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Figure 1: Japanese primary surplus 1960–2017

1 Introduction

Different monetary theories emphasize different roles of money and different equilibrium
equations to determine the price level. The Fiscal Theory of the Price Level (FTPL) stresses the
role of money as a store of value and argues that the real value of all outstanding government
debt, i.e., the nominal debt level divided by the price level, is given by the discounted stream of
future primary government surpluses. Primary surpluses are the difference between govern-
ment revenue and expenditures excluding interest payments. Absent government default, an
increase in expected future primary deficits leads to an increase in the price level, i.e., inflation,
by devaluing outstanding debt.

Critics of the FTPL often point to Japan. Even though Japan has mostly run primary deficits
since the 1960s (see Figure 1) and with no primary surpluses in sight, the price level has not
risen much. Indeed, inflation levels are depressed even though the government and central
bank leave no stone unturned to boost inflation closer to 2%.

In this paper, we revisit the key FTPL equation and argue that including the typically ig-
nored bubble term reconciles the FTPL with Japan’s experience. Indeed, we show that the
transversality condition is often insufficient to rule out a bubble on the aggregate economy, re-
futing the usual justification to simply dismiss the bubble term. The bubble term cannot be
ignored under either the monetary and fiscal dominance regime, a distinction of regimes the
FTPL literature puts a lot of emphasis on.

2



A bubble term emerges whenever the real rate of return on government debt is persistently
below the growth rate of the economy, i.e., whenever r ≤ g. It is well known that this can
be the case in overlapping generations models (Samuelson 1958), models of perpetual youth
(Blanchard 1985), and incomplete market models with uninsurable idiosyncratic risk à la Be-
wley (1980). In this paper we spell out the details of the FTPL with a bubble in two simple
illustrative models. The first is a version of the Blanchard (1985) model. The second is a sim-
ple Bewley-type model based on Brunnermeier and Sannikov (2016a,b) in which r ≤ g arises
naturally due to precautionary savings demand when agents can invest in both physical capi-
tal and government bonds. In the perpetual youth model, government debt allows a transfer
of resources from future to current generations. In the uninsurable idiosyncratic risk model,
government debt takes on the role of a safe asset which allows citizens to partially insure their
idiosyncratic risk.

By “printing” bonds, the government imposes an inflation tax that reduces the return on
the bonds. Since government bonds are a bubble, the government in a sense “mines a bub-
ble” to generate seigniorage revenue. The resulting seigniorage revenue can be used to finance
government expenditures without ever having to raise extra taxes.

Despite this inflation tax logic, such bubble mining need not be inflationary. As faster bond
issuance makes bonds less attractive to investors, investors shift portfolios from government
bonds to private capital, stimulating investment and growth. Higher growth offsets the infla-
tionary pressure. There is also an alternative way to “mine the bubble" not through bond is-
suance but by lowering the long-run nominal interest rate paid on bonds. This policy increases
resources available to the government without the inflationary effect of bond issuance.

We also study optimal debt issuance policy. While possible, bubble mining is never optimal
in the perpetual youth model that features a fixed growth rate. In contrast, in our second model
with idiosyncratic risk, economic growth is endogenously determined. A positive rate of bubble
mining with perpetually negative primary fiscal surpluses can be the optimal policy prescrip-
tion, since bubble mining discourages bond holdings and boosts physical capital investments
and thereby economic growth. Importantly, in both models the optimal debt issuance policy
only corrects for pecuniary externalities but it never reacts to the size of or need for public ex-
penditures. The important takeaway is that welfare-maximizing policy should rely on taxes,
not bubble mining, as the marginal funding source for (additional) public expenditures.

Note that even though the possible bubble in the FTPL equation is crucial in our settings,
e.g. if the stream of primary surpluses is always negative, the bubble size and hence the price
level remain well defined. The size of the bubble is determined by wealth effects and goods
market clearing. A larger bubble raises citizens’ wealth and hence their demand for output.
Output supply and goods market clearing pin down the bubble size.
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The price level is uniquely determined if the fiscal authority backs the bubble to rule out
equilibria that lead to hyperinflation. Such fiscal backing is only required off-equilibrium. Such
backing also rules out bubbles on other assets than government debt. However, if the govern-
ment does not have sufficient fiscal space for credible off-equilibrium backing, private bubbles
can emerge.

Literature. Classic references for the FTPL are Leeper (1991), Sims (1994), and Woodford (1995).
For more comprehensive treatments see Leeper and Leith (2016) and a recent book draft by
Cochrane (2021). All of these references consider bubble-free environments. An exception is
Bassetto and Cui (2018) who study the validity of the FTPL in low interest rate environments.1

Our contribution differs to theirs in two ways. First, they focus exclusively on price determinacy
and do not discuss the existence of a bubble and its implication for the government budget. Sec-
ond, using a model that does feature the possibility of a bubble, a dynamically inefficient OLG
setting, they conclude that the FTPL breaks down while we show in Section 7 how fiscal price
level determination can succeed in the presence of a bubble.

Blanchard (2019) studies the cost of public debt when safe interest rates are low and con-
cludes that public debt may have no fiscal cost. Brumm et al. (2021) presents four setting argu-
ing that public debt expansion is not ideal policy to overcome the fundamental friction causes
the low interest rate. Geerolf (2013) and Lian et al. (2020) document empirically when and for
how long r < g.

Since circulation of a previous draft, some recent papers have taken up and extended the
core insights from our paper. Like this paper, Reis (2021) emphasizes the bubble as a fiscal
resource that has implications for debt sustainability, but his focus is on the interaction with
other policies while we focus on FTPL aspects and optimal bubble mining. Brunnermeier et al.
(2021) add aggregate risk to the example model presented in Section 3.2 to develop a safe asset
theory of government debt. Kocherlakota (2021) studies a bubble on government debt caused
by tail risk.

The FTPL equation in models with transaction benefits of money can always be written
without the usual flow seigniorage term by discounting at the appropriate money rate, see e.g.
Cochrane (2021, Section 6.4.6). If the convenience yield on money is sufficiently large, gov-
ernment debt appears to have a bubble in the resulting equation. This paper is not about the
transaction benefits of money, but about bubbles that arise even under marginal utility dis-
counting.

There is an extensive literature on rational bubbles. Survey papers include Miao (2014)

1Like Bassetto and Cui (2018), Farmer and Zabczyk (2020) also study the FTPL in an OLG model and conclude
that the FTPL is unable to resolve equilibrium multiplicity. However, their result is based on indeterminancy in
the underlying real model that is not directly related to either bubble multiplicity or indeterminacy of nominal
valuations.
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and Martin and Ventura (2018). More recently, Jiang et al. (2019) provide convincing empirical
evidence that U.S. government debt has a bubble component.

2 The FTPL Equation with a Bubble

In this section, we derive the key equation of the fiscal theory of the price level in a generic
partial equilibrium setting. We then discuss under which conditions this equation can possibly
have a bubble term that has previously been ignored in the literature. To conclude, we mention
the possible sources of seigniorage consistent with the equation. In the following sections, we
elaborate more on these points in the context of two fully worked out examples in general
equilibrium.

2.1 Revisiting the Derivation of the FTPL Equation

The derivation of the fiscal theory equation starts with the government flow budget con-
straint. In discrete time, this constraint is given by

Bt +Mt + PtTt = (1 + it−1)Bt−1 +
(
1 + im

t−1
)
Mt−1 + PtGt,

where Bt is the nominal face value of outstanding government bonds, Mt is the nominal quan-
tity of money in circulation, Pt is the price level, Tt are (real) taxes, Gt is (real) government
spending, and it, im

t are the nominal interest rates paid on bonds and money, respectively. im
t

can be smaller than it if money provides transaction services. If ξt is a real stochastic discount
factor (SDF) process that prices government bonds, then 1 = Et

[
ξt+1/ξt · Pt/Pt+1 (1 + it)

]
.

Using this property, dividing the government budget constraint by Pt and rearranging yields

Bt−1 +Mt−1

Pt
(1 + it−1) = Tt − Gt +

∆it−1 :=︷ ︸︸ ︷(
it−1 − im

t−1
)Mt−1

Pt
+ Et

[
ξt+1

ξt
(1 + it)

Bt +Mt

Pt+1

]
.

Iterating this forward until period T implies

Bt−1 +Mt−1

Pt
(1 + it−1) = Et

[
T

∑
s=t

ξs

ξt
(Ts − Gs)

]
+ Et

[
T

∑
s=t

ξs

ξt
∆is−1

Ms−1

Ps

]
+ Et

[
ξT

ξt

BT +MT

PT

]
.

Up to this point, we have merely rearranged and iterated the government budget constraint
and assumed that there is some SDF process ξt that prices government bonds in equilibrium.
To derive the fiscal theory equation, the literature now typically proceeds by invoking a private-
sector transversality condition to eliminate the discounted terminal value of government debt
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when passing to the limit T → ∞. In this paper, we focus on environments where the transver-
sality condition does not eliminate the terminal value in the limit. When taking the limit T → ∞,
we therefore arrive at the more general equation2

Bt−1 +Mt−1

Pt
(1 + it−1) = Et

[
∞

∑
s=t

ξs

ξt
(Ts − Gs)

]
︸ ︷︷ ︸

PV of primary surpluses

+ Et

[
∞

∑
s=t

ξs

ξt
∆is−1

Ms−1

Ps

]
︸ ︷︷ ︸

PV of future transaction services

+ lim
T→∞

Et

[
ξT

ξt

BT +MT

PT

]
︸ ︷︷ ︸

bubble

.

Relative to the standard equation, this equation contains an additional bubble term. That
term does not vanish in the limit if government debt has a bubble component. More generally,
for any asset, we say that the asset has a bubble component if its market value exceeds its
fundamental value. We define the fundamental value as the discounted present value of the
asset’s cash flows where cash flows are discounted using the SDF ξ generated by the marginal
utility of the marginal holder of the asset.

From now on, we switch to continuous time in order to make our formal arguments more
elegant. The continuous-time version of the last equation is given by3

Bt +Mt

Pt
= Et

[∫ ∞

t

ξs

ξt
(Ts − Gs) ds

]
+ Et

[∫ ∞

t

ξs

ξt
∆is

Ms

Ps
ds
]
+ lim

T→∞
Et

[
ξT

ξt

BT +MT

PT

]
. (1)

This equation for the real value of government debt holds in any monetary model. While most
conventional monetary models treat this equation as an intertemporal government budget con-
straint that holds on- and off-equilibrium, in the FTPL it is an equilibrium condition that deter-
mines the price level.

2.2 When Can a Bubble Exist?

Equation (1) differs from the standard fiscal theory only by the presence of an additional
bubble term. When can this bubble term be nonzero? Well-known examples are bubbles in OLG
(Samuelson 1958) and perpetual youth (Blanchard 1985) models. In Section 3.1, we analyze a
simple version of the latter model. In Section 3.2, we present another example with incomplete
idiosyncratic risk sharing. Here, we make some generic points that apply across models.

For tractability, let us focus on environments with a stationary debt-to-GDP ratio and no

2Mathematically, the sum of the three limits in the decomposition below may not be well-defined, even if the
limit of the sum is. In this case, the right-hand side should be interpreted as the limit of the sum. For instance, this
can happen if the bubble term is ∞, but the present value of surpluses is −∞. While this may seem a pathological
case, it can make sense economically because the bubble and surpluses are not separately tradeable, but necessarily
bundled together to one asset: government debt. As long as the value of this asset is well-defined and finite, infinite
subcomponents do not imply arbitrage opportunities or infinite utility.

3A formal derivation can be found in Appendix A.1.

6



risk. In this case, the real value of government debt is

BT +MT

PT
=

Bt +Mt

Pt
eg(T−t),

where g is the growth rate of the economy, and ξT/ξt = e−r f (T−t) with r f denoting the real
risk-free rate. By substituting these expressions into equation (1), we see that the bubble term
does not vanish in the limit if r f ≤ g. More generally, the correct risk-adjusted discount rate
compensating for the real risk inherent in BT+MT

PT
must be used instead of the risk-free rate to

determine whether a bubble is possible.4

For any agent with recursive isoelastic utility (which includes CRRA utility) that is marginal
in the market for government debt, the risk-free rate is5

r f = ρ + ψ−1µc −
γ
(

1 + ψ−1
)

2
∥σc∥2, (2)

where ρ > 0 is the agent’s time preference rate, γ is the relative risk aversion coefficient, ψ is
the EIS, µc is the growth rate of agent-specific consumption, and σc is a vector or relative risk
exposures of agent-specific consumption to Brownian risk factors.6 ∥ · ∥ denotes the standard
Euclidean norm. This equation is linked to the growth rate of the economy through individ-
ual consumption growth µc. For example, in a representative agent economy with a balanced
growth path µc = g.

Equation (2) suggests two reasons the growth rate may exceed the risk-free rate. First, ex-
pected consumption growth of individuals may be misaligned with aggregate growth, so that
a higher growth rate g may not imply higher individual consumption growth µc. This is the
case, for example, in OLG or perpetual youth models with population growth. We present a
model of this type in Section 3.1. Second, large individual risk exposure (large ∥σc∥2) or risk
aversion (large γ) may depress the risk-free rate through the last term in equation (2) and offset
any positive effects of growth g on r f through ψ−1µc.7 We provide an example of this type in
Section 3.2. Importantly, the main insights we derive from our two models do not depend on
the precise channel through which a bubble can be sustained. These insights would equally
apply to other environments in which a bubble term in equation (1) is possible.

4Bohn (1995) provides an example of a stochastic economy in which r f < g but no bubbles can exist.
5This equation assumes environments with non-stochastic investment opportunities.
6Here, we assume that all risk takes the form of Brownian risk. The intuition derived from the argument is

unaltered if more general sources of consumption risk are permitted.
7In addition, bubble existence in this second case regularly requires idiosyncratic risk, i.e., the individual con-

sumption growth volatility must differ from its aggregate counterpart. The reason is that in the presence of aggre-
gate risk, the risk-free rate is not the correct comparison rate in the bubble existence condition. The correct rate
adds a risk premium for aggregate risk on top of r f that can offset the aggregate risk component in the last term of
equation (2).

7



The possibility of r f ≤ g is not merely a theoretical curiosity. Historically, real interest rates
on government bonds of advanced economies have mostly been below the growth rate. Even
Abel et al. (1989), who are often cited as providing evidence against the existence of rational
bubbles, report that the safe interest rate r f is smaller than g. With the more recent decline in
r f , as stressed by Blanchard (2019), the evidence for r f < g has become more clear-cut. See also
Geerolf (2013) and Lian et al. (2020).

