000)
Expense per capita -0.000 -0.000 -0.000

(0.000) (0.000) (0.000)

District f.e. X X X X X
Observations 6,320 5,019 6,320 5,019 3,570
R-squared 0.193 0.174 0.182 0.192 0.706

Notes: The table reports the correlation of cell-characteristics across treatment and control cells (columns 1-4)
and across cells with and without a majority of non-official language speakers, conditional on treatment (column
5). The treatment variable 1 (Tower) in columns (1)-(4) is a dummy variable that takes the value of 1 if a cell
is both proposed and covered by a tower (Treatment) under SMIP Phase I and takes the value of 0 if a cell is
proposed and not covered (Control). The dependent variable in column (5) that takes the value of 1 if the share
of non-official language speakers is greater than 50% of the total population in the cell, and 0 otherwise. Column
(1) focuses on the main determinants of tower relocation, i.e. cell’s population, the availability of power supply
and average ruggedness; column (2) on pre-trends in technology/productivity; column (3) on socio-economic
characteristics; columns (4) and (5) consider simultaneously all observable cell characteristics. All specifications
include district fixed effects. The sample includes all cells with zero cell phone coverage in 2006. Standard errors
clustered at district level are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, **
p<0.05, * p<0.1.
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Table 3: First Stage

Outcome: ∆ Coverage

(1) (2) (3)

1 (Tower) 0.110*** 0.073*** 0.074***
[0.015] [0.012] [0.012]

log(Population) 0.118*** 0.074***
[0.014] [0.013]

Power Supply 0.254*** 0.164***
[0.028] [0.029]

Ruggedness -0.168*** -0.139***
[0.019] [0.018]

Observations 6,320 6,320 6,320
F-stat 56.54 34.24 36.72
District f.e. X X X
Other Controls X

Notes: The table reports first-stage regression of ∆ Coverage on treatment variable 1 (Tower). The unit of
observation is a 10×10 km cell. ∆ Coverage is the change in the share of cell area under mobile coverage from
2007 to 2012, based on the data provided by telecom companies to GSMA. 1 (Tower) is a dummy variable that
takes the value of 1 if a cell is both proposed and covered by a tower under SMIP Phase I and takes the value
of 0 if a cell is proposed and not covered. All specifications control for district fixed effect. Column (1) reports
estimates of regression of ∆ Coverage on treatment variable. Column (2) includes baseline controls of cell’s (log)
population, the availability of power supply and average ruggedness. Column (3) includes other controls for the
cell including share of labor force employed in agricultural sector, share of agricultural land that is irrigated,
access to an educational facility, access to a medical facility, access to a banking facility, number of landline
phone connections per 1000 people, distance to nearest town (in kms.), night lights intensity, income per capita
(in rupees), and expense per capita (in rupees). The sample includes all cells with zero cell phone coverage in
2006. All regressions are weighted by the cell’s population. The value of the first stage Kleibergen-Paap Wald
F-statistics for the validity of the instruments is also reported in all columns. Standard errors clustered at district
level are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Mobile Coverage and Farmers’ Calls

Outcome: ∆ log (1+ number of calls)

Topic of the calls: All Seeds Fertilizer Irrigation Pesticides

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆ Coverage 0.742*** 0.828*** 0.322*** 0.357*** 0.269*** 0.304*** 0.059** 0.071** 0.656*** 0.731***
[0.199] [0.206] [0.113] [0.119] [0.099] [0.104] [0.028] [0.030] [0.170] [0.175]

∆ Coverage × Non-official Languages (%) -0.716** -0.300*** -0.296*** -0.099*** -0.619**
[0.316] [0.107] [0.103] [0.032] [0.261]

Non-official Languages (%) -0.185* -0.061** -0.047 -0.025* -0.169**
[0.096] [0.030] [0.030] [0.013] [0.084]

Observations 6,320 6,320 6,320 6,320 6,320 6,320 6,320 6,320 6,320 6,320
R-squared 0.901 0.901 0.923 0.922 0.916 0.916 0.891 0.890 0.907 0.907
District f.e. X X X X X X X X X X
Baseline Controls X X X X X X X X X X
Other Controls X X X X X X X X X X

