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ABSTRACT

In the midst of epidemics such as COVID-19, therapeutic candidates are unlikely to be able to 
complete the usual multiyear clinical trial and regulatory approval process within the course of an 
outbreak. We apply a Bayesian adaptive patient-centered model—which minimizes the expected 
harm of false positives and false negatives—to optimize the clinical trial development path during 
such outbreaks. When the epidemic is more infectious and fatal, the Bayesian-optimal sample 
size in the clinical trial is lower and the optimal statistical significance level is higher. For 
COVID-19 (assuming a static R0 – 2 and initial infection percentage of 0.1%), the optimal 
significance level is 7.1% for a clinical trial of a nonvaccine anti-infective therapeutic and 13.6% 
for that of a vaccine. For a dynamic R0 decreasing from 3 to 1.5, the corresponding values are 
14.4% and 26.4%, respectively. Our results illustrate the importance of adapting the clinical trial 
design and the regulatory approval process to the specific parameters and stage of the epidemic.
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1	 Introduction	

With growing public concern over the outbreak of Coronavirus Disease 2019 (COVID-19), 
significant efforts have been undertaken by global biomedical stakeholders to develop 
effective diagnostics, vaccines, antiviral drugs, medical devices, and other therapeutics 
against this highly infectious and deadly pandemic. While in the past, the traditional 
randomized clinical trial (RCT) and regulatory approval process often took several years (U.S. 
Food & Drug Administration, 2018)—longer than the typical duration of an epidemic 
outbreak (Pronker et al., 2013)—recently the FDA has responded with actions such as the 
Breakthrough Devices Program, Emergency Use Authorization (EUA) authority, and 
Immediately in Effect guidance documents to prevent novel diagnostics and therapeutics 
from lagging behind the urgent needs of the population. In this article, we propose adapting 
yet another tool that the FDA has already been exploring for medical devices (Chaudhuri et 
al., 2018, 2019) to therapeutics for treating COVID-19 that are currently under development. 

In recent years, Bayesian adaptive RCT protocols have been increasingly used to expedite 
the clinical trial process of potentially transformative therapies for diseases with high 
mortality rates (Berry, 2015). Currently, these protocols have mainly been applied within 
the oncology domain, such as I-SPY for breast cancer (Barker et al., 2009) and GBM AGILE 
for glioblastoma (Alexander et al., 2018). These studies use Bayesian inference algorithms 
to greatly reduce the number of patients needed to assess the therapeutic effects of a drug 
candidate, without lowering the statistical power of the final approval decision, as measured 
by Type I and II error rates. As a result, therapeutic candidates can progress more quickly 
through the regulatory process and reach patients faster and at lower costs. 

For severe diseases with no curative treatments, such as pancreatic cancer, patients tend to 
tolerate a higher Type I error of accepting an ineffective therapy in exchange for a lower Type 
II error of rejecting an effective therapy as well as expedited approvals of potentially 
effective treatments. Based on this observation, a patient-centered Bayesian protocol was 
proposed (Isakov	et al., 2019; Montazerhodjat et al., 2017) that incorporates patient values 
into clinical trial design and identifies the optimal balance between the possibilities of false 
positives (Type I error) and false negatives (Type II error). For more severe diseases, this 
protocol sets a tolerated Type I error rate much larger than the traditional 5% threshold, 
which leads to higher rates of approvals and expedited approval decisions. 

However, the original Bayesian adaptive RCT framework does not take into account patient 
risk preferences. To address this gap, Chaudhuri and Lo (2018) developed an adaptive 
version of the Bayesian patient-centered model that achieves an optimal balance between 
Type I and Type II error rates, significantly reducing the number of subjects needed in trials 
to achieve a statistically significant conclusion. A key feature of this model is the time 
evolution of the loss function of the Bayesian decision algorithm. This mechanism favors the 
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expedited approval of diagnostic or therapeutic candidates that show early positive effects, 
since patients place a lower value on delayed approval of an effective diagnostic or therapy. 

There is a natural but subtle analog to this dilemma in the case of therapeutics for an 
infectious disease during the course of an epidemic outbreak. Approving an effective 
therapeutic early will prevent future infections and deaths, while approving it later will save 
fewer people from infection. On the other hand, approving an ineffective therapeutic early 
will not prevent any future casualties. Worse still, it may prevent people from taking 
adequate precautions against infection, since they will falsely believe that they are safe from 
the disease after the advent of the ineffective therapy. 

Moreover, the cost of Type I versus Type II error can differ from therapy to therapy. A novel 
vaccine that could trigger a significant immune response such as a cytokine storm has a much 
higher cost of a Type I error than a medical device such as an air filtration system designed 
to destroy virions through intense ultraviolet light. Therefore, the appropriate statistical 
threshold for approval should depend on the specific therapy, as well as the circumstances 
of the current burden of disease. 

In this article, we apply the Bayesian adaptive protocol to anti-infective therapeutic 
development using a loss function that evolves over the course of an epidemic outbreak. We 
achieve an optimal balance between Type I and Type II errors for therapeutics that treat 
infectious diseases and identify the optimal time to reach the approval decision based on the 
accumulation of clinical evidence. Our results show that when the epidemic is more 
infectious, the necessary sample size of the RCT decreases, while the tolerable Type I error 
increases. This confirms our earlier intuition that potentially effective therapies that are 
known to be safe should receive expedited approval when an epidemic is spreading rapidly. 

2	 Multigroup	SEIR	Epidemic	Model	

The starting point for our analysis is the Susceptible-Exposure-Infective-Removed (SEIR) 
epidemic model, which has been applied to model the outbreak of COVID-19 in China in a 
number of recent studies (Wu et al., 2020; Yang et al., in press). The population of N subjects 
is partitioned into four distinct groups: susceptible (S), exposed (E), infectious (I), and 
removed (R). The time evolution of the epidemic is specified by the following group of 
ordinary differential equations: 

 

 
𝑑𝑆
𝑑𝑡

ൌ െ𝛽𝑆𝐼,
𝑑𝐸
𝑑𝑡

ൌ 𝛽𝑆𝐼 െ 𝑎𝐸,
𝑑𝐼
𝑑𝑡

ൌ 𝑎𝐸 െ 𝛾𝐼,
𝑑𝑅
𝑑𝑡

ൌ 𝛾𝐼 . (1) 
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Here we use the convention that 𝑆ሺ𝑡ሻ, 𝐸ሺ𝑡ሻ, 𝐼ሺ𝑡ሻ, and 𝑅ሺ𝑡ሻ  are the proportions of the 
susceptible, exposed, infectious and removed populations, respectively, satisfying the 
conservation constraint for all 𝑡: 

 

 𝑆ሺ𝑡ሻ  𝐸ሺ𝑡ሻ  𝐼ሺ𝑡ሻ   𝑅ሺ𝑡ሻ ൌ 100% . (2) 

 

The parameters 𝛽, 𝑎, and 𝛾 denote the average rates of infection, incubation, and recovery, 
respectively, and 𝜇 ∈ ሺ0%, 100%ሻ denotes the mortality rate of the epidemic. For example, 
if 𝜇 ൌ 5%, we expect 5% of infected subjects will die from the disease. At time 𝑡, 𝜇𝑅ሺ𝑡ሻ𝑁 
subjects will have died, and ሺ1 െ 𝜇ሻ𝑅ሺ𝑡ሻ𝑁 will have recovered. 

A critical measure of the infectivity of an epidemic is its basic reproduction number, defined 
as 𝑅 ൌ 𝛽/𝛾 in the SEIR model. This is the expected number of secondary infections caused 
by each infected subject in a population with no public health measures (such as quarantine, 
social distancing, or vaccination).  