In a large class of canonical general equilibrium models, transversality conditions prevent
the possibility of r f ≤ g that leads to a bubble. This is regularly true for complete-market mod-
els with long-lived agents. However, many interesting incomplete market models do permit
bubbles. The transversality condition has less bite in these models, because individual bond
holdings matter for transversality, while it is the aggregate bond value that enters equation (1).
Individual bond holdings can have different properties than the aggregate bond stock because
agents find it optimal to trade the bonds in order to partially complete the market. For example,
individual bond holdings may grow at a lower rate or have higher risk than the aggregate bond
stock. Then, individual transversality conditions can hold, yet the bubble term in (1) cannot
be ruled out. Our two illustrative models presented in Section 3 cover these two cases. In the
context of these models, we discuss the transversality condition in Section 4

2.3 Three Forms of Seigniorage

Equation (1) suggests three forms of seigniorage, which here we define simply as govern-
ment spending that is not backed by offsetting future taxes. The first takes the form of a dilution
of private claims to future primary surpluses through surprise devaluations of existing govern-
ment debt or money.8 Under rational expectations, this cannot be a regular source of revenue
for governments. For the U.S., Hilscher et al. (2014) assess the possibility of future surprise
devaluation based on option-implied (risk-neutral) probabilities and conclude that this form of
seigniorage is perceived to be a negligible source of revenue. The likelihood of a devaluation
exceeding 5% of GDP is less than 1%.

A second form of seigniorage comes from exploiting the liquidity benefits (convenience
yield) of “narrow” money (M in equation (1)). This form of seigniorage can only be extracted
from the portion of government debt that takes the form of “narrow” money and provides liq-
uidity services. It depends on the interest rate differential ∆i = i − im between illiquid and
liquid government debt. It is small if either that differential is small or if the stock of “narrow”
money is only a small part of total government debt.9 This form of seigniorage is not an im-

8Without long-term debt as in equation (1) such dilution must work through a sudden surprise inflation (an
unexpected upward jump in Pt). In a more realistic setting with long-term debt, news of higher inflation going
forward would have similar effects and work through bond prices instead of the general price level.

9In reality, one has to distinguish between reserves, whose quantity is nonnegligible, but which pay interest and
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portant funding source for advanced economies. For example, in the U.S., Reis (2019) reports
a flow revenue of approximately 0.36% of GDP and estimates a present value of ≈ 20% and, at
most, 30% of GDP. Moreover, in the future the ∆i term is likely to decline, because central banks
pay interest on reserves and as money becomes more digitalized, its velocity rises.

Besides these standard forms of seigniorage, equation (1) suggests a third form of seignior-
age that has remained unexplored in prior work and is the focus of this paper. The government
can “mine” the bubble by using its outstanding government debt to run an ever-expanding
Ponzi scheme: letting the stock of government debt grow generates a steady revenue flow that
does not have to be paid for by future taxes as long as a bubble term is present in equation (1).
Unlike a surprise dilution through inflation, dilution of the bubble value is feasible even if it is
fully expected by the private sector. This form of seigniorage is arguably larger than the offi-
cially measured seigniorage from growing narrow money M because all revenue from growing
B +M is relevant for bubble mining.

3 Two Models with a Bubble

There are several model structures in which rational bubbles can exist and thus the bubble
term in equation (1) does not necessarily disappear. We illustrate this in two simple examples.
Each contains one of the two mechanisms discussed in Section 2.2 through which the risk-free
rate (2) can fall below the growth rate.

In the first model, a bubble can be sustained by the difference between the individual and
the aggregate consumption growth rates. That model is a very simple version of the perpetual
youth model (Blanchard, 1985). Government debt may circulate as a bubble because it facilitates
trade between the current and not yet born future generations.

In the second model, a bubble can be generated through incomplete idiosyncratic risk shar-
ing. That model is a streamlined version of Brunnermeier and Sannikov (2016a) without banks.10

Government debt may circulate as a bubble because bond trading allows agents to self-insure
against idiosyncratic shocks.

For simplicity, we abstract in both models from the presence of additional “narrow” money
that yields transaction benefits.11

have therefore a small ∆it, and cash, which has a much larger ∆it, but whose quantity is almost negligible relative
to the overall stock of government debt.

10The model version without banks has previously been analyzed in Brunnermeier and Sannikov (2016b) and Di
Tella (2020). These papers frame the model as a model of money. Here, we add fiscal policy and reinterpret money
as bonds. The bond interpretation is also adopted in the safe asset framework of Brunnermeier et al. (2021).

11Other than adding an additional source of seigniorage, including transaction benefits into the analysis does not
substantially alter our conclusions. For the FTPL with transaction benefits but no bubble, see, e.g., Sims (2019).
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In this section, we set up both models and briefly outline their solution. We then discuss
bubble existence, bubble mining policies, and price level determinations for both models si-
multaneously in the following Sections 4 to 7. A more formal derivation of the model solutions
is presented in Appendix A.2.

3.1 Example I: Perpetual Youth

Environment. At each time t, there is a continuum of households indexed by i ∈ [0, Lt], where
Lt is the population mass at time t. We assume that population grows at a constant rate g > 0,
dLt = gLtdt. For simplicity, we abstract from death, so that all households are infinitely lived.12

Households i ∈ [0, Lt] alive at time t have logarithmic preferences

Vi
t := E

[∫ ∞

t
e−ρ(s−t) log ci

sds
]

with discount rate ρ.

Each household i born at a time t0 > 0 is endowed at birth with one unit of human capital,
ki

t0
= 1. Human capital depreciates over time at a constant rate δ ≥ 0, dki

t = −δki
t dt, and ki

t

units of human capital produce an output flow of aki
tdt (“labor income”).

Denote by Kt :=
∫ Lt

0 ki
tdi the aggregate quantity of human capital in the economy. We choose

initial conditions such that human capital per capita Kt/Lt is constant over time.13 Then, Kt also
grows at the constant rate g.

The key friction in the model is that agents are not able to trade with yet unborn generations.
Instead, they can only enter financial contracts with other agents currently alive.

Besides households, there is a government that funds government spending, imposes taxes
on labor income, and issues nominal bonds. The government has an exogenous need for real
spending gKtdt, where g is a model parameter.14 The government levies proportional labor
income taxes (subsidies, if negative) τt on households. Outstanding government debt has a
nominal face value of Bt and pays nominal interest it. Bt follows a continuous process dBt =

µB
t Btdt, where the growth rate µB

t is a policy choice of the government. In short, the government
chooses the policy instruments τt, it, µB

t as functions of histories of prices taking g as given and

12At the expense of additional notation, one could easily assume a positive, but constant, death rate, provided
there are annuity markets that insure against idiosyncratic death risk. See Blanchard (1985) for details. Other than
simplifying notation, abstracting from death also stresses that an infinite lifespan does not preclude the existence of
bubbles.

13Formally, the relevant condition is K0/L0 =
g

g+δ . This can be shown easily by computing the time derivative of
Kt/Lt.

14Making spending proportional to total human capital Kt is equivalent to making spending proportional to pop-
ulation size Lt because Kt/Lt is constant.
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subject to the nominal budget constraint15,16

bond growth in excess of payouts︷ ︸︸ ︷(
µB

t − it

)
︸ ︷︷ ︸

=:µ̆B
t

Bt +

(nominal) primary surpluses︷ ︸︸ ︷
Pt (τta − g)︸ ︷︷ ︸

=:st

Kt = 0, (3)

where Pt denotes the price level as in Section 2.

The model is closed by the aggregate resource constraint

Ct + gKt = aKt, (4)

where Ct :=
∫ Lt

0 ci
tdi is aggregate consumption.

Household Problem. Let bi
t the (real) value of bond holdings of household i. Bond holdings

satisfy the accumulation equation

dbi
t =

(
r f

t bi
t + (1 − τt) aki

t − ci
t

)
dt, (5)

where, as in Section 2, r f
t denotes the real risk-free rate, which equals the return on bonds in

this model. The household chooses consumption {ci
s}s≥t to maximize utility Vi

t subject to the
evolution of human capital and bond holdings (5) and subject to a standard no Ponzi condition.

In the appendix, we show that optimal consumption satisfies the familiar log-utility permanent-
income consumption rule

ci
t = ρ

(
bi

t + qK
t ki

t

)
, (6)

where qK
t is the shadow price of human capital. It is determined by the condition that the value

of human capital must equal the present value of future after-tax labor income,

qK
t ki

t =
∫ ∞

t
e−
∫ s

t r f
s′ds′(1 − τs)aki

sds. (7)

Together with a standard transversality condition (to be discussed in Section 4), conditions
(6) and (7) fully determine the optimal choices of each individual agent i.

15Letting policy depend on histories of endogenous price paths is common in the FTPL literature to discuss what
happens off-equilibrium.

16At this point, we do not impose additional restrictions on government policy, including whether policy is char-
acterized by monetary dominance or fiscal dominance, as the choice of the policy regime is irrelevant for most of
our results. We do make more restrictive assumptions in Section 7 where we explain how to adjust the fiscal theory
arguments for price level determination based on fiscal dominance if government debt has a bubble component.
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Equilibrium. In this model, any equilibrium can be fully characterized by determining two
“prices”, the shadow value of human capital qK

t and the nominal price level Pt. Instead of
working with the price level directly, it is more convenient to use the transformation qB

t := Bt/Pt
Kt

,
which is the ratio of the real value of government debt to total human capital in the economy.17

Total private net wealth consists of bond wealth, qB
t Kt, and human capital wealth, qK

t Kt.

The optimal consumption rule (6) implies that total wealth must be proportional to aggre-
gate consumption,18

qB
t + qK

t =
a − g

ρ
.

To characterize the equilibrium, we therefore need to determine the share of total wealth that is
due to bond wealth. We denote this share by ϑt:

ϑt :=
qB

t

qB
t + qK

t
.

The equilibrium behavior of ϑt itself can be derived by combining the Fisher equation for
the bond return r f

t with the government budget constraint (3) and the human capital valuation
equation (7). The former equation is in this model

r f
t = it − πt = it − µB

t︸ ︷︷ ︸
=−µ̆B

t

+g + µ
q,B
t , (8)

where inflation πt := Ṗt/Pt depends on the nominal bond growth rate, µB
t , the growth rate

of the economy, g, and the appreciation of the normalized real bond price (qB
t ), µ

q,B
t := q̇B

t /qB
t .

Notice that equation (8) defines the growth in debt in excess of the amount used to pay nominal
interest, µ̆B

t . This quantity is related to seigniorage.

We combine these equilibrium conditions in the appendix and show that ϑt is characterized
by the equation

ϑt =
∫ ∞

t
e−ρs

(
(1 − ϑs)

(
δ + g

)
− µ̆B

s

)
ϑsds. (9)

This equation relates the current bond wealth share ϑt positively to the future flow (1 − ϑs)(δ +

g). Note that g + δ is the gap between aggregate and individual human capital growth. Bonds
trading is more beneficial as this gap increases. The equation also relates ϑt negatively to the
expected future path of µ̆B

t , which measures the dilution of existing bond holders through the
issuance of new bonds.

17It is more convenient to work with this normalized version of the inverse price level 1/Pt because the latter
depends on the scale of the economy and the nominal quantity of outstanding bonds in equilibrium, whereas qB

t
does not.

18The following equation also makes use of the aggregate resource constraint (4).
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Steady-State Equilibria. We now focus on government policies that hold µ̆B and τ constant
over time and consider steady-state equilibria with constant qB and qK – and thus constant ϑ.
All such equilibria must solve equation (9) with constant ϑ. One can show that there is at most
one steady-state equilibrium in which bonds have positive value. It is given by

ϑ = 1 − ρ + µ̆B

δ + g
.

That formula describes a valid equilibrium if both the value of human capital and the value of
bonds are positive. This is the case if and only if

δ + g > ρ + µ̆B .

We make this parameter assumption from now on and focus exclusively on this “monetary
steady state” with a positive value of government bonds. We also remark that there is always
a second steady-state equilibrium, in which bonds have no value, qB = ϑ = 0,19 and there
are many additional non-stationary equilibria. However, we show in Section 7 that a simple
off-equilibrium modification to the fiscal policy rule can select the monetary steady state as the
unique equilibrium.

3.2 Example II: Uninsurable Idiosyncratic Risk

Environment. There is a continuum of households indexed by i ∈ [0, 1]. All households have
identical logarithmic preferences

Vi
0 := E

[∫ ∞

0
e−ρt log ci

tdt
]

with discount rate ρ.

Each agent operates one firm that produces an output flow aki
tdt, where ki

t is the (physical)
capital input chosen by the firm. Absent market transactions of capital, capital of firm i evolves
according to

dki
t

ki
t
=

(
Φ
(

ιit

)
− δ

)
dt + σ̃dZ̃i

t,

where ιitk
i
tdt are physical investment expenditures of firm i (in output goods), Φ is a concave

function that captures adjustment costs in capital accumulation, δ is the depreciation rate, and
Z̃i is an agent-specific Brownian motion that is i.i.d. across agents i. Z̃i introduces firm-specific

19In that equilibrium, the price level is infinite, P = ∞, and the government does not raise any primary surpluses,
τa = g.
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idiosyncratic risk. To obtain simple closed-form expressions, we choose the functional form
Φ (ι) = 1

ϕ log
(
1 + ϕι

)
with adjustment cost parameter ϕ ≥ 0 for the investment technology.

The key friction in the model is that agents are not able to share idiosyncratic risk. While
they are allowed to trade physical capital and risk-free assets, they cannot write financial con-
tracts contingent on individual Z̃i histories. As a consequence, all agents have to bear the id-
iosyncratic risk inherent in their physical capital holdings.

As in Section 3.1, there is also a government that funds government spending, imposes taxes
on firms, and issues nominal government bonds. With Kt :=

∫
ki

tdi denoting the aggregate cap-
ital stock, the government flow budget constraint is precisely as in the perpetual youth model
(equation (3)).

The aggregate resource constraint in this model is

Ct + gKt + It = aKt, (10)

where, compared to Section 3.1 (equation (4)), here output can also be used for physical invest-
ment, It :=

∫
ιitk

i
tdi.

Price Processes and Returns. We use notation in complete analogy to Section 3.1. Let qK
t be the

market price of a single unit of physical capital and let qB
t := Bt/Pt

Kt
be the ratio of the real value of

government debt to total capital in the economy. As before, we define ϑt := qB
t /(qB

t + qK
t ) as the

share of total wealth that is due to bond wealth. We denote by µ
q,B
t := q̇B

t /qB
t and µ

q,K
t := q̇K

t /qK
t

the instantaneous growth rates of qB
t and qK

t , respectively.

