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1 Introduction

A major challenge of macroeconomics is the aggregation problem: the problem of translat-
ing microeconomic disturbances into macroeconomic consequences. Aggregation results
like those of Hulten (1978), or more recently Baqaee and Farhi (2019a), provide a frame-
work for mapping microeconomic primitives to macroeconomic outcomes. In this paper,
we generalize these results to environments with non-constant returns to scale and prod-
uct entry and exit.

Our analysis is relatively general, and allows for scale effects due to both demand-side
forces, as in Dixit and Stiglitz (1977), or supply-side forces, as in Lucas (1978). We also
allow for an arbitrary pattern of distorting wedges and technological heterogeneity within
and across industries, as well as unrestricted input-output linkages in both variable and
fixed costs.

We characterize how aggregate output and aggregate productivity respond to changes
in technology and changes in wedges.1 We decompose changes in output into changes
in technical and allocative efficiency. Technical efficiency measures the direct impact of
technology shocks, holding fixed the allocation of resources, and allocative efficiency
measures the indirect effect of shocks due to the reallocation of resources.2

We show that changes in technical efficiency are equal to a weighted sum of microe-
conomic technology shocks with weights that can sum to a number greater than one.
The weight on each technology shock depends on expenditure shares and can be thought
of as a cost-based or distortion-adjusted analogue to sales shares (i.e. Domar weights).
The intuition for this cost-based Domar weight is similar to the logic in Hulten (1978),
and captures the mechanical benefits of the technology shock on the production of the
final good taking into account direct and indirect linkages but holding the allocation of
resources fixed. This is the entirety of the effect if the equilibrium is efficient: when the
equilibrium is efficient, reallocation effects can be ignored to a first-order approximation.
Hence, even in models with non-convexities, fixed costs, and product creation and de-
struction (e.g. as in Hopenhayn, 1992), the logic of Hulten (1978) continues to apply as
long as the equilibrium is efficient.

However, in economies with non-convexities and product entry and exit, efficiency
is rarely attained. Once we stray from efficiency, we show that changes in allocative
efficiency can play a theoretically and quantitatively important role in determining the

1In the body of the paper, we treat wedges as primitives but we discuss the implications of our results
for endogenous wedges and give a specific illustration, using endogenous markups, in Appendix A.

2There are different notions of changes in allocative efficiency. In this paper, we define them as changes
in output due to reallocations of resources. See Baqaee and Farhi (2019a) for a detailed discussion.
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aggregate consequences of disturbances. These reallocation effects depend on which
markets expand and shrink, and on whether these adjustments in market sizes occur
through changes in the size of existing producers or through changes in the number of
producers.

We show that the resulting changes in allocative efficiency can be summarized by
changes in rents and quasi-rents. Here, rent is variable profit due to either decreasing
returns or markups, and quasi-rent is the part of this rent that is dissipated by the fixed
cost of entry. We show that changes in rents and quasi-rents capture reallocation effects
in equilibrium.3

Our treatment of entry is general. First, we allow for the possibility that entry costs be
in terms of goods or factors. Second, the mapping from entry decisions to entry outcomes
is flexible and nests two common extremes as special cases. At one extreme, entry is
fully directed, and entrants can choose what production function they have post-entry.
At the other extreme, entry is completely undirected, and entrants have no control over
what production function they have post-entry. The first extreme is typically used in
multi-sector models with homogeneous firms in each sector, whereas the second extreme
is used in single-sector models with heterogeneous firms in each sector. Our results apply
equally to both scenarios and to anything in between.

We use our comparative static results to study the social cost of distortions and the
gains from industrial policy. We generalize the influential insights of Harberger (1954)
to economies with non-convexities and entry and exit. In particular, we show that the
social cost of inefficiencies is, up to a second-order approximation, equal to the sales-
weighted sum of a series of Harberger triangles. Some of these triangles are associated
with production and some are associated with entry.

We characterize these Harberger triangles in terms of microeconomic primitives —
elasticities of substitution, expenditure shares, and returns-to-scale parameters. In doing
so, we overturn a common intuition, valid in CES models without entry, that the social cost
of misallocation is monotone in the elasticities of substitution. While a high elasticity of
substitution increases the size of Harberger triangles associated with variable production,
a low elasticity of substitution increases the size of Harberger triangles associated with
entry. This results in non-monotonicity of losses with respect to elasticities of substitution.

We provide an application by quantifying the social costs of markups using a calibrated
firm-level model for the U.S. We decompose the losses into losses arising from misallo-

3This generalizes the intuition in Baqaee and Farhi (2019a) that reallocation effects are summarized by
changes in factor income shares. From the lens of this paper, income earned by factors are rents and in that
paper quasi-rents are always equal to zero.
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cation of resources in variable production and misallocation of resources in the amount
entry versus variable production. Without entry, we find that markups estimated by a
production-function approach à la De Loecker et al. (2019) reduce aggregate productivity
by around 20% (this is similar to the results in Baqaee and Farhi, 2019a).4 Accounting
for entry can double these losses. The extent of misallocation along the entry margin
depends on whether there is excessive or insufficient entry relative to first-best. In the
baseline calibration, where entry costs are exactly offset by quasi-rents (there are no entry
barriers), there is excessive entry in equilibrium. Somewhat surprisingly, this implies that
the distance to the efficient frontier is smaller, conditional on estimates of markups, if one
also believes that there are barriers to entry. Furthermore, the distance from the efficient
frontier also depends on whether entry costs are paid in units of labor or goods, and
whether the value of entry arises from consumer surplus or producer surplus.

We also consider how a marginal entry or production subsidy affects output starting
at the distorted equilibrium. Unlike first-best policies, which are independent of network
structure and simply ensure efficiency market-by-market, the effect of second-best policies
are network-dependent. In particular, for economies with increasing returns to scale,
we rationalize and revise Hirschman (1958)’s influential argument that policy should
encourage expansion in sectors with the most forward and backward linkages, and we
give precise formal definitions for these concepts. We show that the optimal marginal
intervention aims to boost the sales of sectors that are upstream and have strong scale
economies themselves and downstream from themselves.

Of course, there is a great deal of uncertainty about the specific number one attaches
to these exercises. For us, the goal is to provide a sense of the order of magnitudes and to
shed light on which microeconomic primitives determine these numbers (at least locally).
In particular, our aim is to show how assumptions on the production structure, including
the strength of scale economies, the extent to which entry is targeted, the type of resources
used for entry, and the view one takes on the presence of entry restrictions affect the gains
from policy and the losses from misallocation. While our results show that these features
are critical theoretically and quantitatively, little is known about them empirically, and
more empirical work is needed to bridge theory and measurement.

Despite their generality, our theoretical results also have some limitations. First, we
focus on first- or second-order approximations, and extending this analysis to account for
higher-order nonlinearities is an important extension we leave for future work.

4We also use alternative approaches for estimating markups: an alternative implementation of the
production-function (PF) approach with different categories of costs, the user-cost approach (UC), and
the accounting-profits (AP) approach. Although the numbers depend on the specification, the qualitative
message remains the same.
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Second, we model markups and other distortions as exogenous wedges. The advan-
tage is that we can characterize the response of the equilibrium to changes in the wedges
without committing to any specific theory of wedge determination (e.g. monopolistic
competition, financial frictions, nominal rigidities, etc.) For some questions, like the econ-
omy’s distance from the efficient frontier, the thought experiment specifies how wedges
change, and so the absence of a theory of wedge determination is unimportant. However,
our results cannot be directly used for counterfactuals where wedges change endoge-
nously in unknown ways. Nevertheless, in these cases, our results are still relevant as
part of a larger analysis that accounts for the endogenous response of wedges. Specifically,
this paper characterizes how a change in wedges affect equilibrium outcomes. A theory
of wedge-determination would pin down how wedges change in response to changes in
equilibrium outcomes. The two parts could then be combined to conduct a full-blown
counterfactual analysis. We provide an explicit example, using variable markups, in
Appendix A.

The structure of the paper is as follows. In Section 2, we set up the general model and
define the equilibrium. In Section 3, we provide conditions under which the equilibrium
is efficient and derive comparative statics for the efficient case. In Section 4, we specialize
the model and introduce notation necessary to analyze inefficient equilibria. In Section 5,
we provide and discuss the aggregation formula for how shocks affect aggregate output
in terms of changes in rents and quasi-rents. Section 6 contains backward and forward
propagation equations that determine how rents and quasi-rents respond to shocks as a
function of primitives. In Section 7, we apply these results to analyze the social costs
of distortions. Section 8 considers the bang-for-buck from competition and industrial
policy at the decentralized equilibrium. Section 9 contains a quantitative application that
computes and dissect the social costs of markups using firm-level data on markups.

Related Literature. Our results apply to a broad range of influential models. For in-
stance, our framework encompasses and generalizes models of entry like Dixit and
Stiglitz (1977) or (a finite-horizon version of) Hopenhayn (1992), the closed-economy
version of Melitz (2003), and finite-horizon versions of models of endogenous growth
with lab-equipment like Romer (1987) and Grossman and Helpman (1991). It also nests
multi-sector and production network models like Hulten (1978), Long and Plosser (1983),
and much of the subsequent literature like Gabaix (2011), Acemoglu et al. (2012), Jones
(2013), Bigio and La’O (2016), and Baqaee and Farhi (2019b), amongst others.5

There is a folk wisdom in the literature that modelling entry via diminishing returns,

5See Carvalho and Tahbaz-Salehi (2018) for a review of this literature.
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in the spirit of Lucas (1978), Hopenhayn (1992), or Restuccia and Rogerson (2008), is in
some sense isomorphic to modelling entry via diminishing marginal utility, in the spirit of
Dixit and Stiglitz (1977), Melitz (2003), or Hsieh and Klenow (2009). By allowing for both
possibilities, we show that this intuition is very fragile and fails outside of very simple
single-sector models. In particular, for the first class, the relevant sufficient statistic for
reallocation effects are changes in pure rents. On the other hand, for second class, the
relevant sufficient statistic for reallocation effects are changes in quasi-rents.

This paper is most closely related to Baqaee (2018) and Baqaee and Farhi (2019a) which
establish aggregation and propagation results for inefficient production networks with
and without entry. Baqaee (2018) considers a tightly-parameterized class of production
networks with increasing returns, entry, and distortions. This paper dispenses with the
parametric restrictions, allows for a more sophisticated handling of entry, returns to scale,
production functions, and network linkages in both production and entry. Furthermore,
unlike Baqaee (2018), this paper also characterizes reallocation, misallocation, and optimal
policy. On the other hand, Baqaee and Farhi (2019a) analyze reallocation and misallocation
but, unlike this paper, abstract from entry.

