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ABSTRACT

The COVID-19 pandemic resulted in stay-at-home policies and other social distancing behaviors 
in the United States in spring of 2020. This paper examines the impact that these actions had on 
emissions and expected health effects through reduced personal vehicle travel and electricity 
consumption. Using daily cell phone mobility data for each U.S. county, we find that vehicle 
travel dropped about 40% by mid-April across the nation. States that imposed stay-at-home 
policies before March 28 decreased travel slightly more than other states, but travel in all states 
decreased significantly. Using data on hourly electricity consumption by electricity region (e.g., 
balancing authority), we find that electricity consumption fell about six percent on average by 
mid-April with substantial heterogeneity. Given these decreases in travel and electricity use, we 
estimate the county-level expected improvements in air quality, and therefore expected declines 
in mortality. Overall, we estimate that, for a month of social distancing, the expected premature 
deaths due to air pollution from personal vehicle travel and electricity consumption declined by 
approximately 360 deaths, or about 25% of the baseline 1500 deaths. In addition, we estimate that 
CO2 emissions from these sources fell by 46 million metric tons (a reduction of approximately 
19%) over the same time frame.
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1 Introduction

The novel coronavirus outbreak, along with measures intended to contain the spread of

COVID-19, resulted in significant, and in some cases, unprecedented, changes in society.

Because of these alterations to daily life, demand for numerous goods and services fell pre-

cipitously from late February through the present. Evidence of the far-reaching effects of

social distancing, retail closures, and, generally, reductions in economic activity, is perhaps

most obvious in weekly unemployment claims which exceed those during the Great Recession

by a factor of ten. Equally evocative is the collapse of oil prices.

In a fossil fuel-based economy such as the U.S., a large adverse demand shock is likely to

have appreciable repercussions for emissions and ambient pollution levels. Though long-run

outcomes are not yet discernible, it is feasible to assess near term changes in certain measures

of environmental quality. Further, because there is an established literature linking exposure

to ambient pollution to various health outcomes, it is possible to gauge the effects of such

changes on public health. The goal of this analysis is to quantify the health effects of these

unprecedented changes from two channels: reduced travel and electricity consumption. This

quantification is an important input in an economic analysis of social distancing.

Our analysis uses cell phone data, which are reported daily for every U.S. county, to

measure changes in mobility, and by extension, vehicle-miles traveled, over the February to

April, 2020 period. For electricity, we employ hourly data by electricity region (e.g., bal-

ancing authority) to estimate the changes in electricity consumption, and the corresponding

emissions, over the same time period controlling for observable factors such as temperature

and a battery of temporal fixed effects. We focus on reductions in emissions that contribute

to the formation of fine particulate matter (PM2.5).1 In recent years, emissions from travel

and electricity generation account for between 25% and 50% of national totals depending on

pollution species.2 We use integrated assessment modeling to connect emissions to changes

in ambient PM2.5 and the associated reductions in expected adverse health effects from

exposure to pollution. Of particular interest are reductions in PM2.5-associated mortality

1Emitted pollutants tracked in this study include primary PM2.5, sulfur dioxide (SO2), nitrogen oxides
(NOx), and volatile organic compounds (VOCs).

2See Table A in the Appendix.
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risk, as this health endpoint contributes the largest share of air pollution damages (Muller,

Mendelsohn, and Nordhaus, 2011).

The cell phone data indicates that personal mobility declined about 40% on average,

with larger decreases in states that were early in implementing social distancing measures.

The reduction in electricity generation, in contrast, is just 6% on average. While behavioral

responses to COVID-19 and stay-at-home orders induce a large decline in travel, power

consumption decreases are smaller, perhaps due to a shift from commercial to residential

applications.

We find that reduced travel and electricity generation are associated with a monthly

decrease of about 360 deaths from PM2.5 exposure in the contiguous U.S. As a means of

comparison, these emission sources contributed about 1500 deaths per month. Further, we

estimate that social distancing resulted in approximately 46 million metric tons less CO2

emissions per month, or about 19% of the 242 million metric tons that are emitted monthly

from driving and using electricity.

The bulk of the reduction in deaths, about 315 per month, manifest from the fall in travel.

Decreases in nitrogen oxides (NOx) emissions account for the largest share of this reduction,

approximately 200 per month. Reductions in deaths are primarily from cities because both

baseline vehicle-miles traveled and exposed populations are larger than in rural areas. We

estimate that emission reductions from less travel in Los Angeles induce 75 fewer deaths. In

New York City, the analogous total is 25 fewer deaths. States with the greatest reductions in

deaths from travel emissions include California, New York, New Jersey, Florida, and Illinois.

