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ABSTRACT

There is growing concern about "algorithmic bias" - that predictive algorithms used in decision-
making might bake in or exacerbate discrimination in society. When will these "biases" arise? 
What should be done about them? We argue that such questions are naturally answered using the 
tools of welfare economics: a social welfare function for the policymaker, a private objective 
function for the algorithm designer and a model of their information sets and interaction. We 
build such a model that allows the training data to exhibit a wide range of "biases." Prevailing 
wisdom is that biased data change how the algorithm is trained and whether an algorithm should 
be used at all. In contrast, we find two striking irrelevance results. First, when the social planner 
builds the algorithm, her equity preference has no effect on the training procedure. So long as the 
data, however biased, contain signal, they will be used and the algorithm built on top will be the 
same. Any characteristic that is predictive of the outcome of interest, including group 
membership, will be used. Second, we study how the social planner regulates private (possibly 
discriminatory) actors building algorithms. Optimal regulation depends crucially on the 
disclosure regime. Absent disclosure, algorithms are regulated much like human decision-makers: 
disparate impact and disparate treatment rules dictate what is allowed. In contrast, under stringent 
disclosure of all underlying algorithmic inputs (data, training procedure and decision rule), once 
again we find an irrelevance result: private actors can use any predictive characteristic. 
Additionally, now algorithms strictly reduce the extent of discrimination against protected 
groups relative to a world in which humans make all the decisions. As these results run counter to 
prevailing wisdom on algorithmic bias, at a minimum, they provide a baseline set of assumptions 
that must be altered to generate different conclusions.
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1 Introduction

The growing use of algorithms to inform consequential decisions such as hiring, credit approvals,

pre-trial release and medical testing has been accompanied by growing concerns about the risk

of “algorithmic bias.” Lacking a single definition, the blanket term algorithmic bias is often used

to describe fears that algorithmic decision-making may exacerbate existing discrimination and

inequality in society.1 These fears arise because the data used to train algorithms often reflect

historical discrimination and inequality. For example, resume screening software is trained upon

past hiring decisions, which themselves might have been discriminatory. Criminal records used in

recidivism prediction may bake in differential arrest rates by police or conviction rates by judges.

A theoretical literature, largely in computer science, explores how such biases arise and how their

presence should change how algorithms are designed and deployed.

Concerns about algorithmic bias, at their heart, are questions of optimal policy and existing re-

search typically misses three ingredients economists view as central to any policy analysis. First,

there is rarely a clear specification of the social planner’s preferences over outcomes (and how

they are distributed across the population) from which optimal policy can be derived. Instead,

in most existing work, fairness is often defined as a property of the algorithm that is imposed as

an axiomatic constraint on the training procedure, rather than being derived from the outcomes

produced by the resulting decisions. Second, there is rarely a description of the policy tools avail-

able that could influence outcomes beyond constraining the algorithm itself. Finally, incentive

problems are often overlooked; instead it is assumed that the algorithm designer shares society’s

preferences.

In this paper, we incorporate the new issues raised by the use of supervised machine learning

algorithms into a canonical welfare economics framework that includes these three ingredients.

We focus on situations in which an empirically-based supervised machine learning algorithm in-

forms a screening decision - a situation where one or more people must be selected from a larger

pool based upon a prediction of an uncertain outcome of interest for each of them. We model

a supervised machine learning algorithm as consisting of two components: a “predictive algo-

1The literature on algorithmic bias is vast. Barocas et al. (2019) is a textbook introduction to the computer science
literature on this topic. Chouldechova and Roth (2020) provides a recent overview of this literature as well. Cowgill
and Tucker (2019) provides a survey for economists.
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rithm,” which takes in training data consisting of outcomes and observed characteristics for a

set of individuals and returns a prediction function, and a “decision rule,” which uses the con-

structed prediction function to make decisions. A policymaker therefore has two tools available:

the design of the predictive algorithm and the choice of how the decision rule uses the predic-

tions. Next, we assume the planner’s social welfare function is defined over the outcomes of the

screening problem, incorporating both a concern for efficiency and an explicit preference for more

equitable outcomes across groups.

We take the social welfare function as a primitive and derive its implications for algorithm

construction and regulation in two policy environments. In both, we establish sharp null results

that run counter to the prevailing wisdom around how best to manage algorithmic bias. Even for

those who do not believe these counter-intuitive results, the model provides a baseline against

which must be asked: what assumptions of the model must be modified to break these results?

We first consider the algorithm choice of a social planner who wishes to maximize social wel-

fare and makes the screening decisions herself - the “first-best problem.” We find an equity irrel-

evance result: the planner’s equity preferences have no effect on how the predictive algorithm is

constructed. All characteristics, including group membership, are given to the predictive algo-

rithm, and fairness concerns do not lead the social planner to place any additional constraints on

her training procedure. This is robust to a wide variety of common concerns surrounding sources

of algorithmic bias. For example, it holds even if the observed outcome in the training data differs

from the outcome of interest in some way that is systematically related to group membership, or

if there are differences in the conditional base rates of the outcome of interest across groups, or

if there are differences in the distribution of characteristics across groups. In constructing predic-

tions, the social planner’s only desired property is accuracy.

The intuition underlying this result is exceedingly simple. In the supervised machine learning

pipeline, the predictive algorithm simply summarizes information in the observed training data.

Irrespective of her preferences, the social planner does not wish to destroy potentially useful infor-

mation. Instead, equity preferences are better implemented by changing the decision rule - how

the outputs of the constructed prediction function are used. For example, the planner may use

group-specific thresholds for admissions to implement her equity preferences, while still using

the algorithm’s outputted predictions to accurately rank-order the candidates within groups.
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Next, we consider the "second best" regulation problem, where the social planner neither makes

the screening decisions nor the algorithm design choices; instead private actors, some with dis-

criminatory preferences, do so. For example, in the labor market, individual firms decide who to

hire and how to do that hiring. Producing equitable employment outcomes involves implement-

ing regulations around the hiring process. In our model of this regulation problem, we assume

some private actors are taste-based discriminators in the spirit of Becker (1957), there are no aver-

age group differences in the outcome of interest conditional on observable characteristics and that

the social planner has no further equity preferences beyond limiting discrimination.

As a first step, we consider optimal regulation absent algorithms in which the regulator must

decide what kinds of characteristics a private actor can use in their decision (e.g. hiring) rules.

The optimal regulation we derive here resembles existing anti-discrimination policy: prohibitions

against disparate treatment as well as tests for disparate impact. Intuitively, the social planner

faces a “flexibility tradeoff” in regulating human decision-makers – allowing more characteristics

to be used leads to more accurate predictions, but the flexibility to use extra characteristics may

also be used to screen out members of the disadvantaged group.

We then consider the case in which private actors use an algorithm in their screening decisions.

Optimal regulation changes substantially as long as there is full disclosure of all parts of the algo-

rithm: the data, training procedure and decision rule. We refer to such disclosures as an algorithmic

audit. With such algorithmic audits in place, it is now optimal to allow the predictive algorithm

to access to any characteristic that is predictive of the outcome of interest. The ability to carry out

algorithmic audits enables the social planner to ensure that all human decision-makers (discrim-

inatory or non-discriminatory) select the same admissions rule if they have the same prediction

function, which reduces the equilibrium level of discrimination relative to a world in which al-

gorithms are not used. With the correct regulatory system in place – specifically, one that allows

algorithmic audits to be conducted – the introduction of predictive algorithms into screening de-

cisions can lead to not only improved prediction, but can simultaneously make it easier to detect

discrimination in the market.

Related literature: Our approach is crucially different from that taken by a large community

of researchers in computer science. Existing research typically begins by noting that a supervised
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machine learning algorithm generates a mapping from observed data into predictions or decisions

and then formally defines what it means for these mappings to be “fair.” Given a particular defi-

nition, researchers then ask how to construct such fair mappings from data and whether a given

algorithm satisfies this property. This framework is enormously influential, generating numerous

important insights in the study of algorithmic decision-making. Canonical papers in computer

science include Dwork et al. (2012), Zemel et al. (2013), Feldman et al. (2015), Hardt et al. (2016),

Corbett-Davies et al. (2017), Raghavan et al. (2017) and Chouldechova (2017).

In contrast, we define fairness in terms of preferences over the resulting outcomes of the

screening decision using a social welfare function. We take the preferences that are summarized by

the social welfare function as our primitive and derive its implications for algorithm construction.

Several papers in computer science also examine the connections between definitions of predictive

fairness in computer science and social welfare. See, for example, Hu and Chen (2018), Heidari

et al. (2018), Balashankar et al. (2019) and Hu and Chen (2020). Moreover, existing research in

computer science tends to focus on the first-best problem in which a benevolent social planner

controls the design and implementation of the algorithm, overlooking agency problems that arise

when algorithms are designed and implemented by third-party decision-makers. Our analysis of

the second-best problem is a new contribution, highlighting the value of an economic perspective

to this problem. We discuss the connections to the literature in computer science in more detail in

Section 3 after we have formally established our framework.

Finally, we highlight recent papers in economics that also incorporate insights from economics

into the study of algorithmic decision-making. Athey et al. (2020) studies the optimal delegation

rule of a principal that may either delegate decision-making to an algorithmic decision-rule or a

human decision-maker. Cowgill and Stevenson (2020), applying classic strategic communication

models, highlights that if human decision-makers are aware that predictions are manipulated by

a planner, then human decision-makers may optimally ignore these predictions in their decisions.

Our formal analysis of the regulation problem builds upon ideas first discussed heuristically in

Kleinberg et al. (2018).
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1.1 An illustrative example: hiring decisions

Before presenting the model and core results formally, we first discuss an illustrative example

based upon hiring decisions that further develops the core intuition of our framework.

Consider an employer with a fixed number of job openings available and a large pool of appli-

cants that apply to the job openings. Each applicant is described by some observed characteristics,

which are gleaned from their submitted resume. Applicants fall into two groups: an advantaged

group (e.g., whites, males) and a disadvantaged group (e.g., blacks, females). At the time of the

hiring decision, the employer does not observe the on-the-job productivity of any given applicant

and the employer prefers to hire applicants with high productivity. Therefore, the employer must

make predictions about each applicant’s on-the-job productivity based on their observed charac-

teristics. In doing so, the employer has access to a dataset that consists of the resumes of its past

and current employees along with some measure of their on-the-job performance, such as per-

formance reviews. The employer may attempt to learn the relationship between the information

available in the resumes and whatever measure of productivity is available in the data. For exam-

ple, a supervised machine learning algorithm may be used to predict performance reviews in this

historical dataset and then make new predictions on the pool of new applicants.

We first consider the case in which the employer is the social planner itself, for example a

large government agency, and the social planner would prefer to hire more members from the

disadvantaged group. The supervised machine learning algorithm provides the social planner

with as accurate a rank-ordering of the applicants based on predictions of future performance

reviews as possible given the available data. But, even this simple example makes clear the po-

tential problem - we intentionally suggested performance reviews as a proxy for productivity, not

only because they are widely used for this purpose, but also because the potential for bias is so

obvious. Indeed, the prospect for bias in such data is one of the key concerns raised surrounding

the use of predictive algorithms. So, how would the prospect of bias in this outcome change the

non-discriminatory social planner’s wishes about whether to use this predictive algorithm?

The potentially surprising answer is: such bias would not change the social planner’s desire to

use the algorithm. The algorithm’s prediction function simply summarizes the information in the

observed data. If the social planner believes these data may be biased against the disadvantaged
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group, there is an easy solution - she can use those prior beliefs to adjust how the hiring rule

uses those predictions, setting a different threshold for the disadvantaged group. The use of the

predictive algorithm ensures that we wind up with the most accurate possible rank-ordering of

applicants within each group. Indeed so long as the data, as biased as they are, include any signal

that is relevant for underlying worker productivity, the social planner will wish to use these data.

We present these results in Section 3.

Of course, in most cases, the social planner is not the employer, and instead, individual firms

make hiring decisions themselves. Moreover, some firms may even wish to explicitly discrimi-

nate against the disadvantaged group. For this reason, we next consider the case in which the

social planner must regulate the algorithmic choices and hiring decisions of possibly discrimi-

natory firms. To analyze this regulation problem, we introduce further assumptions about the

environment and the policy tools that are available to the social planner. We assume some firms

are taste-based discriminators against the disadvantaged group, the social planner has the same

preferences as non-discriminatory firms and there are no group differences in productivity condi-

tional on the observed characteristics. We also assume that the social planner can only influence

the hiring decisions of firms by placing restrictions on the characteristics that may be used in hir-

ing decisions. This is consistent with the observation that regulators rarely tell firms exactly how

many people to hire in practice, but regulators do tell firms how they are allowed to rank-order

and select those people they do hire - for example, prohibiting firms from explicitly using group

membership itself as a criteria in hiring decisions.

In Section 4.4, we show, absent algorithms, the social planner faces all of the challenges in

detecting and regulating discrimination that have been wrestled with for quite some time. For

example, if the social planner knew that only discriminatory firms operated in the market, then

she would always ban firms from hiring members of the advantaged and disadvantaged group

with the same observable characteristics at different rates. When both non-discriminatory and

discriminatory firms operate in the market, the social planner faces a “flexibility tradeoff.” The

more applicant characteristics that firms are able to use, the better able they are to accurately

predict productivity. But at the same time, the more applicant characteristics that firms are able to

use, discriminating firms are more able to find characteristics that help predict group membership

as well, even if they are not necessarily very predictive of the outcome itself, thereby enabling
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these firms to screen out members of the disadvantaged group. This creates a tradeoff between

efficiency and equity. Given this intrinsic difficulty of detecting discrimination in this human-only

decision environment, the equilibrium level of discrimination is strictly positive.