Notes: The table reports IV-2SLS estimates of the effect of mobile phone coverage on change in (log) calls received at Kisan Call Centers (KCC). The dependent variable in
Columns (1)-(2) is change in all calls received at KCC; Columns (3)-(4) is change in calls about seeds; Columns (5)-(6) is change in calls about fertilizers; Columns (7)-(8)
is change in calls about irrigation; Columns (9)-(10) is change in calls about pesticides. All changes are calculated between 2007-2012. The unit of observation is a 10×10
km cell. ∆ Coverage is the change in the share of cell area covered under GSM mobile coverage between 2007-2012 instrumented using 1 (Tower). 1 (Tower) is a dummy
variable that takes the value of 1 if a cell is both proposed and covered by a tower under SMIP Phase I and takes the value of 0 if a cell is proposed and not covered. Odd
columns reports the average effect, even columns report the heterogenous effects depending on share of cell’s population speaking non-official languages. All columns include
district-fixed effects, baseline controls as well as other controls. Baseline controls include cell’s (log) population, the availability of power supply and average ruggedness. Other
controls for the cell include share of labor force employed in agricultural sector, share of agricultural land that is irrigated, access to an educational facility, access to a medical
facility, access to a banking facility, number of landline phone connections per 1000 people, distance to nearest town (in kms.), night lights intensity, income per capita (in
rupees), and expense per capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions are weighted by the cell’s population. Standard
errors clustered at district level are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1 .
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Table 5: Mobile Coverage and technology adoption

Outcome: ∆ Technology Adoption

Technology: HYV Seeds Fertilizers Irrigation Pesticides

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Coverage 0.043** 0.047** 0.037 0.040* 0.023* 0.027* 0.062** 0.068**
[0.018] [0.019] [0.023] [0.023] [0.014] [0.015] [0.029] [0.029]

∆ Coverage × Non-official Languages (%) -0.041** -0.022 -0.027 -0.048
[0.019] [0.031] [0.017] [0.037]

Non-official Languages (%) -0.002 -0.013 -0.006 -0.013
[0.009] [0.017] [0.007] [0.013]

Observations 6,320 6,320 6,310 6,310 6,320 6,320 6,142 6,142
R-squared 0.856 0.856 0.885 0.885 0.809 0.808 0.883 0.883
District f.e. X X X X X X X X
Baseline Controls X X X X X X X X
Other Controls X X X X X X X X

Notes: The table reports IV-2SLS estimates of the effect of mobile phone coverage on changes in technology adoption between 2007-2012. The dependent variable in Columns
(1)-(2) is change in share of area cultivated under HYV; Columns (3)-(4) is change in share of area cultivated under fertilizers; Columns (5)-(6) is change in share of area
cultivated under irrigation; Columns (7)-(8) is change in share of area cultivated under pesticides. All changes are calculated between 2007-2012. The unit of observation is a
10×10 km cell. ∆ Coverage is the change in the share of cell area covered under GSM mobile coverage between 2007-2012 instrumented using 1 (Tower). 1 (Tower) is a dummy
variable that takes the value of 1 if a cell is both proposed and covered by a tower under SMIP Phase I and takes the value of 0 if a cell is proposed and not covered. Odd
columns reports the average effect, even columns report the heterogenous effects depending on share of cell’s population speaking non-official languages. All columns include
district-fixed effects, baseline controls as well as other controls. Baseline controls include cell’s (log) population, the availability of power supply and average ruggedness. Other
controls for the cell include share of labor force employed in agricultural sector, share of agricultural land that is irrigated, access to an educational facility, access to a medical
facility, access to a banking facility, number of landline phone connections per 1000 people, distance to nearest town (in kms.), night lights intensity, income per capita (in
rupees), and expense per capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions are weighted by the cell’s population. Standard
errors clustered at district level are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1 .
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Table 6: Mobile Coverage and agricultural productivity

Outcome: ∆ log(yield)

(1) (2)

∆ Coverage 0.029 0.041**
[0.020] [0.020]

∆ Coverage × Non-official Languages (%) -0.093***
[0.033]

Non-official Languages (%) -0.014
[0.012]

Observations 5,033 5,033
R-squared 0.904 0.901
District f.e. X X
Baseline Controls X X
Other Controls X X

Notes: The table reports IV-2SLS estimates of the effect of mobile phone coverage on changes in (log) agricultural
productivity between 2007-2012. The unit of observation is a 10×10 km cell. ∆ Coverage is the change in the
share of cell area covered under GSM mobile coverage between 2007-2012 instrumented using 1 (Tower). 1 (Tower)
is a dummy variable that takes the value of 1 if a cell is both proposed and covered by a tower under SMIP Phase
I and takes the value of 0 if a cell is proposed and not covered. Column (1) reports the average effect and Column
(2) reports the heterogenous effects depending on share of cell’s population speaking non-official languages. All
columns include district-fixed effects, baseline controls as well as other controls. Baseline controls include cell’s
(log) population, the availability of power supply and average ruggedness. Other controls for the cell include share
of labor force employed in agricultural sector, share of agricultural land that is irrigated, access to an educational
facility, access to a medical facility, access to a banking facility, number of landline phone connections per 1000
people, distance to nearest town (in kms.), night lights intensity, income per capita (in rupees), and expense
per capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions are
weighted by the cell’s population. Standard errors clustered at district level are reported in brackets (number of
clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1 .
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Table 7: Heterogeneous Effects: Effect on agricultural productivity by
baseline productivity in 2007

