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1 Introduction

Financial crises have a common character. There is a pre-crisis period that is marked by a

runup in credit, leverage, low risk spreads, and an expansion in output. Credit and asset

valuations appear frothy before a crisis. The transition to the crisis is sharp. There are losses

to the financial sector, defaults and bank-runs, a jump in risk spreads, and contraction in

credit and output. The aftermath of the crisis is a gradual recovery in credit, output, and fall

in risk spreads. These patterns emerge from a large and growing body of research examining

financial crises episodes across countries and time, dating back to the 19th century. See

Bordo et al. (2001), Borio and Lowe (2002), Claessens, Kose and Terrones (2010), Reinhart

and Rogoff (2009a), Schularick and Taylor (2012), Jordà, Schularick and Taylor (2011),

Jordà, Schularick and Taylor (2013), Baron and Xiong (2017), and Krishnamurthy and

Muir (2017). This empirical research describes and quantifies these common patterns.

Theoretical research on crises has fallen into two categories. The first emphasizes frictions

in financial intermediation that drive an amplification mechanism. The key idea is that the

fragility of the financial sector, measured typically as high leverage or low levels of equity

capital-to-assets, is an endogenous state variable. An unexpected large-loss event hitting the

economy in a state where the financial sector is fragile sets in motion mechanisms whereby

the shock is amplified, there is disintermediation, a rise in risk spreads and contraction in

output. Recovery takes time, tracking a gradual re-intermediation. The amplification model

speaks directly to the transition to crisis and the aftermath of the crisis. See work by Gertler

and Kiyotaki (2010), He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), He

and Krishnamurthy (2019), and Li (2019).

The second line of research emphasizes the role of beliefs, and harkens back to Kindel-

berger (1978). Agents pre-crisis see a string of good-news shocks that makes them optimistic

about the path of the economy. Lending grows, risk spreads are low, and output grows.

Bad-news events realize that lead agents to revise their views of the economy, creating the

transition to the crisis. A slow-recovery follows as beliefs slowly revert back to a steady-

state level. The key state variable in these models is agents’ beliefs. There are two flavors

of these models: one in which learning and belief updating is Bayesian (Moreira and Savov,

2017) and the other where updating is non-rational (Bordalo, Gennaioli and Shleifer, 2018).

Bordalo, Gennaioli and Shleifer (2018) argues forcefully for a form of non-rational learning

whereby beliefs over-react to current news. These authors argue that such over-reaction is

essential to capture the crisis patterns.

This paper builds a model that integrates both of these elements, frictional financial

intermediation and time-variation in beliefs, into a quantitative macro-finance model. Our

objective is to understand the extent to which these mechanisms can account qualitatively

and quantitatively for the crisis patterns, and to understand which elements of these mecha-
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nisms are essential. We build a model with a financial intermediary sector subject to capital

constraints and financed in part by demandable debt. There are two sources of shocks in

the model, a Brownian shock to the return on capital and an illiquidity shock where the

market for capital assets temporarily freezes up, and debtors refuse to roll over their debts,

as in a bank run. In this latter state, sales of capital assets incur a liquidation cost, or al-

ternatively, loans against capital are charged an illiquidity premium. The economy transits

through booms and busts driven by the Brownian shock and its impact on the dynamics of

real capital and the equity capital of the financial sector. Crises are events where both the

financial sector equity capital is low, and the illiquidity shock occurs. In this case, there

are runs on banks leading to disintermediation, declines in asset values, and a reduction

in output. The financial frictions model of our paper is a variant of Li (2019). It draws

on ingredients from the recent macro-finance literature on financial crises and intermedia-

tion frictions, and particularly He and Krishnamurthy (2013); Brunnermeier and Sannikov

(2014); Gertler and Kiyotaki (2015).

Agents in the economy make decisions based on their beliefs about the likelihood of the

illiquidity shock. The illiquidity shock is a Poisson event, the intensity of which follows a

two-state Markov process. Agents infer the state and hence the likelihood of the illiquidity

shock based on history. A string of no-shock realizations leads them to believe that shocks

are unlikely (i.e., the true state is the low-intensity state). A shock occurrence leads them

to think that shocks are more likely (i.e., the true state is the high-intensity state). We

consider two flavors of this learning mechanism, a Bayesian rational updating process and a

non-rational diagnostic updating process that overweighs current realizations. The Bayesian

learning mechanism is fairly standard. Our modeling is closest to Moreira and Savov (2017).

The diagnostic updating process is motivated by the work of Bordalo, Gennaioli and Shleifer

(2018), and is also related to the models of Greenwood, Hanson and Jin (2019) and Maxted

(2019).

We report four principal results:

1. The model with financial frictions and a Bayesian belief process can qualitatively match

the main features of the pre-crisis, crisis, and aftermath. Our quantitative exercise

matches the crisis and aftermath but fails to match the extent of pre-crisis froth.

2. Replacing the Bayesian belief process with a diagnostic updating process brings the quan-

titative results closer to the pre-crisis data. The improvement here is quantitative, not

qualitative.

3. Turning off the belief mechanism (i.e., holding the intensity of the illiquidity process

constant) misses the pre-crisis froth qualitatively. The signs on the pre-crisis relationships

in this case are the opposite of those in the data. However, this model can match the

crisis and aftermath patterns.
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4. The impulse responses of both the Bayesian and diagnostic model, conditional on a state

chosen to match the same measured credit spread and bank leverage, are quantitatively

similar.

The model has two key state variables: one governing the wealth-share of bankers and

the other describing agents’ beliefs over the intensity of the illiquidity shock. The wealth-

share variable, coupled with financial frictions, governs a financial amplification mechanism

studied in prior work. We show that this amplification mechanism helps the model match

data on the crisis and its aftermath. In particular, the financial amplification mechanism of

the model generates a sharp drop in asset prices, credit, and output. The mean drop in our

model is in line with the data, but more telling, the skewness of these variables and their

comovement also match data counterparts. That is, a key feature of financial crises is non-

linearity, reflected in a skewed distribution of output declines. The model’s amplification

mechanism generates skew in line with that of the data. The model also generates a slow

recovery due to the persistence mechanism of financial frictions models.