This paper also relates to the literature on cross-sectional misallocation and policy
interventions, with or without externalities, like Restuccia and Rogerson (2008), Hsieh
and Klenow (2009), Epifani and Gancia (2011), Liu (2017), Osotimehin and Popov (2017),
Behrens et al. (2016), Bartelme et al. (2019), Boehm and Oberfield (2020), Rubbo (2020),
and La’O and Tahbaz-Salehi (2020). Our analysis of the economy’s distance to the frontier
is also related to Edmond et al. (2018), who analyze the social cost of markups. Our
paper is also closely related to Bilbiie et al. (2012) and Bilbiie et al. (2019) who study
the positive and normative implications of entry and exit in a dynamic context. Our
paper also contributes to this literature by focusing on how the entry margin interacts
with the input-output network to affect the costs of distortions. By showing that even in
non-neoclassical economies with entry social losses can be approximated using Harberger
triangles, the paper also extends the insights of Harberger (1954) and Harberger (1964).

Another strand of the literature which this paper relates to is the literature studying
link-formation in production networks. In contrast to the approach in this paper, this lit-
erature takes discreteness of decisions seriously and is often studied with a non-Walrasian
equilibrating mechanism. Some examples are Oberfield (2017), Lim (2017), Acemoglu and
Azar (2020), Acemoglu and Tahbaz-Salehi (2020), Taschereau-Dumouchel (2020), Kikkawa
et al. (2018), Dhyne et al. (2021), and Elliott et al. (2020). We abstract from these issues
in our analysis, assuming that individual firms are infinitesimal and that the mass of en-
trants and number of links adjusts smoothly in response to perturbations of primitives. In
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exchange for these simplifications, we can provide a fairly general local characterization
of the equilibrium.

2 Framework

This section describes the environment and equilibrium. There are three categories of
agents: a representative household, a set of producers, and a set of entrants. The circular
flow diagram of the economy is depicted in Figure 1. Each rectangle represents a type
of agent. Entrants buy resources from producers to enter. Upon paying the start-up
costs, entrants are (perhaps randomly) assigned to be producers. Producers produce
using intermediate materials that they purchase from other producers. The representative
household owns all resources in the economy and purchases final goods using aggregate
income. We describe the problem each agent faces and then define the equilibrium.

Producers HouseholdsEntrants

Assignment

Entry Resources
Intermediates

Consumption

Figure 1: Circular flow schematic of the economy showing the flow of resources.

2.1 Producers

There is a set of producers indexed by their type i ∈ N . Each producer of type i produces

yi = Ai fi

({
xi j

}
j∈N

)
,

units of good i, where fi is a neoclassical production function, Ai is a productivity shifter,
and xi j is input j used by i. Each producer minimizes costs and sets its price pi equal to
its marginal cost times an exogenous markup/wedge µi.6 The revenues generated by µi

accrue to the owners of the firm.
6Appendix A endogenizes this markup wedge using monopolistic competition.
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There is a potentially endogenous mass Mi of producers of each type i, and the overall
output Yi of producers of type i is defined by the homothetic aggregator

1 =

∫
∞

0
Fi

(
yi(ω)

Yi

)
dω = MiFi

( yi

Yi

)
, (1)

whereω indexes varieties of type i, and the aggregator Fi is increasing, smooth, and weakly
concave function with Fi(0) = 0. The last equality, which suppresses the ω index, follows
from the fact that all varieties of type i are symmetric.7 CES preferences are obtained when
Fi in (1) is a power function.8

Agents who use good i buy the aggregated good Yi. The price Pi of Yi is equal to the
marginal cost of producing Yi times an exogenous wedge µY

i .9 Unlike the producer-level
markup µi, revenues generated by the wedge µY

i are not rebated to the owner of i and
instead go directly to households. This distinction matters because revenues generated
by µi incentivize entry, whereas revenues generated by µY

i do not. Therefore, the wedge
µY

i acts like an output tax or subsidy on i.

Primary Factors. A subset of producers F ⊂ N are the primary factors (e.g. labor, land,
initial capital stock). For primary factors f ∈ F , the mass M f is exogenous, the production
functions f f have zero returns to scale (they are endowments), and the aggregator F f is
linear Y f = M f y f . In addition, there are no markups/wedges µ f = µY

f = 1. In other words,
there is no entry into the factor market (since M f is fixed), each producer produces a fixed
amount of output (since f f has zero returns to scale), and outputs are aggregated linearly
(since F f is linear). This means that the total output of each factor is exogenous.

2.2 Entrants

Entrants have a choice of which entry opportunity they take up. Potential entry oppor-
tunities are indexed by j ∈ E, and entrants pay the corresponding fixed costs and draw a
corresponding technology for variable production.

7Appendix F relaxes the assumption of symmetry of types in (1).
8The preferences in (1) are oftentimes called Kimball (1995) preferences. See Matsuyama and Ushchev

(2017) for more details on this demand system which they call Homothetic with Direct Additivity. Matsuyama
and Ushchev (2017) introduce two other generalizations of CES besides the one in (1), and our results are
virtually unchanged if we use these alternatives.

9That is, the price of Yi is given by Pi = µY
i minyi {

∫
pi(ω)yi(ω)dω : Yi = 1}.
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Fixed Costs. To enter, type- j entrants must obtain a fixed bundle of inputs per entrant

xE
j = g j

({
xE, ji

}
i∈N

)
, (2)

where g j has constant returns, and xE, ji is the input quantity of good i required for entry
as a type j entrant.

Entry Technology. The entry matrix ζ is an |E| × |N − F | positive-valued matrix that
gives the conditional probability that a type- j entrant becomes a type i ∈ N −F producer:

Pr( Producer i | Entrant j) = ζ( j, i).

Without loss of generality, assume that the rows of ζ are linearly independent.10 We denote
by ME, j the endogenous mass of type- j entrants who pay the entry cost for j ∈ E.

If there is no way to enter market i ∈ N , which occurs when ζ( j, i) = 0 for all j ∈ E, then
we allow for an exogenous mass Mi of incumbents to operate in market i without having
to enter.

We refer to producers in markets where entry is not possible as incumbents. We refer
to markets where entry is possible as contested markets and denote their collection by
N

c. Since we are flexible in the way we define and combine markets (via input-output
linkages), we can capture a situation where incumbents and entrants compete by having
them operate in different markets that are highly substitutable with one another.

Sunk and Overhead Costs. The entry matrix ζ can capture sunk and overhead costs
simultaneously. To capture sunk costs, suppose that ζ( j, i) has positive support for a range
of different i’s. In this case, once the entry cost j has been paid, the entrant will always
choose to operate its technology since the entry cost is sunk. At the other extreme, suppose
that ζ( j, i) = 1 for one specific i and zero otherwise. In this case, entrant j will only choose
to pay the cost if operating technology i is worth paying the fixed cost. In other words,
the fixed cost is not sunk.11

10If the rows of ζ are not linearly independent, then some entry types are redundant (can be replicated
by playing a mixed entry strategy).

11We can also consider intermediate situations in which entrant j pays a sunk cost and draws a mixture
of zero-returns technologies j′. Other entrants j′′ can purchase the output of j′ and combine it with another
fixed cost to enter with certainty into producing i. This structure mimics the entry decision in standard
models such as Hopenhayn (1992) and Melitz (2003) where potential entrants first pay a sunk cost and then
decide whether or not to pay an additional overhead cost before operating. The difference between our
treatment of overhead costs and that in Hopenhayn (1992) and Melitz (2003) is that we assume divisibility
and that they assume non-divisibility. We could capture non-divisibility by letting g j(

{
xE, ji

}
i∈N

) have variable
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Rents and Zero-Profit Conditions. The total rent or variable profit (we use the two terms
interchangeably) earned by producers of type i ∈ N is equal to their revenues minus
variable costs:

λπ,i = Mipiyi −Mi

∑
j∈N

P jxi j.

The zero-profit condition for type j ∈ E entrants equates expected profits post-entry with
the costs of entry ∑

i∈N

ζ( j, i)ME, j

Mi
λπ,i = ME, j

∑
k∈N

PkxE, jk = λE, j,

where λE, j is expenditures on entry costs by entrants of type j. The left-hand side is the
expected total profits earned by type- j entrants and the right-hand side is the total cost of
entry. This condition ensures that the rents earned by type- j entrants are quasi-rents rather
than pure rents since they are dissipated by the costs of entry.

2.3 Households

There is a representative household with homothetic preferences

Y = D ({Ci}i∈N ) ,

where Y is the money-metric measure of welfare. We also refer to Y as real GDP in this
paper, abstracting from the well-understood issues related to the treatment of new goods in
the measurement of aggregate output. To avoid corners, we impose Inada conditions onD.
The budget constraint of the representative household equates consumption expenditure
to aggregate income, defined as revenues net of total costs,∑

i∈N

PY
i Ci =

∑
i∈N

PY
i Yi −

∑
j∈N

PY
j xi j −

∑
j∈E

ME, j

∑
k∈N

PY
k xE, jk.

Factor payments are rents earned by some zero-returns-to-scale incumbents in markets
F ⊂ N .

(possibly increasing) returns to scale (for example, by making it a step function), but we do not pursue such
an extension in this paper.
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2.4 Resource Constraints and Equilibrium

The resource constraint for each good i ∈ N is

Yi = Ci +
∑
j∈N

M jx ji +
∑
j∈E

ME, jxE, ji,

in words, the total supply of good i is equal to demand by households, producers (as
intermediate inputs), and entrants (as fixed costs). The mass of producers in a contested
market i ∈ N c is the sum of the share of entrants j ∈ E that obtained technology i:

Mi =
∑
j∈E

ζ( j, i)ME, j. (3)

The mass of producers Mi in uncontested markets i ∈ Nu is exogenous.
The decentralized equilibrium is a collection of prices and quantities which clears

markets and solves each agents’ decision problem.

Definition 1. A decentralized equilibrium is a collection of prices
{
Pi, pi

}
and quantities{

Ci,Yi, yi, xi j, xE,i j,ME, j,Mi

}
, such that given technology {Ai} and markups/wedges

{
µi, µY

i

}
:

(i) the representative household maximizes utility; (ii) each price is equal to marginal cost
times the markup; (iii) entrants earn zero profits; (iv) resource constraints are satisfied.

In this paper, we derive comparative statics with respect to changes in technologies
Ai and wedges µi and µY

i . These reduced-form wedges can be used to capture many
distortions besides markups like taxes, financial frictions, or nominal rigidities.12

2.5 Some Examples

At this level of abstraction, the model nests many general equilibrium models with entry.
The following examples highlight some important special cases.

Example 1 (Decreasing-Returns-to-Scale). Let l denote labor input. Suppose that for each
i ∈ N, individual production functions have decreasing returns to scale fi(x) = Ailεi for
some ε ∈ [0, 1] and suppose that each i is aggregated linearly Fi(x) = x. In addition, there
is one extra producer, indexed by N + 1, with a linear production function

YN+1 = yN+1 =
∑
i∈N

Yi =
∑
i∈N

MiAilεi .

12For instance, to capture a financial friction on i’s ability to purchase inputs, add a fictitious incumbent
producer to the model who buys inputs on behalf of i. An output wedge on this fictitious producer can then
implement the same allocation as a financial friction on i.
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This captures demand systems used in firm-level models like Lucas (1978), Hopenhayn
(1992), and Restuccia and Rogerson (2008), where goods are perfect substitutes but are
produced with diminishing returns to scale.