Outcome: ∆ log(yield)

Baseline First Second Third Fourth
Productivity (2007): Quartile Quartile Quartile Quartile

(1) (2) (3) (4)

∆ Coverage 0.052* 0.012 -0.004 0.052
[0.030] [0.029] [0.030] [0.603]

∆ Coverage × Non-official Languages (%) -0.046* -0.024 -0.025 -1.028
[0.026] [0.021] [0.177] [8.199]

Non-official Languages (%) -0.010 -0.000 -0.001 -0.235
[0.010] [0.009] [0.065] [1.913]

Observations 1,254 1,174 1,181 1,254
R-squared 0.921 0.971 0.975 0.334
District f.e. X X X X
Baseline Controls X X X X
Other Controls X X X X

Notes: The table reports IV-2SLS estimates of the effect of mobile phone coverage on changes in agricultural
productivity between 2007-2012, depending on the baseline productivity levels in 2007. Column (1) considers
cells in the lowest quartile of baseline productivity and Column (4) cells in the highest quartile. The unit of
observation is a 10×10 km cell. ∆ Coverage is the change in the share of cell area covered under GSM mobile
coverage between 2007-2012 instrumented using 1 (Tower). 1 (Tower) is a dummy variable that takes the value
of 1 if a cell is both proposed and covered by a tower under SMIP Phase I and takes the value of 0 if a cell is
proposed and not covered. All columns include district-fixed effects, baseline controls as well as other controls.
Baseline controls include cell’s (log) population, the availability of power supply and average ruggedness. Other
controls for the cell include share of labor force employed in agricultural sector, share of agricultural land that
is irrigated, access to an educational facility, access to a medical facility, access to a banking facility, number of
landline phone connections per 1000 people, distance to nearest town (in kms.), night lights intensity, income
per capita (in rupees), and expense per capita (in rupees). The sample includes all cells with zero cell phone
coverage in 2006. All regressions are weighted by the cell’s population. Standard errors clustered at district level
are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1 .
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Appendix

A Calls to Kisan Call Center

In this section we describe the methodology followed to extract crop information and type of
query made by farmers in all calls to Kisan Call Centers (KCC). KCC agronomists record the
correct information on crop and the category of the query in less than 10% of the calls. In the
remaining cases, we use the details contained in two text fields available in the KCC data, i.e.
farmer’s query and agronomist’s answer, to obtain the information. To illustrate the procedure,
consider the following calls received by the KCC:

Sno Date State District Crop QueryType QueryText Answer

1 07/22/2009 Uttar Ambedkar - - Fertilizer Dose Give NPK 120kg
Pradesh Nagar in Paddy 60kg 60kg/hac

2 09/07/2009 Madhya Sagar - - How to control Spray Chlorpyrifos
Pradesh temite in soyabean? @ 30ml/pump

In Call 1, the farmer calls KCC to get information on the fertilizer dose in Paddy (Rice).
The information on crop in the KCC data is missing under the “Crop” field but it is clearly
available in the text of the query (variable “QueryText”). Similarly in Call 2, the farmer inquires
how to control termites (which is incorrectly recorded as “temites” in QueryText) for Soyabean
crop. Similar to the previous call, both the crop information and category of call are missing
in the recorded data. We use the information in “QueryText” to deduce what is the crop the
farmer is enquiring about (Soyabean). We also use the information in the “Answer” field which
recommends using Chlorpyrifos to assign the “QueryType” of the call as Pesticides.

A.1. Categorizing Crops

We extract crop information based on methodology described above – using information within
the text of the query or the answer of the KCC agronomist to the query. In many cases, crops
names are recorded in Hindi. For example, Rice is commonly known as Dhan in Hindi. Similarly,
Wheat is recorded as Gehun; Maize is recorded as Makka. We detect all these instances and
convert the corresponding crop names to English.

A.2. Categorizing Query Categories

We classify calls into 17 broad categories.41 Here we describe in detail the assignment of the
main query categories used in the paper – calls on seeds, fertilizers, irrigation and pesticides.