While the financial frictions wealth-share mechanism is the key to understanding the

model’s match of the crisis and aftermath, the belief state variable is needed for the model

to match the pre-crisis patterns. In the model, the frequency of the illiquidity shock follows

a hidden two-state Markov process, and agents update their beliefs over the state based

on history in a Bayesian fashion. Agents’ beliefs of the shock probability is thus also a

state variable driving the model’s dynamics. If a crisis has not occurred for some time,

agent beliefs drift towards the low likelihood state. Bankers choose to increase leverage

as they are less concerned about liquidity risk. Risk spreads fall and credit grows. From

this state, if an illiquidity shock arrives, beliefs jump towards the high likelihood state and

banker wealth falls, leading to financial amplification of the shock and persistence as in a

crisis. The belief mechanism helps explain why spreads are low and credit is high before the

crisis. More surprisingly, low spreads and high credit help predict a crisis. The reason is

that bankers act more risk-tolerant in the pre-crisis period – they drive down spreads/risk

premia and increase credit. They also take actions that effectively shift GDP outcomes into

tail states. It may be surprising that we find that there are times when crises are more

likely and yet risk prices are low and bankers take more leverage. Our model ties these

observations together by generating more risk tolerance in the pre-crisis period, driven by

the beliefs state variable.

We probe this model in two dimensions. First, we find that if the belief intensity is held

constant (i.e., no learning mechanism), the model fails to match the pre-crisis patterns. In

such a model, only the banker wealth-share is a state variable. The fragility of the economy

to a crisis is measured by the banker wealth-share state variable. When this is low, a

negative shock triggers a crisis. Thus a crisis is more likely when negative shocks reduce

banker wealth (at the same time, raising leverage). However, this means that forward-
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looking asset prices will account for the increased fragility as the wealth share state variable

falls. As a result, the model implies that credit spreads will rise, and bank credit will fall

in the period before a crisis, contrary to the data. On the other hand, we find that this

static-belief model is able to match the data for the crisis and its aftermath, clarifying that

the financial amplification mechanism drives these patterns. We also show that this model

generates a negative relation between bank credit and equity market excess returns (risk

premia), as documented by Baron and Xiong (2017). This occurs in our model because

variation in the wealth-share drives variation in bankers’ risk tolerance that generates the

required comovement between credit and risk premia. It is worth emphasizing that this

result arises in a model with no variation in beliefs.

Second, we consider an alternative diagnostic learning mechanism that leads beliefs to

have a non-rational component, over-extrapolating from recent observations. Similarly to

the Bayesian model, this model matches the crisis and aftermath evidence, but it additionally

gets closer to quantitatively matching the pre-crisis froth evidence. The reason is that the

sensitivity of bankers’ leverage decisions to the true illiquidity state is higher under diagnostic

beliefs than Bayesian beliefs. This “steepening” of the leverage decision is the key force that

brings the model more in line with the data.

Putting this together, our analysis indicates that a financial amplification mechanism

plus a belief mechanism provides a parsimonious account of the main crisis facts. The static

belief model fails to match the data. However, our analysis also indicates that the qualitative

patterns of the data do not clearly distinguish the two belief models.1

Lastly, we ask the question, does it matter for policy purposes whether we are living in

a world with diagnostic beliefs or one with Bayesian beliefs? Although our model is not

suited for welfare analysis, it can shed light on the impact of a change in policy on economic

outcomes. We consider an unexpected policy that transfers wealth from households to

bankers so that the banker wealth share increases by 10% during a pre-crisis boom period.

The policy captures the impact of increasing bank equity to lean-against-the-wind, along

the lines of Gertler, Kiyotaki and Prestipino (2020). Under each version of the model, we

pick an initial condition in terms of credit spreads and bank leverage and map these into the

state variables in each model (they map to different values of the state variable across the

models). We then simulate the path of the economy with and without the recapitalization

policy. We calculate the difference in quantities and prices between the with- and without-

recapitalization and repeat this across both models. Our main finding is that these impulse

response differences are quite similar across both models. The policy raises the mean path

of output and credit, and the conditional response of these variables to an illiquidity shock,

but these responses are quantitatively similar across both models. Key to this similarity

1The qualitative pattern that may disentangle non-rational from rational beliefs is a negative expected
return on the equity market in some states of the world. While there is some evidence on this pattern in
the literature (Baron and Xiong, 2017), it is among the weaker evidence in the crisis literature.
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result is that both models are calibrated to common data but are not forced to having a

common parameterization, and both models are tied to the same initial condition in terms

of observables. In particular, the diagnostic model does not just take the Bayesian model

parameters and add a new diagnostic parameter. In this case, which is not economically

meaningful, the impulse responses are no longer similar.

This paper’s goals and approach is closest to that of two other recent papers, Greenwood,

Hanson and Jin (2019) and Maxted (2019). Both of these papers construct models of

the boom-bust crisis cycle with a role for beliefs. Greenwood, Hanson and Jin (2019)

present a model where lenders extend credit based on beliefs over the default probabilities

of borrowers. There is a feedback between realized default and beliefs regarding default

probabilities, similar to the model of this paper, that creates a persistence and amplification

mechanism. Like us, their paper aims to match facts on credit growth, credit spreads, and

risk premia. But their model is not a full macroeconomic model, and thus does not speak

to other macroeconomic data such as output and the conditional distribution of output

growth. Their model also does not have an intermediary sector, so it cannot assess the

role of intermediary frictions relative to beliefs. Finally, lenders are risk-neutral in their

model, so that without diagnostic expectations, risk premia are zero. As a result, their

model does not give the Bayesian belief process a chance of explaining the data. Maxted

(2019) presents a macro-finance model that is closer to ours. There is an intermediation

sector that is central to crisis dynamics. The paper also considers a full macroeconomic

setting, and can thus speak to more macro data. Nevertheless, the paper considers only a

subset of the crisis data that we aim to match in this paper. Like Greenwood, Hanson and

Jin (2019), the paper does not allow an evaluation of a Bayesian belief process. Without

diagnostic expectations, the model of the paper collapses to a pure intermediation model

along the lines of He and Krishnamurthy (2019). The other main difference relative to our

model is that the diagnostic belief shifts the mean drift of the capital process, whereas in

our case, the effect is on the tail of the distribution (we are similar to Greenwood, Hanson

and Jin (2019) in this regard). Although it is not entirely clear at this stage which approach

(shifting mean versus shifting mass in tail) is the right way forward, one difference in these

two approaches is that ours directly impacts risk premia, whereas the mean shift has no

direct impact on risk premia.

