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1 Introduction

Aggregate increasing returns to scale underlie some of the most fundamental problems in

economics, ranging from the mechanics of growth, to the gains from trade, to the benefits

from industrial and competition policy. Broadly speaking, there are two reasons why we

might think that efficiency increases as markets get larger. The first set of explanations are

about the technological features of production. If firms have increasing returns to scale,

say due to fixed costs, then expanding the market will improve efficiency since fixed costs

will be spread over a larger population. The second set of explanations are about allocative

features of the equilibrium. If competition intensifies in a bigger market, then perhaps this can

reallocate resources in a way that improves aggregate efficiency. In this paper, we propose a

framework for decomposing these effects theoretically and quantitatively. We argue that, to a

large extent, increasing returns to scale at the aggregate level may reflect changes in allocative

rather than technical efficiency. That is, as the market becomes larger, competition intensifies

and reallocates resources across firms in ways that boost welfare. Furthermore, we show that

even mild increasing returns at the micro level (measured by the average ratio of marginal to

average cost) can catalyze large increasing returns at the macro level.

We consider an economy where producers have with fixed entry and overhead costs, there

is entry and exit, and monopolistic competition. We study how the equilibrium responds

to an increase in the size of the market, say due to immigration, fertility, or globalization

(trade integration). Because of technological economies of scale, an increase in market size

raises individual welfare even when the allocation of resources is held fixed. However, the

change in market size also triggers reallocations of resources. These endogenous changes in

the allocation of resources, which we refer to as changes in allocative efficiency, are the focus

of this paper.

These reallocations only matter if the initial equilibrium is inefficient. If the initial equi-

librium is efficient, then the marginal social benefit of any input is equated across competing

uses, and reallocations do not affect welfare to a first order. This also implies that aggregate

and microeconomic returns to scale are the same since, on the margin, allocating all additional

inputs to a single firm must yield the same aggregate return as the equilibrium allocation.

For tractability, models of monopolistic competition and entry often feature constant-

elasticity-of-substitution (CES) demand. The classic reference is Melitz (2003), which is a

workhorse model of reallocation. The simple elegance of CES demand comes at the expense

of realism. CES demand imposes constant markups in both the cross-section and the time-

series with complete pass-through of marginal costs into prices. As a result, the Melitz (2003)

model features an efficient equilibrium, and reallocations have no first-order effect on welfare.1

1A similar remark applies to Hopenhayn (1992), who assumes perfect competition and decreasing returns at the
margin at the producer level. This model also has efficient equilibria and, as a result, equilibrium reallocations are
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The data, on the other hand, features substantial heterogeneity in both markups and pass-

throughs. Therefore, matching the empirical heterogeneity of markups and pass-throughs

requires deviating from the CES benchmark. This, in turn, opens the door for endogenous

reallocations triggered by a shock to affect welfare.2

We relax the restrictions of the CES demand system by using a generalized Kimball demand

system, introduced by Matsuyama and Ushchev (2017). We allow for the possibility that firms

face different residual demand curves to one another. Moreover, residual demand curves need

not be iso-elastic, and firms’ desired markups and pass-throughs may change flexibly as a

function of firm size.3 The demand system we use is homothetic, which makes it relatively

straightforward to embed our analysis of a single sector into a larger multi-sector model of

the economy.

We characterize welfare changes in response to an increase in market size. The response

of welfare consists of a change in technical efficiency (i.e., an increase in welfare holding the

allocation of resources across uses constant) and a change in allocative efficiency that arises

due to endogenous reallocations. We show that changes in allocative efficiency can be further

broken into three distinct channels, which we call (1) the Darwinian effect, (2) the selection

effect, and (3) the pro/anti-competitive effect. We describe each of these effects in turn.

The Darwinian effect results from the interaction of entry with heterogeneity in the price

elasticity of demand. Each firm in our model faces a demand curve, which pins down

quantity as a function of the firm’s price relative to an aggregate market-level price index.

When the market expands and new firms enter, the aggregate price index falls, intensifying

competition for all firms. Firms with more inelastic demand, however, are relatively insulated

from changes in the aggregate price index, while firms with relatively elastic demand shrink

most as the aggregate price index falls. The result is a reallocation of resources from firms

with elastic demand and hence low markups to firms with inelastic demand and hence high

markups. Since high-markup firms were initially too small relative to low-markup firms, this

reallocation improves welfare. We call this a Darwinian effect because increased competition,

from a reduction in the price index, automatically selects and expands resource usage by

the “fittest” firms (those with the most inelastic demand). Notably, this effect exists and is

welfare-increasing regardless of the shape of the demand curve, as long as the model features

non-trivial heterogeneity.

irrelevant for welfare to a first-order.
2Of course, we are not the first to consider deviations from CES in models of free entry and monopolistic

competition. Previous examples with inefficient equilibria include Krugman (1979), Mankiw and Whinston (1986),
Venables (1985), Asplund and Nocke (2006), Melitz and Ottaviano (2008), Epifani and Gancia (2011), Zhelobodko
et al. (2012), Edmond et al. (2018), Dhingra and Morrow (2019), Mrázová and Neary (2017), Mrázová and Neary
(2019), Arkolakis et al. (2019), and Matsuyama and Ushchev (2020b). We discuss precisely how our approach and
findings differ below.

3We also derive our results using other generalizations of CES preferences, which nest separable translog
preferences and linear expenditure shares as special cases, in Appendix H. The results are similar both qualitatively
and quantitatively.
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The selection effect results from the fact that, as the market expands, the minimum level

of profitability a firm must have to survive can change. This mechanism only operates in

models with overhead costs of production. We show that whether or not the selection effect

increases or reduces welfare is ambiguous. A toughening of the selection cut-off improves

welfare only if the consumer surplus generated by the marginal firm relative to its sales is less

than the average.

Finally, the pro/anti-competitive effect results from the fact that firms’ desired markups

can change as the market expands. Of the three channels, the pro/anti-competitive effect is

the sole change in allocative efficiency arising in homogeneous firm models such as Krugman

(1979). If firms have incomplete pass-through, then as the price index falls due to an increase

in market size, firms cut their desired markups (pro-competitive effect). On the other hand,

if firms’ pass-through of marginal cost into the price exceeds one, then firms will raise their

markups (anti-competitive effect). We show that whether or not these changes in markups

raise or lower welfare is also ambiguous.

To quantify the magnitude of these three channels, we develop a strategy for taking the

non-parametric model to data. Using cross-sectional firm-level information from Belgium

on pass-throughs (from Amiti et al., 2019), we non-parametrically solve for the shape of the

residual demand curve that can exactly rationalize firm-level data on sales and estimates of

firms’ pass-through. We then use our calibrated model to quantify the theoretical forces we

have identified.

In our quantitative calibration, we find that changes in allocative efficiency are much more

important than changes in technical efficiency in determining aggregate increasing returns

to scale. They account for between 70% and 90% of the overall effect. In our quantitative

model, increasing returns to scale can be very mild at the microeconomic level, despite there

being large increasing returns to scale at the aggregate level. Furthermore, we show that

the oft-emphasized selection and pro-competitive effect are either unimportant or harmful.

Instead, the Darwinian mechanism that we isolate contributes the lion’s share of the gains in

allocative efficiency. In our quantitative calibration, small low-markup firms shrink and large

high-markup firms expand as the market becomes larger. This ties the reallocative benefits of

market size to increases in market concentration.4

We also relate our results for welfare to the behavior of real GDP. It is well-known that

when the set of goods can change due to entry and exit, real GDP and welfare may not be

the same. We show that changes in real GDP are entirely driven by reductions in markups,

and do not depend on the reallocation effects that are so crucial for welfare. Quantitatively,

4Baqaee and Farhi (2019) show that this type of reallocation—a reallocation from low-markup firms to high-
markup firms—can explain a significant fraction of aggregate TFP growth in the US over the last two decades.
Autor et al. (2020) and Aghion et al. (2019) also document the reallocation of market share to the most productive
firms over time. This paper raises the possibility that increases in scale, perhaps driven by globalization, could be
responsible for these reallocations.
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we find that the elasticity of real GDP per capita to market size understates the elasticity of

welfare to market size changes.

Finally, our results also have implications for public policy, and suggest that entry can

alleviate cross-sectional misallocation across firms. In particular, we show that a subsidy on

firm entry can improve welfare even if, on the margin, entry is excessive. This is a consequence

of the general theory of the second best (Lipsey and Lancaster, 1956)— additional entry can

trigger beneficial reallocations even if, compared to first best, the economy has excessive entry.

Many of the ideas that we develop regarding the response of the economy to changes

in population apply to changes in other parameters and to other demand systems. In the

appendix, we provide analytical comparative statics for changes in fixed costs of entry, fixed

overhead costs, and the productivity distribution, as well as their decomposition into technical

and allocative efficiency. We also show that the same intuitions can be rederived using other

generalizations of CES preferences.

Related Literature. This paper builds on a large literature that considers how changes in

market size affect entry, competition, and welfare. We adopt a framework with monopolistic

competition and a representative consumer with a taste for variety, following Spence (1976)

and Dixit and Stiglitz (1977).

The first analyses of how market size affect welfare assume that firms are homogeneous,

such as Krugman (1979), Mankiw and Whinston (1986), Vives (1999), or Venables (1985). For

example, Krugman (1979) shows that, in an economy with homogeneous firms, an increase

in market size increases welfare through two channels: the entry of new varieties, and the

decrease in markups as the relative share of each variety in total consumption falls. More

recently, this line of research has recently been extended by Bilbiie et al. (2012) and Bilbiie et

al. (2019) in a dynamic context, and by Matsuyama and Ushchev (2020b) for more general

classes of homothetic preferences.

The heterogeneous firm case has been studied by Melitz (2003) when efficient, and by As-

plund and Nocke (2006), Melitz and Ottaviano (2008), Epifani and Gancia (2011), Zhelobodko

et al. (2012), Melitz and Redding (2015), Dhingra and Morrow (2019), Mrázová and Neary

(2017), Mrázová and Neary (2019), and Arkolakis et al. (2019) when inefficient.

Our approach differs from these studies in four ways. First, we provide analytical com-

parative statics for how the observed (second-best) market equilibrium changes in response

to a change in market size. This is in contrast to a number of recent studies that focus on

an economy’s distance from the efficient frontier and thus the social cost of markups (e.g.,

Edmond et al., 2018, Behrens et al., 2018, Bilbiie et al., 2019).5 This allows us to decompose

5The distance from the efficient frontier and thus the social cost of markups are a very different question than the
one that lies at the heart of this paper, which is how the observed equilibrium changes in response to a perturbation.
Nevertheless, in Appendix F, we also characterize the decentralized economy’s distance from the efficient frontier,
thereby linking our results to these papers.
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changes in consumer welfare in the decentralized equilibrium into the direct effects of tech-

nical efficiency and changes in allocative efficiency that arise due to endogenous changes in

the competitive environment.

Second, we state our comparative statics in terms of sufficient statistics that are measurable

in the initial equilibrium. As a result, we are able to characterize the allocative effects of an

increase in market size without global restrictions on demand necessary in previous studies.

For example, Dhingra and Morrow (2019) show that a sufficient condition for allocative

efficiency effects in a heterogeneous firm economy to be larger than those in a homogeneous

firm economy is for preferences to be “globally aligned” (i.e., the consumer surplus ratio

associated with varieties is increasing in their quantities) and for markups to be increasing

in quantity (i.e., Marshall’s second law of demand). Mrázová and Neary (2019) show that

when markups are increasing in firm size, an increase in scale increases the profits of large

firms, which they term the “Matthew Effect.” Compared to these studies, we show that the

neither aligned preferences nor Marshall’s second law of demand are necessary for increases

in market size to be welfare-improving. In fact, we find that the predominant channel by

which market size appears to affect welfare, through the Darwinian reallocations associated

with entry, functions regardless of whether Marshall’s second law of demand holds.

Third, we avoid restrictions that make welfare invariant to the creation of varieties or make

entry invariant to the shock. For example, Arkolakis et al. (2019) study how welfare changes

in an open economy with an export margin following shocks to iceberg trade costs. They

find that pro-competitive effects on welfare are zero when preferences are homothetic. In

their model, the absence of fixed costs of accessing domestic and foreign markets means that

the creation and destruction of “cut-off” goods has no first-order effects on welfare (i.e., the

selection effect is always zero). Moreover, since the mass of firms that choose to enter is not

affected by changes in iceberg shocks in their model, both the pro-competitive effect, which

depends on the efficiency of entry, and Darwinian effect, which depends on the interaction of

entry with firm heterogeneity, are absent in their results. In our model, firms incur overhead

costs to operate and the mass of entrants changes in response to changes in the size of the

market; as a result, none of the three channels are generically zero following a change in

market size.6

Fourth and finally, we provide a strategy for backing out demand curves from data,

allowing us to quantify the contributions of the Darwinian, selection, and pro-competitive

channels to the overall response of welfare following a change in market size. We find this

approach offers a significant advantage compared to previous attempts to calibrate an off-

the-shelf functional form, since parametric specifications may mute important features of the

6Nevertheless, our findings on the pro-competitive effects of scale accord with Arkolakis et al. (2019): in our
calibration, we find that adjustments on the markup margin are small in magnitude and mildly reduce, rather than
enhance, welfare.
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Structure of the paper. The structure of the rest of the paper is as follows. Section 2 sets up

the model and defines the equilibrium. Section 3 decomposes changes in welfare into changes

in technical and allocative efficiency and introduces sufficient statistics in the data that we use

to characterize our results. Section 4 presents the main result for how welfare changes with

an increase in market size. Section 5 considers the welfare response to an entry tax. Section 6

discusses how we back out demand curves from the data, and Section 7 quantifies our results.

Section 8 summarizes extensions developed in the appendix, and Section 9 concludes. The

appendix contains all the proofs.

2 Model Setup

In this section, we specify the household and firm problems and describe the equilibrium.

Households. There is a population of L identical consumers. Our objective is to understand

how consumer welfare changes when L increases. Following Krugman (1979), one can think

of this as capturing the effect of trade integration of symmetric economies. Each consumer

supplies one unit of labor and consumes different varieties of final goods indexed by a type

θ. Consumers have homothetic preferences, with per-capita utility Y defined implicitly, in

money-metric terms, by ∫
θ∈Θ

Υθ(
yθ
Y

)dF(θ) = 1, (1)

where yθ is the per-capita consumption of variety θ, the function Υθ is increasing and concave

with Υ(0) = 0, the set Θ contains all potential varieties, and dF(θ) is the measure of varieties

of type θ. We return to the definitions of Θ and dF(θ) with more precision when we discuss

the firm side of the economy below.

These preferences, introduced by Matsuyama and Ushchev (2017), are a generalization of

Kimball (1995) preferences, since the aggregator function Υθ is allowed to vary by variety.

CES preferences are a special case of equation (1) when Υθ(x) = Υ(x) = x
1−σ
σ . The preferences

in (1) are one way to generalize CES while maintaining homotheticity. Matsuyama and

Ushchev (2017) also show that there are other ways one could generalize CES preferences

while maintaining homotheticity and tractability. In Appendix H, we show that our theoretical

and quantitative results are very similar if we use these alternatives.8

7We show in Appendix I that the Klenow and Willis (2016) specification of Kimball preferences is unable to match
key features of the data, and hence that a standard calibration understates allocative efficiency effects compared to
our benchmark results.

8We have also derived similar versions of our results (available upon request) using non-homothetic separable
preferences (as in Krugman, 1979 and Dhingra and Morrow, 2019). This demand system, however, is non-homothetic
and so it generates additional scale effects even in the absence of fixed cost and entry.
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Consumers maximize their utility Y subject to the budget constraint∫
θ∈Θ

pθyθdF(θ) = 1, (2)

where pθ is the price of variety θ. We normalize the nominal wage to one, so that each

consumer’s income is equal to one. This expression for the budget anticipates the fact that

free entry forces profits to zero in equilibrium, so that wages are the sole source of household

income.

Solving the household problem yields the per-capita inverse-demand curve for an indi-

vidual variety θ,
pθ
P

= Υ′θ(
yθ
Y

), (3)

where the price aggregator P and the demand index δ̄ are defined as

P =
δ̄
Y
, and

1
δ̄

=

∫
θ∈Θ

Υ′θ(
yθ
Y

)
yθ
Y

dF(θ). (4)

Equation (3) demonstrates the appeal of these preferences — by choosing Υθ, we can generate

demand curves of any desired (downward-sloping) shape for each variety. Furthermore, since

Υ′θ can vary by θ, different varieties can face different residual demand curves. Equation (3)

also makes clear that the relative demand for a variety θ is determined by the ratio of its price,

pθ, to the price aggregator, P. Hence, the price aggregator P mediates competition between

any given variety and all other available goods. The fact that each variety competes against

aggregates is what makes the model tractable.

Note that the price aggregator P does not, in general, coincide with the ideal price index for

the representative consumer, and hence deflating income by P does not yield welfare (except

in the case of CES preferences).9

Firms. Each firm supplies a single variety and seeks to maximize profits under monopolistic

competition similar to the production structure in Melitz (2003). To enter, firms incur a fixed

entry cost of fe units of labor. Upon entry, firms draw their type θ ∈ [0, 1] from a distribution

with density g(θ) and cumulative distribution function G(θ). Having drawn its type, each

firm decides whether to produce or to exit. Production requires paying an overhead cost of

fo,θ units of labor and the marginal cost of production is constant at 1/Aθ units of labor per

unit of the good produced. The firm’s residual demand curve Υ′θ, overhead cost fo,θ, and

productivity Aθ are allowed to vary flexibly with the firm’s type θ. Finally, the firm decides

9Let e({pθ},Y) be the expenditure function of a household as a function of the price of all varieties pθ and
welfare Y, where the price of unavailable varieties is set to infinity. Since preferences are homothetic, we can write
e({pθ},Y) = PYY, where PY is the ideal price index. Changes in the price aggregator are d log P = d log δ̄ + d log PY.
Since δ̄ is not, in general, a constant, the price aggregator and the ideal price index do not coincide. The exception
is CES preferences, under which δ̄ = σ/(σ − 1) is constant, and thus P = PY.
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what price to set, taking as given its residual demand curve.

From (3), the price-elasticity of demand facing a variety of type θ, denoted σθ, is given by

σθ(
y
Y

) = −
∂ log yθ
∂ log pθ

=
Υ′θ( y

Y )

−
y
YΥ′′

θ
( y

Y )
. (5)

Conditional on operating, a firm of type θ will set its price equal to a markup µθ times its

marginal cost 1/Aθ. The profit-maximizing markup is given by the usual Lerner formula,

µθ(
y
Y

) =
1

1 − 1
σθ( y

Y )

. (6)

To ensure that each firm’s profit-maximizing price is unique, we assume restrictions on Υθ

such that marginal revenue curves are strictly downward sloping.10 Since yθ is the per-capita

output of the firm, the firm’s total output is Lyθ.