Households can trade two assets in positive net supply (if qB
t ̸= 0), bonds and capital. As-

sume that in equilibrium ιt = ιit for all i (to be verified below) so that aggregate capital grows
deterministically at rate gt = Φ(ιt)− δ. Then, the return on bonds is

drBt =
(
−µ̆B

t + Φ(ιt)− δ + µ
q,B
t

)
dt (11)

in full analogy to equation (8). The return on agent i’s capital is

drK,i
t

(
ιit

)
=

(
(1 − τt) a − ιit

qK
t

+ Φ
(

ιit

)
− δ + µ

q,K
t

)
dt + σ̃dZ̃i

t.

The expected capital return consists of the after-tax dividend yield, (1−τt)a−ιit
qK

t
, and the capital

gains rate, Φ
(

ιit

)
− δ + µ

q,K
t . Capital returns are risky due to the presence of idiosyncratic risk

σ̃dZ̃i
t.
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Household Problem and Equilibrium. The household problem is analogous to the one pre-
sented in Section 3.1 with the exception that agents now also choose the capital investment rate
ιit and the share of wealth θi

t invested in bonds as opposed to capital. We relegate the details of
this problem to the appendix. The first-order conditions for the three choices are

qK
t =

1

Φ′
(

ιit

) , Tobin’s q

ci
t = ρni

t, permanent income consumption

a − g− ιt

qK
t

− µϑ
t − µ̆B

t
1 − ϑt

=
(

1 − θi
t

)
σ̃2, Merton portfolio

where ni
t denotes the net worth of agent i, which consists of both capital and bond holdings,

and µϑ
t := ϑ̇t/ϑt is the growth rate of the bond wealth share ϑt. Relative to Section 3.1, only

the second condition is identical. The first condition is entirely new. It captures the optimal
physical investment choice.20 The third condition (portfolio choice) replaces condition (7), the
valuation equation for nontraded human capital in Section 3.1. It equates the excess return on
capital with the required risk premium

(
1 − θi

t

)
σ̃2 for bearing idiosyncratic risk.21

As in Section 3.1, the optimal consumption rule implies that total wealth is proportional to
total consumption. The difference here is that total consumption is no longer a fixed proportion
of aggregate capital but depends on the endogenous reinvestment choice ιt. Nevertheless, one
can show that asset prices qB

t and qK
t and the investment rate ιt are still simple functions of ϑt,

ιt =
(1 − ϑt) (a − g)− ρ

1 − ϑt + ϕρ
,

qB
t = ϑt

1 + ϕ (a − g)

1 − ϑt + ϕρ
,

qK
t = (1 − ϑt)

1 + ϕ (a − g)

1 − ϑt + ϕρ
,

so that, again, the equilibrium is determined uniquely up to the dynamics of the bond wealth
share ϑt. Similar to Section 3.1, ϑt must solve a valuation equation

ϑt =
∫ ∞

t
e−ρs

(
(1 − ϑs)

2 σ̃2 − µ̆B
s

)
ϑsds (12)

that relates the current bond wealth share ϑt positively to expected future “services” (1 − ϑs)
2 σ̃2

and negatively to future bond dilution µ̆B
t . Equation (12) is structurally identical to equation (9)

20In particular, because all agents face the same capital price qK
t , they all choose the same investment rate ιit,

verifying our previous assumption.
21Government spending g enters that third equation because we have used the government budget constraint (3)

to substitute out taxes.
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in the perpetual youth model. The only difference is that services are now derived from self-
insurance against idiosyncratic risk and thus related to the magnitude of risk σ̃ the agents are
exposed to.

Steady-State Equilibria. We consider again steady-state equilibria with constant policy choices
µ̆B and τ and constant (scaled) asset prices qB and qK. As in Section 3.1, there is at most one
steady state equilibrium in which bonds have positive value.22 In that “monetary steady state”,
if it exists, the bond wealth share is

ϑ =
σ̃ −

√
ρ + µ̆B

σ̃

and the remaining equilibrium quantities are given by

ι =

√
ρ + µ̆B (a − g)− ρσ̃√

ρ + µ̆B + ϕρσ̃
, qB =

(
σ̃ −

√
ρ + µ̆B

) (
1 + ϕ (a − g)

)√
ρ + µ̆B + ϕρσ̃

, qK =

√
ρ + µ̆B (1 + ϕ (a − g)

)√
ρ + µ̆B + ϕρσ̃

.

These formulas describe a valid equilibrium only if idiosyncratic risk is sufficiently large,

σ̃2 > ρ + µ̆B .

In what follows, we always make this assumption.

4 Transversality Condition and Existence of a Bubble

In both models, government debt can have value even in the absence of primary surpluses
(µ̆B ≥ 0) because it has a bubble component. In the perpetual youth model, it provides a store
of value which allows agents to exchange some of their present labor income for a claim to the
labor income of future generations. In the idiosyncratic risk model, bonds are the only store
of value that is free of idiosyncratic risk and thus allow agents to self-insure against their risk
exposures. In this section, we discuss why the private-sector transversality condition may not
rule out the existence of a bubble despite the infinite lifespan of all agents. The key insight is
that a bubble can exist because agents do not buy and hold government bonds, but optimally
trade them. Such trading makes their individual bond portfolios look very different from the
aggregate bond stock.

22There are again a non-monetary steady state with qB = 0 and many nonstationary equilibria. As for the per-
petual youth model, all these additional equilibria can be ruled out by a modification of the fiscal policy rule (see
Section 7).
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For each individual agent, a transversality condition for bond holdings,

lim
T→∞

E
[
ξ i

Tbi
T

]
= 0,

is necessary for an optimal choice. Here, as in Section 2, ξ i
t := e−ρ(t−t0) 1

ci
t

denotes the SDF process

of agent i.23 The transversality condition appears to suggest that it should not be possible to
have a nonzero bubble term in the FTPL equation (1). However, this argument overlooks that
individual bond wealth bi

T that enters the transversality condition differs from the aggregate
value of bonds BT/PT that enters the FTPL equation.

In the perpetual youth model, this is the case because agents’ optimal savings decision leads
them to eventually decumulate their bond holdings to support additional consumption. Bond
decumulation at the individual level is sustainable without a reduction in the aggregate value
of bonds because agents can pass bonds on to newly born generations.

In the idiosyncratic risk model, the aggregate bond stock BT/PT evolves deterministically,
yet individual bond wealth bi

T is optimally chosen to be stochastic because agents constantly
rebalance their portfolios in response to idiosyncratic shocks. Agents thus discount bi

t at a risk-
adjusted rate that takes into account their idiosyncratic risk. As idiosyncratic risk cancels out
in the aggregate, when valuing a fixed fraction of the outstanding bond stock, as in the FTPL
equation (1), the relevant discount rate from the perspective of all agents is instead the risk-free
rate.

Formally, we have in both models ci
t = ρ(bi

t + qKki
t) and qKki

t ≥ 0, so that

E
[
ξ i

Tbi
T

]
= e−ρ(T−t0)

1
ρ

E

[
bi

T

bi
T + qKki

T

]
≤ 1

ρ
e−ρ(T−t0) → 0 (T → ∞)

and thus the individual transversality condition is clearly satisfied in the equilibria determined
in Sections 3.1 and 3.2. Yet, when determining agent i’s time t0 valuation of the entire govern-
ment bond stock at time T, we obtain (up to a scaling constant)

E

[
ξ i

T

∫
bj

Tdj
]
= E

[
ξ i

TqBKT

]
= e−r f (T−t0)qBKT = e(g−r f )(T−t0)qBKt0

and the latter expression does not converge to zero, if r f ≤ g.

The difference in the two equations is the presence of the dj-integral. In the perpetual youth
model, that integral runs over an expanding interval [0, Lt] of agents, so that aggregate bond
wealth can grow at a rate g, even though each individual integrand bj

T grows (asymptotically)

23t0 denotes the birth time of agent i in the perpetual youth model and is simply set to zero in the idiosyncratic
risk model.
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only at the lower rate g − µ̆B − ρ. When the risk-free rate is in between the two growth rates, a
bubble can exist, yet individual transversality conditions are satisfied.

In the idiosyncratic risk model, the integral is over a fixed interval [0, 1], so the (expected)
growth rates of aggregate bond and individual bond wealth must be identical. Instead, the
integral averages out idiosyncratic shocks and changes the risk characteristics relative to the
individual integrands. All individual integrands bi

T have idiosyncratic risk that is negatively
correlated with agent i’s SDF ξ i

t. The effective discount rate in the individual transversality con-
dition therefore contains a covariance term (risk premium) that raises the discount rate above
r f . For the total bond stock, idiosyncratic risk averages out and discounting happens at the
risk-free rate.

Nothing in the model prevents the bubble existence condition r f ≤ g. Indeed, the growth
rate of the economy equals the (human or physical) capital growth rate g and the risk-free rate
equals the return on bonds, by equations (8) or (11), respectively

r f = g − µ̆B . (13)

Consequently, r f ≤ g, if and only if µ̆B ≥ 0. A nonnegative value of µ̆B is consistent with the
existence condition of a monetary equilibrium if the specific reason that generates bond savings
demand in the models is sufficiently strong relative to the time preference rate. In the perpetual
youth model, this is the case if δ + g ≥ ρ, i.e. if population growth (g) and/or the decay rate in
individual life-cycle labor income (δ) are sufficiently large. In the idiosyncratic risk model, this
is the case if σ̃2 ≥ ρ, i.e. if idiosyncratic risk is sufficiently large.

5 Mining the Bubble

In this section, we show how the government can mine a bubble, i.e. finance government
expenditures without ever raising taxes for them. We also discuss under which circumstances
bubble mining is inflationary.

Primary surplus is defined as Tt − Gt = τaKt − gKt = sKt. Due to our assumptions on fiscal
policy, it grows at the same rate as Kt. From the government budget constraint (3), s = −µ̆BqB.
Hence, in our two models, the fiscal theory equation (1) reduces to24

qBK0 = lim
T→∞

∫ T

0
e−(r f −g)tsK0dt︸ ︷︷ ︸
=:PVS0,T

+e−(r f −g)TqBK0

.

24Since the models do not include “narrow” money, there is no ∆i term.
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Provided qB > 0, equation (13) implies precisely three cases:25

1. s > 0, µ̆B < 0: then r f > g, PVS0,∞ > 0 and a bubble cannot exist. This is the “conven-
tional” situation considered in the literature.

2. s = µ̆B = 0: then r f = g, PVS0,∞ = 0 and there is a finite positive bubble whose value
exactly equals qBK0 and grows over time at the growth rate/risk-free rate.

3. s < 0, µ̆B > 0: then r f < g and thus the integral PVS0,T converges to −∞ as T → ∞. Yet,
qB is still positive, which is only possible if there is an offsetting infinite positive bubble.
These infinite values do not violate any no-arbitrage condition and are also not otherwise
economically problematic, since the bubble cannot be traded separately from the claim
on surpluses. Both are necessarily bundled in the form of government bonds. As long as
Bt
Pt

= qBKt is determined and finite in equilibrium, the model remains economically and
mathematically sensible despite the infinite values in the decomposition of the value of
government bonds.26

In all three cases, the (possible) presence of a bubble represents a fiscal resource that grants the
government some extra leeway. Clearly in case 3, the government can run a perpetual deficit,
“mine the bubble” and never has to raise taxes to fully fund all government expenditures. In
case 2, the existence of the bubble is beneficial, because the value of government debt is positive
– allowing agents to transfer resources across generations or self-insure against risk – despite
the fact that the present value of primary surpluses is zero. Even in case 1, government debt
is more sustainable since an unexpected drop of primary surpluses to zero results in a bubble
instead of a total collapse of the value of debt.

Is bubble mining inflationary? Not necessarily. Among steady-state policies the answer
depends on how the government mines the bubble, by issuing more debt or paying less interest,
and on the impact of policy on economic growth.

Specifically, by the Fisher equation, inflation in our models is

π = i − r f = i + µ̆B − g.

For a given nominal interest rate i, there is a direct inflationary effect from an increase in bubble
mining µ̆B . Higher bubble mining at a given interest rate requires the government to grow its

25The apparent dichotomy, a positive bubble value and nonnegative surpluses or positive surpluses and no bub-
ble, is due to the steady-state nature of our analysis. In a more general model, a positive present value of surpluses
and a bubble can coexist.

26However, surpluses s cannot become arbitrarily small, because qB is decreasing in µ̆B and reaches zero at the
finite value µ̆B = δ + g − ρ (or µ̆B = σ̃2 − ρ in the idiosyncratic risk model); there is a Laffer curve for bubble mining
(see Brunnermeier et al. (2021) for a more detailed discussion).
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debt at a larger rate µB . When the growth rate is exogenously given, as in the perpetual youth
example, then this is the only effect. But in general there could be an additional indirect effect
that operates through the growth rate g. This is the case in the idiosyncratic risk model: bubble
mining decreases the attractiveness of bonds, making the agents want to hold more physical
capital, which stimulates real investment and increases the steady-state growth rate g.27 This
latter effect tends to be deflationary.

When the growth rate is endogenous, an increase in µ̆B may therefore in principle lower
the µ̆B − g term and thus inflation. However, this is unlikely to be the case for any realistic
calibration of our idiosyncratic risk model: the effect on growth g is largest without capital
adjustment costs (ϕ = 0) and then

dg
dµ̆B =

dι

dµ̆B =
1
2

ρ

ρ + µ̆B
1

1 − ϑ
.

For µ̆B ≥ 0, this derivative can only be larger than 1 if ϑ > 1/2, that is if the majority of private
wealth is bond wealth. Despite the recent rise in the levels of public debt throughout advanced
economies, this condition is unlikely to be satisfied in the foreseeable future. The most plausible
situation is therefore the one in which the direct effect dominates the indirect growth effect.
Thus, for a fixed nominal interest rate i, an increase in bubble mining is inflationary.

The government can also offset the inflationary effect of bubble mining further by lowering
the interest rate i. This is possible whenever there is no binding lower bound on nominal in-
terest rates. If i fully offsets the rise in µ̆B , so i + µ̆B = µB is unaffected, then only the indirect
deflationary effect due to higher growth remains. By using the policy tools of debt growth and
interest rate in the right proportion, the government can increase bubble mining in an inflation-
neutral way.