Finally, we establish how this regulation problem changes if firms adopt predictive algorithms

in their hiring decisions in Section 5. If there is full algorithmic disclosure, meaning firms must

disclose their entire prediction function, it is optimal to let any characteristic that is predictive of

the outcome of interest be used in hiring decisions. Moreover, under such a disclosure regime,

the equilibrium level of discrimination is zero. Why? The difficulty in regulating discrimination

arose because the social planner faced two sources of asymmetric information - she neither knew

which firms were discriminatory nor which characteristics were predictive of productivity. Under

full algorithmic disclosure, the social planner no longer faces asymmetric information over which

characteristics are predictive of productivity. For a set of firms that face the same relationship be-

tween applicant characteristics and productivity (i.e., firms for whom the underlying prediction

function is the same), the social planner can now force discriminatory and non-discriminatory

firms to make the same hiring decisions. We refer to these full algorithmic disclosures as “algo-

rithmic audits,” following Kleinberg et al. (2018). If such algorithmic audits can be put into place,

introducing an algorithm into the hiring process - even if there are discriminatory firms in the

marketplace - can reduce the equilibrium level of discrimination compared to a world with purely

human decisions.

2 The Screening Decision and the Social Welfare Function

We introduce the key building blocks of our model by defining the screening decision and the

social welfare function. There is a population of individuals that are to be screened into a program

based on predictions of an unknown outcome of interest. Each individual is described by a vec-

tor of observable characteristics, and these characteristics may be used to predict the outcome of

interest. The social welfare function is defined in terms of the resulting outcomes of the screening

decisions.
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2.1 The population of individuals

There is a unit mass of individuals divided into two groups, denoted G ∈ {0, 1}. We refer to

G = 1 as the “disadvantaged group.” Each individual in the population is described by a vector

of characteristics W = (W1, . . . , WJ) ∈ {0, 1}J . Each individual is also associated with two labels

Y∗ ∈ {0, 1}, Ỹ ∈ {0, 1}, where the label Y∗ is the “outcome of interest” and the label Ỹ is the

“measured outcome.” The population of individuals is summarized by a joint distribution P over

the random vector (Y∗, Ỹ, G, W).

Let

P(g, w) = P {G = g, W = w} , P(w) = P {W = w} (1)

be the fraction of individuals that belong to group g with characteristics w ∈ {0, 1}J and the

fraction of individuals with characteristics w respectively. Assume that P(g, w) > 0 for all (g, w) ∈

{0, 1}J+1. Finally, let

θ∗(g, w) = E [Y∗ |G = g, W = w] , θ̃(g, w) = E
[
Ỹ |G = g, W = w

]
(2)

denote the average outcome of interest Y∗ and the average measured outcome Ỹ among individ-

uals that belong to group g with characteristics w.

2.2 The screening decision

Individuals in the population may be granted admission into a program. The program is capacity

constrained and only a fraction C ∈ [0, 1] of the population may be granted admission. Admis-

sions decisions are made based on the observed characteristics W and group membership G. A

decision rule denoted t(g, w) ∈ [0, 1] describes the probability that an individual in group g with

characteristics w is admitted into the program. The capacity constraint implies that

∑
(g,w)∈{0,1}J+1

t(g, w)P(g, w) ≤ C. (3)

As we will see next, the social planner would like to make the admissions decisions based

on the outcome of interest Y∗. However, since Y∗ is not observed for any given individual in the

population at the time of the decision, the admissions decisions will instead be based upon predic-
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tions of the unknown outcome Y∗. These predictions will use the observed characteristics (G, W)

and the social planner’s beliefs about the joint distribution of (Y∗, Ỹ, G, W) in the population.

Before continuing, we introduce two simple examples to illustrate how our model maps into

common screening problems of interest.

Example 1 (Hiring). Which applicants should be hired for a job? Applicants are described by a vector of

characteristics (W) that may be gleaned from their submitted resumes. For example, these characteristics

may include traditional information such as the applicant’s education and work history. It may also include

“high-dimensional” features that are parsed used natural language processing algorithms such as the fre-

quency of certain words on the resume. Applicants have some unobserved productivity on the job (Y∗) and

we wish to infer their productivity from the observed resume.

Example 2 (Loan decisions). Which individuals should be granted a loan? Individuals submit an appli-

cation and other information to a financial institution for a loan. Applicants are described by a vector of

characteristics (W) that are contained in the application and other financial information that is available to

the financial institution. For example, this may include traditional characteristics such as the applicant’s

reported income, outstanding debt and stated purpose of the loan. It may also include a rich set of high-

dimensional, high-frequency transaction level data that the financial institution has access to if the applicant

is an existing customer. Applicants have an unobserved probability of repaying the loan (Y∗) and we wish

to infer their probability of loan repayment from the application.

2.3 The social welfare function

The social welfare function defines society’s preferences over the outcomes produced by the screen-

ing decisions. It is a weighted average of the outcome of interest among individuals that are

admitted into the program:

∑
(g,w)∈{0,1}J+1

ψgθ∗(g, w)t(g, w)P(g, w), (4)

where ψg ≥ 0 are generalized social welfare weights placed upon individuals in group g (Saez and

Stantcheva, 2016). The social welfare weights imply that the outcome of interest may be valued

differently across groups. If ψ1 > ψ0, then the outcomes associated with the disadvantaged group

are valued more than outcomes associated with the rest of the population, which implies that
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for a given average value of the outcomes among admitted people we would prefer to admit

more members of the disadvantaged group, capturing a preference for “equity.” Moreover, since

the social welfare function is defined directly in terms of the average outcome of interest of the

admitted group, it is larger whenever the admitted set has higher average values of the outcome

of interest, holding fixed the fraction of the population that is admitted into the program and the

composition of the admitted group. This captures a preference for more “efficient” outcomes.

Example 1 (continuing from p. 10). Productive workers (Y∗ = 1) produce output if hired and the social

welfare function depends on total output. However, the social planner wishes to protect black workers

(G = 1), and so places a larger weight on output produced by them in the social welfare function (ψ1 > ψ0).

Example 2 (continuing from p. 10). Loans are given out to consumers and credit-worthy borrowers

(Y∗ = 1) will not default on their loans. The social welfare function depends on the total loan repay-

ment rate. In addition, the social planner wishes to ensure that minority borrowers (G = 1) have access to

credit, and places more weight on credit access among these groups.

Remark 1. In Section A of the Appendix, we provide a simple motivation for the social welfare function in

Equation 4. We sketch a setting in which the utility of each individual depends on some measured outcome

and whether they are admitted into the program. The true outcome of interest is therefore the change in the

utilities of an individual from being admitted into the program at a given value of the observed outcome. The

social planner’s welfare weights may be higher on the disadvantaged group if the utility of an individual

from the disadvantaged group is uniformly lower than the utility of an individual from the advantaged

group. This may capture either un-modeled discrimination against the disadvantaged group or existing

disparities across groups in a reduced form manner.

2.4 The training dataset

From the social welfare function in Equation (4), it is immediate that the social planner wishes

to select an admissions rule t(g, w) that is based on the average outcome of interest θ∗(g, w). If

θ∗(g, w) were known, the social planner would simply construct a rank-ordering of the popula-

tion in terms of the welfare-weighted average outcome of interest ψgθ∗(g, w), admitting individ-

uals into the program in descending order until she reaches the capacity constraint C. However,

the average outcome of interest θ∗(g, w) is unknown, and the social planner faces a non-trivial

“prediction policy problem” (Kleinberg et al., 2015).

11



To construct estimates of θ∗(g, w), the social planner has access to a training dataset that consists

of N randomly drawn samples from the population of individuals. For each observation in the

training dataset, the characteristics (G, W) and the measured outcome Ỹ are recorded. Let DN =

{(Ỹi, Wi, Gi)}N
i=1 denote the observed training dataset. Even though the training dataset DN does

not contain the outcome of interest Y∗, it may still be useful in constructing predictions. For

example, if the measured outcome Ỹ is correlated with the outcome of interest Y∗, then there may

be useful information in the training dataset.

Example 1 (continuing from p. 10). We would prefer to hire workers that are productive but productivity

is unobserved. Instead, among currently hired employees, we observe performance reviews Ỹ, which is a

possible proxy for productivity. A training dataset DN may consist of the observed characteristics of past

and current employees along with their performance reviews.

Example 2 (continuing from p. 10). We would like to grant loans to applicants that will repay. Among

current borrowers, we observe whether they have missed repayments or have made late payments Ỹ, which

is a possible proxy for repayment ability. A training dataset DN may consist of past and current loans along

with their repayment history.

3 The Social Planner’s First-Best Algorithm Design

In this section, we define the social planner’s first-best problem and characterize its solution. The

social planner is a Bayesian decision-maker, specifying her prior beliefs about the conditional joint

distribution of the measured outcome Ỹ and the outcome of interest Y∗ given the characteristics

(G, W). The social planner uses the observed training dataset DN to update these beliefs.

We then characterize the social planner’s optimal algorithm that maximizes social welfare.

For a fixed training dataset DN , the social planner’s optimal algorithm ranks the population using

her posterior beliefs about the average outcome of interest θ∗(g, w) and then admits individuals

into the program based on this ranking, applying a group-specific threshold for admission. Next,

we show that as the size of the training dataset DN grows large, the ranking used by the social

planner is equivalent to the ranking that would be produced by constructing a consistent estimate

of the average measured outcome θ̃(g, w) and then applying an ex-post adjustment based on her

prior beliefs. Together these results imply a strong form of equity irrelevance - the social planner’s

equity preferences only modify the decision rule, not the predictive algorithm.
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3.1 The social planner’s beliefs

We assume that the social planner knows the marginal distribution of the characteristics (G, W) in

the population and only faces uncertainty over the conditional joint distribution of the measured

outcome Ỹ and the outcome of interest Y∗. The social planner is a Bayesian decision-maker with

prior beliefs about how the measured outcome relates to the outcome of interest.

Formally, for y∗m, ỹk ∈ {0, 1}, define the parameters

P
{

Y∗ = y∗m, Ỹ = ỹk|G = g, W = w
}
≡ ηm,k(g, w) (5)

P {Y∗ = y∗m|G = g, W = w} = ηm,0(g, w) + ηm,1(g, w) ≡ η∗m(g, w) (6)

P
{

Ỹ = ỹk|G = g, W = w
}
= η0,k(g, w) + η1,k(g, w) ≡ η̃k(g, w). (7)

Connecting to our previous notation, notice η∗1 (g, w) = θ∗(g, w) and η̃1(g, w) = θ̃(g, w). Let

η = {ηm,k(g, w) : m ∈ {0, 1} k ∈ {0, 1}, g ∈ {0, 1}, w ∈ {0, 1}J} collect together these parameters

at each possible value of the characteristics (G, W). The social planner’s prior beliefs are a prior

distribution π(·) over the parameters η.

The social planner uses the observed training data to update her prior beliefs π(·), forming a

posterior distribution π|DN . The likelihood function for the observed training data is simply

L(DN ; η) = ΠN
i=1η̃1(Gi, Wi)

Ỹi × η̃0(Gi, Wi)
1−Ỹi × P(Gi, Wi). (8)

Since the marginal distribution of (G, W) is known, the likelihood function only depends on the

observed training dataset DN and the parameters η but not the marginal distribution P(g, w). Ap-

plying Bayes’ rule, the social planner uses the observed training dataset to construct her posterior

beliefs π|DN .

3.2 Characterizing the social planner’s first-best admissions rule

Given the social welfare function and her prior beliefs π, the social planner selects an admission

rule to maximize expected social welfare subject to her capacity constraint C ∈ [0, 1]. This is the

social planner’s first-best problem.

Definition 1. Given prior beliefs π, social welfare weights (ψ0, ψ1) and capacity constraint C, the social
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planner’s first-best problem is

max
t(g,w;DN)

Eπ

 ∑
(g,w)

ψgEη [θ
∗(g, w)t(g, w; DN)] P(g, w)


s.t. ∑

(g,w)

t(g, w; DN)P(g, w) ≤ C with probability one.

The solution t∗(g, w; DN) for all (g, w) ∈ {0, 1}J+1 is the social planner’s first-best algorithm.

The social planner’s first-best problem is to select a data-driven algorithm t(g, w; DN) to maximize

expected social welfare, where the social planner uses her prior beliefs π to average over possible

realizations of the training dataset and the parameter η. The capacity constraint must hold at all

realizations of the training dataset that occur with positive probability.

The social planner’s first-best algorithm consists of two components: a decision rule, which

is a threshold rule with group-specific thresholds for admission, and a predictive algorithm that

rank-orders the population based upon a prediction of the outcome of interest.

Proposition 1. The social planner’s first-best admissions rule is a threshold rule with group-specific ad-

missions thresholds

t∗(g, w; DN) = 1
{
Eπ|DN

[θ∗(g, w)] > τ∗(g; C)
}

,

where ties with Eπ|DN
[θ∗(g, w)] = τ∗(g; C) are handled such that the capacity constraint holds with

equality.

The social planner uses her prior beliefs π(·) and the observed training data DN to construct the

best rank-ordering of the population in terms of the expected value of Y∗ given the observed char-

acteristics G, W. This ranking is encapsulated in her posterior beliefs π|Dn, which conditions on

the entire training dataset. The social planner’s optimal decision rule then takes these predictions

as an input and applies group-specific thresholds for admission, which arise to differing social

welfare weights on each group G. If the social welfare weight on the disadvantaged group is

larger than the social welfare weight on the rest of the population, then the social planner applies

a lower threshold for admission for the disadvantaged group. This intuition is analogous to results

in Fryer Jr and Loury (2013), which emphasize the importance of accurate within-group rankings

in designing optimal affirmative action policies (see also, Fryer Jr et al. (2008)). Analogous results
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appear in existing work in computer science such as Corbett-Davies et al. (2017). We discuss the

connections between our result and this literature in detail at the end of this section.

Proposition 1 is quite general. In deriving this result, we placed no assumptions on how the

measured outcome Ỹ relates to the outcome of interest Y∗, no assumptions on whether there are

group differences in the average outcome of interest conditional on the characteristics θ∗(g, w) and

no assumptions on how the distribution of the characteristics W may differ across groups.

Remark 2. If the social welfare weights ψ vary not only across groups but across other observable features

in W, Proposition 1 generalizes naturally. The first-best algorithm still uses a threshold rule, and the

admissions thresholds now vary based upon all characteristics that affect the social welfare weights.