A firm of type θ chooses to produce if, and only if, its variable profits exceed the overhead

cost of production, i.e.,

Lpθyθ

(
1 −

1
µθ

)
≥ fo,θ. (7)

Denote the ratio of variable profits to overhead costs by Xθ

Xθ =
Lpθyθ

fo,θ

(
1 −

1
µθ

)
, (8)

and assume that firm types are ordered so that Xθ is strictly increasing and continuous in

θ ∈ [0, 1]. Furthermore, we assume that Xθ varies smoothly in θ.11 Define θ∗ to be the

infimum of the set {θ ∈ [0, 1] : Xθ ≥ 1}. Firms with types θ ≥ θ∗ decide to produce, since

variable profits for these firms exceed overhead costs, and firms of type θ < θ∗ exit.

Free entry implies that firms enter until the expected variable profit minus overhead costs

of any entering firm is equal to the fixed cost of entry:

1
∆

∫
∞

θ∗

[
Lpθyθ

(
1 −

1
µθ

)
− fo,θ

]
g(θ)dθ ≥ fe. (9)

The parameter ∆ is introduced to allow the equations to represent a repeated version of the

static model with an infinite number of periods 0, 1, · · · ,∞, where each producing firm has

an exogenous probability ∆ of being forced to exit in every period t = 0, 1, · · · ,∞. Under this

interpretation, we assume there is no discounting so that the expected net present value of

profits is then given by the left-hand side of the entry equation.

10In terms of primitives, we assume that xΥ′′′θ (x) < −2Υ′′θ (x) for all x and all θ.
11In terms of primitives, this means that firms are ordered in such a way that −σθρθ

∂ logµθ
∂θ +

(
σθ
ρθ
− 1

)
∂ log Aθ

∂θ −
∂ log fo,θ
∂θ ≥ 0

where ρθ is the pass-through function defined in terms of primitives by (13).
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The set of operating firms, and hence varieties available to the representative consumer,

is {θ ∈ [0, 1] : θ ≥ θ∗}. The measure of firms of type θ is defined by the density dF(θ) =

Mg(θ)1(θ≥θ∗)dθ, where M is the mass of entrants and 1 is an indicator function.

Equilibrium. In equilibrium, consumers maximize utility taking prices as given; firms

maximize profits taking prices other than their own and consumer welfare as given; and

markets clear. That is, an equilibrium is determined by equations (1), (2), (3), (4), (6), (7), and

(9).

Notation. We now define some useful notation. Denote the sales share density by

λθ = (1 − G(θ∗))Mpθyθ, (10)

This is a density because it is always non-negative and integrates to one.12 For some variable

zθ, define the sales-weighted average by

Eλ[zθ] =

∫
∞

θ∗
λθzθ

g(θ)
1 − G(θ∗)

dθ. (11)

Similarly, denote the sales-weighted covariance of any two variables xθ and zθ by

Covλ[xθ, zθ] = Eλ[xθzθ] − Eλ[xθ]Eλ[zθ].

3 Central Concepts

In this section, we introduce some central concepts that will guide our analysis. First, we

define how we decompose equilibrium changes into technical and allocative efficiency terms.

Second, we introduce important statistics related to the shape of the demand curve that help

make sense of equilibrium reallocations. Third, we explain how welfare responds to market

size in terms of statistics of the shape of demand curves. We build on the definitions in this

section to prove our main result in Section 4.

3.1 Changes in Technical and Allocative Efficiency

To understand the drivers of changes in welfare, it will be useful to decompose changes in

welfare into those driven by technical and allocative efficiency changes. Changes in technical

efficiency capture the direct impact of the shock, holding the allocation of resources constant.

12Since M is the mass of entrants and θ∗ is the selection cut-off, (1 − G(θ∗))M is the mass of surviving firms and
this integrates to one from the budget constraint (2).
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Changes in allocative efficiency capture the indirect impact of the shock resulting from the

endogenous beneficial (or harmful) reallocations that are triggered by the shock.13

Following Baqaee and Farhi (2019), we define the technology vectorA = (L, fe∆, { fo,θ}, {Aθ})

and the allocation vector X = (le, {lo,θ}, {lθ}). The allocation vector X describes the fractions

of labor allocated to the following activities: entry, overhead, and variable production of

varieties of type θ. Together, A and X entirely describe any feasible allocation. Let Y(A,X)

be the associated level of consumer welfare. Our analysis decomposes changes in welfare

into changes in technical and allocative efficiency as

d log Y =
∂ logY
∂ logA

d logA︸             ︷︷             ︸
technical efficiency

+
∂ logY
∂X

dX.︸       ︷︷       ︸
allocative efficiency

(12)

In efficient equilibria, the envelope theorem implies that changes in allocative efficiency are

zero to a first-order. Inefficiencies in the initial allocation of resources open the door for

reallocations to have first-order effects on welfare. In our model, variable markups, entry,

and selection are all potential sources of inefficiency in the initial equilibrium. Hence, in

the general case, our model will feature changes in both technical and allocative efficiency

following a shock to market size.

3.2 Markups, Pass-Throughs, and Consumer Surplus Ratios

In this section we introduce some statistics related to the shape of demand curves that will

be important. The following definitions for markups, pass-throughs, and consumer surplus

ratios will be helpful as we characterize the changes in consumer welfare. As discussed above,

the elasticity of demand facing a variety (σθ) and the resulting profit-maximizing markup (µθ)

can be expressed as functions of primitives,

σθ(
y
Y

) =
Υ′θ( y

Y )

−
y
YΥ′′

θ
( y

Y )
, and µθ(

y
Y

) =
1

1 − 1
σθ( y

Y )

.

We define the pass-through of a variety as the elasticity of its price to its marginal cost.

Again, firm pass-throughs can be expressed as a function of primitives,

ρθ(
y
Y

) =
∂ log pθ
∂ log mcθ

= 1 +
∂ logµθ
∂ log mcθ

=
1

1 +
y
Yµ
′

θ
( y

Y )

µθ( y
Y )
σθ( y

Y )
. (13)

13Our notion of allocative efficiency compares changes in welfare due to reallocations against the benchmark
where the allocation of resources is held constant. A different notion of allocative efficiency that is also sometimes
used in the literature measures changes in the distance to the efficient frontier. Changes in that measure of allocative
efficiency depend both on whether reallocations are beneficial/harmful and how far the efficient frontier moves due
to changes in technology. See Baqaee and Farhi (2019) for a discussion.
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Under CES preferences, firms’ desired markups are constant, and hence firms exhibit “com-

plete pass-through” (i.e., ρθ = 1). In general, however, firms’ desired markups may vary with

marginal cost and size. For example, if a firm’s desired markup is increasing in its size, the

firm will exhibit “incomplete pass-through” (µ′θ( y
Y ) > 0 and thus ρθ < 1).14

The last statistic we introduce is the consumer surplus per unit sales δθ for each variety

θ. More precisely, δθ is the ratio of consumption-equivalent utility from a marginal variety,

δ̄Υθ( y
Y ), to its per-capita sales:

δθ(
y
Y

) =
δ̄Υθ( y

Y )
pθyθ

=
Υθ( y

Y )
y
YΥ′

θ
( y

Y )
. (14)

Figure 1 gives a visual intuition for δθ as the ratio of consumer surplus A + B to revenues

A.15 Naturally, the consumer surplus ratio δθ ≥ 1 for all θ. The consumer surplus function δθ
captures the consumer surplus a firm creates for the consumer relative to its sales. In a CES

model, δθ measures the “love-of-variety” effect. In this model, this love-of-variety effect can

vary both by type θ and relative size yθ/Y.

By integrating over Equation (14), we can show that the demand index in (4) is simply the

sales-weighted average of this consumer surplus ratio

Eλ[δθ] = δ̄. (15)

Quantity

P
ri
ce

p
θ

y
θ

A

B

Figure 1: Graphical illustration of δθ as the area under the residual demand curve divided by
revenues. That is δθ = (A + B)/A ≥ 1.

14This is sometimes referred to as Marshall’s second law of demand. There is also a stronger version of Marshall’s
second law which requires that pass-through decline as a function of size (see Melitz, 2018 for more information).

15When goods enter and exit at a choke price, the consumer surplus for goods at the choke price is naturally
B = 0. In this case, the entry-exit margin can be said to be “neoclassical,” in the sense that revenues reflect consumer
surplus. As we show below in equation (16), in such models, the equivalence between measured GDP and welfare
is restored.
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3.3 Welfare

We are interested in how welfare (per capita) responds to changes in market size. The change

in consumer welfare, measured using either the equivalent or compensating variation, is

d log Y. More concretely, changes in welfare are given by

d log Y = (Eλ[δθ] − 1) d log M︸                   ︷︷                   ︸
Consumer surplus

from entry of new varieties

− (δθ∗ − 1)λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗︸                          ︷︷                          ︸

Consumer surplus (loss)
from exit of varieties dθ∗

− Eλ
[
d logµθ

]
︸          ︷︷          ︸
Marginal surplus

from price changes

. (16)

Intuitively, welfare changes d log Y incorporate the consumer surplus brought about by the

entry of new varieties d log M or destroyed by the exit of varieties dθ∗ via the first two terms

on the right-hand side of (16). The final term captures how marginal changes in prices of

non-entering and non-exiting goods affect the consumer.

The last summand in (16) is also equal to real GDP per capita in this model — that is, the

last term is the change in prices for continuing varieties present before and after the change

weighted by their market share.16 The change in measured real GDP per capita is the change

in nominal income deflated by the GDP deflator, i.e.,

d log Q = −Eλ[d log pθ] = −Eλ
[
d logµθ

]
. (17)

Since we assume that labor is the only primary factor of production, changes in real GDP

per capita are also equal to changes in aggregate TFP. This extends the observation made by

Jaimovich and Floetotto (2008) who show that, in a model with entry and variable markups,

variations in markups affect aggregate productivity. The key point is that changes in real GDP

per capita and aggregate TFP do not generically coincide with changes in welfare if δθ , 1.

It is worth discussing a couple cases in which consumer welfare changes and real GDP

changes do coincide. Most obviously, if the model did not allow for the creation and destruc-

tion of varieties, then the first two terms of (16) would be zero, and changes in consumer

welfare would equal changes in real GDP per capita. Consumer welfare changes and real

GDP changes also coincide in models of entry featuring no fixed costs and demand curves

with choke prices. If new goods enter smoothly from the choke price, then δθ = 1 for all

entrants, and the first two terms are zero.17

16In principle, changes in real GDP can either be defined using a quantity index or a price index. In practice,
real GDP is measured using the GDP deflator, so we use the price index definition. We include a discussion of the
quantity index in Appendix J.

17When new varieties enter smoothly from the choke price, rather than across the type distribution, the first term
will rely on δθ∗ rather than Eλ[δθ]. This discussion applies, for example, to Arkolakis et al. (2019): In their model,
there are no fixed costs of exporting and export quantities vary smoothly from zero (at the choke price), so the
response of real GDP per capita and welfare to a change in iceberg trade costs coincide in their analysis.
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4 Changes in Market Size

In this section, we present our main result on how a change in market size affects welfare. We

also decompose the effect into changes in technical and changes in allocative efficiency due

to reallocations. Whether or not a given reallocation is beneficial or harmful depends on the

nature of the pre-existing distortions. Therefore, before discussing how reallocations affect

allocative efficiency, we first describe the different distortions in the model.

While we focus on comparative statics of the equilibrium with respect to changes in

market size in the main text of the paper, we have developed similar results for shocks to

other parameters (like productivity and fixed entry costs) in Appendix G.

4.1 Sources of Inefficiency

An allocation is inefficient if welfare can be increased by reallocating labor between entry,

overhead, and variable production while keeping the total amount of labor fixed. There are

three margins along which the allocation can be inefficient in this model: (1) entry can be

excessive or insufficient; (2) selection can be too tough or too weak; (3) the cross-sectional

allocation of labor across variable production may be distorted. We discuss these three

different kinds of inefficiency in turn and show that each can be characterized with simple

conditions on the sufficient statistics presented in Section 3.2.

In what follows, we define local efficiency for each margin. That is, whether a marginal

reallocation along some dimension improves or decreases welfare. This is distinct from global

efficiency which compares the allocation to the first-best allocation. Since we are not interested

in directly comparing the decentralized equilibrium to the first-best allocation, it is these local

notions of efficiency, and not the global ones, which are relevant for our reallocative effects.

Entry efficiency. Consider a marginal reallocation that reduces variable production labor

and increases entry and overhead labor, keeping the selection cut-off and the relative allocation

of labor across non-exiting varieties constant. If this perturbation raises welfare, we say that

entry is insufficient. If the opposite holds, we say that entry is excessive.

Lemma 1 (Excessive/Insufficient Entry). Entry is excessive if, and only if,

Eλ[δθ] < Eλ
[
µ−1
θ

]−1
. (18)

If this inequality is reversed, entry is insufficient.

In words, there is too much entry if the harmonic (sales-weighted) average of firm markups

exceeds the sales-weighted average consumer surplus ratio. Intuitively, entrants respond to

average markups (since markups determine profits), but the value of entry for consumers
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depends on the average consumer surplus ratio. In a CES model, (18) holds as an equality

and so the CES model has efficient entry.

Selection efficiency. We say that selection is too weak if marginally increasing the selection

cutoff—and reallocating the labor from those newly exiting varieties proportionately to entry,

overhead, and variable production—increases welfare.

Lemma 2 (Tough/Weak Selection). Selection is too weak if, and only if,

δθ∗ < Eλ[δθ]. (19)

If this inequality is reversed, selection is too tough.

Suppose that we increase the selection cutoff by dθ∗ and reallocate the labor previously

allocated to overhead and variable production of types [θ∗, θ∗ + dθ∗) proportionately to entry,

overhead, and variable production. Intuitively, if the consumer surplus associated with

the marginal variety δθ∗ is lower than the average sales-weighted consumer surplus ratio

Eλ[δθ], the welfare associated with new varieties created from the freed-up labor outweighs

the welfare loss from the exiting varieties. Since the increase in selection cut-off is welfare-

improving in this case, we say that selection was initially too weak.

Crucially, note that if the inequality in (19) is reversed, which can easily happen, then an

increase in the selection cut-off dθ∗ > 0 reduces efficiency and welfare. Therefore, tougher

selection and the death of marginally profitable firms is not, ipso facto, evidence that efficiency

is rising. In a CES model, (19) holds as an equality and so the CES model has efficient entry.

Relative production efficiency. Finally, we say that the amount of variable labor ded-

icated to the production of one variety is too high compared to another if, on the margin,

welfare increases when variable labor is reallocated from the former to the latter.

Lemma 3 (Cross-section misallocation). Variable labor of variety θ′ is too high compared to that of
variety θ if, and only if,

µθ′ < µθ. (20)

Intuitively, firms with higher markups are inefficiently small in the cross-section compared

to firms with lower markups. Hence, reallocating labor from a low-markup firm to a high-

markup firm increases allocative efficiency. Crucially, it is a comparison of markups µθ and

hence price elasticities σθ, and not productivities Aθ, that determines whether or not one firm

should be larger than another from a social perspective.

Since markups are decreasing in price elasticities, aggregate efficiency improves if re-

sources flow from high price elasticity firms towards low price elasticity firms. If price

elasticities happen to be negatively associated with productivity, then an expansion of more
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productive firms increases welfare, but this is only if “high productivity” proxies for “low

price elasticity.” In general, the productivity level is irrelevant for whether a given reallocation

improves or worsens efficiency. This contrasts with statistical decompositions, for example

Olley and Pakes (1996), which consider a reallocation towards firms with higher levels of

productivity Aθ as an indicator of an improvement in efficiency.

In a CES model, (20) holds as an equality and so the CES model has an efficient cross-

sectional allocation of resources.

4.2 Welfare and Shocks to Market Size

We characterize the change in welfare following an exogenous change in market size.

Theorem 1 (Welfare Response). In response to changes in population d log L, changes in consumer
welfare are given by

d log Y =

(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+
ξε + ξθ

∗

+ ξµ

1 − ξε − ξθ∗ − ξµ

(
Eλ[δθ]

)
d log L︸                                     ︷︷                                     ︸

allocative efficiency

, (21)

where

(Darwinian Effect) ξε = (Eλ[δθ] − 1) Covλ

[
σθ,

1
µθ

]
,

(Selection Effect) ξθ
∗

= (Eλ[δθ] − δθ∗)λθ∗γθ∗
(
Eλ

[
σθ∗

σθ

]
− 1

)
,

(Pro/Anti-competitive Effect) ξµ = Eλ
[(

1 − ρθ
)
σθ

(
1 −

Eλ[δθ]
µθ

)]
Eλ

[ 1
σθ

]
,

and γθ∗ is the hazard rate of the profitability distribution Xθ at the selection cut-off. In terms of
primitives, this is

1
γθ∗

=
1 − G(θ∗)

g(θ∗)

[
∂ log Xθ

∂θ

∣∣∣∣∣
θ∗

]
=

1 − G(θ∗)
g(θ∗)

[
−σθ
ρθ

∂ logµθ
∂θ

+

(
σθ
ρθ
− 1

)
∂ log Aθ

∂θ
−
∂ log fo,θ
∂θ

∣∣∣∣∣∣
θ∗

]
.

Equation (21) decomposes the change in welfare into a technical and allocative efficiency

effect according to the definition in Section 3.1. We start by discussing the technical efficiency

term before discussing the allocative efficiency term.

The first term in Equation (21) captures the changes in technical efficiency that arise due to

an increase in market size, holding fixed the proportional allocation of resources across uses

(entry, overhead, and variable production). Because the fraction of labor allocated to entry is

held fixed, the increase in population implies a proportional increase in entry. This has two

offsetting effects. First, the new varieties increase consumer welfare by Eλ[δθ]d log L, since
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the consumer’s surplus associated with the new varieties will average Eλ[δθ]. On the other

hand, the increase in the number of varieties reduces the per-capita consumption of existing

varieties by d log L. The net effect balances these two offsetting effects. Since δθ ≥ 1, the

technical efficiency term is always positive. In a CES model, this is the only effect.

The second term in (21) captures how changes in the allocation of resources contribute to

welfare.18 Each of ξε, ξθ
∗

, and ξµ relates to a particular type of reallocation. The names we

assign to these terms will become clearly shortly.

One way of thinking about this decomposition is that the general equilibrium response

can be analyzed as a series of three successive allocations, each of which allows firms to adjust

along a greater number of margins. In the first restricted allocation, we allow free entry, but

hold markups and the selection cutoff constant (i.e., µθ and θ∗ are fixed using implicit taxes).

The change in welfare in this allocation is the same as in Theorem 1, but setting ξθ
∗

= ξµ = 0.

In the second allocation, firms can also change their decision to operate but still cannot alter

their markups. The change in welfare in this allocation is equal to Theorem 1, but setting

ξµ = 0. Finally, the third allocation allows firms to adjust on all three margins: entry, exit, and

choice of markup.

To fix ideas, we consider three special cases, each of which isolates and focuses on the

intuition for a different margin of adjustment.

4.2.1 Darwinian Effect

To isolate the role of the Darwinian effect, consider an economy in which there are no overhead

costs ( fo,θ = 0) so that θ∗ = 0. Furthermore, assume that preferences are given by

∫
∞

θ∗

( yθ
Y

) σθ−1
σθ dF(θ) = 1, (22)

which is a special case of (1) with Υθ(x) = x(σθ−1)/σθ .19

In this example, markups can vary in the cross-section of firms because µθ = σθ
σθ−1 , but

markups do not vary in time-series because pass-though is complete (ρθ = 1). The fact that

markups do not change means that ξµ = 0, and the fact that there are no overhead costs means

that ξθ
∗

= 0. Hence, we have the following.