Calls on Seeds: We classify as farmers’ calls on seeds those calls made to obtain information
on hybrid seed varieties or calls made to inquire about seed varieties. We use information in
either the text of the query or in the answer of the KCC agronomist. In particular, we classify as
calls on seeds: (i) calls directly asking about the hybrid varieties related to a crop (ii) inquires
or answers about specific high-yielding varieties seeds. For example, farmers ask about the
following high-yielding varieties of wheat: DHM-1, WH-542, UP-2338, HUW-468, PVM-502 or

41 These categories include Pesticides, Yields, Fertilizers, Weather, Field Preparation, Market Information,
Credit, Cultivation, Irrigation, Contact Information, Soil Testing, Mechanization, Government Schemes, Seed
Availability, Crop Insurance, General Information and Others. The first seven categories are associated with
90% of the calls. We collapse all categories with less than 1% of calls into a combined category of “Others”
which in total makes up about 10% of the calls.
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about the following high-yielding varieties of cotton: RCH-134, RCH-208, RCH-317, MRC-6301,
MRC-6304. Table A.1 below provides an illustrative example for this:

Table A.1: Sample calls on Seeds

Sno Date State District Crop QueryType QueryText Answer

1 10/17/2010 Haryana Mahendra- Wheat Seeds Improved varieties PBW-343,WH-711,
-garh of wheat WH-542,DBW-1

2 03/28/2009 Andhra East Maize Seeds Asked about Recommended
Pradesh Godavari Varieties DHM-107 or 109

Calls on Fertilizers: We classify as farmers’ calls on fertilizers: (i) calls seeking general infor-
mation on fertilizer dosage (ii) calls directly asking remedies for nutrient deficiencies in crops
(iii) queries or replies based on required dosage of specific fertilizers, e.g. N-P-K or Urea
(iv) calls seeking information on plant growth regulators, seed treatment or solution to leaf
drop. For example, in many calls farmers asks about the dosage of specific fertilizers, e.g.
D.A.P(Diammonium phosphate). In few other calls, the agronomist prescribes specific amounts
to be used for different chemicals of the fertilizer N-P-K. Table A.2 below provides an illustrative
example from our exercise.

Table A.2: Sample calls on Fertilizers

Sno Date State District Crop QueryType QueryText Answer

1 02/17/2011 Punjab Amritsar Wheat Fertilizers Sulphur deficiency Apply 100 kg gympsum
in wheat per acre before sowing

2 07/03/2009 Uttar Firozabad Rice Fertilizers Fertilizer dosage N-120kg, P-60kg
Pradesh in rice K-120kg, ZN-20kg/hec.

3 07/20/2011 Punjab F.G.Sahib Rice Fertilizers D.A.P dose 27 kg per acre
in paddy

4 12/06/2010 West Midnapore Rape Fertilizers Flower dropping Apply Zinc Sulfate
Bengal (East) in mustard 2 gram/liter water

5 08/09/2011 Mahara- Parbhani Cotton Fertilizers Stunted growth Spray Urea 100 grams
-shtra of cotton in 10 litre water

Calls on Irrigation: In order to classify calls on irrigation, we use farmers’ queries seeking
information: (i) directly about irrigation practices (ii) or about water management in the field.
Table A.3 below provides an illustrative example: in the first two calls farmers ask about the
suitable time for particular stages of irrigation. In the last case, a farmer is seeking information
on the quantity of water for irrigating the field.

42



Table A.3: Sample calls on Irrigation

Sno Date State District Crop QueryType QueryText Answer

1 01/15/2011 Madhya Sehore Wheat Irrigation Suitable time for 2nd At tillering stage
Pradesh irrigation in wheat i.e. 40-45 days

2 03/11/2010 Bihar Palamu Wheat Irrigation Minimum irrigation 20-25,40-45,70-75,90
schedule for wheat -95,105 days after sowing

3 06/10/2011 Bihar Rohtas Rice Irrigation Water management 5-6 cm water given
in rice in rice field

Calls on pesticides: We classify as farmers’ calls on pesticides: (i) calls seeking informa-
tion specifically about pesticides (ii) agronomist suggesting the use of certain pesticides like
Quinalphos, Carbofuran and Chlorpyrifos 42 (ii) calls asking about solutions for pest infection
(iii) calls related to plant protection (iv) inquiries about weed control. Table A.4 below provides
few examples of calls on pesticides after applying our methodology described above.