A natural follow-up question is: under what conditions does the social planner use the ob-

served training data DN in constructing her rank-ordering of the population? Intuitively, we say

that the social planner ignores the observed training data if her posterior expectation of the out-

come of interest equals her prior expectation of the outcome of interest.

Definition 2. The social planner ignores the observed training data DN ifEπ|DN
[θ∗(g, w)] = Eπ [θ∗(g, w)]

for all (g, w) ∈ {0, 1}J+1 and training datasets DN that occur with positive probability.

If the social planner ignores the training dataset, then she learns nothing from the observed

training dataset, and therefore, there would be no loss if the social planner discarded it. This

holds if and only if the social planner’s prior beliefs are such that mis-measured outcome Ỹ is

independent of Y∗ conditional on the observed characteristics (G, W).

Proposition 2. The social planner ignores the observed training dataset if and only if under her prior beliefs

π, η̃ is statistically independent of η.

This result follows directly from Proposition 1 of Poirier (1998). Intuitively, the likelihood function

in Equation (8) only depends on the parameter η through η̃(g, w).2 Therefore, if the prior beliefs of

the social planner are such that the parameters η̃(g, w) are independent of the parameters η∗(g, w),

then the social planner learns nothing about η∗(g, w) from learning about η̃(g, w).

The result in Proposition 2 is quite strong. If the measured outcome Ỹ is statistically related

to the outcome of interest Y∗ in any way under the social planner’s beliefs, then the social planner
2In other words, the likelihood function in Equation (8) is flat in the parameters η∗(g, w) given a particular value of

η̃(g, w), and so the parameters of interest are partially identified in this model.
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will use the training dataset to construct her optimal algorithm. For example, the social planner

may believe the measured outcome Ỹ is mis-measured, negatively correlated with the outcome of

interest, positively correlated with the outcome of interest or “biased” against the disadvantaged

group in some way. In all of these cases, the measured outcome Ỹ may still not be independent

with the outcome of interest Y∗ under the social planner’s beliefs, and so it remains optimal to

learn from the training dataset.

3.3 Algorithmic decision-making and the first-best admissions rule

An appealing interpretation of Proposition 1 is that the social planner simply constructs an optimal

prediction of the measured outcome Ỹ from the observed training data and then uses her prior

beliefs π to map these into predictions of the outcome of interest Y∗. We now provide a result to

show that this intuition is valid asymptotically as the size of the training dataset N grows large.

To develop this result, we first provide a simple, yet formal definition of a predictive algo-

rithm.

Definition 3. A predictive algorithm A is a function that maps a training dataset DN to a prediction

function A(DN) = f̂N , where f̂N : {0, 1}J+1 → [0, 1].

A predictive algorithm uses the observed training data to construct a prediction function, where

the prediction function simply maps observed characteristics (W, G) into predictions of the ob-

served label Ỹ. The choice of predictive algorithm may refer to the choice between a variety of

different supervised learning algorithms.

Definition 4. A predictive algorithm A is consistent if its prediction function f̂N = A(DN) converges

in probability pointwise to the conditional expectation of Ỹ given the characteristics W, G, meaning that as

N → ∞

f̂N(g, w)
p−→ E

[
Ỹ |G = g, W = w

]
∀(g, w) ∈ {0, 1}J+1.

We now show that as the size of the training dataset grows large, the social planner’s posterior

beliefs about η∗(g, w) at some fixed characteristics g, w are equivalent asymptotically to the social

planner’s beliefs if she simply plugged in the predictions of a consistent predictive algorithm

to her beliefs about the distribution of the outcome of interest Y∗ conditional on the measured

outcome Ỹ. Define π(η∗|η̃) to be the conditional prior distribution of the parameters η∗ given the
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parameters η̃. The social planner’s posterior beliefs about η∗ are asymptotically equivalent to the

beliefs she would have if she plugged in the predictions of a consistent predictive algorithm into

her conditional prior beliefs π(η∗|η̃).

Proposition 3. Let A be a consistent predictive algorithm, and assume that the regularity conditions in

Section B hold. The social planner’s plug-in posterior beliefs π(η∗| f̂N) asymptotically approximate the

social planner’s true posterior beliefs π(η∗|DN) as N → ∞, meaning

dTV

(
π(η∗|Dn), π(η∗| f̂N)

) p−→ 0,

where dTV(·, ·) denotes the total variation distance between probability measures.

Proposition 3 implies that the social planner’s posterior beliefs are asymptotically equivalent to

her beliefs if she constructed a consistent prediction function for the measured outcome in the

training dataset and then ex-post mapped these into predictions of the outcome of interest. In

other words, to construct her optimal predictive algorithm, the social planner first constructs an

accurate predictor for the measured outcome and then modifies them according to her prior beliefs

about the relationship between the measured outcome and the outcome of interest.

This result slightly generalizes Theorem 1 in Moon and Schorfheide (2012), which shows

that the posterior beliefs of a Bayesian decision-maker about an unidentified parameter given

an identified parameter can be approximated asymptotically by their posterior beliefs about the

unidentified parameter evaluated at the maximum likelihood estimator for the identified param-

eter. Proposition 3 shows that the same result holds for any consistent estimator of the identified

parameter. For this result to hold, we introduce two high-level regularity conditions, which are

the same as those in Moon and Schorfheide (2012). We restate them in Section B of the Appendix

for completeness.

Together, Propositions 1-3 imply a strong-form of equity irrelevance - the social planner’s equity

preferences modify the decision rule but not the predictive algorithm. The only factor in the social

planner’s choice of predictive algorithm is accuracy. This implies that the social planner does not

wish to blind the predictive algorithm to group membership, nor remove any characteristics W.

Moreover, she does not wish for the predictive algorithm to satisfy any additional constraints that

may worsen predictive accuracy. The social planner simply wishes to construct an accurate pre-
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diction function of the measured outcome Ỹ using the characteristics W and group membership

G. Given this estimated prediction function, the social planner modifies the decision rule in two

ways. First, she maps the predictions of the measured outcome into predictions of the outcome of

interest using her prior beliefs π and second, she adjusts the admissions threshold based on the

social welfare weights.

3.4 Connections to previous work

Much of the literature in computer science approaches the problem of algorithmic fairness by

first introducing a definition of a “fair” prediction function. Given a particular definition, the

problem of constructing fair prediction functions reduces to searching for the most accurate pre-

diction function that satisfies the chosen definition. Because fairness is modelled as an additional

constraint in the training procedure, this is commonly referred to as “fairness-constrained” opti-

mization. For example, Dwork et al. (2012) defines a prediction function to be fair if it satisfies a

“Lipschitz constraint,” which informally means that if two observations have similar observable

characteristics, then they should receive similar predictions. Zemel et al. (2013) additionally de-

fines a prediction function to be fair if it satisfies “statistical parity,” meaning that the probability

that a member of the disadvantaged group is assigned a particular classification is equal to the

probability that a member of the non-disadvantaged group is assigned to that same classifica-

tion.3 Feldman et al. (2015) formally defines what it means for a prediction function to generate

“disparate impact” in terms of classification accuracy across groups and Hardt et al. (2016) intro-

duce two additional notions of fair prediction, which they refer to as “equalized odds” and “equal

opportunity.” Mitchell et al. (2019) provides a recent review of the wide range of definitions of

fairness that exist in the literature.

This approach is crucially different than our analysis of the first-best problem. We did not

first introduce a definition of a fair prediction function and then search for the prediction func-

tion that maximizes social welfare among all that satisfy the chosen definition. Instead, we began

with the social welfare function, which explicitly defines an equity preference in terms of the out-

comes of the screening decisions. We placed no restrictions on the admissions rule, and searched

among all admissions rule to find the optimum. This is a subtle, yet important difference as defin-

3This is sometimes referred to as “group fairness.” Kamishima et al. (2011) and Kamishima et al. (2012) introduce
regularization techniques that are designed to achieve a similar definition of group fairness.
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ing fairness in terms of properties of the underlying prediction function may be unsatisfying for

several reasons. First, it is well known that many commonly used definitions of fairness in the

computer science literature cannot be simultaneously satisfied (e.g., see Raghavan et al. (2017),

Chouldechova (2017) and Pleiss et al. (2017)). Second, in practice, prediction functions that satisfy

a particular definition of predictive fairness may produce downstream, unequal outcomes.4 Given

that our preferences for fairness are ultimately defined over outcomes, it is conceptually attractive

to directly summarize these preferences as a social welfare function.

Our result in Proposition 1 is most closely related to several recent papers in computer sci-

ence and economics. Corbett-Davies et al. (2017) show the optimal classifier that satisfies certain

definitions of fairness takes the form of a threshold rule with group-specific thresholds.5 Lipton

et al. (2018) and Menon and Williamson (2018) provide similar results, characterizing the solutions

to other “fairness-constrained” loss minimization problems. These are analogous to our result in

Proposition 1, except, as mentioned, we show that the same form of the decision rule is globally

optimal for any social welfare function that takes the form in Equation (4).

Several recent papers in computer science also consider connections between a social welfare

approach and existing predictive notions of fairness in computer science. Hu and Chen (2018)

consider a related yet different question than the one we pursue. Given a prediction that solves

a particular loss minimization problem, the authors characterize the set of social welfare func-

tions that would be optimized by the given prediction function. Similarly, Hu and Chen (2020)

assess the welfare impacts of common predictive notions of fairness, where welfare is defined

over the resulting outcomes for groups and individuals. Heidari et al. (2018) proposes a training

procedure to construct algorithms that minimize some predictive loss subject to a constraint on

the average utility of an individual in the population. In contrast, we allow the social planner to

explicitly place different weights on payoffs of individuals associated with different groups and

assume that the social planner does not value predictive accuracy separately from social welfare.

Balashankar et al. (2019) introduce a notion of “pareto-efficient fairness,” which searches for pre-

4For example, Liu et al. (2018) highlight that the commonly introduced definitions of fair predictions are static and
only describe properties in a single, one-shot prediction exercise. When examined dynamically, the authors show
that prediction functions that satisfy, for example, demographic parity may lead to declines in the average predicted
outcome for disadvantaged group.

5These fairness definitions are “statistical parity”, “conditional statistical parity” and “predictive equality.” See
Corbett-Davies et al. (2017) for details.
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diction functions that jointly maximize predictive accuracy over each group in the population.

Finally, Kleinberg et al. (2018) also introduce an explicit social welfare function that is defined

over both the average outcome of admitted individuals and the fraction of admits from the disad-

vantaged group. Our results differ in two ways. First, the social welfare function in Equation (4)

is only defined in terms of the average outcomes of the admitted individuals and not directly on

the composition of the admitted class. Second, we explicitly allow for the measured outcome to

differ from the outcome of interest.

4 Regulating Discrimination and the Detection Problem

In applications in which the social planner selects both the predictive algorithm and the decision

rule, our focus on the first-best problem is the relevant policy problem. However, in many other

settings, third-party firms or individuals control both the construction of the algorithm and the

choice of the admissions rule. Such problems are better modeled as a regulation problem, in which

the social planner interacts with a third-party decision-maker and has access to only a limited set

of policy instruments to influence their choices. Throughout, we refer to the third-party decision-

maker as a human decision-maker.

In this section, we extend our model to analyze this regulation problem. The social planner

oversees a market of human decision-makers, each of which faces their own screening decision.

The human decision-makers have different preferences than the social planner, and some wish to

discriminate against the disadvantaged group. The social planner faces a second-best problem as

she must rely on possibly discriminatory human decision-makers to select admissions decisions

that maximize social welfare. Because preferences are not aligned, the social planner uses policy

instruments to influence the admissions decisions. The social planner faces two constraints. First,

she faces a policy constraint as she may only influence admissions decisions by placing restrictions

on the characteristics that may be used in decision rules.6 Second, the social planner faces an

information constraint as she does not know which human decision-makers are discriminatory

and knows less about which characteristics are useful in predicting the outcome of interest than

6The policy tool of banning certain characteristics from being used by human decision-makers has been consid-
ered before in the economics literature on the regulation of insurance markets and pre-existing conditions (Hoy, 1982;
Crocker and Snow, 1986; Rothschild, 2011). This policy constraint is consistent with the observation that in practice
regulators for example rarely tell firms exactly how many people to hire, that is, where to set admission thresholds.
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the human decision-makers.7

In the absence of algorithms, this model captures many of our existing intuitions about reg-

ulating discrimination. We show that if the social planner only faced discriminatory human

decision-makers, then she would ban the use of group membership in admissions decisions, anal-

ogous (loosely speaking) to a disparate treatment test. When faced with both non-discriminatory

and discriminatory human decision-makers, the social planer faces a flexibility tradeoff – allowing

the human decision-makers to use more characteristics leads to more accurate predictions but dis-

criminatory human decision-makers will also use these extra characteristics to screen out members

of the disadvantaged group.8 The equilibrium level of discrimination in this purely human-driven

decision-making environment (without algorithms) is strictly positive, highlighting the difficulty

of detecting discrimination.

4.1 The market of human decision-makers

There exists a market that consists of a unit mass of human decision-makers. Each human decision-

maker faces her own screening decision, modeled as before in Section 2. A human decision-maker

is summarized by three components: preferences λ = (λ0, λ1), prior beliefs πm and a capacity

constraint C ∈ [0, 1].

The preferences λ = (λ0, λ1) of the human decision-maker govern her payoffs. Similar to

the social welfare function, the human decision-maker’s payoffs are a weighted average of the

outcome of interest among individuals that are admitted into the program

U(t; λ) = ∑
(g,w)∈{0,1}J+1

λgθ∗(g, w)t(g, w)P(g, w), (9)

where λ = (λ0, λ1) are the relative weights placed on the outcomes of each group. If λ0 > λ1, then

the human decision-maker underweights outcomes associated with the disadvantaged group,

leading to the following definition.

Definition 5. The human decision-maker is discriminatory if λ0 > λ1. The human decision-maker is

7Our set-up of the regulation problem is similar to the setting studied in Fryer Jr (2009). However, in Fryer Jr (2009),
there are no observable characteristics, and therefore, the only policy tools available are quotas on the total level of
hiring, whereas here we allow the regulator to directly influence the human decision-makers hiring rules.