A number of studies have used different statistical schemes to estimate 𝑅 for COVID-19 
during its initial outbreak period in central China in January 2020. These estimated values of 
𝑅 range from 2.2 (95% CI, 1.4 to 3.9) (Li et al., 2020) to 3.58 (95% CI, 2.89 to 4.39) (Zhao et 
al., 2020). Given the large uncertainty in the value of 𝑅 , we simulate therapeutic 
development under scenarios with constant 𝑅 values of 2 and 4. 

In addition, to model the impact of governmental nonpharmaceutical interventions (NPIs) 
on containing the spread of the epidemic, we consider a dynamic transmission SEIR model 
where the infection rate, 𝛽ሺ𝑡ሻ, monotonically decreases over time as a result of the NPIs. 
Specifically, we assume that 𝛽ሺ𝑡ሻ takes the sigmoid functional form: 

 

𝛽ሺ𝑡ሻ ൌ
𝛽 െ 𝛽∞

1  exp ቀ𝑡 െ 𝑡ଶ
𝜏 ቁ

 𝛽∞  . (3) 

 

Here 𝛽 and 𝛽ஶ denote the infection rates in the initial and final stages of the epidemic (with 
𝛽  𝛽ஶ),  respectively, 𝑡ଶ denotes the half-life of the decay in infection rate, and 𝜏 the length 
of the time window when this decay occurred. A larger difference between 𝛽 and 𝛽ஶ (𝛽 െ
𝛽ஶ) corresponds to a more significant reduction of epidemic transmission, a smaller value 
of 𝑡ଶ  corresponds to a speedier decision to enforce the NPIs, and a smaller value of 𝜏 
corresponds to more strict enforcement of the NPIs since 𝛽ሺ𝑡ሻ decays more rapidly. We 
calibrate the values 𝛽 ൌ 3  and 𝛽ஶ ൌ 1.5  based on the estimates of the dynamic 
transmission rate of COVID-19 in Wuhan, China, from December 2019 to February 2020 
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(Kucharski et al., 2020). We consider different values of 𝑡ଶ and 𝜏 to reflect the variability in 
timing and stringency of NPIs enforced by governments around the globe. Under this 
dynamic transmission model, the basic reproduction number is given by 𝑅ሺ𝑡ሻ ൌ 𝛽ሺ𝑡ሻ/𝛾, 
which monotonically decreases from 𝛽/𝛾 to a constant value 𝛽ஶ /𝛾 as 𝑡 increases. 

To model the significant variability in mortality rates of COVID-19 for patients in different 
age groups, we extend this basic model to a multigroup SEIR model, where the population is 
partitioned into five age groups, (1) below 49, (2) 50 to 59, (3) 60 to 69, (4) 70 to 79, and (5) 
above 80. We use 𝑆, 𝐸, 𝐼, and 𝑅 	to denote the corresponding type in each group (and 
continue to use 𝑆, 𝐸, 𝐼, and 𝑅  for the total proportion of each type in all groups). The 
dynamics of the epidemic are specified by the modified ordinary differential equations: 

 

 
𝑑𝑆

𝑑𝑡
ൌ െ𝛽𝑐𝑆𝐼,      

𝑑𝐸

𝑑𝑡
ൌ 𝛽𝑐𝑆𝐼 െ 𝑎𝐸 ,       

𝑑𝐼

𝑑𝑡
ൌ 𝑎𝐸 െ 𝛾𝐼 ,      

𝑑𝑅

𝑑𝑡
ൌ 𝛾𝐼. (4) 

 

Here 𝑐 denotes the contact rate of the susceptible subjects in the 𝑖th age group with the total 
infected population, 𝐼, of all groups. This contact rate is measured relative to group 1, which 
we normalize to 𝑐ଵ ൌ 1. In the case of COVID-19, although the mortality rate is much higher 
for senior populations (Onder et al., 2020), elderly people also tend to have less frequent 
contact with the infected population outside the household (Walker et al., 2020). 

We solve the differential equations in the multigroup SEIR model using the ODE45 solver in 
MATLAB 2019a with initial conditions for each age group: 

 

 ሾ𝑆ሺ0ሻ, 𝐸ሺ0ሻ , 𝐼ሺ0ሻ, 𝑅ሺ0ሻሿ  ൌ  ሾ1 െ ሺ1  𝑟ሻ𝐼, 𝑟𝐼, 𝐼, 0ሿ ൈ 𝑃 . (5) 

 

The parameter 𝐼 denotes the proportion of the initially infected population, 𝑟 is the ratio of 
initially exposed and infected subjects, and 𝑃 is the percentage of the 𝑖th age group in the 
population. The assumed demographic, contact rate, and mortality rate values are 
summarized in Table 1. 

3	 A	Bayesian	Patient‐Centered	Approval	Process	

Similar to Chaudhuri and Lo (2018), we develop a Bayesian patient-centered decision model 
for RCT approval that minimizes the expected loss (or harm) incurred on the patients by 
optimally balancing the losses of Type I and Type II errors. Here the loss does not refer to 
financial costs afforded by the patients, but rather the loss in patient value (i.e., how much 
patients weigh the relative harms of infection and death). We assign the losses per patient of 
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being susceptible, infected, and deceased. Since Bayesian decision thresholds are invariant 
under the rescaling of the losses, we normalize by setting the loss per patient infection to 1 
(𝐿ூ ൌ 1). We then assign the loss per patient death relative to 𝐿ூ as 𝐿, and the loss due to 
susceptibility to the disease as 𝐿ௌ.  The parameter values we assume, summarized in Table 2, 
are meant to represent one reasonable valuation of the relative losses. However, in practice, 
patient value will differ from one patient group to another, especially given the large 
variability of the mortality rate of COVID-19 in different age groups (Onder et al., 2020). Here 
we report the main results of optimal sample size and statistical significance (Tables 3 and 
4) assuming 𝐿 ൌ 100. The results for 𝐿 ൌ 10 are provided in the Appendix. 

We simulate the multigroup SEIR model over a time period of 𝑇  weeks, where 𝑇  is the 
duration of the epidemic outbreak. Let 𝜅 denote the weekly subject enrollment rate in each 
arm of the clinical trial. We assume that the value of 𝑅 is known (or well-estimated) at initial 
time 𝑡 ൌ 0 and stays constant during the course of the outbreak. At time 𝑡 ∈ ሾ0, 𝑇ሿ , the 
Bayesian loss, 𝐶ሺ𝑡ሻ, of choosing action 𝐻 ൌ 𝑖 under 𝐻 ൌ 𝑗 is defined as:  

 

 𝑯 ൌ 𝟎 ሺ𝐝𝐨 𝐧𝐨𝐭 𝐚𝐩𝐩𝐫𝐨𝐯𝐞ሻ	 𝑯 ൌ 𝟏 ሺ𝐚𝐩𝐩𝐫𝐨𝐯𝐞ሻ	

𝑯 ൌ 𝟎 (ineffective)	 0 ሺ𝑆ሺ𝑡ሻ െ 𝑆ሺ𝑇ሻሻ𝑁𝐿ௌ 

𝑯 ൌ 𝟏 (effective)	

 

𝑅ሺ𝑇ሻ𝑁ሺ𝐿ூ  𝜇𝐿ሻ 

 

𝐶𝐼ሺ𝑡ሻ𝑁𝐿ூ  𝜇𝑅ሺ𝑡ሻ𝑁𝐿 

 

where we define the cumulative number of infected patients, 𝐶𝐼ሺ𝑡ሻ, until time t: 

  

 𝐶𝐼ሺ𝑡ሻ ൌ 𝐸ሺ𝑡ሻ  𝐼ሺ𝑡ሻ  𝑅ሺ𝑡ሻ . (6) 

 

By design, this loss function penalizes Type I errors early in the epidemic by the susceptible 
term, ሺ𝑆ሺ𝑡ሻ െ 𝑆ሺ𝑇ሻሻ𝑁𝐿ௌ . We subtract the base level 𝑆ሺ𝑇ሻ from 𝑆ሺ𝑡ሻ since the multigroup 
SEIR model predicts that 𝑆ሺ𝑇ሻ𝑁 subjects will not be infected by the epidemic.  A Type I error 
at an earlier time will expose more currently susceptible populations to the epidemic, since 
members will falsely believe that they are safe from the disease after the advent of the 
ineffective therapeutic. On the other hand, the loss function also penalizes correct approval 
decisions made at later stages of an epidemic via the cumulative infected and death terms, 
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𝐶𝐼ሺ𝑡ሻ and 𝜇𝑅ሺ𝑡ሻ. A correct but delayed approval decision for the therapeutic is less valuable 
since it will save fewer susceptible people from infection and death. 