Table A.4: Sample calls on Pesticides

Sno Date State District Crop QueryType QueryText Answer

1 08/29/2010 Andhra Anant- Groundnut Pesticides Asked about spodoptera Spray Quinalphos
Pradesh -hapur damage in groundnut 2ml/1 liter water

2 07/26/2011 Punjab Mansa Rice Pesticides Info. regarding control of Apply dilute 1 litre
termite in rice Chlorpyrifos 20ec in 2 litres

3 11/29/2009 Rajasthan Alwar Wheat Pesticides Prevention of Nematod Use Carbofuran 3G 20KG.
problem in Wheat per hectare soil treatment

4 09/04/2010 Uttar Bareilly Rice Pesticides Insect Control Apply Endosulphon 35EC
Pradesh in rice at 1.5 ml/lit of water

5 03/09/2011 Gujarat Surat Sugarcane Pesticides Ask for weed control Suggested
hand weeding

6 08/09/2011 Bihar Deoghar Rice Pesticides Plant protection Given details about
in paddy plant protection

42 Quinalphos is an pesticide widely used in India for wheat, rice, coffee, sugarcane, and cotton. Carbofuran
is a pesticide used to control insects in a wide variety of field crops, including potatoes, corn and soybeans.
Chlorpyrifos is a pesticide used to kill a number of pests, including insects and worms.
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B Data Validation: HYV Adoption

In this section, we validate our main measure of technology adoption — i.e. share of cell
area farmed under HYV seeds (described in Section 3.4) — using alternative datasets that are
publicly available to researchers. Information on the use of HYV seeds at village level is seldom
available. Two publicly available survey data sets that report such information are the ICRISAT
Village Dynamics in South Asia (VDSA) and the Tamil Nadu Socioeconomic Mobility Survey
(TNSMS) conducted by the Economic Growth Center at Yale University. Both data sets are
based on household surveys that collect information on cultivation practices. Both data sets
record the crops farmed by each household, the total area farmed under each crop and how
much of the farmed area is cultivated with improved or HYV seed variety.

The two data sets differ in their finest identifiable geographic unit of observation. The finest
geographical unit of observation in the VDSA data is a village. The survey covers 17 villages
in 2012 with non-missing information on HYV seeds.43 While the TNSMS covers more villages
than VDSA, it does not provide village identifiers like VDSA. The finest geographical unit of
observation available in TNSMS is much larger than our 10 × 10 km cell and therefore it is
not well suited to validate our measure. Moreover, while TNSMS only covers villages within
the state of Tamil Nadu, VDSA spans the five states of Andhra Pradesh, Gujarat, Karnataka,
Madhya Pradesh and Maharashtra. Therefore, we use information available in the VDSA data
to cross-validate our measure of HYV adoption, as described next.

We compare our measure of share of area farmed with HYV seeds against the one reported
in the VDSA data. To do so, we use information in the VDSA data to calculate the total area
farmed in each village under a given crop as well as how much of that area is cultivated using
HYV seeds. Similarly, we use the share of area farmed with a given crop in a given cell using the
data from the Agricultural Input Survey and the methodology described in section 3.4. We then
map each 10 × 10 km cell to VDSA villages based on village centroids. This provides us with 30
observations at the cell-crop level for which we observe HYV adoption in both the VDSA and
with our measure. Appendix Figure B.1 shows that our measure is positively correlated with
the VDSA measure: the slope of the line is 1.06 and statistically significant (t = 4.33).

43VDSA only covers six villages consistently between 2002-2012. Four of these villages are in the state of Ma-
harashtra. This limits our ability to compare our measure of changes in share of area under HYV seeds as
AIS does not cover Maharashtra until 2012. We therefore only compare the levels of share of area under HYV
seeds in 2012.

44



Figure B.1: Data Validation: HYV Adoption
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Notes: The graph reports the share of crop area under HYV as calculated from ICRISAT VDSA (Village Dynamics in
South Asia) micro data against the share of crop area under HYV seeds as calculated from AIS (Agricultural Input Survey).
Each dot represents a cell-crop observation for the two measures of share of area under HYV seeds in 2012. The figure has
30 observations and the slope of the line is 1.06 (t = 4.33). The dashed gray line is the 45 degree line.
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C Empirics: Additional Results

Figure C.1: Mobile Phone Coverage by night lights intensity
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Notes: The average share of land with mobile phone coverage in each decile is calculated for the 4 years in which
the Agricultural Input Survey was conducted: 1997, 2002, 2007 and 2012. night lights intensity data refers to
1996.