Our paper also advances the recent continuous-time macro-finance literature (He and

Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014; Di Tella, 2017). The models in this

literature feature non-linearities and are solved using global methods. Thus the advantage

of these models is that they can characterize the non-linear dynamics in financial crises.

However, a major disadvantage of these models is that they are computationally challenging,

and current models restrict attention to one or two-state variables following a Brownian

diffusion process. In this paper, we present and solve a model with two state variables and

endogenous jumps. Our methodology helps broaden the scope of the literature to encompass
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richer dynamics with sudden and large disruptions, which are plausibly central to financial

crises.

There are other recent papers that also touch on the issues of this paper. Gertler,

Kiyotaki and Prestipino (2020) introduces bank runs into a macro-intermediation model.

Beliefs, modeled via a sunspot, play a role in driving crisis dynamics. The objective of

their paper is to study the 2007-2009 financial crisis rather than disentangling mechanisms

underlying the crisis cycle facts. Bordalo et al. (2019) introduce diagnostic beliefs into a

relatively standard RBC model. Their model does not have an intermediation mechanism

and thus helps to understand the role of diagnostic beliefs. Farboodi and Kondor (2020)

present a model of time-varying sentiment that generates a credit cycle that is qualitatively

in line with the facts. All agents in their model are rational, so that sentiment evolves in

a Bayesian manner. Thus, like us, they show that the basic facts of the credit cycle can

be generated within a Bayesian model. The objective of the paper is different than ours,

as their model is not suited to a quantification exercise and does not have an intermediary

sector. In our model, the illiquidity shock and the bank run are exogenous. In Gorton and

Ordonez (2014, 2020), the debt crisis occurs when agents endogenously choose to acquire

information and this information is bad-news, turning previously safe-debt risky.

Finally, this paper also contributes to a larger literature on beliefs and learning in macroe-

conomics models. Van Nieuwerburgh and Veldkamp (2006) show that asymmetry in learning

about productivity can generate asymmetries in business cycles. Simsek (2013) explores the

interaction of beliefs and credit, building a model where beliefs over upside versus downside

payoffs have an asymmetric impact on asset valuations, total credit and fragility of the econ-

omy. Motivated by the slow recovery from the 2008 recession, there is research tying learning

to slow recoveries. In Fajgelbaum, Schaal and Taschereau-Dumouchel (2017), information

flows slowly in times of low activity and uncertainty remains high, discouraging investment.

In Kozlowski, Veldkamp and Venkateswaran (2020), agents learn about the parameters of

the economic shock process, and a large negative shock realization as in a deep recession

alters agents’ estimates of these parameters, leading to a persistent impact of the shock on

economic growth.

The rest of this paper is as follows. In Section 2, we review general patterns of the crisis

cycle in the data. In Section 3, we set up a model that combines financial intermediation

frictions and beliefs regarding an illiquidity shock. In Section 4, we solve and explain how

we calibrate the the model(s). In Section 5, we evaluate the model, explaining its fit and

the role of beliefs. In Section 6, we consider how the Bayesian and diagnostic models may

inform policy. We then conclude in Section 7. An appendix follows.
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2 The Crisis Cycle

This section reviews broad patterns of the crisis cycle, drawn from the empirical literature

on crises. Along the way, we list (numbered below) specific quantitative estimates from the

literature which guide our modeling exercise.

What is a financial crisis? Jordà, Schularick and Taylor (2011) state:

In line with the previous studies, we define financial crises as events dur-

ing which a country’s banking sector experiences bank runs, sharp increases in

default rates accompanied by large losses of capital that result in public inter-

vention, bankruptcy, or forced merger of financial institutions.

We focus on events, as per the quotation, as financial crises. These events are banking crises

and do not necessarily include currency crises or sovereign debt crises, which are other crises

of interest, unless such events coincide with a banking crisis. Jordà, Schularick and Taylor

(2011)’s dating of banking crises is closely related to the approach of Bordo et al. (2001),

Reinhart and Rogoff (2009a), and Laeven and Valencia (2013). Bordo and Meissner (2016)

discuss the approaches that researchers have taken to crisis-dating as well the drawbacks of

different approaches.

1. We target an unconditional frequency of financial crises of 4%. In an article written

for the Annual Review of Economics, Taylor (2015) reports the historical frequency of

financial crises to be 6%. This data point is obtained from a sample of countries in both

developing and advanced stages, and covers the period after 1860. The Handbook of

Macroeconomics chapter by Bordo and Meissner (2016) reports numbers in the range

of 2 to 4% across the studies by Bordo et al. (2001) and Reinhart and Rogoff (2009a).

Another evidence comes from Jordà, Schularick and Taylor (2013), which shows that the

average frequency of crises is 3.6% using data from multiple countries. In light of the

above evidence, we pick the medium value 4% as our target.

2. Baron and Xiong (2017) measure equity market crashes, defined as a fall in bank equity

market prices in excess of 30%. They report that crashes occur with a frequency of 3.2%

per quarter in a sample from 1920 to 2012. Note that not every equity crash corresponds

to a real crisis, which is a point also emphasized by Greenwood, Hanson and Jin (2019).

