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1 Introduction

One of the major challenges of macroeconomics is the aggregation problem. The problem
of translating microeconomic disturbances into macroeconomic consequences. Aggre-
gation results like those of Hulten (1978) and Baqaee and Farhi (2019a) provide some
structure through which the mapping from microeconomic primitives to macroeconomic
outcomes can be understood. In this paper, we generalize these results to environments
with non-constant returns to scale and product entry and exit. We decompose aggregate
effects into technical and allocative efficiency changes, characterize the efficiency losses
from misallocation, and derive optimal first- and second-best industrial policies.

Our analysis is relatively general, and allows for scale effects both due to downward-
sloping demand, as in Dixit and Stiglitz (1977), or upward-sloping supply curves, as in
Lucas (1978). We also allow for an arbitrary pattern of distorting wedges and techno-
logical heterogeneity. We allow for within and cross-industry heterogeneity, as well as
unrestricted input-output linkages in both production and entry costs. We characterize
how aggregate output and aggregate productivity respond to changes in technology and
changes in wedges (which we take as primitives).

We decompose changes in output into changes in technical and allocative efficiency.
Technical efficiency measures the direct impact of technology shocks, holding fixed the
allocation of resources, and allocative efficiency measures the indirect effect of shocks due
to the reallocation of resources.1

We show that changes in technical efficiency are given by a weighted sum of microeco-
nomic technology shocks. The weight on each technology shock depends on expenditure
shares and can be thought of as a cost-based or distortion-adjusted Domar weight or sales
share. The intuition for this cost-based Domar weight is similar to the logic of Hulten
(1978) or Liu (2017). This term captures the direct benefits of the technology shock on the
production of the consumption bundle taking into account direct and indirect linkages
but holding the allocation of resources fixed.

If the equilibrium is efficient, the change in aggregate output is equal to the change in
technical efficiency. This is because, when the equilibrium is efficient, reallocation effects
can be ignored to a first order. Hence, even in models with non-convexities and product
creation and destruction, the logic of Hulten (1978) continues to apply as long as the
equilibrium is efficient.

However, in economies with non-convexities and product entry and exit, efficiency

1There are different notions of changes in allocative efficiency. In this paper, we define them as changes
in output due to reallocations of resources. See Baqaee and Farhi (2019a) for a detailed discussion.
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is rarely attained. Once we stray from efficiency, we show that changes in allocative
efficiency can play a theoretically and quantitatively important role in determining the
aggregate consequences of disturbances. These reallocation effects depend on which
markets expand and shrink, and on whether these adjustments in market sizes occur
through changes in the size of existing producers or through changes in the number of
producers.

We show that the resulting changes in allocative efficiency can be summarized by
changes in rents and quasi-rents. Here, rent is income earned by firms after variable costs
have been deducted from revenues (variable profit). Proprietors earn rents because of
upward sloping marginal cost curves (diminishing returns giving rise to Ricardian rents)
and because of deviations from marginal-cost pricing (e.g. markups or taxes giving rise
to monopoly rents).2 Quasi-rent, on the other hand, is a rent earned that is dissipated by
entry costs. We show that changes in rents and quasi-rents capture reallocation effects in
equilibrium.3

To model entry, we assume that there are potentially different types of entrants, and
when entrants pays the entry cost, they draw a mix of different production technologies
with some probability. This treatment is relatively general and nests the cases of directed
technical change, in which entrants choose their technology from a menu (each technology
has its own entry condition), and undirected innovation (entrants are assigned technolo-
gies randomly). We show that entry by new producers, and the quasi-rents associated
with that entry, can be represented using linear projections. In particular, we show that
the change in quasi-rents associated with some market is the projection of changes in rents
on a vector space representing the entry technology.

Intuitively, suppose that rents in some market i increase. Entrants respond to this by
attempting to enter. However, entrants may not be able to perfectly direct their entry into
market i. It could be that when entrants pay the entry cost, they only end up with i’s
technology with some probability. We show that the amount of entry, and the quasi-rents
associated with that entry, are given by a linear projection. Therefore, in a least-squares
sense, new entry minimizes new rents claimed by existing producers.

Whereas the projection measures changes in quasi-rents, the residual from this projec-
tion is related to pure rents and measures the inability of entry to respond to changes in
rents . A positive residual for the ith market means that rents in market i have increased

2Here, monopoly rents also includes all the revenues collected by distortionary wedges (since other
distorting wedges, say taxes, can be represented as markups).

3This generalizes the intuition in Baqaee and Farhi (2019a) that reallocation effects are summarized by
changes in factor income shares. From the lens of this paper, income earned by factors are rents and since
there is no entry or exit in that paper, quasi-rents are always equal to zero.
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but entry is unable to keep up with the increase in profit opportunities. If new entrants
can perfectly direct their entry decisions, then this residual is always zero. This projec-
tion (quasi-rents) and the residual (pure rents) summarize reallocation effects in general
equilibrium.

There is a folk wisdom in the literature that modelling entry via diminishing marginal
product, in the spirit of Lucas (1978), Hopenhayn (1992), or Restuccia and Rogerson (2008),
is in some sense isomorphic to modelling entry via diminishing marginal utility, in the
spirit of Dixit and Stiglitz (1977), Melitz (2003), or Hsieh and Klenow (2009). By allowing
for both possibilities, we show that this intuition is very fragile and fails outside of very
simple single-sector models. In particular, for the first class, the relevant sufficient statistic
for reallocation is pure rent (the residual from the projection described above). On the
other hand, for second class, the relevant sufficient statistic for reallocation is quasi-rent
(the projection itself).

We complete this perspective by characterizing how changes in rents and quasi-rents
are determined in equilibrium as functions of the microeconomic primitives and the
shocks. That is, elasticities of substitution, expenditure shares, and wedges. This charac-
terization, which depends on backward and forward propagation through supply chains,
also determines how every price and quantity responds to a shock in equilibrium. This
characterization fully pins down the model’s positive properties as a function of primi-
tives.

We use these positive results to study some normative questions. We characterize
optimal industrial policy as well as the gains from implementing it. We generalize the
influential insights of Harberger (1954) to economies with non-convexities and entry and
exit. In particular, we show that the social cost of inefficiencies is, up to a second-order
approximation, equal to the sales-weighted sum of a series of Harberger triangles. Some
of these triangles are associated with production and some are associated with entry.

Using our positive results, we can characterize these Harberger triangles in terms
of microeconomic primitives. In doing so, we overturn a common intuition, valid in
models without entry, that the social cost of misallocation is monotone in the elasticities
of substitution. Whereas a high elasticity of substitution increases the size of Harberger
triangles associated with variable production, a low elasticity of substitution increases the
size of Harberger triangles associated with entry. This results in non-monotonocity of
losses with respect to elasticities of substitution.

While first-best policy is network-independent, and fixes distortions market by market,
we also consider some second-best policies. In particular, we consider how a marginal en-
try or production subsidy affects output starting at the decentralized equilibrium. Unlike
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first-best policies, the effect of second-best policies are network-dependent. In partic-
ular, for economies with external increasing returns to scale, we rationalize and revise
Hirschman (1958)’s influential argument that policy should encourage expansion in sec-
tors with the most forward and backward linkages, and we give precise formal definitions
for these concepts. We show that the optimal marginal intervention aims to boost the sales
of sectors that are relatively upstream and have strong scale economies.

We provide an example application by quantifying the social costs of markups using
micro data for the U.S. We decompose the losses into losses arising from misallocation
of resources in production (due to dispersion in markups) and misallocation of resources
in entry (due to the suboptimal level of average markups). To use a concrete example,
without entry, we find that markups estimated by a production-function approach à la
De Loecker et al. (2019) reduce aggregate productivity by around 20%.4 Accounting for
entry can double these losses. Similarly, we also show that the gains from marginal tax
interventions are potentially large.

Of course, there is a great deal of uncertainty about the specific number one attaches to
these exercises. For us, the goal is to provide some back-of-the-envelope sense of the order
of magnitudes and to shed light on what sufficient statistics determine these numbers. In
particular, our aim is to show how assumptions on the production structure, including the
strength of external economies, the extent to which entry is targeted, the type of resources
used for entry, and the view one takes on the presence of entry restrictions affect the
gains from policy and the losses from misallocation. While our results show that these
features are critical theoretically and quantitatively, little is know about them empirically,
and more empirical work is needed to bridge theory and measurement.

The structure of the paper is as follows. In Section 2, we set up the general model and
define the equilibrium. In Section 3, we prove conditions under which the equilibrium is
efficient and derive comparative statics for the efficient case. In Section 4, we specialize
the model and introduce notation necessary to analyze inefficient equilibria. In Section 5,
we provide and discuss the aggregation formula for how shocks affect aggregate output.
Section 6 contains backward and forward propagation equations that determine how
rents respond to shocks as a function of primitives. In Section 7, we analyze the normative
properties of the economy, including first- and second-best optimal policy and the social
costs of distortions. Section 8 is a quantitative application where we use a calibrated
model to compute and dissect the social costs of markups and the benefits of industrial

4We also use alternative approaches for estimating markups: an alternative implementation of the
production-function (PF) approach with different categories of costs, the user-cost approach (UC), and
the accounting-profits (AP) approach. Although the numbers depend on the specification, the qualitative
message remains the same.
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policy in the U.S. using firm-level data on markups.

Related Literature. Our results apply to a broad range of influential models. For in-
stance, our framework encompasses and generalizes models of entry like Dixit and
Stiglitz (1977) or (a finite-horizon version of) Hopenhayn (1992), the closed economy
version of Melitz (2003), and finite-horizon versions of models of endogenous growth
with lab-equipment like Romer (1987) and Grossman and Helpman (1991). It also nests
multi-sector and production network models like Hulten (1978), Long and Plosser (1983),
and much of the subsequent literature like Gabaix (2011), Acemoglu et al. (2012), Jones
(2013), Bigio and La’O (2016), and Baqaee and Farhi (2019b), amongst others.5

This paper is closely related to Baqaee (2018) and Baqaee and Farhi (2019a) which
establish aggregation and propagation results for inefficient production networks with
and without entry. Baqaee (2018) considers a tightly-parameterized class of production
networks with external economies, entry, and distortions. This paper dispenses with the
parametric restrictions, allows for a more sophisticated handling of entry, returns to scale,
production functions, and network linkages in both production and entry. Furthermore,
unlike Baqaee (2018), this paper also characterizes reallocation, misallocation, and optimal
policy. On the other hand, Baqaee and Farhi (2019a) analyze reallocation and misallocation
but, unlike this paper, abstract from entry.

This paper also relates to the literature on cross-sectional misallocation and policy
interventions, with or without externalities, like Restuccia and Rogerson (2008), Hsieh
and Klenow (2009), Epifani and Gancia (2011), Liu (2017), Osotimehin and Popov (2017),
Behrens et al. (2016), Bartelme et al. (2019), Boehm and Oberfield (2020), Rubbo (2020),
and La’O and Tahbaz-Salehi (2020). Our analysis of the economy’s distance to the frontier
is also related to Edmond et al. (2018), who analyze the social cost of markups. Our paper
contributes to this literature by focusing on how the entry margin interacts with the input-
output network to affect the costs of distortions. By showing that even in non-neoclassical
economies with entry social losses can be approximated using Harberger triangles, the
paper also extends the insights of Harberger (1954) and Harberger (1964).