Figure C.2: Indian Providers of Agricultural Advice Services:
A Timeline
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Figure C.3: Distribution of calls made to kisan call center
(a) Calls by Calendar Month
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Notes: Source: Kisan Call Center, Ministry of Agriculture
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Figure C.4: An example of classification of cells into
treatment and control groups

Panel A

Panel B

Panel C

Notes: The figure provides an illustration of classification of cells into treatment (red) and control (blue) group.
Panel A shows area covered by a proposed tower under SMIP. Panel B shows the area covered by an actual tower
eventually constructed. Panel C shows the assignment of cells into treatment and control groups.
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Table C.5: Summary Statistics for Cell Characteristics

Mean Median Standard N
Deviation

log (Population) 10.06 9.99 0.76 6320
Power Supply 0.78 0.92 0.29 6320
Ruggedness 0.47 0.20 0.89 6320
Agri. Workers/Working Pop. 0.57 0.57 0.14 6320
Agri. Land/Cultivable Area 0.45 0.47 0.22 6320
Percent Irrigated 0.36 0.27 0.32 6320
∆ HYV Share (2002-2007) 0.01 0.01 0.06 5019
∆ HYV Share (1997-2002) 0.05 0.04 0.11 4986
Literacy Rate 0.43 0.44 0.12 6320
Education Facility 0.85 0.91 0.17 6320
Medical Facility 0.35 0.29 0.26 6320
Banking Facility 0.06 0.03 0.10 6320
# Phone conn. per 1000 people 1.22 0.30 3.33 6320
Dist. to nearest town(kms) 26.40 20.00 22.31 6320
Night Lights (2006) 1.43 0.72 1.84 6320
Income per capita 75.46 16.76 351.36 6320
Expense per capita 66.44 16.15 268.09 6320

Notes: The unit of observation is a 10×10 km cell. The variables reported are (log) population, fraction of
villages in the cell with access to power supply, ruggedness of the cell, share of agricultural workers, share of
cultivable land under agriculture, percentage of irrigated land, changes in share of land under HYV, literacy rate,
education facility, medical facility, banking facility, number of telephone connections per 1000 people, night lights,
distance to nearest town, (monthly) income per capita, and (monthly) expense per capita.
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Table C.6: Robustness: Mobile Coverage and Technology Adoption

Outcome: ∆ Technology Adoption

Technology: Fertilizers in areas Fertilizers in areas Irrigation in areas Irrigation in areas
under HYV not under HYV under HYV not under HYV

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Coverage 0.047** 0.051** -0.005 -0.005 0.035** 0.042** -0.012 -0.015*
[0.022] [0.023] [0.013] [0.014] [0.018] [0.019] [0.008] [0.009]

∆ Coverage × Non-official Languages (%) -0.030 0.007 -0.054*** 0.027
[0.024] [0.017] [0.020] [0.017]

Non-official Languages (%) 0.001 -0.013** -0.019* 0.013*
[0.015] [0.005] [0.010] [0.007]

Observations 6,310 6,310 6,310 6,310 6,320 6,320 6,320 6,320
R-squared 0.891 0.891 0.886 0.887 0.822 0.821 0.830 0.829
District f.e. X X X X X X X X
Baseline Controls X X X X X X X X
Other Controls X X X X X X X X

Notes: The table reports IV-2SLS estimates of the effect of mobile coverage on the share of area under fertilizers (Columns 1-4) and the share of area irrigated (Columns 5-8)
between 2007-2012. The unit of observation is a 10×10 km cell. ∆ Coverage is the change in the share of cell area covered under GSM mobile coverage between 2007-2012
instrumented using 1 (Tower). 1 (Tower) is a dummy variable that takes the value of 1 if a cell is both proposed and covered by a tower under SMIP Phase I and takes the
value of 0 if a cell is proposed and not covered. Odd columns reports the average effect, even columns report the heterogenous effects depending on share of cell’s population
speaking non-official languages. Columns (1)-(2) and (5)-(6) report the estimates for area cultivated with HYV seeds and Columns (3)-(4) and (7)-(8) report the estimates for
area not cultivated with HYV seeds. All columns include district-fixed effects, baseline controls as well as other controls. Baseline controls include cell’s (log) population, the
availability of power supply and average ruggedness. Other controls for the cell include share of labor force employed in agricultural sector, share of agricultural land that is
irrigated, access to an educational facility, access to a medical facility, access to a banking facility, number of landline phone connections per 1000 people, distance to nearest
town (in kms.), night lights intensity, income per capita (in rupees), and expense per capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006.
All regressions are weighted by the cell’s population. Standard errors clustered at district level are reported in brackets (number of clusters = 285). Significance level: ***
p<0.01, ** p<0.05, * p<0.1 .
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Table C.7: Robustness: market fixed effects

Outcome: ∆ Technology Adoption ∆ log(yield)

Technology: HYV Seeds Fertilizers Irrigation Pesticides
(1) (2) (3) (4) (5)

∆ Coverage 0.054*** 0.050** 0.027 0.053** 0.038**
[0.017] [0.023] [0.017] [0.023] [0.018]

