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1 Introduction

Aggregate increasing returns to scale are at the core of some of the most fundamental issues in

economics, ranging from the mechanics of growth, to the gains from trade, to the benefits from

industrial and competition policy. Broadly speaking, there are two reasons why efficiency may

increase as markets get larger. The first has to do with the technological features of production.

If firms have increasing returns to scale, say due to fixed costs, then expanding the market will

improve efficiency since fixed costs will be spread over a larger population. The second has to do

with how resources are allocated in equilibrium. If competition intensifies in a bigger market, then

perhaps this can reallocate resources in a way that improves aggregate efficiency. For example,

Pavcnik (2002), Trefler (2004), and Mayer et al. (2014) document that as market size increases,

resources are reallocated to high-performing firms and products.

In this paper, we propose a framework for decomposing these effects theoretically and quanti-

tatively. We consider an economy with fixed entry and overhead costs, entry and exit, monopolistic

competition, and heterogeneous markups. We argue that, to a large extent, increasing returns to

scale at the aggregate level may reflect changes in allocative rather than technical efficiency. That

is, a large share of the gains from an increase in market size—say due to immigration, fertility,

or globalization (trade integration)—arise from how intensified competition reallocates resources

across firms. Furthermore, we show that even mild increasing returns at the micro level (measured

by the average ratio of marginal to average cost) can catalyze large increasing returns at the macro

level. This reinforces the insight by Basu and Fernald (1997) that aggregation can exaggerate

modest returns to scale at the micro level.

For tractability, models of monopolistic competition and entry often feature constant-elasticity-

of-substitution (CES) demand. The classic reference is Melitz (2003), which is a workhorse model

of reallocation. However, this model has an efficient equilibrium, so reallocations have no first-

order effect on welfare (this is because the marginal social benefit of any input is equated across

competing uses). Moreover, efficiency implies that micro- and macro-level returns to scale are the

same, since, on the margin, allocating all incremental inputs to a single firm must yield the same

aggregate return as the equilibrium allocation.

This simple elegance of CES demand comes at the expense of realism. CES demand imposes

constant markups in both the cross-section and the time-series with complete pass-through of

marginal costs into prices. In contrast, the data feature substantial heterogeneity in both markups

and pass-throughs. Matching the empirical heterogeneity of markups and pass-throughs requires

deviating from the CES benchmark. This, in turn, introduces distortions in the decentralized equi-

librium and opens the door for endogenous reallocations triggered by a shock to affect welfare.1

1Of course, we are not the first to consider deviations from CES in models of free entry and monopolistic competition.
Previous examples with inefficient equilibria include Krugman (1979), Mankiw and Whinston (1986), Venables (1985),
Asplund and Nocke (2006), Melitz and Ottaviano (2008), Epifani and Gancia (2011), Zhelobodko et al. (2012), Edmond
et al. (2018), Dhingra and Morrow (2019), Mrázová and Neary (2017), Mrázová and Neary (2019), Arkolakis et al. (2019),
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We relax the restrictions of the CES demand system by using a generalized Kimball (1995)

demand system, introduced by Matsuyama and Ushchev (2017). This demand system allows for

the possibility that firms face different residual demand curves from one another, and allows each

firm’s desired markup and pass-through to vary flexibly as a function of its size.2 Furthermore, this

demand system is homothetic, which makes it relatively straightforward to embed our analysis of

a single sector into a larger multi-sector general equilibrium model of the whole economy.

We characterize how welfare changes in response to an increase in market size. The response

of welfare consists of a change in technical efficiency (i.e., an increase in welfare holding the

allocation of resources across uses constant) and a change in allocative efficiency that arises due to

endogenous reallocations. We show that changes in allocative efficiency can be further broken into

three distinct channels, which correspond to firms’ adjustments along three margins: the decision

to enter, to exit the market, and to change markups. We call these three channels (1) the Darwinian

effect, (2) the selection effect, and (3) the pro/anti-competitive effect.

The Darwinian effect (1) captures how firms with different price-elasticities are differentially

affected by changes in the number of entrants. Each firm faces a demand curve, which pins down

quantity as a function of the firm’s price relative to an aggregate market-level price index. When

the market expands and new firms enter, the aggregate price index falls, intensifying competition

for all firms. Firms with more inelastic demand, however, are relatively insulated from changes

in the aggregate price index, and hence expand relative to firms with elastic demand.

The markup of each firm is inversely related to its demand elasticity. Hence, the Darwinian

effect reallocates resources from firms with elastic demand (and low markups) towards firms with

inelastic demand (and high markups). From a social perspective, high-markup firms are too small

relative to low-markup firms, and so this reallocation improves efficiency. We call this a Darwinian
effect because a more competitive environment automatically selects and expands the “fittest”

firms (those with the most inelastic demand).

Notably, this effect exists and is welfare-increasing regardless of the shape of demand curves,

as long as there is non-trivial heterogeneity. In contrast, the selection and pro/anti-competitive

effect, which have been studied in detail in previous work, have theoretically ambiguous effects

on welfare.

The selection effect (2) results from the fact that, as the market expands, the minimum level of

profitability a firm must have to survive can change. This mechanism only operates in models with

overhead costs of production and is explored by Asplund and Nocke (2006), Melitz and Ottaviano

(2008), Corcos et al. (2012), and Melitz and Redding (2015), among others. Unlike the Darwinian

effect, whether or not the selection effect increases or reduces welfare is ambiguous. As pointed

out by Dhingra and Morrow (2019), a toughening of the selection cut-off improves welfare only if

the consumer surplus generated by the marginal firm relative to its sales is less than the average.

and Matsuyama and Ushchev (2020b). We discuss precisely how our approach and findings differ below.
2We also derive our results using other generalizations of CES preferences, which nest separable translog preferences

and linear expenditure shares as special cases, in Appendix H. The results are similar both qualitatively and quantitatively.
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Finally, the pro/anti-competitive effect (3) results from the fact that firms’ desired markups

may change as the market expands. Of the three channels, the pro/anti-competitive effect is

the sole change in allocative efficiency arising in homogeneous firm models such as Krugman

(1979). If firms have incomplete pass-through, as is the case considered by Krugman (1979), then

as the price index falls due to an increase in market size, firms cut their desired markups (pro-

competitive effect). Recent studies exploring the pro/anti-competitive effect include De Loecker et

al. (2016), Feenstra and Weinstein (2017), Feenstra (2018), Arkolakis et al. (2019), and Matsuyama

and Ushchev (2020b). We show that whether these changes in markups raise or lower welfare is

also ambiguous.

These reallocative forces also have implications for policy. In particular, policy-makers can

trigger these reallocations even in an economy with fixed resources by incentivizing entry. We

show that a subsidy on firm entry costs can improve welfare even if, on the margin, entry is

excessive. This is a consequence of the general theory of the second best (Lipsey and Lancaster,

1956)— since all optimality conditions cannot be satisfied, the second-best involves changing the

amount of entry away from its first-best value. In our model, subsidizing entry above the first-best

level can be desirable since entry triggers Darwinian reallocations that alleviate cross-sectional

misallocation.

To quantify our theoretical results, we develop a strategy for taking the non-parametric model

to data. Using cross-sectional firm-level information from Belgium on pass-throughs (from Amiti

et al., 2019), we non-parametrically solve for the shape of the residual demand curve that can

exactly rationalize the distributions of firm sales and pass-throughs. We then use our calibrated

model to quantify the role reallocations play in aggregate returns to scale.

In our quantitative calibration, we find that changes in allocative efficiency are much more

important than changes in technical efficiency in determining aggregate increasing returns to

scale. They account for between 70% and 90% of the overall effect. As a result, mild increasing

returns to scale at the microeconomic level can be associated with large increasing returns to scale

at the aggregate level. Furthermore, we show that the selection and pro-competitive effects are

either unimportant or harmful. Instead, the Darwinian mechanism that we isolate contributes the

lion’s share of the gains in allocative efficiency. In our quantitative calibration, we also find that

these Darwinian reallocations concentrate a greater share of employment and sales in high-markup

firms, tying the benefits of a market expansion to increases in concentration.3

We also relate our results for welfare to the behavior of real GDP. It is well-known that when

the set of goods can change due to entry and exit, real GDP and welfare may not be the same (see

e.g. Aghion et al., 2019a). In our model changes in real GDP are entirely driven by reductions in

3Baqaee and Farhi (2019) show that this type of reallocation—a reallocation from low-markup firms to high-markup
firms—can explain a significant fraction of aggregate TFP growth in the US over the last two decades. De Loecker et
al. (2020), Autor et al. (2020), and Aghion et al. (2019b) document a similar reallocation of market share to high-markup
and high-productivity firms over time. This paper raises the possibility that increases in scale, perhaps driven by
globalization, could be responsible for these reallocations.
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markups, and do not depend on the reallocation effects that are so crucial for welfare. Quantita-

tively, we find that the elasticity of real GDP per capita to market size understates the elasticity of

welfare to market size changes.

Many of the ideas that we develop regarding the response of the economy to changes in

population apply to changes in other parameters and to other demand systems. In the appendix,

we provide analytical comparative statics for changes in fixed costs of entry, fixed overhead costs,

and the productivity distribution, as well as their decomposition into technical and allocative

efficiency. We also show that the same intuitions can be rederived using other generalizations of

CES preferences.

Related Literature. This paper builds on a large literature that considers how changes in market

size affect entry, competition, and welfare. We adopt a framework with monopolistic competition

and a representative consumer with a taste for variety, following Spence (1976) and Dixit and

Stiglitz (1977).

The first analyses of how market size affect welfare assume that firms are homogeneous, such

as Krugman (1979), Mankiw and Whinston (1986), Vives (1999), or Venables (1985). For example,

Krugman (1979) shows that, in an economy with homogeneous firms, an increase in market size

affects welfare through two channels: the entry of new varieties, and the decrease in markups as

the relative share of each variety in total consumption falls. More recently, this line of research

has been extended by Bilbiie et al. (2012) and Bilbiie et al. (2019) in a dynamic context, and by

Matsuyama and Ushchev (2020b) for more general classes of homothetic preferences.

The heterogeneous firm case has been studied by Melitz (2003) when efficient, and by Asplund

and Nocke (2006), Melitz and Ottaviano (2008), Epifani and Gancia (2011), Zhelobodko et al.

(2012), Melitz and Redding (2015), Edmond et al. (2018), Dhingra and Morrow (2019), Mrázová

and Neary (2017), Mrázová and Neary (2019), and Arkolakis et al. (2019) when inefficient. We

highlight how our approach differs from a few of the most recent contributions in this literature.

Dhingra and Morrow (2019) decompose the gains from an increase in market size in an econ-

omy with heterogeneous firms compared to an economy with homogeneous firms under (non-

homothetic) directly additive preferences. They show that certain restrictions on demand are

sufficient for gains in a heterogeneous firm economy to be greater—namely, that markups are in-

creasing in size (Marshall’s second law of demand) and preferences are “aligned” (i.e., consumer

surplus ratios associated with varieties are also increasing with quantity).4 We provide a differ-

ent decomposition focused instead on firms’ margins of adjustment (entry, exit, and changes in

markups). This allows us to isolate the Darwinian effect, which can be signed without restrictions

on the shape of demand curves. By quantifying the model, we show that the Darwinian effect

plays the dominant role.

4Alternatively, gains in a heterogeneous firm economy are also greater than those in a homogeneous firm economy
if markups and consumer surplus ratios are both decreasing with quantity instead, as long as the product of price
elasticities and pass-throughs are increasing in quantity.
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Relatedly, Mrázová and Neary (2019) show that, for demand systems satisfying Marshall’s

second law of demand, an increase in scale increases the profits of large firms, which they term

the “Matthew Effect.” While their focus on firm profits is different from our focus on consumer

welfare, we show in our quantitative calibration that the Darwinian effect leads to a reallocation

of employment and market share to high-markup firms. If markups are positively correlated with

firm size, then increases in market size lead to an increase in market concentration consistent with

Mrázová and Neary (2019).

Arkolakis et al. (2019) explore pro-competitive effects in an open economy with an export

margin following shocks to iceberg trade costs. They find that pro-competitive effects on welfare

are zero when preferences are homothetic and mildly reduce, rather than increase, welfare for

important classes of non-homothetic preferences. Compared to Arkolakis et al. (2019), we avoid

restrictions that make welfare invariant to the creation of varieties or make entry invariant to the

shock. For example, in their model, the absence of fixed costs of accessing domestic and foreign

markets means that the creation and destruction of “cut-off” goods has no first-order effects on

welfare (i.e., the selection effect is always zero). Moreover, since the mass of firms that choose

to enter is not affected by changes in iceberg costs in their model, the Darwinian effect is absent

in their results. In our model, firms incur overhead costs to operate and the mass of entrants

changes in response to changes in the size of the market; as a result, none of the three effects

(Darwinian, selection, and pro-competitive) are generically zero following a change in market

size. Nevertheless, our findings on the pro-competitive effects of scale accord with Arkolakis et al.

(2019): in our calibration, we find that adjustments on the markup margin are small in magnitude

and mildly reduce, rather than enhance, welfare.

Edmond et al. (2018) also consider monopolistically competitive economies with free entry

and Kimball (1995) preferences. They compute the economy’s distance from the Pareto-efficient

frontier under a Klenow and Willis (2016) parameterization. Our focus is different since we study

returns to scale in the decentralized equilibrium rather than the distance to the frontier.5

Finally, compared to previous work, we provide a new strategy for calibrating our non-

parametric model. This approach allows us to quantify the importance of the Darwinian, selection,

and pro-competitive channels. We find this approach offers significant advantages compared to

calibrating an off-the-shelf functional form, since parametric specifications may mute important

features of the data.6

Structure of the paper. The structure of the rest of the paper is as follows. Section 2 sets up

the model and defines the equilibrium. Section 3 decomposes changes in welfare into changes

in technical and allocative efficiency and introduces sufficient statistics in the data that we use to

5We provide a characterization of the economy’s distance to the efficient frontier in Appendix F.
6We show in Appendix I that the popular Klenow and Willis (2016) specification of Kimball preferences is unable

to match key features of our data, and hence quantitatively understates allocative efficiency effects compared to our
benchmark results.
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characterize our results. Section 4 shows how welfare responds to an increase in market size and

what role reallocations play. Section 5 draws out the implications of these reallocations for how

welfare responds to a tax or subsidy on entry. Section 6 introduces a calibration strategy allowing

us to take the model to the data non-parametrically. Section 7 is a quantitative application. Section

8 summarizes extensions, and Section 9 concludes. The appendix contains all the proofs.

2 Model Setup

In this section, we specify the households’ and firms’ problems and define the equilibrium.

Households. There is a population of L identical consumers. Each consumer supplies one unit

of labor and consumes different varieties of final goods indexed by a type θ. Consumers have

homothetic preferences, with per-capita utility Y defined implicitly in money-metric terms by∫
θ∈Θ

Υθ(
yθ
Y

)dF(θ) = 1, (1)

where yθ is the per-capita consumption of variety θ, the function Υθ is increasing and concave

with Υθ(0) = 0, the set Θ contains all potential varieties, and dF(θ) is the measure of varieties of

type θ. We return to the definitions of Θ and dF(θ) with more precision when we discuss the firm

side of the economy below.

These preferences, introduced by Matsuyama and Ushchev (2017), are a generalization of

Kimball (1995) preferences, since the aggregator function Υθ is allowed to vary by variety. CES

preferences are a special case of equation (1) when Υθ(x) = Υ(x) = x
1−σ
σ . Matsuyama and Ushchev

(2017) show that there are other ways one could generalize CES preferences while maintaining

homotheticity and tractability. In Appendix H, we show that our theoretical and quantitative

results are very similar if we use these alternatives.7

Consumers maximize their utility Y subject to the budget constraint∫
θ∈Θ

pθyθdF(θ) = 1, (2)

where pθ is the price of variety θ. We normalize the nominal wage to one, so that each consumer’s

income is equal to one. This expression for the budget anticipates the fact that free entry forces

profits to zero in equilibrium, so that wages are the sole source of household income.

Solving the household problem yields the per-capita inverse-demand curve for an individual

variety θ,
pθ
P

= Υ′θ(
yθ
Y

), (3)

7We have also derived similar versions of our results (available upon request) using non-homothetic separable
preferences (as in Krugman, 1979 and Dhingra and Morrow, 2019).
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where the price aggregator P and the demand index δ̄ are defined as

P =
δ̄
Y
, and

1
δ̄

=

∫
θ∈Θ

Υ′θ(
yθ
Y

)
yθ
Y

dF(θ). (4)

Equation (3) demonstrates the appeal of these preferences — by choosing Υθ, we can generate

residual demand curves of any desired (downward-sloping) shape for each variety. Furthermore,

since Υ′θ can vary by θ, different varieties can face different residual demand curves. Equation (3)

also makes clear that the relative demand for a variety θ is determined by the ratio of its price, pθ,

to the price aggregator, P. Hence, the price aggregator P mediates competition between any given

variety and all other available goods.

Note that the price aggregator P does not, in general, coincide with the ideal price index for

the representative consumer, and hence deflating income by P does not yield welfare (except in

the case of CES preferences).8

Firms. Each firm supplies a single variety and seeks to maximize profits under monopolistic

competition similar to the production structure in Melitz (2003). To enter, firms incur a fixed entry

cost of fe units of labor. Upon entry, firms draw their type θ ∈ [0, 1] from a distribution with

density g(θ) and cumulative distribution function G(θ). Having drawn its type, each firm then

decides whether to produce or to exit. Production requires paying an overhead cost of fo,θ units of

labor and a constant marginal cost of 1/Aθ units of labor per unit of the good produced. Finally,

the firm decides what price to set, taking as given its residual demand curve. We allow the firm’s

residual demand curve Υ′θ, overhead cost fo,θ, and productivity Aθ to vary with the firm’s type θ.

From (3), the price-elasticity of demand facing a variety of type θ, denoted σθ, is given by

σθ(
y
Y

) = −
∂ log yθ
∂ log pθ

=
Υ′θ( y

Y )

−
y
YΥ′′

θ
( y

Y )
. (5)

Conditional on operating, a firm of type θwill set its price equal to a markup µθ times its marginal

cost 1/Aθ. The profit-maximizing markup is given by the usual Lerner formula,

µθ(
y
Y

) =
1

1 − 1
σθ( y

Y )

. (6)

In the case of CES preferences, firms face identical price-elasticities of demand σθ = σ, and hence

have constant desired markups µθ = σ/(σ−1) in the cross-section and time-series. The generalized

preferences we consider instead allow firms’ desired markups to vary with type θ and with each

8Let e({pθ},Y) be the expenditure function of a household as a function of the price of all varieties pθ and welfare Y,
where the price of unavailable varieties is set to infinity. Since preferences are homothetic, we can write e({pθ},Y) = PYY,
where PY is the ideal price index. Changes in the price aggregator are d log P = d log δ̄+d log PY. Since δ̄ is not, in general,
a constant, the price aggregator and the ideal price index do not coincide. The exception is CES preferences, under which
δ̄ = σ/(σ − 1) is constant, and thus P = PY.
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firm’s position on the demand curve (y/Y).

To ensure that each firm’s profit-maximizing price is unique, we assume restrictions on Υθ such

that marginal revenue curves are strictly downward sloping.9 Since yθ is the per-capita output of

the firm, the firm’s total output is Lyθ.

A firm of type θ chooses to produce if, and only if, its variable profits exceed the overhead cost

of production, i.e.,

Lpθyθ

(
1 −

1
µθ

)
≥ fo,θ. (7)

Denote the ratio of variable profits to overhead costs by

Xθ =
Lpθyθ

fo,θ

(
1 −

1
µθ

)
, (8)

and assume that firm types are ordered so that Xθ is strictly increasing and continuous in θ ∈ [0, 1].

Furthermore, assume that Xθ varies smoothly in θ.10 Define θ∗ to be the infimum of the set

{θ ∈ [0, 1] : Xθ ≥ 1}. Firms with types θ ≥ θ∗ decide to produce, since variable profits for these

firms exceed overhead costs, and firms of type θ < θ∗ exit.