Another strand of the literature which this paper relates to is the literature studying
link-formation in production networks. In contrast to the approach in this paper, this liter-
ature takes discreteness of decisions seriously and is often studied with a non-Walrasian
equilibrating mechanism. Some examples are Oberfield (2017), Acemoglu and Azar
(2020), Acemoglu and Tahbaz-Salehi (2020), Taschereau-Dumouchel (2020), Lim (2017),
Kikkawa et al. (2018), Dhyne et al. (2021), and Elliott et al. (2020). We abstract from these

5See Carvalho and Tahbaz-Salehi (2018) for a review of this literature.
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issues in our analysis, assuming that individual firms are infinitesimal and that the mass
of entrants and number of links formed adjusts smoothly in response to perturbations of
primitives. In exchange for these simplifications, we can provide a fairly general local
characterization of the equilibrium.

2 General Framework

The model consists of a representative household, a set of producers, and a set of entrants.
In this section, we describe the model, and define the equilibrium. A circular flow
diagram of the economy is depicted in Figure 1. Each rectangle represents a type of agent
in the model. Loosely speaking, entrants buy resources to enter. After paying the entry
costs, entrants are (perhaps randomly) assigned to be producers. Producers produce
using intermediate materials they purchase from other producers. The representative
household owns all resources in the economy and purchases consumption goods using
national income. We begin by describing the problem each agent is faced with, starting
with the producers.

Producers HouseholdsEntrants

Assignment

Entry Resources
Intermediates

Consumption

Figure 1: Circular flow schematic of the economy showing the flow of resources.

2.1 Markets and Producers

There is a set of markets indexed by i ∈ N . Each market i is populated by an endogenous
mass Mi of identical producers with output

yi = Ai fi

({
xi j

}
j∈N

)
,

where fi is a neoclassical production function, Ai is some scalar indexing productivity, xi j is
the input quantity of market good j (including primary factors) used by i. Each producer
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minimizes costs and sets its price py
i equal to its marginal cost times an exogenous markup

µi.
The output good of market i is given by

Yi = Fi
(
Miyi

)
,

where the market aggregator Fi may have constant, decreasing, or increasing returns to
scale in the producer-level output yi. The price of the market good PY

i is equal to the
marginal cost of producing Yi times an exogenous wedge µY

i . Unlike the producer-level
markup µi, revenues generated by the market-level wedge µY

i are not rebated to the owner
of i and instead go directly to the household. This distinction matters because revenues
generated by µi incentivize entry, whereas revenues generated by µY

i do not. The market-
level wedge µY

i therefore acts like an output tax.
To see the versatility of this modeling block, consider the following examples. Let

x denote a bundle of inputs and ignore productivity by setting Ai = 1 as an argument.
Assume that fi(x) = x1−γi for some γi ∈ [0, 1], and Fi(x) = x

1
γi . Then Yi = (Mixγi)

1
γi

captures a CES aggregator with an elasticity of substitution 1/(1−γi) between differentiated
varieties produced under constant returns to scale. Suppose instead that Fi(x) = x. Then
Yi = Mixγi captures a market structure with perfectly substitutable varieties produced
under decreasing returns to scale.

Primary Factors. A subset of markets F ⊂ N correspond to primary factors. For primary
factors f ∈ F , we assume that M f is exogenous, the production function f f has zero
returns to scale, and the market aggregator has constant returns to scale F f (M f y f ) = M f y f .
In addition, there are no markups/wedges µ f = µY

f = 1. In words, there is no entry into
the factor market (since M f is fixed), each producer produces a fixed amount of output
(since f f has zero returns to scale), and producer outputs are aggregated linearly (since F f

is linear). This means that total market output of each factor is also fixed. This allows us
to capture endowments of primary factors such as labor, land, or the initial capital stock.

2.2 Entrants

There is an infinite supply of potential entrants who are grouped into types indexed by
j ∈ E. Entrants pay fixed costs and enter subject to a zero-profit condition.
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Fixed Costs. To enter, potential type- j entrants pay a fixed cost

g j

({
xE, ji

}
i∈N

)
, (1)

where g j has constant returns, and xE, ji is the input quantity of market good i. A simple
example is when firms pay entry costs in units of labor if they choose to enter, as in
Hopenhayn (1992) or Melitz (2003).

Entry Technology. The entry matrix ζ is an |E| × |N − F | positive-valued matrix. Type- j
entrants who pay the fixed cost are randomly assigned, according to ζ( j, i), the ability to
produce in market i ∈ N − F . Without loss of generality, assume that the rows of ζ are
linearly independent.6 A simple example is that there is only one type of entrant and
technology is assigned randomly, as in Hopenhayn (1992) or Melitz (2003). We denote by
ME, j the endogenous mass of type- j entrants who pay the entry cost.

If there is no way to enter market i ∈ N , which occurs when ζ( j, i) = 0 for all j ∈ E, then
we allow for an exogenous mass Mi of incumbents to operate in market j without having
to enter.

We refer to markets where entry is not possible as uncontested markets and denote their
collection by Nu. We also sometimes simply call them incumbents, since each of these
markets operate like a representative incumbent. We refer to markets where entry is
possible as contested markets and denote their collection by N c. Note that since we are
flexible in the way we define and combine markets, we can capture a situation where
incumbents and entrants compete by having them operate in different markets that are
highly-substitutable with one another.

Sunk and Overhead Costs. The entry matrix ζ can capture sunk and overhead costs
simultaneously. To capture sunk costs, suppose that ζ( j, i) has positive support for a range
of different i’s. In this case, once the entry cost j has been paid, the entrant will always
choose to operate all of its technologies since the entry cost is sunk. At the other extreme,
suppose that ζ( j, i) = 1 for one specific i and zero otherwise. In this case, entrant j will
only choose to pay the cost if operating technology i is worth paying the fixed cost. In
other words, the fixed cost is not sunk.7

6If the rows of ζ are not linearly independent, then some entry types are redundant (can be replicated
by playing a mixed entry strategy).

7We can also consider intermediate situations in which entrant j pays a sunk cost and draws a mixture
of zero-returns technologies j′. Other entrants j′′ can purchase the output of j′ and combine it with
another fixed cost to enter with certainty into producing i. This structure mimics the entry decision in
standard models such as Hopenhayn (1992) and Melitz (2003) where potential entrants first pay a sunk
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Zero-Profit Conditions. The zero-profit condition for type- j entrants equates expected
profits post-entry with the costs of entry

∑
i

ζ( j, i)ME, j

Mi
λπ,i = ME, j

∑
k∈N

PY
k xE, jk = λE,i,

where
λπ,i = Mip

y
i yi −Mi

∑
j∈N

PY
j xi j

is the total rent or variable profit (we use the two terms interchangeably) earned by all
the producers of market i. The left-hand side of the zero-profit condition is the expected
total rent earned by type- j entrants and the right-hand side is the total cost of entry. This
condition ensures that the rents earned by type- j entrants are quasi-rents rather than pure
rents.

2.3 Households

There is a representative household whose preferences are given by a homothetic utility
function over market goods

Y = D ({Ci}i∈N ) .

To avoid corners, we require that Y ≤ 0 whenever Ci = 0 for any i ∈ N . The budget
constraint of this representative household requires total final expenditure to equal total
income defined as revenues net of expenditures∑

i∈N

PY
i Ci =

∑
i∈N

PY
i Yi −

∑
j∈N

PY
j xi j −

∑
j∈E

ME, j

∑
k∈N

PY
k xE, jk.

Note that payments to primary factors are included as the revenues of zero-returns-to-
scale incumbents in markets F ⊂ N .

cost and then decide whether or not to pay an additional overhead cost before operating. The difference
between our treatment of overhead costs and that in Hopenhayn (1992) and Melitz (2003) is that we assume
divisibility and that they assume non-divisibility. We could capture non-divisibility by letting g j(

{
xE, ji

}
i∈N

)
have variable (possibly increasing) returns to scale (for example, by making it a step function). This would
not affect Theorems 1 or 2. See Appendix B for more details and for a more general formalization which
sidesteps these issues.
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2.4 Resource Constraints

The resource constraint for market good i ∈ N is

Yi = Ci +
∑
j∈N

M jx ji +
∑
j∈E

ME, jxE, ji,

in words, the total supply of good i is equal to demand by households, producers (as
intermediate inputs), and entrants (as fixed costs). The mass of producers in a contested
market i ∈ N c is the sum of the share of entrants j ∈ E that obtained technology i:

Mi =
∑
j∈E

ζ( j, i)ME, j.

The mass of producers Mi in uncontested markets i ∈ Nu is exogenous.

2.5 Equilibrium

The decentralized equilibrium is an allocation of resources and collection of prices which
clears markets and solves each agents’ decision problem.

Definition 1. A decentralized equilibrium is a collection of prices
{
PY

i , p
y
i

}
and quanti-

ties
{
Ci,Yi, yi, xi j, xE,i j,ME, j,Mi

}
, such that given productivities {Ai} and markups/wedges{

µi, µY
i

}
: (i) the representative household maximizes utility; (ii) each price is equal to

marginal cost times the markup; (iii) entrants earn zero profits; (iv) prices clear all mar-
kets.

In this paper, we derive comparative statics with respect to changes in technologies Ai

and changes in wedges µi and µY
i . Since these are reduced-form wedges, many types of

distortions like taxes, financial frictions, or nominal rigidities, are nested as special cases.
For instance, to capture a financial friction on i’s ability to purchase inputs, add a fictitious
incumbent producer to the model who buys inputs on behalf of i. An output wedge on
this fictitious producer can then implement the same allocation as a financial friction on i.

Of course, many wedges, like variable markups or nominal rigidities, are themselves
endogenous. Since given the changes in wedges, aggregation is the same, in this paper, we
do not commit to a specific theory of wedge determination and instead ask how changing
wedges affects output. Some questions, like the economy’s distance from the Pareto effi-
cient frontier, can be answered without endogenizing the wedges. Endogenizing wedges,
for example variable markups or nominal rigidities, requires additional assumptions but
would be a relatively straightforward extension.
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Going forward, the primary object of interest is the response of aggregate output
d log Y (or welfare) to productivity shocks and shocks to wedges.8 Since the supply of
primary factors is fixed, changes in aggregate output coincide with changes in aggregate
productivity d log TFP.9

2.6 Noteworthy Special Cases

At this level of abstraction, the model nests many general equilibrium models with entry,
including models where goods are perfectly substitutable and firms have diminishing re-
turns, as well as models where goods are imperfectly substitutable and firms have constant
marginal cost. For example, it nests models of industry dynamics like (a finite-horizon
version of) Hopenhayn (1992), the closed-economy version of Melitz (2003), models with
product variety like Dixit and Stiglitz (1977), Krugman (1979), (finite-horizon versions
of) growth models with lab-equipment, like Romer (1987) and Grossman and Helpman
(1991), and models of production networks without entry like Acemoglu et al. (2012),
Baqaee and Farhi (2019a), and Bigio and La’O (2016) or with entry like Baqaee (2018).

3 Marginal-Cost-Pricing Benchmark

In this section, we consider the marginal-cost pricing benchmark defined as follows

Definition 2. A marginal-cost pricing equilibrium is a decentralized equilibrium where
µi = µY

i = 1 for all i ∈ N .

Theorem 1, below, shows that the marginal cost-pricing benchmark is efficient. There-
fore, it generalizes the first welfare theorem to an environment with fixed and sunk costs of
operation and entry. From a normative perspective, it clarifies how the optimal allocation
can be implemented using linear taxes, and we use this implementation in Section 7 when
we approximate the decentralized economy’s distance from the Pareto-efficient frontier.