Example 2 (Increasing-Returns-to-Scale). Let l denote labor input. Suppose that for each
i ∈ N, individual production functions have constant returns to scale fi(x) = Aili, but
suppose that each i is aggregated non-linearly with Fi(x) = x

θ−1
θ

i for some θ ∈ (1,∞]. In
addition, there is one extra producer, indexed by N + 1, with a CES production function
with elasticity θ, then

YN+1 = yN+1 =

∑
i∈N

Y
θ−1
θ

i


θ
θ−1

=

∑
i∈N

Mi (Ail)
θ−1
θ

i


θ
θ−1

.

This captures demand systems used in firm-level models like Dixit and Stiglitz (1977),
Melitz (2003), and Hsieh and Klenow (2009), where goods are imperfect substitutes but
are produced with constant returns to scale.

Example 3 (Single-Sector with Heterogeneous Firms). Suppose there is only one entrant
type, then the zero-profit condition equates total profit to total entry costs∑

i∈N

λπ,i = λE,1,

which pins down the mass of entrants ME,1. The mass of producers of each type i is given
by Mi = ζ(1, i)ME. This is similar to models where entrants pay the entry cost and are
randomly assigned a production technology (e.g Hopenhayn, 1992 or Melitz, 2003).

Example 4 (Multi-Sector with Homogeneous Firms). Suppose there is one entrant type
for each type of producer. Then the zero-profit condition equates profits in each market
to entry costs for that market

λπ,i = λE,i,

which pins down the mass of entrants ME,i. The mass of producers of each type is then
given by Mi = ME,i. This is similar to a multi-sector model with entry, where each sector
has its own entry condition.

3 The Value of Entry and an Efficient Benchmark

In this section, we analyze efficient equilibria as a preliminary step to understanding
inefficient equilibria. To do so, we consider the value of product creation by using

12



properties of demand and marginal cost curves.
The inverse demand curve for each variety of type i is

pi

Pi
= µY

i γiF′i(
yi

Yi
), (4)

where γi is a Lagrange multiplier. Equation (4) shows that the relative quantity of a given
variety of i demanded is a decreasing function of the relative price of that variety. Figure
2 depicts the demand curve against the marginal cost curve for some variety of i.

Quantity

Pr
ic

e Marginal Cost

Demand

pi

yi

B

A

C

Figure 2: Residual demand and marginal cost curves for seller i as a function of quantity.
The area under the demand curve is A + B + C, revenues are B + C, consumer surplus is
A, producer surplus is B, and total variable costs are C.

Figure 2 supposes that i sets price equal to marginal cost. In this case, the area under
the marginal cost curve, C, is equal to total variable cost. Sales are equal to the rectangle
B + C. The total area under the demand curve is A + B + C. Hence, B is producer surplus
(due to increasing marginal cost of yi) and A is consumer surplus (due to diminishing
marginal product/utility of yi).

As pointed out by Baqaee et al. (2020), the Lagrange multiplier in (4) is equal to the
area under the residual demand curve relative to sales:

γi =
F( yi

Yi
)

yi
Yi

F′i(
yi
Yi

)
=

∫ yi

0
pi(y)dy

piyi
=

A + B + C
B + C

=
A

B + C
+ 1 ≥ 1. (5)

In this model, firms generate value for society, in excess of total variable costs, both
because of producer surplus (B) and consumer surplus (A). We refer to γi − 1 as the
consumer surplus ratio. Below, we provide some sufficient conditions for efficiency of the
decentralized equilibrium.
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Theorem 1 (Conditions for Efficiency). There exists a decentralized equilibrium with markups
µi = γi and output subsidies µY

i = γ−1
i for all i ∈ N that is Pareto-efficient.

Theorem 1 implies that efficiency requires compensating entrants for the value their
entry generates for society. The value of an additional firm for society is the sum of
consumer and producer surplus (A + B in Figure 2). Efficiency requires that entry takes
place until entry costs are equal to the expected marginal value of entry. Since the entry
cost paid is equal to expected profits, efficiency requires equating expected profits to the
expected marginal value of entry (A + B). A firm that sets price equal to marginal cost
has profits equal to B not A + B. Hence, if A > 0, which happens if, and only if, γi > 1,
then the firm must be allowed to charge a markup commensurate with γi to incentivize
the optimal amount of entry. However, this markup distorts input choices and so it must
be offset by an output subsidy which restores marginal-cost-pricing conditional on entry.

If varieties do not generate consumer surplus, then the marginal cost pricing equilib-
rium is efficient. In this sense, Theorem 1 is a generalization of the first welfare theorem
to an environment with fixed and sunk costs of operation and entry. From a normative
perspective, it clarifies how the optimal allocation can be implemented using linear taxes,
and we use this implementation in Section 7 when we approximate the decentralized
economy’s distance from the Pareto-efficient frontier.

The following examples demonstrate the implications of Theorem 1 for some notable
special cases.

Example 5 (Efficiency with only IRS). If goods of type i are aggregated via CES aggregator
Fi(x) = x

θ−1
θ

i , then, by the first equality in (5), the consumer surplus ratio is γi − 1 =

1/(θ − 1) ≥ 0. This is the so-called love-of-variety effect. In this case, efficiency is attained
if each i charges a markup equal to θ/(θ − 1) with an off-setting output subsidy equal to
(θ − 1)/θ.

Example 6 (Efficiency with only DRS). If goods of type i are aggregated via a linear
aggregator Fi(x) = xi, then γi = 1 and efficiency holds if we have marginal cost pricing
µi = µY

i = 1.

Theorem 1 is important from a normative perspective, but it also has important positive
implications. In particular, it implies that, under the conditions of Theorem 1, the response
of welfare or real GDP to technology shocks is straightforwardly tied to observables.
Theorem 2 demonstrates.
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Theorem 2 (Output Response with Efficiency). Under the conditions of Theorem 1, the response
of aggregate output to a productivity shock d log Ai is given by

d log Y
d log Ai

=
Mip

y
i yi

GDP
,

which is the total sales of type i sellers as a share of GDP. Similarly, the response of aggregate
output to an entry productivity shock d log ζ( j, i) is given by

d log Y
d log ζ( j, i)

=
λπ,iζ(i, j)ME, j

GDP
,

which is the rents earned by type- j entrants from producing in market i as a share of GDP.

Theorem 2 generalizes Hulten (1978) to economies with fixed costs, increasing returns,
and an extensive margin of product creation and destruction. It also extends Hulten (1978)
to shocks to non-variable production, like the fixed costs of entry.

Theorem 2 shows that, in the efficient equilibrium, the response of welfare to microe-
conomic shocks is determined by simple and readily observable statistics and the details
of the underlying production structure do not matter.13 The rest of the paper studies
inefficient equilibria.

4 Preliminaries for Studying Inefficient Equilibria

To emphasize our mechanisms of interest, we specialize the framework.

Assumption 1 (Iso-Elastic Cost Curves). For each contested market i ∈ N c, either

1 = MiFi

( yi

Yi

)
and yi = Ai fi

({
xi j

}
j∈N

)
, (6)

or

1 = Mi

( yi

Yi

)
and yi = Ai fi

({
xi j

}
j∈N

)εi

i
, (7)

where εi ∈ [0, 1] and fi has constant returns to scale. We refer to goods produced according
to (6) as IRS goods and goods produced according to (7) as DRS goods. We denote each

13Extending Theorem 2 to cover biased technical change, for example factor-augmenting shocks, or
shocks to the entry or overhead costs of operation is trivial. To model these shocks, say a shock to i’s ability
to use input k, simply introduce a new producer who buys from k and sells to i. A Hicks-neutral shock
to this new producer is the same as a biased shock in the original model. This trick allows us to restrict
attention to Hicks-neutral shocks without loss of generality.
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collection of goods by N IRS and NDRS. For IRS goods, εi = 1 and γi ≥ 1, whereas for DRS
goods εi ≤ 1 and γi = 1.

Figure 3 depicts the demand and marginal cost curves for IRS and DRS goods. We sep-
arate goods intoN IRS andNDRS for exposition, but since the model allows for unrestricted
input-output linkages, we can combine IRS and DRS goods to represent the production
of goods where both forces are active at the same time.

Quantity

Pr
ic

e

Marginal Cost

Demand

pi

yi

(a) IRS goods

Quantity

Pr
ic

e Marginal Cost

Demand

pi

yi

(b) DRS goods

Figure 3: Marginal cost and marginal product (demand) curves forN IRS andNDRS.

The next assumption rules out corners in the mass of producers Mi by ensuring that
markups are not so low that producer i always makes negative profits.

Assumption 2 (Positive Profits). If i ∈ N is contested, then µi > εi.

Assumptions 1 and 2 are imposed throughout the rest of the paper.

We introduce notation that we rely on throughout the rest of the paper. All the objects
introduced below are defined at the initial equilibrium (around which we provide first-
or second-order approximations). We normalize the mass of entrants ME, j to one at the
initial equilibrium, and treat nominal GDP as the numeraire.

The Normalized Entry Matrix. The |E|×|N−F |matrix ζ̃gives the conditional probability
that a type i product is produced by a type j entrant. That is,

ζ̃( j, i) = Pr( Entrant j | Producer i) =
ζ( j, i)ME, j∑

k∈E ζ(k, i)ME,k
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whenever market i is contested and zero otherwise. In other words, ζ̃ is the reverse
conditional probability compared to ζ. Each column i of ζ̃ sums to one or zero depending
on whether i is contested or not.

Rents and Quasi-Rents. The rent (or variable profit) of market i ∈ N is

λπ,i =
PiYi

GDP
πi, with πi =

1
µY

i

(
1 −

εi

µi

)
, (8)

where πi is the share of i’s sales that are claimed as (gross) profits. The profit margin πi

consists of the rents due to market power and diminishing returns.
Quasi-rents are rents that are dissipated by entry costs. Some portion of rents, λπ,i,

earned by producers of product i are off-set by entry costs. Letting λE, j be the entry cost
paid by type- j entrants, define the change in quasi-rents of producers of type i to be

Eζ̃(:,i)(d logλE) =
∑
j∈E

ζ̃( j, i)d logλE, j.

In words, the change in quasi-rent associated with product i ∈ N is the expected change
in entry costs paid by entrants into i.

Denote the profit-weighted projection of changes in rents d logλπ on the entry matrix
ζ̃ by

d̂ logλπ = ζ̃′(ζ̃λπζ̃′)−1ζ̃λπ d logλπ. (9)

This rent-weighted projection is an important statistic with an intuitive interpretation.
The following lemma shows why ̂d logλπ is important.

Lemma 1. The change in the quasi-rents associated with producer type i ∈ N is14

Eζ̃(:,i)(d logλE) = d̂ logλπ,i.

Intuitively, an increase in rents (d logλπ,i > 0) earned by producer i increases quasi-
rents, or expenditures on entry, associated with i by d̂ logλπ,i. The examples below provide
some intuition.