Free entry implies that firms enter until the expected variable profit minus overhead costs of

any entering firm is equal to the fixed cost of entry:∫ 1

θ∗

[
Lpθyθ

(
1 −

1
µθ

)
− fo,θ

]
g(θ)dθ ≥ fe. (9)

The set of operating firms, and hence varieties available to the representative consumer, is

{θ ∈ [0, 1] : θ ≥ θ∗}. The measure of firms of typeθ is defined by the density dF(θ) = Mg(θ)1(θ≥θ∗)dθ,

where M is the mass of entrants and 1 is an indicator function.

Equilibrium. In equilibrium, consumers maximize utility taking prices as given; firms maxi-

mize profits taking prices other than their own and consumer welfare as given; and markets clear.

That is, an equilibrium is determined by equations (1), (2), (3), (4), (6), (7), and (9).

Notation. Denote the sales share density by

λθ = (1 − G(θ∗))Mpθyθ. (10)

9In terms of primitives, we assume that xΥ′′′θ (x) < −2Υ′′θ (x) for all x and all θ.
10In terms of primitives, this means that firms are ordered in such a way that −σθρθ

∂ logµθ
∂θ +

(
σθ
ρθ
− 1

)
∂ log Aθ

∂θ −
∂ log fo,θ
∂θ ≥ 0

where ρθ is the pass-through function defined in terms of primitives by (13).
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This is a density because it is always non-negative and integrates to one.11 For some variable zθ,

define the sales-weighted average by

Eλ[zθ] =

∫
∞

θ∗
λθzθ

g(θ)
1 − G(θ∗)

dθ. (11)

Similarly, denote the sales-weighted covariance of any two variables xθ and zθ by

Covλ[xθ, zθ] = Eλ[xθzθ] − Eλ[xθ]Eλ[zθ].

3 Central Concepts

In this section, we introduce some central concepts that will guide our analysis. First, we define

how welfare changes can be decomposed into changes in technical and allocative efficiency. Sec-

ond, we introduce statistics related to the shape of the demand curve that help make sense of

equilibrium reallocations. Third, we discuss how welfare is determined in terms of some intuitive,

but endogenous, variables. We build on the definitions in this section to prove our main results in

Sections 4 and 5.

3.1 Changes in Technical and Allocative Efficiency

To understand the drivers of changes in welfare, it is useful to decompose changes in welfare into

those driven by technical and allocative efficiency changes. Changes in technical efficiency capture

the direct impact of the shock, holding the allocation of resources constant. Changes in allocative

efficiency capture the indirect impact of the shock resulting from the endogenous beneficial (or

harmful) reallocations that are triggered by the shock.12

Following Baqaee and Farhi (2019), we define the exogenous technology vectorA = (L, fe, { fo,θ}, {Aθ})

and the endogenous allocation vector X = (le, {lo,θ}, {lθ}). The technology vector A captures the

primitive parameters defining the production possibilities of the economy. The allocation vector

X, on the other hand, describes the fractions of labor allocated to the following activities: entry,

overhead, and variable production of varieties of each type θ. Together,A andX entirely describe

any feasible allocation. Let Y(A,X) be the associated level of consumer welfare. Our analysis

11Since M is the mass of entrants and θ∗ is the selection cut-off, (1 − G(θ∗))M is the mass of surviving firms and this
integrates to one from the budget constraint (2).

12Our notion of allocative efficiency compares changes in welfare due to reallocations against the benchmark where
the allocation of resources is held constant. A different notion of allocative efficiency that is also sometimes used in
the literature measures changes in the distance to the efficient frontier. Changes in that measure of allocative efficiency
depend both on whether reallocations are beneficial/harmful and how far the efficient frontier moves due to changes in
technology. See Baqaee and Farhi (2019) for a discussion.
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decomposes changes in welfare into changes in technical and allocative efficiency as

d log Y =
∂ logY
∂ logA

d logA︸             ︷︷             ︸
technical efficiency

+
∂ logY
∂X

dX.︸       ︷︷       ︸
allocative efficiency

(12)

At the efficient allocation, the envelope theorem implies that changes in allocative efficiency

are zero to a first-order. Inefficiencies in the initial allocation of resources open the door for

reallocations to have first-order effects on welfare. Hence, in the general case, our model will

feature changes in both technical and allocative efficiency following a shock to market size.

3.2 Pass-Throughs and Consumer Surplus Ratios

In this section, we introduce two statistics related to the shape of demand curves that we use to

characterize changes in consumer welfare. We define the pass-through of a variety as the elasticity

of its price to its marginal cost. A firm’s pass-through can be expressed as a function of primitives,

ρθ(
y
Y

) =
∂ log pθ
∂ log mcθ

= 1 +
∂ logµθ
∂ log mcθ

=
1

1 +
y
Yµ
′

θ
( y

Y )

µθ( y
Y )
σθ( y

Y )
, (13)

where the price-elasticity of demand and markup functions are given by (5) and (6). Under CES

preferences, firms’ desired markups are constant, and hence firms exhibit “complete pass-through”

(ρθ = 1). In general, however, firms’ desired markups may vary with size. For example, if a firm’s

desired markup is increasing in its size, the firm will exhibit “incomplete pass-through” (µ′θ( y
Y ) > 0

and thus ρθ < 1).13

We denote the consumer surplus per unit sales for a variety by δθ. More precisely, δθ is the

ratio of consumption-equivalent utility from a marginal variety, δ̄Υθ( y
Y ), to its per-capita sales:

δθ(
y
Y

) =
δ̄Υθ( y

Y )
pθyθ

=
Υθ( y

Y )
y
YΥ′

θ
( y

Y )
. (14)

Figure 1 gives a visual representation of δθ as the ratio of consumer surplus A + B to revenues A.

Naturally, the consumer surplus ratio δθ ≥ 1 for all θ. In a CES model, δθ measures the “love-of-

variety” effect. In this model, this love-of-variety effect can vary both by type θ and relative size

yθ/Y.

By integrating over Equation (14), we can show that the demand index in (4) is simply the

sales-weighted average of this consumer surplus ratio,

Eλ[δθ] = δ̄. (15)

13This is sometimes referred to as Marshall’s second law of demand (see Melitz, 2018 for more information).
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Figure 1: Graphical illustration of δθ as the area under the residual demand curve divided by
revenues. That is δθ = (A + B)/A ≥ 1.

3.3 Welfare

We are interested in how welfare (per capita) responds to changes in market size. The change in

consumer welfare, measured using either the equivalent or compensating variation, is given by

d log Y = (Eλ[δθ] − 1) d log M︸                   ︷︷                   ︸
Consumer surplus

from entry of new varieties

− (δθ∗ − 1)λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗︸                          ︷︷                          ︸

Consumer surplus (loss)
from exit of varieties dθ∗

− Eλ
[
d logµθ

]
︸          ︷︷          ︸
Marginal surplus

from price changes

. (16)

Intuitively, welfare changes d log Y incorporate the consumer surplus brought about by the entry

of new varieties d log M or destroyed by the exit of varieties dθ∗ via the first two terms on the

right-hand side of (16). The final term captures how marginal changes in prices of non-entering

and non-exiting goods affect the consumer.

As pointed out by Aghion et al. (2019a), statistical agencies calculate real GDP using the

change in prices for continuing varieties present before and after a change. Hence, the change

in measured real GDP per capita in our model is equal to the last summand in (16)—that is, the

change in nominal income per capita deflated by the change in prices for continuing varieties

weighted by their market shares,14

d log Q = −Eλ[d log pθ] = −Eλ
[
d logµθ

]
. (17)

Since we assume that labor is the only factor of production, changes in real GDP per capita are also

equal to changes in aggregate TFP. This extends the observation made by Jaimovich and Floetotto

14In principle, changes in real GDP can either be defined using a quantity index or a price index. In practice, real GDP
is measured using the GDP deflator, so we use the price index definition. We include a discussion of the quantity index
in Appendix J.
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(2008) who show that, in a model with entry and variable markups, variations in markups affect

aggregate productivity. The key point is that changes in real GDP per capita and aggregate TFP

do not generically coincide with changes in welfare if δθ , 1.

It is worth discussing a couple cases in which consumer welfare changes and real GDP changes

do coincide. If the model did not allow for the creation and destruction of varieties, then the first

two terms of (16) would be zero, and changes in consumer welfare would equal changes in real

GDP per capita. Consumer welfare changes and real GDP changes also coincide in models of

entry featuring no fixed costs and demand curves with choke prices. If new goods enter smoothly

from the choke price, then δθ = 1 for all entrants, and the first two terms are zero.15

4 Changes in Market Size

In this section, we characterize how an increase in L affects welfare. Following Krugman (1979),

one can think of this as capturing the effect of trade integration of symmetric economies. Suppose

we have N countries with identical tastes and technologies, with populations L1,L2, ...,LN. The

market equilibrium if these N countries trade freely is the same as the market equilibrium in a

single, closed economy with size L1+L2+...+LN; hence, comparative statics of the equilibrium with

respect to L can be interpreted as the effect of opening to trade with symmetric foreign markets.

As noted by Helpman and Krugman (1985), reallocations associated with increased competition

can mitigate or exacerbate existing distortions. We first describe the distortions in the initial

equilibrium. Then, we show how the reallocations caused by a market expansion interact with

these pre-existing distortions to affect allocative efficiency.

4.1 Sources of Inefficiency

An allocation is inefficient if welfare can be increased by reallocating labor between entry, overhead,

and variable production while keeping the total amount of labor fixed. There are three margins

along which the allocation can be inefficient in this model: (1) entry can be excessive or insufficient;

(2) selection can be too tough or too weak; (3) the cross-sectional allocation of labor across variable

production may be distorted. We discuss these three different kinds of inefficiency in turn and

show that each can be characterized with simple conditions on the sufficient statistics presented

in Section 3.2.

In what follows, we define local efficiency for each margin. That is, whether a marginal

reallocation along some dimension improves or decreases welfare. This is distinct from global

15When new varieties enter smoothly from the choke price, rather than across the type distribution, the first term will
rely on δθ∗ rather than Eλ[δθ]. This discussion applies, for example, to Arkolakis et al. (2019): In their model, there are no
fixed costs of exporting and export quantities vary smoothly from zero (at the choke price), so the response of real GDP
per capita and welfare to a change in iceberg trade costs coincide.
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efficiency which compares the allocation to the first-best allocation. These local notions of efficiency

are the ones that are relevant for reallocation effects in the decentralized equilibrium.

Entry efficiency. Consider a marginal reallocation that reduces variable production labor and

increases entry and overhead labor, keeping the selection cut-off and the relative allocation of labor

across varieties constant. If this perturbation raises welfare, we say that entry is insufficient. If the

opposite holds, we say that entry is excessive.

Lemma 1 (Excessive/Insufficient Entry). Entry is insufficient if, and only if,

Eλ
[
µ−1
θ

]−1
< Eλ[δθ]. (18)

If this inequality is reversed, entry is excessive.

In words, there is too little entry if the harmonic (sales-weighted) average of firm markups

is less than the sales-weighted average consumer surplus ratio. Intuitively, entrants respond to

average markups (since markups determine profits), but the value of entry for consumers depends

on the average consumer surplus ratio. In a CES model, (18) holds as an equality and so the CES

model has efficient entry.

Selection efficiency. We say that selection is too weak if marginally increasing the selection

cutoff—and reallocating the labor from those newly exiting varieties proportionately to entry,

overhead, and variable production—increases welfare.

Lemma 2 (Tough/Weak Selection). Selection is too weak if, and only if,

δθ∗ < Eλ[δθ]. (19)

If this inequality is reversed, selection is too tough.

Suppose that the selection cutoff θ∗ increases. If the consumer surplus associated with the

marginal variety δθ∗ is lower than the average Eλ[δθ], the welfare associated with new varieties

created from the freed-up labor outweighs the welfare loss from the exiting varieties. Since the

increase in the selection cut-off is welfare-improving, in this case, we say that selection was initially

too weak.

Crucially, note that if the inequality in (19) is reversed, then an increase in the selection cut-off

dθ∗ > 0 reduces efficiency and welfare. Therefore, tougher selection and the death of marginally

profitable firms is not, ipso facto, evidence that efficiency is rising. In a CES model, (19) holds as

an equality and so the CES model has efficient entry.

Relative production efficiency. Finally, we say that the amount of variable labor dedicated to

the production of one variety is too high compared to another if, on the margin, welfare increases

when variable labor is reallocated from the former to the latter.

13



Lemma 3 (Cross-section misallocation). Variable labor of variety θ′ is too high compared to that of
variety θ if, and only if,

µθ′ < µθ. (20)

Intuitively, firms with higher markups are inefficiently small in the cross-section compared

to firms with lower markups. Hence, reallocating labor from a low-markup firm to a high-

markup firm increases allocative efficiency. Crucially, it is a comparison of markups µθ, and not

productivities Aθ, that determines whether or not one firm should be larger than another from

a social perspective. If markups happen to be positively associated with productivity, then an

expansion of more productive firms increases welfare, but this is only because “high productivity”

proxies for “high markup.”16

In a CES model, (20) holds as an equality and so the CES model has an efficient cross-sectional

allocation of resources.

4.2 Welfare and Shocks to Market Size

We characterize the change in welfare following an exogenous change in market size.

Theorem 1 (Welfare Effect of Change in Market Size). In response to changes in population d log L,
changes in consumer welfare are given by

d log Y =

(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+
ξε + ξθ

∗

+ ξµ

1 − ξε − ξθ∗ − ξµ

(
Eλ[δθ]

)
d log L︸                                     ︷︷                                     ︸

allocative efficiency

, (21)

where

(Darwinian Effect) ξε = (Eλ[δθ] − 1) Covλ

[
σθ,

1
µθ

]
,

(Selection Effect) ξθ
∗

= (Eλ[δθ] − δθ∗)λθ∗γθ∗
(
Eλ

[
σθ∗

σθ

]
− 1

)
,

(Pro/Anti-competitive Effect) ξµ = Eλ
[(

1 − ρθ
)
σθ

(
1 −

Eλ[δθ]
µθ

)]
Eλ

[ 1
σθ

]
,

and γθ∗ > 0 is the hazard rate of the profitability distribution Xθ at the selection cut-off. In terms of
primitives, this is

1
γθ∗

=
1 − G(θ∗)

g(θ∗)

[
∂ log Xθ

∂θ

∣∣∣∣∣
θ∗

]
=

1 − G(θ∗)
g(θ∗)

[
−σθ
ρθ

∂ logµθ
∂θ

+

(
σθ
ρθ
− 1

)
∂ log Aθ

∂θ
−
∂ log fo,θ
∂θ

∣∣∣∣∣∣
θ∗

]
.

16In general, the productivity level is irrelevant for whether a given reallocation improves or worsens efficiency. This
contrasts with statistical decompositions, for example Olley and Pakes (1996), which consider a reallocation towards
firms with higher levels of productivity Aθ as an indicator of an improvement in efficiency. For more detail, see the
discussion in Baqaee and Farhi (2019).
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Equation (21) decomposes the change in welfare into a technical and allocative efficiency effect

according to the definition in Section 3.1. We start by discussing the technical efficiency term

before discussing the allocative efficiency term.

The first term in Equation (21) captures the changes in technical efficiency that arise due to an

increase in market size, holding fixed the proportional allocation of resources across uses (entry,

overhead, and variable production). Because the fraction of labor allocated to entry is held fixed,

the increase in population implies a proportional increase in entry. This has two offsetting effects.

First, the new varieties increase consumer welfare by Eλ[δθ]d log L, since the consumer’s surplus

associated with the new varieties will average Eλ[δθ]. On the other hand, the increase in the

number of varieties reduces the per-capita consumption of existing varieties by d log L. The net

effect balances these two offsetting effects. Since δθ ≥ 1, the technical efficiency term is always

positive. In a CES model, this is the only effect.

The second term in (21) captures how changes in the allocation of resources contribute to

welfare. Each of ξε, ξθ
∗

, and ξµ relates to a particular type of reallocation. Throughout, we assume

that ξε + ξµ + ξθ
∗

< 1, which guarantees that the equilibrium exists and is locally unique. We

provide sufficient conditions that guarantee this in Appendix D.1.17

One way of thinking about the decomposition of the allocative efficiency effect into ξε, ξθ
∗

,

and ξµ is that the general equilibrium response can be analyzed as a series of three successive

allocations, each of which allows firms to adjust along a greater number of margins.18 In the first

restricted allocation, we allow free entry, but hold markups and the selection cutoff constant (i.e.,

µθ and θ∗ are fixed using implicit taxes). The change in welfare in this allocation is the same as in

Theorem 1, but setting ξθ
∗

= ξµ = 0. In the second allocation, firms can also change their decision

to operate but still cannot alter their markups. The change in welfare in this allocation is equal

to Theorem 1, but setting ξµ = 0. Finally, the third allocation allows firms to adjust on all three

margins: entry, exit, and choice of markup.

To fix ideas, we consider three special cases, each of which isolates and focuses on the intuition

for a different margin of adjustment.

17As discussed in Appendix D.1, since ξε + ξµ + ξθ
∗

is a function of
{
{λθ, δθ, µθ, ρθ,Xθ}θ∈Θ, θ∗

}
, and any feasible

collection
{
{λθ, δθ, µθ, ρθ,Xθ}θ∈Θ, θ∗

}
can be rationalized via some collection of primitives {Υθ,Aθ, fo,θ}, then as long as

0 ≤ ξε + ξµ + ξθ
∗

< 1, we can use the inverse function theorem to show that an equilibrium exists and is locally unique.
This requirement is satisfied in our calibrated application.

18The decomposition in Theorem 1 is different to the one provided by Dhingra and Morrow (2019). We focus on how
welfare is affected by different margins of adjustment. Dhingra and Morrow (2019) instead decompose gains from an
increase in market size into those present in homogeneous versus heterogeneous firm models. The quantity reallocations
they isolate, for example, group together Darwinian effects with effects due to heterogeneous pass-throughs, and cannot
be signed without assumptions on the shape of demand.
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4.2.1 Darwinian Effect

To isolate the role of the Darwinian effect, consider an economy in which there are no overhead

costs ( fo,θ = 0) so that θ∗ = 0. Furthermore, assume that preferences are given by

∫
∞

θ∗

( yθ
Y

) σθ−1
σθ dF(θ) = 1, (22)

which is a special case of (1) with Υθ(x) = x(σθ−1)/σθ .19

In this example, markups can vary in the cross-section of firms because µθ = σθ
σθ−1 , but markups

do not vary in time-series because pass-though is complete (ρθ = 1). The fact that markups do not

change means that ξµ = 0, and the fact that there are no overhead costs means that ξθ
∗

= 0. Hence,

we have the following.

Corollary 1 (Darwinian Effect). When preferences are given by (22) and overhead costs are zero, the
change in welfare from an increase in market size is given by

d log Y =

(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+
ξε

1 − ξε

(
Eλ[δθ]

)
d log L︸                      ︷︷                      ︸

allocative efficiency

≥ 0. (23)

Changes in allocative efficiency are strictly positive (ξε > 0) as long as there is any heterogeneity

in markups (and therefore price-elasticities):

ξε = (Eλ[δθ] − 1)Covλ

[
σθ,

1
µθ

]
= −(Eλ[δθ] − 1)Covλ

[
σθ,

1
σθ

]
≥ 0. (24)

In other words, the Darwinian effect is unambiguously positive regardless of the shape of demand

curves and does not depend on whether entry is excessive or insufficient.

To understand this effect, note that the change in the relative per-capita quantity of each variety

depends on the price-elasticity of demand and its price relative to the price index:

d log(
yθ
Y

) = −σθ(d log pθ − d log P) = σθd log P.

The second equality follows from the fact that in this example d log pθ = d logµθ = 0. Now

consider how an increase in market size affects demand for this firm. The increase in market

size, and the entry of new firms, causes the price aggregator to fall d log P < 0. The reduction in

the price aggregator triggers bigger reductions in per-capita quantities for firms that face more

elastic demand. The result is that low-markup firms (who have high price-elasticities of demand)

shrink more than high-markup firms (who have low price-elasticities). By Lemma 3, high markup

19These preferences were introduced by Matsuyama and Ushchev (2020a). They refer to these as “constant-price-
elasticity” preferences. When the σθ parameter is uniform across firm types, this collapses to CES.
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firms were initially too small relative to the efficient allocation, so this reallocation reduces relative

productive inefficiencies and improves welfare. We call this a Darwinian effect because a more

competitive environment, from a reduction in the price index, selects and shifts resources towards

the “fittest” firms (those with the most inelastic demand). The multiplier (Eλ[δθ] − 1) in (24)

appears because the reallocations caused by the Darwinian effect save on labor, and these extra

resources are funneled into additional entry.