∆ Coverage × Non-official Languages (%) -0.033 -0.026 0.001 -0.053 -0.161
[0.028] [0.044] [0.025] [0.060] [0.108]

Non-official Languages (%) -0.007 -0.020* -0.003 -0.020 -0.028
[0.008] [0.011] [0.007] [0.014] [0.031]

Observations 6,092 6,081 6,092 5,914 4,840
R-squared 0.906 0.922 0.876 0.938 0.923
District f.e. X X X X X
Baseline Controls X X X X X
Other Controls X X X X X
Market f.e. X X X X X

Notes: The table tests the robustness of our baseline IV-2SLS estimates to the inclusion of agricultural market fixed-effects. The unit of observation is a 10×10 km cell.
∆Coverage is the change in the share of cell area covered under GSM mobile coverage between 2007-2012 instrumented using 1 (Tower). 1 (Tower) is a dummy variable that
takes the value of 1 if a cell is both proposed and covered by a tower under SMIP Phase I and takes the value of 0 if a cell is proposed and not covered. The dependent
variable in Column (1) is change in share of area cultivated under HYV; Column (2) is change in share of area cultivated under fertilizers; Column (3) is change in share of
area cultivated under irrigation; Column (4) is change in share of area cultivated under pesticides; Column (5) is change in (log) agricultural productivity. All changes are
calculated between 2007-2012. All columns include market-fixed effects in addition to district-fixed effects, baseline controls as well as other controls. Baseline controls include
cell’s (log) population, the availability of power supply and average ruggedness. Other controls for the cell include share of labor force employed in agricultural sector, share
of agricultural land that is irrigated, access to an educational facility, access to a medical facility, access to a banking facility, number of landline phone connections per 1000
people, distance to nearest town (in kms.), night lights intensity, income per capita (in rupees), and expense per capita (in rupees). The sample includes all cells with zero
cell phone coverage in 2006. All regressions are weighted by the cell’s population. Standard errors clustered at district level are reported in brackets (number of clusters =
285). Significance level: *** p<0.01, ** p<0.05, * p<0.1 .
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Table C.8: Robustness: additional interaction terms

Baseline + ∆ Coverage + ∆ Coverage + ∆ Coverage + ∆ Coverage
× Agriculture × Isolation × Income × Controls

(1) (2) (3) (4) (5)

Panel A: ∆ log(1+ number of calls)

∆ Coverage 0.828*** 1.149** 0.680*** 0.809*** 0.965*
[0.206] [0.508] [0.181] [0.202] [0.578]

∆ Coverage × Non-official Languages (%) -0.716** -0.690** -0.878* -0.713** -0.916
[0.316] [0.331] [0.481] [0.307] [0.729]

Non-official Languages (%) -0.185* -0.203* -0.234** -0.188* -0.273
[0.096] [0.108] [0.117] [0.098] [0.202]

Observations 6,320 6,320 6,320 6,320 6,320

Panel B: ∆ Technology Adoption (HYV seeds)

∆ Coverage 0.047** 0.095** 0.044** 0.049*** 0.093*
[0.019] [0.044] [0.018] [0.018] [0.049]

∆ Coverage × Non-official Languages (%) -0.041** -0.050*** -0.049 -0.041** -0.059
[0.019] [0.019] [0.046] [0.019] [0.056]

Non-official Languages (%) -0.002 -0.006 -0.004 -0.002 -0.008
[0.009] [0.010] [0.016] [0.009] [0.019]

Observations 6,320 6,320 6,320 6,320 6,320

Panel C: ∆ log(yield)

∆ Coverage 0.041** 0.091* 0.037* 0.046** 0.091**
[0.020] [0.051] [0.021] [0.020] [0.045]

∆ Coverage × Non-official Languages (%) -0.093*** -0.095*** -0.101** -0.095*** -0.107**
[0.033] [0.034] [0.039] [0.032] [0.042]

Non-official Languages (%) -0.014 -0.016 -0.016 -0.014 -0.018
[0.012] [0.011] [0.013] [0.011] [0.013]