Note that these estimates are a function of the behavioral changes in mobility in response

to COVID-19, the implied changes in vehicle miles traveled, population exposure per ton of

emissions, and demographics of the exposed population.

Location-specific reductions in deaths from electricity are much lower given the smaller

declines in consumption. Emission and reductions in deaths also display a different geo-

graphic pattern, with the largest reduction in deaths due to demand changes in the South-

east and Midwest. These estimates of reduction in deaths from electricity generation depend

on behavioral changes in power use in response to COVID-19, the likely changes in the op-
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eration of power plants across the country, population exposure per ton of emissions, and

demographics of the exposed population.

Upon previewing our central results it is important to underscore two issues. First, the

point of this analysis is not to argue that COVID-19 was in any way beneficial. Rather,

we are analyzing an unprecedented set of circumstances, and quantifying the associated

changes in emissions from two major sectors of the economy to estimate the health benefits

that accrue from less reliance on fossil-based transportation and power generation. Second,

potential interactions between reduced exposure to PM2.5 and COVID-19 mortality risks are

not modeled. Because observed mortality rates are substantially higher during the months

covered by this paper, and due to the fact that PM2.5-induced mortality risk is multiplica-

tively related to baseline risk (Krewski et al., 2009), our estimates may underestimate actual

mortality risk reductions.

The novel coronavirus outbreak has occasioned a large outpouring of scientific research

including in the field of economics. However, only a limited number of working papers relate

to environmental aspects of the coronavirus outbreak.3 Our paper contributes most directly

to the literature on the determinants and consequences of social distancing policy (Allcott

et al. 2020, Briscese et al. 2020, Fang et al. 2020, Friedson et al. 2020, Greenstone and

Nigam 2020).

Section 2 describes the data sources and methods for our estimation of the reduction

in deaths from reduced travel and reduced electricity consumption. Section 3 describes the

results, and Section 4 concludes.

2 Methods

Calculating the expected health effects of the reductions in personal vehicle travel and elec-

tricity consumption from social distancing has three components: first, estimating the re-

duction in travel or electricity consumption; second, calculating the resulting reduction in

3A search of the NBER working paper series for April 2020 revealed that a remarkable 41 out of 151
working papers dealt directly with the coronavirus outbreak. However, none of these working papers address
its environmental aspects. Similarly a search of the broader IDEAS/REPEC working paper series yielded
573 results for 2020, but only seven of these are related to the environmental aspects of the coronavirus
outbreak.
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emissions; and third, calculating the health effects of the reduction in emissions. To esti-

mate the reduction in travel or electricity consumption, we use estimates of counterfactual

travel or electricity usage based on historical data with controls for relevant confounding

variables, e.g., weather. Next, estimates of emission reductions are based on emissions rates

per unit of travel or on observed emissions from power plants. Finally, the health effects

of the reductions in emissions are calculated from the AP3 integrated assessment model.

AP3 maps emissions of different primary pollutants from different sources (counties or point

sources) into ambient concentrations of secondary pollutants at receptor counties and uses

dose-response relationships and county-specific demographics to calculate expected deaths

from the emissions. The AP3 model is explained in detail in Clay et. al. 2019. Below we

describe the procedure for estimating health effects from reductions in travel and electricity

usage in turn.

2.1 Personal Vehicle travel

To estimate the health effects of reduced vehicle travel, we first need an estimate of how

much travel decreased. Comprehensive data on vehicle miles traveled (VMT) is reported by

a variety of state agencies and collected at the national level. However, our analysis requires

high frequency data to estimate the effect of social distancing that has only been in effect

for a short time. For high-frequency travel data, we turn to Unacast (2020).4 Unacast,

which specializes in mobility data analysis, created a pro bono COVID-19 Toolkit to help

researchers and to raise public awareness of social distancing. Unacast analyzed cell phone

mobility data to calculate a percentage reduction in distance traveled for each county.5,6

We combine these percentage reductions with county-level estimates of light duty vehicle

VMT from the US EPA MOVES model to determine the reduction in VMT in each county.

Light duty vehicles include cars, mini-vans, sport utility vehicles (SUVs), and some pick-up

4Another potential source of high-frequency travel data is from highway monitors. California has the
most comprehensive data collection but only covers major highways.

5To date, Unacast has not provided information on the time frame over which they estimated counter-
factual travel reductions and which control variables they included. In the Appendix, we analyze data from
Streetlight, who use an alternative methodology to infer VMT from cell phone mobility data. The results
are similar for the two sources.