Example 7 (No Entry). Consider an example where all producers are incumbents and the
entry matrix ζ̃ has rank zero. Applying Lemma 1, the expected log change in quasi-rents

14For this Lemma, we let λπ be the |N| × |N| diagonal matrix of rents and d logλπ be the |N| × 1 vector of
changes in rents. We define λπ as an |N|× |N| diagonal matrix and d logλπ be the |N|×1 vector to streamline
the matrix expressions for projections below. Throughout the paper, to lighten the notation, we often use
the same symbol to denote vectors and their counterparts as diagonalized matrices.

17



associated with i ∈ N is given by
d̂ logλπ,i = 0.

Since entry is impossible, quasi-rents are equal to zero and never change regardless of
changes in rents d logλπ.

Example 8 (Undirected Entry). Consider again an example with N products, no incum-
bents, and only one entrant type (E = 1). Therefore, ζ̃ is a 1 ×N vector of all ones. In this
case, applying Lemma 1, the expected log change in quasi-rents for product i is

d̂ logλπ,i = d log

 N∑
j=1

λπ, j

 ,
where the right-hand side does not depend on i. Hence, the change in quasi-rents asso-
ciated with every product type i is the same, since there is only one entrant type. If type
i producers become more profitable (d logλπ,i > 0), quasi-rents associated with i increase
only in so far as profitability overall rises (d log

(∑
j λπ, j

)
> 0). This is because entrants

respond only to average profitability and cannot directly target the rents earned by type i.

Example 9 (Directed Entry). Consider again an example with N producer types, but
suppose that there are also N entrant types (|E| = |N − F |). Therefore, the matrix ζ̃ is an
N×N matrix with rank N. Applying Lemma 1, the expected log change in quasi-rents for
producer i is

d̂ logλπ,i = d logλπ,i.

In this case, the change in quasi-rents for every market i is the same as the changes in rents
in that market, since each market has its own entrants. Hence, if type i sellers become
more profitable (d logλπ,i > 0), quasi-rents associated with i increase by the same amount.

Some important extreme cases of entry are defined below.

Definition 2. We say that entry is fully directed if the entry matrix ζ has rank |N − F |, this
happens if there are as many entrant types as there are contested markets. We say that
entry is fully undirected if the entry matrix ζ has rank 1, this happens if there is only one
entrant type. We say that there is no entry if the entry matrix ζ has rank zero.

We call the first situation fully-directed entry because in this case, changes in rents are
captured entirely by new entrants as quasi-rents. If there are fewer entrant types than
markets |E| < |N − F |, entry into a particular product type may be restricted, or even
impossible. When ζ̃ has rank one, then entrants only choose whether or not they enter,
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and they do not choose what type of product they would like to produce. Finally, when
entry is impossible, ζ̃ has zero rank.

IO Matrices. We now define input-output matrices. Without loss of generality, we rep-
resent the household’s final demand function as the output of some incumbent producer
standing in for the household. To emphasize its unique role, we index the household by
the number 0 and add the household to the set of producersN .

The variable spending IO matrix, ΩV, is the |N| × |N| matrix whose i jth element is
equal to i’s variable expenditures on inputs from j as a share of i’s revenues

ΩV
ij ≡

MiPY
j xi j

PY
i Yi

.

The entry cost IO matrix, ΩE, is the |E| × |N|matrix whose i jth element is equal to entrant
i’s expenditures on inputs from j as a share of i’s total entry costs

ΩE
ij ≡

PY
j xE,i j∑

k∈N PY
k xE,ik

.

We introduce the backward and forward input-output (IO) matrices and their accompa-
nying Leontief inverses. Intuitively, The backward matrix captures how a change in the
sales of a customer is transmitted to the sales of its suppliers via backward linkages. The
forward matrix captures how a change in the price of a supplier is transmitted to the price
of its customers via forward linkages.

Backward IO Matrix. Let π be the |N| × |N| diagonal matrix of profit shares defined in
(8). The backward IO matrix combines variable and fixed expenditures

ΩB = ΩV + πζ̃′ΩE.

Its i jth element ΩB
ji is the fraction of the revenues of j directly paid out to i for variable

production and entry. The associated backward Leontief inverse is

ΨB =
(
I −ΩB

)−1
= I + ΩB +

(
ΩB

)2
+ · · · .
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Its i jth element ΨB
i j is the fraction of the revenues of i directly and indirectly (through the

network) paid out to j for variable production and entry.15

Forward IO Matrix. Let E be the |N| × |N| diagonal matrix whose ith diagonal element
is equal to Eii = (γi − εi). Intuitively, Eii measures how a change in entry in i affects the
price of good i. The forward IO matrix is defined by

ΩF = µΩV + Eζ̃′ΩE,

where µ is a diagonal matrix of markups. The i jth element ΩF
i j is the fraction of the cost

of i directly attributable to the price of j through variable production and entry. The
associated forward Leontief inverse is

ΨF =
(
I −ΩF

)−1
= I + ΩF +

(
ΩF

)2
+ · · · .

Its i jth element ΩF
i j is the fraction of the cost of i directly and indirectly (through the

network) attributable to the price of j through variable production and entry.16

Backward and Forward Domar Weights. Following Domar (1961), the Domar weight of
market i is

λB
i =

PY
i Yi

GDP
= PY

i Yi,

where the last equality follows from the fact that nominal GDP is the numeraire. Theorem
1 implies that for the efficient benchmark, Domar weights are key sufficient statistics.

As a matter of accounting the Domar weight of i coincides with its backward Domar

15The sales of j can be broken down into its sales to the different i’s according to λB
j =

∑
i λ

B
i ΩB

i j. By
implication, the i jth element of the backward IO matrix, therefore, encodes the elasticity of the sales of j
to the sales of i, so that ΩB

i j = ∂ logλB
j /∂ logλB

i , where the partial derivative holds ΩB and other sales λB

constant. The i jth element of the backward Leontief inverse therefore encodes the elasticity of the sales of j
to the sales of i, so that ΨB

i j = ∂ logλB
j /∂ logλB

i , where the partial derivative holds ΩB constant but accounts
for changes in sales λB. As we shall see, this is equivalent to holding relative prices constant, since when
relative prices are constant, ΩB is also held constant.

16By Shepard’s lemma, the i jth element of the forward IO matrix encodes the elasticity of the price
of i to the price of j, so that ∂ log PY

i /∂ log PY
j = ΩF

i j, where the partial derivative indicates that sales and
shocks as well as other prices are held constant. By repeated applications of Shepard’s lemma, the i jth
element of the forward Leontief therefore encodes the elasticity of the price of j to the price of i, so that
ΨF

i j = ∂ log PY
i /∂ log PY

j , where the partial derivative now indicates that sales and shocks are held constant
but that other prices are allowed to vary.
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weight defined as the ith element of the zeroth row of the backward Leontief inverse

λB
i =

∑
j

ΩB
0 jΨ

B
ji = ΨB

0i.

This captures the household’s exposure to i via backward linkages or i’s centrality in
demand/sales.

The forward Domar weight of product i is the ith element of the zero-th row of the
forward Leontief inverse

λF
i = ΨF

0i =
∑

j

ΩF
0 jΨ

F
ji.

This captures the household’s exposures to i via forward linkages or i’s centrality in
supply/prices.17

In the efficient benchmark, the forward and backward Domar weights of market i
coincide λB

i = λF
i , so that the supply centrality (forward Domar weight) of the market

is equal to its demand centrality (backward Domar weight), and both are equal to its
sales share. By contrast, with inefficiencies, in general, the backward and forward Domar
weights of market i differ λB

i , λ
F
i and their ratio λF

i /λ
B
i measures the reduction in the size

of i caused by the cumulated wedges downstream from i.

5 Aggregation

We now generalize Theorem 2 to inefficient economies. We provide our results in two
steps. In this section, we write the response of aggregate output to shocks as a function
of changes in rents and quasi-rents. In the next section, we derive changes in rents and
quasi-rents, as a function of microeconomic primitives. Putting the two steps together
yields a complete characterization. The shocks that we consider are shocks to technologies
and markups/wedges written in vector form as (d log A,d logµ).18

17The backward and forward Domar weights generalize the revenue- and cost-based Domar weights in
Baqaee and Farhi (2019a).

18An output wedge on i not rebated back to the proprietor, in our notation µY
i , can be captured by adding

a fictitious incumbent middleman who buys i’s output and sells to the rest of the economy. A markup
on this fictitious middleman is isomorphic to an output wedge on i. Therefore, comparative statics in µ
encompass both output wedges and markups. In Appendix B, which contains the proofs, we explicitly
distinguish between markups, µi, and output wedges µY

i .
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5.1 The Aggregation Equation

Theorem 3 (Output Response with Inefficiency). The response of aggregate output to shocks
(d log A,d logµ) is given by

d log Y =
∑

i

λF
i d log Ai −

∑
i∈N

λF
i

[
1 −

1 − εi

πi

]
d logµi (10)

−

∑
i∈NDRS

λF
i (1 − εi)

(
d logλπ,i − d̂ logλπ,i

)
+

∑
i∈N IRS

λF
i
(
γi − 1

)
d̂ logλπ,i,

where the projection d̂ logλπ captures changes in quasi-rents (profits dissipated by entry costs) and
the residual d logλπ − d̂ logλπ captures changes in the difference between rents and quasi-rents
(profits not dissipated by entry costs).

Theorem 3 generalizes Theorem 2 to economies with distortions, and we spend the
rest of this section unpacking its intuition and working through some examples. The first
line consists of exogenous objects and the second line of endogenous ones. The terms∑

i∈N λ
F
i d log Ai in (10) capture changes in allocative efficiency — that is, the “mechanical”

change in real GDP caused by changes in technology holding fixed the allocation of
resources (see Appendix C for a formal discussion). When the equilibrium is efficient,
as in Theorem 2, these are the only terms that matter. The remaining terms in (10) are
changes in output caused by reallocation effects. We refer to these terms collectively as
changes in allocative efficiency caused by reallocations. If the initial equilibrium is efficient,
changes in allocative efficiency will be zero (barring corners).19

Since nominal GDP is normalized to one, changes in real GDP are the negative of
changes in the household price index d log Y = −d log P0. Therefore, one way to under-
stand (10) is to think through how shocks affect the price of the consumer price index.
Focus on the first line, which captures changes in consumer prices when sales and quasi-
rents are held constant. The first term captures the direct effect of productivity shocks,
which are weighted by their forward Domar weights. The second term captures the effect
of an increase in markups on consumer prices, which are weighted by the forward Domar
weight of the bundle of inputs.

The second line accounts for changes in rents and quasi-rents. For DRS producers,
the relevant statistic is the gap between changes in rents and quasi-rents, whereas for IRS

19Corner cases occur if εi = γi = 1 for some contested i. If γi = εi = 1, then entry into i is socially wasteful.
If i ∈ span{ζ}, then in the efficient equilibrium, the mass of i is zero (i.e. at a corner). If a change in a wedge
causes entry in i to become positive, then this will reduce aggregate output to a first-order because in the
initial equilibrium the marginal social benefit of entry into i is not equated to the marginal social benefit of
alternative uses for those resources.
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producers, the relevant statistic is the change is quasi-rents. Overall, the second line cap-
tures changes in welfare caused by changes in producer and consumer surplus weighted
by their forward (cost-based) Domar weight. As shown by Lemma 1, d̂ logλπ,i measures
the change in fixed-cost spending by entrants that become producers of i. Intuitively, the
first term on the second line captures how for each DRS market i, changes in the scale of
operation of individual producers affect the price of the market good because of decreas-
ing internal returns to scale. The second term on the second line captures how, for each
IRS market i, changes in entry affect the price of the market good by changing consumer
surplus. In both cases, what matters is then how, for each market i, the change in the price
of the good affects the price of final demand.