4.2.2 Selection Effect

We now relax the assumption of zero overhead costs, while retaining the constant markups and

complete pass-throughs of the previous example. As a result, we reintroduce a source of allocative

efficiency changes due to changes in the selection cut-off (ξθ
∗

), but continue to hold ξµ = 0.

Corollary 2 (Darwinian and Selection Effect). When preferences are given by (22) and overhead costs
are nonzero, the change in welfare from an increase in market size is given by

d log Y =

(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+
ξε + ξθ

∗

1 − ξε − ξθ∗

(
Eλ[δθ]

)
d log L︸                              ︷︷                              ︸

allocative efficiency

. (25)

Whilst the Darwinian effect is always positive, changes in the selection cut-off will only increase

welfare if

ξθ
∗

= (Eλ[δθ] − δθ∗)λθ∗γθ∗
(
Eλ

[
σθ∗

σθ

]
− 1

)
≥ 0.

This happens, for example, if consumer surplus ratio at the cut-off δθ∗ is lower than average Eλ[δθ],

and the price elasticity σθ∗ is higher than average Eλ[σθ]. The second condition ensures that the

selection cut-off increases in response to an increase in market size since the marginal firms are

more exposed to competition than the average firm, and the first condition ensures that the death

of marginal firms is beneficial since selection was too weak to begin with.

An important implication is that increases in the selection cutoff, dθ∗ > 0, are not, on their own,

evidence of an improvement in allocative efficiency. Increases in selection due to intensifying

competition are only socially desirable if allocating labor to the marginal firm provides households

with less consumer surplus than reallocating that labor to entry and other surviving firms. Indeed,

in our quantitative application in Section 7, we find that increases in the selection cut-off are

welfare-reducing.

4.2.3 Pro/Anti-Competitive Effect

In our third and final example, we turn off the Darwinian and selection effects by considering an

economy with homogeneous firms. In this example, reallocations are driven purely by the fact

that firms change their markups in response to changes in market size.

17



Corollary 3 (Pro/Anti-competitive effect). Suppose that all varieties face the same residual demand curve
Υ′θ = Υ′, overhead cost fo,θ = fo, and productivity Aθ = 1. The change in welfare from an increase in
market size is given by

d log Y = (δ − 1)d log L︸          ︷︷          ︸
technical efficiency

+ δ
ξµ

1 − ξµ
d log L︸            ︷︷            ︸

allocative efficiency

. (26)

When firms are homogeneous, ξε = ξθ
∗

= 0, and ξµ simplifies to

ξµ = (1 − ρ)
(
1 −

δ
µ

)
. (27)

If firms exhibit incomplete pass-through (ρ < 1), the allocative effects of markup adjustments are

welfare-enhancing if, and only if, there is initially too much entry (µ > δ). Intuitively, the increase

in market size causes the price index to fall, and this causes markups to decrease if ρ < 1. A

reduction in markups deters entry, which is beneficial if entry was excessive to begin with.

The literature typically refers to the idea that markups may fall with market size as the pro-
competitive effect of scale. In this example, the pro-competitive effect is captured entirely by ρ < 1:

markups decrease since the per-capita consumption of each firm’s output decreases in response to

entry. As (27) makes clear, the welfare impact of these pro-competitive effects then depends on

the initial efficiency of entry.20,21

4.3 Real GDP and Shocks to Market Size

We end this section by considering changes in real GDP. As we discuss in Section 3.3, changes in

welfare and real GDP per capita do not generically coincide when we allow for firm entry and

exit. Proposition 1 characterizes the change in real GDP per capita following a change in market

size.

Proposition 1 (Real GDP Effect of Change in Market Size). In response to changes in population
d log L, changes in real GDP per capita are

d log Q = Eλ
[
1 − ρθ

]
Eλ

[ 1
σθ

] (
d log Y + d log L

)
, (28)

where d log Y is given by Theorem 1.

20This discussion is closely related to the contemporaneous findings from Matsuyama and Ushchev (2020b), who
show that if entry is globally pro-competitive, then entry is excessive in models with homogeneous firms.

21Corollary 3 abstracts from firm heterogeneity. If firms are heterogeneous and pass-through is incomplete, whether
or not ξµ > 0 does not hinge purely on whether or not entry is excessive or insufficient. This can be seen by inspecting
Theorem 1. With heterogeneous firms, changes in markups also change the cross-sectional distribution of resources.
Whether or not these reallocations are beneficial or harmful is in general ambiguous even if we know that entry is
excessive.
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An increase in population leads to a reduction in markups under incomplete pass-through

ρθ < 1, and this pro-competitive effect reduces the price of continuing varieties. Since real GDP

depends on the change in the price of continuing varieties, this can cause real GDP per capita to

rise d log Q = −Eλ[d log pθ]. If pass-through is complete, then real GDP per capita does not change

as the market expands. Hence, reallocation affects welfare and real GDP through very different

channels. This also applies to aggregate productivity, as measured by national income accounts,

which in this model coincides with real GDP per capita.

5 Policy Interventions

In this section, we consider the implications of our results for policy. Section 4.1 discussed the three

margins along which the decentralized allocation can be distorted—entry inefficiency, selection

inefficiency, and relative production inefficiencies. The policy that obtains the first-best allocation

eliminates all three margins of distortion. Achieving the first-best requires at least as many policy

instruments as there are firm types, since at the minimum this policy must correct for all pairwise

mismatches in markups across any two firm types θ and θ′. Moreover, the planner also needs

to regulate selection by comparing consumer surplus at the cut-off against the average. Whereas

such extensive interventions in the market are impracticable, regulating entry is, in comparison,

straightforward.22

In this section, we consider how a marginal entry tax affects welfare, and show that an entry

tax can trigger similar reallocative forces as those in Section 4. The tax on entry, τ, modifies the

free entry condition given in (9), so that each entering firm now pays (1 + τ) fe units of labor upon

entry: ∫
∞

θ∗

[(
1 −

1
µθ

)
pθyθwL − fo,θ

]
g(θ)dθ = (1 + τ) fe. (29)

Government revenues from this tax are rebated lump-sum to households.

For brevity, we include additional details of how these changes affect the system of equilibrium

conditions in Appendix E and continue now to the welfare result. Proposition 2 characterizes the

response of welfare to a tax on entry, starting from the point where entry is untaxed.

Proposition 2 (Welfare Effect of an Entry Tax). Suppose entry is initially untaxed (unsubsidized). The
response of welfare to a marginal tax on entry is given by

d log Y =

1 −
Eλ [δθ] /Eλ

[
µ−1
θ

]−1
+ (Eλ [δθ] − δθ∗)λθ∗γθ∗

1 − ξε − ξθ∗ − ξµ

ψe dτ, (30)

where ψe = fe/
(

fe + (1 − G(θ∗))E
[

fo,θ
])

is the entry cost share of all fixed costs, and ξε, ξθ
∗

, and ξµ are as

22For more discussion of first-best policy, see Appendix F.1, where we characterize the policy that achieves first-best.
We use this optimal policy to estimate the distance of the decentralized equilibrium to the efficient frontier.
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defined in Theorem 1.

Whether an entry tax increases welfare depends on the sign of the term in parentheses in (30).

This term is more likely to be positive—and an entry tax is more likely to be welfare-enhancing—if

entry is excessive (Eλ[δθ] < Eλ[µ−1
θ ]−1), if selection is too tough (Eλ[δθ] < δθ∗), or if the beneficial

reallocations from entry given by ξε, ξθ
∗

, and ξµ are small.

An immediate implication of Proposition 2 is that excessive entry (as defined in Lemma 1) is

not a sufficient condition for an entry tax to be welfare-increasing. For example, if the beneficial

reallocations from entry (ξε+ξθ
∗

+ξµ) are sufficiently large, then attempting to correct for excessive

entry with an entry tax will actually be welfare-reducing because the economy loses the beneficial

cross-sectional reallocations associated with entry.

We illustrate this intuition by briefly discussing the welfare effect of the entry tax in the three

special cases from Section 4.

Darwinian effect. Consider again the economy in Section 4.2.1, where there are no overhead

costs and preferences are given by (22). In this example, the entry tax has no effect on firms’

markups or on selection.

Corollary 4 (Darwinian Effect). When preferences are given by (22) and overhead costs are zero, the
change in welfare from a marginal tax on entry is positive if, and only if,

Eλ [δθ] < (1 − ξε)Eλ
[
µ−1
θ

]−1
. (31)

Note that this condition is more stringent than the condition for excessive entry in Lemma 1,

since ξε > 0 in any economy with heterogeneous markups. Intuitively, since entry alleviates

relative production inefficiencies due to Darwinian reallocations, the welfare impact of an entry

tax may be negative if the loss of those Darwinian reallocations outweighs the benefits of moving

closer to the efficient level of entry.

Selection effect. Suppose we retain complete pass-through preferences, but now allow for

nonzero overhead costs, as in Section 4.2.2. The economy now features both Darwinian and

selection effects, but pro-/anti-competitive effects are still absent.

Corollary 5 (Darwinian and Selection Effect). When preferences are given by (22) and overhead costs
are nonzero, the change in welfare from a marginal tax on entry is positive if, and only if,

Eλ [δθ] <
(
1 − ξε − (Eλ [δθ] − δθ∗)λθ∗γθ∗Eλ

[
σθ∗

σθ

])
Eλ

[
µ−1
θ

]−1
. (32)

This condition is more stringent than the condition in Corollary 4 if selection is too weak

(δθ∗ < Eλ[δθ]), and less stringent if selection is too tough. Intuitively, an entry tax decreases

selection, which is only beneficial if the initial level of selection was too tough.
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Pro/anti-competitive effect. Finally, consider an economy with homogeneous firms, as in

Section 4.2.3. In this economy, entry has no Darwinian or selection effects, since firms are identical.

Corollary 6 (Pro/Anti-Competitive Effect). Suppose that all varieties face the same residual demand
curve Υ′θ = Υ′, overhead cost fo,θ = fo, and productivity Aθ = 1. The change in welfare from a marginal
tax on entry is positive if, and only if, entry is excessive:

δ < µ. (33)

Without firm heterogeneity, the entry margin is the sole source of potential inefficiency. As

a result, the change in welfare following an entry tax depends only on whether entry is initially

excessive or insufficient as in Lemma 1.

6 Calibration Strategy

In this section, we discuss how we take the theory to the data. We first describe our non-parametric

calibration procedure. We then implement it using Belgian data and show how the primitives can

be derived from the data. In Section 7, we use the calibrated model to perform quantitative

experiments.

6.1 Non-Parametric Calibration Approach

The model has many degrees of freedom, so to calibrate the model, we impose two restrictions:

(1) firms face identical overhead costs fo,θ = fo, and (2) the aggregators Υθ take the form,

Υθ(
yθ
Y

) = Υ(Bθ
yθ
Y

). (34)

Hence, firms differ in their productivities Aθ and taste shifters Bθ. These taste shifters are equivalent

to price reductions, but they are unobservable. Allowing for taste-shifters is important since, in

practice, two firms that charge the same price in the data can have very different sales. The

presence of taste-shifters allow us to accommodate this possibility.23

Given our assumption that overhead costs are the same for all firms, we can identify a firm’s

type from its position in the sales distribution. We rank firms by sales and assign their type to be

the fraction of firms with less sales. We will take two objects as data: (1) the density of sales shares

λθ, and (2) the distribution of pass-throughs ρθ. As we will show, the pass-through function is a

third-order differential equation in the Kimball aggregator, and can be used to calibrate the model

up to boundary conditions. For boundary conditions, we need to take a stand on the average levels

23If there were no taste-shifters, then one could identify the residual demand curve by simply plotting price against
quantity in the cross-section. In practice, this is infeasible because the prices firms report are not directly comparable to
one-another.
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of first and second derivatives, i.e. on the average markup and the average consumer surplus

ratio (these will be constants of integration). We will present our estimates for different values of

these variables.

Markups and consumer surplus ratios. In the cross-section, markups µθ and sales λθ must

solve two differential equations,

d logλθ
dθ

=
ρθ

µθ − 1
d log (AθBθ)

dθ
, (35)

d logµθ
dθ

=
(
1 − ρθ

) d log (AθBθ)
dθ

. (36)

Differences in consumer tastes Bθ are isomorphic to difference in productivities Aθ, and we do not

identify them separately. For simplicity, we refer to (AθBθ) as a variety’s productivity.

The intuition for the first differential equation (35) is that, compared to a firm of type θ,

a firm with type θ + dθ has higher productivity d log (AθBθ) /dθ, lower “taste-adjusted” price

d log pθ/dθ = ρθd log (AθBθ) /dθ, and thus higher sales d logλθ/dθ = (σθ − 1)d log pθ/dθ. The

second differential equation (36) comes from the fact that the relationship of desired markups to

productivity is d logµθ/d log (AθBθ) = 1 − ρθ.

Combining the two equations yields

d logµθ
dθ

= (µθ − 1)
1 − ρθ
ρθ

d logλθ
dθ

. (37)

Given sales sharesλθ and pass-throughs ρθ, this differential equation allows us to recover markups

µθ up to a constant µθ∗ . We choose the initial value µθ∗ ≥ 1 to match a given value of the (harmonic)

sales-weighted average markup µ̄ = Eλ[µ−1
θ ]−1.

Either of the two differential equations for sales shares or markups then allows us to recover

AθBθ up to a constant Aθ∗Bθ∗ , which we normalize to 1.

Finally, we recover consumer surplus ratios using the differential equation

d log δθ
dθ

=
µθ − δθ
δθ

d logλθ
dθ

, (38)

with the initial condition δθ∗ chosen to match a given value of the average consumer surplus ratio

Eλ[δθ] = δ̄.

Fixed costs and selection cut-off. The information so far does not reveal the cut-off value θ∗,

so calibrating this number requires outside information. To calibrate the marginal type θ∗, we step

slightly outside the model and imagine that new firms operate for one year before they choose to

shut down; after the first year, firms face a constant, exogenous death rate. Hence, the difference

between the probability of exit in the first year versus later years identifies θ∗. Conditional on θ∗,
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we can back out the fixed costs using the free-entry condition

fe
L

+ (1 − G(θ∗))
fo
L

=
1
M

E
[
λθ

(
1 −

1
µθ

)]
, (39)

and the selection condition

(1 − G(θ∗))
fo
L

=
1
M
λθ∗

(
1 −

1
µθ∗

)
, (40)

where the total population L and the mass of firms M can be normalized to 1. This completes what

we need to calibrate the model.

In principle, one could alternatively use estimates of markups µθ or consumer surplus ratios

δθ in conjunction with sales λθ to calibrate the model. We instead rely on pass-throughs, since

estimating markups is notoriously difficult (typically requiring a fully-specified model of demand

or production function estimation), and since estimating δθ would require experimental data

tracing out individual demand curves. The downside is that calibrating the model using ρθ

requires outside information to pin down boundary conditions µ̄ and δ̄.

6.2 Calibration Implementation

In this section, we implement the calibration procedure described above using estimates of the

firm-level pass-throughs and the distribution of firms sales. We refer readers interested in a more

detailed description of our data sources to Appendix A.

Data sources. To calibrate the model, we need data on pass-throughs ρθ, firm sales λθ, and

the selection cut-off θ∗. For ρθ, we use estimates of pass-throughs by firm size for manufacturing

firms in Belgium from Amiti et al. (2019). They use annual administrative firm-product level data

(Prodcom) from 1995-2007, which contains information on prices and sales, collected by Statistics

Belgium. Using exchange rate shocks as instruments for changes in marginal cost, they are able to

control for the portion of price changes due to competitors’ prices, and hence identify the partial

equilibrium pass-through by firm size (under assumptions consistent with our model). Their

estimates are shown in Figure 2a.24

Prodcom does not sample very small firms (firms must have sales greater than 1 million euros

to be included). Therefore, we merge their estimates of the pass-through function ρθ (as a function

of size) with the sales distribution λθ for the universe of Belgian manufacturing firms (from VAT

declarations). The cumulative sales share distribution is shown in Figure 2b.

For firms that are smaller than the smallest firms in Prodcom, we interpolate their pass-through

in such a way that the smallest firm has pass-through equal to one, since Amiti et al. (2019) find

24Appendix A in Amiti et al. (2019) provides evidence that differences in pass-through across small and large firms
are not driven by confounders (e.g., exporters or multinationals).
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(b) Cumulative sales share distributions.

Figure 2: The blue dots are data showing the average sales-weighted pass-through and cumulated
sales share for firms smaller than the percentile given by the x-axis. The solid red line is a fitted
spline.

that the average pass-through for the smallest 75% of firms in Prodcom is already 0.97.25

To calibrate θ∗, we fit a quasi-hyperbolic process to firm exit probability by age as reported by

Pugsley et al. (2018). We find θ∗ = 0.15.

Boundary conditions. Our results require taking a stand on two boundary conditions: the

average consumer surplus ratio δ̄ and the (harmonic) average markup µ̄. We focus on two

benchmark calibrations of δ̄: (1) efficient entry δ̄ = µ̄ (see Lemma 1), and (2) efficient selection

δ̄ = δθ∗ (see Lemma 2). We consider two different values for the average markup µ̄ = 1.045

and µ̄ = 1.090, which are chosen so that d log Y/d log L ≈ 0.13 under the first assumption, and

d log Y/d log L ≈ 0.30 under the second assumption. An aggregate scale elasticity d log Y/d log L ∈
[0.13, 0.3] is broadly in line with the literature.26 In Appendix C, we vary both boundary conditions

along a 2-dimensional grid and show that the two benchmark cases we focus on are representative

of broader patterns.

Calibrated statistics. Figures 3a and 3b display pass-throughs ρθ and log sales logλθ as a

function of firm type θ. These are derived by differentiating the splines in Figures 2 (see Appendix

A for more details). Figure 3a shows that pass-throughs decrease from 1 for the smallest firms

to about 0.3 for the largest firms. Figure 3b shows that sales are initially increasing exponen-

tially (linear in logs), but become super-exponential towards the end reflecting a high degree of

25In mapping the model to the data, we assume that products sold by the same firm are perfect substitutes, so each
firm is a different variety. We could alternatively assume that each product is a separate variety. Appendix B provides
results using this assumption. The computed elasticities are different, but the overall message does not change.

26For context, in a CES model, d log Y/d log L = 0.13 corresponds to setting an elasticity of substitution around 8 whilst
d log Y/d log L = 0.3 corresponds to an elasticity of substitution around 4.

24



0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Percentile

Pa
ss

-t
hr

ou
gh
ρ
θ

(a) Pass-through ρθ

0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

Percentile

Lo
g

sa
le

s
sh

ar
e
λ
θ

(b) Log sales share density logλθ

Figure 3: Pass-throughs and sales share density as a function of firm type θ.

concentration in the tail.

The results from solving the differential equations are shown in Figure 4. Figure 4a shows that

markups µθ are increasing and convex in log productivity/quality, log (AθBθ). For brevity, we only

show graphs of the estimates for µ̄ = 1.090 but the patterns are similar for the other case (though of

course, markups are lower when we set µ̄ = 1.045). The net markup ranges from close to zero for

the smallest firms to almost 80% for the very largest firms. Figure 4b shows the log productivity

distribution. As with the sales density, the productivity density is also initially exponential, and

becomes super exponential in the tail. Since price elasticities are decreasing in θ, productivity has

to change by more than sales in the cross-section to allow firms to get large. Figures 4d and 4c

show the consumer surplus ratio δ for the efficient-selection case (δθ∗ = δ̄) and the efficient-entry

case (µ̄ = δ̄).

Finally, Figure 5 plots the inverse residual demand curve in linear and log-log terms. Figure

5a shows that our estimate has a distinctly non-isoelastic shape, indicating substantial departures

from CES.

7 Quantitative Results

In this section, we compute how welfare changes in response to an increase in market size and in

response to a tax on entry, using the calibrated Belgian data. For both exercises, we decompose

welfare gains into technical and allocative efficiency, and further decompose allocative efficiency

changes into the Darwinian, selection, and pro-competitive margins. As extensions, we compare

macro returns to scale (at the aggregate level) to micro returns to scale, show that our local

approximations provide a good guide to the nonlinear response of the model, and illustrate how

increases in market size increase industrial concentration.
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(d) Consumer surplus ratio δθ (efficient en-
try).