8This type of flexibility tradeoff commonly arises in “delegation problems,” in which a principal delegates an action
to an agent that may have different preferences (“mis-aligned”) than the principal (Holmstrom, 1977, 1984).
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non-discriminatory if λ0 = λ1.

Non-discriminatory human decision-makers place equal weight on the outcomes associated with

each group, and therefore simply wish to select a decision rule that maximizes the average out-

come of interest among the admitted individuals. In this sense, discriminatory human decision-

makers are taste-based discriminators in the spirit of Becker (1957). We assume there are only two

types of preferences in the market: non-discriminators with λ = (1, 1) and discriminators with

λ = (λ̄0, λ̄1) and λ̄0 > 1 > λ̄1.

Let m ⊆ {1, . . . , J} denote a model, which is simply a subset of the indices 1, . . . , J. Let Wm

denote the subvector of W = (W1, . . . , WJ) associated with the indices in model m and let W−m

denote the subvector of W that is not associated with model m. Let |m| denote the number of

characteristics in model m.

The prior beliefs πm describe the human decision-maker’s beliefs about which characteristics

W ∈ {0, 1}J are relevant for predicting the outcome of interest Y∗ in her screening decision. Each

prior πm is associated with a particular model m ⊆ {1, . . . , J} and is defined such that human

decision-makers with prior πm believe that only the variables in model m contain signal for pre-

dicting the outcome of interest Y∗. More concretely, πm is a joint distribution over the parameters

{θ∗(g, w) : (g, w) ∈ {0, 1}J+1} satisfying

Eπm [θ∗(g, wm, w−m)] = Eπm

[
θ∗(g, wm, w′−m)

]
(10)

for all g ∈ {0, 1}, wm ∈ {0, 1}|m|, w−m, w′−m ∈ {0, 1}J−|m|. For compactness, write θ∗πm
(g, wm) ≡

Eπm [θ∗(g, w)], where w = (wm, w−m). There are 2J possible models and there is a prior πm asso-

ciated with each model that satisfies Equation (10). The human decision-maker’s prior πm can be

thought of as her “mental” predictive algorithm.

We assume that at each prior πm, all characteristics in model m are relevant for predicting the

outcome of interest and that the human decision-maker believes that there are no group differ-

ences conditional on the characteristics in model m.

Assumption 1 (Sufficiency and relevance). At each model m ⊆ {1, . . . , J} and associated beliefs πm,

assume that the characteristics in model m are sufficient, meaning θ∗πm
(0, wm) = θ∗πm

(1, wm) for all wm ∈

{0, 1}|m|.
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Additionally, assume that the characteristics in model m are relevant, meaning θ∗πm
(g, wm) 6= θ∗πm

(g, w′m)

for all wm, w′m ∈ {0, 1}|m| with wm 6= w′m.

With the sufficiency assumption, further write θ∗πm
(wm) ≡ θ∗πm

(g, wm), dropping the dependence

on group membership.

Finally, each human decision-maker faces a capacity constraint C ∈ [0, 1], meaning the human

decision-maker may not admit more than fraction C of the population

∑
(g,w)∈{0,1}J+1

t(g, w)P(g, w) ≤ C. (11)

The market of human decision-makers is characterized by a joint distribution η(λ, πm, C) over

possible combinations of preferences λ, beliefs πm and capacity constraints C. This joint distribu-

tion has full support, meaning that η(λ, πm, C) > 0 for each possible combination of preferences,

beliefs and capacity constraints. We additionally assume that the capacity constraint is indepen-

dent of preferences and beliefs, meaning that (λ, πm) ⊥⊥ C under η and, therefore we factor this

joint distribution into η(λ, πm, C) = η(λ, πm)× h(C).

4.2 The human decision-maker’s screening problem

Consider a human decision-maker with preferences λ, beliefs πm and capacity constraint C. She

selects a decision rule that maximizes her expected payoffs subject to the capacity constraint

max
t(g,w)

∑
(g,w)∈{0,1}J+1

λgθ∗πm
(w)t(g, w)P(g, w), (12)

s.t. ∑
(g,w)∈{0,1}J+1

t(g, w)P(g, w) ≤ C.

This is analogous to the social planner’s first-best problem in Definition 1. Applying Propo-

sition 1, the human decision-maker’s optimal decision rule is a threshold rule that takes the form

1
{

θ∗πm
(w) > τ(g; C, λ)

}
, in which ties are handled such that the capacity constraint holds with

equality. The threshold for admissions τ(g; C, λ) depends on the human decision-maker’s pref-

erences. If the human decision-maker is non-discriminatory with λ = (1, 1), then the threshold

is constant across groups. If the human decision-maker is discriminatory with λ = (λ̄0, λ̄1) and

λ̄0 > 1 > λ̄1, then she applies a higher threshold for admission to the disadvantaged group.
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4.3 The social planner’s regulation problem

The social welfare function for a given screening problem is defined as before in Equation (4),

where we now assume that the social planner’s welfare weights ψ = (ψ0, ψ1) satisfy ψ0 < 1 < ψ1.

Proposition 1 implies that the social planner wishes to apply a lower threshold for admission to

the disadvantaged group at her first-best decision rule, and in this sense, the social planner has an

explicit equity motive.

The social planner’s preferences are aligned with the preferences of non-discriminatory hu-

man decision-makers, meaning that the preferred rank-ordering of the non-discriminatory human

decision-makers is sufficiently similar to the preferred rank-ordering of the social planner.

Assumption 2 (Alignment). The social planner’s preferences are aligned with non-discriminatory hu-

man decision-makers at each prior beliefs πm, meaning that if wm, w′m satisfy θ∗πm
(wm) < θ∗πm

(w′m), then

ψ1θ∗πm
(wm) < ψ0θ∗πm

(w′m).

The assumption that the social planner’s preferences are aligned with the non-discriminator’s

preferences is strong. An interpretation is that our model of the regulation problem describes a

status quo in which the social planner’s equity preference is only binding relative to discrimina-

tory human decision-makers.

The social planner does not directly observe the preferences λ, the beliefs πm nor the capac-

ity constraint C of any given human decision-maker. She only knows the joint distribution η of

(λ, πm, C) in the market of human decision-makers. The social planner’s payoffs are summarized

by the aggregate social welfare function

∫
C

 ∑
(g,w)∈{0,1}J+1

ψgEη

[
θ∗πm

(w)t(g, w)
]

P(g, w)

 h(C)dC. (13)

Given that the social planner’s preferences ψ do not equal the human decision-makers’ prefer-

ences λ, the optimal decision rule of human decision-makers will not, in general, maximize the

aggregate social welfare function.
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4.3.1 Model regulations

The only policy instrument available to the social planner is model regulations, meaning that the

social planner may regulate what characteristics can be used in decision rules. For example, the

social planner may ban the decision rules from explicitly using group membership or it may ban

the decision rules from using certain characteristics.

Definition 6. The social planner may place model regulations on the human decision-makers’ decision

rule. If the social planner implements model regulations m, then all decision rules must satisfy

t(g, wm, w−m) = t(g, wm, w′−m)

for all g ∈ {0, 1}, wm ∈ {0, 1}|m| and w−m, w′−m ∈ {0, 1}J−|m|. If the social planner additionally bans

group membership, then all decision rules must further satisfy, for all g, g′ ∈ {0, 1},

t(g, wm, w−m) = t(g′, wm, w′−m).

By assuming that the social planner may only place model regulations on human decision-makers,

we are restricting the space of policy instruments that is available to the social planner. How the

analysis changes under a broader set of potential policy levers is an important topic for future

work. Additionally, we are assuming that these model regulations are enforceable. This effectively

implies that the social planner observes the human decision-makers’ decision rules, whereas in

practice, the social planner may only observe a finite number of realized admissions decisions.

Banning some characteristics from being used in decision rules forces human decision-makers

to pool together groups in the population. This may lead human decision-makers to rank-order

the population in a way that more closely matches the social planner’s preferred rank-ordering. To

see this, consider a human decision-maker with preferences λ, beliefs πm̃ and capacity constraint

C. At model controls m, she now maximizes

∑
g∈{0,1}

∑
wm∈{0,1}|m|

{
λgE

[
θ∗πm̃

(Wm, W−m) |Wm = wm, G = g
]}

t(g, wm)P(g, wm). (14)

The human decision-maker now rank-orders the population based upon λgE [θ∗m̃(Wm, W−m) |Wm = wm, G = g]
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as she must now pool together individuals that share the same characteristics in model m. Let

tm̃
λ,C(g, w; m) denote the decision rule that would be selected by a human decision-maker with

preferences λ, beliefs πm̃ and capacity constraint C at model controls m if she may use group

membership.

Similarly, if the social planner additionally bans decision rules from depending on G, then the

human decision-maker maximizes

∑
wm∈{0,1}|m|

 ∑
g∈{0,1}

λgE
[
θ∗πm̃

(Wm, W−m) |Wm = wm, G = g
]

P(g|wm)

 t(wm)P(wm). (15)

Since she must now further pool individuals across groups, the human decision-maker rank-

orders the population using ∑g λgE
[
θ∗πm̃

(Wm, W−m) |Wm = wm, G = g
]

P(g|wm). Let tm̃
λ,C(w; m)

denote the decision rule that the human decision-maker would select if she cannot use group

membership at model controls m.

The social planner searches over possible model controls to find the one that induces a rank-

ordering most closely aligned with her first-best rank-ordering. This is the second-best problem.

Definition 7. The social planner’s second-best problem is to select the model regulations that maximize

aggregate social welfare, taking the decision rules chosen by human decision-makers as given. She solves

m∗ = arg max
m⊆{1,...,J}

∫
C

 ∑
(g,w)∈{0,1}J+1

ψgEη

[
θ∗πm̃

(w)tm̃
λ,C(g, w; m)P(g, w)

] h(C)dC.

If she additionally bans human decision-makers from using group membership, she solves

m∗ = arg max
m⊆{1,...,J}

∫
C

 ∑
(g,w)∈{0,1}J+1

ψgEη

[
θ∗πm̃

(w)tm̃
λ,C(w; m)P(g, w)

] h(C)dC.

The solution m∗ is the social planner’s second-best model regulations.

Finally, the “level of discrimination” at model controls m equals the fraction of discriminatory

human decision-makers that select a decision rule that is different than the decision-rule chosen

by non-discriminatory human decision-makers with the same beliefs and capacity constraint.
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Definition 8. The level of discrimination at model controls m equals

∆(m) ≡ P
{

tm̃
λ,C(m) 6= tm̃

(1,1),C(m) | λ = (λ̄0, λ̄1)
}

,

where P
{
· | λ = (λ̄0, λ̄1)

}
is the conditional joint distribution of beliefs πm̃ and the capacity constraint C

among discriminatory human decision-makers. The equilibrium level of discrimination is ∆(m∗).

4.4 Characterizing the social planner’s second-best model regulations

We now characterize the social planner’s second-best model regulations when she is faced with

human decision-makers. To do so, we formalize what it means for the group G = 1 to be disad-

vantaged. Disadvantage in this model means that characteristics associated with lower average

values of the outcome of interest are more likely to occur among the disadvantaged group.

Assumption 3 (Disadvantage condition). At each beliefs πm, if w, w′ are such that θ∗πm
(w) ≥ θ∗πm

(w′),

then
P(0, w)

P(1, w)
≥ P(0, w′)

P(1, w′)
,

and this holds with strict inequality if θ∗πm
(w) > θ∗πm

(w′).

How exactly the social planner selects model regulations in the second-best problem may be

quite complex. It will depend on the relative fractions of discriminatory and non-discriminatory

human decision-makers as well as the distribution of beliefs πm across the market of human

decision-makers. Therefore, in order to build intuition, we start by considering two simpler prob-

lems.

First, suppose that there are only non-discriminatory human decision-makers in the market

and that all human decision-makers have the same beliefs πm̃. In this case, provided the disad-

vantage condition is satisfied at model m̃, the social planner lets the human decision-makers use

any model m that satisfies m̃ ⊆ m, meaning that it includes all characteristics that are believed to

be predictive of the outcome of interest.

Proposition 4. Suppose that there are only non-discriminatory human decision-makers with model m̃ in

the market. Then, the social planner’s second-best regulation m∗ may be any model in the setM = {m :

m̃ ⊆ m} and the social planner is indifferent to banning group membership G.
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Under Assumption 2, the social planner’s preferences are sufficiently aligned with the non-discriminatory

human decision-maker’s preferences such that the social planner does not wish to change the

rank-ordering of the non-discriminatory human decision-maker. Banning characteristics that are

believed to be predictive of the outcome of interest only introduces mis-rankings that lower ag-

gregate social welfare.

Next, suppose that there are only discriminatory human decision-makers in the market and

that all human decision-makers have the same beliefs πm̃. Intuitively, discriminatory human

decision-makers have sufficiently different preferences than the social planner that the social plan-

ner may find it optimal to place model regulations. Indeed, provided that the disadvantage condi-

tion is satisfied at beliefs πm̃, this is true – it is optimal for the social planner to implement model

controls, forcing the discriminatory human decision-makers to use model m̃ and ban them from

using group membership.

Proposition 5. Suppose that there are only discriminatory human decision-makers with model m̃ in the

market and the disadvantage condition holds. Then, it is optimal for social planner to place model controls

that force the human decision-makers to use model m̃ and ban group membership.

The proof proceeds by showing that at these model controls, the rank-ordering used by discrimi-

natory human decision-makers is the same as the rank-ordering used by non-discriminatory hu-

man decision-makers. This result is reminiscent of a “disparate treatment” test because the social

planner wishes to force discriminatory human decision-makers to treat members of both groups

the same given the characteristics in model m̃.

To this point, we considered special cases in which all human decision-makers had the same

beliefs and the regulator knew those beliefs exactly. In general, there is an entire market of human

decision-makers with different beliefs about which characteristics are predictive of the outcome

of interest. This additional dimension of private information induces a trade-off. Banning group

membership creates an incentive for a discriminatory human decision-maker to use more charac-

teristics in her decision rule than she believes to be predictive of the outcome of interest in order

to screen out members of the disadvantaged group. In other words, it creates incentives for dis-

criminatory human decision-makers to select decision rules that generate disparate impact.