The Bayesian decision model considers the null hypothesis, 𝐻 ൌ 0, that the anti-infective 
therapeutic (or vaccine) has no clinical effect, against the alternative hypothesis that it has 
positive clinical effect with signal-to-noise ratio 𝜌 (Chaudhuri & Lo, 2018). We use 𝑝 and 𝑝ଵ 
to denote the Bayesian prior probabilities of 𝐻 ൌ 0 and 𝐻 ൌ 1, respectively.  

This patient-value model imposes higher losses for incorrect approvals at earlier stages and 
correct approvals at later stages of an epidemic. Under these constraints, the Bayesian 
decision algorithm yields the sample size and statistical significance threshold of the RCT 
that optimally balances Type I and Type II errors. 

4	 Results	

We simulate an epidemic outbreak over a time period of 𝑇 weeks, where 𝑇 is the duration of 
the outbreak. For an epidemic with higher infectivity, its duration is shorter, which creates 
more pressure to reach a timely approval decision. To avoid numerical instability, we 
formally define 𝑇 as the time when the number of cumulative infected subjects first reaches 
99.9% of total infections predicted by the SEIR model. We assume an age-specific mortality 
rate 𝜇 at the level of COVID-19 (Onder et al., 2020; World Health Organization, 2020), and 
incubation and recovery periods of 7 days each (Yang et al., in press). These estimated 
parameters can all be challenged to varying degrees, depending on the specific drug-
indication pair under consideration and the particular circumstances of the epidemic, but 
they are meant to be representative of a typical anti-infective therapeutic during the midst 
of a growing epidemic. 

We also assume that it takes 7 days after injection to assess the efficacy of the therapeutic on 
each subject. We adopt the optimization scheme of Montazerhodjat et al. (2017) to find the 
optimal Type I and Type II error rates of the nonadaptive Bayesian RCT. To represent typical 
practice of the pharmaceutical industry, we optimize under the upper bound on the model’s 
power, Power୫ୟ୶ ൌ 90% (Isakov et al.,	2019). We then use these optimal error rates as our 
stopping criteria to simulate the sequential decision process of a Bayesian adaptive RCT via 
Monte Carlo simulation (Chaudhuri & Lo, 2018). The simulation results are summarized in 
Tables 3 and 4. 

We separate the results into two distinct types of therapeutics—nonvaccine anti-infectives 
(Table 3) and vaccines (Table 4)—because of the differences in their historical probabilities 
of success. Vaccine development programs have an estimated probability of success 𝑝ଵ

௩ ൌ
40% as of 2019Q4 (https://projectalpha.mit.edu), whereas the corresponding figure for 
nonvaccine anti-infectives is 𝑝ଵ

௩ ൌ 23% (Wong et al., 2020).	
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4.1 Nonvaccine	Anti‐Infective	Therapeutics	

Static	Transmission	Rate	

We first analyze the case in which the infectivity 𝑅 remains constant over time (e.g., in the 
absence of effective NPIs). For the fixed-sample Bayesian RCT of a nonvaccine anti-infective 
therapeutic, as 𝑅 increases from 2 to 4 (rows 1 to 2 of Table 3), the optimal sample size of 
each experimental arm decreases from 242 to 158 and the optimal Type I error rate 
drastically increases from 7.1% to 17.3% (Figure 1), much higher than the traditional 5% 
threshold. As the epidemic spreads across the population more rapidly, the Bayesian RCT 
model exhibits greater pressure to expedite the approval process and a much higher 
tolerance of false positive outcomes.  

For the Bayesian adaptive RCT, when the therapeutic is ineffective (𝐻 ൌ 0), the average 
sample size required to reject the therapeutic is much smaller than that of the nonadaptive 
version (columns 7 and 8 of Table 3). Also, the required sample size decreases with the 
infectivity 𝑅 in both mean and quartiles, yet always achieves a Type I error rate (𝛼) below 
that of the nonadaptive version (column 11).  The adaptive Bayesian decision model is able 
to reject an ineffective therapeutic with a relatively small sample size and a bounded false-
positive rate.  

On the other hand, when the therapeutic is effective (𝐻 ൌ 1), as 𝑅 increases from 2 to 4, the 
average sample size required by the Bayesian adaptive RCT decreases from 148 to 98 
(columns 9 and 10 of Table 3). The Bayesian adaptive model places more weight on 
approving an effective therapeutic earlier to prevent future infections when the epidemic is 
more infectious. Despite the smaller sample size, the model still retains an empirical power 
above 91.0% for all values of 𝑅 (column 12). The Bayesian adaptive model simultaneously 
expedites the approval of an effective therapeutic and retains a bounded false-negative rate. 
The results are illustrated in Figure 2. 

Furthermore, as the proportion of the initially infected population 𝐼 decreases from 0.1% to 
0.01% (rows 4 to 6 of Table 3), the optimal sample sizes for nonadaptive and adaptive RCTs 
both increase, while the optimal Type I error rates decrease. Beginning the clinical trials for 
a therapeutic during the earlier stages of an epidemic outbreak reduces the need to expedite 
the approval process in order to contain its future spread. Clinicians and researchers have 
more time to evaluate the efficacy of a therapeutic and record adverse effects by testing it on 
a larger number of subjects, which leads to a lower Type I error rate. 

Finally, when the mortality rate 𝜇 increases from the level of COVID-19 (Onder et al., 2020; 
World Health Organization, 2020), to the level of SARS (World Health Organization, 2003), 
and further to the level MERS (World Health Organization, 2019), the optimal sample sizes 
for both nonadaptive and adaptive Bayesian models decrease and the optimal Type I error 
rates increase (rows 7 to 12 of Table 3). When the epidemic is more lethal, the Bayesian 
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adaptive model requires fewer subjects in the RCT, since both Type I and Type II errors will 
lead to greater losses due to death by infection. The higher death tolls provide significantly 
more incentive in the Bayesian adaptive framework to approve the therapeutic in the hopes 
of saving more people from future infection and death. 

One interesting feature of the Bayesian decision model is that the optimal Type I error rate 
is not a monotonic function of 𝑅, but rather has a minimum around 𝑅 ൌ 1.7 for COVID-19, 
as shown in Figure 1. As 𝑅 decreases below 1.7, the optimal Type I error rate increases. The 
intuition for this result that we define the loss of Type I error as the excess risk of being 
susceptible to infection, ሺ𝑆ሺ𝑡ሻ െ 𝑆ሺ𝑇ሻሻ𝑁𝐿ௌ, where 𝑆ሺ𝑇ሻ is the fraction of the population that 
remains uninfected throughout the epidemic outbreak. When 𝑅 is small, 𝑆ሺ𝑇ሻ is close to 
100% and the excess risk, ሺ𝑆ሺ𝑡ሻ െ 𝑆ሺ𝑇ሻሻ𝑁𝐿ௌ, is small compared to the benefit of preventing 
future deaths. Therefore, when the epidemic is not very infectious, the Bayesian decision 
model expedites the approval decision. This also confirms the intuition that smaller sample 
sizes are required in adaptive trials for diseases that affect a small fraction of the population. 
If we instead define the loss of Type I error as the absolute risk of being susceptible, 𝑆ሺ𝑡ሻ𝑁𝐿ௌ, 
we find that the optimal Type I error indeed monotonically increases with 𝑅, as shown in 
Figure S3 in the Appendix. 