Figure 1 plots the mean path of credit spread, credit, and GDP across a sample of 41

international financial crises identified by Jordà, Schularick and Taylor (2013). The figure is

drawn from Krishnamurthy and Muir (2017), which includes data on credit spreads relative

to other studies of crises. Date 0 on the figure corresponds to the date of a financial crisis.

The top-left panel plots the path of the mean across-country credit spread, relative to the
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Figure 1: Mean path of credit spread, bank credit, and GDP across a sample of 41 financial
crises identified in Jordà, Schularick and Taylor (2013). Units for spread path are 0.4 means
that spreads are 0.4σs above their average for a given country. Units for credit path are that
5 indicates that credit/GDP is 5% above the trend for a given country. Units for GDP path
are that −8 means that GDP is 8% below trend for a given country. Source: Krishnamurthy
and Muir (2017)

mean spread for country-i, from 5-years before the crisis to 5-years after the crisis. The units

here are that 0.4 means that spreads are 0.4σs larger than the country’s time-series average

spread, while -0.2 means that spreads are 0.2σs below the country’s time-series average. The

data is annual from 14 countries spanning a period from 1879 to 2013.

We see that spreads run below their average value in the years before the crisis. They

rise in the crisis, going as high as 0.4σs over their mean value in the year after the crisis

date, before returning over the next 5 years to the mean value. The half-life of the credit

spread recovery is 2.5 years in this figure.

The top-right panel plots the path of the quantity of bank credit divided by GDP. The

credit variable is expressed as the average across-country percentage change in the quantity

of credit/GDP from 5-years before the crisis to a given year, after demeaning by the sample

growth rate in credit for country-i. The value of 5 for time 0 means that credit/GDP is 5%

above the country trend. We see that credit grows faster than average in the years leading

up to the crisis at time zero. After this point, credit reverses so that by time +5 the variable

is back near the country average.

The bottom-left panel plots GDP, again as an average percentage change from 5-years

before the crisis, after demeaning by the sample growth rate in GDP for country-i. GDP

grows slightly faster than average in the years preceding the crisis. GDP falls below trend

in the crisis and remains low up to 5 years after the crisis.

Transition to crisis: A crisis is characterized by a sharp jump in credit spreads, a reversal

in the quantity of credit and a decline in GDP. From the data underlying Figure 1, we see

that:

3. Credit spreads rise by 0.7σs of their mean value at the crisis.

4. GDP declines by 9.1%. Reinhart and Rogoff (2009b) report a peak-to-trough decline in
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Figure 2: Panel A presents a histogram of 3-year GDP growth from the start of a crisis, as
dated by Jordà, Schularick and Taylor (2013). Panel B presents a scatter plot of the spike
in spreads in the year of the crisis against 3-year GDP growth after the crisis..

GDP across a larger sample of crises of 9.3%. Jordà, Schularick and Taylor (2013) report

a 5-year decline in GDP from the date of crisis of around 8%. Cerra and Saxena (2008)

report output losses from banking crises of 7.5% with these losses persisting out to 10

years. We will use the 9.1% number in our quantitative exercise.

The rise in credit spreads in the year of the crisis is mirrored in other asset prices.

Reinhart and Rogoff (2009a) report that equity prices decline by an average of 55.9% during

banking crises. Muir (2017) shows that the price-dividend ratio on the stock market falls in

a crisis, and the excess return on stocks rises during the crisis, indicated a generalized rise

in asset market risk premia.

Aftermath and severity of crisis:

5. The half-life of the recovery of the credit spread to its mean value is 2.5 years.

6. There is variation in the severity of the crisis. Figure 2, Panel A presents data on the

variation in the severity of the crisis, as measured by 3-year GDP growth following a

crisis. The figure reflects significant variation in crisis severity.

7. The variation in the severity of the crisis is correlated with the increase in spreads mea-

sured at the transition into the crisis, as illustrated in Figure 2, Panel B. Krishnamurthy

and Muir (2017) report a coefficient of −7.46 (s.e. 1.46) from a regression of 3-year GDP

growth following a crisis on the increase in credit spreads from the year before the crisis

to the year of a crisis.
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Pre-crisis period: In the pre-crisis period, credit markets appear frothy, reflecting low

credit spreads and high credit growth. In particular,

8. Conditioning on a crisis at year t, and looking at the 5 years prior to the crisis, Krishna-

murthy and Muir (2017) show that credit spreads are 0.34σs below their country mean

(where this country mean is defined to exclude the crisis and 5 years after the crisis).

9. Conditioning on a crisis at year t, credit/GDP in the 5 years before the crisis is 5%

above country mean. The relation between a lending boom and subsequent crisis is well

documented in the literature. See Gourinchas et al. (2001), Schularick and Taylor (2012),

and Baron and Xiong (2017).

Predicting Crises: There is also evidence that periods of frothy conditions predict and

not just precede crises. There are two quantitative estimates that we will aim to match.

10. Schularick and Taylor (2012) find that a one-standard deviation increase in credit growth

over the preceding 5 years (= 0.07 in their sample) translates to an increased probability

of a financial crisis of 2.8% over the next year.

11. Conditioning on an episode where credit spreads are below their median value 5 years

in a row, Krishnamurthy and Muir (2017) estimate that the conditional probability of a

crisis rises by 1.76%.

3 A Model of Financial Crises with Amplification and

Sentiment

In this section, we present a model of financial crises that incorporates both a financial

amplification mechanism and a role for sentiment. We fix a probability space (Ω,F ,P) and
assume all stochastic processes are adapted to this space and satisfy the usual conditions.

The economy evolves in continuous time. It is populated by a continuum of a unit mass of

two classes of agents, households, and bankers. For clarity, aggregate variables are in capital

letters, and individual variables are in lower case letters. The basic setup is a variant of Li

(2019), which is drawn from Brunnermeier and Sannikov (2014) and Kiyotaki and Moore

(1997).