Proposition 6. Consider a discriminatory human decision-maker with model m̃ and assume that P(G =
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1|W = w) 6= P(G = 1|W = w′) for all w, w′ ∈ {0, 1}J with w 6= w′. If group membership G is banned,

then the discriminatory human decision-maker’s optimal decision rule is based on a rank-ordering that uses

all characteristics W ∈ {0, 1}J .

Provided that the social planner bans group membership from being used in decision rules, hu-

man decision-makers may wish to use an additional characteristic for two reasons. Some human

decision-makers may believe that it is predictive of the outcome of interest and others may wish to

use it in order to screen out the disadvantaged group. This intuition produces the flexibility trade-

off in regulating discrimination. Letting human decision-makers use more characteristics leads

to more accurate rank-orderings of the population but it also makes it easier for discriminatory

human decision-makers to screen out the disadvantaged group.

Proposition 7. Suppose that the social planner bans human decision-makers from using group membership

in their decision rules. Then, the second-best problem in Definition 7 is equivalent to

min
m⊆{1,...,J}

∑̃
m

{∫
C
E
[
ψ(W)θ∗πm̃

(W)
(
tm̃
∗,C(W)− tm̃

ND,C(W; m)
)]

h(C)dC
}

η(m̃)

+ η(D) ∑̃
m

{∫
C
E
[
ψ(W)θ∗πm̃

(W)
(
tm̃

ND,C(W; m)− tm̃
D,C(W; m)

)]
h(C)dC

}
η(m̃|D),

where ψ(W) = ψ0P(0|w) + ψ1P(1|w) and tm̃
∗,C(W) denotes the social planner’s first-best decision rule at

beliefs πm̃ and capacity constraint C.

The first term in Proposition 7 depends on the difference between the social planner’s first-best

decision rule at beliefs πm̃ and the decision rule that non-discriminatory human decision-makers

with beliefs πm̃ would select at model controls m. Under the alignment assumption (Assumption

2), for model controls satisfying m̃ ⊆ m, the rank-order used by the the non-discriminatory hu-

man decision-maker matches the social planner’s first-best rank-order. Therefore, as the number

of characteristics allowed grows, the first term declines to zero, capturing the gains from more

accurate rank-ordering. The second term depends on the difference between the decision rule se-

lected by non-discriminatory human decision-makers and discriminatory human decision-makers

at the same beliefs πm̃ and model controls m. These differ only because of the different prefer-

ences λ between these human decision-makers. Once the model controls are such that m̃ ⊂ m,

the decision rule selected by the non-discriminatory human decision-makers no longer changes
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but the discriminatory human decision-makers now use any extra features to screen out members

of the disadvantaged group (Proposition 6). As the number of allowed characteristics increases,

there are more differences between the decision rules of the non-discriminatory human decision-

makers and discriminatory human-decision-makers, lowering social welfare. This effect captures

the intuition that more permissive model regulations makes it easier for discriminatory human

decision-makers to select decision rules that generate disparate impact.

If there were no discriminatory human decision-makers, then η(D) = 0 and aggregate social

welfare function only depends on the first term in Proposition 7. In this case, it would be opti-

mal to let all human decision-makers use any characteristic, implementing no model regulations

whatsoever (Proposition 4). Since the non-discriminatory human decision-makers are sufficiently

aligned with the preferences of the social planner, it is optimal for the social planner to let them

admit according their preferred rank-ordering. In other words, the presence of discriminatory

human decision-makers is necessary for the flexibility tradeoff to be present.

Finally, we show that the equilibrium level of discrimination is non-zero in the second-best

problem provided that there is a conflict in the preferred ranking-orderings of discriminatory and

non-discriminatory human decision-makers.

Proposition 8. Suppose that for all beliefs πm̃, there exists a pair of characteristics wm̃, w′m̃ such that

θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), and λ̄(w′)θ∗πm̃
(w′m̃) > λ̄(w)θ∗πm̃

(wm̃),

where λ̄(wm̃) =
(
λ̄0P(0|wm̃ + λ̄1P(1|wm̃)

)
. Then, the equilibrium level of discrimination is strictly

positive with ∆(m∗) > 0.

Because the social planner must select a single model regulation for the entire market, there always

exists some discriminatory human decision-makers that are given sufficient freedom to select a

decision rule that differs from the corresponding non-discriminatory human decision-maker. In

equilibrium, discrimination goes undetected. The stated condition in Proposition 8 imposes that

discriminatory preferences induce a wedge in the preferred ranking-orderings.
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5 Algorithmic Decision-Making and Second-Best Model Regulations

To this point, we considered the social planner’s second-best problem when she oversees a market

of human decision-makers, without algorithms. The social planner faced two sources of asymmet-

ric information: over the preferences λ and over the beliefs πm of the human decision-makers and

both dimensions of asymmetric information gave rise to the flexibility tradeoff.

We now consider what happens when human decision-makers adopt predictive algorithms in

their screening decisions. How this affects the social planner’s second-best model regulations de-

pends crucially on what human decision-makers must disclose about their predictive algorithms

and decisions rules. First, we consider a full disclosure regime in which human decision-makers’

are subject to algorithmic audits, meaning that they must disclose both their decision rule and pre-

dictive algorithm to the social planner. In this case, the social planner now finds it optimal to let

any characteristic that is predictive of the outcome of interest be used in decision rules. Moreover,

the equilibrium level of discrimination is zero, meaning that the introduction of the predictive

algorithm into the decision loop not only improves prediction, it simultaneously reduces discrim-

ination in the market. Second, to highlight the importance of full disclosure, we consider the case

in which human decision-makers’ only disclose their decision rule but not their predictive algo-

rithm. In this case, optimal regulation is the same as the case with a purely human-driven decision

loop.

5.1 Introducing algorithmic decision-making

We model the introduction of predictive algorithms as revealing the ground truth θ∗(g, w) in each

screening problem to the human decision-makers. An interpretation is that the human decision-

makers receive access to a large, randomly sampled dataset from the population of individuals

and using this training dataset to train a consistent predictive algorithm (Definition 4). Formally,

each human decision-maker is now associated with a ground-truth model.

Definition 9. A ground-truth model m summarizes the set of characteristics that are relevant in predict-

ing the outcome of interest in a screening problem. It is associated with parametersE [Y∗ |G = g, W = w] =
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θ∗(g, w) that satisfy

θ∗(g, wm, w−m) = θ∗(g′, wm, w−m)

θ∗(g, wm, w−m) = θ∗(g, w′m, w−m)

for all g, g′ ∈ {0, 1}, wm, w′m ∈ {0, 1}|m| and w−m, w′−m ∈ {0, 1}J−|m|.

The ground-truth model m is the human decision-maker’s predictive algorithm. At the ground-

truth model m, the characteristics Wm are sufficient and relevant for predicting the outcome of

interest in the population of individuals. Denote the average outcome of interest at ground-truth

model m as θ∗(g, wm, w−m) ≡ θ∗m(wm) for all g ∈ {0, 1}, w−m ∈ {0, 1}J−|m|.

Given their ground-truth model, preferences and capacity constraint, each human decision-

maker selects a decision rule to maximize their payoffs, which are now defined as

∑
(g,w)∈{0,1}J+1

λgθ∗m(w)t(g, w)P(g, w). (16)

The human decision-maker’s optimal decision rule is a threshold rule of the form, 1 {θ∗m(w) > τ(g; C, λ)},

in which ties are handled such that the capacity constraint holds with equality and the threshold

τ(g; C, λ) may vary across groups.

Finally, the market of human decision-makers is now summarized by a joint distribution over

ground-truth models m, preferences λ and capacity constraints C and in a slight abuse of notation,

we again denote this joint distribution by η. We continue to assume that the distribution has full

support and that the capacity constraint is independent of the ground-truth model and preferences

in the market of human decision-makers, meaning (m, λ) ⊥⊥ C under η.

5.2 Second-best model regulations in the presence of algorithmic audits

The adoption of predictive algorithms introduces a new policy tool to the social planner – algorith-

mic audits. An algorithmic audit refers to the process in which the social planner may access the

underlying training data and training procedure that the human decision-maker used to construct

her algorithm. Kleinberg et al. (2018) describe in detail how algorithmic audits may function in

practice. We model algorithmic audits in a reduced-form manner as simply revealing the ground-
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truth model m of each human decision-maker to the social planner.

Definition 10. An algorithmic audit reveals the ground-truth model θ∗m of each human decision-maker

in the market.

If the social planner may implement algorithmic audits, then the adoption of predictive algo-

rithms eliminates one dimension of private information between the social planner and the hu-

man decision-makers. She may now condition her model regulations on the ground-truth model

m. This has important ramifications for how the social planner sets her optimal model regulations.

In the presence of algorithmic audits, the social planner’s second-best problem is now to select

her model regulations that maximize aggregate social welfare, conditional on the ground-truth

model m revealed by the algorithmic audit.

Definition 11. Suppose the social planner may conduct algorithmic audits. The social planner’s algo-

rithmic second-best problem is to select model regulations that maximize aggregate social welfare among

all human decision-makers with ground-truth model m, taking the decision rules chosen by the human

decision-makers as given. That is, she solves

m∗(m) = arg max
m̃⊆{1,...,J}

∫
C

 ∑
(g,w)∈{0,1}J+1

ψgEλ|m
[
θ∗m(w)tm

λ,C(g, w; m̃)P(g, w)
] h(C)dC,

whereEλ|m [·] is an expectation over conditional distribution of preferences given the true model m, η(λ|m).

Our earlier results from Section 4 immediately imply that the social planner’s second-best

algorithmic regulations are simple if she may conduct algorithmic audits. At ground-truth model

m, the social planner finds it optimal to set model controls m̃ = m and ban group membership.

We state this in the next proposition.

Proposition 9. Suppose that the disadvantage condition holds. In the presence of algorithmic audits, a

second-best model regulation for the social planner allows the human decision-makers decision-makers to

use any characteristics that is predictive of the outcome of interest and bans group membership. That is,

m∗(m̃) = m̃ for all ground-truth models m̃ .

Proof. This result follows immediately from Proposition 4 and Proposition 5, which imply that an

optimum for the social planner is to set m∗(m̃) = m̃ and ban group membership G from being
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used in decision rules.

The intuition underlying this result is quite simple. If there were only non-discriminators among

human decision-makers with ground-truth model m̃, then the social planner would find it optimal

to select any model controls m satisfying m̃ ⊆ m. If there were only discriminators among the

human decision-makers with ground-truth model m̃, then the social planner would find it optimal

to select model controls m = m̃ and ban the use of group membership. Proposition 9 follows

immediately from these two results.

Moreover, the presence of algorithmic audits has strong implications for the equilibrium level

of discrimination. If the social planner may conduct algorithmic audits, then the introduction

of algorithmic decision-making lowers the equilibrium level of discrimination relative to its level

without algorithms and in fact, the equilibrium level of discrimination goes to zero provided that

the disadvantage condition holds.

Proposition 10. Suppose that the disadvantage conditions holds. If the social planner may conduct algo-

rithmic audits, then the equilibrium level of discrimination goes to zero with ∆(m∗) = 0.

Because the social planner no longer faces asymmetric information over both the human decision-

makers’ preferences and the ground truth model if she can conduct algorithmic audits, she is able

to force discriminatory human decision-makers to select the same decision rule as non-discriminatory

human decision-makers. This highlights a core gain from the adoption of predictive algorithms

– there is a reduction in the level of discrimination provided that the social planner may conduct

algorithmic audits.

5.3 Second-best model regulations with known decision rules

Finally, we consider a disclosure regime in which human decision-makers must only disclose their

decision rule to the social planner. In this case, the introduction of predictive algorithms does

not change the social planner’s second-best regulation problem. Since she still faces asymmetric

information over the ground-truth model of the human decision-makers, the social planner still

faces the flexibility tradeoff in Proposition 7, highlighting the importance of full disclosure of both

the ground-truth model and the decision rule in the previous regime. If human decision-makers

must only disclose their decision rule, optimal regulation does not change relative to the case with
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a purely human-driven decision loop.

Proposition 11. Suppose that the human decision-makers adopt algorithms and the social planner bans

human decision-makers from using group membership in their decision rules. Then, the social planner’s

second-best problem is again equivalent to

min
m⊆{1,...,J}

∑̃
m

{∫
C
E
[
ψ(W)θ∗m̃(W)

(
tm̃
∗,C(W)− tm̃

ND,C(W; m)
)]

h(C)dC
}

η(m̃)

+ η(D) ∑̃
m

{∫
C
E
[
ψ(W)θ∗m̃(W)

(
tm̃

ND,C(W; m)− tm̃
D,C(W; m)

)]
h(C)dC

}
η(m̃|D),

where ψ(W) = ψ0P(0|w) + ψ1P(1|w) and tm̃
∗,C(W) denotes the social planner’s first-best decision rule at

ground-truth model m̃ and capacity constraint C.

Corollary 1. If at each ground truth model m̃, there exists a pair of characteristics wm̃, w′m̃ such that

θ∗m̃(wm̃) > θ∗m̃(w
′
m̃), and λ̄(w′)θ∗m̃(w

′
m̃) > λ̄(w)θ∗m̃(wm̃),

then the equilibrium level of discrimination is strictly positive with ∆(m∗) > 0.

Since the social planner can still only observe the decision rule selected by the human decision-

maker, she is still unsure of why this decision rule was selected. Non-discriminatory human

decision-makers may be using a characteristic in their decision rule because it is predictive of

the outcome of interest at their ground-truth model. In contrast, discriminatory human decision-

makers may be using a characteristic in their decision rule because it helps screen out members of

the disadvantaged group. In this disclosure regime, this asymmetric information problem is still

present. Moreover, as before, the equilibrium level of discrimination is positive if the discrimina-

tory preferences are binding at each ground truth model.