Observations 5,033 5,033 5,033 5,033 5,033

District f.e. X X X X X
Baseline Controls X X X X X
Other Controls X X X X X

Notes: The table tests the robustness of our baseline IV-2SLS estimates to the inclusion on an additional set of
interaction terms. The dependent variable in Panel A is the change in (log) calls received at KCC; in Panel B
is the change in share of area cultivated under HYV; in Panel C is the change in (log) agricultural productivity
between 2007-2012. Column (1) reports baseline estimates of equation (4). Column (2) includes additionally the
interactions of share of labor force employed in agricultural sector and share of agricultural land that is irrigated
× ∆ Coverage. Column (3) includes the interactions of distance to nearest town and average ruggedness × ∆
Coverage. Column (4) includes the interactions of night lights intensity and income per capita × ∆ Coverage.
Column (5) includes simultaneously all the interactions in the previous columns. The unit of observation is a
10×10 km cell. ∆ Coverage is the change in the share of cell area covered under GSM mobile coverage between
2007-2012 instrumented using 1 (Tower). 1 (Tower) is a dummy variable that takes the value of 1 if a cell is
both proposed and covered by a tower under SMIP Phase I and takes the value of 0 if a cell is proposed and not
covered. All columns include district-fixed effects, baseline controls as well as other controls. Baseline controls
include cell’s (log) population, the availability of power supply and average ruggedness. Other controls for the cell
include share of labor force employed in agricultural sector, share of agricultural land that is irrigated, access to an
educational facility, access to a medical facility, access to a banking facility, number of landline phone connections
per 1000 people, distance to nearest town (in kms.), night lights intensity, income per capita (in rupees), and
expense per capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions
are weighted by the cell’s population. Standard errors clustered at district level are reported in brackets (number
of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table C.9: Robustness: continuous measure (2SLS)
(2007-2012)

Outcome: ∆ Coverage ∆ log (1+ number of calls)

Topic of the calls: All Seeds Fertilizer Irrigated Pesticides
(1) (2) (3) (4) (5) (6)

% covered by SMIP 0.149***
[0.017]

∆ Coverage 0.546*** 0.189** 0.161*** 0.042*** 0.489***
[0.132] [0.074] [0.062] [0.015] [0.121]

∆ Coverage × Non-official Languages (%) -0.560** -0.227*** -0.219*** -0.062** -0.469**
[0.221] [0.085] [0.075] [0.025] [0.200]

Non-official Languages (%) -0.170** -0.058** -0.040 -0.017* -0.152**
[0.071] [0.026] [0.025] [0.010] [0.066]

Observations 6,320 6,320 6,320 6,320 6,320 6,320
F-stat 79.60
R-squared 0.915 0.933 0.927 0.895 0.922

Outcome: ∆ Technology Adoption ∆ log(yield)

Technology: HYV Seeds Fertilizers Irrigation Pesticides
(7) (8) (9) (10) (11)

∆ Coverage 0.030*** 0.025* 0.017 0.037* 0.026**
[0.011] [0.014] [0.011] [0.019] [0.011]

∆ Coverage × Non-official Languages (%) -0.027* -0.011 -0.020 -0.044 -0.065***
[0.014] [0.024] [0.016] [0.031] [0.022]

Non-official Languages (%) 0.000 -0.011 -0.005 -0.015 -0.008
[0.008] [0.013] [0.005] [0.011] [0.008]

Observations 6,320 6,310 6,320 6,142 5,033
R-squared 0.864 0.890 0.815 0.892 0.905

District f.e. X X X X X X
Baseline Controls X X X X X X
Other Controls X X X X X X

Notes: The table reports the robustness of our baseline IV-2SLS estimates to using as the treatment variable
the share of cell covered by SMIP towers instead of an indicator variable. The unit of observation is a 10×10
km cell. Column (1) reports the first-stage regression of ∆ Coverage on cell area covered by a SMIP tower (%
covered by SMIP tower). In Columns (2)-(11), ∆ Coverage is the change in the share of cell area under GSM
mobile coverage from 2007 to 2012, instrumented using % of cell covered by SMIP. Columns (2)-(6) estimate the
effect of change in mobile coverage on change in number of (log) calls to the KCC. Column (2) estimates the effect
on total calls, Column (3) on calls about seeds, Column (4) on calls about fertilizers, Column (5) on calls about
irrigation, and Column (6) on calls about pesticides. Columns (7)-(10) estimate the effect of change in mobile
coverage on change in technology adoption. Column (7) focuses on share of land under HYV seeds, Column (8)
on share of land under fertilizers, Column (9) on share of irrigated land, Column (10) on share of land under
pesticides. Columns (11) estimates the effect of change in mobile coverage on change in agricultural productivity.
All columns include district-fixed effects, baseline controls as well as other controls. Baseline controls include cell’s
(log) population, the availability of power supply and average ruggedness. Other controls for the cell include share
of labor force employed in agricultural sector, share of agricultural land that is irrigated, access to an educational
facility, access to a medical facility, access to a banking facility, number of landline phone connections per 1000
people, distance to nearest town (in kms.), night lights intensity, income per capita (in rupees), and expense
per capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions are
weighted by the cell’s population. Standard errors clustered at district level are reported in brackets (number of
clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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