Corollary 1 (Darwinian Effect). When preferences are given by (22) and overhead costs are zero, the

18We assume throughout that ξε + ξµ + ξθ
∗

< 1. Since any collection of feasible {λθ, δθ, µθ, δθ,Xθ}θ∈Θ can be
rationalized via some collection of {Υθ,Aθ, fo,θ} this guarantees, by the inverse function theorem, that an equilibrium
exists and is locally isolated. This assumption is verified in our empirical application.

19These preferences were introduced by Matsuyama and Ushchev (2020a). They refer to these as “constant-price-
elasticity” preferences. When the σθ parameter is uniform across firm types, this collapses to CES.
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change in welfare from an increase in market size is given by

d log Y =

(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+
ξε

1 − ξε

(
Eλ[δθ]

)
d log L︸                      ︷︷                      ︸

allocative efficiency

≥ 0. (23)

Changes in allocative efficiency are strictly positive (ξε > 0) as long as there is any het-

erogeneity in markups (and therefore price-elasticities). This is because the price-elasticity of

demand σθ and its inverse are negatively correlated:

ξε = (Eλ[δθ] − 1)Covλ

[
σθ,

1
µθ

]
= −(Eλ[δθ] − 1)Covλ

[
σθ,

1
σθ

]
≥ 0. (24)

To understand this effect, note that the change in the relative per-capita quantity of each

variety satisfies

d log(
yθ
Y

) = σθd log P.

Intuitively, the increase in market size, and the entry of new firms, causes the price aggregator

to fall d log P < 0. The reduction in the price aggregator triggers bigger reductions in per-

capita quantities for firms that face more elastic demand. The result is that low-markup

firms, which have high price-elasticities of demand, shrink more than high-markup firms,

which have low price-elasticities. By Lemma 3, high markup firms were initially too small

relative to the efficient allocation, this reallocation reduces relative productive inefficiencies

and improves welfare. We call this a Darwinian effect because increased competition from a

reduction in the price index shifts resources towards the “fittest” firms (those with the most

inelastic demand). The multiplier (Eλ[δθ]−1) in (24) appears because the reallocations caused

by the Darwinian effect save on labor, and these extra resources are funneled into additional

entry.

This effect is unambiguously positive regardless of the shape of the demand curve and

does not depend on whether entry is excessive or insufficient. Interestingly, an implication

of this result is that, although entry may be excessive in equilibrium, taxing entry will be

harmful since reducing entry will worsen cross-sectional misallocation. A tax on entry, in this

model, would cause the Darwinian effect to operate in reverse, which could reduce welfare

even if entry is excessive.

4.2.2 Selection Effect

We now relax the assumption of zero overhead costs, while retaining the constant markups and

complete pass-throughs of the economy in the previous section. As a result, we reintroduce a

source of allocative efficiency changes due to changes in the selection cut-off (ξθ
∗

), but continue

to hold ξµ = 0.
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Corollary 2 (Darwinian and Selection Effect). When preferences are given by (22) and overhead
costs are nonzero, the change in welfare from an increase in market size is given by

d log Y =

(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+
ξε + ξθ

∗

1 − ξε − ξθ∗

(
Eλ[δθ]

)
d log L︸                              ︷︷                              ︸

allocative efficiency

. (25)

Whilst the Darwinian effect is always positive, changes in the selection cut-off will only

increase welfare if

ξθ
∗

= (Eλ[δθ] − δθ∗)λθ∗γθ∗
(
Eλ

[
σθ∗

σθ

]
− 1

)
≥ 0.

This happens, for example, if consumer surplus ratio at the cut-off δθ∗ is lower than average

Eλ[δθ], and the price elasticity σθ∗ is higher than averageEλ[σθ]. The second condition ensures

that the selection cut-off increases in response to an increase in market size since the marginal

firms are more exposed to competition than the average firm, and the first condition ensures

that the death of marginal firms is beneficial since selection was too weak to begin with.

An important implication is that increases in the selection cutoff, dθ∗ > 0, are not, on

their own, evidence of an improvement in allocative efficiency. Increases in selection due to

intensifying competition are only socially desirable if allocating labor to the marginal firm

provides households with less consumer surplus than reallocating that labor to entry and

other surviving firms. Indeed, in our quantitative application in Section 7, we find that

increases in the selection cut-off are welfare-reducing.

4.2.3 Pro/Anti-Competitive Effect

In our third and final example, we turn off the Darwinian and selection effects by considering

an economy with homogeneous firms. In this example, reallocations are driven purely by the

fact that firms change their markups in response to changes in market size.

Corollary 3 (Pro/Anti-competitive effect). Suppose that all varieties face the same residual demand
curve Υ′θ = Υ′, overhead cost fo,θ = fo, and productivity Aθ = 1. The change in welfare from an
increase in market size is given by

d log Y = (δ − 1)d log L︸          ︷︷          ︸
technical efficiency

+ δ
ξµ

1 − ξµ
d log L︸            ︷︷            ︸

allocative efficiency

. (26)

When firms are homogeneous, ξε = ξθ
∗

= 0, and ξµ simplifies to

ξµ = (1 − ρ)
(
1 −

δ
µ

)
. (27)
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If firms exhibit incomplete pass-through (ρ < 1), the allocative effects of markup adjustments

are welfare-enhancing if, and only if, there is initially too much entry (µ > δ). Intuitively, the

increase in market size causes the price index to fall, this causes markups to decrease if ρ < 1.

The fact that markups fall reduces entry, which is beneficial if entry was excessive to begin

with.

The literature typically refers to the idea that markups may fall with market size as the

pro-competitive effect of scale. In this example, the pro-competitive effect is captured entirely by

ρ < 1: firm markups decrease since the per-capita consumption of the firm’s output decreases

in response to entry. As (27) makes clear, the welfare impact of these pro-competitive effects

then depends on the initial efficiency of entry.20,21

4.3 Real GDP and Shocks to Market Size

We end this section by considering changes in real GDP. As we discuss in Section 3.3, changes

in welfare and real GDP per capita do not generically coincide when we allow for firm entry

and exit. Proposition 1 characterizes the change in real GDP per capita following a change in

market size.

Proposition 1 (Real GDP response). In response to changes in population d log L, changes in real
GDP per capita are

d log Q = Eλ
[
1 − ρθ

]
Eλ

[ 1
σθ

] (
d log Y + d log L

)
, (28)

where d log Y is given by Theorem 1.

An increase in population leads to a reduction in markups under incomplete pass-through

ρθ < 1, and this pro-competitive effect reduces the price of continuing varieties. Since real

GDP depends on the change in the price of continuing varieties, this can cause real GDP per

capita to rise d log Q = Eλ[d log pθ]. If pass-through is complete, then real GDP per capital

does not change as the market expands. Hence, reallocation affects welfare and real GDP

through very different channels. This also applies to aggregate productivity, as measured by

national income accounts, which in this model coincides with real GDP per capita.

20This discussion is closely related to the contemporaneous findings from Matsuyama and Ushchev (2020b), who
show that if entry is globally pro-competitive, then entry is excessive entry in models with homogeneous firms.

21Corollary 3 abstracts from firm heterogeneity. If firms are heterogeneous and pass-through is incomplete,
whether or not ξµ > 0 does not hinge purely on whether or not entry is excessive or insufficient. This can be seen by
inspecting Theorem 1. With heterogeneous firms, changes in markups also change the cross-sectional distribution
of resources. Whether or not these reallocations are beneficial or harmful is in general ambiguous even if we know
that entry is excessive.
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5 Policy Interventions

In this section, we briefly consider the implications of our results for policy. Section 4.1

discussed the three margins along which the decentralized allocation can be distorted—

entry inefficiency, selection inefficiency, and relative production inefficiencies. The policy that

obtains the first-best allocation eliminates all three margins of distortion. Intuitively, achieving

the first-best requires at least as many policy instruments as there are firm types, since at the

minimum this policy must correct for all pairwise mismatches in markups across any two

firm types θ and θ′. Moreover, the planner also needs to regulate selection by comparing

consumer surplus at the cut-off against the average. Whereas such extensive interventions in

the market are impracticable, regulating entry is, in comparison, straightforward. Hence, a

planner may be tempted to regulate entry via a tax or subsidy, ignoring the other distortions.22

In this section, we consider how a marginal entry tax affects welfare. We show that an

entry tax, by reducing entry, causes the Darwinian effect discussed in Section 4 to operate

in reverse. This means that, even though entry may be excessive as judged by Lemma 1, it

will nevertheless be welfare-improving to subsidize entry. This is because more entry would

alleviate the cross-sectional misallocation of resources (and less entry would worsen it). And

these indirect effects of entry are more important than whether or not entry itself is excessive.

The tax on entry, τ, modifies the free entry condition given in (9), so that each entering

firm now pays (1 + τ) fe units of labor upon entry:

1
∆

∫
∞

θ∗

[(
1 −

1
µθ

)
pθyθwL − fo,θ

]
g(θ)dθ = (1 + τ) fe, (29)

where, for simplicity, we set ∆ = 1. Government revenues from this tax are rebated lump-sum

to households.

For brevity, we include additional details of how these changes affect the system of equi-

librium conditions in Appendix E and continue now to the welfare result. Proposition 2

characterizes the response of welfare to a tax on entry, starting from the point where entry is

untaxed.

Proposition 2 (Welfare Effect of an Entry Tax). Suppose ∆ = 1 and that entry is initially untaxed
(unsubsidized). The response of welfare to a marginal tax on entry is given by

d log Y =

1 −
Eλ [δθ] /Eλ

[
µ−1
θ

]−1
+ (Eλ [δθ] − δθ∗)λθ∗γθ∗

1 − ξε − ξθ∗ − ξµ

ψe dτ, (30)

22For more discussion of first best policy, see Appendix F.1, where we characterize the policy that achieves
first-best. We use this optimal policy to estimate the distance of the decentralized equilibrium to the efficient
frontier.
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where ψe = fe/
(

fe + (1 − G(θ∗))E
[

fo,θ
])

is the entry cost share of all fixed costs, and ξε, ξθ
∗

, and ξµ

are as defined in Theorem 1.

Whether an entry tax increases welfare depends on the sign of the term in parentheses in

(30). This term is more likely to be positive—and an entry tax is more likely to be welfare-

enhancing—if entry is excessive (Eλ[δθ] < Eλ[µ−1
θ ]−1), if selection is too tough (Eλ[δθ] < δθ∗),

or if the beneficial reallocations from entry given by ξε, ξθ
∗

, and ξµ are small.

An immediate implication of Proposition 2 is that excessive entry is not a sufficient condi-

tion for an entry tax to be welfare-increasing. If ξε + ξθ
∗

+ ξµ is sufficiently large, for example,

attempting to correct for excessive entry with an entry tax may actually be welfare-reducing

because the economy loses the beneficial cross-sectional reallocations associated with entry.

We illustrate this intuition by briefly discussing the welfare effect of the entry tax in the

three special cases from Section 4.

Darwinian effect. Consider again the economy in Section 4.2.1, where there are no over-

head costs and preferences are given by (22). In this example, the entry tax has no effect on

firms’ markups or on selection.

Corollary 4. When preferences are given by (22) and overhead costs are zero, the change in welfare
from a marginal tax on entry is positive if, and only if,

Eλ [δθ] < (1 − ξε)Eλ
[
µ−1
θ

]−1
. (31)

Note that this condition is more stringent than the condition for excessive entry in Lemma 1,

since ξε > 0 in any economy with heterogeneous markups. Intuitively, since entry alleviates

relative production inefficiencies due to Darwinian reallocations, the welfare impact of an

entry tax may be negative if the loss of those Darwinian reallocations outweighs the benefits

of moving closer to the efficient level of entry.

Selection effect. Suppose we retain complete pass-through preferences, but now allow for

nonzero overhead costs, as in Section 4.2.2. The economy now features both Darwinian and

selection effects, but pro-/anti-competitive effects are still absent.

Corollary 5. When preferences are given by (22) and overhead costs are nonzero, the change in welfare
from a marginal tax on entry is positive if, and only if,

Eλ [δθ] <
(
1 − ξε − (Eλ [δθ] − δθ∗)λθ∗γθ∗Eλ

[
σθ∗

σθ

])
Eλ

[
µ−1
θ

]−1
. (32)

This condition is more stringent than the condition in Corollary 4 if selection is too weak

(δθ∗ < Eλ[δθ]), and less stringent if selection is too tough. Intuitively, an entry tax decreases

selection, which is only beneficial if the initial level of selection was too tough.
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Pro/anti-competitive effect. Finally, consider an economy with homogeneous firms, as

in Section 4.2.3. In this economy, entry has no Darwinian or selection effects, since firms are

identical.

Corollary 6. Suppose that all varieties face the same residual demand curve Υ′θ = Υ′, overhead cost
fo,θ = fo, and productivity Aθ = 1. The change in welfare from a marginal tax on entry is positive if,
and only if,

ρ

[
1 −

δ
µ

]
> 0. (33)

If ρ > 0, then an entry tax is welfare-increasing if and only if entry is excessive (δ < µ).

When we remove firm heterogeneity from the model, the entry margin is the sole source

of potential inefficiency. As a result, the change in welfare following an entry tax depends

only on whether entry is initially excessive or insufficient.

6 Calibration Strategy

In this section, we take the theory to the data. We first describe our non-parametric calibration

procedure. We then implement it using Belgian data and show how the primitives can be

derived from the data. In Section 7, we use the calibrated model to perform quantitative

experiments.

6.1 Non-Parametric Approach

To calibrate the model, we impose two restrictions: (1) firms of all types face the same residual

demand curve, i.e., Υθ = Υ, and (2) firms face identical overhead costs fo,θ = fo. Hence, the

only source of firm-level heterogeneity is the productivity shifter Aθ. These restrictions are

helpful since they imply that a firm’s markups and pass-throughs vary in the cross-section

because firms are on different points of the same demand curve, and not because each firm has

a different residual demand curve. Hence, under these conditions, observing pass-throughs

in the cross-section of firms helps inform us about the shape of the demand curve. Moreover,

the model retains enough flexibility under these restrictions to match the empirical data on

firm sales and pass-throughs exactly. We consider this an improvement over calibrating an

off-the-shelf functional form for the Kimball aggregator and productivity distribution, since

these parametric specifications may mute important features of the data.23

23The most popular non-CES Kimball aggregator in the literature is the one introduced by Klenow and Willis
(2016). In Appendix I, we show that our quantitative results change dramatically if we impose this functional form.
This is because these preferences are not able to match the same cross-sectional estimates of pass-throughs and sales
that we use to calibrate our model.
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Given our assumption that overhead costs are the same for all firms, we can identify a

firm’s type from its position in the sales distribution. We rank firms by increasing size and

associating their type to the fraction of firms with smaller sizes. We will take two objects as

data: (1) the density of sales shares λθ, and (2) the distribution of pass-throughs ρθ. Sales

are readily available in our dataset, and we use estimates of pass-throughs by firm size from

Amiti et al. (2019). The pass-through function is a third-order differential equation in the

Kimball aggregator, and can be used to solve for Υ up to boundary conditions. For boundary

conditions, we need to take a stand on the average levels of first and second derivatives, i.e.

on the average markup and the average consumption surplus ratio (these will be constants

of integration). We will present our estimates for different values of these variables. Through

this procedure, and given our assumptions, we will recover the whole nonlinear structure of

the model.

Productivities, quantities, elasticities, and consumer surplus ratios. In the cross-

section, productivities Aθ and markups µθ must simultaneously solve the two differential

equations,
d logλθ

dθ
=

ρθ
µθ − 1

d log Aθ

dθ
, (34)

d logµθ
dθ

= (1 − ρθ)
d log Aθ

dθ
. (35)

The intuition for the first differential equation is that, compared to a firm of type θ, a firm with

type θ+ dθ has higher productivity d log Aθ/dθ, lower price d log pθ/dθ = ρθd log Aθ/dθ, and

thus higher sales d logλθ/dθ = (σθ − 1)d log pθ. The second differential equation comes from

the fact that the relationship of desired markups to productivity is d logµθ/d log Aθ = 1 − ρθ.

Combining the two equations yields

d logµθ
dθ

= (µθ − 1)
1 − ρθ
ρθ

d logλθ
dθ

. (36)

Given sales shares λθ and pass-throughs ρθ, this differential equation allows us to recover

markups µθ up to a constant µθ∗ . We choose the initial value µθ∗ ≥ 1 to match a given value

of the (harmonic) sales-weighted average markup µ̄ = Eλ[µ−1]−1.

Either of the two differential equations for sales shares or markups then allows us to

recover productivities up to a constant Aθ∗ , which we normalize to 1. In turn, the per-capita

quantities consumed of each variety are

yθ =
λθAθ

(1 − G(θ∗))Mµθ
. (37)
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Next, we recover consumer consumption surplus ratios using the differential equation

d log δθ
dθ

=
µθ − δθ
δθ

d logλθ
dθ

, (38)

with the initial condition δθ∗ chosen to match a given value of the average consumer surplus

ratio Eλ[δθ] = δ̄. Finally, we recover the Kimball aggregator by combining the definition of δθ
with the residual demand curve,

Υ(
yθ
Y

) =
λθ

(1 − G(θ∗))M
δθ
δ̄
.

Fixed costs and selection cut-off. The information so far does not reveal the cut-off value

θ∗, so calibrating this number requires outside information. To calibrate the marginal type θ∗,

we step slightly outside the model and imagine that new firms operate for one year before

they choose to shut down. Hence, in their first year, the unconditional probability of exit

is higher than the exogenous death rate. We then fit a quasi-hyperbolic process to firm exit

probability by age as reported by Pugsley et al. (2018). The difference between the probability

of exit in the first period versus later periods identifies θ∗. Conditional on θ∗, we can back out

the fixed costs using the free-entry condition

fe
L

+ (1 − G(θ∗))
fo
L

=
1
M

E
[
λθ

(
1 −

1
µθ

)]
, (39)

and the selection condition

(1 − G(θ∗))
fo
L

=
1
M
λθ∗

(
1 −

1
µθ∗

)
, (40)

where total population L and mass of firms M can be normalized to 1.

In principle, one could alternatively use markups µθ (second derivatives of the Kimball

aggregator) or consumer surplus ratios δθ (first derivatives of the Kimball aggregator) in

conjunction with sales λθ to recover Υ. We instead rely on pass-throughs, since estimating

markups at high frequencies is notoriously difficult, and since estimating δθ would require

experimental data tracing out individual demand curves. The downside is that calibrating

the model using ρθ requires outside information or informed guesses to pin down boundary

conditions µ̄ and δ̄.

6.2 Calibration Implementation

In this section, we implement the calibration procedure described above using estimates of

the firm-level pass-throughs and the distribution of firms sales. We refer readers interested in

a more detailed description of our data sources to Appendix A.
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(b) Cumulative sales share distributions.

Figure 2: The blue dots are data showing the average sales-weighted pass-through and cumulated
sales share for firms smaller than the percentile given by the x-axis. The solid red line is a fitted
spline.