6 Conclusion

We developed an economic model of screening decisions that embeds concerns about algorithmic

bias within a social welfare function. The social welfare function depends directly on the outcomes

of the screening decision, in which individuals from a population are screened into a program

based on predictions of an unknown outcome of interest.
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We first considered the social planner’s first-best problem, in which the social planner con-

structed a prediction function and selected the decision rule. The social planner’s first-best de-

cision rule ranks the population using all available information and then admits individuals ac-

cording to that ranking with group-specific admissions thresholds. The social planner’s posterior

beliefs are asymptotically equivalent to her beliefs if she constructed a consistent predictor of the

measured outcome in the training dataset and ex-post mapped these into predictions of the out-

come of interest. These results highlight a strong form of equity irrelevance – equity preferences

only modify the decision rule, not the prediction function, in the first-best problem.

Next, we considered the social planner’s second-best problem, in which the social planner reg-

ulates the screening decisions of human decision-makers with possibly different preferences. The

social planner faces a flexibility tradeoff – allowing human decision-makers to use more character-

istics leads to more accurate predictions but it also enables discriminatory human decision-makers

to screen out the disadvantaged group. Discrimination goes undetected, as the equilibrium level

of discrimination is strictly positive. With algorithmic decision-making, the social planner may

learn the true prediction function used by human decision-makers through algorithmic audits. In

this case, the social planner lets the human decision-makers use any characteristic that contains

signal in predicting the outcome of interest. Moreover, with algorithmic audits in place, the equi-

librium level of discrimination declines, highlighting that algorithmic decision-making not only

improves prediction but may also make it easier to detect discrimination.

Our results provide a first step to developing an economic approach to regulating algorith-

mic decision-making. There are several avenues for future research. First, we assumed in our

analysis of the regulation problem, we only considered the case in which some human decision-

makers were tasted-based discriminators, ruling out other possible forms of discriminatory be-

havior (Fang and Moro, 2011). Second, as discussed, we only considered a restricted set of policy

instruments that may be available to the social planner. We also abstracted away from finite-

sample issues related to estimation and directly assumed that the human decision-makers and

social planner learned ground truth once they accessed an algorithm. Analyzing the second-best

problem in full generality is an important task moving forward.
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Human Discrimination and Machine Bias
Online Appendix

Ashesh Rambachan Jon Kleinberg Sendhil Mullainathan Jens Ludwig

In the online appendix, we collect together some additional results and assumptions that are
discussed in the main text. We also provide the proofs of the main results.

A Motivating the social welfare function
In this section, we sketch a brief motivation for the social welfare function given in Equation 4.

As in the main text, let Ỹ denote a measured outcome and let ug(Ỹ; T) denote the utility of an
individual in group g with measured outcome Ỹ that is assigned to the program T ∈ {0, 1}. Write
this as

ug(Ỹ; T) = T · ug(Ỹ; 1) + (1− T) · ug(Ỹ; 0).

Therefore, at decision rule t(g, w) ∈ [0, 1], an individual’s expected utility at measured outcome Ỹ
is

Et
[
ug(Ỹ; T) |G = g, W = w

]
= t(g, w) · ug(Ỹ; 1) + (1− t(g, w)) · ug(Ỹ; 0),

where t(g, w) is the probability that an individual with characteristics (g, w) is assigned to the
program.

The social welfare function is defined as a weighted average of individual expected utilities
under the decision rule and is given by

∑
(g,w)∈{0,1}J+1

ψg

 ∑
ỹ∈{0,1}

(
t(g, w) · ug(ỹ; 1) + (1− t(g, w)) · ug(ỹ; 0)

)
P(ỹ|g, w)

 P(g, w),

where P(ỹ|g, w) = P
{

Ỹ = ỹ |G = g, W = w
}

for ỹ ∈ {0, 1} and (ψ0, ψ1) are generalized social
welfare weights that vary across groups. Defining ∆g(Ỹ) ≡ ug(Ỹ; 1) − ug(Ỹ; 0), it is immediate
that maximizing the social welfare function is equivalent to maximizing

∑
(g,w)∈{0,1}J+1

ψg

 ∑
y∈{0,1}

∆g(y)P(y|g, w)

 t(g, w)P(g, w) =

∑
(g,w)∈{0,1}J+1

ψgE
[
∆g(Ỹ) |G = g, W = w

]
t(g, w)P(g, w)

Therefore, without loss of generality, we may redefine the social welfare function as this object.
Setting the outcome of interest to be Y∗ = ∆g(Ỹ) delivers the social welfare function given in
Equation 4.

B Regularity conditions for Proposition 3
In this section, we state the regularity conditions that are assumed in Proposition 3. These are
Assumption 1 and Assumption 2 in Moon and Schorfheide (2012) and we restate them here for
completeness.
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Recall Equation (8) in Section 3.1, which defined the likelihood function of the observed train-
ing dataset DN

L(DN ; η) = ΠN
i=1η̃1(Gi, Wi)

Ỹi × η̃0(Gi, Wi)
1−Ỹi × P(Gi, Wi), l(DN ; η) = log(L(DN ; η)).

Define

ĴN = K−1
N

(
−∂2l(DN ; η)

∂η̃∂η̃′

)
K−1

N and s = Ĵ−1/2
N KN(η̃ − ˆ̃ηN),

where ˆ̃ηN is the maximum likelihood estimator of η̃, and KN is a deterministic matrix with ele-
ments that diverge as N → ∞ and is chosen such that ĴN is convergent. Let π(s|DN) denote the
posterior distribution of the transformed parameter s. Let η̃0 denote the true value of η̃ in the
population.

Assumption 4 (Assumption 1 of Moon and Schorfheide (2012)). Assume that

1. The sequence of maximum likelihood estimators ˆ̃ηN are consistent. The matrix ‖DN‖ → ∞. The
likelihood function cL(DN ; η) is twice continuously differentiable with probability approaching one
such that ĴN is well-defined. The Hessian of the log-likelihood function l has a positive definite limit:

ĴN
d−→ J0 > 0 and Ĵ−1

N
d−→ J−1

0 .

2. The posterior distribution of η̃ is asymptotically normal, meaning ‖π(s|DN)− N(0, I)‖ p−→ 0.

In our application, the assumptions here are simple to check as the model is fully parametric and
fits directly into the set-up in Moon and Schorfheide (2012). Let π(η∗|η̃) denote the conditional
distribution of η∗ given η̃ under the prior distribution π. We additionally make the following
assumption.

Assumption 5 (Assumption 2 of Moon and Schorfheide (2012)). Let Nδ(η̃) = {η̃ : ‖η̃ − η̃0‖ <
δ}. Assume that there exists a δ > 0 and constant M(η̃0, δ) such that ‖π(η∗|η̃) − π(η∗|η̃′)‖TV ≤
M(η̃0, δ)‖η̃ − η̃′‖ for η̃, η̃′ in Nδ(η̃0).

C Proofs of Main Results
Proof of Proposition 1

The objective function in the first-best problem is simply an integrated risk function that assigns
prior weights π(η) to the parameter. Standard arguments in statistical decision theory immedi-
ately implies that the first-best admissions rule can be obtained by constructing the admissions
rule that minimizes posterior expected social welfare at any realization of the training dataset that
occurs with positive prior probability. That is, the first-best admissions rule t∗(g, w; DN) at any
training dataset DN that occurs with positive probability may be obtained by solving

max
t(g,w)

∑
(g,w)

ψgEπ|DN
[θ∗(g, w)] t(g, w)P(g, w)

s.t. ∑
(g,w)

t(g, w)P(g, w) ≤ C.

The social planner’s posterior beliefs are constructed as described in Section 3.1.
Without loss of generality, order groups defined by the characteristics (g, w) using ψg ·Eπ|DN

[θ∗(g, w)].

Let (g1, w1), . . . , (gN , wM) denote such an ordering with M = 2J+1, where ψjEπ|DN

[
θ∗j

]
= ψgjEπ|DN

[
θ∗(gj, wj)

]
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is the j-the element of the ordering and

ψ1Eπ|DN
[θ∗1 ] ≥ ψ2Eπ|DN

[θ∗2 ] ≥ . . . ≥ ψNEπ|DN
[θ∗M] .

Let j(C) be the largest index of this list such that ∑j≤j(C) Pj ≤ C, where Pj = P(gj, wj).
If ∑j≤j(C) Pj = C, then the social planner’s optimal admissions rule takes the form:

t(gj, wj) =

{
1 if j ≤ j(C),
0 otherwise.

Otherwise, the social planner could reallocate admissions probabilities t(g, w) in a manner that
strictly raised expected social welfare under her posterior π|DN . In this case, define τ(C) =

ψj(C)Eπ|DN

[
θ∗j(C)

]
and the social planner’s optimal admissions rule can be written as

t(g, w) = 1

{
Eπ|DN

[θ∗(g, w)] >
τ(C)

ψg

}
,

where the case of ties with Eπ|DN
[θ∗(g, w)] > τ(C)

ψg
is handled by setting t(g, w) = 1. Defining

τ∗(g; C) = τ(C)
ψg

delivers the result for this case.
Next, if ∑j≤j(C) Pj < C, then the social planner’s optimal admissions rule takes the form

t(gj, wj) =


1 if j ≤ j(C),
C−∑j≤j(K) Pj if j = j(C) + 1,
0 otherwise.

Again, otherwise, the social planner could reallocate admissions probabilities t(g, w) in a man-
ner that strictly raised expected social welfare under her posterior π|DN . Now, define τ∗(C) =

ψj(C)+1Eπ|DN

[
θ∗j(C)+1

]
. The social planner’s optimal admissions rule can again be rewritten as

t(g, w) = 1

{
Eπ|DN

[θ∗(g, w)] >
τ(C)

ψg

}
,

where the case of ties withEπ|DN
[θ∗(g, w)] = τ(C)

ψg
is by setting t(g, w) = C−∑j≤j(K) Pj. The result

then follows for this case as well. �

Proof of Proposition 2

We provide one direction of the result and refer the reader to Proposition 1 of Poirier (1998) for the
other direction. By Bayes Rule, the marginal posterior for η∗ is given by

π(η∗|DN) =
π(η∗)L(DN |η∗)
L(DN)

,

where π(η∗) is the marginal prior for η∗ and L(DN ; η∗) is the likelihood conditional on η∗, which
is obtained noting that by

L(DN ; η̃, η∗) = L(DN ; η̃)
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and computing

L(DN ; η∗) =
∫

η̃
π(η̃|η∗)L(DN ; η̃)dη̃.

Finally, L(Dn) is the marginal distribution over the training dataset and it is obtained by

L(DN) =
∫

η∗

∫
η̃

π(η̃|η∗)L(DN ; η̃)dη̃.

If η̃ ⊥⊥ η, thenL(DN ; η∗) = L(DN). The result follows immediately as this implies that π(η∗|DN) =
π(η∗). �

Proof of Proposition 3

For simplicity, we additionally denote the total variation distance between two probability mea-
sures as dTV(F, G) = ‖F − G‖TV . Let η̃MLE denote the maximum likelihood estimate of η̃(g, w)
and let η̃0 denote the true value of η̃ in the population. Applying the triangle inequality, we have
that

‖π(η∗|DN)− π(η∗| f̂N)‖TV = ‖π(η∗|DN)− π(η∗|η̃MLE
N ) + π(η∗|η̃MLE

N )− π(η∗| f̂N)‖TV

≤ ‖π(η∗|DN)− π(η∗|η̃MLE
N (w, g))‖TV + ‖π(η∗|η̃MLE

N )− π(η∗| f̂N)‖TV ,

Under the stated regularity conditions, Theorem 1 in Moon and Schorfheide (2012) applies and
the first term converges in probability to zero. Therefore, it is sufficient to show that

‖π(η∗|η̃MLE
N )− π(η∗| f̂N)‖TV

p−→ 0.

To do so, define the sequence of events An = {‖η̃MLE
N − η̃0‖ < δ, ‖ f̂N − η̃0‖ < δ}. The probability

of these events goes to one as N → ∞ as both the MLE estimator and the algorithm’s prediction
function are consistent. We place ourselves on these events without loss of generality. On these
events, we apply the Lipschitz condition to show that

‖π(η∗|η̃MLE
N )− π(η∗| f̂N)‖TV ≤ M(η̃0, δ)‖η̃MLE

N − f̂N‖,

where ‖η̃MLE
N − f̂N‖

p−→ 0 because again, both are consistent. Therefore, we conclude

‖π(η∗|η̃MLE
N )− π(η∗| f̂N)‖TV

p−→ 0,

establishing the result. �

Proof of Proposition 4

LetM = {m : m̃ ⊆ m}. We prove this result in steps:

Step 1: We show that for any model m ∈ M, the non-discriminatory constructs the same rank-
ordering over the population and therefore, for fixed capacity constraint C, she selects the same
admissions rule across these models.

To see this, consider any such m. If the human decision-maker is allowed to select decision
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rules that use group membership G, then she chooses her admissions rule to maximize

∑
g∈{0,1}

∑
wm∈{0,1}|m|

 ∑
w−m∈{0,1}J−|m|

θ∗πm̃
(wm, w−m)P(g, wm, w−m)

 t(g, wm)

= ∑
g∈{0,1}

∑
wm̃∈{0,1}|m̃|

 ∑
wm−m̃∈{0,1}|m|−|m̃|

θ∗πm̃
(wm̃)t(g, wm̃, wm−m̃)P(g, wm̃, wm−m̃)

 ,

where P(g, wm̃, wm−m̃) = ∑w−m̃∈{0,1}J−|m| P(g, wm̃, wm−m̃, w−m̃). Therefore, the human decision-
maker divides the population into groups divided by the characteristics Wm, G and rank orders the
groups using θ∗πm̃

(wm̃). Any groups with the same value of wm̃ are given the same ranking, which
is the same ranking as if the social planner only allowed the human decision-maker to use model
m̃. Because the rankings are the same, for fixed capacity C, the admissions rules are equivalent
between model m̃ and model m based upon Proposition 1.