Theorem 1 (First Welfare Theorem). The marginal-cost pricing equilibrium is Pareto-efficient.

This normative theorem is also important from a positive perspective since it ensures
that the response of aggregate output to shocks can easily be obtained by applying the
envelope theorem. Theorem 2 uses this insight to derive comparative statics.

8Since we allow for productivity shocks to producers, we can capture productivity shocks to the entry
or overhead costs of operation by adding fictitious incumbents who buy inputs to be used for entry and
shock their productivity. Finally, using the Arrow-Debreu trick of indexing commodities by dates and states
of the world, we can capture dynamic stochastic models.

9We abstract away from the well-understood issues related to the treatment of new goods in the mea-
surement of aggregate output. Therefore, in this paper, real GDP coincides with welfare.

12



Theorem 2 (Comparative Statics under Efficiency). In the marginal-cost pricing equilibrium,
the response of aggregate output to a Hicks-neutral productivity shock d log Ai is given by

d log Y
d log Ai

=
Mip

y
i yi

GDP
,

which is the total sales of market i as a share of GDP. Similarly, the response of aggregate output
to an entry productivity shock d log ζ( j, i) is given by

d log Y
d log ζ( j, i)

=
λπ,iζ(i, j)ME, j

GDP
,

which is the rents earned by type- j entrants from producing in market i as a share of GDP.

Theorem 2 is an envelope theorem which extends Hulten (1978) to economies with
selection, fixed costs, increasing returns, and an extensive margin of product creation
and destruction. In particular, it shows that, for marginal-cost-pricing equilibria, simple
and readily observable sufficient statistics like the sales or profit shares summarize the
macroeconomic impact of microeconomic disturbances in general equilibrium.10,11 In the
next section, we derive comparative statics for shocks when the economy is inefficient.

4 Framework for Inefficient Equilibrium

Comparative statics in efficient models are easy to derive because, following the logic
of the envelope theorem, reallocation effects can be ignored. Comparative statics in
inefficient models are harder to obtain since reallocation effects can no longer be ignored.
In this section, we impose some additional assumptions on the model, and introduce
input-output notation, to analyze inefficient equilibria.

4.1 Additional Assumptions

To emphasize our mechanisms of interest, we specialize the general framework. Assume
that each good is either produced as differentiated varieties using a CES aggregator, as in

10For the proof in Appendix B, we also allow for non-divisible overhead costs.
11Extending Theorem 2 to cover biased technical change, for example factor-augmenting shocks, or

shocks to the entry or overhead costs of operation is trivial. To model these shocks, say a shock to i’s ability
to use input k, simply introduce a new producer who buys from k and sells to i. A Hicks-neutral shock
to this new producer is the same as a biased shock in the original model. This trick allows us to restrict
attention to Hicks-neutral shocks without loss of generality.
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Dixit and Stiglitz (1977) or Melitz (2003), or as perfect substitutes with decreasing returns,
as in Hopenhayn (1992).12,13

Assumption 1 (Iso-elasticity). For each i ∈ N−F , either i is a CES aggregate of imperfectly
substitutable varieties

Yi =
(
Miy

γi
i

) 1
γi , yi = Ai fi

({
xi j

}
j∈N

)
, (2)

or i is a linear aggregate of perfectly substitutable varieties

Yi =
(
Miyi

)
, yi = Ai fi

({
xi j

}
j∈N

)εi

i
, (3)

where are γi, εi ∈ [0, 1] and fi has constant returns to scale.

The parameters εi and γi control internal and external returns to scale (on the margin)
respectively.14 Since goods that are produced according to (2) have increasing external
returns (due to love-of-variety), we refer to them as IRS goods. On the other hand, since
goods according to (3) have decreasing internal returns, we refer to them as DRS goods.
Denote the set of IRS goods byN IRS and the set of DRS goods byNDRS.15

The next assumption rules out corners in Mi by ensuring that markups are not so low
that producer i always makes negative profits. The rent (or variable profit) of market i is

λπ,i =
PiYi

GDP
πi, with πi =

(
1 −

εi

µi

)
1i∈NDRS +

(
1 −

1
µi

)
1i∈N IRS . (4)

Here πi is the share of market i’s sales that are claimed as profits. The profit margin πi

consists of the rents due to market power and the rents due to diminishing returns.

Assumption 2 (Positive profits). If i is a DRS good, then µi > εi, and if i is an IRS good,
then µi > 1.

12Appendix A discusses the relationship between these two assumptions.
13Appendix F relaxes Assumption 1 and extends our results to the case where internal diseconomies

are non-isoelastic (allowing for variable returns to scale at the producer level) and external economies are
non-isoelastic (along the lines of Kimball, 1995).

14We normalize Ai to ensure that Yi is unit-elastic in the productivity shock. For comparison, note that
we did not impose this unit-elasticity normalization in Section 2.

15To map IRS goods into the framework in Section 2, note that a CES aggregate is isomorphic to an
industry aggregator with increasing returns Fi(x) = x1/γi and a production function with decreasing returns
fi(x) = xγi , where x is the bundle of inputs. Since the aggregators do not generate any revenue (but have
curvature), they must set price equal to average costs. This implies that, for a CES model, the outer
aggregator is charging an implicit markup µY

i = 1/γi, and the inner aggregator is charging an implicit
markdown µy

i = γi. We come back to this in Section 7, in particulare footnote 26, when we discuss optimal
policy and misallocation.
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4.2 Notation and Other Preliminaries

We normalize nominal GDP to one throughout, so all prices are quoted in the nominal
GDP numeraire and all sales, revenues, expenditures, and costs are expressed as shares
of GDP.

We also represent the final demand function Y = D(C1, . . . ,CN) as the first producer
in N . In other words, we represent real GDP as the output of some incumbent producer
standing in for the household. To emphasize the unique role the household plays in the
economy, we index it by the number 0, to remind the reader that the zero-th “producer”
is the household.

All the objects introduced below are defined at the initial equilibrium (around which
we provide first-order and second-order approximations). We normalize the mass of
entrants ME, j to one at the initial equilibrium.

The Normalized Entry Matrix. Define the |E| × |N| normalized entry matrix ζ̃ by

ζ̃( j, i) =
ζ( j, i)ME, j∑

k∈E ζ(k, i)ME,k

whenever market i is contested and zero otherwise. This matrix gives the fraction of
producers in market i who are type- j entrants (if i is contested, then the ith column of ζ̃
sums to one).

IO Matrices. We introduce the forward and backward Input-Output (IO) matrices ΩF

and ΩB and their accompanying Leontief inverses ΨF and ΨB. Intuitively, the forward
matrix captures the transmission of prices from upstream suppliers to their downstream
customers (forward linkages), whereas the backward matrix encodes the transmission of
sales from downstream customers to their upstream suppliers (backward linkages).

Let ΩV be the |N| × |N|matrix whose i jth element is equal to i’s variable expenditures
on inputs from j as a share of revenues

ΩV
ij ≡

MiPY
j xi j

PY
i Yi

.

Let ΩE be the |E| × |N| matrix whose i jth element is equal to entrant i’s expenditures on
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inputs from j as a share of the total entry costs

ΩE
ij ≡

PY
j xE,i j∑

k∈N PY
k xE,ik

.

Backward IO Matrix. Let π be the |N| × |N| diagonal matrix of profit shares defined in
(4). The backward IO matrix combines variable and fixed expenditures

ΩB = ΩV + πζ̃′ΩE.

Its i jth element ΩB
ji is the fraction of the revenues of j directly paid out to i for variable

production and entry. The associated backward Leontief inverse is

ΨB =
(
I −ΩB

)−1
= I + ΩB +

(
ΩB

)2
+ · · · .

Its i jth element ΨB
i j is the fraction of the revenues of i directly and indirectly (through the

network) paid out to j for variable production and entry.16

Forward IO Matrix. Let E be the |N| × |N| diagonal matrix whose ith diagonal element
is equal to Eii = (1 − εi) if i ∈ NDRS or Eii = (1/γi − 1) if i ∈ N IRS. Intuitively, Eii measures
how an increase in entry in i affects the price of good i. The forward IO matrix is defined
by

ΩF = µΩV + Eζ̃′ΩE,

where µ is a diagonal matrix of markups. The i jth element ΩF
i j is the fraction of the cost

of i directly attributable to the price of j through variable production and entry. The
associated forward Leontief inverse is

ΨF =
(
I −ΩF

)−1
= I + ΩF +

(
ΩF

)2
+ · · · .

16The sales of j can be broken down into to its sales to the the different i’s according to λB
j =

∑
i λ

B
i ΩB

i j.
By implication, the i jth element of the backward IO matrix therefore encodes the elasticity of the sales of
j to the sales of i, so that ΩB

i j = ∂ logλB
j /∂ logλB

i , where the partial derivative holds ΩB and other sales λB

constant. The i jth element of the backward Leontief inverse therefore encodes the elasticity of the sales of j
to the sales of i, so that ΨB

i j = ∂ logλB
j /∂ logλB

i , where the partial derivative holds ΩB constant but accounts
for changes in sales λB. As we shall see, this is equivalent to holding relative prices constant, since when
relative prices are constant, ΩB is also held constant.
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Its i jth element ΩF
i j is the fraction of the cost of i directly and indirectly (through the

network) attributable to the price of j through variable production and entry.17

Backward and Forward Domar Weights. Following Domar (1961), the Domar weight of
market i is

λB
i =

PY
i Yi

GDP
= PY

i Yi,

where the last equality follows from our choice of numeraire. Theorem 1 implies that for
the efficient benchmark, Domar weights are key sufficient statistics.

As a matter of accounting the Domar weight of i coincides with its backward Domar
weight defined as the ith element of the zero-th row of the backward Leontief inverse

λB
i =

∑
j

ΩB
0 jΨ

B
ji = ΨB

0i.

This captures the household’s exposure to i via backward linkages or equivalently i’s
centrality in demand.

The forward Domar weight of product i is the ith element of the zero-th row of the
forward Leontief inverse

λF
i = ΨF

0i =
∑

j

ΩF
0 jΨ

F
ji.

This captures the household’s exposures to i via forward linkages or equivalently i’s
centrality in supply.18

In the efficient marginal-cost pricing benchmark, the forward and backward Domar
weights of market i coincideλB

i = λF
i , so that the supply centrality (forward Domar weight)

of the market is equal to its demand centrality (backward Domar weight), and both are
equal to its sales share. By contrast, with inefficiencies, in general, the backward and
forward Domar weights of market i differ λB

i , λ
F
i and their ratio λF

i /λ
B
i measures the

wedge between the supply and demand centralities of the market, or equivalently the
reduction in the size of the market caused by the cumulated distortions in its downstream
supply chain.

17By Shepard’s lemma, the i jth element of the forward IO matrix encodes the elasticity of the price
of i to the price of j, so that ∂ log PY

i /∂ log PY
j = ΩF

i j, where the partial derivative indicates that sales and
shocks as well as other prices are held constant. By repeated applications of Shepard’s lemma, the i jth
element of the forward Leontief therefore encodes the elasticity of the price of j to the price of i, so that
ΨF

i j = ∂ log PY
i /∂ log PY

j , where the partial derivative now indicates that sales and shocks are held constant
but that other prices are allowed to vary.