5.2 Three Special Cases

To build more intuition for Theorem 3, consider three special cases: for every i ∈ N − F
either (i) εi = γi = 1 (CRS); (ii) εi < 1 and γi = 1 (DRS); or (iii) (IRS) εi = 1 and γi > 1
(IRS). For simplicity, for all of these examples, assume there is only one primary factor
and that all other markets are contested. Consider a univariate productivity shock d log Ai

(holding constant other productivities, wedges, and markups).20

CRS. When εi = γi = 1 for all i ∈ N − F , Theorem 3 reduces to

d log Y = λF
i d log Ai, (11)

so only the direct technology shock matters and reallocations are irrelevant. The reason
is because of free-entry. When ε j = 1 and γ j = 1, entry is socially wasteful because there
is no consumer or producer surplus associated with entry. Nevertheless, entry always
adjusts to ensure zero profits. This means that entry absorbs or exudes resources in such a
way that there are no changes in allocative efficiency, even though there are reallocations
and the economy is inefficient. If there was no free-entry, then the behavior of output
would be substantially more complicated, since we would then have to account for how
technology shocks reallocate resources across producers (as in Baqaee and Farhi, 2019a).

Comparing (11) to the economies considered by Baqaee and Farhi (2019a) shows that
free entry can dramatically alter the behavior of output, even if entry itself is socially
wasteful. Furthermore, the economy with and without entry behave qualitatively dif-
ferently, even if profits and entry costs are small as a share of GDP. Hence, unless the

20The intuition for a shock to markups/wedges is similar, but for brevity, we omit this discussion.
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equilibrium is efficient, one cannot dismiss the importance of explicitly modelling entry
by arguing that production has almost constant-returns or that entry costs are small as a
share of GDP.

DRS. Suppose that εi < γi = 1 for all i ∈ N − F , Theorem 3 then becomes

d log Y = λF
i d log Ai −

∑
j∈N−F

λF
j (1 − ε j)

(
d logλπ, j − d̂ logλπ, j

)
. (12)

If rents outpace quasi-rents d logλπ, j − d̂ logλπ, j > 0 for some market j ∈ N , this implies
that entry is not keeping up with sales. Therefore, individual producers in j are increasing
their scale, using relatively more inputs, and running into diminishing returns. This
raises their marginal cost and price. This reallocation contributes to reducing aggregate
output in proportion to the forward Domar weight λF

j of these producers. The total effect
of reallocations is obtained by summing over all markets. Reallocations lead to a more
efficient use of resources when these changes in the scale of producers cause the final price
index to fall.

Such improvements in allocative efficiency cannot occur when the economy is efficient.
To see this, note that by Theorem 1, efficiency is attained if all markups µ are equal to
one. In this case, the profits earned by each firm are just equal to producer surplus
λπ, j = λF

j (1 − ε j). Hence, the reallocation terms become∑
j∈N

λF
j (1 − ε j)(d logλπ, j − d̂ logλπ, j) =

∑
j∈N

λπ, j(d logλπ, j − d̂ logλπ, j) = 0,

where the final equality follows from the fact that the weighted sum of residuals of a linear
projection must be zero.

When there is directed entry, (12) also simplifies to

d log Y =λF
i d log Ai,

even when the initial equilibrium is inefficient. This is similar to (11). Intuitively, in
this case, changes in the prices of goods are determined independently from changes in
their sales because changes in sales are accommodated entirely through changes in entry.
This means that no individual producer changes their scale in response to a productivity
shock, and hence marginal costs do not change in response to changes in industry-level
quantities. In other words, even though the equilibrium may be inefficient, reallocations
happen entirely on the extensive margin and are welfare-neutral.
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IRS. Now suppose that γi > εi = 1 for all i ∈ N −F . In this case, Theorem 3 implies that

d log Y = λF
i d log Ai +

∑
j∈N−F

λF
j

(
γ j − 1

)
d̂ logλπ, j.

If in some market j, quasi-rents increase, d̂ logλπ, j > 0, then resources are reallocated
towards entry into j and this boosts consumer surplus according to γ j − 1 > 0. This
increase in consumer surplus contributes to increasing aggregate output in proportion to
the forward Domar weight λF

i of this market. The total effect of reallocations is obtained
by summing over all markets.

6 Propagation

Theorem 3 in the previous section gives changes in aggregate output as a function of
changes in rents and quasi-rents. In this section, we complete the theory by deriving
equations for changes in sales and prices, and hence rents and quasi-rents. We do this in
two steps: forward and backward propagation.

In Section 6.1, we characterize the propagation of shocks through forward linkages:
how changes in prices feed forward from suppliers to consumers. In Section 6.2, we
characterize the propagation of shocks through backward linkages: how changes in sales
feed backward from consumers to their suppliers. Together, they pin down changes in
sales, rents, and quasi-rents, as well as all other disaggregated variables such as prices
and quantities. We consider some worked-out examples in Section 6.4.

6.1 Propagation Through Forward Linkages

We start by describing the response of prices to shocks.

Proposition 1 (Forward Propagation). In response to shocks (d log A,d logµ), changes in
prices are given by

d log Pi = −
∑
j∈N

ΨF
ijd log A j +

∑
j∈N

ΨF
ij

(
1 −

1 − εi

πi

)
d logµ j

+
∑

j∈NDRS

ΨF
ij

(
1 − ε j

) (
d logλπ, j − d̂ logλπ, j

)
−

∑
j∈N IRS

ΨF
ij

(
γ j − 1

)
d̂ logλπ, j

Proposition 1 is similar to Theorem 3. Since nominal GDP is normalized to one,
changes in real output are just the negative of the changes in the consumer price index
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d log Y = −d log P0. Therefore, Proposition 1 can be specialized to yield Theorem 3 by
setting i to be the price of the final consumption good 0. Therefore, the intuition for
Proposition 1 is similar to the one for Theorem 3.21

6.2 Propagation Through Backward Linkages

Assume that all production and entry functions in the economy fi and gi are CES pro-
duction functions. We make this assumption for clarity, not tractability, and Appendix D
generalizes our results to non-CES production functions. Given the assumption that all
production functions are nested-CES, without loss of generality (by relabelling the input-
output network), we can assume that each CES production function i has a single elasticity
of substitution θi associated with it.22 For notational convenience, we also assume entry
goods are assembled by perfectly competitive constant-returns-to-scale incumbents who
are added to the input-output network as additional “producers.”

To state our results, we use the input-output covariance operator:

Covm(X,ΨB
(:,i)) =

∑
k∈N

(1 − πm)−1ΩV
mkXkΨ

B
ki −

∑
k∈N

(1 − πm)−1ΩV
mkΨ

B
ki


∑

k∈N

(1 − πm)−1ΩV
mkXk

 ,
where ΨB

(:,i) is the ith column of the backward Leontief inverse ΨB. This is the covariance
between the vector X and the ith column of the backward Leontief inverse ΨB, using
the mth row of (1 − π)−1ΩV as the probability distribution. This is a covariance since∑

k∈N (1 − πm)−1ΩV
mk = 1 for m ∈ N − F .

Proposition 2 (Backward Propagation). In response to shocks (d log A,d logµ), changes in
sales are given by

dλB
i = −

∑
m∈N

λB
m

∑
k∈N

ΩV
mk − (1 − πm)

∑
j∈E

ζ̃ jmΩE
jk

ΨB
kid logµm

21An interesting special case of Proposition 1 is when every good is DRS, there is only one primary factor,
and entry is fully-directed. In this case, the change in prices simplifies to

d log PY
i = −

∑
j∈N

ΨF
i jd log A j +

∑
j∈N

ΨF
i j

(
1 −

1 − ε j

π j

)
d logµ j.

In other words, the change in relative prices does not depend on final demand or the elasticities of substitu-
tion in production. This is reminiscent of the no-substitution theorem (Georgescu-Roegen,1951; Samuelson,
1951). However, it holds under different assumptions: in particular, unlike the classic no-substitution
theorem, one does not need to assume constant returns to scale nor perfect competition.

22See the discussion of standard-form economies in Baqaee and Farhi (2019b) for more information.
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−

∑
m∈N−F

λB
m(1 − πm)(θm − 1)Covm

(
d log P,ΨB

(:,i)

)
. (13)

Proportional changes in sales are given by d logλB
i = dλB

i /λ
B
i .

We discuss each line of (13) in turn. The first line is the effect of changes in markups on
the sales of i holding fixed relative prices. The term in square brackets is how an increase
in m’s markup d logµm > 0 affects spending on some input k. On the one hand, a higher
markup reduces m’s variable spending on input k by λB

mΩV
mk. On the other hand, a higher

markup increases entry, and this increases spending on k by entrant j by λB
m(1−πm)ζ̃ jmΩE

jk.
These two effects in turn change spending on i in proportion to the exposure ΨB

ki of k to i.
The second line captures the effect of expenditure-switching due to changes in relative

prices. Changes in relative prices d log P caused by the shocks lead individual producers
in every market m ∈ N − F to shift their expenditures on their inputs. If θm > 1,
then m’s inputs are gross substitutes. Hence, m substitutes its expenditures towards
those inputs that have become relatively cheaper. If those inputs intensively rely on i,
then (θm − 1)Covm(d log P,ΨB

(i)) is negative. Hence, substitution by m changes i’s sales in
proportion to−λB

m(1−πm)(θm−1)Covm(d log P,ΨB
(:,i)). The overall effect of this expenditure-

switching on i’s sales are attained by summing over all m.
We continue by describing the responses of rents and quasi-rents to shocks.

Lemma 2 (Changes in Rents). In response to shocks (d log A,d logµ), changes in rents are
given by

d logλπ,i = d logλB
i + d logπi, where d logπi =

1 − πi

πi
d logµi,

and d logλB
i is given by Proposition 2.

Hence, changes in rents in each sector are driven, either by changes in sales d logλB or
changes in profit margins d logπ. Given changes in sales d logλB

i , from Proposition 2, it
is easy to obtain changes in rents d logλπ,i from Lemma 2, and changes in quasi-rents by
applying the linear projection formula (9).

6.3 Combining Forward and Backward Propagation

To recap, Proposition 1 pins down changes in prices in terms of changes in sales shares, and
Proposition 2 pins down changes in sales shares in terms of changes in prices. Together,
they pin down changes in both sales shares and prices in every market. This, in turn,
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determines changes in rents and quasi-rents, which can be plugged back into Theorem 3
for welfare changes.