Dynamic	Transmission	Rate	

The results for the dynamic transmission model with 𝛽 ൌ 3, 𝛽∞ ൌ 1.5, 𝑡ଶ ൌ 3 weeks, and 𝜏 ൌ

1 week are also summarized in Table 3. For COVID-19 (rows 3 and 6 in Table 3), we find that 
the Bayesian optimal sample size and Type I error rate of the dynamic transmission model 
lie in-between the corresponding values under scenarios 𝑅 ൌ 2 and 𝑅 ൌ 4.  This suggests 
that timely and effective government interventions will protect more subjects from infection 
and allow more time for the RCT. 

However, for the more fatal SARS and MERS (rows 9 and 12 in Table 3), the dynamic 
transmission model sets higher optimal Type I errors and smaller sample sizes than 𝑅 ൌ 4. 
This is due to the U-shaped curve of optimal 𝛼 vs. 𝑅, shown in Figure 1. When the NPIs 
reduce 𝑅ሺ𝑡ሻ below a certain threshold, the optimal 𝛼 starts to increase. For highly fatal 
epidemics, when the government adopts NPIs to protect most of the susceptible population 
from infection, the regulatory priority should be to expedite potentially effective treatments 
that can help current patients since the loss of Type I error is much lower than that of the 
Type II error. 

In addition, we investigate the impact of the timing and stringency of NPIs enforced by the 
government with different values of 𝑡ଶ and 𝜏. The results are summarized in Table 5. We find 
that the optimal Type I error is larger for 𝑡ଶ ൌ 3 weeks than 𝑡ଶ ൌ 6 weeks. Therefore, if the 
government adopts well-enforced NPIs early on (such as the lockdown in Wuhan, China) to 
protect the susceptible population, this will reduce the loss associated with Type I error, 
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leading to expedited approvals of potentially effective therapeutics. Furthermore, the sooner 
an effective therapeutic is approved, the sooner will NPIs be lifted. 

4.2		Vaccines	

We repeat the above analysis for an RCT of a vaccine using a prior probability of having an 
effective vaccine 𝑝ଵ

௩ ൌ 40% as reported at https://projectalpha.mit.edu for 2019Q4. The 
simulation results are summarized in Table 4. Overall, we observe the same pattern in the 
optimal sample size and Type I error rates on infectivity, mortality, and proportion of initial 
infections. However, since 𝑝ଵ is higher for vaccines, the Bayesian decision model requires 
fewer subjects, on average, in the RCT to ascertain the positive effects of the vaccine, 
compared to the case of anti-infective therapeutics in Table 3. We find that vaccines should 
receive even more expedited evaluation. 

4.3		Five‐Factor	Sensitivity	Analysis	

To assess the robustness of our model’s predictions against the assumed values of model 
parameters, we perform a five-factor sensitivity analysis for the static transmission rate 
model with 𝑅 ൌ 2. The baseline and alternative parameter values are summarized in Table 
S1. The scatterplot of optimal Type I error (𝛼) vs. sample size of Bayesian nonadaptive RCT 
model is shown in Figure 3 (related summary statistics are shown in Table S5 in the 
Appendix). We find that the scatterplot consists of several curves. To clearly identify the 
effect of any given parameter, we show the results for the most important parameters in 
separate scatterplots in Figures 4 to 6 (additional results are provided in the Appendix). 

We find that the different curves in Figure 3 result from different values of 𝜌, the signal-to-
noise ratio (SNR) of treatment effect (Chaudhuri & Lo, 2018), as shown in Figure 4. For a 
given significance level 𝛼, a smaller value of 𝜌 leads to larger optimal sample size. If the 
efficacy of the anti-infective therapeutic is insignificant (small 𝜌), the distributions of z-score 
under the null hypothesis, 𝐻 ൌ 0 (no effect), and alternative hypothesis, 𝐻 ൌ 1 (positive 
effect with SNR 𝜌), are difficult to distinguish statistically. Hence, a larger sample size is 
needed to evaluate the efficacy at the given significance level, 𝛼. 

In addition, with a fixed SNR, the magnitudes of 𝛼 and sample size are mainly determined by 
𝑝

௩ , the Bayesian prior probability of having an ineffective anti-infective therapeutic. A 
larger value of 𝑝

௩ leads to a smaller 𝛼 and a larger sample size (Figure 5). When past drug 
development outcomes in the anti-infective domain strongly suggest that the current anti-
infective therapeutic is unlikely to be effective (large 𝑝

௩), the Bayesian framework requires 
many more observations to shift the posterior distribution in order to prove its efficacy. For 
notational convenience, we denote 𝑝

௩ by 𝑝 in Figure 5. 

A similar but less significant effect on the magnitudes of 𝛼 and sample size is generated by 𝜅, 
the weekly subject enrollment in each arm of the RCT. A larger value of 𝜅 leads to a smaller 
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𝛼 and a larger sample size (Figure 6). When the RCT enrolls patients at a faster rate, clinical 
researchers may evaluate the efficacy of the treatment based on more observations earlier 
on during the epidemic outbreak. Hence, the approval decision may be reached with lower 
false positive error.  

In Figures S1 and S2 of the Appendix, we show that the five-factor sensitivity analysis reveals 
no significant dependence of 𝛼  and sample size on ∆𝑡 , the time needed to assess the 
treatment efficacy, as well as 𝑎, the incubation period of the disease. However, the analysis 
does show that extreme values of the Bayesian optimal Type I error rate are generated by 
large values of 𝑝

௩ and small values of 𝜌. These regions of parameter space can be avoided if 
the anti-infective therapeutic under investigation has promising preclinical evidence to 
support its efficacy (reducing 𝑝

௩) and the RCT is designed to verify reasonably significant 
treatment effects over the control arm (increasing 𝜌). 

To provide readers with greater transparency and intuition for our Bayesian decision model, 
we provide the source code at https://projectalpha.mit.edu/resources, allowing users to 
input their own parameter values of interest to see how the results change. We also 
encourage users to adapt our code to their own contexts, as well as to experiment with 
alternate epidemiological models of infection and loss functions. 

5	 Discussion	

A natural consequence of using a patient-centered framework for determining the approval 
threshold is, of course, more false positives—and the potential for a greater number of 
patients with adverse side-effects—in cases where the burden of disease is high. These false 
positives can be addressed through more vigilant postapproval surveillance by regulatory 
agencies and greater requirements for drug and device companies to provide such patient-
level data to the regulator following approval. Failure to provide such data or evidence of an 
ineffective therapy can be grounds for revoking the approval. 

However, past experience shows that withdrawing an approved drug can be challenging and 
disruptive for several reasons (Onakpoya et al., 2019). Therefore, implementing the patient-
centered approach may require creating a new category of temporary approvals for crisis 
situations involving urgent needs at national or international levels, similar to the FDA’s EUA 
program. Such a program might involve provisional approval of a candidate therapy 
consisting of a one- or two-year license—depending on the nature of the drug-indication 
pair—to market the therapy to a prespecified patient population, no off-label use of the 
therapy, and regular monitoring and data reporting to the regulator by the manufacturer 
and/or patients’ physicians during the licensing period (Lo, 2017). At the end of this trial 
period, one of two outcomes would occur, depending on the accumulated data during this 
period: (a) the ‘urgent needs’ license expires; or (b) the license converts to the traditional 
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regulatory license. Of course, at any point during the trial period, the regulator can terminate 
the license if the data show that the therapeutic is ineffective and/or unsafe.  