Figure 4: Markups and consumer surplus ratios with µ̄ = 1.090.
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Figure 5: Residual demand curve (price against quality-adjusted quantity) for the efficient-selection
case with µ̄ = 1.09. The results for the efficient-entry case are similar.

26



Welfare effect of a market expansion. Table 1 reports the elasticity of consumer welfare to

market size, following Theorem 1. The response of welfare is decomposed into changes due to

technical efficiency and allocative efficiency,

d log Y = d log Ytech + d log Yalloc.

The table further decomposes the allocative effect by into the Darwinian, selection, and pro-

competitive channels. We denote welfare under the Darwinian effect d log Yε only (holding fixed

θ∗ and markups µθ); welfare allowing the Darwinian and selection effect d log Yε,θ
∗

(holding fixed

markups µθ); and welfare when all three margins can adjust d log Yε,θ
∗,µ = d log Y.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.130 0.145 0.293 0.323
Technical efficiency: d log Ytech 0.017 0.045 0.034 0.090
Allocative efficiency: d log Yalloc 0.114 0.100 0.260 0.233

Darwinian effect: d log Yε
− d log Ytech 0.117 0.408 0.272 1.396

Selection effect: d log Yε,θ∗
− d log Yε 0.000 -0.251 0.000 -1.006

Pro-competitive effect: d log Yε,θ∗,µ
− d log Yε,θ∗ -0.004 -0.057 -0.012 -0.157

Real GDP per capita 0.024 0.024 0.051 0.052

Table 1: The elasticity of welfare and real GDP per capita to population following Theorem 1 and
Proposition 1.

When discussing the results, we focus on the case with µ̄ = 1.045, but similar comments apply

to the case where µ̄ = 1.090. We start by discussing the case with efficient entry first (δ̄ = δθ∗). By

construction, the elasticity of consumer welfare to population is 0.13. Only around a tenth of the

overall effect is due to the technical efficiency effect δ̄ − 1 = 0.017. Changes in allocative efficiency

0.114 account for around nine-tenths of the overall effect. An increase in market size therefore

brings about considerable improvements in allocative efficiency, and these improvements are

about nine times larger than direct gains from technical efficiency.

The change in allocative efficiency from the Darwinian effect is large and positive at 0.117. The

selection and pro-competitive effects are insignificant in comparison. The change in allocative

efficiency from the selection effect is zero by construction, since the surplus associated with exiting

varieties is equal to the average consumer surplus. Finally, the change in allocative efficiency from

the pro-competitive effect is slightly negative at −0.004. This number includes the effects of an

overall reduction in markups and entry, which is beneficial since entry is initially too high (µ̄ > δ̄),

and a reallocation effect between high-markup and low-markup firms that depends on the relative
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pass-throughs and elasticities of firms. In principle, the overall effect is ambiguous in sign, and

here we find that detrimental reallocation effects dominate the beneficial reduction in markups,

leading to an overall reduction in welfare from the pro-competitive channel.27

The elasticity of real GDP per capita is much smaller than the elasticity of welfare to market

size at 0.024. As discussed earlier, this difference is a consequence of the fact that the welfare

benefits of new goods are not reflected in changes in real GDP.28

Next, consider the case with efficient entry. The elasticity of welfare with respect to population

shocks is now slightly higher at 0.145. The technical efficiency effect is now 0.045, reflecting the fact

that δ̄ is calibrated to equal µ̄ = 1.045. The allocative efficiency effect is still much more important

than the technical efficiency effect at 0.100.

The Darwinian effect is now much larger at 0.408. The main reason for the increase is because

Eλ[δθ] − 1 is now 0.045 instead of 0.017. This implies that entry is more valuable than it was

before. Since the labor saved by the Darwinian effect is funneled into more entry, this makes the

Darwinian effect more beneficial as well. The selection effect from the adjustment of the exit cut-off

is now non-zero and negative at −0.27. The reason for this can be seen from inspecting Figure 4d,

which shows that the consumer surplus ratio at the cut-off is much higher than average. Hence,

as the cut-off increases in response to toughening competition, socially valuable small firms are

forced to exit. Finally, the pro-competitive effect from the reduction in markups is still negative

and larger in magnitude at −0.057. The reason the pro-competitive effect is now more negative

is because entry was initially excessive in the efficient-selection case, so the overall reductions in

markups had a beneficial effect on the entry efficiency. Since we are now imposing entry efficiency,

this effect no longer operates, and the overall contribution of changing markups to welfare is more

negative.

The response of real GDP per capita is basically unchanged at 0.024, since in both specifications,

the average reduction in markups for existing firms is roughly the same.

How important can selection be? An important theme in the literature has been to empha-

size the role of the selection margin (increases in the productivity/quality cut-off) as a driver of

27The effect of reductions in markups is complicated by cross-sectional misallocation. Since pass-throughs are below
one for all firms, all firms cut their markups in response to entry. However, large firms cut their markups by more than
small firms since their pass-through is lower. This pushes in the direction of reallocations towards large firms. However,
the small firms have much more elastic demand curves, and this pushes in the direction of reallocations towards small
firms. In our quantitative model, the fact that the pro-competitive effect is harmful implies that the elasticity effect
dominates the pass-through effect. That is, the pro-competitive effect exacerbates cross-sectional misallocation because
it reallocates resources from high-markup firms towards low-markup firms.

28The large gap between the welfare and real GDP effect should be interpreted with caution, because it is sensitive
to a dimension of the problem, namely dynamics, which we have abstracted from. The reason is that real GDP, while it
misses the consumer surplus created immediately upon entry of a new variety, captures all the post-entry productivity
gains for this variety. Everything else equal, if new varieties enter small and grow larger over time by improving their
productivity, as would be realistic if varieties were identified with firms, there would be less of a difference between
welfare and real GDP. By contrast, if new varieties enter large, as would be realistic if varieties where products, then
there would be bigger difference between welfare and real GDP.
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productivity and welfare gains. However, in our baseline results, the selection margin is either

neutral (when δθ∗ = δ̄) or is deleterious (when δ̄ = µ̄). One may wonder how robust this finding is

and how it depends on our choice of boundary conditions.

To answer this question, we consider a third possibility for the initial conditions. We try

setting δθ∗ = 1, which implies that the residual demand curve for infra-marginal firms is perfectly

horizontal. In other words, the marginal firms produce no excess consumer surplus for the

household. This maximizes the importance of the selection margin for welfare, conditional on our

choice of µ̄. The results, however, are quantitatively very similar to those in Table 1.

Specifically, when µ̄ = 1.045, we find the overall effect on welfare is still 0.130 with a technical

efficiency effect of 0.016 and an allocative efficiency effect of 0.114. The Darwinian effect still

accounts for the bulk of changes in allocative efficiency at 0.116. The contribution of the selection

effect to welfare is now positive, but still close to insignificant at 0.001. The pro-competitive effect

is still negative and of similar magnitude to before at -0.003. Similarly, when µ̄ = 1.09, the welfare

effect is 0.293 with a technical efficiency effect of 0.033 and an allocative efficiency effect of 0.260.

Once again, the overwhelming force is the Darwinian effect at 0.269, with a negligible contribution

from the selection effect (0.003) and a small, negative pro-competitive effect (−0.012).

These results suggest that the small role played by the selection margin is not an anomaly

resulting from our choice of initial conditions. For robustness to our choice of µ̄, see the robustness

exercise in Appendix C.

How important is heterogeneity? To emphasize the interaction of heterogeneity and ineffi-

ciency, we compare our model to a model with homogeneous firms, calibrated to have a pass-

through equal to the average (sales-weighted) pass-through and a markup equal to the harmonic

average. Table 2 shows the results.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.030 0.045 0.060 0.090
Technical efficiency: d log Ytech 0.017 0.045 0.034 0.090
Allocative efficiency: d log Yalloc 0.013 0.000 0.026 0.000

Real GDP per capita 0.021 0.022 0.042 0.043

Table 2: The elasticity of welfare and real GDP per capita to market size in an economy with
homogeneous firms.

The most striking difference is that the elasticity of welfare to market size is much smaller,

because changes in allocative efficiency are an order of magnitude smaller due to the absence of

the Darwinian effect. In a model with homogeneous firms (see Section 4.2.3), the sole source of

inefficiency comes from excessive or insufficient entry. Thus, when entry is assumed to be efficient
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(the second and fourth columns), there are no changes in allocative efficiency at all. Even when

entry is not efficient, the changes in allocative efficiency are fairly small. Those beneficial changes

in allocative efficiency are solely due to pro-competitive effects.

Are there larger increasing returns at the macro vs. micro levels? The micro return to scale

for a surviving type θ is the ratio of average cost to marginal cost minus one acθ/mcθ − 1, so that 0

corresponds to constant returns to scale. The average cost is acθ = [ fe/(1−G(θ∗))+ fo+Lyθ/Aθ]/(Lyθ).

The marginal cost is mcθ = 1/Aθ. The harmonic average across surviving producers of the micro

return to scale is equal to 1/E[1/(acθ/mcθ − 1)] = µ̄ − 1.29

Hence average micro technological increasing returns to scale are 0.045 when µ̄ = 1.045 and

0.090 when µ̄ = 1.090. Increasing returns at the aggregate level are much larger: between 0.130

and 0.145 in the former case and between 0.293 and 0.323 in the latter case. This means that even

small technological increasing returns at the micro level can give rise to large increasing returns

to scale at the aggregate level. Once again, the interaction of inefficiency and heterogeneity is key.

If the economy were efficient, macro and micro returns would be identical. In an economy with

homogeneous firms, the difference between macro and micro returns is much smaller.

Nonlinear response. One might worry that the reallocative effects in Table 1 could peter out

quickly if we kept increasing the size of the market. Since the model is calibrated globally, we

can solve the model for large shocks and thereby analyze potential nonlinearities.30 The results

in Table 3 and Figure 6 below show that the forces identified for small shocks by Proposition 1

continue to apply for large shocks.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: ∆ log Y 0.100 0.099 0.215 0.216
Technical efficiency: ∆ log Ytech 0.025 0.048 0.052 0.098
Allocative efficiency: ∆ log Yalloc 0.075 0.051 0.162 0.117

Darwinian effect: ∆ log Yε
− ∆ log Ytech 0.066 0.107 0.145 0.272

Selection effect: ∆ log Yε,θ∗
− ∆ log Yε 0.000 -0.065 0.000 -0.176

Pro-competitive effect: ∆ log Yε,θ∗,µ
− ∆ log Yε,θ∗ 0.008 0.008 0.017 0.021

Real GDP per capita 0.025 0.024 0.054 0.051

Table 3: The average elasticity of welfare and real GDP per capita to population for a large shock
∆ log L = 0.5.

29From acθ = [(le + lo)/(1−G(θ∗)) + lθ]/(Aθlθ) and mcθ = 1/Aθ, we have acθ/mcθ − 1 = [(le + lo)/(1−G(θ∗))]/lθ and hence
1/(acθ/mcθ − 1) = (1 − G(θ∗)lθ/(le + lo). The result follows since (1 − G(θ∗))lθ = λθ/µθ and le + lo = 1 − 1/µ̄.

30We do this by numerically solving the system of ordinary differential equations in Appendix D.
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Table 3 reports the average (rather than the marginal) elasticity of welfare to a 0.5 log point

increase in population (a roughly 68% increase). The magnitude of and the decomposition of the

average effects are similar to those for the marginal effects reported in Table 1. Although the model

is far from being log-linear, the qualitative conclusions are unchanged.
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Figure 6: Decomposition of changes in welfare and allocative efficiency following Proposition 1,
obtained by separately computing each term in the decomposition and integrating (cumulating) the
changes. The model is calibrated to have efficient selection and µ̄ = 1.09 at the initial point.

Figure 6 shows cumulated changes in welfare and each channel for the calibration with efficient

selection δ̄ = δθ∗ and µ̄ = 1.09 (column 3). The first panel shows that even though their relative

importance decreases slightly with the size of the shock, changes in allocative efficiency continue

to dwarf changes in technical efficiency even for large shocks. The second panel shows that as

the population grows, changes in allocative efficiency due to the pro-competitive channel start

to account for a non-trivial part of overall changes in allocative efficiency. This happens because

as we increase population, the harmonic average of markups increases due to the Darwinian

effect. This means that entry becomes more excessive, and hence that reallocations triggered by

individual markup reductions improve allocative efficiency more.

Implications for industrial concentration. Figure 7 shows the Lorenz curve for the distri-

bution of sales as the market size increases. This graph shows the proportion of sales accounted

for by firms up to a given centile of the size distribution. The figure shows that concentration

rises as the market expands. This is primarily due to the Darwinian effect, which causes large,

high-markup firms to expand relative to small, low-markup firms. Hence, in our quantitative

application, increases in market size, from say globalization, raise welfare at the aggregate level

via reallocations that also increase industrial concentration. Baqaee and Farhi (2019) find that
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allocative efficiency in the U.S. economy improved from 1997-2015 due to a reallocation of market

share of high-markup firms; we speculate that Darwinian reallocations from globalization may

have contributed to this trend.
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Figure 7: Each panel depicts the Lorenz curve for the sales distribution for different values of the
market size parameter L. The dotted red line indicates the line of perfect equality (i.e. homogenous
firms). The Gini coefficient, which is a measure of inequality, is also reported.

Welfare effect on an entry tax. Table 4 shows the effect of an entry tax on welfare, following

Proposition 2. Note that the technology available to the economy is fixed, so all changes in

welfare arise from changes in allocative efficiency. We again decompose the welfare change into

the Darwinian, selection, and pro-competitive effects, where d log Yε holds fixed θ∗ and markups

µθ, d log Yε,θ
∗

holds fixed only markups µθ, and d log Yε,θ
∗,µ = d log Y allows all three margins

to adjust. The last row of the table re-computes the welfare effect of an entry tax in a model

with homogeneous firms calibrated to have a pass-through equal to the average sales-weighted

pass-through and a markup equal to the harmonic average.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y -0.082 -0.089 -0.187 -0.198

Darwinian effect: d log Yε
− d log Ytech -0.085 -0.391 -0.199 -1.283

Selection effect: d log Yε,θ∗
− d log Yε 0.000 0.248 0.000 0.943

Pro-competitive effect: d log Yε,θ∗,µ
− d log Yε,θ∗ 0.003 0.055 0.012 0.142

Welfare with homogeneous firms: d log Yhomog 0.014 0.000 0.028 0.000

Table 4: Welfare effect of an entry tax, following Proposition 2.

For all four choices of the boundary conditions, we find that the entry tax is welfare-reducing.

Since the tax reduces entry, the Darwinian effect operates in reverse, loosening competition,
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reallocating to low-markup firms, and thus exacerbating existing relative production inefficiencies.

The reduction in entry has beneficial pro-competitive effects and selection effects (when selection

is inefficient), but the losses due to Darwinian reallocations outweigh these benefits. In contrast,

when firm heterogeneity is excluded from the model, the entry tax is beneficial or has no effect

(when entry is efficient).

These results suggest that a social planner can increase welfare by enacting an entry subsidy.

Notably, the Darwinian effects that constitute the entire gains from an entry subsidy are absent in a

model with homogeneous firms. Thus, ignoring firm heterogeneity would lead us to recommend

a tax (rather than a subsidy) on firm entry.

8 Extensions

Before concluding, we describe some extensions of the basic framework.

Multi-sector economies. Although our analysis uses a single sector model, embedding this

structure into a larger multi-sector structure is relatively straightforward since preferences are

homothetic. For example, suppose that consumers have Cobb-Douglas preferences over sectors

U =
∏
I

YβI
I
,

where I indexes different sectors and each sector’s output is implicitly pinned down by∫
ΘI

Υθ(
yθ,I
YI

)dFI(θ) = 1.

In this case, it is straightforward to show that changes in welfare are simply a weighted-average

of changes in sectoral output
d log U
d log L

=
∑
I

βI
d log YI
d log L

,

where the change in sectoral output d log YI/d log L is given by a sector-specific version of Theorem

1.31

Optimal policy and distance to the efficient frontier. In the main text of the paper, we have

focused exclusively on comparative statics of the second-best equilibrium. For completeness, in

Appendix F.1, we provide an analytical characterization of optimal policy. We also provide an

analytical second-order approximation of the distance to the efficient frontier which decomposes

the contributions of the different margins of inefficiency (entry, selection, and relative production)

31The same logic can also be extended to more complicated sectoral models since, due to homotheticity, we can still
break the problem into two blocks: within and across sectors.
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to the overall amount of misallocation. In Appendix F.2, we compute the distance to the efficient

frontier in our calibrated model. There, we quantify the extent of misallocation in the decen-

tralized equilibrium compared to the first-best allocation. We find the number to be somewhere

between 2.5% and 6.8% in Belgium depending on the boundary condition. Therefore, there can

be large changes in allocative efficiency even though the decentralized economy is not too far

from efficiency. This appendix also helps cement that idea that when we increase the size of the

market, the frontier also moves. Therefore, changes in allocative efficiency due to reallocation

are fundamentally different to changes in the distance from the frontier. Reallocations can boost

welfare on the margin, even as the distance with the efficient frontier widens.

Other demand systems. In the main text, we focus on generalized Kimball preferences. This

is a class of preferences highlighted by Matsuyama and Ushchev (2017) as being both flexible

and tractable. In Appendix H, we show that our theoretical results, our calibration strategy, and

quantitative application are very similar under the other alternatives Matsuyama and Ushchev

(2017) point out.

Other shocks. In the main text of the paper, we have focused exclusively on shocks to pop-

ulation. In Appendix G, we provide comparative statics with respect to other parameters, like

productivity or fixed costs.

9 Conclusion

In this paper, we analyze the origins of aggregate increasing returns to scale. We decompose the

overall effect of a market expansion into changes in technical and allocative efficiency and quantify

our model using a non-parametric calibration exercise.

We find that changes in allocative efficiency, due to the reallocation of resources, are a more

important source of welfare gains from increases in scale than changes in technical efficiency.

Quantitatively, the most important reallocation is a composition effect that shifts resources from

firms with low markups towards those high markups, which we call the Darwinian effect. This

effect is distinct from changes in the marginal profitability cut-off and changes in markups. In

fact, increases in the cut-off and reductions in markups play only minor roles in comparison.

Furthermore, we find that a planner may want to subsidize entry, even if entry is excessive

compared to the first best, to take advantage of Darwinian reallocations.

References

Aghion, Philippe, Antonin Bergeaud, Timo Boppart, Peter J. Klenow, and Huiyu Li, “Missing

growth from creative destruction,” American Economic Review, 2019, 109 (8), 2795–2822.

34



, , , , and , “A Theory of Falling Growth and Rising Rents,” Technical Report 26448,

National Bureau of Economic Research 2019.

Amiti, Mary, Oleg Itskhoki, and Jozef Konings, “International Shocks, Variable Markups, and

Domestic Prices,” The Review of Economic Studies, 2019, 86 (6), 2356–2402.

Arkolakis, Costas, Arnaud Costinot, Dave Donaldson, and Andrés Rodrı́guez-Clare, “The elu-

sive pro-competitive effects of trade,” The Review of Economic Studies, 2019, 86 (1), 46–80.

Asplund, Marcus and Volker Nocke, “Firm turnover in imperfectly competitive markets,” The
Review of Economic Studies, 2006, 73 (2), 295–327.

Autor, David, David Dorn, Lawrence F. Katz, Christina Patterson, and John Van Reenen, “The

Fall of the Labor Share and the Rise of Superstar Firms,” The Quarterly journal of economics, 2020,

135 (2), 645–709.

Baqaee, David Rezza and Emmanuel Farhi, “Productivity and Misallocation in General Equilib-

rium.,” Technical Report, National Bureau of Economic Research 2019.

Basu, Susanto and John G. Fernald, “Returns to scale in US Production: Estimates and Implica-

tions,” Journal of Political Economy, 1997, 105 (2), 249–283.

Bilbiie, Florin O, Fabio Ghironi, and Marc J Melitz, “Endogenous entry, product variety, and

business cycles,” Journal of Political Economy, 2012, 120 (2), 304–345.

, , and , “Monopoly power and endogenous product variety: Distortions and remedies,”

American Economic Journal: Macroeconomics, 2019, 11 (4), 140–74.