Data sources. We rely on estimates of pass-throughs by firm size for manufacturing firms

in Belgium from Amiti et al. (2019). They use annual administrative firm-product level

data (Prodcom) from 1995-2007, which contains information on prices and sales, collected by

Statistics Belgium. Using exchange rate shocks as instruments for changes in marginal cost,

they are able to control for the portion of price changes due to competitors’ prices, and hence

identify the partial equilibrium pass-through by firm size (under assumptions consistent with

our model). Their estimates are shown in Figure 2a.

Prodcom does not sample very small firms (firms must have sales greater than 1 million

euros to be included). Therefore, we merge their estimates of the pass-through function ρ

(as a function of size) with the sales distribution λ for the universe of Belgian manufacturing

firms (from VAT declarations). The cumulative sales share distribution is shown in Figure 2b.

For firms that are smaller than the smallest firms in Prodcom, we interpolate their pass-

through in such a way that the smallest firm has pass-through equal to one. This is consistent

with the estimates of Amiti et al. (2019), who find that the average pass-through for the

smallest 75% of firms in Prodcom is already 0.97.24

Boundary Conditions. Our results require taking a stand on two boundary conditions:

the average consumer surplus ratio δ̄ and the (harmonic) average markup µ̄. For the purposes

of discussion, in the paper, we focus on two benchmark calibrations of δ̄: (1) efficient entry

δ̄ = µ̄ (see Lemma 1), and (2) efficient selection δ̄ = δθ∗ (see Lemma 2). We consider two

24In mapping the model to the data, we assume that products sold by the same firm are perfect substitutes, so
each firm is a different variety. We could alternatively assume that each product is a separate variety. Appendix B
provides results using this assumption. The computed elasticities are different, but the overall message does not
change.
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(b) Log sales share density logλθ

Figure 3: Pass-throughs and sales share density as a function of firm type θ.

different values for the average markup µ̄ = 1.045 and µ̄ = 1.090, which are chosen so that

d log Y/d log L ≈ 0.13 under the first assumption, and d log Y/d log L ≈ 0.30 under the second

assumption. An aggregate scale elasticity d log Y/d log L ∈ [0.13, 0.3] is broadly in line with the

literature.25 In Appendix C, we vary both boundary conditions along a 2-dimensional grid

and show that the two benchmark cases we focus on are representative of broader patterns.

Sufficient Statistic Results. Figures 3a and 3b display pass-throughs ρθ and log sales

logλθ as a function of firm type θ. These are derived by differentiating the splines in Figures 2

(see Appendix A for more details). Sales are initially increasing exponentially (linear in logs),

but become super-exponential towards the end reflecting a high degree of concentration in

the tail. Pass-throughs decrease from 1 for the smallest firms to about 0.3 for the largest firms.

The results from solving the differential equations are shown in Figure 4. Figure 4a shows

that markups µθ are increasing and convex in log productivity log Aθ. For brevity, we only

show graphs of the estimates for µ̄ = 1.090 but the patterns are similar for the other case

(though obviously, markups are lower when we set µ̄ = 1.045). The net markup ranges from

close to zero for the smallest firms to almost 80% for the very largest firms. The heterogeneity

in markups is a consequence of the vast dispersion in the firm size distribution and estimated

pass-throughs. Figure 4b shows the log productivity/quality distribution. As with the sales

density, the productivity density is also initially exponential, and becomes super exponential

in the tail. Since price elasticities are decreasing in θ, productivity has to change by more than

sales in the cross-section to allow firms to get large. Figures 4d and 4c show the consumer

surplus ratio δ for the efficient-selection case (δθ∗ = δ̄) and the efficient-entry case (µ̄ = δ̄).

Finally, Figure 5 plots the inverse residual demand curve in linear and log-log terms.

25For context, in a CES model, d log Y/d log L = 0.13 correspond to setting an elasticity of substitution around 8
whilst d log Y/d log L = 0.3 corresponds to an elasticity of substitution around 4.
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try).

Figure 4: Markups and consumer surplus ratios with µ̄ = 1.090.
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(b) Log-log inverse residual demand curve

Figure 5: Residual demand curve (price against quantity) for the efficient-selection case with
µ̄ = 1.09. The results for the efficient-entry case are similar.

Figure 5a shows that our estimate has a distinctly non-isoelastic shape, indicating substantial

departures from CES.

7 Quantitative Results

In this section, we compute the elasticity of welfare and real GDP to market size using the

calibrated Belgian data. We use the results presented in Section 4 to decompose welfare gains

into technical and allocative efficiency, and further decompose allocative efficiency changes

into the Darwinian, selection, and pro-competitive margins. As extensions, we compare

macro returns to scale (at the aggregate level) to micro returns to scale, show that our local

approximations provide a good guide to the nonlinear response of the model. We also

illustrate how increases in market size increase industrial concentration.

Welfare Effects. Table 1 reports the elasticity of consumer welfare to market size, following

Theorem 1. The response of welfare is decomposed into changes due to technical efficiency

and allocative efficiency,

d log Y = d log Ytech + d log Yalloc.

The table further decomposes the allocative effect by into the Darwinian, selection, and pro-

competitive channels. We denote welfare under the Darwinian effect d log Yε only (holding

fixed θ∗ and markups µθ); welfare allowing the Darwinian and selection effect d log Yε,θ
∗

(holding fixed markups µθ); and welfare when all three margins can adjust d log Yε,θ
∗,µ =

d log Y.

When discussing the results, we focus on the case with µ̄ = 1.045, but similar comments

apply to the case where µ̄ = 1.090. We start by discussing the case with efficient entry first
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µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.130 0.145 0.293 0.323
Technical efficiency: d log Ytech 0.017 0.045 0.034 0.090
Allocative efficiency: d log Yalloc 0.114 0.100 0.260 0.233

Darwinian effect: d log Yε
− d log Ytech 0.117 0.408 0.272 1.396

Selection effect: d log Yε,θ∗
− d log Yε 0.000 -0.251 0.000 -1.006

Pro-competitive effect: d log Yε,θ∗,µ
− d log Yε,θ∗ -0.004 -0.057 -0.012 -0.157

Real GDP per capita 0.024 0.024 0.051 0.052

Table 1: The elasticity of welfare and real GDP per capita to population following Theorem 1 and
Proposition 1.

(δ̄ = δθ∗). By construction, the elasticity of consumer welfare to population is 0.13. Only

around a tenth of the overall effect is due to the technical efficiency effect δ̄ − 1 = 0.017.

Changes in allocative efficiency 0.114 account for around nine tenths of the overall effect.

An increase in market size therefore brings about considerable improvements in allocative

efficiency, and these improvements are about nine times larger than direct gains from technical

efficiency.

The change in allocative efficiency from the Darwinian effect is large and positive at

0.117. This increase in welfare is due to reallocations to high-markup firms, which grow

relative to low-markup firms as the price aggregator mediating competition falls. The change

in allocative efficiency from the selection effect is zero by construction, since the surplus

associated with exiting varieties is equal to the average consumer surplus. Finally, the change

in allocative efficiency from the pro-competitive effect is slightly negative at −0.004. This

number includes the effects of an overall reduction in markups and entry, which is beneficial

since entry is initially too high (µ̄ > δ̄), and a reallocation effect between high-markup and low-

markup firms that depends on the relative pass-throughs and elasticities of firms. In principle,

the overall effect is ambiguous in sign, and here we find that detrimental reallocation effects

dominate the beneficial reduction in markups, leading to an overall reduction in welfare from

the pro-competitive channel.26

The elasticity of real GDP per capita is much smaller than the elasticity of welfare to market

26The effect of reductions in markups is complicated by cross-sectional misallocation. Since pass-throughs are
below one for all firms, all firms cut their markups in response to entry. However, large firms cut their markups
by more than small firms since their pass-through is lower. This pushes in the direction of reallocations towards
large firms. However, the small firms have much more elastic demand curves, and this pushes in the direction
of reallocations towards small firms. In our quantitative model, the fact that the pro-competitive effect is harmful
implies that the elasticity effect dominates the pass-through effect.
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size at 0.024. As discussed earlier, this difference is a consequence of the fact that the welfare

benefits of new goods are not reflected in changes in real GDP.27

Next, consider the case with efficient entry. The elasticity of welfare with respect to

population shocks is now slightly higher at 0.145. The technical efficiency effect is now 0.045,

reflecting the fact that δ̄ is calibrated to equal µ̄ = 1.045. The allocative efficiency effect is still

much more important than the technical efficiency effect at 0.100.

The Darwinian effect is now much larger at 0.408. The main reason the effects are so much

larger than they were in the efficient-selection case is because Eλ[δθ] − 1 is now 0.045 instead

of 0.017. This implies that entry is more valuable than it was before. Since the labor saved

by the Darwinian effect is funneled into more entry, this makes the Darwinian effect more

beneficial. The selection effect from the adjustment of the exit cut-off is now non-zero and

negative at−0.27. The reason for this can be seen from inspecting Figure 4d, which shows that

the consumer surplus ratio at the cut-off is much higher than average. Hence, as the cut-off

increases in response to toughening competition, socially valuable small firms are forced to

exit. Finally, the pro-competitive effect from the reduction in markups is still negative and

larger in magnitude at −0.057. The reason the pro-competitive effect is now more negative is

because entry was initially excessive in the efficient-selection case, so the overall reductions

in markups had a beneficial effect on the entry efficiency. Since we are now imposing entry

efficiency, this effect no longer operates, and the overall contribution of changing markups to

welfare is more negative.

The response of real GDP per capita is basically unchanged at 0.024, since in both specifi-

cations, the average reduction in markups for existing firms is roughly the same.

How important can selection be? An important theme in the literature has been to

emphasize the role of the selection margin (increases in the productivity cut-off) as a driver

of productivity and welfare gains. However, in our baseline results, the selection margin is

either neutral (when δθ∗ = δ̄) or is deleterious (when δ̄ = µ̄). One may wonder how robust

this finding is and how it depends on our choice of boundary conditions.

To answer this question, we consider a third possibility for the initial conditions. We

try setting δθ∗ = 1, which implies that the residual demand curve for infra-marginal firms

is perfectly horizontal. In other words, the marginal firms produce no excess consumer

surplus for the household. This maximizes the importance of the selection margin for welfare,

conditional on our choice of µ̄. The results, however, are quantitatively very similar to those

27The large gap between the welfare and real GDP effect should be interpreted with caution, because it is sensitive
to a dimension of the problem, namely dynamics, which we have abstracted from. The reason is that real GDP,
while it misses the consumer surplus created immediately upon entry of a new variety, captures all the post-entry
productivity gains for this variety. Everything else equal, if new varieties enter small and grow larger over time by
improving their productivity, as would be realistic if varieties were identified with firms, there would be less of a
difference between welfare and real GDP. By contrast, If new varieties enter large, as would be realistic if varieties
where products, then there would be bigger difference between welfare and real GDP.
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in Table 1.

Specifically, when µ̄ = 1.045, we find the overall effect on welfare is still 0.130 with technical

efficiency effect of 0.016 and an allocative efficiency effect of 0.114. The Darwinian effect still

accounts for the bulk of changes in allocative efficiency at 0.116. The contribution of the

selection effect to welfare is now positive, but it is still close to insignificant at 0.001. And

the pro-competitive effects through the endogenous adjustment of markups are still negative

and of similar magnitude to before at −0.003. Similarly, when µ̄ = 1.09, the welfare effect is

0.293 with a technical efficiency effect of 0.033 and an allocative efficiency effect of 0.260. Once

again, the overwhelming force is the Darwinian effect at 0.269, with a negligible contribution

of the adjustment of selection at 0.003 and a small and negative pro-competitive effect through

the endogenous adjustment of markups at −0.012.

These results suggest that the small role played by the selection margin is not an anomaly

resulting from our choice of initial conditions. In fact, given our choice of µ̄, it is impossible

to choose initial conditions that give selection a bigger role to play than the numbers in the

paragraph above. For robustness to our choice of µ̄, see the robustness exercise in Appendix

C.

How important is heterogeneity? To emphasize the interaction of heterogeneity and

inefficiency, we compare our model to a model with homogeneous firms, calibrated to have a

pass-through equal to the average (sales-weighted) pass-through and a markup equal to the

harmonic average. Table 2 shows the results.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.030 0.045 0.060 0.090
Technical efficiency: d log Ytech 0.017 0.045 0.034 0.090
Allocative efficiency: d log Yalloc 0.013 0.000 0.026 0.000

Real GDP per capita 0.021 0.022 0.042 0.043

Table 2: The elasticity of welfare and real GDP per capita to market size in an economy with
homogeneous firms.

The most striking difference is that the elasticity of consumer welfare to population is

much smaller, because changes in allocative efficiency become negligible. In a model with

homogeneous firms (see Section 4.2.3), the sole source of inefficiency comes from excessive

or insufficient entry. Thus, when entry is assumed to be efficient (the second and fourth

columns), there are no changes in allocative efficiency at all. Even when entry is not efficient,

the changes in allocative efficiency are fairly small. Those beneficial changes in allocative

efficiency are solely due to pro-competitive effects.
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Are there larger increasing returns at the macro vs. micro levels? We also compare

increasing returns at the macro vs. micro levels. The micro return to scale for a surviving type

θ is the ratio of average cost to marginal cost minus one acθ/mcθ − 1, so that 0 corresponds to

constant returns to scale. The average cost is acθ = [ fe/(1 − G(θ∗)) + fo + Lyθ/Aθ]/(Lyθ). The

marginal cost is mcθ = 1/Aθ. The harmonic average across surviving producers of the micro

return to scale is equal to 1/E[1/(acθ/mcθ − 1)] = µ̄ − 1.28

Hence average micro technological increasing returns to scale are 0.045 when µ̄ = 1.045

and 0.090 when µ̄ = 1.090. Increasing returns at the aggregate level are much larger: between

0.130 and 0.145 in the former case and between 0.293 and 0.323 in the latter case. This

means that even small technological increasing returns at the micro level can give rise to large

increasing returns to scale at the aggregate level. Once again, the interaction of inefficiency

and heterogeneity is key. This result would neither hold if the economy were efficient nor

if there were no heterogeneity. In an efficient model, macro and micro returns to scale are

necessarily the same as a consequence of the envelope theorem.

Nonlinear response. Table 1 shows that changes in allocative efficiency account for the

bulk of the marginal increase in welfare from a marginal increase in population. Moreover,

most of the effect is due to Darwinian reallocations from low-markup firms to high-markup

firms; reallocations coming from the adjustment of markups and exit are more minor. One

might worry that these composition effects could peter out quickly if we kept increasing the

size of the market. Since the model is calibrated globally, we can solve the model for large

shocks and thereby analyze potential nonlinearities.29 The results in Table 3 and Figure 6

below show that the forces identified for small shocks by Proposition 1 continue to apply for

large shocks.

Table 3 reports the average (rather than the marginal) elasticity of welfare to a 0.5 log point

increase in population (a roughly 68% increase). The magnitude of and the decomposition of

the average effects are similar to those for the marginal effects reported in Table 1. Although

the model is far from being log-linear, the qualitative conclusions are unchanged.

Figure 6 shows cumulated changes in welfare and each channel for the calibration with

efficient selection δ̄ = δθ∗ and µ̄ = 1.09 (column 3). The first panel shows that even though

their relative importance decreases slightly with the size of the shock, changes in allocative

efficiency continue to dwarf changes in technical efficiency even for large shocks. The sec-

ond panel shows that as the population grows, changes in allocative efficiency due to the

pro-competitive channel start to account for a non-trivial part of overall changes in allocative

efficiency. This happens because as we increase population, the harmonic average of markups

increases due to the Darwinian effect. This means that entry becomes more excessive, and

28From acθ = [(le + lo)/(1 −G(θ∗)) + lθ]/(Aθlθ) and mcθ = 1/Aθ, we have acθ/mcθ − 1 = [(le + lo)/(1 −G(θ∗))]/lθ and
hence 1/(acθ/mcθ − 1) = (1 − G(θ∗)lθ/(le + lo). The result follows since (1 − G(θ∗))lθ = λθ/µθ and le + lo = 1 − 1/µ̄.

29We do this by numerically solving the system of ordinary differential equations in Appendix D.
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µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: ∆ log Y 0.100 0.099 0.215 0.216
Technical efficiency: ∆ log Ytech 0.025 0.048 0.052 0.098
Allocative efficiency: ∆ log Yalloc 0.075 0.051 0.162 0.117

Darwinian effect: ∆ log Yε
− ∆ log Ytech 0.066 0.107 0.145 0.272

Selection effect: ∆ log Yε,θ∗
− ∆ log Yε 0.000 -0.065 0.000 -0.176

Pro-competitive effect: ∆ log Yε,θ∗,µ
− ∆ log Yε,θ∗ 0.008 0.008 0.017 0.021

Real GDP per capita 0.025 0.024 0.054 0.051

Table 3: The average elasticity of welfare and real GDP per capita to population for a large shock
∆ log L = 0.5.
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(a) Welfare: technical and allocative efficiency
as functions of ∆ log L .
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(b) Allocative efficiency: adjustments of the
different margins as functions of ∆ log L.

Figure 6: Decomposition of changes in welfare and allocative efficiency following Proposition 1,
obtained by separately computing each term in the decomposition and integrating (cumulating)
the changes. The model is calibrated to have efficient selection and µ̄ = 1.09 at the initial point.

hence that reallocations triggered by individual markup reductions improve allocative effi-

ciency more.

Implications for industrial concentration. Figure 7 shows the Lorenz curve for the

distribution of sales as the market size increases. This graph shows the proportion of sales

accounted for by firms up to a given centile of the size distribution. The figure shows that

concentration rises as the market expands. This is primarily due to the Darwinian effect,

which expands the size of large, high-markup firms relative to small, low-markup firms.
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Hence, in our quantitative application, increases in market size from, from say globalization,

raise welfare at the aggregate level via reallocations that also increase industrial concentration.

Baqaee and Farhi (2019) find that allocative efficiency in the U.S. economy improved from

1997-2015 due to a reallocation of market share of high-markup firms; we speculate that

Darwinian reallocations from globalization may have contributed to this trend.
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Figure 7: Each panel depicts the Lorenz curve for the sales distribution for different values
of the market size parameter L. The dotted red line indicates the line of perfect equality (i.e.
homogenous firms). The Gini coefficient, which is a measure of inequality, is also reported.