While such a process may impose greater burdens on patients, manufacturers, and 
regulators, it may still be worthwhile if it brings faster or greater relief to patients facing 
mortal illnesses and extreme suffering. In this respect, an urgent-needs program may be 
viewed as a middle ground between a standard clinical trial and an approval, similar in spirit 
to the adaptive designs of sophisticated clinical trials with master protocols such as I-SPY 2, 
LUNG-MAP, and GBM-AGILE, in which patient care and clinical investigations are 
simultaneously accomplished. Also, because the Centers for Medicare and Medicaid Services 
(CMS) has demonstrated a willingness to cover the cost of certain therapeutics for which 
evidence is still being generated (see, for example, CMS’s “coverage with evidence” programs 
listed at https://go.cms.gov/2v6ZxWm), additional economic incentives may be available to 
support such temporary licenses. 

Finally, we note that the age-group specification in our SEIR model mainly focuses on older 
populations, whose mortality risks with COVID-19 are much higher than younger 
populations (Onder et al., 2020). More refined age-group specifications are needed to 
differentiate the transmission rates of COVID-19 among children, teenagers, and young 
adults, as well as to reflect the different societal benefits each age group will receive from the 
approval of an effective anti-infective therapeutic or vaccine.  
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6	 Conclusion	

We apply the Bayesian adaptive patient-centered model of Chaudhuri and Lo (2018) to 
clinical trials for therapeutics that treat infectious diseases during an epidemic outbreak. 
Using a simple epidemiological model, we find that the optimal sample size in the clinical 
trial decreases with the infectivity of the epidemic, measured by the basic reproduction 
number 𝑅. At the same time, the optimal Type I error rate increases with 𝑅. Lower levels 
of initial infection increase the number of subjects required to verify the therapeutic efficacy 
of the therapeutic under investigation, while higher levels of mortality increase the optimal 
sample size. The results confirm our intuition that clinical trials should be expedited and a 
higher false positive rate should be tolerated when the epidemic spreads more rapidly 
through the population, has a higher mortality rate, and has already infected a sizable 
portion of the population at the beginning of the RCT. 

To provide transparency for how a patient-centered approach differs from the traditional 
statistical framework in the anti-infectives context, we use a relatively simple mathematical 
model of epidemic disease dynamics to estimate the societal loss in an outbreak. More 
sophisticated epidemiological models can easily be incorporated into our framework at the 
cost of computational tractability and transparency (see 
https://projectalpha.mit.edu/resources for details). 

One interesting trade-off to be explored is the difference between a COVID-19 vaccine and 
an antiviral treatment that can cure an infected patient. While prevention through 
vaccination is the ultimate goal, a successful treatment for the disease using repurposed 
drugs that have already been approved for other indications (and whose safety profile has 
already been established) may be even more valuable, especially if they can be deployed in 
the nearer term and reduce the growing fear and panic among the general population. In 
such cases, the approval threshold should clearly reflect these cost–benefit differences. 

Of course, in practice, regulators consider many factors beyond p values in making their 
decisions. However, that process is opaque even to industry insiders, and the role of patient 
preferences is unclear. The proposed patient-centered approach provides a systematic, 
objective, adaptive, and repeatable framework for explicitly incorporating patient 
preferences and burden-of-disease data in the therapeutic approval process. This 
framework also fulfills two mandates for the FDA, one from the fifth authorization of the 
Prescription Drug User Fee Act (PDUFA) for an enhanced quantitative approach to the 
benefit–risk assessment of new drugs (U.S. FDA, 2013), and the other from Section 3002 of 
the 21st Century Cures Act of 2016 requiring the FDA to develop guidelines for patient-
focused drug development, which includes collecting patient preference and experience data 
and explicitly incorporating this information in the drug approval process. 
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We hope this work will shed further insight into improving the current clinical trial process 
for infectious disease therapeutics and contribute to the timely development of effective 
treatments and vaccines for COVID-19 in particular. 
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Table	1.	Demographic	 (U.S.	Census	Bureau,	2018),	Relative	Contact	Rate	 (Walker	et	al.,	2020),	and	
Mortality	 (Onder	et	al.,	2020;	World	Health	Organization	2003,	2019,	2020)	Profile	of	Various	Age	
Groups	for	COVID‐19,	SARS,	and	MERS	

 

Age	Group	
Percentage	of	
U.S.	Population	

𝑷𝒊	

Contact	Rate	
𝒄𝒊	

Disease	
Mortality	

𝝁𝒊	

Below 49 64% 1.00 

COVID-19 0.3% 

SARS 3% 

MERS 15% 

50–59 13% 0.83 

COVID-19 1.3% 

SARS 10% 

MERS 30% 

60–69 12% 0.66 

COVID-19 3.6% 

SARS 17.6% 

MERS 35% 

70–79 7% 0.50 

COVID-19 8% 

SARS 28% 

MERS 45% 

Above 80 4% 0.42 

COVID-19 14.8% 

SARS 26.3% 

MERS 40% 
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Table	2.	Simulation	Parameters	and	Values	

 

Parameter	 Description	(Source)	 Value(s)	

𝑅 Basic reproduction number 
(Li et al.,	2020; Zhao et al., 2020) 

2, 4 

a Incubation rate (per week)  
(Yang et al., in press) 

1 

𝛾 Recovery rate (per week)  
(Yang et al., in press) 

1 

𝐼 Initial proportion of infected population 
0.1%, 
0.01% 

𝑟 Ratio of initially exposed and infected populations 10 

ሾ𝛽, 𝛽ஶሿ Initial and final infection rate in the dynamic transmission 
model (Kucharski et al., 2020) 

[3, 1.5] 

𝑡ଶ Half-life of decay in the dynamic model (week) 3, 6 
𝜏 Window length of decay in the dynamic model (week) 0.5, 1 
N Population size (million) 300 
𝜅 Weekly subject enrollment in each arm of RCT 100 

𝑝
௩ Prior probability of having an ineffective nonvaccine anti-

infective therapeutic (Wong et al., 2019) 
77% 

𝑝
௩  Prior probability of having an ineffective vaccine 

(Wong et al., 2019) 
60% 

∆𝑡  Time needed to assess the efficacy of the treatment (week) 1 

𝜌 Signal to noise ratio of treatment effect 
(Chaudhuri & Lo, 2018) 

0.25 

Power୫ୟ୶ 
Maximum power of Bayesian decision model 
(Isakov et al., 2019) 

0.9 

𝐿 Loss per capita from death by infection 10, 100 
𝐿ூ Loss per capita from being infected 1 
𝐿ௌ  Loss per capita from being susceptible without precaution 0.2 
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Table	3.	Simulation	Results	of	a	Bayesian	Adaptive	RCT	on	Nonvaccine	Anti‐infective	Therapeutics	Obtained	From	10,000	Monte	Carlo	Runs	
and	assuming	𝑳𝑫 ൌ 𝟏𝟎𝟎		

 
Epidemic	Parameters	 Nonadaptive	

Adaptive	(10,000	Monte	Carlo	Runs)	

 Sample	Size	(H	=	0)	 Sample	Size	(H	=	1)	
𝜶	%	

Power	
%	 

𝑹𝟎	 µ	 𝑰𝟎	
Sample	
Size	

𝜶	%	 Power	%	
Mean	
(SD)	

Median	
(IQR)	

Mean	
(SD)	

Median	
(IQR)	

(1) 2 COVID-19 0.1% 242 7.1 90 135 
(103) 

105 
(63, 176) 

148 
(107) 

119 
(73, 192) 