18The backward and forward Domar weight generalize the revenue- and cost-based Domar weights in
Baqaee and Farhi (2019a).
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5 Aggregation

We now generalize Theorem 2 to inefficient economies. We provide our comparative
statics in two steps. First, in this section , we provide an aggregation equation that gives the
response to shocks of aggregate output as a function of changes in sales, rents, and quasi-
rents. Second, in the next section, we provide propagation equations which give changes
in sales (or rents) and quasi-rents, as a function of microeconomic primitives. Putting
the two steps together yields our result. The shocks that we consider are shocks to all
productivities and markups/wedges which we write in vector form as (d log A,d logµ).19

5.1 The Aggregation Equation

Let λπ be the |N| × |N| diagonal matrix of rents, and let d logλπ be the |N| × 1 vector of
changes in rents.20 Define the (rent-weighted) projection of d logλπ on the entry matrix ζ̃
by

d̂ logλπ = ζ̃′(ζ̃λπζ̃′)−1ζ̃λπ d logλπ. (5)

Lemma 1. Denote ith component of this projection by d̂ logλπ,i. Let λE, j be the expenditures on
entry (quasi-rents) by type- j entrants. In equilibrium,

̂d logλπ,i =
∑
j∈E

ζ̃( j, i)d logλE, j.

In words, ̂d logλπ,i is the expected log change in the quasi-rent associated with market
i, that is, the expected change in the rents d logλE earned by entrants who entered into
market i (we discuss this in more detail in Section 5.2).

Theorem 3 (Comparative Statics with Inefficiencies). The response of aggregate output to
shocks (d log A,d logµ) is given by

d log Y =
∑
i∈N

λF
i d log Ai −

∑
i∈N IRS

λF
i d logµi −

∑
i∈NDRS

λF
i εid logµi (6)

19An output wedge on i not rebated back to the proprietor, in our notation µY
i , can be captured by adding

a fictitious incumbent middleman who buys i’s output and sells to the rest of the economy. A markup
on this fictitious middleman is isomorphic to an output wedge on i. Therefore, comparative statics in µ
encompass both output wedges and markups. In Appendix B, which contains the proofs, we explicitly
distinguish between markups, µi, and output wedges µY

i .
20We are purposefully definingλπ as an |N|×|N|diagonal matrix and d logλπ be the |N|×1 vector in order

to streamline the matrix expressions for projections below. Throughout the paper, in order to lighten the
notation, we often use the same symbol to denote vectors and their counterparts as diagonalized matrices.
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−

∑
i∈NDRS

λF
i (1 − εi)

(
d logλB

i − d̂ logλπ,i
)

+
∑

i∈N IRS

λF
i

(
1
γi
− 1

)
d̂ logλπ,i.

Theorem 3 is a key result of the paper, and we spend the rest of this section unpack-
ing its intuition and working through some examples. The terms

∑
i∈N λ

F
i d log Ai in (6)

capture changes in output caused by changes in technology, holding fixed the allocation
of resources. These are changes in technical efficiency, holding fixed the allocation of re-
sources. When the equilibrium is efficient, as in Theorem 2, these are the only terms
that matter. The remaining terms in (6) are changes in output caused by changes in the
allocation of resources, holding fixed technology. We refer these to changes in allocative
efficiency, caused by reallocations.21

Since nominal GDP is normalized to one, changes in real GDP are the negative of
changes in the household price index d log Y = −d log PY

0 . Therefore, one way to under-
stand (6) is to think through how shocks affect the price of the consumer price index. Focus
on the first line, which captures changes in consumer prices when sales and quasi-rents
are held constant. The first term captures the direct effect of productivity shocks, which
are weighted by their forward Domar weights. The second and third terms capture the
effect of an increase in markups on consumer prices, which are weighted by the forward
Domar weight of the bundle of inputs (λF

i for IRS goods and λF
i εi for DRS goods).

The second line accounts for changes in sales and quasi-rents. Intuitively, the first term
on the second line captures how for each DRS market i, changes in the scale of operation
of individual producers affect the price of the market good because of decreasing internal
returns to scale. The second term on the second line captures how, for each IRS market
i, changes in entry affect the price of the market good by stimulating external economies.
In both cases, what matters is then how, for each market i, the change in the price of the
good affects the price of final-demand.

We can also rewrite (6) in terms of changes in rents and quasi-rents like we do in the
introduction. To do this, we use the fact that d logλπ = d logλB + d logπ:

d log Y =
∑

i

λF
i d log Ai −

∑
i∈N IRS

λF
i d logµi −

∑
i∈NDRS

λF
i

[1 − εi

πi
− 1

]
d logµi

−

∑
i∈NDRS

λF
i (1 − εi)

(
d logλπ,i − d̂ logλπ,i

)
+

∑
i∈N IRS

λF
i

(
1
γi
− 1

)
d̂ logλπ,i, (7)

where the projection d̂ logλπ captures changes in quasi-rents (profits dissipated by entry

21See Appendix C for a formal discussion.
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costs) and the residual d logλπ − d̂ logλπ captures changes in the difference between rents
and quasi-rents (profits not dissipated by entry costs).

5.2 The Role of Entry

The following lemma helps clarify the role played by d̂ logλπ, and its relation to quasi-
rents and entry.

Lemma 2. In equilibrium, the change in the mass of producers in each market is given by

d log M = d̂ logλπ − ζ̃
′(ζ̃λπζ̃′)−1λE d log PE, (8)

where d log M is the |N| × 1 vector of changes in masses of producers, λE is the |E| × |E| diagonal
matrix of quasi-rents (expenditures on entry), and d log PE is the |E| × 1 vector of changes in entry
prices.22 Furthermore,

Holding fixed entry costs (d log PE = 0), Lemma 2 shows that entry responds to changes
in rents across the economy: entry changes to match the changes in rents d logλπ to the
extent possible. The normalized entry matrix ζ̃ acts like the data matrix in a regression,
and the response of the entrants to a change in rents is the linear projection of the changes
in rents d logλπ onto the space spanned by ζ̃. Therefore, new entry acts to minimize the
new rents going to existing producers.

Intuitively, the zero-profit condition is a moment condition (expected excess profits
must equal zero). When we linearize this moment condition, it becomes a linear moment
condition. Hence, changes in entry take the form of a linear projection to a first-order.
When there are no wedges, this linear moment condition (expected excess profits must
equal zero) also coincides with a social planner’s first-order conditions. This is because,
when prices are equal to marginal cost, excess profits are equal to the marginal social
value of entry.

As shown by Lemma 1, The ith component of this projection, denoted by d̂ logλπ,i,
measures the changes in quasi-rents associated with market i. In other words, it is the
change in the amount of resources spent by those entrants who go on to become producers
of type i.

Holding fixed entry prices (d log PE = 0), if there are as many entrant types as there are
markets |E| = |N −F |, then a change in profits in a given market maps, one for one, into a

22The entry price PE, j of the jth entrant is the marginal cost associated with the production function in
equation (1).
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change in the mass of entrants in that market. We call this situation fully directed entry,
because in this case, changes in rents are captured entirely by new entrants as quasi-rents.

Definition 3. Entry is fully-directed if there are as many entrant types as there are markets
|E| = |N − F |.

If there are fewer entrant types than markets |E| < |N − F |, entry into a particular
product type may be restricted, or even impossible. When entry into a product type i is
impossible, ζ( j, i) = 0 for every j ∈ E, product i is either not produced, or if it is produced,
then it is produced by incumbents. In this case, increases in i’s rents d logλπ,i will not
affect entry into i at all, since d̂ logλπ,i = 0.

5.3 Useful Special Cases

To build more intuition, consider three special cases of Theorem 3: (i) (CRS) all goods
are produced with constant-returns to scale so that for every j ∈ N − F either ε j = 1 or
γ j = 1; (ii) (DRS) all goods are produced with decreasing returns N − F = NDRS; and
(IRS) all goods are produced with increasing returns N − F = N IRS. For simplicity, for
all of these examples, assume there is only one primary factor and that all other markets
are contested. Consider a univariate productivity shock d log Ai (holding constant other
productivities, wedges, and markups).23

Productivity shocks with CRS. When ε j = 1 or γ j = 1 for all j ∈ N − F , Theorem 3
reduces to

d log Y = λF
i d log Ai. (9)

In this model, only the direct technology shock matters and reallocations are irrelevant.
The reason is because of free-entry. When ε j = 1 andγ j = 1, this means that entry is socially
wasteful, and entry always adjusts to ensure zero profits. This means that entry absorbs
or exudes resources in such a way that there are no changes in allocative efficiency, even
though there are reallocations and the economy is inefficient. If there was no free-entry,
then the behavior of output would be substantially more complicated, since we would
then have to account for how technology shocks reallocate resources across producers (as
in Baqaee and Farhi, 2019a). This example shows how dramatically free entry alters the
behavior of output, even if entry itself is socially wasteful.

23The intuition for a shock to markups/wedges is similar, but for brevity, we relegate this discussion to
Appendix K.
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Productivity shocks with DRS. Suppose that ε j < 1 for all j ∈ N − F , Theorem 3 then
becomes

d log Y = λF
i d log Ai −

∑
j∈N−F

λF
j (1 − ε j)

(
d logλπ, j − d̂ logλπ, j

)
.

There are decreasing internal economies but no increasing external economies. If for
some market j ∈ N , entry cannot keep up with rents so that d logλπ, j − d̂ logλπ, j > 0,
then individual producers in this market scale up and run into diminishing returns. As a
result, the prices of their producer-specific factors increase. This reallocation contributes
to reducing aggregate output in proportion to the forward Domar weight λF

j (1 − ε j) of
these specific fixed factors. The total effect of reallocations is obtained by summing over
all markets. Reallocations lead to a more efficient use of resources when they reduce the
scarcity of fixed factors by making them cheaper.

Such improvements in allocative efficiency cannot occur when the economy is efficient.
In this case factor prices cannot go down on balance across markets. To see this, note that,
when there are no markups, λπ, j = λF

j (1 − ε j) and so, the reallocation terms become∑
j∈N

λF
j (1 − ε j)(d logλπ, j − d̂ logλπ, j) =

∑
j∈N

λπ, j(d logλπ, j − d̂ logλπ, j) = 0,

because the weighted sum of residuals must be zero.
When there is directed entry (|E| = |N|), this expression simplifies further to just

d log Y =λF
i d log Ai,

so that there are no changes in allocative efficiency. This is similar to (9). Intuitively, in this
case, changes in the prices of market goods are determined independently from changes in
their sales because changes in sales are accommodated entirely through changes in entry.
In other words, even though the equilibrium may be inefficient, reallocations happen
entirely on the extensive margin of entry and exit and offset one another.

Productivity shocks with IRS. When all non-primary factor markets are IRS, Theorem
3 becomes

d log Y = λF
i d log Ai +

∑
j∈N−F

λF
j

(
1
γ j
− 1

)
d̂ logλπ, j.

If in some market j, quasi-rents increase so that d̂ logλπ, j > 0, then entry in the market
increases and triggers external economies from love of variety. This reduces the negative
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price of the associated specific fixed factor. This reallocation contributes to increasing
aggregate output in proportion to the forward Domar weight λF

i (1/γi − 1) of these specific
fixed factors. The total effect of reallocations is obtained by summing over all markets.

6 Propagation

Theorem 3 in the previous section gives changes in aggregate output as a function of
changes in rents and quasi-rents. In this section, we complete the theory by deriving
propagation equations for the changes in sales (or rents) and quasi-rents. We do this
in two steps: forward and backward propagation. In Section 6.1, we characterize the
propagation of shocks through forward linkages: how changes in prices feed forward
from suppliers to consumers. In Section 6.2, we characterize the propagation of shocks
through backward linkages: how changes in sales feed backward from consumers to their
suppliers. Together, they pin down changes in sales, rents, and quasi-rents, as well as all
other disaggregated variables such as prices and quantities. We consider some worked
out examples in Section 6.3.