Welfare effect on an entry tax. Table 4 shows the effect of an entry tax on welfare,

following Proposition 2. Note that the technology available to the economy is fixed, so all

changes in welfare arise from changes in allocative efficiency. We again decompose the welfare

change into the Darwinian, selection, and pro-competitive effects, where d log Yε holds fixed

θ∗ and markups µθ, d log Yε,θ
∗

holds fixed only markups µθ, and d log Yε,θ
∗,µ = d log Y allows

all three margins to adjust. The last row of the table re-computes the welfare effect of an

entry tax in a model with homogeneous firms calibrated to have a pass-through equal to the

average sales-weighted pass-through and a markup equal to the harmonic average.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y -0.082 -0.089 -0.187 -0.198

Darwinian effect: d log Yε
− d log Ytech -0.085 -0.391 -0.199 -1.283

Selection effect: d log Yε,θ∗
− d log Yε 0.000 0.248 0.000 0.943

Pro-competitive effect: d log Yε,θ∗,µ
− d log Yε,θ∗ 0.003 0.055 0.012 0.142

Welfare with homogeneous firms: d log Yhomog 0.014 0.000 0.028 0.000

Table 4: Welfare effect of an entry tax, following Proposition 2.
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For all four choices of the boundary conditions, we find that the entry tax is welfare-

reducing. Since the tax reduces entry, the Darwinian effect operates in reverse, loosening

competition, reallocating to low-markup firms, and thus exacerbating existing relative pro-

duction inefficiencies. The reduction in entry has beneficial pro-competitive effects and se-

lection effects (when selection is inefficient), but the losses due to Darwinian reallocations

outweigh these benefits. In contrast, when firm heterogeneity is excluded from the model,

the entry tax is beneficial or has no effect (when entry is efficient).

These results suggest that a social planner can increase welfare by enacting an entry

subsidy. Notably, the Darwinian effects that constitute the entire gains from an entry subsidy

are absent in a model with homogeneous firms. Thus, ignoring firm heterogeneity would

lead us to recommend a tax (rather than a subsidy) on firm entry.

8 Extensions

Before concluding, we describe some extensions which are developed in the appendix.

Multi-sector economies. Although our analysis uses a single sector model, embedding

this structure into a larger multi-sector structure is relatively straightforward since preferences

are homothetic. For example, suppose that consumers have Cobb-Douglas preferences over

sectors

U =
∏
I

YβI
I
,

where I indexes different sectors and each sector’s output is implicitly pinned down by∫
ΘI

Υθ(
yθ,I
YI

)dFI(θ) = 1.

In this case, it is straightforward to show that changes in welfare are simply a weighted-

average of changes in sectoral output

d log U
d log L

=
∑
I

βI
d log YI
d log L

,

where the change in sectoral output d log YI/d log L is given by a sector-specific version of

Theorem 1.30

Optimal policy and distance to the efficient frontier. In the main text of the paper,

we have focused exclusively on comparative statics. For completeness, in Appendix F.1, we

30The same logic can also be extended to more complicated sectoral models since, due to homotheticity, we can
still break the problem into two blocks: within and across sectors.
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provide an analytical characterization of optimal policy. We also provide an analytical second-

order approximation of the distance to the efficient frontier which neatly decomposes the

contributions of the different margins of inefficiency (entry, selection, and relative production)

to the overall amount of misallocation. In Appendix F.2 we compute the distance to the

efficient frontier in our calibrated model. There, we quantify the extent of misallocation in

the decentralized equilibrium compared to the first-best allocation. We find the number to

be somewhere between 2.5% and 6.8% in Belgium depending on the boundary condition.

Therefore, there can be large changes in allocative efficiency even though the decentralized

economy is not too far from efficiency. This appendix also helps cement that idea that when

we increase the size of the market, the frontier also moves. Therefore, changes in allocative

efficiency due to reallocation are fundamentally different to changes in the distance from the

frontier. Reallocations can boost welfare on the margin, even as the distance with the efficient

frontier widens.

Other demand systems. In the main text, we focus on generalized Kimball preferences.

This is a class of preferences highlighted by Matsuyama and Ushchev (2017) as being both

flexible and tractable. In Appendix H, we show that our theoretical results, our calibration

strategy, and quantitative application are very similar under the other alternatives Matsuyama

and Ushchev (2017) point out.

Other shocks. In the main text of the paper, we have focused exclusively on shocks to

population. In Appendix G, we provide comparative statics with respect to other parameters,

like productivity or fixed costs.

9 Conclusion

In this paper, we analyze how changes in market size affect welfare in a model with monopolis-

tic competition, heterogeneous markups and pass-throughs, and fixed costs. We decompose

the overall change into changes in technical and allocative efficiency and quantify our model

using a non-parametric calibration exercise.

We find that changes in allocative efficiency, due to the reallocation of resources, are a more

important source of welfare gains from increases in scale than changes in technical efficiency.

Quantitatively, the most important reallocation is a composition effect that shifts resources

from firms with low markups towards those high markups. This composition effect, which we

call the Darwinian effect, results from the fact that the price index falls as the market becomes

larger and the elasticity of firms’ demands with respect to this price index varies systematically

with their markups. This effect is distinct from changes in the marginal profitability cut-off

and changes in markups. In fact, increases in the cut-off and markups play only minor roles

in comparison.
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Online Appendix

Appendix A Details of Empirical Implementation

Amiti et al. (2019) provide estimates of the average sales-weighted pass-through (denoted

by α) for Belgian manufacturing firms conditional on the firms being smaller than a certain

size as measured by their numbers of employees. These estimates are based on information

from Prodcom, which is a subsample of Belgian manufacturing firms. Inclusion in Prodcom

requires that firms have turn-overs above 1 million euros, which means that the sample is not

representative of all manufacturers. The estimates are in Table 5.

No of employees Share of observations Share of employment Share of sales α

100 0.76313963 0.14761668 0.23096292 0.9719
200 0.85435725 0.22086396 0.3389753 0.8689
300 0.88848094 0.28832632 0.4083223 0.9295
400 0.92032149 0.33549505 0.48074553 0.8303
500 0.93746047 0.38345889 0.54008827 0.6091
600 0.94523549 0.41987701 0.58209142 0.6612
1000 0.96365488 0.52280162 0.66820585 0.6229
8000 0.99996915 0.99999999 0.99999174 0.6497

Table 5: Estimates from Amiti et al. (2019).

Our objective is to infer the pass-through ρ as a function of firm size. With some abuse of

notation, let θ ∈ [0, 1] be the fraction of observations in Prodcom up to some sales value. Let

λ(θ) be the sales share density of Prodcom firms of type θ. Then the variable “Share of sales”

is defined as

Λ(θ) =

∫ θ

0
λ(x)dx.

We fit a smooth curve to Λ(θ), then the pdf of sales shares λ(θ) is given by

λ(θ) =
dΛ

dθ
.

The curve we fit has the form exp(c0 + c1θ + c2θc3), where c0, c1, c2, c3 are chosen to minimize

the mean squared error.

Next, the variable α(θ) satisfies

α(θ) =

∫ θ
0 λ(x)ρ(x)dx∫ θ

0 λ(x)dx
,
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=

∫ θ
0 λ(x)ρ(x)dx

Λ(θ)
,

where λ(x) is the sales-share of firms of type x. Next we fit a flexible spline function to α(θ).

The fitted curve is shown in Figure 2a.

To recover the pass-throughs ρ(θ), we write

dα
dθ

=
λ(θ)ρ(θ)∫ θ
0 λ(x)dx

−
λ(θ)∫ θ

0 λ(x)dx
α(θ).

In other words, we can recover the pass-through function via

ρ(θ) =

(∫ θ
0 λ(x)dx

)
λ(θ)

dα
dθ

+ α(θ),

=
Λ(θ)
λ(θ)

dα
dθ

+ α(θ).

This gives us pass-throughs as a function of the number of employees.

Next, we use information from VAT declaration in Belgium for the year 2014 to recover

the sales distribution of Belgian manufacturers (overcoming the sample selection issues in

Prodcom). Table 6 displays the underlying data.

As before, we let θ ∈ [0, 1] index the fraction of observations up to some size. Then the

variable “Share of sales” is defined as

Λ(θ) =

∫ θ

0
λ(x)dx,

where (abusing notation) λ is the sales share density of all manufacturing firms (rather than

just the ones in Prodcom). We fit a smooth curve to Λ(θ), then the pdf of sales shares λ(θ) is

given by

λ(θ) =
dΛ

dθ
.

The curve we fit has the form exp(c0 + c1θ + c2θc3), displayed in Figure 2b. Finally, we merge

our pass-through information from Prodcom with the sales density from VAT declarations by

assuming that the pass-through ρ of a firm with a given number of employees in Prodcom is

the same as it is in the bigger dataset. We then fit a smooth spline to this pass-through data

from [0, 1] assuming that the pass-through for the smallest firm is 1 and declines monotonically

from the smallest firm to the first observation (which is a pass-through of 0.97 for firms with

100 employees). Given a smooth curve for both λθ and ρθ we follow the procedure outlined

in Section 6.1, solving the differential equations numerically using the Runge-Kutta algorithm

on a large grid.
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Number of employees Share of sales Share of Observations

1 0.004559 0.16668
2 0.00826 0.284539
3 0.014786 0.375336
5 0.022269 0.489659
10 0.043011 0.652879
20 0.076444 0.779734
30 0.111713 0.843161
50 0.163492 0.906204
75 0.198242 0.932729
100 0.231815 0.947413
200 0.325376 0.974629
300 0.386449 0.983547
400 0.449491 0.989237
500 0.486108 0.991927
600 0.655522 0.994311
1000 0.740656 0.997386
8000 0.970654 0.999923

Table 6: Firm size distribution for manufacturing firms from VAT declarations in Belgium for
2014.

Appendix B Product-Level Data

In the body of the paper, we assume that different products produced by a single firm are

perfect substitutes from the perspective of the consumer, and so we use overall sales of a firm

as the sales of each variety. An alternative approach is to instead to treat each product as a

single variety instead. In Table 7 we display the average number of products each firm in

Prodcom sells, for each firm-size bin.

To map each product to a variety, we take the sales density for firms and divide the density

for firms of a given size by the average number of products (renormalizing the density so that

it still integrates to one). Mapping the model to the data in this way results in less dispersion

in sales, a left tail which is slightly less thick, and as a result, less dispersed estimates of

productivities and markups. The comparative statics for this version of the model are in

Table 8. The basic qualitative message of our previous results in Table 1 is unchanged, and

the composition effects from the adjustment of the entry margin (holding fixed markups and

selection) are still overwhelmingly the dominant force in the model.
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No of Employees No of Products No of firms

5 1.3636364 22
10 2.0550459 109
20 2.200495 404
30 2.4203297 728
50 2.4203895 873
75 2.3727506 389
100 3.294686 207
200 3.225 400
300 3.3308824 136
400 3.6511628 86
500 5.2162162 37
600 4.1724138 29
1000 8.3095238 42
8000 8.8780488 41

Table 7: Number of products on average from Prodcom sample in 2014.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.080 0.133 0.176 0.294
Technical efficiency: d log Ytech 0.020 0.045 0.042 0.090
Allocative efficiency: d log Yalloc 0.060 0.088 0.134 0.204

Adj. of Entry: d log Yε
− d log Ytech 0.056 0.136 0.126 0.327

Adj. of Exit: d log Yε,θ∗
− d log Yε 0.000 -0.037 0.000 -0.094

Adj. of Markups: d log Yε,θ∗,µ
− d log Yε,θ∗ 0.004 -0.012 0.008 -0.029

Real GDP per capita 0.015 0.016 0.032 0.035

Table 8: The elasticity of welfare and real GDP per capita to population following Propositions
1 and 1 for heterogeneous firms case using product-level data.
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Appendix C Robustness to Boundary Conditions

Table 9 provides the elasticity of welfare and changes in allocative efficiency, following Propo-

sition 1 for different boundary conditions. Although the magnitude of d log Y/d log L changes

as we change the boundary conditions, the contribution of allocative efficiency to the overall

total is at least 50% of the overall effect. Table 10 breaks down the overall effect on allocative

efficiency into the different margins of adjustment (entry-only, selection, and markups). The

entry-only effect is always responsible for the bulk of the positive effect. As mentioned, for a

given µ̄, the selection effect is strongest when δθ∗ is lowest, but even for δθ∗ = 1, the selection

effect is negligible.

Table 9: Change in log welfare and allocative efficiency for different boundary conditions

δθ∗

1 2 3 4 5 6 7 8 9 10

1.05 [0.144,0.126] [0.150,0.122] [0.155,0.117] [0.161,0.112] [0.166,0.107] [0.171,0.102] [0.177,0.097] [0.182,0.092] [0.187,0.086] [0.192,0.082]
1.06 [0.180,0.158] [0.186,0.153] [0.191,0.148] [0.196,0.144] [0.202,0.139] [0.207,0.134] [0.212,0.128] [0.218,0.123] [0.223,0.118] [0.228,0.113]
1.07 [0.213,0.187] [0.218,0.183] [0.224,0.178] [0.229,0.173] [0.235,0.168] [0.240,0.163] [0.245,0.158] [0.251,0.153] [0.256,0.148] [0.261,0.143]
1.08 [0.255,0.225] [0.260,0.220] [0.266,0.215] [0.271,0.211] [0.276,0.206] [0.282,0.201] [0.287,0.196] [0.292,0.190] [0.297,0.185] [0.302,0.180]
1.09 [0.293,0.260] [0.299,0.255] [0.304,0.251] [0.310,0.246] [0.315,0.241] [0.321,0.236] [0.326,0.231] [0.331,0.226] [0.336,0.220] [0.341,0.215]

µ̄ 1.10 [0.336,0.299] [0.341,0.294] [0.347,0.289] [0.352,0.284] [0.357,0.279] [0.363,0.274] [0.368,0.269] [0.373,0.264] [0.378,0.259] [0.383,0.254]
1.11 [0.382,0.341] [0.387,0.336] [0.393,0.331] [0.398,0.326] [0.403,0.321] [0.409,0.316] [0.414,0.311] [0.419,0.306] [0.424,0.301] [0.429,0.296]
1.12 [0.433,0.388] [0.438,0.383] [0.443,0.378] [0.449,0.373] [0.454,0.368] [0.459,0.363] [0.464,0.357] [0.469,0.352] [0.474,0.347] [0.479,0.342]
1.13 [0.489,0.439] [0.494,0.435] [0.499,0.430] [0.505,0.424] [0.510,0.419] [0.515,0.414] [0.520,0.409] [0.525,0.404] [0.530,0.398] [0.535,0.393]
1.14 [0.551,0.498] [0.557,0.493] [0.562,0.487] [0.567,0.482] [0.572,0.477] [0.577,0.472] [0.582,0.466] [0.587,0.461] [0.592,0.455] [0.596,0.450]
1.15 [0.622,0.563] [0.627,0.558] [0.632,0.553] [0.637,0.548] [0.642,0.542] [0.647,0.537] [0.651,0.531] [0.656,0.526] [0.661,0.520] [0.665,0.515]

Each cell reports [d log Y/d log L, d log Yalloc/d log L] for different boundary conditions. Each column is a different
value for the boundary condition δθ∗ and each row is a different aggregate markup µ̄. Cells that approximately
correspond to efficient selection are colored in blue and cells that approximately correspond to efficient entry are
colored in yellow. The bulk of the changes in welfare are due to reallocation effects.
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Table 10: Change in allocative efficiency for different boundary conditions

δθ∗

1 3 5 7 9

1.05 [0.129,0.001,-0.004] [0.329,-0.169,-0.0430] [0.619,-0.428,-0.0850] [1.068,-0.842,-0.130] [1.84,-1.576,-0.177]
1.06 [0.162,0.002,-0.005] [0.376,-0.180,-0.0470] [0.689,-0.459,-0.0910] [1.182,-0.915,-0.139] [2.05,-1.743,-0.189]
1.07 [0.192,0.002,-0.007] [0.420,-0.191,-0.0510] [0.755,-0.490,-0.0970] [1.292,-0.986,-0.147] [2.263,-1.914,-0.201]
1.08 [0.232,0.003,-0.009] [0.476,-0.205,-0.0560] [0.843,-0.531,-0.106] [1.439,-1.085,-0.159] [2.559,-2.157,-0.216]
1.09 [0.269,0.003,-0.012] [0.530,-0.219,-0.0610] [0.927,-0.572,-0.114] [1.586,-1.184,-0.171] [2.867,-2.415,-0.231]

µ̄ 1.10 [0.310,0.004,-0.015] [0.591,-0.234,-0.0670] [1.023,-0.620,-0.124] [1.756,-1.303,-0.184] [3.244,-2.736,-0.249]
1.11 [0.355,0.004,-0.019] [0.658,-0.252,-0.0750] [1.131,-0.675,-0.135] [1.956,-1.445,-0.200] [3.715,-3.145,-0.269]
1.12 [0.406,0.005,-0.023] [0.735,-0.273,-0.0840] [1.257,-0.741,-0.149] [2.195,-1.619,-0.218] [4.322,-3.682,-0.293]
1.13 [0.463,0.006,-0.029] [0.822,-0.298,-0.0940] [1.403,-0.819,-0.164] [2.485,-1.836,-0.240] [5.134,-4.415,-0.321]
1.14 [0.527,0.007,-0.036] [0.922,-0.327,-0.107] [1.576,-0.916,-0.184] [2.847,-2.114,-0.266] [6.280,-5.470,-0.355]
1.15 [0.601,0.008,-0.046] [1.039,-0.362,-0.123] [1.785,-1.036,-0.207] [3.31,-2.481,-0.298] [8.023,-7.107,-0.396]

Each cell reports [d log Yε
−d log Ytech, d log Yε,θ∗

−d log Yε, d log Yε,θ∗,µ
−d log Yε,θ∗ ] for different boundary conditions.

Each column is a different value for the boundary condition δθ∗ and each row is a different aggregate markup µ̄.
The bulk of the positive changes in allocative are due to the entry-only margin. Changes in markups and selection
margin are either unimportant or harmful.

Appendix D Propagation and Aggregation Equations

In this section, we summarize the propagation and aggregation equations for the model with

heterogeneous firms. We expand the equilibrium equations presented in Section 2 to the first

order in the shocks. Changes in all the equilibrium variables are expressed via propagation

equations as functions of changes in consumer welfare. Changes in consumer welfare are

then expressed as as functions of the changes in the equilibrium variable via an aggregation

equation. Putting propagation and aggregation together yields a fixed point in changes in

consumer welfare.