6An important confound might be the concurrent, dramatic fall in gasoline prices. Because the decreasing
gasoline price would tend to increase gasoline consumption, our calculations may understate the true effect.
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trucks. By applying the Unacast percentage reduction to all light duty vehicles, we are

assuming that reductions in travel are proportional across the vehicle classes.

The resulting reduction in light-duty vehicle travel is summarized in Figure 1a which

shows the seven-day moving average of the VMT-weighted average reduction across counties

for two groups: counties in states that had an early stay-at-home policy in place by March 28

and counties in states that did not (some of which imposed a stay-at-home policy at a later

date).7 Before early March there is no reduction in VMT, but by the end of March, VMT

fell by approximately 40%. States with early stay-at-home policies reduced travel more than

others, however, there is a substantial reduction in travel in all the states.8 Since early April,

the VMT reduction seems to have stabilized at around a 40% average reduction. We use the

last week of data (from April 11 to April 17) to calculate the reduction in light duty VMT

for each county relative to the baseline.

The dramatic reduction in VMT is corroborated by a simultaneous reduction in the

consumption of gasoline. Figure A in the Appendix shows the consumption of gasoline by

week over 2007-2020. This weekly data shows a decrease in gasoline consumption of about

40% beginning in about mid-March. This decrease is well outside the historical norm, but

is consistent with the drop in travel from the Unacast data.

We use fleet average emissions rates of SO2, PM2.5, NOx, and volatile organic compounds

(VOCs) to map the reduction in travel into the reduction in emissions. Emission rates for

PM2.5, NOx, and VOC are based on national average fleet characteristics and fuel properties

in 2018 and are reported in Table 4-43 in NTS (2018).9 The emissions rate for SO2 assumes

22.3 fleet average mpg and 10 ppm sulfur in gasoline, which reflects the latest gasoline sulfur

content regulations.10 The resulting emissions rates (in grams per mile) are shown in Table 1.

Emissions of different pollutants have different effects in different locations. The AP3

model accounts for dispersion of air pollution, atmospheric chemistry, dose-response relation-

ships, and demographics of the affected populations to calculate the premature deaths from

7The robust standard errors for the confidence intervals are clustered at the state level and account for
serial correlation and correlations across counties within a state.

8An F-test of an equal reduction during the last week of our data is rejected at the 5% level.
9We use the average of emission rates for light duty vehicles and light duty trucks.

10The fleet average mpg is for U.S. light duty vehicles in 2017 (BTS 2020). Carbon emissions per mile can
be calculated from this mpg and the carbon content of gasoline.
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Figure 1: Effect of Social Distancing on Travel and Electricity Consumption

(a) Personal Vehicle Travel

(b) Electricity Consumption

Notes: Seven day moving averages. Data from Unacast (2020) and Cicala (2020). Early-policy states put a
stay-at-home policy in place by March 28, 2020. Shaded area indicates 95 percent confidence interval.
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Table 1: U.S. Light Duty Vehicle Fleet Emissions Rates and Expected Death Rates

Pollutant Emissions Deaths per
(g/mile) Billion Miles

SO2 0.003 0.031
PM2.5 0.013 0.469
NOx 0.384 1.944
VOC 0.386 0.632

Notes: Deaths are VMT weighted averages across all counties in the contiguous U.S.

a unit of pollution emitted in each county. Hence, the model iterates over 3,100 counties

and each pollutant in tabulating the premature deaths per unit of pollution. We summarize

these damages in Table 1 which shows the VMT-weighted mean deaths per mile across all

counties in the contiguous U.S. The table shows that NOx emissions are by far the most

harmful pollutant from the current vehicle fleet resulting in almost two expected deaths per

billion miles traveled. Conversely, the very low SO2 emission rates yield fewer deaths, per

VMT, than NOx. Combined, these four pollutants account for over three expected deaths

per billion miles traveled.11

To calculate the reduction in expected deaths through reduced travel in a county because

of social distancing, we simply multiply the county-level reduction in miles traveled (sum-

marized in Figure 1a) by the county-specific estimates of expected deaths per billion miles

(summarized in Table 1). The reduction in expected deaths is mapped in Figure C in the

Appendix. The reductions in deaths are the greatest in California’s urban areas.

2.2 Electricity use

To estimate the health effects of reduced electricity usage, we combine estimates of the

reduction in electricity use with estimates of the marginal health effects (marginal damage)

per unit of power produced.