Corcos, Gregory, Massimo Del Gatto, Giordano Mion, and Gianmarco I. Ottaviano, “Productiv-

ity and Firm Selection: Quantifying the ”New” Gains from Trade,” The Economic Journal, 2012,

122 (561), 754–798.

Dhingra, Swati and John Morrow, “Monopolistic competition and optimum product diversity

under firm heterogeneity,” Journal of Political Economy, 2019, 127 (1), 196–232.

Dixit, Avinash K and Joseph E Stiglitz, “Monopolistic competition and optimum product diver-

sity,” The American economic review, 1977, 67 (3), 297–308.

Edmond, Chris, Virgiliu Midrigan, and Daniel Yi Xu, “How costly are markups?,” Technical

Report, National Bureau of Economic Research 2018.

Epifani, Paolo and Gino Gancia, “Trade, markup heterogeneity and misallocations,” Journal of
International Economics, 2011, 83 (1), 1–13.

Feenstra, Robert C., “Restoring the product variety and pro-competitive gains from trade with

heterogeneous firms and bounded productivity,” Journal of International Economics, 2018, 110,

16–27.

and David E. Weinstein, “Globalization, Markups, and US Welfare,” Journal of Political Economy,

2017, 125 (4), 1040–1074.

Helpman, Elhanan and Paul R Krugman, Market structure and foreign trade: increasing returns,
imperfect competition, and the international economy, MIT Press, 1985.

Hulten, Charles R, “Growth Accounting with Intermediate Inputs,” The Review of Economic Studies,

35



1978, pp. 511–518.

Jaimovich, Nir and Max Floetotto, “Firm dynamics, markup variations, and the business cycle,”

Journal of monetary Economics, 2008, 55 (7), 1238–1252.

Kimball, Miles, “The Quantitative Analytics of the Basic Neomonetarist Model,” Journal of Money,
Credit and Banking, 1995, 27 (4), 1241–77.

Klenow, Peter J and Jonathan L Willis, “Real rigidities and nominal price changes,” Economica,

2016, 83 (331), 443–472.

Krugman, Paul R, “Increasing returns, monopolistic competition, and international trade,” Journal
of international Economics, 1979, 9 (4), 469–479.

Lipsey, Richard G. and Kelvin Lancaster, “The general theory of second best,” The Review of
Economic Studies, 1956, 24 (1), 11–32.

Loecker, Jan De, Jan Eeckhout, and Gabriel Unger, “The rise of market power and the macroe-

conomic implications,” The Quarterly journal of economics, 2020, 135 (2), 561–644.

, Pinelopi K. Goldberg, Amit K. Khandelwal, and Nina Pavcnik, “Prices, markups, and trade

reform,” Econometrica, 2016, 84 (2), 445–510.

Mankiw, N. Gregory and Michael D. Whinston, “Free Entry and Social Inefficiency,” RAND
Journal of Economics, Spring 1986, 17 (1), 48–58.

Matsuyama, Kiminori and Philip Ushchev, “Beyond CES: Three Alternative Classes of Flexible

Homothetic Demand Systems,” 2017. Working paper.

and , “Constant Pass-Through,” 2020.

and , “When Does Procompetitive Entry Imply Excessive Entry?,” 2020.

Mayer, Thierry, Marc J. Melitz, and Gianmarco I. Ottaviano, “Market size, competition, and the

product mix of exporters,” American Economic Review, 2014, 104 (2), 495–536.

Melitz, Marc J., “The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry

Productivity,” Econometrica, November 2003, 71 (6), 1695–1725.

Melitz, Marc J, “Competitive effects of trade: theory and measurement,” Review of World Economics,

2018, 154 (1), 1–13.

and Gianmarco IP Ottaviano, “Market size, trade, and productivity,” The review of economic
studies, 2008, 75 (1), 295–316.

Melitz, Marc J. and Stephen J. Redding, “New trade models, new welfare implications,” American
Economic Review, 2015, 105 (3), 1105–46.
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Online Appendix

Appendix A Details of Empirical Implementation

Amiti et al. (2019) provide estimates of the average sales-weighted pass-through (denoted by

α) for Belgian manufacturing firms conditional on the firms being smaller than a certain size

as measured by their numbers of employees. These estimates are based on information from

Prodcom, which is a subsample of Belgian manufacturing firms. Inclusion in Prodcom requires

that firms have turn-overs above 1 million euros, which means that the sample is not representative

of all manufacturers. The estimates are in Table 5.

No of employees Share of observations Share of employment Share of sales α

100 0.76313963 0.14761668 0.23096292 0.9719
200 0.85435725 0.22086396 0.3389753 0.8689
300 0.88848094 0.28832632 0.4083223 0.9295
400 0.92032149 0.33549505 0.48074553 0.8303
500 0.93746047 0.38345889 0.54008827 0.6091
600 0.94523549 0.41987701 0.58209142 0.6612
1000 0.96365488 0.52280162 0.66820585 0.6229
8000 0.99996915 0.99999999 0.99999174 0.6497

Table 5: Estimates from Amiti et al. (2019).

Our objective is to infer the pass-through ρ as a function of firm size. With some abuse of

notation, let θ ∈ [0, 1] be the fraction of observations in Prodcom up to some sales value. Let λ(θ)

be the sales share density of Prodcom firms of type θ. Then the variable “Share of sales” is defined

as

Λ(θ) =

∫ θ

0
λ(x)dx.

We fit a smooth curve to Λ(θ), then the pdf of sales shares λ(θ) is given by

λ(θ) =
dΛ

dθ
.

The curve we fit has the form exp(c0 + c1θ + c2θc3), where c0, c1, c2, c3 are chosen to minimize the

mean squared error.

Next, the variable α(θ) satisfies

α(θ) =

∫ θ
0 λ(x)ρ(x)dx∫ θ

0 λ(x)dx
,
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=

∫ θ
0 λ(x)ρ(x)dx

Λ(θ)
,

where λ(x) is the sales-share of firms of type x. Next we fit a flexible spline function to α(θ). The

fitted curve is shown in Figure 2a.

To recover the pass-throughs ρ(θ), we write

dα
dθ

=
λ(θ)ρ(θ)∫ θ
0 λ(x)dx

−
λ(θ)∫ θ

0 λ(x)dx
α(θ).

In other words, we can recover the pass-through function via

ρ(θ) =

(∫ θ
0 λ(x)dx

)
λ(θ)

dα
dθ

+ α(θ),

=
Λ(θ)
λ(θ)

dα
dθ

+ α(θ).

This gives us pass-throughs as a function of the number of employees.

Next, we use information from VAT declaration in Belgium for the year 2014 to recover the

sales distribution of Belgian manufacturers (overcoming the sample selection issues in Prodcom).

Table 6 displays the underlying data.

Number of employees Share of sales Share of Observations

1 0.004559 0.16668
2 0.00826 0.284539
3 0.014786 0.375336
5 0.022269 0.489659
10 0.043011 0.652879
20 0.076444 0.779734
30 0.111713 0.843161
50 0.163492 0.906204
75 0.198242 0.932729
100 0.231815 0.947413
200 0.325376 0.974629
300 0.386449 0.983547
400 0.449491 0.989237
500 0.486108 0.991927
600 0.655522 0.994311
1000 0.740656 0.997386
8000 0.970654 0.999923

Table 6: Firm size distribution for manufacturing firms from VAT declarations in Belgium for 2014.
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As before, we let θ ∈ [0, 1] index the fraction of observations up to some size. Then the variable

“Share of sales” is defined as

Λ(θ) =

∫ θ

0
λ(x)dx,

where (abusing notation) λ is the sales share density of all manufacturing firms (rather than just

the ones in Prodcom). We fit a smooth curve to Λ(θ), then the pdf of sales shares λ(θ) is given by

λ(θ) =
dΛ

dθ
.

The curve we fit has the form exp(c0 + c1θ + c2θc3), displayed in Figure 2b. Finally, we merge

our pass-through information from Prodcom with the sales density from VAT declarations by

assuming that the pass-through ρ of a firm with a given number of employees in Prodcom is the

same as it is in the bigger dataset. We then fit a smooth spline to this pass-through data from

[0, 1] assuming that the pass-through for the smallest firm is 1 and declines monotonically from the

smallest firm to the first observation (which is a pass-through of 0.97 for firms with 100 employees).

Given a smooth curve for both λθ and ρθ we follow the procedure outlined in Section 6.1, solving

the differential equations numerically using the Runge-Kutta algorithm on a large grid.

Appendix B Product-Level Data

In the body of the paper, we assume that different products produced by a single firm are perfect

substitutes from the perspective of the consumer, and so we use overall sales of a firm as the sales

of each variety. An alternative approach is to instead to treat each product as a single variety

instead. In Table 7 we display the average number of products each firm in Prodcom sells, for

each firm-size bin.

To map each product to a variety, we take the sales density for firms and divide the density for

firms of a given size by the average number of products (renormalizing the density so that it still

integrates to one). Mapping the model to the data in this way results in less dispersion in sales,

a left tail which is slightly less thick, and as a result, less dispersed estimates of productivities

and markups. The comparative statics for this version of the model are in Table 8. The basic

qualitative message of our previous results in Table 1 is unchanged, and the Darwinian effects are

still overwhelmingly the dominant force in the model.
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No of Employees No of Products No of firms

5 1.3636364 22
10 2.0550459 109
20 2.200495 404
30 2.4203297 728
50 2.4203895 873
75 2.3727506 389
100 3.294686 207
200 3.225 400
300 3.3308824 136
400 3.6511628 86
500 5.2162162 37
600 4.1724138 29
1000 8.3095238 42
8000 8.8780488 41

Table 7: Number of products on average from Prodcom sample in 2014.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.080 0.133 0.176 0.294
Technical efficiency: d log Ytech 0.020 0.045 0.042 0.090
Allocative efficiency: d log Yalloc 0.060 0.088 0.134 0.204

Adj. of Entry: d log Yε
− d log Ytech 0.056 0.136 0.126 0.327

Adj. of Exit: d log Yε,θ∗
− d log Yε 0.000 -0.037 0.000 -0.094

Adj. of Markups: d log Yε,θ∗,µ
− d log Yε,θ∗ 0.004 -0.012 0.008 -0.029

Real GDP per capita 0.015 0.016 0.032 0.035

Table 8: The elasticity of welfare and real GDP per capita to population following Propositions 1 and
1 for heterogeneous firms case using product-level data.
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Appendix C Robustness to Boundary Conditions

Table 9 provides the elasticity of welfare and changes in allocative efficiency, following Proposition

1 for different boundary conditions. Although the magnitude of d log Y/d log L changes as we

change the boundary conditions, the contribution of allocative efficiency to the overall total is at

least 50% of the overall effect. Table 10 breaks down the overall effect on allocative efficiency into

the different margins of adjustment (Darwinian, selection, and pro-competitive). The Darwinian

effect is always responsible for the bulk of the positive effect. As mentioned, for a given µ̄, the

selection effect is strongest when δθ∗ is lowest, but even for δθ∗ = 1, the selection effect is negligible.

Table 9: Change in log welfare and allocative efficiency for different boundary conditions

δθ∗

1 2 3 4 5 6 7 8 9 10

1.05 [0.144,0.126] [0.150,0.122] [0.155,0.117] [0.161,0.112] [0.166,0.107] [0.171,0.102] [0.177,0.097] [0.182,0.092] [0.187,0.086] [0.192,0.082]
1.06 [0.180,0.158] [0.186,0.153] [0.191,0.148] [0.196,0.144] [0.202,0.139] [0.207,0.134] [0.212,0.128] [0.218,0.123] [0.223,0.118] [0.228,0.113]
1.07 [0.213,0.187] [0.218,0.183] [0.224,0.178] [0.229,0.173] [0.235,0.168] [0.240,0.163] [0.245,0.158] [0.251,0.153] [0.256,0.148] [0.261,0.143]
1.08 [0.255,0.225] [0.260,0.220] [0.266,0.215] [0.271,0.211] [0.276,0.206] [0.282,0.201] [0.287,0.196] [0.292,0.190] [0.297,0.185] [0.302,0.180]
1.09 [0.293,0.260] [0.299,0.255] [0.304,0.251] [0.310,0.246] [0.315,0.241] [0.321,0.236] [0.326,0.231] [0.331,0.226] [0.336,0.220] [0.341,0.215]

µ̄ 1.10 [0.336,0.299] [0.341,0.294] [0.347,0.289] [0.352,0.284] [0.357,0.279] [0.363,0.274] [0.368,0.269] [0.373,0.264] [0.378,0.259] [0.383,0.254]
1.11 [0.382,0.341] [0.387,0.336] [0.393,0.331] [0.398,0.326] [0.403,0.321] [0.409,0.316] [0.414,0.311] [0.419,0.306] [0.424,0.301] [0.429,0.296]
1.12 [0.433,0.388] [0.438,0.383] [0.443,0.378] [0.449,0.373] [0.454,0.368] [0.459,0.363] [0.464,0.357] [0.469,0.352] [0.474,0.347] [0.479,0.342]
1.13 [0.489,0.439] [0.494,0.435] [0.499,0.430] [0.505,0.424] [0.510,0.419] [0.515,0.414] [0.520,0.409] [0.525,0.404] [0.530,0.398] [0.535,0.393]
1.14 [0.551,0.498] [0.557,0.493] [0.562,0.487] [0.567,0.482] [0.572,0.477] [0.577,0.472] [0.582,0.466] [0.587,0.461] [0.592,0.455] [0.596,0.450]
1.15 [0.622,0.563] [0.627,0.558] [0.632,0.553] [0.637,0.548] [0.642,0.542] [0.647,0.537] [0.651,0.531] [0.656,0.526] [0.661,0.520] [0.665,0.515]

Each cell reports [d log Y/d log L, d log Yalloc/d log L] for different boundary conditions. Each column is a different value
for the boundary condition δθ∗ and each row is a different aggregate markup µ̄. Cells that approximately correspond to
efficient selection are colored in blue and cells that approximately correspond to efficient entry are colored in yellow. The
bulk of the changes in welfare are due to reallocation effects.
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Table 10: Change in allocative efficiency for different boundary conditions

δθ∗

1 3 5 7 9

1.05 [0.129,0.001,-0.004] [0.329,-0.169,-0.0430] [0.619,-0.428,-0.0850] [1.068,-0.842,-0.130] [1.84,-1.576,-0.177]
1.06 [0.162,0.002,-0.005] [0.376,-0.180,-0.0470] [0.689,-0.459,-0.0910] [1.182,-0.915,-0.139] [2.05,-1.743,-0.189]
1.07 [0.192,0.002,-0.007] [0.420,-0.191,-0.0510] [0.755,-0.490,-0.0970] [1.292,-0.986,-0.147] [2.263,-1.914,-0.201]
1.08 [0.232,0.003,-0.009] [0.476,-0.205,-0.0560] [0.843,-0.531,-0.106] [1.439,-1.085,-0.159] [2.559,-2.157,-0.216]
1.09 [0.269,0.003,-0.012] [0.530,-0.219,-0.0610] [0.927,-0.572,-0.114] [1.586,-1.184,-0.171] [2.867,-2.415,-0.231]

µ̄ 1.10 [0.310,0.004,-0.015] [0.591,-0.234,-0.0670] [1.023,-0.620,-0.124] [1.756,-1.303,-0.184] [3.244,-2.736,-0.249]
1.11 [0.355,0.004,-0.019] [0.658,-0.252,-0.0750] [1.131,-0.675,-0.135] [1.956,-1.445,-0.200] [3.715,-3.145,-0.269]
1.12 [0.406,0.005,-0.023] [0.735,-0.273,-0.0840] [1.257,-0.741,-0.149] [2.195,-1.619,-0.218] [4.322,-3.682,-0.293]
1.13 [0.463,0.006,-0.029] [0.822,-0.298,-0.0940] [1.403,-0.819,-0.164] [2.485,-1.836,-0.240] [5.134,-4.415,-0.321]
1.14 [0.527,0.007,-0.036] [0.922,-0.327,-0.107] [1.576,-0.916,-0.184] [2.847,-2.114,-0.266] [6.280,-5.470,-0.355]
1.15 [0.601,0.008,-0.046] [1.039,-0.362,-0.123] [1.785,-1.036,-0.207] [3.31,-2.481,-0.298] [8.023,-7.107,-0.396]

Each cell reports [d log Yε
−d log Ytech, d log Yε,θ∗

−d log Yε, d log Yε,θ∗,µ
−d log Yε,θ∗ ] for different boundary conditions. Each

column is a different value for the boundary condition δθ∗ and each row is a different aggregate markup µ̄. The bulk of
the positive changes in allocative are due to the Darwinian effect. The pro-competitive and selection effects are either
unimportant or harmful.

Appendix D Propagation and Aggregation Equations

In this section, we summarize the propagation and aggregation equations for the model with

heterogeneous firms. We expand the equilibrium equations presented in Section 2 to the first

order in the shocks. Changes in all the equilibrium variables are expressed via propagation

equations as functions of changes in consumer welfare. Changes in consumer welfare are then

expressed as as functions of the changes in the equilibrium variable via an aggregation equation.

Putting propagation and aggregation together yields a fixed point in changes in consumer welfare.

Welfare. Differentiating the implicit definition of the welfare Y, we find

δ̄d log M − λθ∗δθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
d log(

yθ
Y

)
]

= 0.

Aggregate price index. Differentiating the definition of the price index, we find

− d log P = d log Y + d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[(
1 −

1
σθ

)
d log(

yθ
Y

)
]
.

Prices. Differentiating the inverse-demand curve facing each variety, we get

d log pθ − d log P = −
1
σθ

d log(
yθ
Y

).
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Markups. Differentiating the markup equation, we get

d logµθ =
1
σθ

1 − ρθ
ρθ

d log(
yθ
Y

).

Quantities. Differentiating the individual demand function, we find

d log(
yθ
Y

) = σθ

(
d log(

Aθ

µθ
) + d log P

)
.

Combining with the equation for markups, we get

d log(
yθ
Y

) = ρθσθ
(
d log Aθ + d log P

)
.

Sales shares. Differentiating the sales shares equation, we find

d logλθ = d log pθ + d log(
yθ
Y

) +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M + d log Y.

Ratio of variable profits to overhead costs. Differentiating our definition of Xθ, we get

d log Xθ =

(
1

µθ − 1

)
d logµθ + d logλθ − d log f0,θ.

Selection. Differentiating the selection condition, we get

d log Xθ∗ +

[
∂ log Xθ

∂θ

∣∣∣∣∣
θ∗

]
dθ∗ =

−g(θ∗)
1 − G(θ∗)

dθ∗ + d log M − d log L.

We define

1
γθ∗

=
1 − G(θ∗)

g(θ∗)

[
∂ log Xθ

∂θ

∣∣∣∣∣
θ∗

]
=

1 − G(θ∗)
g(θ∗)

[
−σθ
ρθ

∂ logµθ
∂θ

+

(
σθ
ρθ
− 1

)
∂ log Aθ

∂θ
−
∂ log fo,θ
∂θ

∣∣∣∣∣∣
θ∗

]
,

which allows us to write the selection condition more simply as

d log Xθ∗ +
1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ =
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M − d log L.

Entry. Differentiating the free-entry condition yields

d log L +

(
1 −

[
Eλ

[ 1
σθ

]]−1 λθ∗

σθ∗

)
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M + E

λ
(
1− 1

µ

) [d log fo,θ + d log Xθ
]

=
fed log

(
fe
)
− fo,θ∗g(θ∗)dθ∗ + (1 − G(θ∗))E

[
fo,θ

]
E fo

[
d log fo,θ

]
fe + (1 − G(θ∗))E

[
fo,θ

] .
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System of equations for a change in market size. To solve for the change in welfare

following a change in market size, d log L, we take the system of log-linearized equations above

and set d log Aθ = d log fo,θ = 0. We get the following system of eight equations:

0 = δ̄d log M − λθ∗δθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
d log(

yθ
Y

)
]
.

−d log P = d log Y + d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[(
1 −

1
σθ

)
d log(

yθ
Y

)
]
.

d log pθ − d log P = −
1
σθ

d log(
yθ
Y

).

d logµθ =
1
σθ

1 − ρθ
ρθ

d log(
yθ
Y

).

d log Xθ =

(
1

µθ − 1

)
d logµθ + d logλθ.

d logλθ = d log pθ + d log(
yθ
Y

) +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M + d log Y.

d log Xθ∗ +
1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ =
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M − d log L.