Welfare. Differentiating the implicit definition of the welfare Y, we find

δ̄d log M − λθ∗δθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
d log(

yθ
Y

)
]

= 0. (41)

Aggregate price index. Differentiating the definition of the price index, we find

− d log P = d log Y + d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[(
1 −

1
σθ

)
d log(

yθ
Y

)
]
. (42)

Prices. Differentiating the inverse-demand curve facing each variety, we get

d log pθ − d log P = −
1
σθ

d log(
yθ
Y

). (43)
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Markups. Differentiating the markup equation, we get

d logµθ =
1
σθ

1 − ρθ
ρθ

d log(
yθ
Y

). (44)

Quantities. Differentiating the individual demand function, we find

d log(
yθ
Y

) = σθ

(
d log(

Aθ

µθ
) + d log P

)
. (45)

Combining with the equation for markups, we get

d log(
yθ
Y

) = ρθσθ
(
d log Aθ + d log P

)
. (46)

Sales shares. Differentiating the sales shares equation, we find

d logλθ = d log pθ + d log(
yθ
Y

) +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M + d log Y. (47)

Ratio of variable profits to overhead costs. Differentiating our definition of Xθ, we get

d log Xθ =

(
1

µθ − 1

)
d logµθ + d logλθ − d log f0,θ. (48)

Selection. Differentiating the selection condition, we get

d log Xθ∗ +

[
∂ log Xθ

∂θ

∣∣∣∣∣
θ∗

]
dθ∗ =

−g(θ∗)
1 − G(θ∗)

dθ∗ + d log M − d log L. (49)

We define

1
γθ∗

=
1 − G(θ∗)

g(θ∗)

[
∂ log Xθ

∂θ

∣∣∣∣∣
θ∗

]
=

1 − G(θ∗)
g(θ∗)

[
−σθ
ρθ

∂ logµθ
∂θ

+

(
σθ
ρθ
− 1

)
∂ log Aθ

∂θ
−
∂ log fo,θ
∂θ

∣∣∣∣∣∣
θ∗

]
,

(50)

which allows us to write the selection condition more simply as

d log Xθ∗ +
1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ =
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M − d log L. (51)

Entry. Differentiating the free-entry condition yields

d log L +

(
1 −

[
Eλ

[ 1
σθ

]]−1 λθ∗

σθ∗

)
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M + E

λ
(
1− 1

µ

) [d log fo,θ + d log Xθ
]

=
fe∆d log

(
fe∆

)
− fo,θ∗g(θ∗)dθ∗ + (1 − G(θ∗))E

[
fo,θ

]
E fo

[
d log fo,θ

]
fe∆ + (1 − G(θ∗))E

[
fo,θ

] . (52)
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System of equations for a change in market size. To solve for the change in welfare

following a change in market size, d log L, we take the system of log-linearized equations

above and set d log Aθ = d log fo,θ = 0. We get the following system of eight equations:

0 = δ̄d log M − λθ∗δθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
d log(

yθ
Y

)
]
.

−d log P = d log Y + d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[(
1 −

1
σθ

)
d log(

yθ
Y

)
]
.

d log pθ − d log P = −
1
σθ

d log(
yθ
Y

).

d logµθ =
1
σθ

1 − ρθ
ρθ

d log(
yθ
Y

).

d log Xθ =

(
1

µθ − 1

)
d logµθ + d logλθ.

d logλθ = d log pθ + d log(
yθ
Y

) +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M + d log Y.

d log Xθ∗ +
1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ =
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M − d log L.

0 = d log L +
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M + E

λ
(
1− 1

µ

) [d log Xθ
]
.

We will now solve for the fixed point of this system. To start, we eliminate all firm-level terms,

d logµθ, d log pθ, d log yθ/Y, d log Xθ, and d logλθ. We are left with a system of four equations

that together pin down the change in welfare, the mass of entrants, the selection cutoff, and

the aggregate price index following a change in market size.

0 = δ̄d log M − λθ∗δθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
ρθσθ

]
d log P.

−d log P = d log Y + d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
(σθ − 1)ρθ

]
d log P.

g(θ∗)
1 − G(θ∗)

dθ∗ = −γθ∗σθ∗d log P − γθ∗
(
d log L + d log Y

)
.

d log P = −Eλ
[ 1
σθ

] (
d log L + d log Y

)
.

The last equation gives intuition for how the aggregate price index moves as the market

size increases. An increase in market size lowers the price index due to new entry. This

decrease in the price index then increases welfare due to beneficial reallocations, and the

increase in welfare further reduces the price index. The result is that the technical efficiency

and allocative efficiency effects are amplified via a multiplier due to adjustments in the price

index and welfare.

With some manipulation, we can express the change in welfare as a function of the change
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in market size and the aggregate price index:

d log Y =
(
δ̄ − 1

)
d log L −

(
ξε + ξθ

∗

+ ξµ
)
Eλ

[
σ−1
θ

]−1
d log P (53)

The first term captures the change in welfare due to technical efficiency while the second term

captured the change in welfare due to allocative efficiency, which is entirely mediated by the

aggregate price index.

By plugging in the equation for the price index above and solving the fixed point for

d log Y, we get the result in Theorem 1.

Proof of Lemma 1. To derive (18), note that the initial allocation of labor allocates a fraction

l = E[lθ] = Eλ[1/µθ] to variable production, and the remainder to entry and overhead. Sup-

pose we take reduce the fraction of labor allocated to variable production (while preserving

the proportions of variable production labor allocated across firms) by d log lθ = d log l. Re-

allocating that labor to entry and overhead costs allows us to increase consumer welfare

by

Eλ[δθ] d log M = Eλ[δθ] d log le = Eλ[δθ]
Eλ[1/µθ]

1 − Eλ[1/µθ]
(−d log l) > 0, (54)

where d log le is the increase in labor allocated to entry. This gain is consumer welfare is offset

by a reduction in the per-capita quantity consumed of each variety, equal to Eλ[d log yθ] =

d log l−d log M. Rearranging, we find that the net change in welfare from reducing the fraction

of labor allocated to variable production and increasing the allocation to entry is positive if

and only if the average consumer surplus ratio exceeds the harmonic average of markups,

yielding the condition in (18) above. �

Proof of Lemma 2. To derive this condition, suppose that we increase the selection cut-off by

dθ∗ > 0, and reallocate the labor previously allocated to the variable production and overhead

of varieties with type in [θ∗, θ∗ + dθ∗) proportionately to entry, overhead, and variable pro-

duction. The exiting varieties reduce consumer welfare by −δθ∗λθ∗[g(θ∗)/(1 −G(θ∗))]dθ∗. The

new varieties d log M = λθ∗[g(θ∗)/(1−G(θ∗))]dθ∗ increases consumer welfare by Eλ[δθ]d log M.

There is no change in the production of existing varieties d log yθ = 0. Plugging these pertur-

bations into (16), the overall effect on welfare is (Eλ[δθ] − δθ∗)λθ∗[g(θ∗)/(1 − G(θ∗))]dθ∗, which

is positive (too little selection) if and only if δθ∗ < Eλ[δθ]. �

Proof of Lemma 3. The intuition is the following. Consider a reduction d log lθ′ < 0 in the

fraction of labor allocated to the supply of varieties in (θ′, θ′ + dθ′) and a complementary

increase d log lθ = −(g(θ′)/g(θ))(lθ′/lθ)d log lθ′ > 0 in the fraction of labor allocated to the

supply of varieties in (θ, θ + dθ′), which, using the fact that lθ′/lθ = (λθ′/µθ′)/(λθ/µθ), can

be rewritten as d log lθ = −(g(θ′)/g(θ))(λθ′/µθ′)/(λθ/µθ)d log lθ′ > 0. This leads to a decrease

d log yθ′ = d log lθ′ < 0 in the quantity of the former varieties and an increase d log yθ =
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−(g(θ′)/g(θ))(λθ′/µθ′)/(λθ/µθ)d log lθ′ > 0 in the quantity of the latter varieties. The net effect

on welfare is g(θ′)λθ′d log yθ′dθ′+ g(θ)λθd log yθdθ′ = −(µθ/µθ′−1)λθ′g(θ′)dθ′d log lθ′ , which

is positive if and only µθ > µθ′ .

�

Appendix E Welfare Response to an Entry Tax

This appendix presents the proof of Proposition 2, which characterizes the response of welfare

to a marginal tax on entry.

We modify our setup to allow for an entry tax. As in the main text, welfare is defined

implicitly by ∫
Θ

Υθ(
yθ
Y

)dF(θ) = 1. (55)

Now, however, the household’s budget constraint includes both labor earnings and dis-

tributed revenues from the entry tax, which we assume is returned to households in a lump-

sum transfer. We will use g to denote the per-capita rebate of tax revenue and ΛL to denote

the share of household income coming from labor earnings,∫
Θ

pθyθdF(θ) = w + g, and ΛL =
w

w + g
. (56)

We continue to use the wage as the numeraire, normalizing w = 1 throughout. The house-

hold’s inverse-demand curve for each variety remains

pθ
P

= Υ′θ(
yθ
Y

), (57)

but with the price aggregator P now taking into account the labor share,

P =
1

ΛLY
1∫

Θ
Υ′
θ
( yθ

Y ) yθ
Y dF(θ)

. (58)

On the production side, firms’ profit-maximizing prices and markups are unchanged, and

the selection condition remains unchanged. The entry condition now incorporates a tax on

entry, which we denote τ:

1
∆

∫
∞

θ∗

[(
1 −

1
µθ

)
pθyθwL − fo,θ

]
g(θ)dθ = (1 + τ) fe. (59)

For simplicity, we set ∆ = 1, so that all taxes collected today are rebated to households today.

To ensure that sales densities λθ still integrate to one, we adjust the definition of the sales
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density to

λθ = ΛLpθyθ (1 − G(θ∗)) M. (60)

Finally, we add a government budget constraint, which sets the amount rebated to house-

holds equal to the amount collected in taxes,

τ feM = gL. (61)

We combine this equation with (56) to solve for the labor share in terms of the entry tax,

ΛL =
1

1 + τ fe M
L

. (62)

By differentiating the above conditions, we find that the response of welfare to a change

in the entry tax is the fixed point of the following system of equations:

0 = d log M −ΛLλθ∗
δθ∗

δ̄

g(θ∗)
1 − G(θ∗)

dθ∗ +
1
δ̄

ΛLEλ
[
d log(

yθ
Y

)
]
.

d log pθ − d log P = −
1
σθ

d log
yθ
Y

−d log P = d log ΛL + d log Y + d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[(
1 −

1
σθ

)
d log(

yθ
Y

)
]
.

d logµθ =
1
σθ

1 − ρθ
ρθ

d log(
yθ
Y

).

d log Xθ =
1

µθ − 1
d logµθ + d log ΛL + d log pθ + d log

yθ
Y

+ d log Y +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M.

1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ = −d log Xθ∗ +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M + d log ΛL.

0 =
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M − d log ΛL + E

λ
(
1− 1

µ

) [d log Xθ
]

−
(1 + τ) fe

(1 + τ) fe + (1 − G(θ∗))E
[

fo,θ
]d log (1 + τ) .

d log ΛL = −
(1 + τ) fe M

L

1 + τ fe M
L

d log (1 + τ) −
τ fe M

L

1 + τ fe M
L

d log M.

We evaluate this system at the point where the tax is zero, and hence τ = 0,ΛL = 1. With

some manipulation, we can express the change in welfare, the mass of entrants, the price

aggregator, the labor share, and the selection cutoff in terms of the marginal tax dτ.

0 = δ̄d log M − λθ∗δθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
σθρθ

]
d log P.

0 = d log ΛL + d log Y + d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
σθ − (σθ − 1)

(
1 − ρθ

)]
d log P.
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0 =
[
σθ∗d log P + d log Y

]
+

1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗.

feM
L

dτ = d log P + Eλ
[ 1
σθ

]
d log Y.

d log ΛL = −
feM
L

dτ.

Solving the fixed point yields,

d log Y =
1 − δ̄Eλ

[
1
µθ

]
−

(
δ̄ − δθ∗

)
λθ∗γθ∗Eλ

[
σθ∗
σθ

]
− Eλ

[
σθ

(
1 − ρθ

) [
1 − δ̄

µθ

]]
Eλ

[
1
σθ

]
−

(
δ̄ − 1

)
Covλ

[
σθ,

1
µθ

]
1 −

(
δ̄ − δθ∗

)
λθ∗γθ∗

(
Eλ

[
σθ∗
σθ

]
− 1

)
− Eλ

[
σθ

(
1 − ρθ

) [
1 − δ̄

µθ

]]
Eλ

[
1
σθ

]
−

(
δ̄ − 1

)
Covλ

[
σθ,

1
µθ

]
×

fe
fe + (1 − G(θ∗))E

[
fo,θ

]dτ.

We use the definitions of ξε, ξθ
∗

, and ξµ in the main text to simplify this expression to the

result in Proposition 2.

Appendix F Distance to Efficient Frontier

In this appendix, we focus on the distance to the efficient frontier, that is the amount of

misallocation in the decentralized equilibrium compared to the first-best allocation.

In Appendix F.1, we provide an analytical second-order approximation which neatly

decomposes the contributions of the different margins of inefficiency to the overall amount of

misallocation. The proof of the main proposition can be found in Appendix F.3. In Appendix

F.1, we compute the distance to the frontier in our empirical application.

F.1 Analytical Second-Order Approximation

In this section, we calculate the social costs of the distortions caused by monopolistic com-

petition around the efficient CES benchmark. We index the Kimball aggregator Υt by some

parameter t, where t = 0 gives an iso-elastic form for Υ (CES), and moving from t = 0 perturbs

the Kimball aggregator away from iso-elasticity in a smooth fashion. The proposition below

provides a second-order approximation in t of the distance to the efficient frontier, providing

a link between our framework and the literature on the social costs of misallocation with entry

(for example, Epifani and Gancia, 2011).

Proposition 3. The difference between welfare at the first-best allocation and the decentralized equi-
librium can be approximated around t = 0 by

log
Yopt

Y
≈

1
2
Eλ

σθ (
µθ

Eλ [δθ]
−

Eλ
[
µθ

]
Eλ [δθ]

)2 +
1
2
Eλ [σθ]

(
Eλ

[
µθ

]
Eλ [δθ]

− 1
)2

+
1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)

2 ,
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where the remainder term is order t3.

The first term, familiar from the misallocation literature, captures distortions in the relative

sizes of existing firms. It scales with the dispersion of the ratios of markups to the average

consumer surplus ratio µθ/Eλ[δθ]. It also scales with the elasticities of substitution σθ.31

The second term captures the distortions due to inefficient entry. It scales with the squared

distance to unity of the ratio of the average markup to the average consumer surplus ratio

Eλ[µθ]/Eλ[δθ]. It also scales with the elasticities of substitution σθ.

The third and final term captures the distortions due to inefficient selection. It scales with

the squared difference between the consumer surplus ratio of the marginal firm δθ∗ and that of

the average Eλ(δθ). It also scales with the hazard rate of the log productivity distribution for

the marginal firm γ∗θ (rather than the price elasticity of demand), which captures the relevant

elasticity of the selection margin.32

In the CES case, markups are constant across varieties µθ = Eλ[µθ], the average markup

is equal to the average consumer surplus ratio Eλ[µθ] = Eλ[δθ], and consumer surplus ratios

are constant across varieties δθ∗ = Eλ[δθ]. As a result, all three terms are zero.

F.2 Quantitative Results

In this appendix, we compute the distance to the efficient frontier in our empirical application.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Heterogeneous firms 0.024 0.027 0.057 0.065
Homogeneous firms 0.021 0.000 0.041 0.000

Table 11: Distance to the efficient frontier log(Yopt/Y).

We finish by computing the distance to the efficient frontier. The results are reported in

Table 11 both for the case with heterogeneous firms and for the case with homogeneous firms.

With heterogeneous firms, and with average markups µ̄ = 1.045 the distance to the frontier

is around 2.5%. The distance to the frontier is higher with higher average markups µ̄ = 1.09

at around 6%. In both cases, the numbers are similar for efficient entry and efficient selection.

While these numbers are sizable, one might think that they are not large enough. Indeed, in

Section 7, we saw in the decentralized equilibrium, cumulated changes in allocative efficiency

31The first term is a particular case of the formulas in Baqaee and Farhi (2019) applied to the relevant distortions
µθ/Eλ[δθ] in the presence of entry (rather than to µθ when there is no entry).

32If there are many firms at the cut-off (high λθ∗ ) or the cut-off moves very quickly (high γθ∗ ) in response to
distortions, then the losses from selection inefficiency δθ∗ , Eλ(δθ) are amplified.

51



are large relative to cumulated changes in technical efficiency even for large increases in

population. If the distance to the frontier is sizable but not very large, doesn’t that mean

that the economy should quickly approach the frontier as we increase population? And then

shouldn’t this source of welfare gains grounded in misallocation quickly peter out? The

answer to these questions is no and the reason is the following. At the first-best allocation,

increases in population only increase welfare by improving technical efficiency. But changes in

technical efficiency for the first-best allocation (at the frontier) turn out to be much larger than

changes in technical efficiency for the decentralized equilibrium (inside the frontier). And so

the distance to the efficient frontier remains sizable even for large increases in population.33

With homogeneous firms, the distance to the frontier is zero when δ̄ = µ̄ since then entry,

which is the only margin that can be distorted, is efficient. Otherwise the distance to the

frontier is smaller than with heterogeneous firms, but not considerably so. Again, and for the

same reasons as those explained above, this does not contradict the earlier observation that

changes in allocative efficiency are small at the decentralized equilibrium with homogeneous

firms.

F.3 Proof of Proposition 3

To do this, imagine a social planner who can implement the efficient allocation by regulating

markups and imposing sales taxes. A sufficient condition is to set markups according to the

consumer surplus each firm generates µopt
θ

= δθ and sales taxes to be the reciprocal of markups

τ
opt
θ

= 1/µθ. The markups provide socially optimal incentives along the extensive margin and

the output taxes undo the inefficiencies brought about by dispersed markups. See Edmond

et al. (2018) for an alternative implementation of the optimal allocation using taxes.34 This

section contributes to the literature by providing an analytical approximation for distance to

the efficient frontier.

At the decentralized monopolistically competitive equilibrium, we instead have µθ =

(1 − 1/σθ)−1 and τθ = 1. The equilibrium equations are

(1 − G(θ∗))M
∫
∞

θ∗
Υ(

yθ
Y

)
g(θ)

1 − G(θ∗)
dθ = 1, (63)

ΛL =

∫
∞

θ∗

λθ
τθ

g(θ)
1 − G(θ∗)

dθ, (64)

MΛL fe∆
L

=

∫
∞

θ∗

(
λθ

1
τθ

(
1 −

1
µθ

)
−

(1 − G(θ∗))MΛL fo
L

)
g(θ)

1 − G(θ∗)
dθ, (65)

33This discussion goes back to our definition of changes in allocative efficiency as the changes in welfare that
arise from the reallocation of resources as opposed to the change in the distance to the efficient frontier discussed in
footnote 13 and Appendix F.

34Bilbiie et al. (2019) also consider related issues in a dynamic context.
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λθ∗
1
τθ∗

(
1 −

1
µθ∗

)
=

(1 − G(θ∗))MΛL fo
L

, (66)

λθ = (1 − G(θ∗))M
τθµθΛLyθ

Aθ
, (67)

τθµθΛL

Aθ
= PΥ′(

yθ
Y

), (68)

P =
δ̄
Y
, (69)

1
δ̄

= (1 − G(θ∗))M
∫
∞

θ∗

yθ
Y

Υ′(
yθ
Y

)
g(θ)

1 − G(θ∗)
dθ. (70)

Efficiency requires

µθ =
1
τθ

=
Υθ

yθ
Y Υ′

θ

. (71)

In step 1, we log-differentiate the equilibrium equations (at an arbitrary point). In step 2,

we specialize these equations to the monopolistically competitive equilibrium with changes

in markups and taxes towards the efficient point. We use the resulting formulas to compute

the distance to the efficient frontier by dividing the first order effect (of moving towards

the efficient point) by 1/2. This is because we know that the derivative once we reach the

efficient point is zero, and the average of two first-order approximations yields a second-

order approximation.

Step 1:

In the first step, we generalize the propagation equations to allow for policy.