5.8 91.5 

(2) 4 COVID-19 0.1% 158 17.3 90 115 
(83) 

91 
(56, 149) 

98 
(80) 

74 
(42, 128) 

14.4 92.1 

(3) 𝑅(t) COVID-19 0.1% 176 14.4 90 
118 
(85) 

95 
(57, 153) 

108 
(85) 

84 
(49, 140) 11.7 92.2 

(4) 2 COVID-19 0.01% 399 1.2 90 
150 

(128) 
110 

(64, 191) 
248 

(154) 
211 

(139, 317) 1.0 91.0 

(5) 4 COVID-19 0.01% 274 5.0 90 
140 

(110) 
106 

(64, 180) 
168 

(116) 
136 

(86, 216) 4.1 91.4 

(6) 𝑅(t) COVID-19 0.01% 304 3.6 90 
145 

(119) 
108 

(64, 187) 
184 

(120) 
153 

(97, 239) 
3.0 91.2 

(7) 2 SARS 0.1% 164 16.3 90 
117 
(85) 

94 
(57, 150) 

101 
(81) 

77 
(45, 132) 

13.9 92.3 

(8) 4 SARS 0.1% 112 27.8 90 
98 

(72) 
79 

(47, 128) 
72 

(64) 
51 

(27, 95) 
23.3 93.2 

(9) 𝑅(t) SARS 0.1% 107 29.2 90 96 
(71) 

78 
(45, 126) 

70 
(64) 

50 
(26, 92) 

25.1 93.4 

(10) 2 MERS 0.1% 88 35.3 90 87 
(66) 

70 
(40, 115) 

59 
(57) 

39 
(20, 77) 

29.8 93.7 

(11) 4 MERS 0.1% 63 45.2 90 
73 

(59) 
59 

(30, 100) 
46 

(49) 
28 

(14, 60) 38.8 94.5 

(12) 𝑅(t) MERS 0.1% 44 54.3 90 
61 

(54) 
48 

(20, 86) 
36 

(43) 
19 

(9, 46) 47.0 94.8 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Note.	RCT	=	 randomized	 clinical	 trial;	𝑹𝟎 	denotes	 the	basic	 reproduction	number,	µ	 the	disease	morality,	and	𝑰𝟎 	the	proportion	of	 initial	
infected	subjects.	Sample	size	refers	to	the	number	of	subjects	enrolled	in	each	arm	of	the	RCT.	IQR	denotes	the	interquartile	range	about	the	
median.	𝑹𝟎(t)	denotes	the	dynamic	transmission	model	with	𝒕𝟐 ൌ 𝟑	weeks,	𝝉 ൌ 𝟏	week,	and	𝑹𝟎(t)	decreasing	from	3	to	1.5	as	time	t	increases.	
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Table	4.	Simulation	Results	of	Bayesian	Adaptive	RCT	for	Vaccines	Obtained	From	10,000	Monte	Carlo	Runs	and	assuming	𝑳𝑫 ൌ 𝟏𝟎𝟎		

 
Epidemic	Parameters	 Nonadaptive	

Adaptive	(10,000	Monte	Carlo	Runs)	

 Sample	Size	(H	=	0)	 Sample	Size	(H	=	1)	
𝜶	%	 Power	%	 𝑹𝟎	 µ	 𝑰𝟎	

Sample	
Size	

𝜶	%	 Power	%	 Mean	
(SD)	

Median	
(IQR)	

Mean	
(SD)	

Median	
(IQR)	

(1) 2 COVID-19 0.1% 181 13.6 90 
122 
(91) 

95 
(58, 158) 

112 
(87) 

86 
(51, 145) 11.3 92.4 

(2) 4 COVID-19 0.1% 111 28.1 90 
97 

(71) 
78 

(47, 127) 
72 

(64) 
52 

(27, 95) 23.4 92.8 

(3) 𝑅(t) COVID-19 0.1% 117 26.4 90 
71 

(49) 
80 

(49, 132) 
74 

(67) 
53 

(29, 98) 
21.8 93.1 

(4) 2 COVID-19 0.01% 342 2.3 90 
148 

(124) 
110 

(64, 191) 
212 

(137) 
177 

(115, 275) 
2.1 90.9 

(5) 4 COVID-19 0.01% 232 7.9 90 
132 

(100) 
104 

(61, 171) 
142 

(103) 
113 

(69, 184) 
6.6 91.4 

(6) 𝑅(t) COVID-19 0.01% 244 6.9 90 132 
(101) 

102 
(63, 171) 

148 
(106) 

118 
(73, 191) 

5.4 91.7 

(7) 2 SARS 0.1% 99 31.7 90 91 
(67) 

74 
(44, 119) 

65 
(62) 

44 
(24, 86) 

26.6 93.5 

(8) 4 SARS 0.1% 65 44.3 90 74 
(59) 

60 
(32, 99) 

47 
(50) 

29 
(14, 61) 

37.6 94.5 

(9) 𝑅(t) SARS 0.1% 50 51.3 90 
65 

(55) 
52 

(23, 91) 
40 

(45) 
23 

(11, 51) 44.2 94.8 

(10) 2 MERS 0.1% 27 64.2 90 
49 

(49) 
36 

(11, 71) 
28 

(37) 
13 

(6, 34) 55.4 95.9 

(11) 4 MERS 0.1% 21 68.1 90 
45 

(48) 
31 

(8, 66) 
25 

(35) 
11 

(5, 29) 
58.9 96.3 

(12) 𝑅(t) MERS 0.1% 7 79.2 90 
33 

(41) 
14 

(4, 50) 
17 

(27) 
6 

(3, 18) 
69.1 97.2 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Note.	RCT	=	 randomized	 clinical	 trial;	𝑹𝟎 	denotes	 the	basic	 reproduction	number,	µ	 the	disease	morality,	and	𝑰𝟎 	the	proportion	of	 initial	
infected	subjects.	Sample	size	refers	to	the	number	of	subjects	enrolled	in	each	arm	of	the	RCT.	IQR	denotes	the	interquartile	range	about	the	
median. 𝑹𝟎(t)	denotes	the	dynamic	transmission	model	with	𝒕𝟐 ൌ 𝟑	weeks,	𝝉 ൌ 𝟏	week,	and	𝑹𝟎(t)	decreasing	from	3	to	1.5	as	time	t	increases.	
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Table	5.	Optimal	Sample	Size	and	Type	 I	Error	𝜶	of	Bayesian	Nonadaptive	RCT	 for	Nonvaccine	Anti‐
infective	Therapeutics	for	Dynamic	Transmission	Model	

 

Disease	 𝑰𝟎	 𝑹𝟎	 𝒕𝟐(week)	
𝛕	

(week)	
Sample	
Size	 𝜶	%	

Power	
%	

COVID-
19 0.1% 

2 NA NA 242 7.1 90 
4 NA NA 158 17.3 90 

𝑅(t) 3 0.5 166 16.0 90 
𝑅(t) 3 1 176 14.4 90 
𝑅(t) 6 0.5 176 14.4 90 
𝑅(t) 6 1 177 14.2 90 

SARS 0.1% 

2 NA NA 164 16.3 90 
4 NA NA 112 27.8 90 

𝑅(t) 3 0.5 100 31.3 90 
𝑅(t) 3 1 107 29.2 90 
𝑅(t) 6 0.5 118 26.2 90 
𝑅(t) 6 1 119 25.9 90 

MERS 0.1% 

2 NA NA 88 35.3 90 
4 NA NA 63 45.2 90 

𝑅(t) 3 0.5 41 55.9 90 
𝑅(t) 3 1 44 54.3 90 
𝑅(t) 6 0.5 59 47.0 90 
𝑅(t) 6 1 60 46.5 90 

 

Note.	RCT	=	randomized	clinical	trial;	𝑹𝟎	denotes	the	basic	reproduction	number,	µ	the	disease	morality,	
and	𝑰𝟎	the	proportion	of	initial	infected	subjects.	Sample	size	refers	to	the	number	of	subjects	enrolled	
in	each	arm	of	the	RCT.	𝑹𝟎(t)	denotes	the	use	of	a	dynamic	transmission	model	with	𝜷𝟎 ൌ 𝟑,	𝜷∞ ൌ 𝟏. 𝟓.	
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Figure	1.	Bayesian	Optimal	Type	I	Error	Rate.	Optimal	Type	I	error	rate,	𝜶,	of	a	nonadaptive	Bayesian	
randomized	 clinical	 trial  (RCT)	 vs.	 basic	 reproduction	 number	𝑹𝟎 	(assuming	𝑰𝟎 ൌ 𝟎. 𝟏% ,	𝑳𝑫 ൌ 𝟏𝟎𝟎 ,	
disease	mortality	of	COVID‐19,	and	constant	𝑹𝟎).	The	Bayesian	decision	model	yields	a	higher	𝜶	for	
epidemics	with	high	and	low	infectivity.	