The reduction in electricity usage is estimated from data from individual Independent

System Operators (ISOs) and the Energy Information Administration (EIA) on hourly elec-

tricity consumption, referred to as ‘system load’. System load is the aggregate of all power

11Using the fleet average mpg and the carbon content of gasoline, we can also calculate the average CO2

emissions per mile.
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taken from the grid, including residential, commercial, and residential customers, as well as

line loses. ISOs and the EIA vary in the geographic specificity of their reporting, ranging

from zones covering local municipal utilities to the entire Tennessee Valley Authority. We re-

fer to each reported unit as a Power Control Area (PCA) to simplify the distinction between

types of load zones and balancing authorities.12

We match hourly load data to local temperature readings from the National Weather

Service’s Automated Surface Observing Systems (ASOS), a network of automated weather

stations that are typically located at airports. These stations are matched to counties, and

multiple stations’ data are aggregated up to the PCA using population weights. To account

for behind-the-meter generation, we also include hourly reports of solar generation for PCAs

in California and New England.

To develop an estimate of reduced electricity consumption, we pool hourly readings of

load and temperature from 2017-present. For each PCA, we regress the natural logarithm of

hourly load on a set of day of week, hour of day, and week of year dummies. These control

for the regular fluctuations in consumption that follow the clock and calendar. Hourly

temperature data allow us to control for heating and cooling with the inclusion of a measure

of prevailing temperature relative to 18 degrees Celsius (see Cicala (2020) for more details on

the data assembly and estimation). Our estimate of the reduction in electricity consumption

in a PCA is the remaining unexplained variation in electricity consumption, which is captured

by a set of dummies for each date of interest.

Figure 1b summarizes these estimated reductions in electricity consumption by plotting

the seven-day moving average of the load-weighted average coefficients across the PCAs.13

The results show that there are not reductions in electricity usage before early March but

by mid-April reductions in electricity usage average about 6%.14

We estimate the health effects of these reductions in electricity consumption using a two-

step procedure similar to that in Holland et al. (2020) for estimating marginal damages.

The first step is to determine hourly expected deaths from pollution from power plants.

12In total there are 105 PCAs in our data.
13The robust standard errors for the confidence intervals are clustered at the PCA to account for serial

correlation.
14Because PCA’s can cross state boundaries, we do not break out the reduction by state stay-at-home

policy.
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The second step is to determine the change in expected deaths from a change in electricity

consumption.

In the first step, we use data reported from EPA’s Continuous Emissions Monitoring

System (CEMS) to measure hourly emissions of SO2, NOx, and PM2.5 at each of the ap-

proximately 1500 fossil fuel fired power plants in the contiguous U.S.15,16 Holland et al. (2020)

report a dramatic decline in emissions in recent years, so we use emissions from 2017, which

is the most recent year in their dataset. Based on the location of each power plant, we use

the AP3 model to map emissions of each pollutant into expected deaths. We then aggregate

across pollutants and across power plants within an interconnection to calculate the hourly

expected deaths from the pollution.

In the second step, we regress hourly expected deaths on hourly electricity load in each

interconnection: East, West, and Texas.17 More specifically, let Dt be the expected deaths

in the interconnection due to emissions of all pollutants from all power plants in an inter-

connnection in hour t. Our estimating equation is

Dt = βLoadt + αmh + εt, (1)

where Loadt is electricity usage in the interconnnection in hour t and αmh are month of sample

times hour fixed effects (1 year * 12 months * 24 hours fixed effects). The coefficient β is the

change in expected deaths from a change in electricity consumption in the interconnection.

Table 2 shows the estimated coefficients and standard errors for each pollutant individually

as well as in total. The East is the dirtiest interconnection with three expected deaths per

TWh of electricity consumption. The bulk of the harm in the East comes from emissions

of SO2. Marginal electricity consumption is least harmful in the West with less than one

expected death per TWh of electricity consumption.

15SO2 and NOx are directly reported, and we impute hourly PM2.5 emissions based on average emissions
rates and observed hourly generation.

16CEMS also reports carbon emissions. We use a similar procedure to estimate marginal carbon emissions
from a change in electricity usage.

17We aggregate deaths and load to the interconnection because electricity generally flows throughout an
interconnection and PCA loads are highly correlated. See Holland et al. (2020).
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Table 2: Marginal Expected Deaths from Electricity Consumption

Interconnection Total SO2 NOx PM2.5

East 3.106 2.119 0.554 0.433
(0.147) (0.134) (0.018) (0.008)

West 0.849 0.255 0.297 0.297
(0.026) (0.015) (0.011) (0.012)

Texas 1.698 1.225 0.254 0.219
(0.117) (0.106) (0.011) (0.009)

Notes: Expected deaths from electricity consumption in deaths per TWh. Newey-West standard errors (48
hour lag) in parentheses. Regressions include month of sample by hour fixed effects

To calculate the reduction in expected deaths through reduced electricity consumption

from social distancing, we simply multiply the estimated reduction in electricity consumption

at a PCA (summarized in Figure 1b) by the expected deaths per TWh in Table 2 for the

appropriate interconnection. The reduction in expected deaths is mapped in Figure D in

the Appendix. The reductions are the greatest in the Midwest and Southeast, but are much

smaller than from reduced travel.