Note, however, that the previous discussion solely centers on the steady-state inflation rate
as a result of a steady-state level of bubble mining µ̆B . If the government was to announce more
aggressive bubble mining going forward, government debt would become less attractive as the
debt is diluted at a faster rate and hence the real value of the debt would have to fall. This is
brought about in equilibrium by an inflationary upward jump in the price level.28

27This presumes that revenues from bubble mining are used to lower the output tax rate τ and government con-
sumption gKt is kept constant. If instead bubble mining revenues are used to increase g, then the effect on the
economic growth rate g is ambiguous as a larger g tends to decrease both private consumption and private invest-
ment.

28If we were to add price stickiness to the model, this initial price level jump would translate into a transition
period of larger inflation.
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6 Optimal Bubble Mining

Even if bubble mining is possible, is it ever socially optimal for the government to engage
in mining? In this section, we characterize the optimal policy and draw two key conclusions:

First, a bubble in settings with frictions facilitates trade along certain dimensions – between
generations or in response to idiosyncratic shocks – and mining the bubble inhibits these ben-
eficial trades. Optimal policy therefore only calls for a positive rate of bubble mining, µ̆B > 0,
if pecuniary externalities generate an equilibrium bubble that is “too large”. Such a situation is
never possible in the perpetual youth example, but can arise in the idiosyncratic risk example
because the bubble crowds out real investment ιt. The optimal policy there balances a trade-off
between growth and risk sharing and may call for a positive rate of bubble mining, µ̆B > 0, if
idiosyncratic risk is sufficiently large.

Second, the optimal degree of bubble mining is independent of the government spending
need g. This implies that under the optimal policy, any additional government spending is
optimally funded by raising taxes, not by bubble mining. This conclusion holds in both models.

We limit our formal analysis in this section to the idiosyncratic risk model, as its welfare
implications are richer and less well-known. A brief welfare analysis in the perpetual youth
example can be found in Appendix A.4.

Formally, expected utility of an agent with initial wealth share ηi
0 := ni

0/
(
(qB

0 + qK
0 )K0

)
is29

E

[∫ ∞

0
e−ρt log ci

tdt
]
=

log ηi
0 + log K0

ρ

+ E

∫ ∞

0
e−ρt

(
log

(
ρ
(
1 + ϕ (a − g)

)
1 − ϑt + ϕρ

)
︸ ︷︷ ︸

=log(a−g−ιt)

+
1

ϕρ
log

(
(1 − ϑt)

(
1 + ϕ (a − g)

)
1 − ϑt + ϕρ

)
− δ

ρ︸ ︷︷ ︸
=
(Φ(ιt)−δ)

ρ

− (1 − ϑt)
2 σ̃2

2ρ︸ ︷︷ ︸
=
(1−ϑt)

2
σ̃2

2ρ

)
dt

.

(14)

For arbitrary Pareto weights, a social planner would like to manipulate ϑt period by period
to maximize the integrand in the second line.30 The first term in the integrand is utility from
consumption a − g − ιt, which is increasing in ϑt because a higher ϑt depresses investment
and leaves more resources for consumption. The second term is proportional to the endoge-
nous component Φ (ιt) of the growth rate, which is decreasing in ϑt. The last term represents
the reduction of utility due to idiosyncratic risk. Higher ϑt reduces residual consumption risk

29We provide a derivation of this equation in Appendix A.3.
30This is the case because the second line is the same for all agents i, whereas the first line depends only on initial

conditions that cannot be affected by bubble mining policy.
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Figure 2: Optimal policy versus no policy (µ̆B = 0) in the idiosyncratic risk model for ϕ = 0
as a function of σ̃/

√
ρ. The left panel depicts the nominal wealth share ϑ, the right panel the

associated bubble mining policy µ̆B normalized by the time-preference rate ρ.

(1 − ϑt) σ̃ and thereby increases this term.31

While ϑt is not a policy instrument, the government can effectively choose ϑt directly by
adjusting µ̆B

t . We show in the appendix that there is a unique optimal solution ϑopt for ϑt, which
is time-invariant, depends only on ρ, σ̃, and ϕ, and is strictly increasing in idiosyncratic risk σ̃.
Figure 2 depicts this optimal nominal wealth share ϑ and the bubble mining rate µ̆B required
to implement it as function of idiosyncratic risk.32 It also compares the optimal policy to the
competitive equilibrium without policy intervention (µ̆B = 0). Relative to that benchmark,
optimal policy backs the value of government debt by primary surpluses (negative µ̆B) if risk
is low. In these cases, the bubble created by market forces is too small (for σ̃ >

√
ρ) or even

absent (for σ̃ ≤ √
ρ) and risk-sharing is suboptimal. If risk is high, market forces generate a

bubble that is too large. Optimal policy then runs deficits (positive µ̆B) and funds government
expenditures out of the bubble to encourage higher real investment and growth.

Market forces may fail to generate a bubble that achieves the optimal trade-off between
growth and risk sharing. Inefficiencies are possible due to pecuniary externalities with respect
to agents’ portfolio choices because agents take returns as given when making these choices,
yet their collective choice affects the risk-free rate and risk-premium on capital.33 On one hand,
a greater portfolio allocation to bonds discourages real investment ι in the economy, which in

31Representing the objective in this way highlights similarities to the classic analysis of the optimal quantity of
debt by Aiyagari and McGrattan (1998). In their framework, a larger value of government debt increases liquidity
by effectively relaxing borrowing constraints, but reduces the quantity of capital. Here, a larger debt wealth share
directly improves risk sharing (even in the absence of borrowing constraints) but reduces the growth rate of capital
and output.

32The figure assumes no capital adjustment cost, ϕ = 0. It looks qualitatively identical for ϕ ∈ (0, ∞).
33These pecuniary externalities have been previously identified by Brunnermeier and Sannikov (2016b) and Di

Tella (2020) in closely related frameworks.
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turn affects the real return on all assets through the growth term in the risk-free rate. This force
tends to generate too much bond demand, a too high ϑ and thus under-investment in capital.
On the other hand, a greater allocation to bonds increases the total value of bonds and thus
reduces the residual (proportional) idiosyncratic consumption risk (1− ϑ)σ̃ that each agent has
to bear.34 This in turn affects asset returns through the precautionary motive in the risk-free rate
and through the risk premium on capital. This second force tends to generate too little bond
demand, a too low ϑ and thus over-investment in capital.

It is instructive, however, that the optimal value ϑopt for ϑ is independent of the government
spending need g. Because g does not appear in equation (12) either, then also the optimal degree
of bubble mining µ̆B to implement ϑ = ϑopt must be independent of g. While the government
could increase µ̆B in response to an (unanticipated) increase in g in order to fund the additional
spending, this is never optimal.35 The optimal policy should rely on taxes as the marginal
funding source for additional government spending.

The reason for this result is that when government spending g increases, the government
must transfer a larger fraction of current output away from the private sector to itself. Tax-
ing current output is the most direct way of doing so and does not distort the portfolio choice
between capital and bonds.36 In contrast, funding additional spending by increasing primary
deficits and bubble mining dilutes the bubble at a faster rate and thereby distorts agents’ portfo-
lio choice in favor of larger capital holdings. Because the pecuniary externalities just discussed
do not depend on either the level of government spending gKt or total output left for private
uses (a− g)Kt, the optimal portfolio distortion induced by µ̆B is also independent of these quan-
tities.37

In our models, government spending gKt is exogenously given and does not provide any
utility to agents. We remark, that all the results in this section would equally apply if agents
derived additively separable utility from public spending and also gt was a policy choice.

34Specifically, higher bond prices benefit the bond-selling agents: those who suffered idiosyncratic losses and who
have higher marginal utilities, on average.

35g is here a model parameter and thus any change in g must by construction be an unanticipated change in
government spending. However, this fact is irrelevant for our conclusion. We would obtain the same result if we
were to add government spending shocks to the model (including transitory changes that mean-revert in the long
run).

36Similarly, in the perpetual youth example, it does not distort the inter-generational resource transfer, which is
ultimately about how future output left for private uses is split across individuals.

37The size of the pecuniary externalities does depends on the aggregate consumption-wealth ratio which equals
the time preference rate ρ in our model with log utility. Admittedly, this is a somewhat knife-edge case that only
holds for unit EIS. For general EIS, the aggregate consumption-wealth ratio depends on the growth rate of the
economy, which in turn is increasing in output left for private uses a − g per unit of capital. Nevertheless, our result
represents an important benchmark case and the broader point that optimal bubble mining only adjusts to correct
pecuniary externalities remains valid also for EIS ̸= 1.
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7 Price Level Determination, Uniqueness, and Off-Equilibrium Pol-
icy

The key equation (1) of the fiscal theory of the price level without a bubble term can be
solved for the price level as a function of the present value of primary surpluses and the out-
standing quantity of nominal government debt. For a given real allocation and initial quantity
of debt, this equation alone therefore pins down the price level.38 In the fiscal theory with a
bubble, this is no longer true because the size of the bubble is not determined by the present
value identity itself. Instead, goods market clearing determines the price level. A larger real
value of bonds, holding taxes constant, means bonds represent more net wealth for the private
sector, which increases consumption demand through a wealth effect. The equilibrium price
level is the price level at which consumption demand equals consumption supply.39 The fiscal
theory equation itself determines the size of the bubble as the residual value of government
debt that is not explained by the present value of primary surpluses.

As a consequence, the presence of a bubble makes price level determination based on fiscal
dominance more challenging because it eliminates the simple one-to-one relationship between
the present value of primary surpluses and the price level. Even making primary surpluses
completely exogenous may not be sufficient to determine the price level uniquely if government
policy fails to pin down the value of the bubble. The same path of surpluses can be consistent
with multiple paths for the bubble value and thus with multiple initial price levels.

The steady state equilibria derived above are consistent with a policy that fixes µ̆B at a
constant level and adjusts taxes τ such that the government budget constraint (3) holds after
any price history.40 While simple, such a policy is clearly inadequate to determine the price
level. This is evident from the existence of a nonmonetary equilibrium in which nominal gov-
ernment bonds are worthless (qB = 0). However, government policy can easily be modified
off-equilibrium to select the monetary steady state as the unique equilibrium.41

38This conclusion does not rely on the assumption of fiscal dominance. Assuming fiscal dominance just ensures
that surpluses do not react too strongly to the price level to make the “given real allocation” the only possible
equilibrium allocation.

39The same mechanism is present in the fiscal theory without a bubble, but it may not be as clearly visible because
one can mechanically solve the model by reading off the price level from the fiscal theory equation.

40We have opted not to choose the opposite specification where τ is constant and µ̆B adjusts to make the gov-
ernment budget constraint hold because this is only a valid policy specification if τ ≥ g/a. For τ < g/a, there
are histories of prices in which no value of µ̆B is consistent with equation (3) (e.g. P = ∞, i.e., the moneyless
equilibrium).

41Here, we focus on equilibria that are deterministic and feature absolutely continuous price paths. With addi-
tional technical arguments, one can also rule out non-time-continuous equilibria and equilibria driven by sunspot
noise.
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To see this, recall that along any equilibrium path, ϑt must satisfy equation (9) in example
model I and equation (12) in example model II. By taking the time derivative, we can write both
equations as an ordinary differential equation (ODE) of the form

ϑ̇t =
(

ρ + µ̆B
t − f (1 − ϑt)

)
ϑt (15)

where f is a strictly increasing function (for positive arguments) given by

f (x) =

x
(
δ + g

)
, perpetual youth model

x2σ̃2, idiosyncratic risk model
.

In other words, ODE (15) must hold along any equilibrium path. The converse is also true,
provided ϑ is contained in [0, 1]:

Lemma 1. An absolutely continuous function [0, ∞) → R, t 7→ ϑt corresponds to a model equilibrium,
if and only if it satisfies equation (15) and 0 ≤ ϑt ≤ 1 for all t.

We have already noted that equation (15) is necessary for an equilibrium. The proof of suffi-
ciency requires a number of technical verification arguments that we relegate to Appendix A.5.

With constant µ̆B , there is a continuum of solution paths for ϑ consistent with the require-
ment in Lemma 1, which can be indexed by the initial value ϑ0 ∈ [0, ϑ∗], where ϑ∗ denotes the
monetary steady-state level of ϑ. For any initial value but the right endpoint, ϑ asymptotically
converges to 0.42 Conversely, if for some reason agents expected that the equilibrium value of
ϑ could never fall below a positive threshold ϑ > 0, then all equilibria but the monetary steady
state ϑ0 = ϑ∗ could be ruled out.

These considerations suggest a simple off-equilibrium modification of the fiscal policy rule
to achieve equilibrium uniqueness: fix an arbitrary threshold 0 < ϑ ≤ ϑ∗ and, whenever ϑ falls
below ϑ, switch from a constant debt growth rule (constant µ̆B) to a positive surplus rule with
a constant output tax rate τ̄ > g/a for as long as ϑ < ϑ.43 For this to work even when there are
positive surpluses in steady state (the case µ̆B < 0), we assume in addition τ̄ ≥ τ, where τ is
the equilibrium tax rate in the steady state.44

From the government budget constraint (3), it follows that under this modified fiscal policy

42This is implied by the fact that the right-hand side of equation (15) is negative for all ϑt ∈ (0, ϑ∗).
43The proposed modification is reminiscent of Obstfeld and Rogoff (1983), who show how an off-equilibrium com-

modity backing of money can rule out hyperinflationary equilibria in models of money as a medium of exchange.
44If µ̆B ≥ 0 and thus τ ≤ g/a (nonpositive surpluses), this condition is clearly redundant. Otherwise, it is required

to avoid equilibria in which the expectation of lower, yet still positive, primary surpluses becomes self-fulfilling.
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ODE (15) becomes

ϑ̇t =


(

ρ − f (1 − ϑt) + µ̆B
)

ϑt, ϑt ≥ ϑ(
ρ − f (1 − ϑt)

)
ϑt − (τ̄a − g) h (1 − ϑt) , ϑt < ϑ

,

where h is a (weakly) increasing function given by

h(x) =


ρ

a−g , perpetual youth model
x+ϕρ

1+ϕ(a−g)
, idiosyncratic risk model

.

In particular, the values of h (for positive arguments) are always positive and bounded away
from zero.

It is then easy to see that this modified ODE has a strictly negative left-hand side on the in-
terval [0, ϑ∗) including the left endpoint, and therefore all solutions that start inside this interval
turn negative in finite time. By Lemma 1, the only possible equilibrium path for ϑ is therefore
the steady-state equilibrium ϑ = ϑ∗.