Aggregate price index:

−d log P =
d log M + d log Y − λθ∗

g(θ∗)
1−G(θ∗) dθ

∗

1 +
∫
∞

θ∗
λθ

(
Υ′
θ

−
yθ
Y Υ′′

θ

− 1
)

g(θ)
1−G(θ∗) dθ

−

∫
∞

θ∗
λθ

(
Υ′θ
−

yθ
Y Υ′′

θ

− 1
) (

d logµθ + d log τθ + d log ΛL
) g(θ)

1−G(θ∗) dθ

1 +
∫
∞

θ∗
λθ

(
Υ′
θ

−
yθ
Y Υ′′

θ

− 1
)

g(θ)
1−G(θ∗) dθ

.

Sales shares:

d logλθ = d log M−
g(θ∗)

1 − G(θ∗)
dθ∗+d log Y−

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (d logµθ + d log τθ + d log ΛL
)
+

Υ′θ

−
yθ
Y Υ′′

θ

d log P.

(72)
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Variable profits:

d log
(
λθ
ΛL

1
τθ

(
1 −

1
µθ

))
= d log M −

g(θ∗)
1 − G(θ∗)

dθ∗ + d log Y −
Υ′θ

−
yθ
Y Υ′′

θ

(
d log τθ + d log ΛL

)
+

 1
µθ − 1

−

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 d logµθ +
Υ′θ

−
yθ
Y Υ′′

θ

d log P.

Quantities:

d log
( yθ

Y

)
= −

Υ′θ

−
yθ
Y Υ′′

θ

(
d logµθ + d log τθ + d log ΛL − d log P

)
. (73)

Labor share:

d log ΛL =
g(θ∗)

1 − G(θ∗)
dθ∗ +

∫
∞

θ∗
λθ
τθ

(
d logλθ − d log τθ

) g(θ)
1−G(θ∗) dθ∫

∞

θ∗
λθ
τθ

g(θ)
1−G(θ∗) dθ,

−

λθ∗
τθ∗

g(θ∗)
1−G(θ∗) dθ

∗∫
∞

θ∗
λθ
τθ

g(θ)
1−G(θ∗) dθ,

. (74)

Entry:

d log M =
g(θ)

1 − G(θ∗)
dθ∗ +

∫
∞

θ∗

(
λθ
ΛL

1
τθ

(
1 − 1

µθ

)) [
d log

(
λθ

1
τθ

(
1 − 1

µθ

))
− d log ΛL

] g(θ)
1−G(θ∗) dθ∫

∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) g(θ)
1−G(θ∗) dθ

.

Replacing to get aggregate price index:

−d log P+d log ΛL =
d log Y∫

∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

−
yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ

−

∫
∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′θ
−

yθ
Y Υ′′

θ

d log τθ
g(θ)

1−G(θ∗) dθ∫
∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

−
yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ

+

∫
∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) (
1

µθ−1 −

(
Υ′θ
−

yθ
Y Υ′′

θ

− 1
))

d logµθ
g(θ)

1−G(θ∗) dθ∫
∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

−
yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ

+

(M(1−G(θ∗)) fo
L − λθ

1
τθ

(
1 − 1

µθ

)) g(θ∗)
1−G(θ∗) dθ

∗∫
∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

−
yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ

.

Replacing to get entry:

d log M = −d log Y + λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗

−

1 +

∫
∞

θ∗
λθ

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 g(θ)
1 − G(θ∗)

 d log P

+

∫
∞

θ∗
λθ

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (d logµθ + d log τθ + d log ΛL
) g(θ)

1 − G(θ∗)
dθ.
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Selection cut-off: Υ′θ∗

−
yθ∗
Y Υ′′

θ∗

− 1

 ∂ log Aθ

∂θ

∣∣∣∣∣
θ=θ∗

dθ∗ = −d log
(
λθ∗

ΛL

1
τθ∗

(
1 −

1
µθ∗

))
+ d log M −

g(θ∗)
1 − G(θ∗)

dθ∗. (75)

Welfare:

d log Y = d log M
(
δ̄ − 1

)
−

∫
∞

θ∗
λθ

(
d logµθ + d log τθ + d log ΛL

) g(θ)
1 − G(θ∗)

dθ

−

 Υθ∗

yθ∗
Y Υ′

θ∗

− 1

λθ∗ g(θ∗)
1 − G(θ∗)

dθ∗,

or

δ̄d log Y = −
(
δ̄ − 1

) 1 +

∫
∞

θ∗
λθ

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 g(θ)
1 − G(θ∗)

 d log P

−

∫
∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (d logµθ + d log τθ + d log ΛL
) g(θ)

1 − G(θ∗)
dθ

+

δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗

λθ∗ g(θ∗)
1 − G(θ∗)

dθ∗.

Step 2

We proceed in two steps.

Applying the formula at the monopolistic competitive equilibrium. We start at

the monopolistic competitive equilibrium. We can simplify the equations to get

d log ΛL = −

∫
∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ, (76)

− d log P + d log ΛL = d log Y −
∫
∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ, (77)

d log M = −d log Y + λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗

−

1 +

∫
∞

θ∗
λθ

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 g(θ)
1 − G(θ∗)

 d log P

+

∫
∞

θ∗
λθ

 Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (d logµθ + d log τθ + d log ΛL
) g(θ)

1 − G(θ∗)
dθ,
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 Υ′θ∗

−
yθ∗
Y Υ′′

θ∗

− 1

 ∂ log Aθ

∂θ

∣∣∣∣∣
θ=θ∗

dθ∗ = −d log Y +
Υ′θ∗

−
yθ∗
Y Υ′′

θ∗

(
d log τθ∗ − d log P + d log ΛL

)
. (78)

The solution (apart from d log M which we do not need for what follows) is

d log ΛL = −

∫
∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ, (79)

− d log P = d log Y, (80)

∂ log Aθ

∂θ

∣∣∣∣∣
θ=θ∗

dθ∗ = d log Y +

Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗

Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗
− 1

(
d log τθ∗ −

∫
∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ
)
. (81)

Plugging into welfare, we get

1 − ∫
∞

θ∗
λθ

(
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 g(θ)
1 − G(θ∗)

dθ −

δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗

λθ∗ g(θ∗)
1 − G(θ∗)

dθ∗
 d log Y =

−

∫
∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (d logµθ + d log τθ
) g(θ)

1 − G(θ∗)
dθ

+

∫
∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 (∫ ∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ
)

g(θ)
1 − G(θ∗)

dθ

+ λθ∗γθ∗

δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗


Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗

Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗
− 1

(
d log τθ∗ −

∫
∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ
)
.

Applying to changes in markups and taxes towards the efficient point. Efficiency

requires markups µθ = Υθ
yθ
Y Υ′

θ

and taxes on production τθ = 1/ Υθ
yθ
Y Υ′

θ

. Hence we use the forcing

variables (the endogenous response of Υθ
yθ
Y Υ′

θ

is second order)

d logµθ ≈ − log

 µθ
Υθ

yθ
Y Υ′

θ

 , (82)

d log τθ ≈ − log

 Υθ
yθ
Y Υ′

θ

 . (83)

Plugging into welfare, we get1 − ∫
∞

θ∗
λθ

(
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 g(θ)
1 − G(θ∗)

−

δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗

λθ∗ g(θ∗)
1 − G(θ∗)

θ∗
 d log Y ≈
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−

∫
∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1


− log

 µθ
Υθ

yθ
Y Υ′

θ

 − log

 Υθ
yθ
Y Υ′

θ


 g(θ)

1 − G(θ∗)
dθ

−

∫
∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ

−
yθ
Y Υ′′

θ

− 1

 ∫ ∞

θ∗
λθ log

 Υθ
yθ
Y Υ′

θ

 g(θ)
1 − G(θ∗)

dθ

 g(θ)
1 − G(θ∗)

dθ

+ λθ∗γθ∗

δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗


Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗

Υ′
θ∗

−
yθ∗
Y Υ′′

θ∗
− 1

− log

 Υθ∗

yθ∗
Y Υ′

θ∗

 +

∫
∞

θ∗
λθ log

 Υθ
yθ
Y Υ′

θ

 g(θ)
1 − G(θ∗)

dθ

 .
And the loss function encapsulating the distance to the efficient frontier is

L ≈
1
2

d log Y. (84)

Using the notation in the paper, we therefore get

L ≈ −
1
2
Eλ

[(
1 −

Eλ [δθ] − 1
µθ − 1

)
log

(
Eλ [δθ]
µθ

)]
+

1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)µ∗θ log

(Eλ [δθ]
δθ∗

)
, (85)

or

L ≈
1
2
Eλ


(

µθ
Eλ[δθ] − 1

)2

µθ − 1
Eλ [δθ]

Eλ [δθ]
µθ

 +
1
2
λθ∗

µθ∗

δθ∗
γθ∗ (Eλ [δθ] − δθ∗)

2 , (86)

or

L ≈
1
2
Eλ

 µθ
µθ − 1

(
µθ

Eλ [δθ]
− 1

)2 +
1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)

2 , (87)

or

L ≈
1
2
Eλ

σθ (
µθ

Eλ [δθ]
− 1

)2 +
1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)

2 , (88)

or

L ≈
1
2
Eλ

σθ ( µθ
Eλ [δθ]

−
Eλ

[
µθ

]
Eλ [δθ]

)2

+

(
Eλ

[
µθ

]
Eλ [δθ]

− 1
)2 +

1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)

2 , (89)

Appendix G Additional Comparative Statics

In this section, we characterize comparative statics with respect to shocks to the fixed costs

and shocks to the productivity distribution. We start with fixed cost shocks, and then examine

productivity shocks.
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G.1 Shocks to Fixed Costs

For simplicity, we consider the case where overhead costs are identical across firms, fo,θ = fo.

Proposition 4 characterizes the response of welfare to a change in fixed costs of entry and

overhead costs.

Proposition 4. In response to changes in fixed costs of entry d log( fe∆) and fixed overhead costs
d log fo, changes in consumer welfare are given by

d log Y = −
(
Eλ[δθ] − 1

) fe∆d log( fe∆) + fod log fo
fe∆ + (1 − G(θ∗)) fo︸                                            ︷︷                                            ︸

technical efficiency

−
ξε + ξµ + ξθ

∗

1 − ξε − ξµ − ξθ∗
(
Eλ[δθ]

) fe∆d log( fe∆) + (1 − G(θ∗)) fod log fo
fe∆ + (1 − G(θ∗)) fo︸                                                                              ︷︷                                                                              ︸

allocative efficiency

−
ζθ
∗

1 − ξε − ξµ − ξθ∗
fe∆[d log( fe∆) − d log f ]

fe∆ + (1 − G(θ∗)) f︸                                                 ︷︷                                                 ︸
allocative efficiency

,

where ξε, ξθ
∗

, and ξµ are given in Theorem 1 and

ζθ
∗

=

(
Eλ[δθ] − δθ∗

) (
λθ∗γθ∗

1
σθ∗ − 1

)
. (90)

To understand these results, it is useful to observe that the model is homogeneous of degree

zero in fixed costs and population fe∆, fo, and L. This is because they only matter through

fixed costs per capita ( fe∆)/L and f/L. This means that joint proportional reductions in fixed

costs of entry and fixed overhead costs d log( fe∆) = d log f < 0 have exactly the same effects on

consumer welfare as equivalent increases in population d log L = −d log( fe∆) = −d log fo > 0.

Consider first a reduction in the fixed cost of entry d log( fe∆) < 0. This reduces the total

(entry and overhead) fixed cost per entering variety in proportion to the share of the fixed

cost of entry in the total fixed cost [( fe∆)/[ fe∆ + (1−G(θ∗)) fo]]d log( fe∆) < 0. This reduction in

fixed cost acts like an equivalent increase in population coupled with an equivalent increase

in the fixed overhead cost. The effect of the former was analyzed in Theorem 1. The effect

of the latter is to further increase the sales shares of exiting varieties by −[λθ∗γθ∗/(σθ∗ −

1)][( fe∆)/[ fe∆ + (1 − G(θ∗)) fo]]d log( fe∆) > 0. This in turn increases consumer welfare by

−[(E[δθ] − δθ∗)λθ∗γθ∗/(σθ∗ − 1)][( fe∆)/[ fe∆ + (1 −G(θ∗)) fo]]d log( fe∆) > 0 as long as there is too

little selection (Eλ[δθ] > δθ∗). The result in the proposition is obtained by solving the fixed

point in d log Y.

Consider now a reduction in the fixed overhead cost d log f < 0. The effect on the selection
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cut-off is reversed compared to the case of a reduction in the fixed cost of entry: compared to

an increase in population by −[(1 − G(θ∗)) fo/[ fe∆ + (1 − G(θ∗)) fo]]d log( fo) > 0, the increase in

the fixed overhead cost reduces the selection cut-off, which typically overcomes the increase

in selection associated with the equivalent increase in population. If this is the case, the overall

change in consumer welfare from the change in selection is positive if and only if there is too

much selection (Eλ[δθ] < δθ∗).

In both cases, and exactly as for population shocks, we can decompose the general equi-

librium response by analyzing three successive equilibrium allocations which allow firms to

adjust along more and more margins: entry, entry and exit, and entry, exit and markups. All

three equilibrium allocations feature the same changes in technical efficiency, but different

changes in allocative efficiency, driven by different changes in the allocation of resources. The

corresponding changes in consumer welfare are respectively given by Proposition 4, but with

ξµ = ξθ
∗

= 0 and ζθ
∗

= 0, ξµ = 0, and without any modification.

We can also perform the same decomposition for changes in real GDP per capita.

Proposition 5. In response to changes in fixed costs of entry d log( fe∆) and fixed overhead costs
d log f , changes in real GDP per capita are given by

d log Q =
(
Eλ

[
(1 − ρθ)

]) (
Eλ

[ 1
σθ

]) (
d log Y +

fe∆d log( fe∆) + (1 − G(θ∗)) fod log fo
fe∆ + (1 − G(θ∗)) fo

)
, (91)

where d log Y is given by Proposition 4.

G.2 Shocks to Productivity

Now, we consider shocks to the distribution of productivity shifters.

Proposition 6. In response to changes in productivity d log Aθ, changes in consumer welfare are
given by

d log Y = Eλ
[
d log Aθ

]
︸          ︷︷          ︸
technical efficiency

+
νε

[
d log Aθ

]
+ νθ

∗ [
d log Aθ

]
+ νµ

[
d log Aθ

]
1 − ξε − ξµ − ξθ∗︸                                                   ︷︷                                                   ︸

allocative efficiency

+
ξε + ξµ + ξθ

∗

1 − ξε − ξµ − ξθ∗

(
Eλ(1−1/µ)

[
(σθ − 1)d log Aθ

]
+ Eλ

[
d log Aθ

])
︸                                                                            ︷︷                                                                            ︸

allocative efficiency

,

where ξε, ξθ
∗

, and ξµ are given in Proposition 1 and

νε
[
d log Aθ

]
=

(
Eλ [δθ] − 1

) (
Eλ(1−1/µ)

[
(σθ − 1)d log Aθ

]
− Eλ

[
(σθ − 1)d log Aθ

])
,
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νθ
∗ [

d log Aθ
]

= −

(
Eλ

[
δθ

]
− δθ∗

) (
λθ∗γθ∗

σθ∗d log Aθ∗ − Eλ(1−1/µ)
[
σθd log Aθ

]
σθ∗ − 1

)
,

νµ
[
d log Aθ

]
= −

(
Eλ

[
(1 − ρθ)

[
1 −

Eλ [δθ] − 1
µθ − 1

]
d log Aθ

])
.

Exactly as for shocks to population and to fixed costs, we can decompose the general

equilibrium response by analyzing three successive equilibrium allocations which allow firms

to adjust along more and more margins: entry, entry and exit, and entry, exit and markups.

All three equilibrium allocations feature the same changes in technical efficiency given by

the sales-weighted changes in productivities, exactly as in Hulten’s theorem (Hulten, 1978).

These three equilibrium allocations feature different changes in allocative efficiency, driven

by different changes in the allocation of resources. The corresponding changes in consumer

welfare are respectively given by Proposition 6, but with ξµ = ξθ
∗

= 0 and νµ[d log Aθ] =

νθ
∗

[d log Aθ] = 0, ξµ = 0 and νµ[d log Aθ] = 0, and without any modification.

Changes in allocative efficiency are given by the sum of two sets of terms. The first

set of terms νε
[
d log Aθ

]
, νθ

∗ [
d log Aθ

]
, and νµ

[
d log Aθ

]
captures the effects of changes in

productivities d log Aθ holding the aggregate price index δ̄/Y constant. The second set of

terms capture the effects of changes in the aggregate price index d log P = (Eλ(1−1/µ)[(σθ −

1)d log Aθ] + d log Y)Eλ[1/σθ].

We have already discussed the effects of changes in the aggregate price index, for example

in Section 4.2. We therefore focus our discussion on the effects of changes in productivities

holding the aggregate price index constant. We quickly discuss the intuition for the terms

νε
[
d log Aθ

]
, νθ

∗ [
d log Aθ

]
, and νµ

[
d log Aθ

]
. These terms are then amplified by a multiplier

1/[1 − (ξε + ξµ + ξθ
∗

)] arising from solving the fixed point in d log Y.

The intuition for the term νε
[
d log Aθ

]
is the following. Productivity shocks change prices

for given markups, exit behavior, and aggregate price index. The sales shares of varieties

with high markups tend to increase if they experience sufficiently higher relative productivity

shocks to offset their relatively lower elasticities. If they do, the variable profit share increases,

which increases entry by Eλ(1−1/µ)[(σθ − 1)d log Aθ] − Eλ[(σθ − 1)d log Aθ] and welfare by

(Eλ[δθ] − 1)(Eλ(1−1/µ)[(σθ − 1)d log Aθ] − Eλ[(σθ − 1)d log Aθ]).

The intuition for the term νθ
∗ [

d log Aθ
]

is the following. Productivity shocks change

exit behavior for given markups and aggregate price index. The selection cut-off tends

to decrease if the productivity increases relatively more and if the elasticity of substitu-

tion is relatively higher at the cut-off. If they do does, the sales share of exiting vari-

eties decreases by (σθ∗d log Aθ∗ − Eλ(1−1/µ)[σθd log Aθ])/(σθ∗ − 1), which changes welfare by

−(Eλ[δθ] − δθ∗)(σθ∗d log Aθ∗ − Eλ(1−1/µ)[σθd log Aθ])/(σθ∗ − 1).

The intuition for the term νµ
[
d log Aθ

]
is the following. Productivity shocks lead to changes

in markups for a given aggregate price index. Increases in productivity lead to increases in

markups, which increases the variable profit share. This in turn increases entry and changes
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welfare by −Eλ[(1 − ρθ)[1 − [(Eλ[δθ] − 1)/(µθ − 1)]d log Aθ]].

Signing the overall changes in allocative efficiency is difficult because of offsetting effects.

For example if all productivity shocks are identical d log Aθ = d log A, then there are no

changes in allocative efficiency, since just like in the case with homogeneous firms, the model

is homothetic with respect to such shocks. In this special case, the terms capturing the effects

of changes in productivities given the aggregate price index exactly offset (term by term) the

terms capturing the effects of changes in the aggregate price index given productivities: the

terms in νε[d log Aθ] exactly offset the terms in ξε, the terms in νθ
∗

[d log Aθ] exactly offset the

terms in ξθ
∗

, and the terms in νµ[d log Aθ] exactly offset the terms in ξµ. This shows that

changes in allocative efficiency from productivity shocks depend finely on the distribution of

these shocks across types.