Going beyond this, once in possession of changes in prices d log P and sales shares
d logλB, it is simple to solve for other equilibrium objects. For instance, changes in the
aggregated output of i are d log Yi = d logλi

B − d log Pi and changes in individual varieties
of i are d log yi = d log Yi − γid log Mi. Finally, changes in the mass of entrants in each
market are

d log M = d̂ logλπ − ζ̃
′(ζ̃λπζ̃′)−1λE d log PE, (14)

where d log M and d̂ logλπ are N − F × 1 vectors, λE is the E × E diagonal matrix of
expenditures on entry, and d log PE is the E× 1 vector of changes in the prices of the entry
goods given by Proposition 1. Equation (14) shows that the mass of producers in each
contested market is increasing in quasi-rents and decreasing in entry costs.

6.4 Illustrative Examples

In this section, we consider the simplest example and show how the response of output to
shocks changes as we vary assumptions about returns to scale and the form of entry. This
example has no intermediate inputs, a single factor (labor), and entry costs are assumed
to be paid in units of labor. We compare constant, decreasing, and increasing returns and
vary no entry, directed entry, and undirected entry.

We use the following notation throughout. Given three vectors u, v, and w with∑
k wk = 1, we write Eu(v) =

∑
k ukvk and Covu(u,w) =

∑
k uk(vkwk) − (

∑
k ukvk)(

∑
k ukwk).

No Entry. To start, consider an economy without entry. Aggregate output,

Y =

∑
k

Y
θ0−1
θ0

k


θ0−1
θ0

,

is a CES aggregate of differentiated inputs indexed by k with an elasticity of substitution
θ0. Each k’s output,

Yk =
(
Mkyγk

k

) 1
γk ,

is itself a CES aggregate of some mass Mk of differentiated varieties with an elasticity of
substitution θk = 1/(1 − γk) ≥ min{θ0, 1}. Each variety in sector k is produced from labor
with constant returns and productivity Ak by a single firm and sold at a markup µk > 1
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over marginal cost
yk = Aklk, pk = µkmck.

Consider a vector of k-level productivity shocks d log A. To apply Theorem 3, we use the
fact that the backward and forward Domar weight are equal to each other λB

k = λF
k in this

example. Applying Theorem 3, the change in aggregate output is

d log Y = EλB
(
d log A

)
− d logλB

L ,

where d logλB
L is the change in labor’s share of income. The first term is the change in

technical efficiency, holding fixed the allocation of resources, and the second term is the
change caused by reallocations. Applying Proposition 2, this can be written in terms of
primitives as the second term is

d log Y = EλB
(
d log A

)
− (θ0 − 1)

1
λB

L

CovλB

(
1
µ
,d log A

)
. (15)

To understand the intuition, suppose that k’s are substitutes (θ0 > 1) and that the shock
disproportionately increases the productivity of high-markup k’s. Since the shock dis-
proportionately increase the productivity of high-markup firms (CovλB(d log A, 1/µ) < 0),
and since goods are substitutes (θ0 > 1), the shock reallocates labor towards high-markup
firms and reduces the labor share (rents earned by labor). This reallocation improves al-
locative efficiency, because high-markup firms were too small to begin with from a social
perspective, and boosts aggregate output.

IRS with Directed Entry. Consider the same model as above, but now suppose that
there is directed entry into every k, with potential entrants choosing which k to enter into
after paying a fixed cost in units of labor. From Theorem 3, changes in aggregate output
are now given by

d log Y = EλB(d log A) +
∑

k

1
θk − 1

λB
k d log

(
λB

k

(
1 −

1
µk

))
,

where the first term is the direct technology effect and the second term is the reallocation
effect. Note that the reallocation effect is very different from what it was without entry.
From Proposition 2, we can write

d log Y = EλB(d log A) +
1

EλB

(
θ−1
θ−θ0

)CovλB

(
θ − 1
θ − θ0

, d log A
)
, (16)
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where (θ− 1)/(θ−θ0) is a vector whose ith element is (θi − 1)/(θi −θ0) > 0. To understand
the intuition, suppose that k’s are substitutes (θ0 > 1) and that the shock disproportion-
ately increases the productivity of k’s with high consumer surplus γi = (θi − 1)/θi (low
elasticities of substitution). Then CovλB((θ − 1)/(θ − θ0), d log A) > 0 and so the shock
leads to improvements in allocative efficiency. Intuitively, the shock triggers beneficial
reallocations of labor towards k’s with strong scale economies which were too small to
begin with from a social perspective. These forces operate in reverse when sectors are
complements with θ0 < 1.

Comparing (15) to (16) reveals the importance of entry. The correlation between
productivity shocks and markups, which was key in the economy without entry is now
irrelevant. This is because now labor reallocations happen purely on the extensive margin
via changes in entry in the different sectors, while the intensive margin remains unchanged
as individual producers in the different sectors keep operating at the same scale. Instead,
the key is now the correlation between productivity shocks and returns to scale.

DRS with Directed Entry. We now show that changes in aggregate output are very
different under DRS. Consider the same example as above but assume that each k’s
output,

Yk = Mkyk,

is a linear aggregate of an endogenous mass Mk of undifferentiated varieties. Each variety
in k is produced from labor with decreasing returns εk and sold at a markup µk over
marginal cost

yk = Akl
εk
k , pk = µkmck.

Changes in aggregate output are given by

d log Y = EλB(d log A). (17)

Comparing (16) with (17) reveals the difference between IRS and DRS forms of entry.
Changes in technical efficiency are captured by the same Hulten-like term as in the IRS
case. By contrast, there are no longer any changes in allocative efficiency. This occurs even
though there are equilibrium reallocations and the initial equilibrium is inefficient. The
adjustment in the sizes of the different sectors happens entirely on the extensive margin
via changes in entry. Individual producers in the different sectors keep operating at the
same scale so that there is no change in the intensive margin. Since in addition there is
no consumer surplus γi = 1, the price of each good at the sectoral level is the same as the
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price of the good for individual firms. Therefore, reallocations are therefore neutral on
efficiency grounds. This example clarifies that the IRS and DRS models are, in general,
very different.

IRS with Undirected Entry. Now consider again the IRS version of the example, but
now suppose that there is only one entrant type. For simplicity, suppose that θk = θ0 > 1
for this example. Now Theorem 3 implies that

d log Y = EλB
(
d log A

)
+ (θ0 − 1)−1 d log (EλB (π)) , (18)

where the second term captures the change in profits. Hence, allocative efficiency increases
if profits increase as a share of GDP. Using Proposition 2, we can rewrite this in terms of
primitives as

d log Y = EλB
(
d log A

)
−

1
λE

CovλB

(
1
µ
,d log A

)
, (19)

There are changes in technical efficiency captured by the Hulten-like term EλB(d log A)
and changes in allocative efficiency are λ−1

E CovλB

(
1
µ ,d log A

)
. Average profits increase if

the shock reallocates sales towards high-markup firms. This in turn increases entry and
generates improvements in allocative efficiency by enabling external economies arising
from love for variety.

Comparing (19) to (16) reveals the importance of directed entry. Whereas for directed
entry, it is a comparison of θk’s that determines allocative efficiency, for undirected entry,
it is a comparison of markups µk that does so. In that sense, the model with undirected
entry is more similar to the one without entry (15) but there are differences here too.
Although the sign of the change in allocative efficiency is the same in both (19) and (15),
their magnitude is different. In both cases, improvements in efficiency, brought about by
reallocation of labor to high-markup firms, economize on labor. However, when there is
no entry, the labor saved is used towards variable production by incumbents, but in the
model with entry it is used for the entry and variable production of new firms.

DRS with Undirected Entry. Finally, we consider the DRS model with undirected entry.
For simplicity, we assume that εk = ε for every k. Applying Theorem 3 gives

d log Y = EλB(d log A) + (1 − ε)d log (EλB(π)) ,
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which is very similar to (18). Indeed, using Proposition 2 we can rewrite this in terms of
primitives as

d log Y = EλB
(
d log A

)
−
ε
λE

CovλB

(
1
µ
,d log A

)
. (20)

Therefore, in this example with a single sector and undirected entry, the IRS and DRS
models behave similarly as a comparison of (19) and (20) shows. This is in keeping with
folk intuition that Hopenhayn (1992) and the closed-economy version of Melitz (2003) are
isomorphic to one another. However, these examples show that this intuition is highly
fragile, and a simple change like the extent to which entry is directed, can break the
equivalence.

Overall, these examples underscore the importance of modeling the extent to which
entry is directed as well as whether or not firms provide value because of consumer
surplus (IRS) or producer surplus (DRS).

7 First-Best Policy and Misallocation

In this section, we use the results in Section 5 and 6 to characterize the gains from optimal
policy, which coincide with the social costs of distortions, the distance from the efficient
frontier, or the amount of misallocation. We show that even with non-neoclassical ingredi-
ents like entry, non-convexities, and diminishing marginal cost, the distance to the frontier
can be approximated via a Domar-weighted sum of Harberger triangles associated with
variable production and entry. We specialize this result and work through a series of
examples to emphasize the importance of accounting for entry.

For any equilibrium variable X, we denote by d log X the log-deviation of X from
its value at the efficient allocation, which can also be thought of as the change in X
caused by the deviations of d log τi and d log τY

i of the firm-level and industry-level out-
put wedges from their efficient values in Theorem 1. We provide a second-order approx-
imation in these deviations (d log τ,d log τY) of the associated aggregate efficiency loss
L = −(1/2) d2 log Y.23

Proposition 3 (Deadweight-Loss). As long as either εi < 1 or γi > 1 for each i ∈ N c, the

23Around the efficient point, the first-order loss is zero as long as min{εi, γi} < 1 (see Corollary 1 in
Appendix C). If εi = γi = 1, and i ∈ span{ζ}, then the losses from inefficiencies are first-order, and we must
use Theorem 3 instead.
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efficiency loss can be approximated, up to second-order approximation, as

L ≈
1
2

∑
i∈N

λB
i d log yi d log

(
τiτ

Y
i

)
︸                              ︷︷                              ︸
Harberger Triangles for Variable Production

+
1
2

∑
i∈N

λB
i γi d log Mi d log τY

i︸                             ︷︷                             ︸
Harberger Triangles for Entry

.

Hence, the social cost of distortions is, up to a second-order approximation, a Domar-
weighted sum of Harberger triangles associated with variable production and entry. In
conjunction with the forward and backward propagation equations in Propositions 1 and
2, we can rewrite these loss functions in terms of microeconomic primitives (the input-
output matrix, the elasticities of substitution, and returns to scale).24 We relegate this
general formula to Appendix B, and focus on a few prominent examples obtained by
considering a special class of models with a sectoral structure.

These examples help demonstrate how the social cost of distortions changes in models
where entry occurs with IRS versus DRS.