The above rule modifies fiscal policy only off-equilibrium, whereas along the equilibrium
path of the remaining unique equilibrium, the government is free to choose any debt growth
rate net of interest payments µ̆B . This raises questions about the credibility and fiscal capacity
to promise off-equilibrium surpluses. These issues are beyond the scope of the present paper.

Bubbles on Other Assets. Our analysis so far has presumed that a bubble is either on gov-
ernment debt or there is no bubble at all. However, a bubble could also be on other assets than
government debt. Specifically, any intrinsically worthless asset in limited supply could have
a bubble component.45 Furthermore, the aggregate bubble could be split between the govern-
ment bond and these other bubbly assets. Can a similar policy as just discussed also rule out
these other equilibria?

The answer is yes if the taxation threshold ϑ is tight, i.e. ϑ = ϑ∗. To see this, we extend our
models by adding an intrinsically worthless additional asset that can potentially also have a
bubble component.46 For simplicity, we assume that this asset is in constant supply. Denote by
q̂B

t Kt the value of the portfolio consisting of all government bonds and and the other potential
bubble asset and define ϑ̂t := q̂B

t /
(

q̂B
t + qK

t

)
. With this notation, clearly qB

t ≤ q̂B
t and ϑt ≤ ϑ̂t.47

45We limit the discussion to bubbles on intrinsically worthless assets in fixed supply, but our economic points also
apply to bubbles on other assets.

46It is without loss of generality to consider only a single additional asset as we could always combine the portfolio
of all potential bubble assets in the economy into a single asset.

47As before, ϑt = qB
t /
(

q̂B
t + qK

t

)
denotes the fraction of total net wealth that is due to government debt.
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We can solve these augmented models as before48 if we replace the return on bonds drBt with
the return on the portfolio of all government bonds and the other bubble asset, which is given
by

dr̂Bt =
qB

t

q̂B
t

drBt +
q̂B

t − qB
t

q̂B
t

d
((

q̂B
t − qB

t

)
Kt

)
(

q̂B
t − qB

t

)
Kt

=

(
gt −

qB
t

q̂B
t

µ̆B
t + µ

q̂,B
t

)
dt.

Following the same solution procedure as in Section 3, we obtain a solution ODE for ϑ̂t in
analogy to equation (15):

˙̂ϑt =

(
ρ − f

(
1 − ϑ̂t

))
ϑ̂t + µ̆B

t ϑt. (16)

In addition, whenever both government bonds and the other bubble asset have positive value,
then a no arbitrage condition between the two must hold, which implies a second ODE

ϑ̇t =

(
ρ + µ̆B

t − f
(

1 − ϑ̂t

))
ϑt. (17)

In both equations, the f function is the same as in equation (15) above.

In analogy to Lemma 1, time paths t 7→ (ϑt, ϑ̂t) correspond to a valid equilibrium if and only
if they solve ODEs (16) and (17) and satisfy 0 ≤ ϑt ≤ ϑ̂t ≤ 1 for all t. Assuming the same thresh-
old policy specification as before, the structure of equation (17) is sufficiently similar to that of
equation (15) that we can rule out any solution paths for ϑ that ever fall below the threshold
ϑ by the same argument as previously: if ϑ ever fell below ϑ, then this low valuation of bonds
would only be consistent with the positive surplus policy under ϑ < ϑ if agents expected ϑ to
fall even further at a speed that would imply ϑT = 0 at some finite time T. But because positive
surpluses continue beyond time T, ϑ̇T < 0 also at time T, so that the mathematical solution ϑ to
ODE (17) must eventually turn negative and thus cannot correspond to an equilibrium solution
of the model.

This argument shows that all equilibrium solution paths must satisfy ϑt ≥ ϑ at all times. But
if ϑ < ϑ∗ and µ̆B ≥ 0, one can show that there are multiple solution pairs (ϑ, ϑ̂) to equations (16)
and (17) that satisfy 0 ≤ ϑt ≤ ϑ̂t ≤ 1. Consequently, in the presence of other potential bubble
assets, the above policy only selects the stationary equilibrium ϑt = ϑ̂t = ϑ∗ if in addition
ϑ = ϑ∗.49 In total, we have the following proposition. Here, we include an additional limit
result whose proof requires a refinement of the previous arguments.

Proposition 1. Under the threshold policy discussed in this section, all equilibria have the property that

48We only sketch the solution procedure here and provide more details in Appendix A.6.
49It is easy to show that if ϑt = ϑ∗ then there is no “space” for an additional bubble on a different asset and thus

ϑ̂t = ϑt holds automatically. See Appendix A.7 for further details.
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ϑt ≥ ϑ for all t. In the limit as t → ∞, ϑ̂t → ϑ∗ and, if µ̆B ̸= 0, also ϑt → ϑ∗.50 If no bubbles on other
assets are permitted or if ϑ = ϑ∗, the equilibrium is unique and satisfies ϑt = ϑ̂t = ϑ∗ for all t.

The core content of the previous proposition follows directly from the arguments in this
section. We provide additional details on the proof in Appendix A.7.

We conclude this section by pointing out how our results differ from the analysis of Bassetto
and Cui (2018) in the context of a dynamically inefficient OLG model. They study constant tax
policies that are not contingent on the price level and conclude that “the FTPL breaks down
in [their] OLG economy” (p. 13). While seemingly the opposite of our conclusion, their result
is fully consistent with the discussion in this paper, which highlights that contingent policy is
required to obtain uniqueness of the price level. In order to back the bubble in equilibrium, the
government must commit to off-equilibrium taxation that replaces the value of the bubble by a
present value of primary surpluses. Constant tax policies are insufficient for this purpose.51

8 Conclusion

This paper integrates the typically ignored bubble term in the FTPL equation, which is nec-
essary to explain low inflation in countries with persistently negative primary surpluses. Brun-
nermeier et al. (2021) expand on the idiosyncratic risk example provided in this paper to study
the role of government debt as a safe asset in a generalized setting with time-varying idiosyn-
cratic risk. During recessions idiosyncratic risk expands and with it the value of the service flow
derived from re-trading the safe asset. Consequently, the safe asset appreciates during reces-
sions, i.e. it has a negative CAPM-β. Also, the analysis in this paper can be easily extended to
include a transaction role of money. In this case the interest rate on “narrow money” is further
depressed by ∆i = i − iM, making it more likely to be below the growth rate of economy. This
would also constitute another source of seigniorage besides the “bubble mining” emphasized
in this paper.

50The condition µ̆B ̸= 0 is required because µ̆B = 0 implies the special case with a zero surplus policy. Then,
there are equilibria in which the aggregate bubble is split between government bonds and the other asset according
to some fixed proportion. If ϑ < ϑ∗, there is “space” for such an equilibrium in which the proportion of the bubble
captured by the government bond is less than 1 and thus ϑ is permanently smaller than ϑ∗.

51In addition, even positive primary surpluses are associated with equilibrium multiplicity in the OLG economy
of Bassetto and Cui (2018), whereas in our model the constant tax policy with τ̄ > g/a selects a unique equilibrium.
This is due to a difference in assumptions: while we assume here that the government does not lend to the private
sector, they allow for such lending, thereby effectively validating additional equilibrium paths that lead to a steady
state with a negative value of debt. Because a government can simply refuse to lend to the private sector, this type
of multiplicity is easily avoided by modifying government policy.
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A Appendix

A.1 Derivation of the Continuous-time Fiscal Theory Equation (Equation (1))

As in the discrete-time case, the derivation of the fiscal theory equation starts with the gov-
ernment flow budget constraint, which here is

(
µB

t Bt + µM
t Mt + PtTt

)
dt = (itBt + im

t Mt + PtGt) dt,

where Bt, Mt, Tt, Gt, it and im
t have the same meaning as in the main text and µB

t , µM
t are the

growth rates of nominal bonds and money, respectively.52 Multiplying the budget constraint
by the nominal SDF ξt/Pt and rearranging yields((

µB
t − it

) ξt

Pt
Bt +

(
µM

t − it

) ξt

Pt
Mt

)
dt = −ξt

(
(Tt − Gt) + ∆it

Mt

Pt

)
dt. (18)

Next, Ito’s product rule implies

d
(

ξt

Pt
Bt

)
=
(

µB
t − it

) ξt

Pt
Btdt +

ξt

Pt
Bt

(
d (ξt/Pt)

ξt/Pt
+ itdt

)
,

d
(

ξt

Pt
Mt

)
=
(

µM
t − it

) ξt

Pt
Mtdt +

ξt

Pt
Mt

(
d (ξt/Pt)

ξt/Pt
+ itdt

)
.

Solving these last two equations for
(

µB
t − it

)
ξt
P tBtdt and

(
µM

t − it

)
ξt
Pt
Mtdt, respectively, and

substituting the results into equation (18) yields (after rearranging)

d
(

ξt

Pt
(Bt +Mt)

)
= −ξt

(
Pt (Tt − Gt) + ∆itMt

)
dt + ξt

Bt +Mt

Pt

(
d (ξt/Pt)

ξt/Pt
+ itdt

)
,

or in integral form

ξT
BT +MT

PT
− ξt

Bt +Mt

Pt
= −

∫ T

t
ξs (Ts − Gs) ds−

∫ T

t
ξs∆is

Ms

Ps
ds+

∫ T

t
ξs
Bs +Ms

Ps

(
d (ξs/Ps)

ξs/Ps
+ isdt

)
.

Up to this point, we have merely rearranged and integrated the government budget constraint.
To derive the fiscal theory equation, the literature proceeds by using two equilibrium condi-
tions. First, if the nominal SDF ξ/P prices the government bonds, then its expected rate of
change must be the negative of the nominal interest rate. Then, the last stochastic integral on

52Here we abstract from long-term bonds and the possibility of taxes, spending, and adjustments in B and M
that are not absolutely continuous over time (e.g., lumpy adjustments in response to a Poisson shock). Such ele-
ments could be easily added, but require more complicated notation without generating additional insights for our
purposes.
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the right must be a martingale and disappears when taking conditional time-t expectations
Et[·]. Second, a private-sector transversality condition is invoked to eliminate a terminal value
of government debt when passing to the limit T → ∞. We perform the first operation, but do
not want to restrict attention to environments where transversality can rule out a nonzero dis-
counted terminal value. When taking the limit T → ∞, we therefore arrive at the more general
equation (1).

A.2 Omitted Details in Section 3

In this section, we present some additional formal details about the two example models
and their solution.

A.2.1 Example I: Perpetual Youth

Details on the Household Problem. The HJB equation for household i’s problem is

ρVt

(
bi

t, ki
t

)
− ∂tVt

(
bi

t, ki
t

)
= max

ci

log ci + ∂bVt

(
bi

t, ki
t

) (
r f

t bi
t + (1 − τt) aki

t − ci
)
+ ∂kVt

(
bi

t, ki
t

) (
−δki

t

).

This is a standard consumption-savings problem, so we conjecture a functional form Vt

(
bi, ki

)
=

αt +
1
ρ log

(
bi + qK

t ki
)

for the value function, where αt and qK
t depend on (aggregate) investment

opportunities, but not on individual state variables bi and ki. We verify this conjecture below.

Substituting the functional form guess into the HJB equation yields

ραt + log
(

bi + qK
t ki
)
− α̇t −

1
ρ

q̇K
t ki

bi + qK
t ki = max

ci

log ci − 1
ρ

1
bi + qK

t ki ci


+

1
ρ

1
bi + qK

t ki

(
r f

t bi + (1 − τt) aki − δqK
t ki
)

. (19)

The first-order condition for the maximization with respect to ci is

0 =
1
ci −

1

ρ
(

bi + qK
t ki
) ,

which immediately implies the consumption rule (6) stated in the main text.

Substituting the optimal consumption choice into equation (19) and canceling and rearrang-
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ing terms impliesραt − α̇t + 1 − log ρ − r f
t
ρ

 bi +

((
ραt − α̇t + 1 − log ρ

)
qK

t − (1 − τt) a − δqK
t + q̇K

t
ρ

)
ki = 0.

(20)

Clearly, the functional form guess can only be correct if equation (20) is satisfied for all states
(bi, ki). But that means in particular,that αt and qK

t must satisfy the two equations

ραt − α̇t + 1 − log ρ =
r f

t
ρ

, (21)

ραt − α̇t + 1 − log ρ =
(1 − τt) a − δqK

t + q̇K
t

ρqK
t

, (22)

that are obtained by setting either bi or ki to zero in equation (20). Conversely, if there are func-
tions αt and qK

t that satisfy equations (21) and (22), then clearly also (20) holds for all (bi, ki) (and
all times t) and because (20) is equivalent to the original HJB equation (19), also that equation
must then hold for all (bi, ki) (and all times t). To verify the conjectured functional form for V,
it is thus sufficient to show that αt, qK

t satisfying (21) and (22) do indeed exist.

Equation (21) is a linear ordinary differential equation (ODE) in αt. The general solution for
this ODE is

αt = βeρt +
∫ ∞

t
e−ρ(s−t)

1 − log ρ − r f
s

ρ

 ds,

where β ∈ R is an integration constant. This solution is well-defined as long as the given risk-
free rate path r f

t is sufficiently regular (e.g., continuous and bounded). Thus, a solution to (21)
does indeed exist and with the specific choice β = 0, the resulting HJB solution function Vt also
satisfies a transversality condition (which is necessary for optimality).

Next, combine equations (21) and (22) to substitute out the αt-dependent terms, which yields
the ODE

r f
t
ρ

=
(1 − τt) a − δqK

t + q̇K
t

ρqK
t

for qK
t . Rearranging implies the equation

q̇K
t = − (1 − τt) a +

(
r f

t + δ
)

qK
t , (23)

which is a differential version of equation (7) in the main text. To derive the latter equation, use
ki

s = ki
te
−δ(s−t) and thus

e−
∫ s

t r f
s′ds′qK

s ki
s = e−

∫ s
t

(
r f

s′+δ
)

ds′qK
s ki

t.
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Taking the time-derivative of the product on the right yields

d
(

e−
∫ s

t

(
r f

s′+δ
)

ds′qK
s

)
= −

(
r f

s + δ
)

e−
∫ s

t

(
r f

s′+δ
)

ds′qK
s ds + e−

∫ s
t

(
r f

s′+δ
)

ds′ q̇K
s ds,

so that

d
(

e−
∫ s

t

(
r f

s′+δ
)

ds′qK
s ki

t

)
ds

= e−
∫ s

t

(
r f

s′+δ
)

ds′
(

q̇K
s −

(
r f

s + δ
)

qK
s

)
︸ ︷︷ ︸

=−(1−τs)a by (23)

ki
t.