3 Results

Social distancing due to the COVID-19 outbreak led to reduced personal vehicle travel and

electricity consumption which in turn lowered emissions of pollution and expected deaths.

The overall effect of these changes, aggregated to the contiguous U.S., are shown in Table 3.

Our baseline estimated number of expected deaths per month from air pollution from all

light-duty vehicle travel is 666 expected deaths. Our estimated 40 percent average reduction

in travel implies that the expected deaths is reduced by 314 deaths per month due to reduced

travel.18 The table breaks the reduction in deaths into the precursor pollutant to which they

can be attributed. Over half of the reduction in deaths are due to reduced NOx emissions

but reductions in other pollutants such as VOCs and PM2.5 also contributed substantially.

For electricity consumption, our baseline estimated number of expected deaths per month

18This 47% reduction in deaths indicates that travel reductions occurred disproportionately in high damage
locations.
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from air pollution from electricity consumption is 859 deaths. This is a higher baseline than

for travel, but the six percent reduction in electricity consumption implies that expected

deaths are only reduced by 49 deaths (about 15% of the reduction in deaths from travel).

The primary reduction in deaths from electricity consumption can be attributed to reduced

SO2 emissions. Combining the results for the reduction in travel and electricity usage gives

a reduction of 363 expected deaths.

Table 3: Monthly Reduction in Deaths from Reduced Air Pollution

Travel Electricity Total
Baseline Expected Deaths 665.9 859.0 1,524.8
Average Percent Reduction 41.0 6.2 n.a.
Reduction in Expected Deaths

Total 313.8 48.8 362.6
from SO2 3.1 32.7 35.8
from NOx 195.8 8.9 204.8
from PM2.5 48.9 7.2 56.1
from VOC 66.0 66.0

Notes: Average percent reduction in travel is weighted by VMT. Average percent reduction in electricity is
weighted by average load in 2019. Deaths are expected deaths per month.

The preceding analysis focuses on the expected health benefits from local pollutants of the

reductions in personal vehicle travel and electricity consumption due to social distancing.

Additionally, these reductions imply reductions in CO2 emissions which we can calculate

using similar procedures. In particular, for travel we can use the carbon content of gasoline

and the fleet mpg together with our estimated reduction in VMT to estimate the reduction

in carbon emissions. Applying this methodology, we estimate that CO2 emissions were

reduced by 35.4 million metric tons from a month of social distancing. For electricity

consumption, we use the hourly power plant CO2 emissions from CEMS to estimate the

marginal CO2 emissions from electricity consumption. Applying these estimates to our

estimated reduction in electricity consumption in the various regions implies an aggregate

reduction in CO2 emissions from power plants of 10.5 million metric tons from a month of

social distancing. Combining the reductions in CO2 from travel and electricity consumption

implies that the month of social distancing reduced CO2 emissions by 45.9 million metric
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tons. This is approximately 19% of the 242 million metric tons that are emitted monthly

from driving and using electricity.

Social distancing was not evenly distributed across the country as some states and cities

implemented stay-at-home policies while others did not. In addition, behavioral changes

differed across regions, and mortality risks (as specified by the AP3 model) differ across

counties. Table 4 shows the heterogeneity in the reduction in expected deaths and CO2

emissions due to the reduction in travel for the top MSAs and states. Social distancing in

Los Angeles resulted in the largest reduction in expected deaths (77) and carbon emissions

(1.1 million metric tons). New York City had a larger percentage reduction in travel but a

smaller reduction in expected deaths (26) because of the lower number of baseline deaths per

mile traveled. Behavioral changes in other large cities also induced substantial reductions in

expected deaths and in CO2 emissions. At the state level, social distancing in California led

to the largest reduction in deaths (115) and in CO2 emissions (4 million metric tons) from

reduced travel.

Because the PCA’s do not map cleanly into states and MSA’s, we aggregate them into

geographic areas based on Independent System Operators and NERC regions. The reduction

in expected deaths and CO2 emissions from electricity consumption in these geographic areas

are given in Table C in the Appendix. About half of the reductions in expected deaths

and CO2 emissions comes from electricity consumption reductions in the Southeast and the

Midwest (reduction of 13 and 12 deaths and 2.5 and 2.4 million metric tons of CO2 emissions).

Although California had one of the larger percent reductions in electricity consumption (an

8 percent reduction), this reduction led to smaller declines in expected deaths and CO2

emissions due to cleaner electricity generation in the West.