7.1 Sectoral Models

To generate examples, we use sectoral models. Sectoral models are common in the liter-
ature, and they are worth singling out because for this class of economies we can break
the problem of computing the distance to the frontier into two blocks: within and across
sectors. A sectoral model satisfies the following conditions (see Appendix E for detailed
derivations):

1. every producer type i ∈ N−F is assigned to a unique sectorI, with common returns
to scale so that its output matters only through sectoral output. Sectoral output is

YI =
∑
i∈I

MiAi
(

fI
({

xiJ
}))εI , or YI =

∑
i∈I

MiAi
(

fI
({

xiJ
})) 1

γ
I


γI

,

depending on whether I is DRS or IRS, where fI
({

xiJ
})

has constant-returns, and
xiJ indicates that inputs are purchased from other sectoral aggregates J ;

2. there is one type of entrant for each sector I, and entrants are randomly assigned to
i ∈ I according to some fixed distribution;

24To do this, note that d log Yi = d logλB
i − d log Pi, where Proposition 1 gives d log Pi and Proposition

2 gives d logλB
i . Next, observe that d log Yi = d log yi + 1/γi d log Mi. Finally, note that d log M is given by

(14). Putting this all together will allow us to write Proposition 3 in terms of primitives.
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3. individual producers i in sector I charge different markups τy
i but face a common

industry-level wedge τY
i = τY

I
.

Throughout the following examples, we define the sales share of sector I to be λB
I

=∑
j∈I λ

B
j , and producer i’s share of sector I to be λI,Bi = λB

i /λ
B
I
1{i∈I}. We will denote by

EλI,B(d log τy) and VarλI,B
(
d log τy) the within-sector weighted expectations and variances

of changes in markups/wedges d log τy
i of producers i ∈ Iwith weights λI,Bi .

We now discuss the distance to the frontier for IRS and DRS sectoral models, starting
with the simpler DRS case.

7.2 Misallocation in DRS Economies

For sectoral models, we can provide a straightforward characterization of the loss function
with DRS. We proceed under the additional assumptions that there is only one primary
factor, that entry is paid in that factor, and that there are no deviations of output wedges
from their efficient benchmarks d log τY

I
= 0.

Proposition 4 (Deadweight-Loss in DRS Economy with Entry). Consider a sectoral model
where every sector is DRS, there is only one primary factor, entry is paid in units of the factor, and
there are no deviations of output wedges from their efficient benchmarks d log τY

I
= 0. To a second

order, the loss function is given by

L =
1
2

∑
I

λB
I

εI
1 − εI

VarλI,B
(
d log τy) +

1
2

∑
I

λB
I

εI
1 − εI

(
EλI,B

(
d log τy))2 .

The first term in the loss function captures misallocation arising from distortions in
relative producer sizes driven by dispersed markups/wedges within sectors. The second
term captures misallocation arising from distortions in the average size of firms. The
losses increase with the returns to scale: they go to zero in the zero-returns to scale limit
where εI goes to one, and they go to infinity in the constant-returns limit where εI goes
to zero.

Proposition 4 is surprising if one is familiar with the misallocation literature. Normally,
elasticities of substitution are key pieces of information but here they are irrelevant. This is
because changes in sectoral markups do not change relative sectoral prices to a first-order,
meaning that allocations are not distorted across sectors to a first-order. An increase in
markups reduces the scale and hence the marginal cost of producers and starting at the
efficient point, this reduction in marginal cost exactly offsets the increase in markups to
a first-order. Since relative sectoral prices do not change to a first-order, the elasticity of
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substitution across sectors is not relevant for how sectoral quantities adjust to a first-order.
Since Harberger triangles are products of first-order changes in quantities and first-order
changes in the wedges (see Proposition 3), the cross-sectoral elasticity of substitution is
irrelevant to a second-order.

7.3 Misallocation in IRS Economies

Whereas Proposition 4 provides a relatively general characterization of losses for DRS
economies, the behavior of IRS economies is substantially more complicated. Rather than
writing the complicated general formula, we instead focus on some simple examples to
give intuition. In each case, seemingly small changes in the assumptions about the nature
of entry make the welfare costs of distortions quite different.

One-Sector Economy. We start with a one-sector model heterogenous-firm economy.
Aggregate output is given by

Y =

∑
i

y
θ−1
θ

i


θ
θ−1

.

Each good i is produced from labor with constant returns and productivity Ai. If there
is no entry, applying Proposition 3, the aggregate efficiency loss from markups is, to a
second-order,

L =
1
2
θVarλB

(
d log τy) .

The loss is increasing in the elasticity of substitution θ and the dispersion of markups.
Importantly, the level of markups do not matter, only their dispersion matters. This
formula is standard in the misallocation literature (see e.g. Hsieh and Klenow, 2009;
Baqaee and Farhi, 2019a).

Now consider the case where there is free-entry paid in units of labor. In this case, the
equilibrium is efficient if markups are equal to θ/(θ − 1) for every producer. If markups
deviate from this efficient benchmark, then the aggregate efficiency loss is, to a second-
order, given by

L =
1
2
θVarλB

(
d log τy) +

1
2
θEλB

(
d log τy)2 . (21)

The first term is the same as before. The second term captures misallocation on the
extensive margin and comes from the fact that there is too much or too little entry. This
term is also increasing in the elasticity of substitution, but it depends on the level of the
wedges rather than their dispersion. Comparing this to Proposition 4 shows that, at least
in this simple case, the loss function for IRS models is reminiscent of the one for DRS
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models. We shall see that these similarities disappear if allow for input-output linkages
in either variable production or entry.

Intermediates in Variable Costs. Consider the supply chain depicted in Figure 4 where
entry costs are paid in units of labor but there are input-output linkages in variable
production. Proposition 4 shows that if the economy were of the DRS type, then the losses
should simply be a linear combination of scale elasticities — each scale elasticity depends
on the size and wedges in its own sector. Furthermore, losses are monotone in those scale
elasticities. None of this is true in IRS models with input-output linkages.

HH12L
YI =

∑
i∈I

Miy
θi−1
θi

i


θi
θi−1

, yi2 = Ai2li2,

yi1 = Ai1x12, L =
∑
i∈2

Mi2li2 + M1 + M2.

Figure 4: The solid and dashed arrows represent the flow of resources for production and
entry, respectively. The only primary factor is labor indexed by L. If variety i belongs to
sector I = {1, 2}, we write i ∈ I, and the output of i is denoted by yiI. Variable intermediate
and labor inputs by i in I are denoted by xiI and liI.

Proposition 3 implies the loss function is given by

L =
1
2

2∑
I=1

θi

[
VarλI,B

(
d log τy) + Eλi,B

(
d log τy)2

]
+

1
2

θ1

θ1θ2 − 1
Eλ1,B

(
d log τy)2 ,

which is a nonlinear combination of the scale elasticities (in this case, θ1 and θ2). The first
set of summands, which capture distortions along the intensive and extensive margin of
each I = {1, 2} are similar to DRS goods (see Proposition 4 for comparison). However,
unlike with DRS goods, it is not possible to separate sectoral distortions from one another.
The last summand combines scale elasticities across the two sectors and makes the losses
from an increase in downstream markups d log τy

1 depend on the elasticity of substitution
upstream θ2.

Furthermore, unlike in Proposition 4, losses can be U-shaped in the scale elasticities.
This is because, on the one hand, a lower elasticity of substitution reduces the costs of
misallocation by making variable quantities less sensitive to wedges. On the other hand,
a lower elasticity of substitution makes misallocation along the extensive margin more
costly since a lower elasticity of substitution. This non-monotonicity is also evident in our
quantitative model in Section 9.
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Intermediates in Fixed Costs. Non-monotonicity of losses in scale elasticities can also
arise due to input-output linkages in fixed costs. To see this, consider a one-sector economy
with a representative firm and free entry. Suppose that entry costs require the use of either
labor or goods. The gross output of the sector is given by

Y1 =

(
M1y

θ1−1
θ1

1

) θ1
θ1−1

,

where the representative producer has a production function y1 = A1l1. Applying Propo-
sition 3, the aggregate efficiency loss from a wedge τy

1 when entry only uses labor is

L =
1
2
θ1(d log τy

1)2.

This is just a special case (21) and the loss is increasing in the elasticity of substitution
across products θ1. Losses explode as θ1 goes to infinity since in this limit, entry is socially
wasteful and highly responsive to a change in the markup, so the losses from any amount
of entry are first-order (this is why the second-order approximation explodes).

Next, suppose that entry uses only goods and labor is not required for entry (but it is
required for variable production). Applying Proposition 3, the aggregate efficiency loss
from markups is

L =
1
2

(θ1 − 1)3

(θ1 − 2)2 (d log τy
1)2.

Once again, the losses goes to infinity as θ1 goes to infinity and for similar reasons.
However, the loss is no longer increasing in θ1, but is instead U-shaped, and also goes to
infinity as θ1 goes to 2 from above, since love of variety becomes so strong that output
becomes linear in the mass of entrants. Once again, the long-standing intuition that
efficiency losses are increasing in the elasticity of substitution is broken.

8 Second-Best Policy Interventions

Whereas Section 7 builds on Theorem 3 to analyze the gains from first-best policy, this
section uses Theorem 3 to provide bang-for-buck formulas to compare the merits of
small interventions starting at an inefficient equilibrium. These formulas revive and
revise the informal policy recommendations of Hirschman (1958), who argued in favor
of encouraging sectors with increasing returns that had the most backward and forward
linkages. The analysis reveals the extent to which details matter: effective policy depends
on the nature of the intervention, the shape of the production network, and the strength
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of scale economies.
In this section, we restrict attention to an analytically tractable and quantitatively

relevant special case of Theorem 3. We focus on an economy where all goods are IRS,
γi > 1 is constant for each i, there is one primary factor we call labor (indexed by L),
and the production and entry functions fi and gi are Cobb-Douglas.25 We focus on the
no-intervention equilibrium with monopolistically competitive Dixit and Stiglitz (1977)
markups. Finally, we assume that entry is directed. Given the fact that elasticities of
substitution across producers i are equal to one and entry is directed, each i should be
interpreted as an industry. We investigate markup regulation and entry subsidization,
which can be thought of as capturing competition and industrial policy respectively.

Markup Regulation. To start with, consider a budget-neutral intervention reducing the
markups d logµi < 0 of industry i. This can be achieved by placing a subsidy on i and
taxing owners of i to fund the subsidy. Applying Theorem 3, the response of aggregate
output, normalized by the revenues −λB

i d logµi > 0 transferred away from the producers
by the associated implicit subsidy, is

−
1
λB

i

d log Y
d logµi

=
∑

j∈N−F−{i}

λF
j

λB
j

(
γ j − 1

)
ΨB

i j.

Markup regulations are more effective the larger is the right-hand side. This happens when
i is downstream from j’s who have strong returns to scale and are themselves upstream
of other industries with strong scale effects. Intuitively, ΨB

ij captures the reliance of i on
inputs from j, whereas (γ j − 1) captures the strength of scale economies in j, and λF

j /λ
B
j

captures the cumulation of markups downstream from j. If all markets have the same
increasing returns to scale γ j, then this formula favors markup reductions in industries
that are relatively downstream.

Entry Subsidies. Next, consider entry subsidies to industry i at the no-intervention
equilibrium. Denote a negative output tax on the fixed costs of i by µE,i. At the no-
intervention equilibrium, µE,i = 1, the budgetary impact of this is just −λB

E,i d logµY
E,i > 0.