Integrating both sides over s ∈ [t, T] yields

e−
∫ s

t

(
r f

s′+δ
)

ds′qK
T ki

t − qK
t ki

t = −
∫ T

t
e−
∫ s

t

(
r f

s′+δ
)

ds′
(1 − τs)aki

tds

= −
∫ T

t
e−
∫ s

t r f
s′ds′(1 − τs)aki

sds

Rearranging and taking the limit T → ∞ implies equation (7).

Derivation of Equation (9). We use the notation

µ
q,B
t :=

q̇B
t

qB
t

, µ
q,K
t :=

q̇K
t

qK
t

, µϑ
t :=

ϑ̇t

ϑt
.

These definitions are unproblematic as long as the denominator expressions are different from
zero, that is as long as both bonds and human capital have positive value in equilibrium. By
definition of ϑt, we have µϑ

t = (1 − ϑt)
(

µ
q,B
t − µ

q,K
t

)
.

We first divide equation (23) by qK
t and then plug in the risk-free rate expression from equa-

tion (8) in the main text. The resulting equation is

µ
q,K
t = − (1 − τt)

a
qK

t
− µ̆B

t + g + µ
q,B
t + δ.

Next, the government budget constraint (3) implies τta = g− µ̆B
t qB

t and we have

qB
t = ϑt

a − g

ρ
, qK

t = (1 − ϑt)
a − g

ρ
.

Substituting these expressions into the previous equation and rearranging yields

µ
q,K
t − µ

q,B
t = − ρ

1 − ϑt
− µ̆B

t
1 − ϑt

+ g + δ

and thus
µϑ

t = ρ + µ̆B
t − (1 − ϑt)

(
g + δ

)
.
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This is a backward equation for ϑt that has been derived under the assumption that bonds
have a positive value (qB

t > 0 ⇔ ϑt > 0). In particular, in these cases multiplying the equation
by ϑt represents an equivalence transformation. Furthermore, if ϑt = 0, then no arbitrage re-
quires also ϑ̇t = 0; otherwise, agents could earn an infinite risk-free return from investing into
bonds. Consequently, the ODE

ϑ̇t =
(

ρ + µ̆B
t − (1 − ϑt)

(
δ + g

))
ϑt (24)

must hold along any equilibrium path, regardless of whether bonds have positive value or not.

Equation (24) is the differential version of equation (9) stated in the main text. The latter
equation can be derived from (24) by appropriate time integration along the same lines as the
FTPL equation from the flow budget constraint (see Appendix A.1) and equation (7) from equa-
tion (23) (see household problem above). For this reason, we omit the proof here.

Steady-State Equilibria. In steady state, equation (24) simplifies to(
ρ + µ̆B − (1 − ϑ)

(
δ + g

))
ϑ = 0.

This is a second-order polynomial and has precisely two solutions, ϑ = 0 and ϑ = 1 − ρ+µ̆B

δ+g .
Only the latter solution can be associated with a positive value of government bonds, qB

t > 0,
and it is if and only if

1 >
ρ + µ̆B

δ + g
.

A.2.2 Example II: Uninsurable Idiosyncratic Risk

Details on the Household Problem. Because agents can freely adjust portfolios at each time
instant in this model, the household problem can be written in terms of a single state variable,
net worth ni

t = qK
t ki

t + bi
t. As in the main text, let θi

t := bi
t/ni

t denote the fraction of net worth
invested into bonds. Then net worth evolves according to

dni
t

ni
t
= − ci

t

ni
t
dt + drBt +

(
1 − θi

t

)(
drK,i

t

(
ιit

)
− drBt

)
, (25)

where returns drBt and drK,i
t

(
ιit

)
are as stated in the main text.

The household chooses consumption ci
t, real investment ιit, and the portfolio share θi

t to
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maximize utility Vi
0 subject to (25). The HJB equation for this problem is53

ρVt

(
ni
)
− ∂tVt

(
ni
)
= max

ci ,θi ,ιi

log ci + V′
t

(
ni
) −ci + ni

drBt
dt

+
(

1 − θi
) =

Et

[
drK,i

t (ιit)
]

dt − drBt
dt︷ ︸︸ ︷(

a − g− ιi

qK
t

+ Φ
(

ιi
)
− Φ(ιt)−

µϑ
t − µ̆B

t
1 − ϑt

)
+

1
2

V′′
t

(
ni
) (

ni
)2 (

1 − θi
)2

σ̃2

.

This is a standard consumption-portfolio-choice problem, so we conjecture again a func-
tional form Vt

(
ni
)
= αt +

1
ρ log ni

t for the value function, where as for the previous model, αt

depends on (aggregate) investment opportunities, but not on individual net worth ni.

Substituting this guess into the HJB equation yields

ραt + log
(

ni
)
− α̇t = max

ci

(
log ci − ci

ρni

)

+
1
ρ

max
θi ,ιi

(1 − θi
)( a − g− ιi

qK
t

+ Φ
(

ιi
)
− Φ(ιt)−

µϑ
t − µ̆B

t
1 − ϑt

)−

(
1 − θi

)2
σ̃2

2


+

1
ρ

drBt
dt

. (26)

The first-order conditions for the maximization with respect to ci, ιi and 1 − θi are

0 =
1
ci −

1
ρni ,

0 =
1 − θi

ρ

(
Φ′(ιi)− 1

qK
t

)

0 =

(
a − g− ιi

qK
t

+ Φ
(

ιi
)
− Φ(ιt)−

µϑ
t − µ̆B

t
1 − ϑt

)−
(

1 − θi
)

σ̃2

These three equations immediately imply the three conditions stated in the main text.

Expressing qB, qK, ι in Terms of ϑ. Combining the aggregate resource constraint (10) with the
optimal consumption rule (aggregated over all agents) relates total wealth to total consumption
in each period,

qB
t + qK

t =
1
ρ

Ct/Kt =
a − g− ιt

ρ
.

53Here, we have used the government budget constraint (3) to eliminate τta in the return on capital.
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Divide both equations by qK
t , use 1 − ϑt =

qK
t

qB
t +qk

t
on the left-hand side and qK

t = 1
Φ′(ιt)

= 1 + ϕιt

on the right hand side to obtain an equation that relates ϑt to the investment rate ιt:

1
1 − ϑt

=
a − g− ιt

1 + ϕιt
.

Solving for ιt yields

ιt =
(1 − ϑt) (a − g)− ρ

1 − ϑt + ϕρ

and substituting that equation into qK
t = 1 + ϕιt and qB

t = ϑt
1−ϑt

qK
t implies

qB
t = ϑt

1 + ϕ (a − g)

1 − ϑt + ϕρ
,

qK
t = (1 − ϑt)

1 + ϕ (a − g)

1 − ϑt + ϕρ
.

Derivation of Equation (12). Bond market clearing and the fact that all households choose the
same θi

t imply θi
t = ϑt and substituting this and into the first-order condition for θi yields

a − g− ιt

qK
t

− µϑ
t − µ̆B

t
1 − ϑt

= (1 − ϑt) σ̃2.

Now use a−g−ιt
qK

t
= ρ

1−ϑt
, multiply by 1 − ϑt and solve for µϑ

t :

µϑ
t = ρ + µ̆B

t − (1 − ϑt)
2 σ̃2.

As in the perpetual youth model, this is a backward equation for ϑt that has been derived under
the assumption that bonds have a positive value (ϑt > 0). By the same arguments as there, the
equivalent ODE

ϑ̇t =
(

ρ + µ̆B
t − (1 − ϑt)

2 σ̃2
)

ϑt (27)

remains valid on all equilibrium paths, even if ϑt = 0. As before, this is the differential version
of the integral equation (12) stated in the main text and the latter can be easily derived from the
former by time integration.

Steady-State Equilibria. In steady state, equation (27) simplifies to(
ρ + µ̆B

t − (1 − ϑt)
2 σ̃2

)
ϑt = 0.

This is a third-order polynomial and has precisely three solutions, ϑ = 0 and ϑ = 1 ±
√

ρ+µ̆B

σ̃ .
The solution with ϑ = 0 is associated with worthless government bonds, qB = 0. The solution
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with “+” has always the property ϑ > 1 and would therefore imply either a negative capital
price (if qB > 0) or a negative value of government bonds. Both cases violate free disposal and
therefore this solution cannot be a valid equilibrium.

The remaining solution ϑ = 1 −
√

ρ+µ̆B

σ̃ can be a valid equilibrium solution if it is nonneg-
ative. If it is even positive, then the associated equilibrium features a positive value of bonds.
This is the case if and only if

σ̃ >
√

ρ + µ̆B .

A.3 Omitted Details in Section 6

Derivation of Equation (14). Because all agents consume the same constant fraction ρ of their
wealth, the consumption share ci

t/Ct of agent i at time t must equal the agent’s wealth share ηi
t.

We can therefore write, using the aggregate resource constraint 10,

ci
t = ηi

tCt = ηi
t (a − g− ιt)Kt.

Thus, expected utility of agent i is given by

E

[∫ ∞

0
e−ρt log ci

tdt
]
= E

[∫ ∞

0
e−ρt

(
log ηi

t + log (a − g− ιt) + log Kt

)
dt
]

. (28)

To compute the integrals in equation (28), note that if

dxt

xt
= µx

t dt + σx
t dZ̃t,

then

E

[∫ ∞

0
e−ρt log xtdt

]
=

log x0

ρ
+ E

∫ ∞

0
e−ρt µx

t −
(
σx

t
)2 /2

ρ
dt

 . (29)

This follows from a simple calculation:

∫ ∞

0
e−ρt (log xt − log x0

)
dt =

∫ ∞

0
e−ρt

∫ t

0
d log xsdt

=
∫ ∞

0
e−ρt

(∫ t

0
µx

s ds +
∫ t

0
σx

s dZ̃s −
1
2

∫ t

0
(σx

s )
2 ds
)

dt

=
∫ ∞

0

∫ ∞

s
e−ρtdt

(
µx

s −
1
2
(σx

s )
2
)

ds +
∫ ∞

0
e−ρt

∫ t

0
σx

s dZ̃sdt

=
∫ ∞

0
e−ρs µx

s − (σx
s )

2 /2
ρ

ds +
∫ ∞

0
e−ρt

∫ t

0
σx

s dZ̃sdt.
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When taking expectations, the second term disappears because it is a martingale. Thus, we
obtain formula (29).

To apply formula (29), we need to determine dKt
Kt

and dηi
t

ηi
t

. We know that

dKt

Kt
=
(
Φ(ιt)− δ

)
dt. (30)

For ηi
t, we have

dηi
t

ηi
t
=

dni
t

ni
t
− dq̄t

q̄t
− dKt

Kt

=

(
−ρdt + drBt + (1 − ϑt)

(
drK,i

t (ιt)− drBt
))

− µ
q̄
t dt −

(
Φ(ιt)− δ

)
dt

=
(
−ρ − µ̆B

t + µϑ
t

)
dt + (1 − ϑt)

(
a − g− ιt

qK
t

+
µ̆B

t − µϑ
t

1 − ϑt

)
dt + (1 − ϑt) σ̃dZ̃i

t

=

(
−ρ + (1 − ϑt)

ρ

1 − ϑt

)
dt + (1 − ϑt) σ̃dZ̃i

t

= (1 − ϑt) σ̃dZ̃i
t (31)

where q̄t := qB
t + qK

t and µ
q̄
t := ˙̄qt

q̄t
. Here, the third line uses the return expressions and the

government budget constraint (3) and the fourth line the aggregate resource constraint (10).

Equations (30) and (31) together with formula (29) allow us to compute the integrals in (28):

E

[∫ ∞

0
e−ρt log ηi

tdt
]
=

log ηi
0

ρ
− 1

2ρ
E

[∫ ∞

0
e−ρt (1 − ϑt)

2 σ̃2dt
]

,

E

[∫ ∞

t0

e−ρt log Ktdt
]
=

log K0

ρ
+ E

[∫ ∞

0
e−ρt

(
Φ(ιt)− δ

)
ρ

dt

]
.

Consequently,

E

[∫ ∞

t0

e−ρt log ci
tdt
]
=

log ηi
0 + log K0

ρ

+ E

∫ ∞

0
e−ρt

(
log (a − g− ιt) +

(
Φ(ιt)− δ

)
ρ

− (1 − ϑt)
2 σ̃2

2ρ

)
dt


After substituting ιt as a function of ϑt (as stated in Section 3.2) and the functional form Φ(ι) =
1
ϕ log

(
1 + ϕι

)
, we obtain equation (14).
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Existence, Uniqueness and Properties of ϑopt. Taking first order conditions for maximizing
the time-t integrand in equation (14) with respect to ϑt implies

(1 − ϑt)
3 σ̃2 + ϕρ (1 − ϑt)

2 σ̃2 + ρ (1 − ϑt)− ρ = 0. (32)

This is a third-order polynomial equation in 1 − ϑt and has thus precisely three complex so-
lutions. Because the coefficients on all monomials of positive order are nonnegative and the
constant coefficient is negative, standard results on polynomial roots imply that precisely one
of these complex solutions is real and that solution must be positive. Consequently, there is a
unique real number ϑopt < 1 such that 1 − ϑopt satisfies the first-order condition.54 It is also
easy to see that ϑopt > 0 as otherwise the positive-sign terms in equation (32) would exceed
the negative-sign term in absolute value. Therefore, there is a unique optimal ϑopt ∈ (0, 1) that
maximizes the time-t integrand in equation (14) with respect to ϑt. Because the coefficients in
equation (32) just depend on the parameters σ̃, ρ and ϕ, so does ϑopt. By the implicit function
theorem, ϑopt must be strictly increasing in σ̃.

A.4 Welfare and Optimal Bubble Mining in the Perpetual Youth Example

In this appendix, we briefly outline the welfare analysis for the perpetual youth model. We
start by computing the expected utility of a single agent i born at time t0(i):

E

[∫ ∞

t0(i)
e−ρt log ci

tdt

]
= e−ρt0(i)

Xi
t0(i)

+ log (a − g) +
(
ϑg − (1 − ϑ) δ

)
/ρ

ρ
(33)

with

Xi
t =

log (1 − ϑ) , t > 0

log ηi
0 + log K0, t = 0

where ηi
0 :=

(
bi

0 + qK
0 ki

0

)
/
(
(qB

0 + qK
0 )K0

)
is the initial wealth share at time t = 0 of an agent i

that is already alive at that time.