4 Conclusion

Social distancing to control the spread of the novel coronavirus resulted in unprecedented

changes in society and in economic activity. Among these are substantial changes in vehicle

travel and in electricity usage. This paper quantifies reductions in travel and electricity

usage relative to counterfactuals using highly-resolved data. We find that, at the county

12



Table 4: Monthly Reduction in Deaths from Travel by MSA and State

Monthly Baseline Percent Reduction Reduced
VMT Expected Travel in Expected CO2

(Billions) Deaths Reduction Deaths Emissions
Total 216.46 665.86 41.01 313.81 35.38
Top MSAs
Los Angeles 5.83 157.37 48.68 76.61 1.13
New York City 4.27 42.72 61.24 26.39 1.04
Chicago 3.80 24.95 48.38 12.28 0.73
San Diego 2.10 17.27 51.59 8.91 0.43
Santa Ana 2.01 16.54 50.92 8.43 0.41
Atlanta 4.17 15.44 44.65 7.41 0.74
Washington DC 3.04 11.19 53.72 6.34 0.65
Philadelphia 1.80 9.91 54.88 5.45 0.39
Newark 1.39 9.19 56.21 5.31 0.31
Oakland (CA) 1.62 10.53 50.30 5.25 0.32
Long Island 1.44 7.71 53.23 4.34 0.31
Minneapolis 2.30 8.33 49.97 4.31 0.46
Edison (NJ) 1.67 7.64 52.90 4.05 0.35
Tampa 1.98 8.38 46.60 4.03 0.37
San Jose 1.18 6.10 57.88 3.56 0.27
Top States
California 24.19 240.81 42.73 115.00 4.12
New York 9.88 46.32 50.85 27.52 2.00
New Jersey 5.56 32.85 52.76 17.95 1.17
Florida 14.43 34.45 47.27 16.97 2.72
Illinois 7.39 29.90 41.06 14.06 1.21
Pennsylvania 7.21 22.97 42.67 10.80 1.23
Ohio 9.13 25.61 38.76 10.43 1.41
Texas 17.76 25.61 37.48 10.29 2.65
Michigan 7.04 16.12 52.42 8.89 1.47
Georgia 7.81 19.43 38.89 8.69 1.21
Maryland 4.19 13.99 46.86 6.81 0.78
North Carolina 7.83 15.41 36.23 5.85 1.13
Virginia 6.39 12.67 40.48 5.73 1.03
Massachusetts 4.12 9.91 50.78 5.12 0.83
Minnesota 4.12 9.83 44.42 4.87 0.73

Notes: Average travel reduction is weighted by VMT. Reduced CO2 emissions in millions of metric tons.
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level, average vehicle travel fell by about 40% whereas electricity usage dropped by about

6% during the months of March and April, 2020.

We then combine the estimated reductions in travel and electricity usage with air pol-

lution emissions rates and the AP3 model, which links emissions to ambient concentrations

and expected deaths. We find that the reductions in emissions from travel and electricity

usage reduced deaths by over 360 deaths per month. The bulk of this reduction is attributed

to less personal vehicle travel, and in particular reduced NOx emissions from this travel. So-

cial distancing in California accounted for about a third of the reduction in deaths with Los

Angeles alone contributing 20% of the national total. New York accounted for about 10%

of the national total. Further, we estimate that social distancing resulted in approximately

46 million metric tons less CO2 emissions per month.

We note important caveats to our findings. First, the AP3 model uses concentration-

response functions from the epidemiological literature (Krewski et al. 2009) that assume

the incremental risk from exposure to PM2.5 is proportional to baseline mortality rates.

Because of heightened mortality risk from COVID-19, our calculated reduction in deaths

may significantly understate actual reductions in PM2.5 exposure risk. See the Appendix for

a further discussion of this issue. In addition, our econometric estimation of counterfactual

emissions and Unacast’s estimates of counterfactual mobility are uncertain. Further, we are

interpreting changes in cell phone mobility data as translating directly into changes in VMT

from light-duty vehicles, and we do not model intermodal substitution from public transit

to personal vehicle use. Finally, we cannot attribute the observed changes in travel and

electricity usage to any specific policy or set of policies but only to behavioral changes as

observed over this time frame.