6.1 Propagation Through Forward Linkages

We start by describing the response of prices to shocks.

Proposition 1 (Forward Propagation). In response to shocks (d log A,d logµ), changes in
prices are given by

d log PY
i = −

∑
j∈N

ΨF
ijd log A j +

∑
j∈N IRS

ΨF
ij d logµ j +

∑
j∈NDRS

ΨF
ijε j d logµ j

+
∑

j∈NDRS

ΨF
ij

(
1 − ε j

) (
d logλB

j − d̂ logλπ, j
)
−

∑
j∈N IRS

ΨF
ij

(
1
γ j
− 1

)
d̂ logλπ, j

Proposition 1 is similar to Theorem 3. In fact, since nominal GDP is normalized to
one, changes in real output are just the negative of the changes in the consumer price
index d log Y = −d log P0. Therefore, Proposition 1 can be specialized to yield Theorem
3 by setting i to be the price of the final consumption good 0. Therefore, the intuition for
Proposition 1 is similar to the one for Theorem 3.24

24An interesting special case of Proposition 1 is when every good is DRS, there is only one primary factor,
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6.2 Propagation Through Backward Linkages

For simplicity, we assume that all production and entry functions in the economy fi and gi

are CES production functions. Without loss of generality (by relabelling the input-output
network), we can assume that each CES production function i has a single elasticity of
substitution θi associated with it.25 We make this assumption for clarity, not tractability,
and Appendix D generalizes our results to non-CES production functions. We also assume
that there are perfectly competitive incumbents that produce the goods required for paying
the entry cost, and these perfectly competitive incumbents are added to the input-output
network as additional “producers” whose outputs are only used by entrants.

To state our results, we use the input-output covariance operator:

Covm(X,ΨB
(i)) =

∑
k∈N

(1 − πm)−1ΩV
mkXkΨ

B
ki −

∑
k∈N

(1 − πm)−1ΩV
mkΨ

B
ki


∑

k∈N

(1 − πm)−1ΩV
mkXk

 ,
where ΨB

(i) is the ith column of the backward Leontief inverse ΨB. This is the covariance
between the vector X and the ith column of ΨB, using the mth row of (1 − π)−1ΩV as
the probability distribution. We call it a covariance since

∑
k∈N (1 − πm)−1ΩV

mk = 1 for
m ∈ N − F .

Proposition 2 (Backward Propagation). In response to shocks (d log A,d logµ), changes in
sales are given by

dλB
i = −

∑
m∈N

λB
m

∑
k∈N

ΩV
mk − (1 − πm)

∑
j∈E

ζ̃ jmΩE
jk

ΨB
kid logµm

−

∑
m∈N

λB
m(1 − πm)(θm − 1)Covm

(
d log PY,ΨB

(i)

)
.

Proportional changes in sales can be deduced using d logλB
i = dλB

i /λ
B
i .

The first term is the effect of changes in markups/wedges on the demand for i holding

and entry is fully-directed. In this case, the change in prices simplifies to

d log PY
i = −

∑
j∈N

ΨF
i jd log A j +

∑
j∈NDRS

ΨF
i j

(
1 −

(1 − ε j)
π j

)
d logµ j.

In other words, the change in relative prices does not depend on final demand or on the elasticities of
substitution in production. This is reminiscent of the no-substitution theorem (Georgescu-Roegen,1951;
Samuelson, 1951). However, it holds under different assumptions: in particular, unlike the classic no-
substitution theorem, one does not need to assume constant returns to scale nor perfect competition.

25See the discussion of standard-form economies in Baqaee and Farhi (2019b) for more information.
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fixed relative prices. The term in square brackets is how an increase in m’s markup
d logµm > 0 affects spending on some input k. On the one hand, a higher markup reduces
m’s variable spending on input k by λB

mΩV
mk. On the other hand, a higher markup increases

entry, and this increases spending on k by entrant j by λB
m(1−πm)ζ̃ jmΩE

jk. These two effects
in turn change spending on i in proportion to the exposure ΨB

ki of k to i.
The term on the second line captures the effect of substitutions on the intensive margin.

Changes in relative prices d log PY caused by the shocks lead individual producers in
every market m ∈ N to shift their expenditures on their inputs. If θm > 1, then m’s
inputs are gross substitutes. Hence, m substitutes its expenditures towards those inputs
that have become relatively cheaper. If those inputs intensively rely on i, then (θm −

1)Covm(d log P,ΨB
(i)) is negative. Hence, substitution by m changes i’s sales in proportion

to −λB
m(1 − πm)(θm − 1)Covm(d log P,ΨB

(i)).
We continue by describing the responses of rents and quasi-rents to shocks.

Lemma 3 (Profit Shares). In response to shocks (d log A,d logµ), changes in sales, rents, and
profit margins are related through

d logλπ,i = d logλB
i + d logπi, where d logπi =

1 − πi

πi
d logµi.

Hence, changes in rents in each sector are driven, either by changes in sales d logλB

or changes in profit margins d logπ. Hence, given changes in sales d logλB
i it is easy to

obtain changes in rents d logλπ,i and quasi-rents d̂ logλπ,i from Lemma 3 and equation
(5).

Combining Forward and Backward Propagation. Proposition 1 can be plugged into
Proposition 2 to give a linear system in sales shares d logλB. The solution pins down
changes in sales shares in every market, and these can then be plugged back into Theorem
3 for welfare changes. In Section 6.3, we apply these propositions to specific examples,
and show how the model allows for a very rich set of behavior.

6.3 Illustrative Examples

In this section, we consider a multi-sector economy with homogenous firms within sectors,
targeted free entry in all sectors with entry costs paid in units of labor. We focus on a
shock to sector-level productivities. We explain how different views on returns to scale
(IRS vs. DRS) lead to very different responses of aggregate output. For brevity, we keep
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the examples in this section very simple. A variety of additional worked-out examples,
including ones with input-output linkages, are presented in Appendix G.

We use the following notation throughout. Given three vectors U, V, and W with∑
k Uk = 1, we writeEU(V) =

∑
k UkVk and CovU(V,W) =

∑
k Uk(VkWk)−(

∑
k UkVk)(

∑
k UkWk).

We also sometimes use overlines to signal initial values when there is an ambiguity , but
we drop them when there is none: for example, we alternatively write λ

B
i or λB

i depending
on the context.

CRS without Entry. We start by considering an economy without entry, and then con-
sider the cases with entry. Consider an economy where aggregate output

Y =

∑
k

Y
θ0−1
θ0

k


θ0−1
θ0

is a CES aggregate of differentiated inputs indexed by k with an elasticity of substitution
θ0. Each sector k’s output

Yk =

(
Mky

θk−1
θk

k

) θk
θk−1

is itself a CES aggregate of some mass Mk of differentiated varieties with an elasticity of
substitution θk > min{θ0, 1}. Each variety in sector k is produced from labor with constant
returns and productivity Ak by a single firm and sold at a markup µk > 1 over marginal
cost

yk = Aklk, py
k = µkmck.

We submit this economy to a vector of sector-level productivity shocks d log A. To apply
our formulas, we use the fact that in this example, the backward Domar weight and the
forward Domar weight of each sector are equal to each other λB

k = λF
k . Applying Theorem

3, the change in aggregate output is given by

d log Y = EλB
(
d log A

)
− d logλB

L ,

where d logλB
L is the change in labor’s share of income. The first term is the change in

technical efficiency, holding fixed the allocation of resources, and the second term is the
change caused by reallocations. Applying Proposition 2, the second term is

d logλB
L = (θ0 − 1)

1
λB

L

CovλB

(
1
µ
,d log A

)
.
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To understand the intuition, suppose that sectors are substitutes (θ0 > 1) and that the shock
disproportionately increases the productivity of sectors with high markups. Since the
shock disproportionately increase the productivity of high-markup firms (CovλB(d log A, 1/µ) <
0), and since goods are substitutes (θ0 > 1), the shock reallocates labor towards high-
markup firms and reduces the labor share (rents earned by labor). This reallocation
improves allocative efficiency, because high-markup firms were too small to begin with
from a social perspective, and boosts aggregate output.

IRS with Free Entry à la Dixit and Stiglitz (1977). Consider the same model as above,
but now suppose that there is targeted entry into every sector k, with potential entrants
choosing which sector to enter into after paying a fixed cost in units of labor. To apply
our formulas, we use the fact that in this example, we also use the fact that the backward
Domar weight (income share) of labor is one λB

L = 1 because of free entry. Denote by θ the
vector of within-sector elasticities of substitution. From Theorem 3, changes in aggregate
output are now given by

d log Y = EλB(d log A) +
∑

k

1
θk − 1

λB
k d log

λB
k

1 −
1
µq

k

 ,
where the first term is the direct technology effect and the second term is the reallocation
effect. Note that the reallocation effect is very different to what it was without free entry.
From Proposition 2, the second term is equal to

∑
k

1
θk − 1

λB
k d log

λB
k

1 −
1
µq

k

 =
CovλB

(
θ−1
θ−θ0

, d log A
)

EλB

(
θ−1
θ−θ0

) .

To understand the intuition, suppose that sectors are substitutes (θ0 > 1) and that the shock
disproportionately increases the productivity of sectors with high external economies
(low elasticities of substitution). Then CovλB((θ− 1)/(θ−θ0), d log A) > 0 and so the shock
leads to improvements in allocative efficiency. Intuitively, the shock triggers beneficial
reallocations of labor towards sectors with high external economies which were too small
to begin with from a social perspective. These forces operate in reverse when sectors are
complements with θ0 < 1.

The correlation of productivity shocks and markups, which was key in the economy
without entry is now irrelevant. This is because now labor reallocations happen purely
on the extensive margin via changes in entry in the different sectors, while the intensive
margin remains unchanged as individual producers in the different sectors keep operating
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at the same scale. Instead, the key is now the correlation of productivity shocks and returns
to scale.

DRS with Free Entry à la Hopenhayn (1992). We now show that changes in aggregate
output are very different under DRS. Consider the same multi-sector model but now
assume that each sector k’s output

Yk = Mkyk

is a linear aggregate of an endogenous mass Mk of undifferentiated varieties. Each variety
in sector k is produced from labor with decreasing returns εk and productivity Ak by a
single firm and sold at a markup µk over marginal cost

yk = Akl
εk
k , py

k = µkmck.

Like in the IRS case, we are again interested in how a long-run steady-state with targeted
free entry in all sectors responds to a vector of sector-level productivity shocks d log A.

Changes in aggregate output are given by

d log Y = EλB(d log A).

Changes in technical efficiency are captured by the same Hulten-like term as in the IRS case.
By contrast, there are no longer any changes in allocative efficiency. This occurs despite
the fact that there are equilibrium reallocations and that the model is inefficient. Basically,
the adjustment in the sizes of the different sectors happen entirely on the extensive margin
via changes in entry. Individual producers in the different sectors keep operating at the
same scale so that there is no change on the intensive margin. Since in addition there are
no external economies, the price of each good at the sectoral level is the same as the price
of the good for individual firms. Reallocations therefore do not are therefore neutral on
efficiency grounds. This example clarifies that the IRS and DRS models are, in general,
very different.