0 = d log L +
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M + E

λ
(
1− 1

µ

) [d log Xθ
]
.

We will now solve for the fixed point of this system. To start, we eliminate all firm-level terms,

d logµθ, d log pθ, d log yθ/Y, d log Xθ, and d logλθ. We are left with a system of four equations

that together pin down the change in welfare, the mass of entrants, the selection cutoff, and the

aggregate price index following a change in market size.

0 = δ̄d log M − λθ∗δθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
ρθσθ

]
d log P.

−d log P = d log Y + d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
(σθ − 1)ρθ

]
d log P.

g(θ∗)
1 − G(θ∗)

dθ∗ = −γθ∗σθ∗d log P − γθ∗
(
d log L + d log Y

)
.

d log P = −Eλ
[ 1
σθ

] (
d log L + d log Y

)
.

The last equation gives intuition for how the aggregate price index moves as the market size

increases. An increase in market size lowers the price index due to new entry. This decrease in

the price index then increases welfare due to beneficial reallocations, and the increase in welfare

further reduces the price index. The result is that the technical efficiency and allocative efficiency

effects are amplified via a multiplier due to adjustments in the price index and welfare.

With some manipulation, we can express the change in welfare as a function of the change in
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market size and the aggregate price index:

d log Y =
(
δ̄ − 1

)
d log L −

(
ξε + ξθ

∗

+ ξµ
)
Eλ

[
σ−1
θ

]−1
d log P. (41)

The first term captures the change in welfare due to technical efficiency while the second term

captured the change in welfare due to allocative efficiency, which is entirely mediated by the

aggregate price index.

By plugging in the equation for the price index above and solving the fixed point for d log Y,

we get the result in Theorem 1.

Proof of Lemma 1. To derive (18), note that the initial allocation of labor allocates a fraction l =

E[lθ] = Eλ[1/µθ] to variable production, and the remainder to entry and overhead. Suppose we

take reduce the fraction of labor allocated to variable production (while preserving the proportions

of variable production labor allocated across firms) by d log lθ = d log l. Reallocating that labor to

entry and overhead costs allows us to increase consumer welfare by

Eλ[δθ] d log M = Eλ[δθ] d log le = Eλ[δθ]
Eλ[1/µθ]

1 − Eλ[1/µθ]
(−d log l) > 0,

where d log le is the increase in labor allocated to entry. This gain is consumer welfare is offset by

a reduction in the per-capita quantity consumed of each variety, equal to Eλ[d log yθ] = d log l −
d log M. Rearranging, we find that the net change in welfare from reducing the fraction of labor

allocated to variable production and increasing the allocation to entry is positive if and only if the

average consumer surplus ratio exceeds the harmonic average of markups, yielding the condition

in (18) above. �

Proof of Lemma 2. To derive this condition, suppose that we increase the selection cut-off by dθ∗ > 0,

and reallocate the labor previously allocated to the variable production and overhead of varieties

with type in [θ∗, θ∗ + dθ∗) proportionately to entry, overhead, and variable production. The

exiting varieties reduce consumer welfare by −δθ∗λθ∗[g(θ∗)/(1 − G(θ∗))]dθ∗. The new varieties

d log M = λθ∗[g(θ∗)/(1 − G(θ∗))]dθ∗ increases consumer welfare by Eλ[δθ]d log M. There is no

change in the production of existing varieties d log yθ = 0. Plugging these perturbations into (16),

the overall effect on welfare is (Eλ[δθ] − δθ∗)λθ∗[g(θ∗)/(1 − G(θ∗))]dθ∗, which is positive (too little

selection) if and only if δθ∗ < Eλ[δθ]. �

Proof of Lemma 3. The intuition is the following. Consider a reduction d log lθ′ < 0 in the frac-

tion of labor allocated to the supply of varieties in (θ′, θ′ + dθ′) and a complementary increase

d log lθ = −(g(θ′)/g(θ))(lθ′/lθ)d log lθ′ > 0 in the fraction of labor allocated to the supply of varieties

in (θ, θ + dθ′), which, using the fact that lθ′/lθ = (λθ′/µθ′)/(λθ/µθ), can be rewritten as d log lθ =

−(g(θ′)/g(θ))(λθ′/µθ′)/(λθ/µθ)d log lθ′ > 0. This leads to a decrease d log yθ′ = d log lθ′ < 0 in the

quantity of the former varieties and an increase d log yθ = −(g(θ′)/g(θ))(λθ′/µθ′)/(λθ/µθ)d log lθ′ >
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0 in the quantity of the latter varieties. The net effect on welfare is g(θ′)λθ′d log yθ′dθ′+g(θ)λθd log yθdθ′ =

−(µθ/µθ′ − 1)λθ′g(θ′)dθ′d log lθ′ , which is positive if and only µθ > µθ′ .

�

D.1 Conditions for a Locally Unique Equilibrium

In this subsection, we develop conditions under which the model equilibrium exists and is locally

unique. We first begin with a definition of a feasible set of statistics (sales densities, consumer

surplus ratios, markups, pass-throughs, variable profit to overhead cost ratios, and selection

cutoff), then show that a condition on these statistics is sufficient to prove that the equilibrium

exists and is locally unique (Proposition 3). Finally, we provide a set of simpler (but stricter)

sufficient conditions that guarantee existence and local uniqueness (Corollary 7).

Definition 1. A collection of sales densities, consumer surplus ratios, markups, pass-throughs,

variable profit to overhead cost ratios, and selection cutoff
{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗
}

is feasible if

1.
∫
θ∈Θ

λθdθ = 1 and λθ ≥ 0 for all θ,

2. δθ, µθ ≥ 1 for all θ,

3. ρθ ≥ 0 for all θ,

4. Xθ ≥ 0 and ∂ log Xθ

∂θ > 0 for all θ, and

5. Xθ∗ = 0.

Proposition 3 (Existence and Local Uniqueness). For any feasible
{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗
}
, the

equilibrium exists and is locally unique if

0 ≤ ξε + ξθ
∗

+ ξµ < 1,

where ξε, ξθ
∗

, and ξµ are functions of
{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗
}

as defined in Theorem 1.

Proof. We first show that a collection of feasible
{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗
}

can be rationalized via

some collection of primitives
{
Υθ,Aθ, fo,θ

}
. Then, by the inverse function theorem, the equilibrium

is locally unique if the Jacobian determinant is non-zero at the equilibrium point.

First, note that the collection
{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ can be expressed in terms of some underly-

ing
{
Υθ,Aθ, fo,θ

}
:

λθ = δ̄
yθ
Y

Υ′θ(
yθ
Y

)M(1 − G(θ∗)),

δθ =
Υθ( yθ

Y )
yθ
Y Υ′

θ
( yθ

Y )
,

µθ =
1

1 −
−

yθ
Y Υ′′

θ
(

yθ
Y )

Υ′
θ

(
yθ
Y )

,
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ρθ =
1

µθ

[ yθ
Y Υ′′′

θ
(

yθ
Y )

−Υ′′
θ

(
yθ
Y )
− 1

] ,
Xθ =

λθ
fo,θ

(
1 −

1
µθ

)
.

To rationalize the observed statistics, first choose Υ′θ( yθ
Y ) to match the sales densities λθ. Then,

choose
{
Υθ( yθ

Y ),Υ′′θ ( yθ
Y ),Υ′′′θ ( yθ

Y )
}

to match
{
δθ, µθ, ρθ

}
. Finally, given λθ and µθ, choose { fo,θ} to

match {Xθ}.

By the inverse function theorem, the equilibrium defined by
{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗
}

and

the set
{
Υθ,Aθ, fo,θ

}
is locally unique if the Jacobian determinant is well-defined and non-zero at

the equilibrium point. Following Theorem 1, this is the case as long as

ξε + ξθ
∗

+ ξµ < 1.

and

ξε + ξθ
∗

+ ξµ , 1 − Eλ[δθ].

The requirement 0 ≤ ξε + ξθ
∗

+ ξµ < 1 ensures both conditions are met. �

Corollary 7 lists three stricter conditions that are sufficient (but not necessary) to ensure that

the condition on
{{
λθ, δθ, µθ, ρθ,Xθ

}
θ∈Θ , θ

∗
}

from Proposition 3 is met.

Corollary 7 (Sufficient Conditions for Existence and Local Uniqueness). Sufficient conditions for the
equilibrium to exist and be locally unique are:

1. Firm pass-throughs are ρθ ≤ 1 for all θ.

2. There is a maximum price-elasticity of demand faced by a firm, σmax, which satisfies
(σmax

− 1) (Eλ [δθ] − 1) ≤ 4.

3. At the cutoff, the price-elasticity of demand and consumer surplus ratio are both weakly greater than
average. (δθ∗ ≥ Eλ [δθ] and σθ∗ ≥ Eλ[σθ]).

Proof. Rearranging terms from Theorem 1, the condition that ξε + ξθ
∗

+ ξµ < 1 is equivalent to:

Eλ
[
ρθ

(
σθ

(
1 −

1
Eλ [δθ]

)
− 1

)]
+ 1 +

(
Eλ [δθ] − δθ∗

Eλ [δθ]

)
λθ∗γθ∗

(
σθ∗ − Eλ

[
σ−1
θ

]−1
)
< Eλ

[
σ−1
θ

]−1
. (42)

We can bound the left-hand side:

LHS = Eλ
[
ρθ

(
σθ

(
1 −

1
Eλ [δθ]

)
− 1

)]
+ 1 +

(
Eλ [δθ] − δθ∗

Eλ [δθ]

)
λθ∗γθ∗

(
σθ∗ − Eλ

[
σ−1
θ

]−1
)

≤ Eλ
[
ρθ

(
σθ

(
1 −

1
Eλ [δθ]

)
− 1

)]
+ 1
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≤

(
1 −

1
Eλ [δθ]

)
Eλ [σθ] ,

where the second line uses assumption (3) and the third line uses assumption (1). We can thus

restate our condition as:

Eλ [σθ]Eλ
[
σ−1
θ

]
− 1 <

1
Eλ [δθ] − 1

. (43)

Again, we can bound the left-hand side:

Eλ [σθ]Eλ
[
σ−1
θ

]
− 1 = −Covλ

[
σθ, σ

−1
θ

]
≤

(
Varλ [σθ] Varλ

[
σ−1
θ

])1/2

≤
1
4

(
σmax

− 1
σmax

)
(σmax

− 1)

<
1
4

(σmax
− 1) ,

where the second line applies the Cauchy-Schwarz inequality and the third line applies Popoviciu’s

inequality.32 Hence, we have ξε + ξθ
∗

+ ξµ < 1 if

1
4

(σmax
− 1) ≤

1
Eλ [δθ] − 1

, (44)

which is satisfied under assumption (2). For context, under our baseline calibration whereEλ [δθ] =

1.045, assumption (2) implies that the price-elasticity of demand is at mostσmax = 89 (i.e., the lowest

desired markup of any firm is 1.011).

�

Appendix E Welfare Response to an Entry Tax

This appendix presents the proof of Proposition 2, which characterizes the response of welfare to

a marginal tax on entry.

We modify our setup to allow for an entry tax. As in the main text, welfare is defined implicitly

by ∫
Θ

Υθ(
yθ
Y

)dF(θ) = 1.

Now, however, the household’s budget constraint includes both labor earnings and distributed

revenues from the entry tax, which we assume is returned to households in a lump-sum transfer.

We will use g to denote the per-capita rebate of tax revenue and ΛL to denote the share of household

32These bounds are quite loose; we could further relax assumption (2) by considering tighter bounds on both inequal-
ities.
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income coming from labor earnings,∫
Θ

pθyθdF(θ) = w + g, and ΛL =
w

w + g
. (45)

We continue to use the wage as the numeraire, normalizing w = 1 throughout. The household’s

inverse-demand curve for each variety remains

pθ
P

= Υ′θ(
yθ
Y

),

but with the price aggregator P now taking into account the labor share,

P =
1

ΛLY
1∫

Θ
Υ′
θ
( yθ

Y ) yθ
Y dF(θ)

. (46)

On the production side, firms’ profit-maximizing prices and markups are unchanged, and the

selection condition remains unchanged. The entry condition now incorporates a tax on entry,

which we denote τ: ∫
∞

θ∗

[(
1 −

1
µθ

)
pθyθwL − fo,θ

]
g(θ)dθ = (1 + τ) fe. (47)

To ensure that sales densities λθ still integrate to one, we adjust the definition of the sales

density to

λθ = ΛLpθyθ (1 − G(θ∗)) M.

Finally, we add a government budget constraint, which sets the amount rebated to households

equal to the amount collected in taxes,

τ feM = gL. (48)

We combine this equation with (45) to solve for the labor share in terms of the entry tax,

ΛL =
1

1 + τ fe M
L

. (49)

By differentiating the above conditions, we find that the response of welfare to a change in the

entry tax is the fixed point of the following system of equations:

0 = d log M −ΛLλθ∗
δθ∗

δ̄

g(θ∗)
1 − G(θ∗)

dθ∗ +
1
δ̄

ΛLEλ
[
d log(

yθ
Y

)
]
.

d log pθ − d log P = −
1
σθ

d log
yθ
Y

−d log P = d log ΛL + d log Y + d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[(
1 −

1
σθ

)
d log(

yθ
Y

)
]
.

d logµθ =
1
σθ

1 − ρθ
ρθ

d log(
yθ
Y

).
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d log Xθ =
1

µθ − 1
d logµθ + d log ΛL + d log pθ + d log

yθ
Y

+ d log Y +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M.

1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ = −d log Xθ∗ +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M + d log ΛL.

0 =
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M − d log ΛL + E

λ
(
1− 1

µ

) [d log Xθ
]

−
(1 + τ) fe

(1 + τ) fe + (1 − G(θ∗))E
[

fo,θ
]d log (1 + τ) .

d log ΛL = −
(1 + τ) fe M

L

1 + τ fe M
L

d log (1 + τ) −
τ fe M

L

1 + τ fe M
L

d log M.

We evaluate this system at the point where the tax is zero, and hence τ = 0,ΛL = 1. With some

manipulation, we can express the change in welfare, the mass of entrants, the price aggregator,

the labor share, and the selection cutoff in terms of the marginal tax dτ.

0 = δ̄d log M − λθ∗δθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
σθρθ

]
d log P.

0 = d log ΛL + d log Y + d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
σθ − (σθ − 1)

(
1 − ρθ

)]
d log P.

0 =
[
σθ∗d log P + d log Y

]
+

1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗.

feM
L

dτ = d log P + Eλ
[ 1
σθ

]
d log Y.

d log ΛL = −
feM
L

dτ.

Solving the fixed point yields,

d log Y =
1 − δ̄Eλ

[
1
µθ

]
−

(
δ̄ − δθ∗

)
λθ∗γθ∗Eλ

[
σθ∗
σθ

]
− Eλ

[
σθ

(
1 − ρθ

) [
1 − δ̄

µθ

]]
Eλ

[
1
σθ

]
−

(
δ̄ − 1

)
Covλ

[
σθ,

1
µθ

]
1 −

(
δ̄ − δθ∗

)
λθ∗γθ∗

(
Eλ

[
σθ∗
σθ

]
− 1

)
− Eλ

[
σθ

(
1 − ρθ

) [
1 − δ̄

µθ

]]
Eλ

[
1
σθ

]
−

(
δ̄ − 1

)
Covλ

[
σθ,

1
µθ

]
×

fe
fe + (1 − G(θ∗))E

[
fo,θ

]dτ.

We use the definitions of ξε, ξθ
∗

, and ξµ in the main text to simplify this expression to the result in

Proposition 2.

Appendix F Distance to Efficient Frontier

In this appendix, we focus on the distance to the efficient frontier, that is the amount of misallocation

in the decentralized equilibrium compared to the first-best allocation.

In Appendix F.1, we provide an analytical second-order approximation which neatly decom-
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poses the contributions of the different margins of inefficiency to the overall amount of misallo-

cation. The proof of the main proposition can be found in Appendix F.3. In Appendix F.2, we

compute the distance to the frontier in our empirical application.

F.1 Analytical Second-Order Approximation

In this section, we calculate the social costs of the distortions caused by monopolistic competition

around the efficient CES benchmark. We index the Kimball aggregator Υt by some parameter t,
where t = 0 gives an iso-elastic form for Υ (CES), and moving from t = 0 perturbs the Kimball

aggregator away from iso-elasticity in a smooth fashion. The proposition below provides a

second-order approximation in t of the distance to the efficient frontier, providing a link between

our framework and the literature on the social costs of misallocation with entry (for example,

Epifani and Gancia, 2011).

Proposition 4 (Distance to Frontier). The difference between welfare at the first-best allocation and the
decentralized equilibrium can be approximated around t = 0 by

log
Yopt

Y
≈

1
2
Eλ

σθ (
µθ

Eλ [δθ]
−

Eλ
[
µθ

]
Eλ [δθ]

)2 +
1
2
Eλ [σθ]

(
Eλ

[
µθ

]
Eλ [δθ]

− 1
)2

+
1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)

2 ,

where the remainder term is order t3.

The first term, familiar from the misallocation literature, captures distortions in the relative

sizes of existing firms. It scales with the dispersion of the ratios of markups to the average

consumer surplus ratio µθ/Eλ[δθ]. It also scales with the elasticities of substitution σθ.33

The second term captures the distortions due to inefficient entry. It scales with the squared

distance to unity of the ratio of the average markup to the average consumer surplus ratio

Eλ[µθ]/Eλ[δθ]. It also scales with the elasticities of substitution σθ.

The third and final term captures the distortions due to inefficient selection. It scales with

the squared difference between the consumer surplus ratio of the marginal firm δθ∗ and that of

the average Eλ(δθ). It also scales with the hazard rate of the log productivity distribution for the

marginal firm γ∗θ (rather than the price elasticity of demand), which captures the relevant elasticity

of the selection margin.34

In the CES case, markups are constant across varieties µθ = Eλ[µθ], the average markup is

equal to the average consumer surplus ratio Eλ[µθ] = Eλ[δθ], and consumer surplus ratios are

constant across varieties δθ∗ = Eλ[δθ]. As a result, all three terms are zero.

33The first term is a particular case of the formulas in Baqaee and Farhi (2019) applied to the relevant distortions
µθ/Eλ[δθ] in the presence of entry (rather than to µθ when there is no entry).

34If there are many firms at the cut-off (high λθ∗ ) or the cut-off moves very quickly (high γθ∗ ) in response to distortions,
then the losses from selection inefficiency δθ∗ , Eλ(δθ) are amplified.
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F.2 Quantitative Results

In this appendix, we compute the distance to the efficient frontier in our empirical application.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Heterogeneous firms 0.024 0.027 0.057 0.065
Homogeneous firms 0.021 0.000 0.041 0.000

Table 11: Distance to the efficient frontier log(Yopt/Y).

We finish by computing the distance to the efficient frontier. The results are reported in Table

11 both for the case with heterogeneous firms and for the case with homogeneous firms.

With heterogeneous firms, and with average markups µ̄ = 1.045 the distance to the frontier

is around 2.5%. The distance to the frontier is higher with higher average markups µ̄ = 1.09 at

around 6%. In both cases, the numbers are similar for efficient entry and efficient selection.

While these numbers are sizable, one might think that they are not large enough. Indeed, in

Section 7, we saw in the decentralized equilibrium, cumulated changes in allocative efficiency are

large relative to cumulated changes in technical efficiency even for large increases in population.

If the distance to the frontier is sizable but not very large, doesn’t that mean that the economy

should quickly approach the frontier as we increase population? And then shouldn’t this source

of welfare gains grounded in misallocation quickly peter out? The answer to these questions is no

and the reason is the following. At the first-best allocation, increases in population only increase

welfare by improving technical efficiency. But changes in technical efficiency for the first-best

allocation (at the frontier) turn out to be much larger than changes in technical efficiency for the

decentralized equilibrium (inside the frontier). And so the distance to the efficient frontier remains

sizable even for large increases in population.35

With homogeneous firms, the distance to the frontier is zero when δ̄ = µ̄ since then entry,

which is the only margin that can be distorted, is efficient. Otherwise the distance to the frontier is

smaller than with heterogeneous firms, but not considerably so. Again, and for the same reasons

as those explained above, this does not contradict the earlier observation that changes in allocative

efficiency are small at the decentralized equilibrium with homogeneous firms.