The derivation of equation (33) proceeds in analogy to the derivation of equation (14) for the
idiosyncratic risk model: we use the consumption rule and the aggregate resource constraint to
write

ci
t = ηi

t (a − g)Kt,

54The objective is not generally concave, but this first-order condition nevertheless always corresponds to a global
maximum as can be readily verified by studying its asymptotic properties as 1 − ϑ → ∞ and 1 − ϑ → 0.
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then decompose

E

[∫ ∞

t0(i)
e−ρt log ci

tdt

]
=
∫ ∞

t0(i)
e−ρt

(
log ηi

t + log (a − g) + log Kt

)
dt

and then compute the three integrals separately using a version of formula (29):55

∫ ∞

t0(i)
e−ρt log ηi

tdt = e−ρt0(i)

 log ηt0(i) −
∫ ∞

t0(i)
e−ρ(t−t0(i)) (1 − ϑt) dt ·

(
δ + g

)
ρ

 ,

∫ ∞

t0(i)
e−ρt log (a − g) dt = e−ρt0(i) log (a − g)

ρ
,∫ ∞

t0(i)
e−ρt log Ktdt = e−ρt0(i)

log Kt0(i) + g/ρ

ρ
.

Combining terms, imposing a steady state, and using the definition Xi
t0(i)

:= log
(

ηi
t0(i)

Kt0(i)

)
and the fact that for t0(i) > 0, bi

t0(i)
= 0 and thus

ηi
t0(i)Kt0(i) =

bi
t0(i)

+ qK
t0(i)

kt0(i)

qB
t0(i)

+ qK
t0(i)

= 1 − ϑt0 ,

we obtain equation (33).

Next, let λ(i) denote some weighting function with the properties
∫ ∞

0 λ(i)di < ∞ and λ(i) ≥
0 for all i and consider the social welfare function

W :=
∫ ∞

0
λ(i)E

[∫ ∞

t0(i)
e−ρt log ci

tdt

]
di

Using equation (33), we can write this as

W =
∫ ∞

0
λ(i)e−ρt0(i)

Xi
t0(i)

+ log (a − g) +
(
ϑg − (1 − ϑ) δ

)
/ρ

ρ
di

=
1
ρ

∫ ∞

0
λ(i)e−ρt0(i)Xi

t0(i)di +
∫ ∞

0
λ(i)e−ρt0(i)di ·

log (a − g) +
(
ϑg − (1 − ϑ) δ

)
/ρ

ρ

=
1
ρ

∫ L0

0
λ(i)e−ρt0(i)

(
log ηi

0 + log K0

)
di +

1
ρ

∫ ∞

L0

λ(i)e−ρt0(i) log (1 − ϑ) di

+ Λ ·
log (a − g) +

(
ϑg − (1 − ϑ) δ

)
/ρ

ρ

55Note that dηi
t/ηi

t = − (1 − ϑt)
(
δ + g

)
dt, as a simple calculation shows.
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=
1
ρ

∫ L0

0
λ(i)e−ρt0(i)

(
log ηi

0 + log K0

)
di︸ ︷︷ ︸

=:W0

+Λ · log (1 − ϑ)

ρ
+ Λ ·

log (a − g) +
(
ϑg − (1 − ϑ) δ

)
/ρ

ρ
,

where in the last line, the constant W0 does not depend on ϑ and we define

Λ :=
∫ ∞

L0

λ(i)e−ρt0(i)di

Λ :=
∫ ∞

0
λ(i)e−ρt0(i)di

which are the total discounted welfare weights attached to all future generations and to all
generations, respectively.

A planner with this welfare objective would therefore like to manipulate ϑ to maximize the
sum of the last two terms in the expression for W. The first of these terms captures the share
of total output added by newborns that they consume themselves. This is decreasing in ϑ as
a larger value of bonds means that newborns without financial wealth transfer a larger share
of their labor income to previously existing generations as they gradually redeem those gen-
erations’ bond holdings. This first term is multiplied by Λ because only newborn agents after
the initial time are negatively affected. The second term is increasing in ϑ as a larger value of
bonds allows for more inter-generational wealth transfer and thereby increases the consump-
tion growth rate of all agents. This second term is multiplied by Λ because consumption growth
of all generations is affected equally.

The first-order condition for maximizing W with respect to ϑ is

Λ
1

1 − ϑopt = Λ
g + δ

ρ
⇒ ϑopt = 1 − Λ

Λ
ρ

g + δ
.

Thus, there is a unique optimal solution ϑopt that is strictly decreasing in ρ and strictly increasing
in g + δ.

The interpretation of this optimal policy prescription is straightforward when comparing
ϑopt to the competitive equilibrium value of ϑ in the monetary steady state, ϑ = 1 − ρ+µ̆B

δ+g . In
the special case that the planner does not care about existing generations, Λ = Λ, the inter-
generational resource transfer generated by the bubble in the competitive equilibrium without
policy intervention is optimal. The size of the bubble is thus constrained efficient. It optimally
trades off the lower initial value of consumption for newborns with the higher consumption
growth rate that results from a larger bubble value. Therefore, zero primary surpluses and no
bubble mining, µ̆B = 0, implement the optimal policy in this case.

Whenever the planner does care about the generation initially alive, Λ > Λ, then she desires
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to transfer additional resources from future generations to initial generations than in the bench-
mark case where Λ = Λ. This requires increasing the value of debt (lowering ϑ) and taxing
future generations. Therefore, the government optimally runs positive primary surpluses and
uses these surpluses to back its debt, µ̆B < 0, instead of mining the bubble. Consequently, a
positive rate of bubble mining (µ̆B > 0) is never optimal in this model.

As in the idiosyncratic risk model, the optimal value of ϑopt is independent of the govern-
ment spending need g and g does also not appear in equation (24), so that also the degree of
bubble mining µ̆B required to implement ϑ = ϑopt must be independent of g. The reason for
this result is similar to the idiosyncratic risk model: when government spending g increases, the
government must transfer a larger fraction of current output away from the private sector to it-
self and taxing current output is the most direct way that does not distort the inter-generational
resource transfers. In contrast, funding additional spending by increasing primary deficits (and
bubble mining) dilutes the bubble at a faster rate and lowers the interest rate. This increases not
just the resources available to the government today, but also increases the initial consumption
level of future newborn agents at the expense of consumption growth for all agents. As the
optimal trade-off between initial consumption and consumption growth is independent of the
aggregate level of private consumption Ct = (a − g)Kt, the optimal distortion induced by µ̆B

should also be independent of the government spending need.

A.5 Missing Steps in Proof of Lemma 1

We provide the proof for the idiosyncratic risk model. The proof for the perpetual youth
model is largely identical, but simpler as there are fewer conditions to be verified.

It is to show that any solution ϑ : [0, ∞) → [0, 1] to (27) corresponds to a unique equilibrium
of the model. For any such function, define ι, qB, and qK consistent with the expressions given
in the main text, i.e.,

ιt =
(1 − ϑt) (a − g)− ρ

1 − ϑt + ϕρ
,

qB
t = ϑt

1 + ϕ (a − g)

1 − ϑt + ϕρ
,

qK
t = (1 − ϑt)

1 + ϕ (a − g)

1 − ϑt + ϕρ
.

Because ϑt ∈ [0, 1] at all times, qB
t , qK

t ≥ 0, so these expressions are consistent with free disposal
of both bonds and capital.We now verify that ιt, qB

t , qK
t and θt := ϑt satisfy all household choice

conditions and the aggregate resource constraint.

One immediately verifies that ιt and qK
t satisfy households’ optimal investment choice con-
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dition, qK
t = 1

Φ′(ιt)
= 1 + ϕιt. In addition, total wealth of all households is

(
qB

t + qK
t

)
Kt and

because individual consumption demand ci
t = ρni

t implies an aggregate consumption demand
of Ct = ρ

(
qB

t + qK
t

)
Kt, we obtain

Ct + gKt + ιtKt =

(
ρ
(

qB
t + qK

t

)
+ g+ ιt

)
Kt

=

(
ρ

1 + ϕ (a − g)

1 − ϑt + ϕρ
+ g+

(1 − ϑt) (a − g)− ρ

1 − ϑt + ϕρ

)
Kt

=

( ϕρ

1 − ϑt + ϕρ
+

(1 − ϑt)

1 − ϑt + ϕρ

)
(a − g) + g

Kt

= aKt,

so this equilibrium candidate satisfies the aggregate resource constraint (10).

It is left to show that at the asset prices qB and qK, agents’ bond portfolio share θt = ϑt is
consistent with their optimal choice condition for θt. We consider two cases:

1. If ϑt > 0, then equation (27) (that ϑ satisfies by assumption) is equivalent to µϑ
t = ρ +

µ̆B
t − (1 − ϑt)

2 σ̃2 and rearranging the latter equation and using θt = ϑt yields

1 − θt =
1
σ̃2

ρ + µ̆B
t − µϑ

t
1 − ϑt

. (34)

Next, by definition of ιt and qK
t

a − g− ιt

qK
t

=
(a − g)

(
1 − ϑt + ϕρ

)
− (1 − ϑt) (a − g) + ρ

(1 − ϑt)
(
1 + ϕ (a − g)

)
=

(
1 + ϕ (a − g)

)
ρ

(1 − ϑt)
(
1 + ϕ (a − g)

) =
ρ

1 − ϑt
,

and substituting this into equation (34) yields

1 − θt =
1
σ̃2

(
a − g− ιt

qK
t

− µϑ − µ̆B
t

1 − ϑt

)
,

which is precisely households’ first-order condition with respect to θt as stated in the main
text.

2. If ϑt = 0, then qB
t = 0, hence bonds have no value and the return on bonds is not well-

defined. Consequently, the household portfolio choice condition as stated in the main text
is not directly applicable. Instead, households demand a finite quantity of bonds (which
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is consistent with equilibrium and θt = 0), if and only if q̇B
t ≤ 0, i.e., the value of bonds is

expected to remain nonpositive in the infinitesimal future. Because qB
s ≥ 0 for all s, this

condition reduces here to q̇B
t = 0 ⇔ ϑ̇t = 0. We therefore have to show that ϑt = 0 implies

ϑ̇t = 0. We do this in two steps:

First, at ϑt = 0, equation (27) is misleading, because it appears that always ϑ̇t = 0, but
this ignores that by the government budget constraint, µ̆B

t = g−τta
qB

t
= g−τta

ϑt

1−ϑt+ϕρ
1+ϕ(a−g)

, which
diverges to ±∞ as ϑt ↘ 0 unless g− τta → 0. Nevertheless, the right-hand side of (27)
remains well-defined even at the limit point and for g− τta ↛ 0, if we plug in µ̆B

t ,

ϑ̇t =
(

ρ − (1 − ϑt)
2 σ̃2

)
ϑt + (g− τta)

1 − ϑt + ϕρ

1 + ϕ (a − g)
. (35)

We use this representation of ODE (27) in the remaining argument.

Second, substituting ϑt = 0 into equation (35) yields

ϑ̇t = (g− τta)
1 − ϑt + ϕρ

1 + ϕ (a − g)
= 0,

where the last equality follows from the government budget constraint (3) in the limit
Pt → ∞ (which is equivalent to qB

t = ϑt = 0) and the assumption that government policy
is specified to be consistent with the government budget constraint.56 Consequently, ϑt =

0 implies indeed ϑ̇t = 0.

A.6 Model Extension with Bubbles on Other Assets

The setup is as outlined in Section 7. We start by imposing on households the additional
constraint that they have to invest a fraction xt of their (bond) savings bi

t into government bonds
and a fraction 1 − xt into the other bubble asset, where xt = qB

t /q̂B
t is exogenously given. It is

then easy to see that the household problem is precisely as in Section 3.1 for the perpetual youth
model and as in Section 3.2 for the idiosyncratic risk model, except that bi

t denotes savings in
the bubble portfolio (whereas before we set xt ≡ 1).

In addition, also the model solution is precisely as before with two exceptions:

First, we have to replace everywhere qB
t with q̂B

t , ϑt with ϑ̂t as only the total bubble portfolio

56To be precise, our assumption only excludes negative primary surpluses g > τta when the market is not willing
to absorb the bond issuance necessary to finance these deficits. The government could always choose positive
surpluses. However, this cannot be the case here as it would imply ϑ̇t < 0 and thus not be consistent with the
assumption that ϑt is contained in [0, 1].
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matters, not its individual components. In particular, we now obtain the equations

q̂B
t = ϑ̂t

a − g

ρ
,

qK
t =

(
1 − ϑ̂t

) a − g

ρ

for q̂B
t and qK

t in the perpetual youth model and the equations

ιt =
(1 − ϑ̂t) (a − g)− ρ

1 − ϑ̂t + ϕρ
,

q̂B
t = ϑ̂t

1 + ϕ (a − g)

1 − ϑ̂t + ϕρ
,

qK
t =

(
1 − ϑ̂t

) 1 + ϕ (a − g)

1 − ϑ̂t + ϕρ
.

for q̂B
t , qK

t , and ιt in the idiosyncratic risk model (and, in both cases, qB
t = xtq̂B

t by the exogenous
portfolio split).

Second, the solution procedure that resulted in the valuation equation for ϑt in the main text
has to take into account that only a fraction xt of the bubble is now diluted by bubble mining.
As a result, the return on the bubble portfolio is not drBt but dr̂Bt as stated in the main text,

dr̂Bt =

(
gt + µ

q̂,B
t − qB

t

q̂B
t

µ̆B
t

)
dt,

where µ̆B
t enters with an additional coefficient qB

t /q̂B
t = xt. As a consequence, the derivation of

the ODE for ϑ̂t changes relative to the baseline models:

1. For the perpetual youth model, when equating the return of the bubble portfolio with the
risk-free rate, dr̂Bt = r f

t dt, we obtain

r f
t = g + µ

q̂,B
t − qB

t

q̂B
t

µ̆B
t

instead of equation (8).

2. For the idiosyncratic risk model, the portfolio choice first-order condition becomes

a − g− ιt

qK
t

−
µϑ

t −
qB

t
q̂B

t
µ̆B

t

1 − ϑt
=
(

1 − θi
t

)
σ̃2

instead of the condition stated in Section 3.2.
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In both cases, the only difference is that also in these conditions µ̆B
t is replaced with qB

t
q̂B

t
µ̆B

t .

Otherwise, the derivation of µϑ̂
t proceeds precisely as in the baseline models (there for µϑ

t ) and
thus the result must be

µϑ̂
t = ρ +

qB
t

q̂B
t

µ̆B
t − f (1 − ϑt) .

This implies equation (16) stated in the main text.