3.1 Agents and Assets

Households maximize expected value of the discounted log utility,∫ ∞

0

e−ρt log(cht )dt (1)
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and bankers optimize expected value of the same form of discounted log utility,∫ ∞

0

e−ρt log(cbt)dt (2)

The expectation could be either Bayesian or diagnostic, as we will specify later.

We introduce two shocks that allow us to distinguish between financial crises and other

fluctuations. The first is a Brownian shock dBt that reflects every-day economic fluctuations.

The second is a Poisson shock dNt that we call a “financial illiquidity” shock. As will be

clear, this shock triggers illiquidity and bank runs, and a possible financial crisis.

Output is produced by capital. We will simplify by assuming that the capital is held

directly by either banks or households. In a richer and more realistic model, the capital will

be held and operated by firms that receive loans from banks or households, along the lines

of Holmstrom and Tirole (1997). We simplify by collapsing firms into banks, and assuming

the banks own the capital.

Our key assumption is that credit flowing through banks allows the economy to achieve

higher output and returns to capital. Intermediation is a socially valuable service, and for ex-

ample, disintermediation in a crisis reduces output. We capture this feature by assuming that

banker-operated capital has productivity Ā, which is higher than the household-operated

capital productivity of A.

The dynamic evolution of productive capital owned by agent j ∈ {banker, household} is

dkj,t
kj,t

= μK
t dt− δdt+ σKdBt (3)

where the rate of new capital installation μK
t is endogenously determined through invest-

ment, δ is the exogenous depreciation rate, and σK is exogenous capital growth volatility.

Denote the price of productive capital as pt. Investment undertaken by an owner of

productive capital is chosen to solve:

max
μK
t

ptμ
K
t − φ(μK

t ),

where φ(·) is an investment adjustment cost:

φ(μK) = μK +
χ

2
(μK − δ)2. (4)

That is, we assume quadratic costs to investment, leading to the q-theory of investment

pt = φ′(μK
t ) ⇒ μK

t = δ +
pt − 1

χ
. (5)
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The return on capital held by agent j =banker is

dR̄K
j,t =

d(ptkj,t)

ptkj,t
+

(Ā− φ(μK
t ))kj,t

ptkj,t
dt. (6)

The return to capital held by a household, denoted by dRK
j,t, is the same except for the lower

productivity A.

The dynamics of capital price pt is denoted as

dpt
pt−

= μp
tdt+ σp

t dBt − κpt−dNt, (7)

where μp
t , σ

p
t , and κpt− are all endogenously determined. The “minus” notation (i.e. pt−)

reflects a pre-jump asset price, as will be made clear.

3.2 Financing, Distress, and Bank Runs

Since banker held capital is more productive than household held capital, there is room for

an intermediation relationship whereby households provide some funds to bankers to invest

in capital. We assume that the only form of financing is short-term (instantaneous) debt at

the rate rd. Bankers cannot raise equity, long-term debt, or other forms of financing. When

we refer to bank equity, we mean the net-worth of bankers, wb
t . That is, the financing side of

the model is one of inside equity and outside short-term debt. These model simplifications

do sweep aside important issues, but we nevertheless go down this path because we aim

to build a simple quantitative amplification mechanism and see how well it matches data,

rather than explore the micro-foundations of intermediary models.

We assume that in the event of a illiquidity shock, all short-term debt holders run to

their own bank and withdraw financing in a coordinated fashion. Raising resources to cover

this withdrawal is temporarily costly. That is, asset markets are temporarily illiquid in the

illiquidity event. We assume that if a bank raises F units of resources it pays a cost of α0F .

The cost can be thought of as a fire-sale liquidation cost when selling capital. Alternatively,

the cost can be mapped into a premium on raising emergency financing from other banks or

other households in the economy. In this latter case, we need to step outside the modeling

and interpret the illiquidity event lasting longer than dt. Then, α0 is proportional to the

spread over the riskless rate that the bank pays to obtain funds over the illiquidity episode

(if the event lasts dt then a financing spread maps into a cost of order dt). Finally, we

assume that the cost is not dissipated but is paid to households. This assumption is not

essential to the analysis.

Note that we do not model a Diamond and Dybvig (1983) bank-run game. We simply

assume that the shock leads all debtors to pull their funding. It is possible to model the
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game in detail following Li (2019) whose model is the basis for this paper. However, we

learn from that study that the model’s positive implications are almost the same with and

without the deeper model of the bank-run game. Li (2019)’s objectives are normative, to

study how policies forestall liquidity crises, whereas this study’s objective is positive, to

quantitatively understand mechanisms contributing to financial crises.

3.3 Beliefs and Crises

The intensity of the illiquidity shock process dNt follows a two state continuous-time Markov

process, λ̃t ∈ {λL, λH}. This intensity changes from λL to λH at rate λL→H , and changes

from λH to λL at rate λL→H . Agents, neither bankers nor households, observe λ̃t. Instead

agents infer λ̃t from observing the history of Nt, i.e., via realizations of the shock process.

We denote the Bayesian expectation as λt = Et[λ̃t]. Using Bayes rule,

Lemma 1 (Bayesian Belief Process).

dλt =

(
(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)
dt+

(λt− − λL)(λH − λt−)
λt−

dNt (8)

Therefore, if illiquidity occurs, the expected intensity λt jumps up. As time goes by,

without further illiquidity shocks, the expected intensity λt gradually falls.

3.4 Diagnostic Expectations

Section 3.3 outlines our model when agents form expectations over λ̃t in a rational fash-

ion, using Bayes rule. We also consider a version of our model where agents overweight

recent observations. Specifically, we model the diagnostic beliefs of (Bordalo, Gennaioli and

Shleifer, 2018). We adapt their model to our continuous dynamic equilibrium environment.