F.3 Proof of Proposition 4

To do this, imagine a social planner who can implement the efficient allocation by regulating

markups and imposing sales taxes. A sufficient condition is to set markups according to the

35This discussion goes back to our definition of changes in allocative efficiency as the changes in welfare that arise
from the reallocation of resources as opposed to the change in the distance to the efficient frontier discussed in footnote
12 and Appendix F.
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consumer surplus each firm generates µopt
θ

= δθ and sales taxes to be the reciprocal of markups

τ
opt
θ

= 1/µθ. The markups provide socially optimal incentives along the extensive margin and

the output taxes undo the inefficiencies brought about by dispersed markups. See Edmond et

al. (2018) for an alternative implementation of the optimal allocation using taxes.36 This section

contributes to the literature by providing an analytical approximation for distance to the efficient

frontier.

At the decentralized monopolistically competitive equilibrium, we instead have µθ = (1 −

1/σθ)−1 and τθ = 1. The equilibrium equations are

(1 − G(θ∗))M
∫
∞

θ∗
Υ(

yθ
Y

)
g(θ)

1 − G(θ∗)
dθ = 1,

ΛL =

∫
∞

θ∗

λθ
τθ

g(θ)
1 − G(θ∗)

dθ,

MΛL fe
L

=

∫
∞

θ∗

(
λθ

1
τθ

(
1 −

1
µθ

)
−

(1 − G(θ∗))MΛL fo
L

)
g(θ)

1 − G(θ∗)
dθ,

λθ∗
1
τθ∗

(
1 −

1
µθ∗

)
=

(1 − G(θ∗))MΛL fo
L

,

λθ = (1 − G(θ∗))M
τθµθΛLyθ

Aθ
,

τθµθΛL

Aθ
= PΥ′(

yθ
Y

),

P =
δ̄
Y
,

1
δ̄

= (1 − G(θ∗))M
∫
∞

θ∗

yθ
Y

Υ′(
yθ
Y

)
g(θ)

1 − G(θ∗)
dθ.

Efficiency requires

µθ =
1
τθ

=
Υθ

yθ
Y Υ′

θ

.

In step 1, we log-differentiate the equilibrium equations (at an arbitrary point). In step 2,

we specialize these equations to the monopolistically competitive equilibrium with changes in

markups and taxes towards the efficient point. We use the resulting formulas to compute the

distance to the efficient frontier by dividing the first order effect (of moving towards the efficient

point) by 1/2. This is because we know that the derivative once we reach the efficient point is zero,

and the average of two first-order approximations yields a second-order approximation.

36Bilbiie et al. (2019) also consider related issues in a dynamic context.
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Step 1:

In the first step, we generalize the propagation equations to allow for policy.

Aggregate price index:

−d log P =
d log M + d log Y − λθ∗

g(θ∗)
1−G(θ∗) dθ

∗

1 +
∫
∞

θ∗
λθ

(
Υ′
θ

−
yθ
Y Υ′′

θ

− 1
)

g(θ)
1−G(θ∗) dθ

−

∫
∞

θ∗
λθ

(
Υ′θ
−

yθ
Y Υ′′

θ

− 1
) (

d logµθ + d log τθ + d log ΛL
) g(θ)

1−G(θ∗) dθ

1 +
∫
∞

θ∗
λθ

(
Υ′
θ

−
yθ
Y Υ′′

θ

− 1
)

g(θ)
1−G(θ∗) dθ

.

Sales shares:

d logλθ = d log M−
g(θ∗)

1 − G(θ∗)
dθ∗+d log Y−

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (d logµθ + d log τθ + d log ΛL
)
+

Υ′θ

−
yθ
Y Υ′′

θ

d log P.

Variable profits:

d log
(
λθ
ΛL

1
τθ

(
1 −

1
µθ

))
= d log M −

g(θ∗)
1 − G(θ∗)

dθ∗ + d log Y −
Υ′θ

−
yθ
Y Υ′′

θ

(
d log τθ + d log ΛL

)
+

 1
µθ − 1

−

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 d logµθ +
Υ′θ

−
yθ
Y Υ′′

θ

d log P.

Quantities:

d log
( yθ

Y

)
= −

Υ′θ

−
yθ
Y Υ′′

θ

(
d logµθ + d log τθ + d log ΛL − d log P

)
.

Labor share:

d log ΛL =
g(θ∗)

1 − G(θ∗)
dθ∗ +

∫
∞

θ∗
λθ
τθ

(
d logλθ − d log τθ

) g(θ)
1−G(θ∗) dθ∫

∞

θ∗
λθ
τθ

g(θ)
1−G(θ∗) dθ,

−

λθ∗
τθ∗

g(θ∗)
1−G(θ∗) dθ

∗∫
∞

θ∗
λθ
τθ

g(θ)
1−G(θ∗) dθ,

.

Entry:

d log M =
g(θ)

1 − G(θ∗)
dθ∗ +

∫
∞

θ∗

(
λθ
ΛL

1
τθ

(
1 − 1

µθ

)) [
d log

(
λθ

1
τθ

(
1 − 1

µθ

))
− d log ΛL

] g(θ)
1−G(θ∗) dθ∫

∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) g(θ)
1−G(θ∗) dθ

.

Replacing to get aggregate price index:
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− d log P + d log ΛL =
d log Y∫

∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

−
yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ

−

∫
∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′θ
−

yθ
Y Υ′′

θ

d log τθ
g(θ)

1−G(θ∗) dθ∫
∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

−
yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ

+

∫
∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) (
1

µθ−1 −

(
Υ′θ
−

yθ
Y Υ′′

θ

− 1
))

d logµθ
g(θ)

1−G(θ∗) dθ∫
∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

−
yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ

+

(M(1−G(θ∗)) fo
L − λθ

1
τθ

(
1 − 1

µθ

)) g(θ∗)
1−G(θ∗) dθ

∗∫
∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

−
yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ

.

Replacing to get entry:

d log M = −d log Y + λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗

−

1 +

∫
∞

θ∗
λθ

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 g(θ)
1 − G(θ∗)

 d log P

+

∫
∞

θ∗
λθ

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (d logµθ + d log τθ + d log ΛL
) g(θ)

1 − G(θ∗)
dθ.

Selection cut-off: Υ′θ∗

−
yθ∗
Y Υ′′

θ∗

− 1

 ∂ log Aθ

∂θ

∣∣∣∣∣
θ=θ∗

dθ∗ = −d log
(
λθ∗

ΛL

1
τθ∗

(
1 −

1
µθ∗

))
+ d log M −

g(θ∗)
1 − G(θ∗)

dθ∗.

Welfare:

d log Y = d log M
(
δ̄ − 1

)
−

∫
∞

θ∗
λθ

(
d logµθ + d log τθ + d log ΛL

) g(θ)
1 − G(θ∗)

dθ

−

 Υθ∗

yθ∗
Y Υ′

θ∗

− 1

λθ∗ g(θ∗)
1 − G(θ∗)

dθ∗,

or

δ̄d log Y = −
(
δ̄ − 1

) 1 +

∫
∞

θ∗
λθ

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 g(θ)
1 − G(θ∗)

 d log P

−

∫
∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (d logµθ + d log τθ + d log ΛL
) g(θ)

1 − G(θ∗)
dθ

+

δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗

λθ∗ g(θ∗)
1 − G(θ∗)

dθ∗.

Step 2

We proceed in two steps.
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Applying the formula at the monopolistic competitive equilibrium. We start at the

monopolistic competitive equilibrium. We can simplify the equations to get

d log ΛL = −

∫
∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ,

− d log P + d log ΛL = d log Y −
∫
∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ,

d log M = −d log Y + λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗

−

1 +

∫
∞

θ∗
λθ

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 g(θ)
1 − G(θ∗)

 d log P

+

∫
∞

θ∗
λθ

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (d logµθ + d log τθ + d log ΛL
) g(θ)

1 − G(θ∗)
dθ,

 Υ′θ∗

−
yθ∗
Y Υ′′

θ∗

− 1

 ∂ log Aθ

∂θ

∣∣∣∣∣
θ=θ∗

dθ∗ = −d log Y +
Υ′θ∗

−
yθ∗
Y Υ′′

θ∗

(
d log τθ∗ − d log P + d log ΛL

)
.

The solution (apart from d log M which we do not need for what follows) is

d log ΛL = −

∫
∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ,

− d log P = d log Y,

∂ log Aθ

∂θ

∣∣∣∣∣
θ=θ∗

dθ∗ = d log Y +

Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗

Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗
− 1

(
d log τθ∗ −

∫
∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ
)
.

Plugging into welfare, we get

1 − ∫
∞

θ∗
λθ

(
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 g(θ)
1 − G(θ∗)

dθ −

δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗

λθ∗ g(θ∗)
1 − G(θ∗)

dθ∗
 d log Y =

−

∫
∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (d logµθ + d log τθ
) g(θ)

1 − G(θ∗)
dθ

+

∫
∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (∫ ∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ
)

g(θ)
1 − G(θ∗)

dθ

+ λθ∗γθ∗

δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗


Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗

Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗
− 1

(
d log τθ∗ −

∫
∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ
)
.
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Applying to changes in markups and taxes towards the efficient point. Efficiency re-

quires markups µθ = Υθ
yθ
Y Υ′

θ

and taxes on production τθ = 1/ Υθ
yθ
Y Υ′

θ

. Hence we use the forcing

variables (the endogenous response of Υθ
yθ
Y Υ′

θ

is second order)

d logµθ ≈ − log

 µθ
Υθ

yθ
Y Υ′

θ

 ,
d log τθ ≈ − log

 Υθ
yθ
Y Υ′

θ

 .
Plugging into welfare, we get1 − ∫

∞

θ∗
λθ

(
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 g(θ)
1 − G(θ∗)

−

δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗

λθ∗ g(θ∗)
1 − G(θ∗)

θ∗
 d log Y ≈

−

∫
∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1


− log

 µθ
Υθ

yθ
Y Υ′

θ

 − log

 Υθ
yθ
Y Υ′

θ


 g(θ)

1 − G(θ∗)
dθ

−

∫
∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 ∫ ∞

θ∗
λθ log

 Υθ
yθ
Y Υ′

θ

 g(θ)
1 − G(θ∗)

dθ

 g(θ)
1 − G(θ∗)

dθ

+ λθ∗γθ∗

δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗


Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗

Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗
− 1

− log

 Υθ∗

yθ∗
Y Υ′

θ∗

 +

∫
∞

θ∗
λθ log

 Υθ
yθ
Y Υ′

θ

 g(θ)
1 − G(θ∗)

dθ

 .
And the loss function encapsulating the distance to the efficient frontier is

L ≈
1
2

d log Y.

Using the notation in the paper, we therefore get

L ≈ −
1
2
Eλ

[(
1 −

Eλ [δθ] − 1
µθ − 1

)
log

(
Eλ [δθ]
µθ

)]
+

1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)µ∗θ log

(Eλ [δθ]
δθ∗

)
,

or

L ≈
1
2
Eλ


(

µθ
Eλ[δθ] − 1

)2

µθ − 1
Eλ [δθ]

Eλ [δθ]
µθ

 +
1
2
λθ∗

µθ∗

δθ∗
γθ∗ (Eλ [δθ] − δθ∗)

2 ,

or

L ≈
1
2
Eλ

 µθ
µθ − 1

(
µθ

Eλ [δθ]
− 1

)2 +
1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)

2 ,

or

L ≈
1
2
Eλ

σθ (
µθ

Eλ [δθ]
− 1

)2 +
1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)

2 ,
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or

L ≈
1
2
Eλ

σθ ( µθ
Eλ [δθ]

−
Eλ

[
µθ

]
Eλ [δθ]

)2

+

(
Eλ

[
µθ

]
Eλ [δθ]

− 1
)2 +

1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)

2 ,

Appendix G Additional Comparative Statics

In this section, we characterize comparative statics with respect to shocks to the fixed costs and

shocks to the productivity distribution. We start with fixed cost shocks, and then examine pro-

ductivity shocks.

G.1 Shocks to Fixed Costs

For simplicity, we consider the case where overhead costs are identical across firms, fo,θ = fo.

Proposition 5 characterizes the response of welfare to a change in fixed costs of entry and overhead

costs.

Proposition 5. In response to changes in fixed costs of entry d log fe and fixed overhead costs d log fo,
changes in consumer welfare are given by

d log Y = −
(
Eλ[δθ] − 1

) fed log fe + fod log fo
fe + (1 − G(θ∗)) fo︸                                      ︷︷                                      ︸

technical efficiency

−
ξε + ξµ + ξθ

∗

1 − ξε − ξµ − ξθ∗
(
Eλ[δθ]

) fed log fe + (1 − G(θ∗)) fod log fo
fe + (1 − G(θ∗)) fo︸                                                                       ︷︷                                                                       ︸

allocative efficiency

−
ζθ
∗

1 − ξε − ξµ − ξθ∗
fe[d log fe − d log f ]

fe + (1 − G(θ∗)) fo︸                                           ︷︷                                           ︸
allocative efficiency

,

where ξε, ξθ
∗

, and ξµ are given in Theorem 1 and

ζθ
∗

=

(
Eλ[δθ] − δθ∗

) (
λθ∗γθ∗

1
σθ∗ − 1

)
. (50)

To understand these results, it is useful to observe that the model is homogeneous of degree

zero in fixed costs and population fe, fo, and L. This is because they only matter through fixed

costs per capita fe/L and fo/L. This means that joint proportional reductions in fixed costs of entry

and fixed overhead costs d log fe = d log fo < 0 have exactly the same effects on consumer welfare

as equivalent increases in population d log L = −d log fe = −d log fo > 0.

Consider first a reduction in the fixed cost of entry d log fe < 0. This reduces the total (entry
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and overhead) fixed cost per entering variety in proportion to the share of the fixed cost of entry

in the total fixed cost [( fe)/[ fe + (1 − G(θ∗)) fo]]d log fe < 0. This reduction in fixed cost acts like an

equivalent increase in population coupled with an equivalent increase in the fixed overhead cost.

The effect of the former was analyzed in Theorem 1. The effect of the latter is to further increase the

sales shares of exiting varieties by−[λθ∗γθ∗/(σθ∗−1)][( fe)/[ fe+(1−G(θ∗)) fo]]d log fe > 0. This in turn

increases consumer welfare by −[(E[δθ] − δθ∗)λθ∗γθ∗/(σθ∗ − 1)][( fe)/[ fe + (1 − G(θ∗)) fo]]d log fe > 0

as long as there is too little selection (Eλ[δθ] > δθ∗). The result in the proposition is obtained by

solving the fixed point in d log Y.

Consider now a reduction in the fixed overhead cost d log f < 0. The effect on the selection

cut-off is reversed compared to the case of a reduction in the fixed cost of entry: compared to an

increase in population by −[(1 − G(θ∗)) fo/[ fe + (1 − G(θ∗)) fo]]d log( fo) > 0, the increase in the fixed

overhead cost reduces the selection cut-off, which typically overcomes the increase in selection

associated with the equivalent increase in population. If this is the case, the overall change in

consumer welfare from the change in selection is positive if and only if there is too much selection

(Eλ[δθ] < δθ∗).

In both cases, and exactly as for population shocks, we can decompose the general equilibrium

response by analyzing three successive equilibrium allocations which allow firms to adjust along

more and more margins: entry, entry and exit, and entry, exit and markups. All three equilibrium

allocations feature the same changes in technical efficiency, but different changes in allocative

efficiency, driven by different changes in the allocation of resources. The corresponding changes

in consumer welfare are respectively given by Proposition 5, but with ξµ = ξθ
∗

= 0 and ζθ
∗

= 0,

ξµ = 0, and without any modification.

We can also perform the same decomposition for changes in real GDP per capita.

Proposition 6. In response to changes in fixed costs of entry d log fe and fixed overhead costs d log f ,
changes in real GDP per capita are given by

d log Q =
(
Eλ

[
(1 − ρθ)

]) (
Eλ

[ 1
σθ

]) (
d log Y +

fed log fe + (1 − G(θ∗)) fod log fo
fe + (1 − G(θ∗)) fo

)
, (51)

where d log Y is given by Proposition 5.

G.2 Shocks to Productivity

Now, we consider shocks to the distribution of productivity shifters.

Proposition 7. In response to changes in productivity d log Aθ, changes in consumer welfare are given by

d log Y = Eλ
[
d log Aθ

]
︸          ︷︷          ︸
technical efficiency

+
νε

[
d log Aθ

]
+ νθ

∗ [
d log Aθ

]
+ νµ

[
d log Aθ

]
1 − ξε − ξµ − ξθ∗︸                                                   ︷︷                                                   ︸

allocative efficiency
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+
ξε + ξµ + ξθ

∗

1 − ξε − ξµ − ξθ∗

(
Eλ(1−1/µ)

[
(σθ − 1)d log Aθ

]
+ Eλ

[
d log Aθ

])
︸                                                                            ︷︷                                                                            ︸

allocative efficiency

,

where ξε, ξθ
∗

, and ξµ are given in Proposition 1 and

νε
[
d log Aθ

]
=

(
Eλ [δθ] − 1

) (
Eλ(1−1/µ)

[
(σθ − 1)d log Aθ

]
− Eλ

[
(σθ − 1)d log Aθ

])
,

νθ
∗ [

d log Aθ
]

= −

(
Eλ

[
δθ

]
− δθ∗

)
λθ∗γθ∗

(
σθ∗d log Aθ∗ − Eλ(1−1/µ)

[
σθd log Aθ

])
,

νµ
[
d log Aθ

]
= −

(
Eλ

[
(1 − ρθ)

[
1 −

Eλ [δθ] − 1
µθ − 1

]
d log Aθ

])
.

Exactly as for shocks to population and to fixed costs, we can decompose the general equilib-

rium response by analyzing three successive equilibrium allocations which allow firms to adjust

along more and more margins: entry, entry and exit, and entry, exit and markups. All three equi-

librium allocations feature the same changes in technical efficiency given by the sales-weighted

changes in productivities, exactly as in Hulten’s theorem (Hulten, 1978). These three equilib-

rium allocations feature different changes in allocative efficiency, driven by different changes in

the allocation of resources. The corresponding changes in consumer welfare are respectively

given by Proposition 7, but with ξµ = ξθ
∗

= 0 and νµ[d log Aθ] = νθ
∗

[d log Aθ] = 0, ξµ = 0 and

νµ[d log Aθ] = 0, and without any modification.

Changes in allocative efficiency are given by the sum of two sets of terms. The first set of

terms νε
[
d log Aθ

]
, νθ

∗ [
d log Aθ

]
, and νµ

[
d log Aθ

]
captures the effects of changes in productivities

d log Aθ holding the aggregate price index δ̄/Y constant. The second set of terms capture the effects

of changes in the aggregate price index d log P = (Eλ(1−1/µ)[(σθ − 1)d log Aθ] + d log Y)Eλ[1/σθ].

We have already discussed the effects of changes in the aggregate price index, for example in

Section 4.2. We therefore focus our discussion on the effects of changes in productivities holding

the aggregate price index constant. We quickly discuss the intuition for the terms νε
[
d log Aθ

]
,

νθ
∗ [

d log Aθ
]
, and νµ

[
d log Aθ

]
. These terms are then amplified by a multiplier 1/[1−(ξε+ξµ+ξθ

∗

)]

arising from solving the fixed point in d log Y.

The intuition for the term νε
[
d log Aθ

]
is the following. Productivity shocks change prices for

given markups, exit behavior, and aggregate price index. The sales shares of varieties with high

markups tend to increase if they experience sufficiently higher relative productivity shocks to offset

their relatively lower elasticities. If they do, the variable profit share increases, which increases

entry by Eλ(1−1/µ)[(σθ − 1)d log Aθ]−Eλ[(σθ − 1)d log Aθ] and welfare by (Eλ[δθ]− 1)(Eλ(1−1/µ)[(σθ −

1)d log Aθ] − Eλ[(σθ − 1)d log Aθ]).

The intuition for the term νθ
∗ [

d log Aθ
]

is the following. Productivity shocks change exit

behavior for given markups and aggregate price index. The selection cut-off tends to de-

crease if the productivity increases relatively more and if the elasticity of substitution is rela-
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tively higher at the cut-off. If they do does, the sales share of exiting varieties decreases by

(σθ∗d log Aθ∗−Eλ(1−1/µ)[σθd log Aθ])/(σθ∗−1), which changes welfare by−(Eλ[δθ]−δθ∗)(σθ∗d log Aθ∗−

Eλ(1−1/µ)[σθd log Aθ])/(σθ∗ − 1).