In sum, the restricted model with the additional constraint on household portfolios has pre-
cisely the same equations as the baseline model, except that ϑt is replaced with ϑ̂t, qB

t with
q̂B

t , and µ̆B
t with xtµ̆

B
t . Therefore, any theoretical proposition about the baseline model holds

equally also for the restricted model for any exogenous xt ∈ (0, 1]. This includes Lemma 1, so
that a time path ϑ̂t corresponds to a (unique) equilibrium of the restricted model if and only if
it solved equation (16) and satisfies 0 ≤ ϑ̂t ≤ 1 for all t.

The results in the previous paragraph remain true in particular if we choose for xt the pro-
cess qB

t /q̂B
t that arises endogenously in the actual model where the portfolio choice between the

two bubble assets is not constrained.57 Then, there is an additional no-arbitrage condition be-
tween the two bubble assets because both assets must earn the risk-free rate for the household
to be indifferent between the two.58 One way to write this condition is as drBt = dr̂Bt , which is
equivalent to

g + µ
q̂,B
t − qB

t

q̂B
t

µ̆B
t = g + µ

q,B
t − µ̆B

t

⇔ µ
q̂,B
t − µ

q̄
t︸ ︷︷ ︸

=µϑ̂
t

+
ϑ̂t − ϑt

ϑ̂t
µ̆B

t = µ
q,B
t − µ

q̄
t︸ ︷︷ ︸

=µϑ
t

where q̄t := q̂B
t + qK

t and µ
q̄
t := ˙̄qt

q̄t
. Solving for µϑ

t and multiplying by ϑt yields

ϑ̇t =
ϑt

ϑ̂t

(
˙̂ϑt +

(
ϑ̂t − ϑt

)
µ̆B

t

)
,

which, after substituting in equation (16), is equivalent to equation (17) in the main text. This
implies that equation (17) is necessary for any model equilibrium in the actual (unrestricted)
model. It is also clearly the case that 0 ≤ ϑt ≤ ϑ̂t ≤ 1 for all t.

Conversely, if we have time paths ϑt, ϑ̂t with 0 ≤ ϑt ≤ ϑ̂t ≤ 1 for all t that satisfy equations

57This is simply, because if xt happens to be the process qB
t /q̂B

t from the actual model, then the constrained port-
folio choice is already unconstrained optimal and imposing the constraint becomes redundant.

58This statement remains true even if we allow for stochastic “bubble fluctuations” between the two assets. The
reason is that the aggregate bubble portfolio has a return dr̂Bt that is free of any risk, thus agents are perfectly hedged
against such “bubble fluctuations” and, at the margin, require a zero risk premium for holding these risks.
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(16) and (17), then the previous arguments show that (a) there is an (unique) equilibrium of the
restricted model with xt := ϑt/ϑ̂t such that ϑ̂t = q̂B

t /(q̂B
t + qK

t ) in equilibrium, (b) for qB
t :=

ϑt/ϑ̂tq̂B
t , the return on government bonds drBt as defined by equation (11)59 satisfies the no-

arbitrage condition drBt = dr̂Bt ,60 and (c) both government bonds and the other bubble asset
have a nonnegative value at all times (due to 0 ≤ qB

t ≤ q̂B
t ). Consequently, the equilibrium of

the restricted model for xt = ϑt/ϑ̂t is even an equilibrium of the actual, unrestricted, model,
as the no arbitrage condition ensures that agents are willing to hold a fraction xt of the bubble
portfolio in government debt and due to nonnegative valuations, there is no deviation strategy
that relies on disposing certain assets (or accumulating them indefinitely, which is equivalent).

To sum up, the following version of Lemma 1 holds in the extended model:

Lemma 2. Absolutely continuous functions ϑ, ϑ̂ : [0, ∞) → R correspond to a (unique) model equilib-
rium of the extended model with bubbles on other assets, if and only if they satisfy equations (16) and
(17) and, for all t ≥ 0, 0 ≤ ϑt ≤ ϑ̂t ≤ 1.

We conclude this appendix by remarking that in the case of the threshold policy discussed
in the main text, the two ODEs for ϑ̂t and ϑt can be written as

˙̂ϑt =


(

ρ − f
(

1 − ϑ̂t

))
ϑ̂t + µ̆Bϑt, ϑt ≥ ϑ(

ρ − f
(

1 − ϑ̂t

))
ϑ̂t − (τ̄a − g) h

(
1 − ϑ̂t

)
, ϑt < ϑ

, (36)

ϑ̇t =


(

ρ − f
(

1 − ϑ̂t

))
ϑt + µ̆Bϑt, ϑt ≥ ϑ(

ρ − f
(

1 − ϑ̂t

))
ϑt − (τ̄a − g) h

(
1 − ϑ̂t

)
, ϑt < ϑ

. (37)

where the function h is as in the main text.

A.7 Proof of Proposition 1

In this appendix, we can limit attention to the case in which µ̆B ≥ 0. If µ̆B < 0, then the
government always runs positive primary surpluses that are bounded away from zero under
the threshold policy considered here.61 In this case, it is necessarily true that r f > g and thus
there is no space for bubbles, whether on government debt or other assets. It must therefore be

59This is the equation for the idiosyncratic risk model. For the perpetual youth model, one simply replaces Φ(ιt)−
δ with g.

60This follows immediately from the derivation of (17) above, as all transformations have been equivalence trans-
formations.

61In fact, even the surplus-capital ratio is bounded away from zero which is what is ultimately relevant in a
growing economy.
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that ϑ̂t = ϑt and the arguments in the main text for the baseline model without bubbles on other
assets are sufficient to establish that ϑt = ϑ∗ is the unique equilibrium.

By the results derived in Appendix A.6, all model equilibria under the threshold policies are
associated with ϑ and ϑ̂ paths that satisfy equations (36) and (37) and the additional condition
that 0 ≤ ϑt ≤ ϑ̂t ≤ 1 for all t. We show that such solution paths ϑ and ϑ̂ must satisfy all the
assertions made in Proposition 1. We start by proving the following auxiliary lemma:

Lemma 3. Under the threshold policy, for any equilibrium and all t ≥ 0

ϑt ∈ [ϑ, ϑ∗], ϑ̂t ∈ [ϑ∗, ϑ∗
0 ],

where ϑ∗, ϑ∗
0 ≥ 0 are defined by the equations

f (1 − ϑ∗) = ρ + µ̆B

f (1 − ϑ∗
0) = ρ

and satisfy ϑ∗ ≤ ϑ∗
0 .

Proof. The proof proceeds by showing that if for any initial time t, ϑt or ϑ̂t are outside the as-
serted intervals, then the mathematical solution to ODEs (36) and (37) must cross the boundaries
0 or 1 in finite time and thus cannot correspond to an equilibrium solution by Lemma 2. We re-
peatedly use the simple fact that if the right-hand side of an ODE for a function xt is continuous
in xt, strictly negative for all xt ∈ [0, x), and strictly positive for all xt ∈ (x, 1], then all solution
paths with xt < x for some t reach 0 in finite time and all solution paths with xt > x̄ for some t
reach 1 in finite time.62

We start by ruling out ϑt < ϑ for any t. For ϑt ∈ [0, ϑ), ODE (37) implies a negative value for
ϑ̇t regardless of the value of ϑ̂t ∈ [0, 1]. To see this, distinguish two cases:

1. If ϑ̂t ≤ ϑ∗
0 , then ρ − f

(
1 − ϑ̂t

)
≥ 0. Thus, by ϑt ≤ ϑ̂t and monotonicity of f and h,

ϑ̇t ≤ ˙̂ϑt =

(
ρ − f

(
1 − ϑ̂t

))
ϑ̂t − (τ̄a − g) h

(
1 − ϑ̂t

)
≤
(
ρ − f (1 − ϑ∗

0)
)

ϑ∗
0 − (τ̄a − g) h (1 − ϑ∗

0)

= − (τ̄a − g) h (1 − ϑ∗
0) < 0,

where the last inequality follows from the fact that h is bounded away from 0 for nonneg-
ative arguments.

62The proof of this simple fact is omitted, but the basic idea is that close to the boundaries, ẋt is bounded away
from zero and thus boundaries must be reached in finite time as opposed to asymptotically.
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2. If ϑ̂t ≥ ϑ∗
0 , then

(
ρ − f

(
1 − ϑ̂t

))
ϑt ≤ 0 and hence

ϑ̇t ≤ − (τ̄a − g) h
(

1 − ϑ̂t

)
< 0.

So in any case, we obtain ϑ̇t < 0 and can thus rule out solution paths with ϑt < ϑ at any time t.
In particular, we can from now on assume that always ϑt ≥ ϑ (and it suffices to show that the
lower boundary ϑ instead of 0 is reached in finite time).

Next, we show that ˙̂ϑt > 0 for any ϑ̂t ∈ (ϑ∗
0 , 1], regardless of the value of ϑt ∈ [0, 1]. This

rules out ϑ̂t > ϑ∗
0 for any t. Indeed, we have µ̆Bϑt ≥ 0 (by the assumption µ̆B ≥ 0) and thus

˙̂ϑt ≥
(

ρ − f
(

1 − ϑ̂t

))
ϑ̂t.

For ϑ̂t > ϑ∗
0 , ρ − f

(
1 − ϑ̂t

)
> 0 and ϑ̂t > 0, so also the product on the right must be strictly

positive.

It is left to show ϑt ≤ ϑ∗ ≤ ϑ̂t for all t. Suppose first that ϑ ≤ ϑt ≤ ϑ̂t < ϑ∗. Then,
ρ + µ̆B − f

(
1 − ϑ̂t

)
< 0 and thus

˙̂ϑt ≤
(

ρ + µ̆B − f
(

1 − ϑ̂t

))
ϑ̂t < 0,

ϑt =

(
ρ + µ̆B − f

(
1 − ϑ̂t

))
ϑt < 0.

Consequently, ϑt would have to cross the lower bound ϑ in finite time, in contradiction to ϑt ≥ ϑ

for all t. Thus, we must have ϑ̂t ≥ ϑ∗ for all t. Next, suppose that ϑ∗ < ϑt ≤ ϑ̂t ≤ ϑ∗
0 . Then

ρ + µ̆B − f
(

1 − ϑ̂t

)
> 0 and thus

ϑ̇t =

(
ρ + µ̆B − f

(
1 − ϑ̂t

))
ϑt > 0.

Consequently, ϑt would have to cross the upper bound ϑ∗
0 in finite time, in contradiction to

ϑt ≤ ϑ̂t ≤ ϑ∗
0 for all t. Thus, we must also have ϑt ≤ ϑ∗ for all t.

This concludes the proof of the Lemma (the additional inequality ϑ∗ ≤ ϑ∗
0 is obvious).

Lemma 3 implies additional restrictions that simplify the proof of the proposition substan-
tially. First, due to ϑt ≥ ϑ, the first case in equations (36) and (37) is always true in equilibrium.
Second, due to ϑ∗ ≤ ϑ̂t < ϑ∗

0 , we have

ρ − f
(

1 − ϑ̂t

)
< 0 ≤ ρ + µ̆B − f

(
1 − ϑ̂t

)
. (38)
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Define now ϑo
t := ϑ̂t − ϑt, which is the share of wealth that is due to the other bubble asset.

Combining ODEs (36) and (37) implies

ϑ̇o
t =

(
ρ − f

(
1 − ϑ̂t

)) (
ϑ̂t − ϑt

)
=

(
ρ − f

(
1 − ϑ̂t

))
ϑo

t (39)

along any equilibrium path. By inequality (38), the first factor is always negative and thus
ϑ̇o

t ≤ 0.

Next, we can write equation (36) as

˙̂ϑt =

=:F(ϑ̂t)︷ ︸︸ ︷(
ρ + µ̆B − f

(
1 − ϑ̂t

))
ϑ̂t −µ̆B

(
ϑ̂t − ϑt

)
= f (ϑ̂t)− µ̆Bϑo

t

where due to inequality (38), F is a strictly increasing function in the relevant domain for ϑ̂. We
show that then ϑ̂ must be nonincreasing over time. Indeed, if this was not the case, then there
would be t0 < ∞ such that ˙̂ϑt0 > 0 and thus F(ϑ̂t0) > µ̆Bϑo

t0
. But due to monotonicity of f and

ϑo, then also for all ϑ̂ ≥ ϑ̂t0 and all t ≥ t0

F(ϑ̂) ≥ F(ϑ̂t0) > µ̆Bϑo
t0
≥ µ̆Bϑo

t .

This implies that ˙̂ϑt ≥ ˙̂ϑt0 > 0 for all t ≥ t0 and thus ϑ̂t would have to grow without bounds
contradicting ϑ̂t < ϑ∗

0 by Lemma 3.

Because ϑ̂ is nonincreasing over time and bounded below by ϑ∗ by Lemma 3, the limit
limt→∞ ϑ̂t exists and is ≥ ϑ∗. We show that the inequality cannot be strict. If it was, then there
would be some ϑ∗∗ > ϑ∗ and some T < ∞ such that ϑ̂t ≥ ϑ∗∗ for all t ≥ T. For such t, we would
then have (by equation (37))

ϑ̇t =

(
ρ + µ̆B − f

(
1 − ϑ̂t

))
ϑt

≥
(

ρ + µ̆B − f (1 − ϑ∗∗)
)

ϑt,

=
(

f (1 − ϑ∗∗)− f (1 − ϑ∗)
)

ϑt > 0

so ϑt must grow without bounds contradicting ϑt ≤ ϑ∗ by Lemma 3. This completes the proof
that ϑ̂t → ϑ∗ as t → ∞.

The remaining results in the Proposition then easily follow:

With the limit result for ϑ̂t already shown, the limit result ϑt → ϑ∗ is equivalent to ϑo
t → 0.
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This is a direct implication of equation (39) because for µ̆B > 0, ϑ∗ < ϑ∗
0 , thus the (decreasing)

function t → ϑ̂t is bounded away from 0 and consequently the coefficient in equation (39) is
also bounded away from zero. As a consequence, 0 ≤ ϑo

t ≤ ϑo
0e−αt for some positive decay rate

α > 0, and thus ϑo
t → 0.

If no bubbles on other assets are permitted, then ϑt = ϑ̂t. Due to Lemma 3, ϑt = ϑ̂t ≥ ϑ∗ ≥
ϑt. Thus, equality must hold everywhere.

Similarly, if ϑ = ϑ∗, then Lemma 3 implies ϑt = ϑ∗ for all t. In particular, ϑ̇t = 0 and thus
ODE (37) implies for all t:

ρ + µ̆B − f
(

1 − ϑ̂t

)
= 0 ⇔ ϑ̂t = ϑ∗.

This concludes the proof of the proposition.
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