Similarly, if the social planner bans the human decision-maker from using group membership
G, then the human decision-maker chooses her admissions rule to maximize

∑
wm̃∈{0,1}|m̃|

 ∑
wm−m̃∈{0,1}|m|−|m̃|

θ∗πm̃
(wm̃)t(wm̃, wm−m̃)P(wm̃, wm−m̃)

 ,

where P(wm̃, wm−m̃) = P(0, wm̃, wm−m̃) + P(1, wm̃, wm−m̃). Again, the human decision-maker di-
vides the population into groups based upon the characteristics Wm and rank orders the groups
using θ∗πm̃

(wm̃). Because θ∗πm̃
(wm̃) does not vary across group membership G and neither does the

non-discriminators preferences, this is the same ranking as if the human decision-maker could use
G in her admissions rule. Once again, it implies that the admissions rules are equivalent.

Therefore, we conclude that for fixed capacity constraint C, the admissions rules for all models
m satisfying m̃ ⊆ m are equivalent. This implies that the social planner is indifferent between these
models. For the remainder of the proof, we therefore focus attention on the model m̃ without loss
of generality.

Step 2: Consider a model m ⊂ m̃. If the social planner strictly prefers model m to model m̃, then
there exists some pairs (g, wm̃), (g′, w′m̃) such that the non-discriminator ranks these pairs differ-
ently than the social planner at model m̃ but ranks them in accordance with the social planner’s
ranking at model m.

Let mc = {1, . . . , J} − m be the variables outside of m and let m′′ = mC ∩ m̃ be the variables
outside of m and within m̃. At model m ⊂ m̃, the non-discriminatory human decision-maker
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selects an admissions rule to maximize

∑
g

∑
wm

{
∑
wmc

θ∗πm̃
(wm, wmc)P(g, wm, wmc)

}
t(g, wm)

= ∑
g

∑
wm

{
∑
wm′′

∑
wmc−m′′

θ∗πm̃
(wm, wm′′)P(g, wm, wm′′ , wmc−m′′)

}
t(g, wm)

= ∑
g

∑
wm

{
∑
wm′′

θ∗πm̃
(wm, wm′′)P(g, wm, wm′′)

}
t(g, wm)

= ∑
g

∑
wm

{
∑
wm′′

θ∗πm̃
(wm, wm′′)P(wm′′ |g, wm)

}
t(g, wm)P(g, wm)

= ∑
g

∑
wm

E
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]

t(g, wm)P(g, wm)

if she may use group membership. Therefore, she ranks according toE
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
.

If she may not use group-membership, then she ranks according to E
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm
]

as

∑
wm

{
∑
g

∑
wmc

θ∗πm̃
(wm, wmc)P(g, wm, wmc)

}
t(wm)

= ∑
wm

{
∑
wm′′

(
θ∗πm̃

(wm, wm′′)∑
g

∑
wmc−m′′

P(g, wm, wm′′ , wmc−m′′)

)}
t(wm)

= ∑
wm

{
∑
wm′′

θ∗πm̃
(wm, wm′′)P(wm, wm′′)

}
t(wm)

= ∑
wm

{
∑
wm′′

θ∗πm̃
(wm, wm′′)P(wm′′ |wm)

}
t(wm)P(wm)

= ∑
wm

E
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm
]

t(wm)P(wm).

If the human decision-maker may use group membership at model m and the pairs (g, wm̃),
(g′, w′m̃) are mis-ranked, then one of six possibilities must hold:

1. θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) > ψg′θ

∗
πm̃

(w′m̃) and E
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
>

E
[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]

2. θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) < ψg′θ

∗
πm̃

(w′m̃) and E
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
<

E
[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]

3. θ∗πm̃
(wm̃) < θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) = ψg′θ

∗
πm̃

(w′m̃) and E
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
=

E
[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]
.

4. θ∗πm̃
(wm̃) < θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) > ψg′θ

∗
πm̃

(w′m̃) and E
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
>

E
[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]
.

5. θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) = ψg′θ

∗
πm̃

(w′m̃) and E
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
=

E
[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]
.
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6. θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) < ψg′θ

∗
πm̃

(w′m̃) and E
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
<

E
[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]
.

Similarly, one of these possibilities must hold if the human decision-maker may not use group
membership at model m. They simply become

1. θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) > ψg′θ

∗
πm̃

(w′m̃) andE
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm
]
> E

[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m
]

2. θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) < ψg′θ

∗
πm̃

(w′m̃) andE
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm
]
< E

[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m
]

3. θ∗πm̃
(wm̃) < θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) = ψg′θ

∗
πm̃

(w′m̃) andE
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm
]
= E

[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m
]
.

4. θ∗πm̃
(wm̃) < θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) > ψg′θ

∗
πm̃

(w′m̃) andE
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm
]
> E

[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m
]
.

5. θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) = ψg′θ

∗
πm̃

(w′m̃) andE
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm
]
= E

[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m
]
.

6. θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) < ψg′θ

∗
πm̃

(w′m̃) andE
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm
]
< E

[
θ∗πm̃

(Wm, Wm′′) |Wm = w′m
]
.

Notice that for all cases, if g = g′, then the first two inequalities cannot be satisfied simultane-
ously. Therefore, for all of these cases, it must be g 6= g′. Moreover, it must be that g = 1, g′ = 0
for Case 1, Case 3 and Case 4. Similarly, it must be that g = 0, g′ = 1 for Case 2, Case 5 and Case 6.

By the alignment assumption, Cases 3–6 cannot occur. For example, in case 3, θ∗πm̃
(wm̃) <

θ∗πm̃
(w′m̃), then it must be that ψ1θ∗πm̃

(wm̃) < ψ0θ∗πm̃
(w′m̃). Similarly, in Case 5, if θ∗πm̃

(wm̃) >
θ∗πm̃

(w′m̃), then it must be that ψ0θ∗πm̃
(wm̃) > ψ1θ∗πm̃

(w′m̃). Therefore, we focus attention on Case
1 and Case 2.

Next, by the relevance assumption, in Case 1 and Case 2, wm̃ = w′m̃. Therefore, if the human
decision-maker cannot use group membership at model controls m, then these will be assigned the
same ranking. It follows that it must be the case that the human decision-maker may use group
membership.

We proceed by contradiction to show that these inequalities may not be satisfied simultane-
ously for Case 1 (the argument is the same for Case 2). Since θ∗πm̃

(wm̃) = θ∗πm̃
(w′m̃), this implies

that wm̃ = w′m̃. Let wm̃ = (wm, wm̃−m) by assumption. The disadvantage condition immediately
implies that

E
[
θ∗πm̃

(Wm, Wm′′) |Wm = wm, G = 1
]
< E

[
θ∗πm̃

(Wm, Wm′′) |Wm = wm, G = 0
]

by Proposition 5.2 in Kleinberg and Mullainathan (2019). By contradiction, such a mis-ranking
cannot occur, and so model m cannot strictly dominate model m̃. �

Step 3: By a similar argument, we can show that the same is true of any model m 6⊂ m̃ with
m ∩ m̃ ⊂ m̃ as well.

Let m̃′ = m ∩ m̃ denote the variables within both models m and m̃. Let m̃C = m̃− m̃′ denote
the variables that are within model m̃ but not model m. Let mC = m − m̃′ denote the variables
that are within model m but not model m̃. Finally, let m′′ = {1, . . . , J} − (m ∪ m̃) denote all other
variables. At model m, the non-discriminatory human decision-maker selects an admissions rule
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to maximize

∑
g

∑
wm

{
∑

w−m

θ∗πm̃
(wm, w−m)P(g, wm, w−m)

}
t(g, wm)

= ∑
g

∑
wm̃′

∑
wmC

{
∑
wm̃C

∑
wm′′

θ∗πm̃
(wm̃′ , wm̃C)P(g, wm̃′ , wmC , wm̃C , wm′′)t(g, wm̃′ , wmC)

}

= ∑
g

∑
wm̃′

∑
wmC

{
∑
wm̃C

θ∗πm̃
(wm̃′ , wm̃C)P(wm̃C |g, wm̃′ , wmC)

}
P(g, wm̃′ , wmC)t(g, wm̃′ , wmC)

= ∑
g

∑
wm̃′

∑
wmC

E
[
θ∗πm̃

(wm̃′ , wm̃C) |G = g, Wm̃′ = wm̃′ , WmC = wmC
]

t(g, wm̃′ , wmC)P(g, wm̃′ , wmC)

if she may use group membership. Similarly, if she may not use group-membership, then she
maximizes

∑
wm̃′

∑
wmC

E
[
θ∗πm̃

(wm̃′ , wm̃C) |Wm̃′ = wm̃′ , WmC = wmC
]

t(wm̃′ , wmC)P(wm̃′ , wmC)

The same contradiction as in Step 2 applies via an application of the disadvantage condition. �

Proof of Proposition 5

Consider a discriminatory human decision-maker at model m̃. If she cannot use group member-
ship, she selects an admissions rule to maximize

∑
wm̃

θ∗πm̃
(wm̃)

{
λ̄0P(0|wm̃) + λ̄1P(1|wm̃)

}
t(wm̃)P(wm̃).

Defining λ̄(wm̃) = λ̄0P(0|wm̃) + λ̄1P(1|wm̃), the discriminatory human decision-maker ranks the
population according to λ̄(wm̃)θ∗πm̃

(wm̃).

Step 1: We show that at model controls m̃ with group membership banned, the discriminatory
human decision-maker ranks the population in the same manner as the non-discriminatory hu-
man decision-maker. That is,

θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃) =⇒ λ̄(wm̃)θ
∗
πm̃

(wm̃) = λ̄(w′m̃)θ
∗
πm̃

(w′m̃)
θ∗πm̃

(wm̃) > θ∗πm̃
(w′m̃) =⇒ λ̄(wm̃)θ

∗
πm̃

(wm̃) > λ̄(w′m̃)θ
∗
πm̃

(w′m̃).

First, consider the case with θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃). By the relevance assumption, wm̃ = w′m̃ and
therefore, λ̄(wm̃) = λ̄(w′m̃). The result follows.

Second, consider the case θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃). The disadvantage condition gives that P(0,wm̃)
P(1,wm̃)

>
P(0,w′m̃)
P(1,w′m̃)

, and so by Bayes’ rule

P(0|wm̃)

P(1|wm̃)
>

P(0|w′m̃)
P(1|w′m̃)

.
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Since P(0|wm̃) = 1− P(1|wm̃), this inequality implies that

P(1|wm̃) < P(1|w′m̃) and λ̄(wm̃) > λ̄(w′m̃).

The result follows.

Step 2: For any model m ∈ M = {m : m̃ ⊆ m}, the discriminator constructs the same rank-
ordering over the population provided that she may use group membership. This argument is the
same as Step 1 in the proof of Proposition 4.

Step 3: We show that the social planner does not prefer letting the discriminator use group status
G at model control m̃ to not letting her use group status.

If the social planner prefers letting the discriminatory use group status to not using group
status, then there exists some pairs (g, wm̃), (g′, w′m̃) such that the discriminator ranks these pairs
differently than the social planner if g is banned but ranks them in accordance with the social
planner’s ranking when g is not banned. That means either

• Case 1:

λ̄gθ∗πm̃
(wm̃) ≥ λ̄g′θ

∗
πm̃

(w′m̃)

ψgθ∗πm̃
(wm̃) ≥ ψg′θ

∗
πm̃

(w′m̃)(
λ̄gP(g|wm̃) + λ̄g̃P(g̃|wm̃)

)
θ∗πm̃

(wm̃) <
(
λ̄g′P(g′|w′m̃) + λ̄g̃′P(g̃′|w′m̃)

)
θ∗πm̃

(w′m̃)

• Case 2:

λ̄gθ∗πm̃
(wm̃) > λ̄g′θ

∗
πm̃

(w′m̃)

ψgθ∗πm̃
(wm̃) > ψg′θ

∗
πm̃

(w′m̃)(
λ̄gP(g|wm̃) + λ̄g̃P(g̃|wm̃)

)
θ∗πm̃

(wm̃) =
(
λ̄g′P(g′|w′m̃) + λ̄g̃′P(g̃′|w′m̃)

)
θ∗πm̃

(w′m̃)

Consider Case 1. First, suppose that g, g′ are equal. Then, following Step 1, the disadvantage
condition implies that λ̄gP(g|wm̃) + λ̄g̃P(g̃|wm̃) ≥ λ̄g′P(g′|w′m̃) + λ̄g̃′P(g̃′|w′m̃). This contradicts
the third inequality. Second, suppose that g 6= g′. If g = 0, g′ = 1, it must be that

1 >
ψ0

ψ1
≥

θ∗πm̃
(w′m̃)

θ∗πm̃
(wm̃)

Therefore, we must have that θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), and the disadvantage condition implies that
λ̄gP(g|wm̃) + λ̄g̃P(g̃|wm̃) > λ̄g′P(g′|w′m̃) + λ̄g̃′P(g̃′|w′m̃), contradicting the third inequality. If g =
1, g′ = 0, it must be that

1 >
λ̄1

λ̄0
≥

θ∗πm̃
(w′m̃)

θ∗πm̃
(wm̃)

Therefore, θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), and the disadvantage condition implies that λ̄gP(g|wm̃)+ λ̄g̃P(g̃|wm̃) >
λ̄g′P(g′|w′m̃) + λ̄g̃′P(g̃′|w′m̃), contradicting the third inequality.

Consider case 2. If g, g′ are equal, then again, the disadvantage condition contradicts the third
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inequality. So, suppose that g 6= g′. If g = 0, g′ = 1, then

1 >
ψ0

ψ1
>

θ∗πm̃
(w′m̃)

θ∗πm̃
(wm̃)

.

An application of the disadvantage condition contradicts the third inequality. Finally, the case
g = 1, g′ = 0 delivers a similar contradiction.

Therefore, the social planner cannot strictly prefer letting the discriminator use group status
at model control m̃.

Step 4: From Step 2, the discriminators rank-ordering is the same at any model m ∈ M = {m :
m̃ ⊆ m} at which she can use group membership. The argument in Step 3 then implies that the
social planner cannot prefer letting the discriminator use group status at any model m ∈ M to
model control m̃ with group status banned.