7 Optimal Policy and Misallocation

In this section, we turn to optimal policy. We describe first-best policies when instruments
are unrestricted. Then we characterize the gains from implementing optimal policy (i.e.
the distance to the efficient frontier). Finally, we consider second-best policies when only
limited instruments are available.
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7.1 First-Best Policy

Theorem 1 implies that the first best is attained when µY
i = µi = 1 for all i ∈ N . Consider a

planner with access to unrestricted linear taxes. Then applying Theorem 1 to the class of
economies that satisfy Assumption 1 results in the following.

Corollary 1 (First-Best). The decentralized equilibrium is efficient if in each market i ∈ N , the
planner introduces output taxes τY

i and τy
i on industry-level and firm-level output satisfying

τY
i = 1{i∈NDRS} + γi1{i∈N IRS}, τy

i =
1
µi

1{i∈NDRS} +
1
γiµi

1{i∈N IRS},

where revenues collected by the industry-level tax are paid to the household, and revenues collected
by the firm-level tax are paid to producers of the good.

Corollary 1 shows that first-best policy is independent of the input-output network.
The policy intervention in each market depends only on the markups/wedges and the
returns to scale in that market. In particular, for DRS markets, optimal policy ensures
marginal cost pricing. For IRS markets, optimal policy sets the markup charged by each
producer equal to 1/γi, which is the Dixit and Stiglitz (1977) markup, to incentivize entry
and subsidises output by γi to offset markup.26

7.2 Social Costs of Distortions

In this section we characterize the gains from optimal policy, which coincide with the social
costs of distortions, the distance from the efficient frontier, or the amount of misallocation.
We show that even with non-neoclassical ingredients like entry, non-convexities, and ex-
ternal economies, the distance to the frontier can be approximated via a Domar-weighted
sum of Harberger triangles associated with variable production and entry. We then spe-
cialize the result and work through a series of examples to emphasize the importance of
accounting for entry.

For any equilibrium variable X, we denote by d log X the log-deviation of X from
its value at the efficient allocation, which can also be thought of as the change in X

26At first glance, it may seem that Corollary 1 contradicts the marginal cost pricing result in Theorem
1, since for IRS markets, the firms do not seem to be marginal cost pricing. To see that Corollary 1
is a consequence of Theorem 1, one needs to recognize that an IRS industry with production function

Yi =
(
Miy

γi

i

)1/γi
is equivalent to Yi = Fi(Mi fi(yi)), where Fi(x) = x1/γi and fi(x) = xγi are as in Section 3.

Since aggregators Fi and fi have curvature but generate no income, this means that they implicitly charge
price equal to average cost (as opposed to marginal cost). Therefore, to restore efficiency, the planner must
introduce taxes that undo these implicit markups and markdowns.
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caused by the deviations of d log τi and d log τY
i of the firm-level and industry-level out-

put wedges from their efficient values in Corollary 1. We provide a second-order approx-
imation in these deviations (d log τ,d log τY) of the associated aggregate efficiency loss
L = −(1/2) d2 log Y.27

Proposition 3 (Deadweight-Loss). As long as εi, γi < 1, the efficiency loss can be approximated,
up to second-order approximation, as

L ≈
1
2

∑
i∈N

λB
i d log yi d log

(
τiτ

Y
i

)
+

1
2

∑
i∈N IRS

λB
i

1
γi

d log Mi d log τY
i +

1
2

∑
i∈NDRS

λB
i d log Mi d log τY

i .

Hence, the social cost of distortions is, up to a second-order approximation, a Domar-
weighted sum of Harberger triangles associated with variable production and entry. In
conjunction with the forward and backward propagation equations in Propositions 1 and
2, we can rewrite these loss functions in terms of microeconomic primitives (the input-
output matrix, the elasticities of substitution, and returns to scale).28 We relegate this
general formula to Appendix B, and focus on a few prominent examples obtained by
considering a special class of models with a sectoral structure.

7.3 Sectoral Models.

To generate examples, we will use sectoral models defined by the following conditions:

1. every goods market i ∈ N−F is assigned to a unique sectorI, with common returns
to scale so that its output matters only through sectoral output. Sectoral output is

YI =
∑
i∈I

yεIi , or YI =

∑
i∈I

yγIi


1
γ
I

,

depending on whether I is DRS or IRS;

2. individual producers i in sector I have the same constant-returns production func-
tion upto a productivity shifter yi = Ai fI

({
xiJ

})
, where xiJ indicates that inputs are

sectoral aggregates;

27By Corollary 2, around the efficient point, the first-order loss is zero as long as εi, γi < 1. If either εi = 1
or γi = 1, and there is entry into i, then the losses are first-order, and we must instead use Theorem 3.

28To do this, note that d log Yi = d logλB
i − d log Pi, where Proposition 1 gives d log Pi and Proposition 2

gives d logλB
i . Next, observe that d log Yi = d log yi + 1/γi d log Mi if i is IRS and d log Yi = d log yi + d log Mi

if i is DRS. Finally, note that d log M is given by Lemma 2. Putting this altogether will allow us to write
Proposition 3 in terms of primitives.
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3. there is one type of entrant for each sector I, and entrants are randomly assigned to
i ∈ I according to some fixed distribution;

4. individual producers i in sector I charge different markups τy
i but share common

industry-level wedges τY
i = τY

I
.

Sectoral models, common in the literature, are worth singling out because their within-
sector heterogeneity can be aggregated. For sectoral models, we can break the problem
of computing the distance to the frontier into two blocks, within and across sectors. See
Appendix E for detailed derivations.

Throughout the following examples, we define the sales share of sector I to be λB
I

=∑
j∈I λ

B
j , and producer i’s share of sector I to be λI,Bi = λB

i /λ
B
I
1{i∈I}. We will denote by

EλI,B(d log τy) and VarλI,B
(
d log τy) the within-sector weighted expectations and variances

of changes in markups/wedges d log τy
i of producers i ∈ Iwith weights λI,Bi .

7.3.1 Sectoral DRS Example.

For sectoral models, we can provide a straightforward characterization of the loss function
with DRS. We proceed under the additional assumptions that there is only one primary
factor, that entry paid in that factor, and that there are no deviations of output wedges
from their efficient benchmarks d log τY

I
= 0.

Proposition 4 (Deadweight-Loss in DRS Economy with Entry). Consider a sectoral model
where every sector is DRS, there is only one primary factor, entry is paid in units of the factor, and
there are no deviations of output wedges from their efficient benchmarks d log τY

I
= 0. To a second

order, the loss function is given by

L =
1
2

∑
I

λI
εI

1 − εI
VarλI,B

(
d log τy) +

1
2

∑
I

λI
εI

1 − εI

(
EλI,B

(
d log τy))2 .

Because there are no output wedges, we know from Proposition 3 that there are no
Harberger triangles associated with entry and only Harberger triangles associated with
variable production. Of course, this does not mean that the entry margin is irrelevant, but
changes in entry only matter through the impact on variable production.

The first term in the loss function captures misallocation arising from distortions
in relative producer sizes driven by dispersed markups/wedges within sectors. The
second term captures misallocation arising from distortions in the average size of firms,
or equivalently, distortions driven by an inappropriate average levels of markups within
sectors. The losses increase with the returns to scale: they go to zero in the zero-returns
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to scale limit where εI goes to one, and they go to infinity in the constant-returns limit
where εI goes to zero.

Proposition 4 is surprising if one is familiar with the misallocation literature. Normally,
elasticities of substitution are key pieces of information. In this case, this information is not
relevant. Intuitively, this is because the wedges do not cause cross-sectoral misallocation.
In this model, changes in sectoral markups do not change relative sectoral prices to a
first-order. An increase in a sector’s markup increases the prices of producers in that
sector but reduces their scale. At the efficient point, these effects cancel exactly. Therefore,
sectoral prices do not change to a first-order, which means that to a first-order, the elasticity
of substitution across sectors is not relevant for how quantities adjust. Since Harberger
triangles are products of first-order changes in quantities and first-order changes in the
markups, the cross-sectoral elasticity of substitution is irrelevant to a second-order.

7.3.2 Sectoral IRS Examples.

Consider a sectoral model with IRS sectors. We denote by θI = 1/(1 − γI) the elasticity
of substitution associated with every sector I. In other words, we can think of θI as the
elasticity of substitution across different varieties i in sector I.

The behavior of sectoral IRS models is substantially more complicated than that of
sectoral DRS models. In particular, whereas cross-sector elasticities of substitution are
irrelevant under DRS, they are relevant under IRS. Rather than providing the complicated
general formula, we instead focus on some simple examples to give intuition. In each
case, seemingly small changes in the assumptions about the nature of entry make the
welfare costs of distortions quite different.

One-Sector Economy. We start with a one-sector model heterogenous-firm economy
with IRS and free entry. Aggregate output is given by

Y =

∑
i

y
θ−1
θ

i


θ
θ−1

.

Each good i is produced from labor with constant returns and productivity Ai. The
aggregate efficiency loss is, to a second-order, given by

L =
1
2
θVarλB

(
d log τy) +

1
2
θEλB

(
d log τy)2 .

32



The first term captures misallocation on the intensive margin and comes from the fact that
high-markup firms are too small and low-markup firms are too big. This term depends
on the elasticity of substitution and on the dispersion of markups, and is standard in the
literature (see e.g. Hsieh and Klenow, 2009; Baqaee and Farhi, 2019a). The second term
captures misallocation on the extensive margin and comes from the fact that there is too
much or too little entry. This term depends on the elasticity of substitution and on the
level of wedges, and is new to the literature.

Multi-Sector Economy. Now, consider a multi-sector economy where output is an ag-
gregate of different sectors YI indexed by Iwith elasticity of substitution θ0

Y =

∑
I

Y
θ0−1
θ0
I


θ0
θ0−1

,

where each industry’s output is itself a CES aggregate of product varieties in industry k

YI =

∑
i∈I

Miy
θ
I
−1

θ
I

i


θ
I

θ
I
−1

.

Here, Mi is the mass of varieties of type i in sector I. We assume that the within-sector
elasticity of substitution θI is greater than the between-sector one θ0. Each good in each
industry is produced linearly using labor yi = Aili. Labor is the only primary factor, there
is free entry into each sector, and entry costs are paid in units of labor.

Applying Proposition 3, the aggregate efficiency loss is

L =
1
2

∑
I

λIθI
[
VarλI,B

(
d log τy) + EλI,B

(
d log τy)]2 .

Note that while the elasticities of substitution within sectors θI matter, the elasticity of
substitution in consumption across sectors θ0 does not. This is because, at the efficient
marginal-cost pricing equilibrium, changes in markups distort the allocation of resources
within a sector between the extensive and intensive margins but these distortions have
offsetting effects on the price of the sector good. Basically, there is only misallocation
within sectors but no misallocation across sectors.

By contrast, with no entry and instead an exogenous mass Mi of incumbents in each
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market, Proposition 3 implies the aggregate efficiency loss function is

L =
1
2

θ0VarλB
(
EλI,B(d log τy)

)
+

∑
I

θIVarλI,B
(
d log τy) ,

where the first variance is the weighted variance of sectoral markups with weights given by
sectoral sales shares λB

I
, and the last set of variances are within-sector variances weighted

by within-sector sales shares λI,Bi . Whereas θI controls losses from within-sector disper-
sion, the cross-sectoral elasticity of substitution θ0 controls the extent to which sectoral
misallocation reduces output. Since there is no entry, the level of wedges is no longer
relevant, only their dispersion.