Our work provides insight into the benefits and costs of policies related to social distancing

(Thunstrom et al. 2020). Of course, the primary inputs to a benefit-cost analysis of social

distancing would include avoided coronavirus infections, estimated in the trillions of dollars

(Greenstone and Nigam 2020), and reduced economic activity. Our work augments these

central arguments with one of the potentially many important non-market outcomes such as

health, education, and the environment. Monetization facilitates inclusion of these health

benefits directly into a benefit-cost analysis of social distancing. For example, if we assume
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a value of a statistical life (VSL) of $9 million and a social cost of carbon of $50 per ton, the

national environmental benefit of social distancing is $5.5 billion per month with about 60

percent of this benefit from reduced deaths. These benefits accrue substantially from social

distancing in large metropolitan areas: about $750 million per month from Los Angeles and

about $320 million per month from New York City.

Using observed behavioral changes, our paper demonstrates the degree to which reduced

reliance on fossil-fuel based transport and power generation yields public health benefits. In

the long run these findings are, perhaps, most interesting when interpreted in the context of

a post-COVID-19 economy in which remote working and retail delivery are more common.

In this state of the world as observed in early April 2020, power demand is only marginally

affected, whereas personal travel declines appreciably. The paper shows significant local

health benefits from this adjustment. The extent to which consumption habits revert to

their pre-COVID-19 levels remains to be seen.
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Appendices

Emissions from all sources

Table A shows the tonnage of emissions of relevant criteria pollutants from the two broad

source categories covered by this analysis. Electric power generation contributes about 1.1

million tons of NOx while highway vehicles (inclusive of light duty cars and heavy duty

commercial trucks) emit another 3.3 million tons. Together these discharges amount to 43%

of the national total emissions. Power generation and vehicle emissions of primary PM2.5

comprise just over 20% of total, national emissions. Releases of SO2 from these two source

categories total up to about 1.3 million tons, or about half of the national total. And, for

volatile organic compounds (VOCs) the total from power plants and vehicles is 1.6 million

tons. This is 10% of national VOC emissions.

Table A: Overall Air Pollution Emissions by Source 2018

Source NOx PM2.5 SO2 VOC
Fuel Combustion: Electric Util. 1114 182 1306 38
Fuel Combustion: Industrial 1143 224 534 110
Fuel Combustion Other 541 343 116 372
Chemical & Allied Product Mfg 47 14 123 77
Metals Processing 70 44 105 29
Petroleum & Related Industries 717 29 104 3145
Other Industrial Processes 330 265 167 346
Solvent Utilization 1 4 0 3052
Storage & Transport 6 17 3 675
Waste Disposal & Recycling 110 230 32 233
Highway Vehicles 3300 100 27 1609
Off-Highway 2653 173 69 1622
Miscellaneous 294 3689 150 4669
Total 10327 5315 2735 15975

Notes: Units are thousands of U.S. Short Tons. Data from EPA (2020).

Weekly gasoline sales

Figure A shows the sales of gasoline by week from 2007-2019 and the beginning of 2020.

Before 2020, the sales range between 8000 and 10,000 with an average around 9000 and a
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small peak in summer consumption (units are thousands of barrels per day). The first 11

weeks of 2020 are within this range, but starting with the 12th week (March 20) there is a

precipitous drop down to about 5000. Sales remain depressed at this low level for the last

three weeks of data (up to April 17).

Figure A: U.S. Product Supplied of Finished Motor Gasoline

Notes: Data from EIA (2020).
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Streetlight mobility data

In the main text, we applied the travel reduction percentages from Unacast to the EPA’s

MOVES estimates of VMT. Alternatively, Streetlight (2020) uses cell phone mobility data

to directly estimate reductions in VMT. An analogous figure to Figure 1a made using the

Streetlight data is shown in Figure B. The results from using the Streetlight data to estimate

the reduction in deaths from decreased air pollution are given in Table B. Compared to the

results in the main text, the Streetlight data gives a greater decrease in VMT and hence a

greater reduction in deaths. However, the decrease in the Streetlight VMT is larger than

we would expect from the reduction in gasoline sales documented in Figure A, and the

baseline estimate of total VMT in the Streetlight data is about 40 percent greater than

other estimates. For these reasons, we present the results from the Unacast data in the main

text.

Table B: Reduction in Deaths from Reduced Air Pollution - StreetLight VMT Travel Data

Travel Electricity Total
Baseline Lives Lost 665.6 859.0 1,524.6
Average Percent Reduction 66.9 6.2 n.a.
Reduction in Lives Lost

Total 492.5 48.8 541.3
from SO2 4.9 32.7 37.6
from NOx 309.9 8.9 318.9
from PM2.5 75.7 7.2 82.9
from VOC 102.0 102.0

Notes: Average travel reduction is weighted by VMT. Baseline monthly deaths from travel is slightly lower
than in Table 3 because there are more counties with missing data.
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Figure B: Reduction in StreetLight VMT Travel Data