Step 5: Consider a model control m that satisfies m̃ ⊂ m with group membership banned. If
the social planner strictly prefers this model control to the model control m̃ with group member-
ship banned, then there exists some pairs (g, wm̃), (g′, w′m̃) such that the discriminator ranks these
pairs differently than the social planner at model m̃ but ranks them in accordance with the social
planner’s ranking at model control m.

By Step 1, this means that one of the following case must hold:

1. θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) > ψg′θ

∗
πm̃

(w′m̃) and λ̄(wm)θ∗πm̃
(wm̃) > λ̄(w′m)θ∗πm̃

(w′m̃)

2. θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) < ψg′θ

∗
πm̃

(w′m̃) and λ̄(wm)θ∗πm̃
(wm̃) < λ̄(w′m)θ∗πm̃

(w′m̃)

3. θ∗πm̃
(wm̃) < θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) = ψg′θ

∗
πm̃

(w′m̃) and λ̄(wm)θ∗πm̃
(wm̃) = λ̄(w′m)θ∗πm̃

(w′m̃).

4. θ∗πm̃
(wm̃) < θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) > ψg′θ

∗
πm̃

(w′m̃) and λ̄(wm)θ∗πm̃
(wm̃) > λ̄(w′m)θ∗πm̃

(w′m̃).

5. θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) = ψg′θ

∗
πm̃

(w′m̃) and λ̄(wm)θ∗πm̃
(wm̃) = λ̄(w′m)θ∗πm̃

(w′m̃).

6. θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) < ψg′θ

∗
πm̃

(w′m̃) and λ̄(wm)θ∗πm̃
(wm̃) < λ̄(w′m)θ∗πm̃

(w′m̃).

By the alignment assumption, we immediately rule out Cases 3-6 as in Step 2 in the proof
of Proposition 9. Focus on Case 1 as the argument for Case 2 is analogous. In Case 1, the first
equality implies wm̃ = wm̃′ by the relevance assumption, and so it must that λ̄(wm)θ∗πm̃

(wm̃) =
λ̄(w′m)θ∗πm̃

(w′m̃), contradicting the third inequality.
Therefore, the social planner cannot strictly prefer a model control with m with m̃ ⊂ m and

group membership banned to model control m̃ with group membership banned.

Step 6: Consider a model control m 6∈ M = {m : m̃ ⊆ m}. If the social planner strictly prefers
model control m to model control m̃, then there exists some pairs (g, wm̃), (g′, w′m̃) such that the
discriminator ranks these pairs differently than the social planner at model m̃ but ranks them in
accordance with the social planner’s ranking at model control m.

First, consider the case where m ⊂ m̃. Let mc = {1, . . . , J} − m be the variables outside of m
and let m′′ = mC ∩ m̃ be the variables outside of m and within m̃. Suppose group membership is
allowed at model control m. By Step 1, if group membership is allowed, then one of the following
cases must hold:
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1. θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) > ψg′θ

∗
πm̃

(w′m̃) andE
[
λ̄gθ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
>

E
[
λ̄g′θ

∗
πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]
.

2. θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) < ψg′θ

∗
πm̃

(w′m̃) andE
[
λ̄gθ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
<

E
[
λ̄g′θ

∗
πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]
.

3. θ∗πm̃
(wm̃) < θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) = ψg′θ

∗
πm̃

(w′m̃) andE
[
λ̄gθ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
=

E
[
λ̄g′θ

∗
πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]
.

4. θ∗πm̃
(wm̃) < θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) > ψg′θ

∗
πm̃

(w′m̃) andE
[
λ̄gθ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
>

E
[
λ̄g′θ

∗
πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]
.

5. θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) = ψg′θ

∗
πm̃

(w′m̃) andE
[
λ̄gθ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
=

E
[
λ̄g′θ

∗
πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]
.

6. θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) > ψg′θ

∗
πm̃

(w′m̃) andE
[
λ̄gθ∗πm̃

(Wm, Wm′′) |Wm = wm, G = g
]
>

E
[
λ̄g′θ

∗
πm̃

(Wm, Wm′′) |Wm = w′m, G = g′
]
.

The alignment condition rules out Cases 3-6 as before. Consider Case 1 as Case 2 is analogous.
In Case 1, relevance implies wm̃ = wm̃′ and so, wm = w′m. This contradicts the third inequality.

Next, suppose that group membership is not allowed at model control m. By Step 1, this
means that one of the following cases must hold:

1. θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) > ψg′θ

∗
πm̃

(w′m̃) andE
[
λ̄(Wm, Wm′′)θ

∗
πm̃

(Wm, Wm′′) |Wm = wm
]
>

E
[
λ̄(Wm, Wm′′)θ

∗
πm̃

(Wm, Wm′′) |Wm = w′m
]
.

2. θ∗πm̃
(wm̃) = θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) < ψg′θ

∗
πm̃

(w′m̃) andE
[
λ̄(Wm, Wm′′)θ

∗
πm̃

(Wm, Wm′′) |Wm = wm
]
<

E
[
λ̄(Wm, Wm′′)θ

∗
πm̃

(Wm, Wm′′) |Wm = w′m
]
.

3. θ∗πm̃
(wm̃) < θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) = ψg′θ

∗
πm̃

(w′m̃) andE
[
λ̄(Wm, Wm′′)θ

∗
πm̃

(Wm, Wm′′) |Wm = wm
]
=

E
[
λ̄(Wm, Wm′′)θ

∗
πm̃

(Wm, Wm′′) |Wm = w′m
]
.

4. θ∗πm̃
(wm̃) < θ∗πm̃

(w′m̃), ψg θ̃m̃(wm̃) > ψg′ θ̃m̃(w′m̃) andE
[
λ̄(Wm, Wm′′)θ̃m̃(Wm, Wm′′) |Wm = wm

]
>

E
[
λ̄(Wm, Wm′′)θ̃m̃(Wm, Wm′′) |Wm = w′m

]
.

5. θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), ψgθ∗πm̃
(wm̃) = ψg′θ

∗
πm̃

(w′m̃) andE
[
λ̄(Wm, Wm′′)θ

∗
πm̃

(Wm, Wm′′) |Wm = wm
]
=

E
[
λ̄(Wm, Wm′′)θ

∗
πm̃

(Wm, Wm′′) |Wm = w′m
]
.

6. θ∗πm̃
(wm̃) > θ∗πm̃

(w′m̃), ψg θ̃m̃(wm̃) < ψg′ θ̃m̃(w′m̃) andE
[
λ̄(Wm, Wm′′)θ̃m̃(Wm, Wm′′) |Wm = wm

]
<

E
[
λ̄(Wm, Wm′′)θ̃m̃(Wm, Wm′′) |Wm = w′m

]
.

This case is analogous as the case where group membership is allowed. Finally, the case with
m 6⊂ m̃ with m ∩ m̃ ⊂ m̃ proceeds similarly. �.

Proof of Proposition 6

At any cutoff C, the discriminatory human decision-maker wishes to select an admissions rule to
maximize

U(t; λ̄) = ∑
w∈{0,1}J

(
λ̄0P(0|w) + λ̄1P(1|w)

)
θ̃πm̃(w)t(w)P(w)

= ∑
w∈{0,1}J

λ̄(w)θ̃πm̃(w)t(w)P(w), where λ̄(w) = λ̄0P(0|w) + λ̄1P(1|w).
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Therefore, if P(G = 1|W = w) 6= P(G = 1|W = w′) for all w, w′ ∈ {0, 1}J with w 6= w′, then λ̄(w)
varies across the population. That is, for w = (wm̃, w−m̃), w′ = (wm̃, w′−m̃), it may be the case that

λ̄(w)θ̃πm̃(w) 6= λ̄(w′)θ̃πm̃(w
′),

even though θ̃πm̃(w) = θ̃πm̃(w′). It is immediate that the discriminatory firm wishes to rank order
the population using λ̄g(w)θ̃πm̃(w), even though her model for the outcome of interest is simply
m̃. �

Proof of Proposition 7

Consider the social planner’s objective function evaluated at model m and re-write it as

∫
C

 ∑
w∈{0,1}J

[ψ0P(0|w) + ψ1P(1|w)]Eη

[
θ̃πm̃(w)tm̃

λ,C(w; m)
]

P(w)

 h(C)dC

=
∫

C

 ∑
w∈{0,1}J

ψ(w)

{
∑̃
m

θ̃πm̃(w)tm̃
ND,C(w; m)η(m̃, ND) + ∑̃

m
θ̃πm̃(w)tm̃

D,C(w; m)η(m̃, D)

}
P(w)

 h(C)dC,

where ψ(w) = ψ0P(0|w) + ψ1P(1|w), tm̃
ND,C(g, w; m) is the admissions rule selected by a non-

discriminatory human decision-maker at true model m̃ and cutoff C and tm̃
D,C(g, w; m) is defined

analogously for the discriminatory human decision-maker. We next add and subtract the social
planner’s payoff at her first-best admissions rule

∫
C

 ∑
w∈{0,1}J

ψ(w)

{
∑̃
m

θ̃πm̃(w)tm̃
∗,C(w)η(m̃, ND) + ∑̃

m
θ̃πm̃(w)tm̃

∗,C(w)η(m̃, D)

}
P(w)

 h(C)dC,

where tm̃
∗,C(g, w) is the social planner’s optimal admissions rule at true model m̃ and cutoff C.

This is a constant, and so it does not affect the optimizer. Maximizing the original objective is
equivalent to maximizing

∫
C

 ∑
w∈{0,1}J

ψ(w)

{
∑̃
m

θ̃πm̃(w)
[
tm̃

ND,C(w; m)− tm̃
∗,C(w)

]
η(m̃, ND)P(w)

} h(C)dC)

+
∫

C

 ∑
w∈{0,1}J

ψ(w)

{
∑̃
m

θ̃πm̃(w)
[
tm̃

D,C(w; m)− tm̃
∗,C(w)

]
η(m̃, D)P(w)

} h(C)dC)

=
∫

C

∑̃
m

 ∑
w∈{0,1}J

ψ(w)θ̃πm̃(w)
[
tm̃

ND,C(w; m)− tm̃
∗,C(w)

]
P(w)

 η(ND|m̃)η(m̃)

 h(C)dC

+
∫

C

∑̃
m

 ∑
w∈{0,1}J

ψ(w)θ̃πm̃(w)
[
tm̃

D,C(w; m)− tm̃
∗,C(w)

]
P(w)

 η(D|m̃)η(m̃)

 h(C)dC.

51



Using the fact that η(ND|m̃) = 1− η(D|m̃), this becomes

∫
C

∑̃
m

 ∑
w∈{0,1}J

ψ(w)θ̃πm̃(w)
[
tm̃

ND,C(w; m)− tm̃
∗,C(w)

]
P(w)

 η(m̃)

 h(C)dC

+ η(D)
∫

C

∑̃
m

 ∑
w∈{0,1}J+1

ψ(w)θ̃πm̃(w)
[
tm̃

D,C(w; m)− tm̃
ND,C(w; m)

]
P(w)

 η(m̃|D)

 h(C)dC

Flipping the sign, maximizing the social welfare function is equivalent to minimizing

∫
C

∑̃
m

 ∑
w∈{0,1}J

ψ(w)θ̃πm̃(w)
[
tm̃
∗,C(w)− tm̃

ND,C(w; m)
]

P(w)

 η(m̃)

 h(C)dC

+
∫

C

∑̃
m

 ∑
w∈{0,1}J+1

ψ(w)θ̃πm̃(w)
[
tm̃

ND,C(w; m)− tm̃
D,C(w; m)

]
P(w)

 η(m̃|D)

 h(C)dCη(D)

= ∑̃
m

{∫
C
E
[
ψ(w)θ̃πm̃(w)

(
tm̃
∗,C(w)− tm̃

ND,C(w; m)
)]

h(C)dC
}

η(m̃)

+ η(D) ∑̃
m

{∫
C
E
[
ψ(w)θ̃πm̃(w)

(
tm̃

ND,C(w; m)− tm̃
D,C(w; m)

)]
h(C)dC

}
η(m̃|D).

�

Proof of Proposition 8

Suppose, for sake of contradiction, that the equilibrium level of discrimination was zero. This
means that for all beliefs πm̃ and capacity constraints C

tm̃
λ̄,C(m

∗) = tm̃
(1,1),C(m

∗).

First, suppose that group membership is not banned at m∗. By the stated assumption, there
exists a pair of characteristics wm∗ , w′m∗ such that

θ∗πm∗
(wm∗) > θ∗πm∗

(w′m∗)

λ̄0θ∗πm∗
(w′m∗) > λ̄1θ∗πm∗

(wm∗).

Since the distribution over capacity constraints has full support, this implies that there exists val-
ues of C that occur with positive probability such that tm∗

λ̄,C(m
∗) 6= tm∗

(1,1),C(m
∗) as w′m∗ is admitted

before wm∗ by the discriminators but not by the non-discriminators.
Next, suppose that group membership is banned at m∗. Then, the non-discriminatory hu-

man decision-makers with beliefs πm∗ rank-order according to θ∗π̃(wm∗) and discriminatory hu-
man decision-makers with beliefs πm∗ rank-order according to λ̄(wm∗)θ∗π̃(wm∗). Again, the stated
assumption, there exists a pair of characteristics wm∗ , w′m∗ such that

θ∗πm∗
(wm∗) > θ∗πm∗

(w′m∗)

λ̄(w′m∗)θ
∗
πm∗

(w′m∗) > λ̄(wm∗)θ
∗
πm∗

(wm∗).
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The contradiction proceeds as before. �

Proof of Proposition 10

Recall in Step 1 in the proof of Proposition 5, we show that the rank-ordering used by the discrim-
inatory human decision-maker is the same as a non-discriminatory human decision-maker with
ground truth model m̃ if the social planner implements model controls m = m̃ and bans group
membership.

Therefore, at the model regulations m∗(m̃) = m̃ with group membership banned, all dis-
criminatory human decision-makers and non-discriminatory human decision-makers with the
same ground-truth model select the same rank ordering. This immediately implies tm̃

λ̄,C(m
∗) =

tm̃
(1,1),C(m

∗) as all human decision-makers simply admit individuals according to their chosen rank-
ordering until the capacity constraint is satisfied. �
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