This examples illustrates that allowing for entry changes which elasticities of substi-
tution are relevant for misallocation.

Roundabout Economy. We finish with an economy that has intermediate inputs. Con-
sider a roundabout-entry economy with one sector populated by homogenous firms and
free entry with entry costs requiring the use of both labor and goods. Aggregate output

Y = Y1 − x21

is the output of sector 1 not used for entry. Gross output is given by

Y1 =

(
M1y

θ1−1
θ1

1

) θ1
θ1−1

,

where the representative producer has a production function y1 = A1l1 that transforms
labor into goods linearly.

Suppose there is free entry and potential entrants pay a fixed entry cost that relies on
both goods and factors. In particular, the entry good is produced from labor and products
and sold at marginal cost

Y2 = (l2)ΩV
2L (x21)1−ΩV

2L .

When entry only uses labor ΩV
2L = 1, applying Proposition 3, the aggregate efficiency loss

from markups is

L =
1
2
θ1(d log τy

1)2.

The loss is increasing in the elasticity of substitution across products θ1 since the love-of-
variety effect is declining in θ1, and goes to zero as θ1 goes to infinity. In this limit, entry
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is socially wasteful and the losses from any amount of entry are first-order (which is why
the second-order approximation explodes).

Next, suppose that entry uses only products ΩV
2L = 1. Applying Proposition 3, the

aggregate efficiency loss from markups is

L =
1
2

(θ1 − 1)3

(θ1 − 2)2 (d log τy
1)2.

Once again, the losses goes to infinity as θ1 goes to infinity and for similar reasons. How-
ever, the loss is no longer increasing in θ1, but is instead U-shaped, and also goes to
infinity as θ1 goes to 2 from above, since love of variety becomes so strong that output
becomes linear in the mass of entrants. This example breaks the long-standing intu-
ition in the misallocation literature that efficiency losses are increasing in the elasticity of
substitution.29

This example illustrates how changing the input-output structure of entry can trans-
form the losses from misallocation.

7.4 Second-Best Policy

Whereas the first-best policy is network-independent, second-best policies do depend on
the details of the network. This section provides bang-for-buck formulas to compare the
merits of different marginal interventions. These formulas revive and revise the infor-
mal policy recommendations of Hirschman (1958), who argued in favor of encouraging
sectors with increasing returns that had the most backward and forward linkages. The
analysis reveals the extent to which details matter: effective policy depends crucially on
the nature of the intervention, the shape of the production network, and the strength of
scale economies.

The marginal bang-for-buck analysis we perform is similar to the one in Liu (2017),
however, we focus on an economy with increasing returns to scale due to love-of-variety.
To simplify the analysis, we assume that there is only one primary factor which we
call labor. We also assume that entry is possible in all markets, or, in other words,
that all markets are contested. We consider marginal interventions at the no-intervention
equilibrium. We investigate markup regulation and entry subsidization, which can loosely
be thought of as capturing respectively competition and industrial policy. These two types
of interventions neatly illustrate two very different ways in which forward and backward

29In Appendix G.4.1, we show that this U-shaped pattern also arises with input-output linkages in
variable production rather than entry.
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linkages can matter.

Markup Regulation. To start with, consider a budget-neutral intervention reducing the
markups d logµi < 0 of the producers of market i. This can be achieved by placing
a subsidy on i and taxing owners of i to fund the subsidy. Applying Theorem 3, the
response of aggregate output, normalized by the revenues −λB

i d logµi > 0 transfered
away from the producers by the associated implicit subsidy, is

−
1
λB

i

d log Y
d logµi

=
λF

i

λB
i

1
γi

(
µi − 1/γi

µi − 1

)
+

∑
j∈N−F

λF
j

(
1
γ j
− 1

) − 1
λB

i

̂d logλB
j

d logµi

 .
The first term is the direct effect of the markup reduction, holding sales constant. It
captures two opposing effects on the price of market good i and in turn on final-demand
prices. On the one hand, the policy reduces the price of each individual producer in
market i, making the good cheaper for the household. On the other hand, the policy also
dis-incentivizes entry into market i, which increases the effective price of i due to reduced
variety. Overall, whether the sign of the direct effect is positive or negative depends on
whether there is too little or too much entry in market i to begin with, which in turn
depends on whether the initial markup µi is lower or higher than the infra-marginal
surplus created by new varieties 1/γi.

Under Dixit and Stiglitz (1977) monopolistic competition, the direct effects exactly
cancel µi = 1/γi, leaving us the second term

−
1
λB

i

d log Y
d logµi

=
∑

j∈N−F

λF
j

(
1
γ j
− 1

) − 1
λB

i

̂d logλB
j

d logµi

 . (10)

The bang-for-buck impact of the intervention is measured by a simple sufficient statistic:
a forward-weighted sum across markets j of the changes in backward-linkages interacted
with increasing returns to scale 1/γ j − 1.30

Entry Subsidies. Now consider marginal entry subsidies to type-i entrants at the no-
intervention equilibrium. Without loss of generality, we treat the entry production func-
tion gi(xE,i j) of i as though it were operated by an incumbent producer assembling the
resources needed to enter and selling them at marginal cost µE,i = 1. We capture en-

30Since the sum of backward linkages
∑

i λ
B
i is a natural measure of intermediate input use. There is a

sense in which the best marginal intervention acts to encourage intermediate input usage.
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try subsidies by assuming that the government levies a subsidy on the output of these
producers.

Denote the backward and forward Domar weights of these “entry-good producers”
by λB

E,i and λF
E,i. The backward Domar weight is equal to the quasi-rents of type i entrants,

or by the zero profit condition, the profits earned by type-i entrants λB
E,i =

∑
j∈N−F ζ̃i jλπ, j.

The forward Domar weight captures the impact of type-i entry on final-demand prices
λF

E,i =
∑

j∈N−F ζ̃ jiλF
j (1/γ j − 1).

Introducing an entry subsidy on type-i entrants is equivalent to reducing the markup
d logµE,i < 0 of the producer of entry good i. At the no-intervention equilibrium the
budgetary impact is just−λB

E,i d logµY
E,i > 0. The response of aggregate output, normalized

by its budgetary impact to allow bang-for-buck comparisons, is

−
1
λB

E,i

d log Y
d logµY

E,i

=

λF
E,i

λB
E,i

−
λF

L

λB
L

 +
∑

j∈N−F

λF
j

(
1
γ j
− 1

) − 1
λB

E,i

̂d logλB
j

d logµY
E,i

 , (11)

where, at the no-intervention equilibrium, the sales share of labor λB
L = 1 since all markets

are contested (there are no pure profits), but λF
L , 1 in general since there are inefficiencies.

The bang-for-buck impact of the intervention depends on two simple sufficient statis-
tics corresponding to the two terms in (11). The second term is exactly the same as that
for measuring the bang-for-buck impact of markup regulations in equation (10) and it has
the same intuition.

By contrast, the first term is specific to entry subsidies. It depends on the difference
between two ratios of forward to the backward Domar weights: that of entry λF

E,i/λ
B
E,i

where the intervention takes place, and that of labor λF
L/λ

B
L .31 The ratio of forward to

backward Domar weights i measures the reduction in the size i caused by cumulated
wedges downstream. Hence, the first term boils down to a comparison of the cumulated
distortions downstream from entry good i compared to labor. Holding sales constant, the
entry subsidy stimulates entry by type-i entrants, which reduces final demand prices; but
also absorbs more resources into entry, which increases the real price of labor (the labor
share) and in turn raises final-demand prices.

In Appendix L, we apply these formulas to a Cobb-Douglas economy, showing that
ceteris paribus, markup policies should lower markups in industries that are downstream
and entry subsidies should subsidize entry into industries that are upstream.

31The intuition for this first term is related to Liu (2017), who studies marginal interventions around the
decentralized equilibrium of a production network economy with constant returns.
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8 Quantitative Illustration

In this section, we illustrate the social cost of distortions, or equivalently the gains from
optimal policy using a stylized model. We also compute the social bang for a marginal
buck of competition or industrial policy. We calibrate the model to fit U.S. data and
provide a brief account of how we proceed; the details of how we map the model to data
are in Appendix H.

8.1 Description of Quantitative Model

The quantitative model has a sectoral structure with heterogenous firms within sectors
and one primary factor capturing value-added. We merge firm-level data from Compustat
with industry-level data from the BEA. We use annual input-output tables from the BEA
with 66 industries, and assign each firm in the our Compustat sample to a BEA industry.
In the data, we observe industry-level sales shares for industries I; input-output entries
for industries I and J ; the sales shares of the Compustat firms i in industry I; and the
markup µi of Compustat firm i.

We adopt the baseline estimates of De Loecker et al. (2019) to obtain firm-level markups
using a production function estimation approach. In Appendix I, we perform robust-
ness checks by recomputing our results using three alternative methods for estimating
markups: an alternative implementation of the production function estimation approach
with different categories of costs (including SG&A in variable costs, as in Traina, 2018),
and alternative approaches that compute markups by netting out the cost of capital from
gross surplus. Although the numbers depend on the specific approach, the qualitative
message that accounting for entry and returns to scale is very important remains the same.

The model has a nested CES structure where each firm i in industry I has a CES
production function combining value-added and intermediate inputs with an elasticity
of substitution θ1. The intermediate input component is itself a CES aggregator of inputs
from other industries with an elasticity of substitution θ2. Finally, we have the within-
sector elasticities εI or γI depending on whether we assume the industry is DRS or IRS.

Drawing on estimates from Atalay (2017), Herrendorf et al. (2013), and Boehm et al.
(2014), we set the elasticity of substitution across sectors in consumption to be θ0 = 0.9,
between value-added and intermediates to be θ1 = 0.5, and across sectors in intermediates
to be θ2 = 0.2. Our results are not particularly sensitive to these choices.

We use the same within-sector elasticities for all sectors: εI = ε and γI = γ and
consider two scenarios: (1) every sector is assumed to be IRS with scale elasticity γ; (2)
every sector is assumed to be DRS with scale elasticity ε. In either case, we consider two
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different scale elasticities, in the DRS case, we set ε = 0.875 or ε = 0.75. In the IRS case, we
set γ = 0.875 or γ = 0.75, which corresponds to a within-industry elasticity of substitution
of 8 or 4 respectively.

Finally, we experiment with different ways of modeling entry: no entry, entry using
primary factors, and entry using primary factors and goods (in the same way as variable
production). The model without entry can be thought of as a short-run model and the
model with entry as a long-run model.

8.2 Social Costs of Distortions

We solve the model nonlinearly and compute the efficiency loss from misallocation. We
report the numbers as the percentage gain in welfare achieved by implementing optimal
policy starting from the decentralized equilibrium outcome. The results are in Table 1
for different combinations of assumptions regarding entry and returns to scale. Across
the board, the benchmark calibration shows that the losses from inefficiency are higher
(roughly double) when we allow entry than when we do not, refuting the notion that
endogenizing entry necessarily reduces the social cost of markups.

Decomposing the Results. For each calibration, Table 1 decomposes the sources of the
distance to the frontier. The “Level only” row eliminates the dispersion of markups within
each sector by setting all markups within each sector equal to the harmonic average of
markups in that sector. The “Dispersion only” row rescales the level of markups in the
data so that their harmonic average within each sector is equal to the efficient level (so
sectoral markups are equal to the Dixit and Stiglitz (1977) markups when we adopt the
IRS benchmark and equal to one when we adopt the DRS benchmark) but keeps their
dispersion constant.