We normalize the response of aggregate output by its budgetary impact to allow bang-
for-buck comparisons. When production functions are Cobb-Douglas, Theorem 3 implies
that this is

−
1
λB

E,i

d log Y
d logµY

E,i

=
λF

i

λB
i

γi − λ
F
L.

25The consumer surplus ratio γi is constant when the industry-level aggregator Fi is isoelastic.
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Here, λF
i /λ

B
i is again a measure of the cumulated markups (and returns to scale) down-

stream from i and λF
L is the forward Domar weight of labor. The adjusted ratio (λF

i /λ
B
i )γi

includes the gross increasing returns of i rather than only those of markets strictly down-
stream from i. Hence, the greatest improvements come from subsidizing entry into those
markets that are upstream in supply chains with strong returns to scale. In other words,
whereas markup regulations tend to target sectors that are downstream of long supply
chains with strong scale economies, entry subsidies will tend to target sectors which are
upstream of long supply chains with strong scale economies.26 In either case, however,
the goal is to boost the sales of, and entry into, sectors that are upstream of long supply
chains with strong scale economies.

9 Quantitative Illustration

We end our analysis by illustrating the social cost of distortions, or equivalently the gains
from optimal policy, using a quantitative model. We provide a brief account of how we
calibrate the model to fit U.S. data in Section 9.1 and present the numerical results in
Section 9.2. For more details on the data sources and calibration see Appendix G.

9.1 Description of Quantitative Model

The quantitative model has a sectoral structure with heterogenous firms within sectors
and one primary factor capturing a composite of capital and labor. We merge firm-level
data from Compustat with industry-level data from the BEA. We use annual input-output
tables from the BEA with 66 industries (excluding government sectors), and assign each
firm in our Compustat sample to a BEA industry. From the data, we have estimates of
industry-level sales shares for industries I; input-output entries for industries I and J ;
the sales shares of the Compustat firms i in industry I; and the markup µi of Compustat
firm i.

For firm-level markups, we adopt the benchmark procedure of De Loecker et al. (2019)
using a production function estimation approach. In Appendix H, we perform robust-
ness checks by recomputing our results using three alternative methods for estimating
markups: an alternative implementation of the production function estimation approach
with different categories of costs (including SG&A in variable costs, as in Traina, 2018),
and alternative approaches that compute markups by netting out the cost of capital from

26For a quantitative illustration of these bang-for-buck formulas, see Appendix I.1.
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gross surplus. Although the numbers depend on the specific approach, the qualitative
message that accounting for entry and returns to scale is very important remains the same.

The model has a nested CES structure where each firm i in industry I has a CES
production function combining value-added and intermediate inputs with an elasticity
of substitution θ1. The intermediate input component is itself a CES aggregator of inputs
from other industries with an elasticity of substitution θ2. Finally, we have the within-
sector elasticities εI or γI depending on whether we assume the industry is DRS or IRS.

Drawing on estimates from Atalay (2017), Herrendorf et al. (2013), and Boehm et al.
(2014), we set the elasticity of substitution across sectors in consumption to be θ0 = 0.9,
between value-added and intermediates to be θ1 = 0.5, and across sectors in intermediates
to be θ2 = 0.2. Our results are not particularly sensitive to these choices.

We use the same within-sector elasticities for all sectors: εI = ε and γI = γ and
consider two scenarios: (1) every sector is assumed to be IRS with scale elasticity γ; (2)
every sector is assumed to be DRS with scale elasticity ε. In either case, we consider two
different scale elasticities, in the DRS case, we set ε = 0.875 or ε = 0.75. In the IRS case,
we set 1/γ = 0.875 or 1/γ = 0.75, which corresponds to a within-industry elasticity of
substitution of 8 or 4 respectively.

Finally, we experiment with different ways of modeling entry: no entry, entry using
primary factors, and entry using primary factors and goods (in the same way as variable
production). The model without entry can be thought of as a short-run model and the
model with entry as a long-run model.

9.2 Social Costs of Distortions

We solve the model nonlinearly and compute the efficiency loss from misallocation. We
report the numbers as the percentage gain in welfare achieved by implementing optimal
policy starting from the decentralized equilibrium outcome. The results are in Table 1
for different combinations of assumptions regarding entry and returns to scale. Across
the board, the benchmark calibration shows that the losses from inefficiency are higher
(roughly double) when we allow entry than when we do not because of the additional
distortions along the entry margin.

Decomposing the Results. For each calibration, Table 1 breaks down the sources of the
distance to the frontier. The “Level only” row eliminates the dispersion of markups within
each sector by setting all markups within each sector equal to the harmonic average of
markups in that sector. The “Dispersion only” row rescales the level of markups in the
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data so that their harmonic average within each sector is equal to γi (so sectoral markups
are equal to the Dixit and Stiglitz (1977) markups when we adopt the IRS benchmark and
equal to one when we adopt the DRS benchmark) but keeps their dispersion constant.

IRS, 1/γ = 0.875 No Entry Entry Uses Factors Entry uses Goods and Factors

Level only 4.6% 14% 10%
Dispersion only 30% 30% 30%
Benchmark 36% 50% 41%

IRS, 1/γ = 0.75

Level only 4.6% 17% 20%
Dispersion only 22% 23% 20%
Benchmark 19% 32% 37%

DRS, ε = 0.875

Level only 1.5% 7.8% 7.6%
Dispersion only 23% 23% 23%
Benchmark 26% 35% 32%

DRS, ε = 0.75

Level only 0.8% 9.5% 10%
Dispersion only 9.2% 9.2% 9.2%
Benchmark 9.6% 19% 20%

Table 1: Efficiency losses from misallocation. Firm-level returns to scale 1/γ = 0.875 under
IRS corresponds to elasticity of substitution across firms within sectors equal to 8, whereas
1/γ = 0.75 corresponds to elasticity of substitution equal to 4.

The first column of Table 1 shows that when there is no entry, almost the entirety of
the loss is explained by the dispersion effect. The losses due to the dispersion effect are
due to misallocation across firms within sectors, and are large because markups are very
dispersed within sectors and because the relevant elasticities within sectors are large. The
losses due to the level effect, when there is no entry, are entirely due to misallocation
across sectors, and are small because markups are not so dispersed across sectors and
because the cross-sectoral elasticities of substitution are low.

When there is entry (the second and third columns), the level effect becomes compara-
ble to the dispersion effect. The losses due to the level effect now also reflect misallocation
between entry and variable production within sectors, and these losses are large because
markups are in general too high resulting in excessive entry.

Whether entry only uses primary factors or also intermediates has ambiguous effects.
Depending on the scale elasticities, the relative size of the gains can go either way. When
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the entry margin is more important (ε and 1/γ are lower), the gains tend to be higher
when entry also uses intermediates.

The efficiency losses are different in the IRS benchmark than in the DRS benchmark.
This is because quantities are less elastic in the DRS economy and entry distortions are
less costly. To understand the first point, note that when firms have strong diminishing
returns, the effect of markups on relative prices is off-set, to some extent, by a counteracting
change in marginal costs. To understand the latter point, it is useful to think about the limit
where ε and 1/γ go to zero, which corresponds to a within-sector across-firm elasticity
of one under IRS and a firm-level return to scale of zero under DRS. In this limit, under
IRS, the efficiency losses become infinite because love-of-variety becomes extreme and so
do the distortions in entry, as can be seen in Proposition 3. By contrast, under DRS, the
efficiency losses go to zero as made clear by Proposition 4.

Role of the Elasticity of Substitution Across Firms Within Sectors. In many models
of misallocation without entry, for example (e.g. Hsieh and Klenow, 2009; Baqaee and
Farhi, 2019a), the distance to the frontier increases with the elasticity across firms within
sectors. As discussed in Section 7.3, this intuition fails when there is entry, there is IRS,
and input-output linkages.

Figure 5a shows that for the IRS benchmark, the distance to the frontier is U-shaped as
a function of the within-sector elasticity of substitution 1/(1−1/γ). For instance, the losses
are 50% when 1/(1−1/γ) = 8. This number falls to 32% when the elasticity is lowered to 4,
before rising to close to 65% when the elasticity is lowered further to 2.5. This is consistent
with the theoretical discussion in the last two example of Section 7.3. Intuitively, a lower
elasticity reduces the misallocation costs along the intensive margin but magnifies the
misallocation costs along the extensive margin. With non-trivial input-output linkages,
downstream markups shrink the scale, and therefore the mass of entrants, in upstream
sectors. When scale elasticities in upstream sectors are large, this distortion in the mass
of entrants upstream is very costly. In the limit where the elasticity goes to one (γ goes to
infinity), this type of misallocation along the extensive margin becomes infinitely costly.

Role of Barriers to Entry. In our benchmark specifications with entry, we assume that,
with the exception of rents earned by primary factors, all rents are quasi-rents rather than
pure rents. That is, the zero-profit condition holds in every sector. However, it is plausible
that, even in the long run, profits are not entirely offset by the costs of entry. For example,
it may be that resources spent on entry are less than profits due to barriers to entry from
regulations or due to anti-competitive strategic deterrence. We capture these barriers to
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Figure 5: Efficiency losses for the benchmark IRS model when entry uses factors as a func-
tion of the within-industry elasticity of substitution and entry wedges for the benchmark
IRS model.

entry in reduced form by introducing an entry tax/wedge.
Figure 5b displays the implied distance to the frontier as a function of the view that one

takes on the size of entry barriers in the data, where the size of entry barriers are measured
by the size of the implicit entry tax/wedge (a value of one means that there are no barriers
to entry). Perhaps surprisingly, the efficiency losses are non-monotonic in the size of entry
barriers. Intuitively, whether barriers to entry increase or decrease the estimated distance
to the frontier depends on whether there is too little or too much entry in the equilibrium
with no entry barriers. Our estimated markups are relatively high, which implies that if
there is free-entry, then there is too much entry in the equilibrium. As a result, if one takes
the view that there are entry barriers in the data (so that there is less entry than implied
by profits), then one is lead to a lower estimate of the distance to the frontier up (up to
some point, after which, entry becomes inefficiently too low).

10 Conclusion

Traditional theories of aggregation, by relying on aggregate envelope theorems, imply
that the aggregate production function can be treated like a black-box whose contents are
irrelevant to a first-order approximation. In this case, aggregate productivity changes are
simply the sales-weighted averages of the exogenous microeconomic productivity shocks.
Under this view, these exogenous changes in aggregate productivity are responsible for a
large fraction of both the cycle and the trend in aggregate output.

For inefficient economies, this approach is untenable. In a disaggregated economy,
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where many different margins can be distorted, total factor productivity is endogenous
and affected, to a first-order, by reallocation effects. Furthermore, unlike technical know-
how, which likely grows gradually and always increases over time, reallocation effects
can be abrupt, increase or decrease welfare, and plausibly explain a non-trivial fraction
of both the cycle and the trend. This paper shows that these reallocation effects can be
potent, and their sign and magnitude is intricately connected to assumptions about scale
elasticities and the nature of entry.
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