Notes: Data from Streetlight (2020). Baseline is average daily VMT in January 2020. Seven day moving
averages. Early-policy states put a stay-at-home policy in place by March 28, 2020. Shaded area shows 95
percent confidence interval.
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Supplementary information about reductions in expected deaths

Figures C shows the reduction in deaths from reduced travel at the county level. The spatial

distribution of the reduction in deaths depends on reduced travel from COVID-19, observed

vehicle miles traveled, population exposure per ton of emissions, and demographics of the

exposed population. Figure D shows the reduction in deaths from reduced electricity con-

sumption at the PCA level. The spatial distribution depends on the reduction in electricity

usage from COVID-19, the regional mix of fuels used to produce power, population exposure

per ton of emissions, and demographics of the exposed population. These figures also illus-

trate that data is missing for a small number of counties. Table C shows the reduction in

deaths aggregated to geographic regions based on a combination of ISO and NERC regions.

Figure C: Reduction in Deaths: Travel
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Figure D: Reduction in Deaths: Electricity

Table C: Monthly Reduction in Deaths From Electricity Generation

Monthly Baseline Percent Reduction Reduced
Consumption Expected Electricity in Expected CO2

(TWh) Deaths Reduction Deaths Emissions
Total 332.23 858.96 6.20 48.84 10.47
Southeast Utilities 54.98 170.77 8.91 13.13 2.55
Midwest Market 57.66 179.09 7.63 12.38 2.41
MidAtlantic Market 65.57 203.63 6.10 11.18 2.17
Southwest Market 22.54 69.99 6.11 3.92 0.76
Texas Market 31.97 54.30 6.66 3.29 0.92
New York Market 13.05 40.53 8.17 2.92 0.57
New England Market 9.77 30.34 5.32 1.43 0.28
California Market 18.17 15.42 7.61 1.02 0.56
Western Utilities 38.47 32.65 3.12 0.95 0.52
Florida Utilities 20.04 62.24 -1.97 -1.37 -0.27

Notes: California market is CAISO, Texas market is ERCOT, New England market is ISONE, Midwest
market is MISO, New York market is NYISO, MidAtlantic market is PJM, Southwest market is SPP. For
the others we aggregate PCAs by the NERC region: Florida (FRCC), Southeast (SERC), Western (WECC).
Reduced CO2 emissions in millions of metric tons.
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COVID-19 deaths and Total Respiratory Deaths

There are aspects of PM2.5 and COVID-19 that require an important qualification, or caveat,

to our findings. The epidemiological literature that establishes the association between PM2.5

and premature mortality repeatedly finds that risk from exposure is proportional to baseline

mortality rates (Krewski et al., 2009; Lepeule et al., 2012). Because of this, our benefit

estimates may significantly understate actual benefits. The estimated ambient pollution

reductions have occurred during a period of time when baseline risks are elevated. We

modeled the link between emissions and monetary damages with data from the most recent

year comprehensive economy-wide emissions data are available, the 2014 model year. If risk

from exposure is proportional to mortality rates in a given period, then it is quite likely that

exposure during a period when mortality rates are elevated will yield a larger relative risk.

Thus, damages will be higher in the elevated risk period.

To gauge how large this effect might be we gathered daily COVID-19 mortality data.

Figure E shows the monthly mortality rates for COVID-19 deaths and for total respiratory

deaths from 2018 (the most recent year for which month-by-county data are available) across

all counties in the contiguous U.S. It shows that risks are clearly elevated during the COVID-

19 period (March and April, 2020).19 The population-weighted average COVID-19 fatality

rate in April of 2020 is approximately three-times larger than the respiratory cause mortality

rate, in April of 2018. However, severe COVID-19 outbreaks are highly concentrated in a few

counties. Figure F depicts these cases. The intent is to convey how much baseline mortality

rates have changed due to COVID-19, and what that adjustment might mean for concurrent

benefits from PM2.5 reductions. The top-left panel shows the COVID-19 (April, 2020) and

respiratory (April, 2018) rates for New York City. The difference in baseline risk is clear

and extreme. Therefore, reductions in ambient PM2.5 may be severely underestimated in

this area. Detroit (top right) shows a more modest (though still five fold) difference. These

comparisons in Los Angeles and San Francisco reveal much smaller differences.

19The data are from CDC (2020).
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Figure E: COVID-19 (2020) and Total Respiratory Deaths (2018)

Notes: Red indicates deaths due to Covid, black indicates all respiratory deaths. Source CDC (2020).
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Figure F: COVID-19 (2020) and Total Respiratory Deaths (2018) In Selected Cities

Notes: Red indicates deaths due to Covid, black indicates all respiratory deaths. Source CDC (2020).
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