The response of real GDP to productivity shocks is given in Proposition 7.

Proposition 7. In response to changes in productivities d log Aθ, changes in real GDP per capita are
given by

d log Q = Eλ
[
ρθd log Aθ

]
+

(
Eλ

[
(1 − ρθ)

]) (
Eλ

[ 1
σθ

]) (
d log Y + Eλ(1−1µ)

[
(σθ − 1)d log Aθ

])
,

where d log Y is given by Proposition 6.

Appendix H Homothetic with a Single Aggregator (HSA)

Preferences

In this appendix, we develop a version of our results using an alternative demand system

to the generalized Kimball preferences we use in the main text. We use homothetic demand

with a single aggregator (HSA) preferences, as defined by Matsuyama and Ushchev (2017).

These preferences nest separable translog preferences and linear expenditure shares as special

cases. The CES demand system is the only point of union between HSA preferences and the

generalized Kimball preferences used in the main text. Nevertheless, our theoretical and

quantitative results are quite similar when we use HSA preferences instead.

This appendix is organized as follows. In Section H.1, we set up the consumer and firm

problems and describe firm elasticities, markups, pass-throughs, and consumer surplus ratios

in terms of primitives. In Section H.2, we present theoretical results analogous to Theorem 1

and Proposition 1 in the main text. Finally, we show that the system of differential equations

used to calibrate the model remain valid under HSA preferences and provide quantitative

results analogous to Table 1 and Table 2. The results are qualitatively and quantitatively
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similar to those in the main text.

H.1 Setup

Under HSA preferences, the per-capita quantity yθ consumed of a variety θ is:

yθ =
w
pθ

sθ
(pθ

P

)
, (92)

where pθ is the price of the variety, sθ(·) are the expenditures on variety θ as a fraction of the

consumer’s budget, and P is the price aggregator. As in the main text, we have anticipated

the fact that free entry will force firm profits to zero in equilibrium, and we normalize the

wage w = 1.

The price aggregator P is implicitly defined so that expenditure shares add to one:∫
Θ

sθ(
pθ
P

)dF(θ) = 1. (93)

We assume there exists some choke constant (p/P)max, such that for any pθ/P ≥ (p/P)max,

sθ( pθ
P ) = 0. The relationship between the ideal price index, PY, and the price aggregator P, is

log PY = log P −
∫

Θ

∫ (p/P)max

pθ/P

sθ(ξ)
ξ

dξ

 dF(θ). (94)

Again, consumers maximize welfare Y under the budget constraint,∫
θ∈Θ

pθyθdF(θ) = PYY = 1. (95)

The firm side of the economy remains exactly the same as in the main text: upon entry,

firms draw a type θ from a distribution with density g(θ) and cumulative density function

G(θ). Each firm then decides whether to operate, and if so, what price to charge. The firm’s

maximization problem is

max
operate,pθ


(
pθ − 1

Aθ

)
Lyθ − fo,θ if the firm operates

0 if the firm does not operate
(96)

subject to the household per-capita demand curve in (92).

For firms that operate, the price that maximizes firm profits can be written as a markup

µθ times the firms marginal cost, where the markup is given by the Lerner formula,

µθ(
p
P

) =
1

1 − 1
σθ( p

P )

, (97)
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and the price-elasticity of demand is given by,

σθ(
p
P

) =
−d log yθ
d log pθ

= 1 −
pθ
P s′θ

(pθ
P

)
sθ

( pθ
P

) . (98)

Firms are ordered by the ratio Xθ of variable profits to overhead costs, so there is an

endogenous cutoff type θ∗ such that(
pθ∗ −

1
Aθ∗

)
Lyθ∗ = fo,θ∗ , (99)

firms with types θ ≥ θ∗ operate, and firms with types θ < θ∗ exit the market. Free entry leads

expected profits to be equal to entry costs in equilibrium,

1
∆

∫
∞

θ∗

[(
1 −

1
µθ

)
pθyθwL − fo,θ

]
g(θ)dθ = fe. (100)

We use the set Θ to denote types that operate in equilibrium: Θ = {θ|θ ≥ θ∗}. We use M to

denote the mass of entrants, so that the mass of surviving firms is (1 −G(θ∗))M. Accordingly,

the density of varieties available to the consumer dF(θ) = Mg(θ)dθ.

We will use the same definitions of pass-throughs and consumer surplus ratios as in the

main text. In terms of primitives, the pass-through and the consumer surplus ratio are now

ρθ(
p
P

) =
1

1 −
p
Pµ
′

θ
( p

P )

µθ( p
P )

, and δθ = 1 +
1

sθ( p
P )

∫ (p/P)max

p/P

sθ(ξ)
ξ

dξ. (101)

The sales density is defined as λθ = sθ( pθ
P )M(1−G(θ∗)). We denote the sales-weighted average

consumer surplus ratio δ̄ = Eλ[δθ] and the harmonic (sales-weighted) average of markups

µ̄ = Eλ[µ−1
θ ]−1.

In equilibrium, consumers maximize utility, firms maximize profits, and resource con-

straints are satisfied. The equilibrium is defined by the consumer’s demand for each variety

(92), the implicit definition of the price aggregator (93), the relationship of the price aggregator

to the ideal price index (94), firms’ profit-maximizing markups (97), the selection cutoff (99),

and the free entry condition (100).

H.2 Response to Change in Market Size

Theorem 2 characterizes the change in welfare following an exogenous change in market size

under HSA preferences.
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Theorem 2. In response to changes in population d log L, changes in consumer welfare are given by

d log Y = (δ̄ − 1)d log L︸          ︷︷          ︸
technical efficiency

+ µ̄
(
ξε + ξθ

∗

+ ξµ
)

d log L︸                        ︷︷                        ︸
allocative efficiency

, (102)

where

ξε =
(
δ̄ − 1

)
Covλ

[
σθ,

1
µθ

]
,

ξθ
∗

=
(
δ̄ − δθ∗

)
λθ∗γθ∗

(
Eλ

[
σθ∗

σθ

]
− 1

)
,

ξµ = Eλ
[(

1 − ρθ
)
σθ

(
1 −

δ̄
µθ

)]
Eλ

[ 1
σθ

]
.

Compared to the results under generalized Kimball preferences in the main text, the

change in technical efficiency following a change in market size is the same, but the change

in allocative efficiency is somewhat different. Note, however, that the change in allocative

efficiency depends on the same three margins of adjustment: the Darwinian margin (ξε), the

selection margin (ξθ
∗

), and pro/anti-competitive (ξµ). The terms ξε, ξθ
∗

, and ξµ, are exactly as

defined in the main text. For a given collection of ξε, ξθ
∗

, ξµ, the generalized Kimball model

will generate stronger reallocation effects as long as ξε + ξθ
∗

+ ξµ ∈ [0, 1]. Intuitively, this is

because Kimball preferences feature a feedback loop from increases in Y driving reductions

in P and reductions in P driving increases in Y. HSA preferences lack this feedback loop.

Quantitatively however, we find very similar results when we calibrate the HSA version of

the model.

Proposition 8 describes the response of real GDP to a change in market size.

Proposition 8. In response to changes in population d log L, changes in real GDP per capita are given
by

d log Q = Eλ
[
1 − ρθ

]
Eλ

[ 1
σθ

]
µ̄d log L. (103)

Proof. In response to an exogenous change in market size d log L, the following system of

log-linearized equations describe the movements of all endogenous variables.

Eλ [(1 − σθ)] d log P = d log M − λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
(1 − σθ) d log pθ

]
(104)

d log yθ = −σθd log
pθ
P
− d log P. (105)

d log Y =
(
δ̄ − 1

)
d log M − λθ∗ (δθ∗ − 1)

g(θ∗)
1 − G(θ∗)

dθ∗ − Eλ
[
d log pθ

]
. (106)
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d logµθ =
ρθ − 1
ρθ

d log
(pθ

P

)
. (107)

d log Xθ = (σθ − 1) d log pθ + d logλθ. (108)

d logλθ = d log pθ + d log yθ +
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M. (109)

d log Xθ∗ +
1
γθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ =
−g(θ∗)

1 − G(θ∗)
dθ∗ + d log M − d log L. (110)

d log L +
g(θ∗)

1 − G(θ∗)
dθ∗ − d log M + E

λ
(
1− 1

µ

) [d log Xθ
]

= 0. (111)

The first two equations, which describe the change in the price aggregator and the change

in the consumption of individual varieties, are different from the analogous equations under

generalized Kimball preferences, since the consumer demand curve and the price aggrega-

tor are now different. The remaining equations are unchanged from the derivation under

generalized Kimball preferences.

Solving the fixed point of this system yields Theorem 2 and Proposition 8.

H.3 Calibration

For calibration, we impose the restriction that the expenditure function is identical across

types, sθ(·) = s(·). We also assume that overhead costs are homogenous across firms, fo,θ = fo,

so that the sole source of exogenous variation across firm types is due to differing productivities

Aθ. Under this restriction, we can use the cross-sectional variation in pass-throughs and sales

shares to solve for markups and consumer surplus ratios, up to boundary conditions.

The same differential equations used to solve for markups and consumer surplus ratios

in the Kimball case apply under HSA preferences. To see why, note that the markups and

sales-shares vary with productivity according to:

d logµθ
dθ

=
(
1 − ρθ

) d log Aθ

dθ
, (112)

d logλθ
dθ

=
ρθ

µθ − 1
d log Aθ

dθ
. (113)

Rearranging yields the differential equation,

d logµθ
dθ

=
(
µθ − 1

) 1 − ρθ
ρθ

d logλθ
dθ

, (114)
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from which we solve for markups up to a boundary condition using pass-throughs and sales

shares.

For consumer surplus ratios, recall that we can write

∫ (p/P)max

pθ/P

s(ξ)
ξ

dξ = s(
pθ
P

)
[
δ(

pθ
P

) − 1
]
. (115)

Differentiating both sides and rearranging, we find a differential equation relating consumer

surplus ratios to markups,
d log δθ

dθ
=
µθ − δθ
δθ

d logλθ
dθ

, (116)

which we use to solve for consumer surplus ratios up to a boundary condition. Since both

differential equations are identical to those derived under Kimball preferences in the main

text, the estimates of sufficient statistics are unchanged.

Table 12 shows the elasticity of welfare and real GDP per capita to market size. The

elasticity of welfare to market size is further decomposed into changes in technical and

allocative efficiency, including the three margins of adjustment (entry, exist, and markups)

discussed in the main text. The results are quantitatively similar to those in the main text. In

particular, the majority of gains from an increase in market size are due allocative efficiency

effects arising from entry; the selection and pro-competitive channels have zero or mildly

deleterious effects on welfare.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.122 0.137 0.253 0.283
Technical efficiency: d log Ytech 0.017 0.045 0.034 0.090
Allocative efficiency: d log Yalloc 0.105 0.091 0.219 0.192

Darwinian effect: d log Yε
− d log Ytech 0.108 0.294 0.228 0.613

Selection effect: d log Yε,θ∗
− d log Yε 0.000 -0.157 0.000 -0.325

Pro-competitive effect: d log Yε,θ∗,µ
− d log Yε,θ∗ -0.003 -0.046 -0.008 -0.095

Real GDP per capita 0.022 0.022 0.043 0.043

Table 12: The elasticity of welfare and real GDP per capita to population following Theorem 2.

Table 13 replicates the analysis in a setting with homogeneous firms. Again, firm hetero-

geneity appears to play a significant role. Without heterogeneity, we find that the elasticity of

welfare to changes in market size are much smaller than in the calibration with heterogeneous

firms.
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µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.030 0.045 0.060 0.090
Technical efficiency: d log Ytech 0.017 0.045 0.034 0.090
Allocative efficiency: d log Yalloc 0.014 0.000 0.027 0.000

Real GDP per capita 0.022 0.022 0.043 0.043

Table 13: The elasticity of welfare and real GDP per capita to population for homogeneous firms.

Appendix I Klenow-Willis Calibration

In the main text, we caution that using an off-the-shelf functional form may mute important

features of the data. As an illustration, we present the results of our model using Klenow

and Willis (2016) preferences, a parametric form for the Kimball aggregator that is used

often in the literature. We show that Klenow and Willis (2016) preferences are unable to

match the empirical data. When calibrated using standard parameters from the literature,

these preferences overstate the importance of technical efficiency changes and understate the

importance of allocative efficiency changes.

Under Klenow and Willis (2016) preferences, the markup and pass-through functions are

µθ = µ(
yθ
Y

) =
1

1 − 1
σ ( yθ

Y )
ε
σ
, (117)

ρθ = ρ(
yθ
Y

) =
1

1 + ε
σ−(

yθ
Y )

ε
σ

=
1

1 + ε
σµθ

. (118)

where the parameters σ and ε are the elasticity and superelasticity (i.e., the rate of change in

the elasticity) that firms would face in a symmetric equilibrium. This functional form imposes

a maximum output of (yθ/Y)max = σ
σ
ε , at which markups approach infinity.

These preferences are unable to match the empirical distribution of firm pass-throughs

without counterfactually large markups. To see why, note that the pass-through function

ρ(·) is strictly decreasing, and that the maximum pass-through admissible (for a firm with

yθ/Y = 0) is

ρmax =
1

1 + ε/σ
. (119)

Amiti et al. (2019) estimate the average pass-through for the smallest 75% of firms in

ProdCom is 0.97. In order to match the nearly complete pass-through for small firms, we

must choose ε/σ to be around 0.01 − 0.03.

This makes it difficult, however, to match the incomplete pass-throughs estimated for the
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largest firms. To match a pass-through of ρθ = 0.3 with ε/σ ∈ [0.01, 0.03], for example, we need

a markup of µθ ∈ [78, 233] for the largest firms. In contrast, our non-parametric procedure

matches the pass-through distribution with moderate markups for the largest firms (shown

in the main text, Figure 4a).

Rather than attempting to match the empirical pass-through distribution, suppose we used

a set of parameters from the literature. We adopt the calibration from Appendix D of Amiti

et al. (2019): σ = 5, ε = 1.6, and firm productivities are drawn from a Pareto distribution with

shape parameter equal to 8.35 The simulated distributions of firm pass-throughs and sales

shares are shown in Figure 8. Over the range of drawn productivities, we see little variation

in pass-through.

Figure 8: Pass-through ρθ and sales share density logλθ under Klenow and Willis (2016) prefer-
ences.
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Table 14 shows the response of welfare and real GDP per capita to an increase in market size

for Klenow and Willis (2016) preferences, with the results from the main text for comparison.

We find that the calibration of Klenow and Willis (2016) preferences attributes nearly all

gains to technical efficiency gains, rather than allocative efficiency gains. In particular, the

parametric preferences dramatically understate the importance of the Darwinian channel.

35We calibrate the model by drawing 10,000 firms and finding a fixed point in output. Since the Pareto distribution
is unbounded, we could theoretically draw firms with zero pass-throughs and infinite sales shares; the simulated
distributions are bounded away from these extremes.
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Benchmark Klenow-Willis
µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.293 0.323 0.276
Technical efficiency: d log Ytech 0.034 0.090 0.271
Allocative efficiency: d log Yalloc 0.260 0.233 0.004

Darwinian effect: d log Yε
− d log Ytech 0.272 1.396 0.019

Selection effect: d log Yε,θ∗
− d log Yε 0.000 -1.006 -0.004

Pro-competitive effect: d log Yε,θ∗,µ
− d log Yε,θ∗ -0.012 -0.157 -0.011

Real GDP per capita 0.051 0.052 0.073

Table 14: Comparison of the elasticity of welfare and real GDP per capita to population in the
benchmark and Klenow and Willis (2016) calibrations.

Appendix J Real GDP via a Quantity Index

In a neoclassical setting (without non-convexities), real GDP can in principle be measured in

two equivalent ways, either using a Divisia quantity index or a Divisia price index. In this

model, since new goods enter with finite sales, this breaks the equivalence between the two

indices. The price index is the definition we adopt in the body of the paper, however, for

completeness, we also discuss the quantity index. The quantity index measures the change in

individual quantities at constant prices

d log Qq = Eλ[d log yθ]. (120)

This is equal to

d log Qq = −d log M + λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
d log(

Aθ

µθ
)
]
, (121)

The two notions of changes in real GDP per capita differ. For the rest of this section, denote

the price-index notion (that we use in the body of the paper) using d log Qp: this is the change

in real GDP per capita measured at constant quantities (more precisely, the price index is

measured at constant quantities, and then changes in real GDP are defined to be changes in

nominal GDP deflated by the price index). Changes in real GDP per capita measured with

quantities d log Qp depend only on changes in prices d log(pθ/w) = d log(µθ/Aθ). For given

prices pθ/w = µθ/Aθ, they do not depend on the allocation of spending between new, existing,

and disappearing varieties. By contrast, changes in real GDP measured with quantities do

depend on the allocation of spending for given prices. In fact, d log Qq penalizes new product
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creation since the quantity of new products produced is not included in the measure, but the

reduction in the quantity of existing products is included. The reduction in the quantity of

existing products comes about from the fact that, in order to produce new products, less of

the old products must be produced.

Since real GDP measured at constant prices has a physical interpretation, we can write

real GDP per capita measured with quantities Qq(A,X):36

d log Qq =
∂ logQq

∂ logA
d logA︸             ︷︷             ︸

technical efficiency

+
∂ logQq

∂X
dX︸       ︷︷       ︸

allocative efficiency

. (122)

Note that changes in allocative efficiency are different for consumer welfare d log Y and for

changes in real GDP per capita at constant prices d log Qq. Changes in allocative efficiency are

changes in the object of interest originating in reallocation effects. It is therefore natural that

they depend on the object of interest.

Proposition 9. In response to changes in population d log L, changes in real GDP per capita are

d log Qq = −d log L︸   ︷︷   ︸
technical efficiency

+
(
1 − Eλ

[
ρθσθ

]
Eλ

[ 1
σθ

]) (
d log Y + d log L

)
︸                                                 ︷︷                                                 ︸

allocative efficiency

, (123)

where d log Y is given by Theorem 1.

We can apply the same decomposition as above into three different equilibrium allocations

incorporating more and more margins of adjustment: entry, entry and exit, and entry, exit and

pricing/markups. The corresponding changes in real GDP per capita are respectively given

by Proposition 1, but setting ξµ = ξθ
∗

= 0 and ρθ = 1 (which holds fixed markups and the

cut-offs), ξµ = 0 and ρθ = 1 (which holds fixed markups but allows the cut-off to adjust), and

without any modification (allowing all margins to adjust).

For changes in real GDP per capita, it is actually even more interesting to study this

decomposition in reverse order, because of the more central role played by pricing/markups

in the evolution of these variables. This means incorporating more and more margins of

adjustment as follows: pricing/markups, pricing/markups and exit, and pricing/markups,

entry and exit. The corresponding changes in real GDP per capita are respectively given by

Proposition 1, but with ξε = ξθ
∗

= 0, ξε = 0, and without any modification. For example,

under assumptions (1), (2), and (3), changes in real GDP per capita measured with prices

increase as more and more margins of adjustment are incorporated.

36However, no such representation is available for real GDP measured with prices Qp.
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