Denote the Bayesian belief for the probability of λ̃t = λH as πt, and the diagnostic belief

for the probability of λ̃t = λH as πθ
t . Then we define the diagnostic beliefs as

πθ
t = πt ·

(
πt

Et−t0 [πt]

)θ
1

Zt

(9)

1− πθ
t = (1− πt) ·

(
1− πt

Et−t0 [1− πt]

)θ
1

Zt

(10)

where Zt is a normalization to ensure that (9) and (10) add up to 1. We call the lag t0 as the

“look-back period,” which is one in the discrete time model of Bordalo, Gennaioli and Shleifer

(2018). In our case, the diagnostic beliefs of the process are simply distorted Bayesian
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beliefs with the benchmark from t0 time ago. The process πθ
t features both overreaction and

underreaction, depending on the gap between current πt and past πt−t0 .

Denote the diagnostic belief for the expected intensity of illiquidity shocks as

λθt = Eθ
t [λ̃] :

Δ
= πθ

t λH + (1− πθ
t )λL

where Eθ is the expectation with respect to the probability distribution under the diagnostic

belief. Then we have the following result:

Lemma 2 (Diagnostic Belief Process). The diagnostic belief λθt = Eθ
t [λ̃] is

λθt = λL + (λt − λL)
(λH − λt) + (λt − λL)

(
λT
t −λL

λH−λT
t
/ λt−λL

λH−λt
)
θ
(λH − λt) + (λt − λL)

(11)

where λTt = Et−T [λ̃t] is the expected value of λ̃t under the Bayesian expectation.

In Figure 3, we plot the evolution dynamics of the Bayesian and diagnostic belief pro-

cesses, where the diagnostic belief process is described by (11). We find that when θ is small,

as shown in panel (a), the pre-illiquidity shock belief is slightly lower than the Bayesian be-

lief, and then jumps to a higher level after a illiquidity shock. Initially, there is overreaction,

but after one year, the perceived frequency of the illiquidity shock is below the Bayesian

belief. When θ is large, as shown in panel (b), the pre-illiquidity shock belief is much lower,

and the post-illiquidity shock overreaction is stronger. One year after the illiquidity shock,

the perceived frequency of illiquidity becomes much smaller.

Under the diagnostic belief, we assume that all agents are unaware of their belief bias

(i.e., they think λθt as if it is λt) and apply rational decision rules. As a result, although

we need to keep track of both λθ and λ for simulating the model dynamics, we only need

λθ for a “snapshot” of the economy. For this reason, in what follows, we only discuss the

model solutions under the Bayesian belief. The diagnostic model easily follows through by

replacing λ with λθ in the policy functions.

3.5 State Variables and Decisions

We define the total wealth of banks as W b
t and the total wealth of households as W h

t . Then

we have three state variables. One is the wealth share of bankers, denoted by

wt =
W b

t

W b
t +W h

t

, (12)

The second is the expected jump intensity λ. The final one is the total productive capital

Kt. We construct an equilibrium whereby all relevant object scale linearly with capital.
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(b) θ = 5

Figure 3: Simulation of Beliefs with Different Values of the Diagnostic Parameter θ. The
parameter θ ≥ 0 means the strength of the behavioral feature of the diagnostic belief. Other
parameters are set as λL = 0.001, λH = 0.5, λH→L = 0.5, λL→H = 0.1. These parameters
imply that a financial illiquidity shock happens once about each 12 years. The diagnostic
belief process is fully described by (11).

This reduces the computational problem to solving a model with two state variables, wt and

λ.

Denote wb
t as the wealth of a representative banker. Similarly, denote wh

t as the wealth

of a representative household. Let the associated value function be V b(wb
t , wt, λt) and

V h(wh
t , wt, λt), respectively, at time t. To guarantee a non-degenerate wealth distribution,

we assume bankers randomly transit to becoming households at rate η.2 Bankers take this

transition possibility into account in their optimization problems.

Bankers

Each banker can invest in productive capital and borrow from households or other banks via

short-term debt at interest rate rft . Note that short-term debt is riskless even though the

price of capital will jump in equilibrium. This is because a forward-looking banker with log

utility will never make a portfolio choice that leaves him with negative wealth in any state.

Denote the banker’s portfolio choice (as a fraction of the banker’s wealth wb
t ) in productive

capital as xKt , and the interbank borrowing and lending as xft with equilibrium rate rft .

Then the borrowing from household is xKt + xft − 1. Total borrowing is xKt + xft − 1. If

2Without this assumption, the banker, who earns a higher return on capital, will come to own almost all
of the wealth of the economy.
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xKt + xft − 1 > 0 bankers lever up to own capital, while if xKt + xft − 1 < 0, bankers save

some of their wealth in riskless debt.

Starting from time t, the time that banker will switch to becoming a household is denoted

as T , which is exponentially distributed with rate η. A banker with wealth wb
t solves the

problem

V b(wb
t , wt, λt) = sup

cbt≥0, xK
t−,xf

t−≥0

E[

∫ T

t

e−ρ(s−t) log(cbs)ds+ e−ρTV h(wb
T , wT )

∣∣wb
t , wt ], (13)

subject to the solvency constraint

wb
t ≥ 0. (14)

The second part of the objective function is the transition to a household, which changes

the continuation value from V b to V h.

Households

Each household chooses the consumption rate cht and capital holding yKt as a fraction of

household wealth for the following objective

V h(wh
t , wt, λt) = sup

cht ≥0, yKt ≥0

E[

∫ ∞

t

e−ρ(s−t) ln(chs )ds
∣∣wh

t , wt ], (15)

subject to the solvency constraint

wh
t ≥ 0. (16)

3.6 Equilibrium Definition

Denote the share of capital owned by bankers as

ψt =
xKt W

b
t

xKt W
b
t + yKt W

h
t

. (17)

Then the aggregate production of consumption goods is

Yt = (ψtĀ+ (1− ψt)A)Kt. (18)

Because Ā > A, output is increasing in ψt.

Given that there is no heterogeneity within bankers and within households, we can express
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the dynamics of aggregate wealth as

dW b
t

W b
t

=
dwb

t

wb
t

− ηdt (19)

dW h
t

W h
t

=
dwh

t

wh
t

+ η
W b

t

W h
t

dt, (20)

where the second terms in both (19) and (20) are due to the transition of bankers to house-

holds.