The intuition for the term νµ
[
d log Aθ

]
is the following. Productivity shocks lead to changes in

markups for a given aggregate price index. Increases in productivity lead to increases in markups,

which increases the variable profit share. This in turn increases entry and changes welfare by

−Eλ[(1 − ρθ)[1 − [(Eλ[δθ] − 1)/(µθ − 1)]d log Aθ]].

Signing the overall changes in allocative efficiency is difficult because of offsetting effects. For

example if all productivity shocks are identical d log Aθ = d log A, then there are no changes in

allocative efficiency, since just like in the case with homogeneous firms, the model is homothetic

with respect to such shocks. In this special case, the terms capturing the effects of changes in

productivities given the aggregate price index exactly offset (term by term) the terms capturing

the effects of changes in the aggregate price index given productivities: the terms in νε[d log Aθ]

exactly offset the terms in ξε, the terms in νθ
∗

[d log Aθ] exactly offset the terms in ξθ
∗

, and the terms

in νµ[d log Aθ] exactly offset the terms in ξµ. This shows that changes in allocative efficiency from

productivity shocks depend finely on the distribution of these shocks across types.

The response of real GDP to productivity shocks is given in Proposition 8.

Proposition 8. In response to changes in productivities d log Aθ, changes in real GDP per capita are given
by

d log Q = Eλ
[
ρθd log Aθ

]
+

(
Eλ

[
(1 − ρθ)

]) (
Eλ

[ 1
σθ

]) (
d log Y + Eλ(1−1/µ)

[
(σθ − 1)d log Aθ

])
, (52)

where d log Y is given by Proposition 7.

Appendix H Homothetic with a Single Aggregator (HSA)

Preferences

In this appendix, we develop a version of our results using an alternative demand system to

the generalized Kimball preferences we use in the main text. We use homothetic demand with

a single aggregator (HSA) preferences, as defined by Matsuyama and Ushchev (2017). These

preferences nest separable translog preferences and linear expenditure shares as special cases. The

CES demand system is the only point of union between HSA preferences and the generalized

Kimball preferences used in the main text. Nevertheless, our theoretical and quantitative results

are quite similar when we use HSA preferences instead.

This appendix is organized as follows. In Section H.1, we set up the consumer and firm

problems and describe firm elasticities, markups, pass-throughs, and consumer surplus ratios

in terms of primitives. In Section H.2, we present theoretical results analogous to Theorem 1
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and Proposition 1 in the main text. Finally, we show that the system of differential equations

used to calibrate the model remain valid under HSA preferences and provide quantitative results

analogous to Table 1 and Table 2. The results are qualitatively and quantitatively similar to those

in the main text.

H.1 Setup

Under HSA preferences, the per-capita quantity yθ consumed of a variety θ is:

yθ =
w
pθ

sθ
(pθ

P

)
, (53)

where pθ is the price of the variety, sθ(·) are the expenditures on variety θ as a fraction of the

consumer’s budget, and P is the price aggregator. As in the main text, we have anticipated the

fact that free entry will force firm profits to zero in equilibrium, and we normalize the wage w = 1.

The price aggregator P is implicitly defined so that expenditure shares add to one:∫
Θ

sθ(
pθ
P

)dF(θ) = 1. (54)

We assume there exists some choke constant (p/P)max, such that for any pθ/P ≥ (p/P)max, sθ( pθ
P ) = 0.

The relationship between the ideal price index, PY, and the price aggregator P, is

log PY = log P −
∫

Θ

∫ (p/P)max

pθ/P

sθ(ξ)
ξ

dξ

 dF(θ). (55)

Again, consumers maximize welfare Y under the budget constraint,∫
θ∈Θ

pθyθdF(θ) = PYY = 1. (56)

The firm side of the economy remains exactly the same as in the main text: upon entry, firms

draw a type θ from a distribution with density g(θ) and cumulative density function G(θ). Each

firm then decides whether to operate, and if so, what price to charge. The firm’s maximization

problem is

max
operate,pθ


(
pθ − 1

Aθ

)
Lyθ − fo,θ if the firm operates

0 if the firm does not operate
(57)

subject to the household per-capita demand curve in (53).

For firms that operate, the price that maximizes firm profits can be written as a markup µθ

times the firms marginal cost, where the markup is given by the Lerner formula,

µθ(
p
P

) =
1

1 − 1
σθ( p

P )

, (58)
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and the price-elasticity of demand is given by,

σθ(
p
P

) =
−d log yθ
d log pθ

= 1 −
pθ
P s′θ

(pθ
P

)
sθ

( pθ
P

) . (59)

Firms are ordered by the ratio Xθ of variable profits to overhead costs, so there is an endogenous

cutoff type θ∗ such that (
pθ∗ −

1
Aθ∗

)
Lyθ∗ = fo,θ∗ , (60)

firms with types θ ≥ θ∗ operate, and firms with types θ < θ∗ exit the market. Free entry leads

expected profits to be equal to entry costs in equilibrium,∫
∞

θ∗

[(
1 −

1
µθ

)
pθyθwL − fo,θ

]
g(θ)dθ = fe. (61)

We use the set Θ to denote types that operate in equilibrium: Θ = {θ|θ ≥ θ∗}. We use M to denote

the mass of entrants, so that the mass of surviving firms is (1 − G(θ∗))M. Accordingly, the density

of varieties available to the consumer dF(θ) = Mg(θ)dθ.

We will use the same definitions of pass-throughs and consumer surplus ratios as in the main

text. In terms of primitives, the pass-through and the consumer surplus ratio are now

ρθ(
p
P

) =
1

1 −
p
Pµ
′

θ
( p

P )

µθ( p
P )

, and δθ = 1 +
1

sθ( p
P )

∫ (p/P)max

p/P

sθ(ξ)
ξ

dξ. (62)

The sales density is defined as λθ = sθ( pθ
P )M(1 − G(θ∗)). We denote the sales-weighted average

consumer surplus ratio δ̄ = Eλ[δθ] and the harmonic (sales-weighted) average of markups µ̄ =

Eλ[µ−1
θ ]−1.

In equilibrium, consumers maximize utility, firms maximize profits, and resource constraints

are satisfied. The equilibrium is defined by the consumer’s demand for each variety (53), the

implicit definition of the price aggregator (54), the relationship of the price aggregator to the ideal

price index (55), firms’ profit-maximizing markups (58), the selection cutoff (60), and the free entry

condition (61).

H.2 Response to Change in Market Size

Theorem 2 characterizes the change in welfare following an exogenous change in market size

under HSA preferences.
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Theorem 2. In response to changes in population d log L, changes in consumer welfare are given by

d log Y = (δ̄ − 1)d log L︸          ︷︷          ︸
technical efficiency

+ µ̄
(
ξε + ξθ

∗

+ ξµ
)

d log L︸                        ︷︷                        ︸
allocative efficiency

, (63)

where

ξε =
(
δ̄ − 1

)
Covλ

[
σθ,

1
µθ

]
,

ξθ
∗

=
(
δ̄ − δθ∗

)
λθ∗γθ∗

(
Eλ

[
σθ∗

σθ

]
− 1

)
,

ξµ = Eλ
[(

1 − ρθ
)
σθ

(
1 −

δ̄
µθ

)]
Eλ

[ 1
σθ

]
.

Compared to the results under generalized Kimball preferences in the main text, the change

in technical efficiency following a change in market size is the same, but the change in allocative

efficiency is somewhat different. Note, however, that the change in allocative efficiency depends

on the same three margins of adjustment: the Darwinian margin (ξε), the selection margin (ξθ
∗

),

and pro/anti-competitive (ξµ). The terms ξε, ξθ
∗

, and ξµ, are exactly as defined in the main text. For

a given collection of ξε, ξθ
∗

, ξµ, the generalized Kimball model will generate stronger reallocation

effects as long as ξε + ξθ
∗

+ ξµ ∈ [0, 1]. Intuitively, this is because Kimball preferences feature a

feedback loop from increases in Y driving reductions in P and reductions in P driving increases in

Y. HSA preferences lack this feedback loop. Quantitatively however, we find very similar results

when we calibrate the HSA version of the model.

Proposition 9 describes the response of real GDP to a change in market size.

Proposition 9. In response to changes in population d log L, changes in real GDP per capita are given by

d log Q = Eλ
[
1 − ρθ

]
Eλ

[ 1
σθ

]
µ̄d log L. (64)

Proof. In response to an exogenous change in market size d log L, the following system of log-

linearized equations describe the movements of all endogenous variables.

Eλ [(1 − σθ)] d log P = d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
(1 − σθ) d log pθ

]
d log yθ = −σθd log

pθ
P
− d log P.

d log Y =
(
δ̄ − 1

)
d log M − λθ∗ (δθ∗ − 1)

g(θ∗)
1 − G(θ∗)

dθ∗ − Eλ
[
d log pθ

]
.
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d logµθ =
ρθ − 1
ρθ

d log
(pθ

P

)
.

d log Xθ = (σθ − 1) d log pθ + d logλθ.

d logλθ = d log pθ + d log yθ +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M.

d log Xθ∗ +
1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ =
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M − d log L.

d log L +
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M + E

λ
(
1− 1

µ

) [d log Xθ
]

= 0.

The first two equations, which describe the change in the price aggregator and the change

in the consumption of individual varieties, are different from the analogous equations under

generalized Kimball preferences, since the consumer demand curve and the price aggregator are

now different. The remaining equations are unchanged from the derivation under generalized

Kimball preferences.

Solving the fixed point of this system yields Theorem 2 and Proposition 9.

H.3 Calibration

For calibration, we impose the restriction that the expenditure function is identical across types,

sθ(·) = s(·). We also assume that overhead costs are homogenous across firms, fo,θ = fo, so that the

sole source of exogenous variation across firm types is due to differing productivities Aθ. Under

this restriction, we can use the cross-sectional variation in pass-throughs and sales shares to solve

for markups and consumer surplus ratios, up to boundary conditions.

The same differential equations used to solve for markups and consumer surplus ratios in the

Kimball case apply under HSA preferences. To see why, note that the markups and sales-shares

vary with productivity according to:

d logµθ
dθ

=
(
1 − ρθ

) d log Aθ

dθ
, (65)

d logλθ
dθ

=
ρθ

µθ − 1
d log Aθ

dθ
. (66)

Rearranging yields the differential equation,

d logµθ
dθ

=
(
µθ − 1

) 1 − ρθ
ρθ

d logλθ
dθ

, (67)
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from which we solve for markups up to a boundary condition using pass-throughs and sales

shares.

For consumer surplus ratios, recall that we can write

∫ (p/P)max

pθ/P

s(ξ)
ξ

dξ = s(
pθ
P

)
[
δ(

pθ
P

) − 1
]
. (68)

Differentiating both sides and rearranging, we find a differential equation relating consumer

surplus ratios to markups,
d log δθ

dθ
=
µθ − δθ
δθ

d logλθ
dθ

, (69)

which we use to solve for consumer surplus ratios up to a boundary condition. Since both

differential equations are identical to those derived under Kimball preferences in the main text,

the estimates of sufficient statistics are unchanged.

Table 12 shows the elasticity of welfare and real GDP per capita to market size. The elasticity

of welfare to market size is further decomposed into changes in technical and allocative efficiency,

including the three margins of adjustment (entry, exist, and markups) discussed in the main text.

The results are quantitatively similar to those in the main text. In particular, the majority of gains

from an increase in market size are due allocative efficiency effects arising from entry; the selection

and pro-competitive channels have zero or mildly deleterious effects on welfare.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.122 0.137 0.253 0.283
Technical efficiency: d log Ytech 0.017 0.045 0.034 0.090
Allocative efficiency: d log Yalloc 0.105 0.091 0.219 0.192

Darwinian effect: d log Yε
− d log Ytech 0.108 0.294 0.228 0.613

Selection effect: d log Yε,θ∗
− d log Yε 0.000 -0.157 0.000 -0.325

Pro-competitive effect: d log Yε,θ∗,µ
− d log Yε,θ∗ -0.003 -0.046 -0.008 -0.095

Real GDP per capita 0.022 0.022 0.043 0.043

Table 12: The elasticity of welfare and real GDP per capita to population following Theorem 2.

Table 13 replicates the analysis in a setting with homogeneous firms. Again, firm heterogeneity

appears to play a significant role. Without heterogeneity, we find that the elasticity of welfare to

changes in market size are much smaller than in the calibration with heterogeneous firms.
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µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.030 0.045 0.060 0.090
Technical efficiency: d log Ytech 0.017 0.045 0.034 0.090
Allocative efficiency: d log Yalloc 0.014 0.000 0.027 0.000

Real GDP per capita 0.022 0.022 0.043 0.043

Table 13: The elasticity of welfare and real GDP per capita to population for homogeneous firms.

Appendix I Klenow-Willis Calibration

In the main text, we caution that using an off-the-shelf functional form may mute important features

of the data. As an illustration, we present the results of our model using Klenow and Willis (2016)

preferences, a parametric form for the Kimball aggregator that is used often in the literature.

We show that Klenow and Willis (2016) preferences are unable to match the empirical data.

When calibrated using standard parameters from the literature, these preferences overstate the

importance of technical efficiency changes and understate the importance of allocative efficiency

changes.

Under Klenow and Willis (2016) preferences, the markup and pass-through functions are

µθ = µ(
yθ
Y

) =
1

1 − 1
σ ( yθ

Y )
ε
σ
, (70)

ρθ = ρ(
yθ
Y

) =
1

1 + ε
σ−(

yθ
Y )

ε
σ

=
1

1 + ε
σµθ

. (71)

where the parameters σ and ε are the elasticity and superelasticity (i.e., the rate of change in

the elasticity) that firms would face in a symmetric equilibrium. This functional form imposes a

maximum output of (yθ/Y)max = σ
σ
ε , at which markups approach infinity.

These preferences are unable to match the empirical distribution of firm pass-throughs without

counterfactually large markups. To see why, note that the pass-through function ρ(·) is strictly

decreasing, and that the maximum pass-through admissible (for a firm with yθ/Y = 0) is

ρmax =
1

1 + ε/σ
. (72)

Amiti et al. (2019) estimate the average pass-through for the smallest 75% of firms in ProdCom

is 0.97. In order to match the nearly complete pass-through for small firms, we must choose ε/σ

to be around 0.01 − 0.03.

This makes it difficult, however, to match the incomplete pass-throughs estimated for the
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largest firms. To match a pass-through of ρθ = 0.3 with ε/σ ∈ [0.01, 0.03], for example, we need a

markup of µθ ∈ [78, 233] for the largest firms. In contrast, our non-parametric procedure matches

the pass-through distribution with realistic markups of around 2 for the largest firms (shown in

the main text, Figure 4a). This roughly accords with estimates of markups by De Loecker et al.

(2020).

Rather than attempting to match the empirical pass-through distribution, suppose we used a

set of parameters from the literature. We adopt the calibration from Appendix D of Amiti et al.

(2019): σ = 5, ε = 1.6, and firm productivities are drawn from a Pareto distribution with shape

parameter equal to 8.37 The simulated distributions of firm pass-throughs and sales shares are

shown in Figure 8. Over the range of drawn productivities, we see little variation in pass-through.

Figure 8: Pass-through ρθ and sales share density logλθ under Klenow and Willis (2016) preferences.
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Table 14 shows the response of welfare and real GDP per capita to an increase in market size for

Klenow and Willis (2016) preferences, with the results from the main text for comparison. We find

that the calibration of Klenow and Willis (2016) preferences attributes nearly all gains to technical

efficiency gains, rather than allocative efficiency gains. In particular, the parametric preferences

dramatically understate the importance of the Darwinian channel.

37We calibrate the model by drawing 10,000 firms and finding a fixed point in output. Since the Pareto distribution
is unbounded, we could theoretically draw firms with zero pass-throughs and infinite sales shares; the simulated
distributions are bounded away from these extremes.
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Benchmark Klenow-Willis
µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.293 0.323 0.276
Technical efficiency: d log Ytech 0.034 0.090 0.271
Allocative efficiency: d log Yalloc 0.260 0.233 0.004

Darwinian effect: d log Yε
− d log Ytech 0.272 1.396 0.019

Selection effect: d log Yε,θ∗
− d log Yε 0.000 -1.006 -0.004

Pro-competitive effect: d log Yε,θ∗,µ
− d log Yε,θ∗ -0.012 -0.157 -0.011

Real GDP per capita 0.051 0.052 0.073

Table 14: Comparison of the elasticity of welfare and real GDP per capita to population in the
benchmark and Klenow and Willis (2016) calibrations.

Appendix J Real GDP via a Quantity Index

In a neoclassical setting (without non-convexities), real GDP can in principle be measured in two

equivalent ways, either using a Divisia quantity index or a Divisia price index. In this model,

since new goods enter with finite sales, this breaks the equivalence between the two indices. The

price index is the definition we adopt in the body of the paper, however, for completeness, we

also discuss the quantity index. The quantity index measures the change in individual quantities

at constant prices

d log Qq = Eλ[d log yθ]. (73)

This is equal to

d log Qq = −d log M + λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
d log(

Aθ

µθ
)
]
, (74)

The two notions of changes in real GDP per capita differ. For the rest of this section, denote

the price-index notion (that we use in the body of the paper) using d log Qp: this is the change in

real GDP per capita measured at constant quantities (more precisely, the price index is measured

at constant quantities, and then changes in real GDP are defined to be changes in nominal GDP

deflated by the price index). Changes in real GDP per capita measured with quantities d log Qp

depend only on changes in prices d log(pθ/w) = d log(µθ/Aθ). For given prices pθ/w = µθ/Aθ, they

do not depend on the allocation of spending between new, existing, and disappearing varieties. By

contrast, changes in real GDP measured with quantities do depend on the allocation of spending

for given prices. In fact, d log Qq penalizes new product creation since the quantity of new products

produced is not included in the measure, but the reduction in the quantity of existing products

is included. The reduction in the quantity of existing products comes about from the fact that, in
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order to produce new products, less of the old products must be produced.

Since real GDP measured at constant prices has a physical interpretation, we can write real

GDP per capita measured with quantities Qq(A,X):38

d log Qq =
∂ logQq

∂ logA
d logA︸             ︷︷             ︸

technical efficiency

+
∂ logQq

∂X
dX︸       ︷︷       ︸

allocative efficiency

. (75)

Note that changes in allocative efficiency are different for consumer welfare d log Y and for changes

in real GDP per capita at constant prices d log Qq. Changes in allocative efficiency are changes in

the object of interest originating in reallocation effects. It is therefore natural that they depend on

the object of interest.

Proposition 10. In response to changes in population d log L, changes in real GDP per capita are

d log Qq = −d log L︸   ︷︷   ︸
technical efficiency

+
(
1 − Eλ

[
ρθσθ

]
Eλ

[ 1
σθ

]) (
d log Y + d log L

)
︸                                                 ︷︷                                                 ︸

allocative efficiency

, (76)

where d log Y is given by Theorem 1.

We can apply the same decomposition as above into three different equilibrium allocations

incorporating more and more margins of adjustment: entry, entry and exit, and entry, exit and

pricing/markups. The corresponding changes in real GDP per capita are respectively given by

Proposition 1, but setting ξµ = ξθ
∗

= 0 and ρθ = 1 (which holds fixed markups and the cut-offs),

ξµ = 0 and ρθ = 1 (which holds fixed markups but allows the cut-off to adjust), and without any

modification (allowing all margins to adjust).

For changes in real GDP per capita, it is actually even more interesting to study this de-

composition in reverse order, because of the more central role played by pricing/markups in the

evolution of these variables. This means incorporating more and more margins of adjustment as

follows: pricing/markups, pricing/markups and exit, and pricing/markups, entry and exit. The

corresponding changes in real GDP per capita are respectively given by Proposition 1, but with

ξε = ξθ
∗

= 0, ξε = 0, and without any modification. For example, under assumptions (1), (2), and

(3), changes in real GDP per capita measured with prices increase as more and more margins of

adjustment are incorporated.

38However, no such representation is available for real GDP measured with prices Qp.
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