When there is no entry, almost the entirety of the losses are explained by the dispersion
effect. The losses due to the dispersion effect are due to misallocation across firms within
sectors, and are large because markups are very dispersed within sectors and because
the relevant elasticities within sectors are large. The losses due to the level effect, when
there is no entry, are entirely due to misallocation across sectors, and are small because
markups are not so dispersed across sectors and because the cross-sectoral elasticities of
substitution are low.

When there is entry, the level effect becomes comparable to the dispersion effect. The
losses due to the level effect now also reflect misallocation between entry and variable
production within sectors, and these losses are large because markups are in general too
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IRS, γ = 0.875 No Entry Entry Uses Factors Entry uses Goods and Factors

Level only 4.6% 14% 10%
Dispersion only 30% 30% 30%
Benchmark 36% 50% 41%

IRS, γ = 0.75

Level only 4.6% 17% 20%
Dispersion only 22% 23% 20%
Benchmark 19% 32% 37%

DRS, ε = 0.875

Level only 1.5% 7.8% 7.6%
Dispersion only 23% 23% 23%
Benchmark 26% 35% 32%

DRS, ε = 0.75

Level only 0.8% 9.5% 10%
Dispersion only 9.2% 9.2% 9.2%
Benchmark 9.6% 19% 20%

Table 1: Efficiency losses from misallocation. Firm-level returns to scale γ = 0.875 under
IRS corresponds to elasticity of substitution across firms within sectors equal to 8, whereas
γ = 0.75 corresponds to elasticity of substitution equal to 4.

large and because the relevant elasticities of substitution are large.
Whether entry only uses primary factors or also intermediates has ambiguous effects.

Depending on the scale elasticities, the relative size of the gains can go either way. When
the entry margin is more important (ε and γ are lower), the gains tend to be higher when
entry also uses intermediates, consistent with the roundabout example in Section 7.3.2.

The efficiency losses are different in the IRS benchmark than in the DRS benchmark.
This is because quantities are less elastic in the DRS economy and entry distortions are
less costly. To understand the latter point, it is useful to think about the limit where ε and
γ go to zero, which corresponds to a within-sector across-firm elasticity of one under IRS
and a firm-level return to scale of zero under DRS. In this limit, under IRS, the efficiency
losses become infinite because love of variety becomes extreme and so do the distortions
in entry, as can be seen in Proposition 3. By contrast, under DRS, the efficiency losses go
to zero as made clear by Propositions 3 and 4.

Comparison to Simplified Models. Our analysis contends that careful modelling of the
details of the production network and the entry technology is qualitatively important.
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To illustrate this quantitatively, in Table 2, we compare the results of the benchmark
model to simplified versions of the model that employ some commonly used shortcuts:
ignoring intermediate goods in production or entry (assuming no input-output); using
a single-sector economy but allowing for intermediates (roundabout economy); ignoring
firm-level heterogeneity within sectors (no firm heterogeneity). We discuss each of these
strawmen in turn.

IRS No Entry Entry Uses Factors Entry uses Goods/Factors

Benchmark 36% 50% 40%
No Input-Output 16% 20% –
Roundabout 139% 182% 133%
Homogeneous Firms 4.6% 14% 10%

DRS

Benchmark 26% 35% 32%
No Input-Output 13% 18% –
Roundabout 91% 123% 108%
Homogeneous Firms 1.0% 7.8% 7.6%

Table 2: Efficiency losses from misallocation when different disaggregated aspects of the
economy are trivialized. We use firm-level returns to scale ε = 0.875 under DRS, and
γ = 0.875 under IRS. For IRS, this corresponds to an elasticity of substitution across firms
within industries of 8.

The “No Input-Output” economy assumes away intermediates, and calibrates the
size of each industry to be equal to its value-added share. Without entry, this economy
undershoots the benchmark model for reasons discussed by Jones (2011) or Baqaee and
Farhi (2019a). The undershooting becomes even more extreme once we allow for entry,
underscoring even more strongly the need to model input-output linkages.

The “Roundabout” economy assumes that all firms in the economy belong to a sin-
gle sector. The output of this sector is used both as the consumption good and as an
intermediate input into production. This is a commonly used shortcut for incorporating
intermediate inputs into a model. The one-sector roundabout economy overshoots the
benchmark by a large amount. This is to be expected since the roundabout economy
aggregates all firms in the economy into a single sector. This means cross-sectoral disper-
sions in markups (which are less costly than within-sectoral dispersions) are treated as if
they are within-sectors. Intuitively, dispersed markups now distort input choices across
producers by more, since firms in two different industries are treated as if they are highly
substitutable.
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Finally, the “Homogeneous Firms” economy assumes that all firms in a sector are
identical, with the same productivity shifter and the same markup equal to the sectoral
markup. The homogeneous sectors economy undershoots the benchmark by a large
amount because even though it accounts for cross-sectoral distortions, it abstracts away
from within-sector misallocation.

All in all, the sensitivity of these numbers underscores the quantitative importance of
modelling and measuring the details as best we can.

Role of the Elasticity of Substitution Across Firms Within Sectors. In many models of
misallocation without entry, for example (e.g. Hsieh and Klenow, 2009; Baqaee and Farhi,
2019a), the distance to the frontier increases with the elasticity across firms within sectors.
As discussed in Section 7.2, this intuition fails when there is entry and markets are of the
IRS type.

Figure 2a shows that for the IRS benchmark, the distance to the frontier is U-shaped as
a function of the within-sector elasticity of substitution 1/(1 − γ). For instance, the losses
are 50% when 1/(1 − γ) = 8. This number falls to 32% when the elasticity is lowered
to 4, before rising to close to 65% when the elasticity is lowered further to 2.5. This is
consistent with the theoretical discussion in the last example of Section 7.2. Intuitively,
with non-trivial input-output linkages, a lower elasticity reduces misallocation along the
intensive margin, but magnifies misallocation along the extensive margin. In the limit
where the elasticity goes to one (γ goes to zero), misallocation along the extensive margin
becomes infinitely costly.

Role of Barriers to Entry. In our benchmark specifications with entry, we assume that
all rents are quasi-rents rather than pure rents. That is, free-entry holds in every sector.
However, it is plausible that, even in the long run, profits are not entirely offset by the
costs of entry. For example, it may be that resources spent on entry are less than profits
due to barriers to entry from regulations or due to anti-competitive strategic deterrence.
We capture these barriers to entry in reduced form by introducing an entry tax/wedge.

Figure 2b displays the implied distance to the frontier as a function of the view that one
takes on the size of entry barriers in the data, where the size of entry barriers are measured
by the size of the implicit entry tax/wedge (a value of one means that there are no barriers
to entry). Perhaps surprisingly, the efficiency losses are non-monotonic in the size of entry
barriers. Intuitively, whether barriers to entry increase or decrease the estimated distance
to the frontier depends on whether there is too little or too much entry in the equilibrium
with no entry barriers. Our estimated markups are relatively high, which implies that if
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Figure 2: Efficiency losses for the benchmark IRS model when entry uses factors as a func-
tion of the within-industry elasticity of substitution and entry wedges for the benchmark
IRS model.

there is free-entry, then there is too much entry in the equilibrium. As a result, if one takes
the view that there are entry barriers in the data (so that there is less entry than implied
by profits), then one is lead to a lower estimate of the distance to the frontier up (up to
some point, after which, entry becomes inefficiently too low).

8.3 Bang for Buck of Marginal Policy Interventions

We end this section by considering the effect of a marginal policy intervention in the
decentralized equilibrium. Figure 3 shows the bang-for-buck elasticity of aggregate output
with respect to a marginal entry subsidy (a form of industrial policy) or markup reduction
(a form of competition policy) in different industries. The elasticity is scaled by the
revenues associated with the intervention, as in Section 7.4, to make the magnitudes
comparable.

For this exercise, we focus on the IRS case whereγ = 0.875. We consider two alternative
calibrations: one where we set markups equal to their CES monopolistic values, and one
where we set markups equal to their estimated values. We begin by discussing the case
where all markups are set equal to their CES Dixit and Stiglitz (1977) values. Then we
discuss the case where markups are equal to their estimated values in the data. In both
cases, we abstract from endogenous changes in markups in response to the policy.32

The monopolistic-markups calibration is a useful starting point for understanding the

32Here, we assume that the policy maker can directly change the wedges. As pointed out by Gupta
(2020), in practice, a linear tax may not be able to achieve this since firm-level wedges may respond to the
policy instrument.
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Figure 3: The elasticity of output with respect to reductions in markups or an entry
subsidy to different sectors normalized by the cost of the intervention. The top row uses
CES markups, whereas the bottom row uses estimated PF markups.

results, since by setting markups to be the same in every sector, it helps isolate the role
played by the input-output network on its own. In this case, markup reductions, plotted
in Figure 3a, are always beneficial. Because we have imposed the same love-of-variety
parameter in all sectors, the greatest bang-for-buck comes from reducing markups for
those sectors with more complex supply chains, namely manufacturing industries like
motor vehicles, metals, and plastics. Intuitively, reducing markups in these sectors allows
more entry into their supply chains. The smallest gains come from those industries with
the simplest supply chains, mostly service industries like housing or legal services but
also primary industries like oil extraction or forestry. For entry subsidies, plotted in Figure
3b, the biggest gains, on the other hand, come from subsidizing those industries which
are upstream in complex supply chains, namely primary industries like forestry, oil, and
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mining, whereas subsidizing entry into relatively downstream industries, like nursing,
hospitals, or social assistance, is actually harmful.33

When we move to the estimated markups, plotted in Figures 3c and 3d, the shape of
the input-output network is not the only determinant of the relative ranking of different
industries, as now we must also consider whether each sector’s markups are too high
or too low on average relative to its external economies. Since, for simplicity, we have
imposed the same love-of-variety effect in all sectors but we have estimated markups
for each sector, we do not read too much into the exact relative ranking of the different
industries.

However, these figures are still useful because they show that as we move farther
away from the efficient frontier, which we do when we go from monopolistic markups
to estimated markups, the potency of second-best policies increases dramatically. To see
this, note that the elasticities in the top row are an order of magnitude smaller than the
elasticities in the bottom row of Figure 3.

But the larger effect sizes are a mixed blessing. Once we are far away from the frontier,
the scope for policy having unintended consequences also increases. Although there
appear to be many free lunches available to policy makers, interventions can equally have
large negative as well as positive effects. In other words, as implied by the theory of
the second-best, interventions that seem sensible in isolation, like reducing markups, can
reduce output once we are deep inside the frontier.

9 Conclusion

Traditional theories of aggregation, by relying on aggregate envelope theorems, imply
that the aggregate production function can be treated like a black-box machine whose
contents are irrelevant to a first order. Aggregate productivity changes are simply the
sales-weighted averages of the exogenous microeconomic productivity shocks. Under
this view, these exogenous changes in aggregate productivity are responsible for a large
fraction of both the cycle and the trend in aggregate output.

For inefficient economies, this first-order approach is untenable. In a disaggregated
economy, where many different margins can be misallocated, total factor productivity
is endogenous and affected, to a first order, by reallocation effects. Furthermore, unlike
exogenous productivity shocks, which are likely to be gradual and positive, reallocation
effects can be abrupt and have either sign. This paper shows that these reallocation effects

33For more intuition about this, in Appendix L, we work through a Cobb-Douglas example.
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can be very potent in the presence of non-convexities and entry, and provides a framework
for studying them.
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