We derive a Markov equilibrium, where all choices only depend on the state variables

wt and λt. Let ĉb = cb/wb be the consumption of a representative banker as a fraction of

the banker’s wealth, and ĉh = ch/wh similarly. The following formalizes the equilibrium

definition.

Definition 1 (Equilibrium). An equilibrium is a set of functions, including the price of

capital p(wt, λt), bank debt yield r(wt, λt), household consumption wealth ratio ĉh(wt, λt)

and lending xK(wt, λt), banker consumption wealth ratio ĉb(wt) and lending yK(wt, λt), such

that

• Consumption, investment and portfolio choices are optimal.

• Capital good market clears

W b
t x

K
t +W h

t y
K
t = ptKt. (21)

• The aggregate non-financial wealth of households and banks equal to total value of capital

W b
t +W h

t = ptKt. (22)

• Interbank market clears

W b
t x

f
t = 0 (23)

• Consumption goods market clears

ĉbtW
b
t + ĉhtW

h
t = (ψtĀ+ (1− ψt)A)Kt − itKt. (24)

3.7 State-Dependence and Distress Dynamics

We solve the model and illustrate the nonlinear and state-dependent effects of a financial

illiquidity event and the dynamics of the capital price around illiquidity shocks.

Figure 4, Panel (a) graphs the price of capital in blue as a function the banker’s wealth

share, wt, which is one of the state variables in the equilibrium (λt is the other state variable).
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(a) Price of capital as a function of wt, pre- and post- dNt shock

(b) Path of the capital price around a bank run.

Figure 4: Illustration of a bank run in equilibrium

18



We note that the price of capital is increasing in wt up to a point and then is flat thereafter.

In the increasing portion, both bankers and households own capital. As the wealth share

increases, more of the capital is in the bankers’ hands, and hence more of the capital produces

a higher dividend of Ā. This force leads to a positive relationship between the price of capital

and the wealth share. To the right of the dashed line, all of the capital is in the bankers’

hands. Now, it will be the case that as the wealth share of bankers rises to the right of the

dashed line, the risk premium required by bankers to absorb capital risk falls, which by itself

would raise capital prices. However, because of log utility, the interest rate rises to offset

the fall in the risk premium, and the net effect on the discount rate is to keep the price of

capital constant to the right of the dashed-line.

There are two cases of interest. If the illiquidity shock occurs when banker wealth share

is high – on the right side of the dashed line in panel (a) – bankers suffer the exogenous

liquidation loss, which means that the post-shock wealth share jumps to the left, as indicated

by the red arrow. But since at this new wealth share, the price of capital is the same as at the

old wealth share, there is no endogenous fall in the price of capital. On the other hand, on the

left side of the dashed line, the exogenous loss leads to a fall in banker wealth share, which

leads to an endogenous fall in the price of capital, which implies further losses to bankers, and

so on. The post-shock capital price traces along the red dashed line, reflecting a downward

jump in the capital price and the banker wealth share state variable. The exogenous loss is

amplified in this case. Our model thereby captures an amplification mechanism, where the

degree is state-dependent.

Figure 4, Panel (b) illustrates the price path of capital in a case where one illiquidity

shock occurs at time T and the wealth share is in the amplification region. We see that

the pre-illiquidity shock price of capital follows a smooth path governed by the Brownian

diffusion dZt. From T− to T the price of capital jumps downwards. After T , the price of

capital again follows a smooth path.

The rest of this section goes through this logic algebraically. For simplicity, we omit the

t or t− subscriptions in the following sections. For an individual bank, we can define the

net funding withdrawal that has to be fulfilled by productive capital during a illiquidity as

Δx = (xK + xf − 1)+ (25)

To simplify the above expression, we prove that banks take leverage in equilibrium.

Lemma 3. In equilibrium, banks always borrow from households and take leverage, i.e.,

xK ≥ 1
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Proof is provided in Appendix A.4. Because of Lemma 3, we have

xd = Δx = xK + xf − 1 (26)

From the banker optimization problem, we have the following first order conditions:

rf − rd = λ
α

1− xKκp − αΔx
(27)

μR +
Ā

p
− rf = (σK + σp)2xK + λ

κp

1− xKκp − αΔx
(28)

where μR is the ex-dividend return of productive capital, with μR = μp − δ + μK + σKσp −
φ(μK)/p. As clearly illustrated, if the total volatility (σK + σp) increases, keeping the

portfolio choice xK the same, a banker requires a larger amount of risk compensation.

Furthermore, if the expected intensity λ of the financial illiquidity shock rises, then the risk

premium also rises. Finally, we observe that keeping everything else equal, a larger jump κp

in the capital price leads to a higher risk premium.

Equation (28) also indicates how the belief λ affects bank leverage xK . All else equal, we

find that a higher λ results in a lower xK . Further, in equilibrium, the lower xK will result

in less severe crisis (lower κp), which partly offsets the direct impact of λ on xK .

We next derive the excess expected return on capital. We rewrite the banker budget

dynamics as

dwb

wb
=

(
rf + xK(μR +

Ā

p
− λκp − rf )− xd(rd − rf )− λαxd

)
dt− ĉdt

+xK(σK + σp)dBt − κb(dNt − λdt)

where the last component is the compensated Poisson process dNt − λdt, which is a Mar-

tingale. It is clear that the excess return of capital above the risk-free rate of bankers is

μR + Ā/p− λκp − rf . Using (28), we can express this capital risk premium as

μR +
Ā

p
− λκp − rf = (σK + σp)2xK + λκp

xKκp + αΔx

1− xKκp − αΔx
(29)

which takes into account the downward impact of asset returns due to the realizations of

illiquidity shocks. From this equation, we find that this premium is strictly positive in a

Bayesian model.
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3.8 Credit Spreads