	

 

Figure	2.	Bayesian	Adaptive	RCT	Patient	Sample	Size	under	H	=	1.	Subject	sample	size	in	each	arm	of	a	
Bayesian	adaptive	randomized	clinical	trial (RCT)	under	H	=	1	decreases	with	the	basic	reproduction	
number	𝑹𝟎	(assuming	𝑰𝟎 ൌ 𝟎. 𝟏%,	𝑳𝑫 ൌ 𝟏𝟎𝟎	and	disease	mortality	of	COVID‐19).	BNA	denotes	Bayesian	
nonadaptive	optimal;	BA	50%	denotes	median	patient	size	of	Bayesian	adaptive.	 	The	25%	and	75%	
quantiles	of	Bayesian	adaptive	patient	size	are	shown	as	lower	and	upper	ends	of	the	error	bar.	
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Figure	3.	Scatterplot	of	optimal	Type	 I	error	𝜶		vs.	optimal	sample	size	 from	 the	 five‐factor	analysis	
when	𝑹𝟎 ൌ 𝟐.		

 

  

	

Figure	4.	Scatterplot	of	optimal	Type	I	error	rate	𝜶	vs.	sample	size	for	different	values	of	𝝆,	signal‐to‐
noise	ratio	of	the	treatment	effect	(Chaudhuri	&	Lo,	2018).		
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Figure	5.	Scatterplot	of	optimal	Type	I	error	rate	𝜶	vs.	sample	size	for	different	values	of	𝒑𝟎,	Bayesian	
prior	probability	of	having	an	ineffective	therapeutic.	

  

Figure	6.	Scatterplot	of	optimal	Type	 I	error	rate	𝜶	vs.	sample	size	 for	different	values	of	𝜿,	weekly	
patient	enrollment	rate	(patients	per	week)	in	each	arm	of	a	randomized	clinical	trial.		
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Appendix	

Table	S1.	Baseline	and	Alternative	Parameter	Values	Used	in	the	Five‐Factor	Analysis	

 

Parameter	 Description	
Baseline	
Value	

Alternative	
Values	

a Incubation rate (per week)        (Yang et 
al. 2020) 

1 0.5, 0.75, 
1.25, 1.5 

𝜅 Weekly subject enrollment in each arm 
of RCT (per week) 100 50, 75, 125, 

150 

𝑝
௩ 

Prior probability of having an ineffective 
nonvaccine anti-infective therapy (Wong 
et al., 2019) 

77% 

54.90%, 
65.45%, 
88.55%, 
96.25% 

𝜌 Signal-to-noise ratio of treatment effect 
(Chaudhuri & Lo, 2018) 0.25 

0.125, 
0.1875, 
0.3125, 0.375 

∆𝑡 
Time needed to assess the efficacy of the 
treatment (week) 1 0, 0.5, 1.5, 2 
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Table	S2.	Optimal	Sample	Size	and	Type	I	error	rate	𝜶	for	Bayesian	Nonadaptive	RCT	on	Anti‐infective	
Therapeutics	With	𝑹𝟎	(Basic	Reproduction	Number)	Close	to	1		

 

Disease	 𝑹𝟎	 𝑰𝟎	 Sample	Size	 𝜶	%	 Power	%	

COVID-19 

1.25 0.1% 185 13.1 90 
1.5 0.1% 239 7.3 90 

1.75 0.1% 250 6.5 90 
2 0.1% 242 7.1 90 
4 0.1% 158 17.3 90 

1.25 0.01% 233 7.8 90 
1.5 0.01% 340 2.4 90 

1.75 0.01% 395 1.3 90 
2 0.01% 399 1.2 90 
4 0.01% 274 5.0 90 

SARS 

1.25 0.1% 69 42.6 90 
1.5 0.1% 140 20.9 90 

1.75 0.1% 162 16.6 90 
2 0.1% 164 16.3 90 
4 0.1% 112 27.8 90 

MERS 

1.25 0.1% 6 80.2 90 
1.5 0.1% 51 50.8 90 

1.75 0.1% 80 38.2 90 
2 0.1% 88 35.3 90 
4 0.1% 63 45.2 90 

 

Note.	RCT	=	randomized	clinical	trial;	µ	denotes	the	disease	morality	and	𝑰𝟎	the	proportion	of	initial	
infected	subjects.	Sample	size	denotes	the	number	of	subjects	enrolled	in	each	arm	of	the	RCT.	
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Table	S3.	Simulation	Results	of	Bayesian	adaptive	RCT	on	Nonvaccine	Anti‐infective	Therapeutics	Obtained	From	10,000	Monte	Carlo	Runs	and	
assuming	𝑳𝑫 ൌ 𝟏𝟎		

 
Epidemic	Parameters	 Nonadaptive	

Adaptive	(10,000	Monte	Carlo	Runs)	

 Sample	Size	(H	=	0)	 Sample	Size	(H	=	1)	
𝜶	%	 Power	%	 

𝑹𝟎	 µ	 𝑰𝟎	
Sample	
Size	

𝜶	%	 Power	%	
Mean	
(SD)	

Median	
(IQR)	

Mean	
(SD)	

Median	
(IQR)	

(1) 2 COVID-19 0.1% 281 4.7 90 141 
(113) 

107 
(63, 182) 

175 
(121) 

142 
(90, 226) 

3.7 91.3 

(2) 4 COVID-19 0.1% 176 14.4 90 119 
(86) 

96 
(59, 153) 

108 
(85) 

83 
(48, 139) 

11.9 92.3 

(3) 𝑅(t) COVID-19 0.1% 213 9.7 90 
129 
(95) 

101 
(61, 168) 

131 
(97) 

103 
(63, 168) 8.3 91.7 

(4) 2 COVID-19 0.01% 433 0.8 90 
150 

(128) 
109 

(64, 191) 
272 

(166) 
223 

(156, 348) 0.6 91.1 

(5) 4 COVID-19 0.01% 290 4.2 90 
143 

(113) 
108 

(63, 185) 
177 

(119) 
145 

(92, 229) 3.3 91.1 

(6) 𝑅(t) COVID-19 0.01% 345 2.3 90 
146 

(118) 
111 

(65, 188) 
217 

(119) 
181 

(117, 282) 
1.9 91.0 

(7) 2 SARS 0.1% 262 5.7 90 
138 

(107) 
107 

(63, 179) 
161 

(115) 
130 

(81, 207) 
4.6 91.4 

(8) 4 SARS 0.1% 167 15.8 90 
118 
(86) 

94 
(57, 154) 

102 
(82) 

77 
(46, 133) 

13.6 92.3 

(9) 𝑅(t) SARS 0.1% 194 11.9 90 126 
(93) 

100 
(60, 165) 

118 
(90) 

92 
(55, 154) 

9.7 92.5 

(10) 2 MERS 0.1% 227 8.4 90 130 
(97) 

102 
(62, 167) 

140 
(101) 

112 
(68, 181) 

7.4 91.6 

(11) 4 MERS 0.1% 149 19.0 90 
110 
(78) 

89 
(55, 142) 

93 
(78) 

69 
(39, 122) 16.1 92.7 

(12) 𝑅(t) MERS 0.1% 163 16.5 90 
116 
(84) 

93 
(56, 151) 

101 
(82) 

78 
(45, 121) 13.7 92.2 

 (1)  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Note.	RCT	=	 randomized	 clinical	 trial; 𝑹𝟎 	denotes	 the	basic	 reproduction	number,	µ	 the	disease	morality,	and	𝑰𝟎 	the	proportion	of	 initial	
infected	subjects.	Sample	size	refers	to	the	number	of	subjects	enrolled	in	each	arm	of	the	RCT.	IQR	denotes	the	interquartile	range	about	the	
median.	𝑹𝟎(t)	denotes	the	dynamic	transmission	model	with	𝒕𝟐 ൌ 𝟑	weeks,	𝝉 ൌ 𝟏	week,	and	𝑹𝟎(t)	decreasing	from	3	to	1.5	as	time	t	increases.	
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Table	S4.	Simulation	Results	of	Bayesian	Adaptive	RCT	on	Vaccines	Obtained	From	10,000	Monte	Carlo	Runs	and	assuming	𝑳𝑫 ൌ 𝟏𝟎		

 
Epidemic	Parameters	 Nonadaptive	

Adaptive	(10,000	Monte	Carlo	Runs)	

 Sample	Size	(H	=	0)	 Sample	Size	(H	=	1)	
𝜶	%	 Power	%	 𝑹𝟎	 µ	 𝑰𝟎	

Sample	
Size	

𝜶	%	 Power	%	 Mean	
(SD)	

Median	
(IQR)	

Mean	
(SD)	

Median	
(IQR)	

(1) 2 COVID-19 0.1% 221 8.9 90 
130 
(98) 

103 
(62, 167) 

136 
(100) 

109 
(66, 176) 7.5 91.9 

(2) 4 COVID-19 0.1% 129 23.4 90 
105 
(78) 

84 
(51, 135) 

80 
(70) 

58 
(33, 105) 19.2 92.2 

(3) 𝑅(t) COVID-19 0.1% 151 18.7 90 
114 
(83) 

92 
(56, 149) 

94 
(78) 

69 
(40, 123) 

15.4 92.4 

(4) 2 COVID-19 0.01% 377 1.6 90 
148 

(126) 
110 

(64, 187) 
236 

(150) 
200 

(130, 300) 
1.2 90.8 

(5) 4 COVID-19 0.01% 247 6.7 90 
135 

(105) 
103 

(63, 175) 
150 

(106) 
121 

(75, 196) 
5.4 91.3 

(6) 𝑅(t) COVID-19 0.01% 281 4.6 90 139 
(109) 

107 
(62, 181) 

170 
(116) 

139 
(88, 220) 

3.7 91.4 

(7) 2 SARS 0.1% 201 11.0 90 127 
(94) 

100 
(61, 165) 

122 
(91) 

96 
(58, 159) 

9.9 91.9 

(8) 4 SARS 0.1% 120 25.6 90 101 
(74) 

81 
(49, 131) 

76 
(68) 

55 
(30, 100) 

20.9 93.4 

(9) 𝑅(t) SARS 0.1% 134 22.2 90 
106 
(76) 

86 
(52, 139) 

83 
(72) 

60 
(33, 108) 18.3 92.5 

(10) 2 MERS 0.1% 166 16.0 90 
116 
(84) 

92 
(56, 152) 

102 
(84) 

77 
(45, 132) 13.5 92.2 

(11) 4 MERS 0.1% 103 30.4 90 
93 

(70) 
75 

(44, 122) 
67 

(63) 
46 

(24, 88) 
25.7 93.5 

(12) 𝑅(t) MERS 0.1% 105 29.8 90 
96 

(71) 
77 

(45, 125) 
68 

(62) 
48 

(25, 91) 
25.4 93.3 

 (1)  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 

Note.	RCT	=	 randomized	 clinical	 trial; 𝑹𝟎 	denotes	 the	basic	 reproduction	number,	µ	 the	disease	morality,	and	𝑰𝟎 	the	proportion	of	 initial	
infected	subjects.	Sample	size	refers	to	the	number	of	subjects	enrolled	in	each	arm	of	the	RCT.	IQR	denotes	the	interquartile	range	about	the	
median.	𝑹𝟎(t)	denotes	the	dynamic	transmission	model	with	𝒕𝟐 ൌ 𝟑	weeks,	𝝉 ൌ 𝟏	week,	and	𝑹𝟎(t)	decreasing	from	3	to	1.5	as	time	t	increases.	
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Table	S5.	Summary	statistics	of	optimal	Type	I	error	rate	(top)	and	sample	size	(bottom)	

 

Min	 10%	 25%	 50%	 75%	 90%	 Max	 Baseline	

0.1% 1.0% 2.7% 7.1% 19.9% 40.8% 85.3% 7.1% 

 

Min	 10%	 25%	 50%	 75%	 90%	 Max	 Baseline	

7 112 153 220 329 486 1,257 242 
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Figure	S1.	Scatterplot	of	optimal	Type	I	error	rate	𝛂	vs.	sample	size	for	different	values	of	∆𝐭,	the	time	
needed	to	assess	the	treatment	efficacy	(week).			

 

Figure	 S2.	 Scatterplot	 of	 optimal	 Type	 I	 error	 rate	𝜶 	vs.	 sample	 size	 for	 different	 values	 of	𝒂 ,	 the	
incubation	period	(week)	of	the	disease.		
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Figure	S3.	Optimal	Type	I	Error	vs.	𝑹𝟎	for	Absolute	Risk	of	Being	Susceptible.	Optimal	Type	I	error	rate	
𝜶 	of	 nonadaptive	 Bayesian	 randomized	 clinical	 trial	 	 monotonically	 increases	 with	 the	 basic	
reproduction	 number	𝑹𝟎 	(assuming	𝑰𝟎 ൌ 𝟎. 𝟏% ,	𝑳𝑫 ൌ 𝟏𝟎𝟎 	and	 disease	mortality	 of	 COVID‐19)	 if	we	
define	 the	 loss	 of	making	 a	 Type	 I	 error	 as	 the	 absolute	 risk	 of	 being	 susceptible	𝑺ሺ𝒕ሻ𝑵𝑳𝑺 .	 This	
alternative	 definition	 is	 not	 very	 realistic.	 For	 an	 epidemic	with	𝑹𝟎 ൏ 𝟐 ,	 the	 loss	 of	 Type	 I	 error	
converges	 to	 a	 large	positive	value	𝑺ሺ𝑻ሻ𝑵𝑳𝑺 	as	 time	 approaches	 the	end	of	 the	epidemic	outbreak.	
However,	 at	 the	end	of	 the	outbreak,	 there	 are	no	more	 infected	patients	and	 thus	no	 susceptible	
subjects.	Therefore,	the	loss	of	Type	I	error	should	approach	zero	as	𝒕 → 𝑻.	This	is	the	case	for	the	excess	
risk	of	susceptibility	ሺ𝑺ሺ𝒕ሻ െ 𝑺ሺ𝑻ሻሻ𝑵𝑳𝑺	but	not	for	the	absolute	risk	of	susceptibility	𝑺ሺ𝒕ሻ𝑵𝑳𝑺.	

 