We define a credit spread in this section that is needed in mapping the model to credit

spread data. It is important to state at the outset that the defaultable bonds we price

are in zero net supply. They are not issued by banks or households and do not affect the

general equilibrium. We define the credit spread as the yield differential between a risky

zero-coupon bond and a zero-coupon safe bond with the same [expected] maturity. Define

τ as the expected maturity of the bond. We assume that the bond matures based on

the realizations of the Poisson event with intensity 1/τ . This modeling allows for a simple

recursive formulation for bond pricing. Moreover, we suppose that a fraction of the maturity

events result in default, while another fraction result in full repayment. In particular, we

assume that a bond matures in two cases: (1) conditional on the financial illiquidity dNt

shock, the bond matures with probability π; (2) conditional on another independent Poisson

process dN τ
t (with intensity λτt ), the bond matures with probability 1. The two intensities

sum up to a fixed number, i.e.,

πλt + λτt = 1/τ (30)

where τ can be interpreted as the maturity of the bond. We can see that

1/τ ≥ πλH

and therefore,

τ ≤ 1

πλH

which is the maximum maturity of bonds that we can define with this method.

Each risky bond has a face value of 1. One unit value of a risky asset is continuously

posted to back this risky bond, i.e., the bond is fully collateralized if the bond matures

as long as there is no jump in the value of the risky asset. If dNt hits when the bond

matures, the underlying risky asset’s value jumps downwards by m · κpt− + κ̂0. The first

term varies with economic conditions. It contains capital price drop κpt−, and a multiplier

m that measures the exposure of the collateral to capital price decline. The second term

here a constant “baseline” loss given default. If maturity occurs with no illiquidity event,

we assume that the bond pays back in full. Thus, the loss function upon maturity for the

risky bond is

κ̂t = (m · κpt− + κ̂0)dNt (31)

This structure gives a time-varying default probability. Specifically, when a bond ma-

tures, the probability of default is

πλt
πλt + λτt

= τπλt (32)
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Therefore, the unconditional probability of default is τπλ̄, where λ̄ is the unconditional

average of the expected illiquidity frequency.

Denote the current market value of this risky bond as vt = v(wt, λt), and the market

value of the safe bond as v̄t. Then we define the credit spread as

St(pt0) =
1

τ
log(1/vt)− 1

τ
log(1/v̄t) (33)

We expect St ≥ 0, given that risky bonds may default, and default occurs in high marginal

utility states. Solving for this credit spread involves solving an endogenous jump equation

with second-order derivatives. Details are provided in Appendix A.7.

4 Model Solution and Calibration

In this section, we solve and calibrate three variants of the model:

1. Bayesian (rational) Model: Agents form beliefs over the illiquidity state following Bayes

rule, and this belief varies over time (i.e., λL < λH).

2. Diagnostic (non-rational) Model: Agents form beliefs over the illiquidity state via diag-

nostic expectations, and belief varies over time (i.e., λL < λH).

3. Static belief Model: Agents’ belief are constant at λ̄ .

Under diagnostic beliefs, we assume that while agents’ beliefs are diagnostic, they think

that their and all other agents’ beliefs are Bayesian. In other words, the policy functions

are the same as those under Bayesian beliefs. However, because these policy functions are

evaluated under diagnostic beliefs, the equilibrium outcomes are different. Furthermore, the

dynamics of the states are different due to the underlying difference between diagnostic belief

and the truth. The solution strategy for the diagnostic belief model is to solve the Bayesian

decision rules under Bayesian belief θ = 0, and then apply the same policy functions and

simulate the diagnostic model with the diagnostic belief of θ > 0.

There are four parameters governing beliefs in the Bayesian model: λH , λL, λL→H , and

λH→L. However, as we set λL near zero, the model has three parameters. The diagnostic

model adds θ as one more degree of freedom (the ’look-back period” parameter t0 is set to

1, the implicit value from discrete-time diagnostic belief process such as Bordalo, Gennaioli

and Shleifer (2018)). We explain how these parameters are calibrated below.

We also present results from a version of the model where we turn off the belief mechanism

(“Static Belief Model”). This model has only one parameter λ̄ governing the crisis frequency

process which is constant over time. As will be clear, this static belief model fails to match
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important features of the data. We present this static belief model primarily to explain the

mechanisms of the belief models.

4.1 Solution Methodology

The challenge of solving this model comes from both multiple state variables and the en-

dogenous jumps in the state variables. To ensure stability, we use a functional iteration

method that begins with an initial guess of the capital price function p(0)(w, λ), and then

iterates over the equilibrium equation system to get an updated price p(1). This updating

step involves solving a fixed-point problem at each state (w, λ). Then we iterate until at

step k, we have ∫ 1

0

∫ λH

λL

|p(k+1)(w, λ)− p(k)(w, λ)|dλdw < ε

for a small positive number ε.

To search for parameter values that best match moments, we need to repeatedly solve

the model for a large combination of parameter values. A simple discretization of the

parameter space (5 parameters for the benchmark, 7 parameters for the Bayesian model,

and 8 parameters for the diagnostic model) renders the task computationally infeasible. To

resolve this difficulty, we apply the Smolyak grid method (Judd et al., 2014) to generate a

discretized state space. For each version of the model, we follow the estimation procedure:

• Discretize the state space of parameters around their initial values. We pick a discretiza-

tion level of 3 in the Smolyak discretization. This results in 177 combinations for the

static belief model, 241 combinations for the Bayesian model, and 389 combinations for

the diagnostic model. Simulate all of these models and collect their moment values.

• Denote the moments in the data as m1, · · · , mJ , and the moments from the model as

m̂1, · · · , m̂J . From all of the parameter combinations, pick the one that minimizes the

objective
J∑

j=1

|m̂j −mj|
mj

.

• Once we have picked a set of parameters, we search in a smaller region around this set

of parameters and find a new best set of parameters in the smaller region. We iterate

the above process until the difference between the optimized objective value between two

iterations is below a threshold.

The algorithm is time-consuming. We parallel the process and solve it using high-performance

clusters.
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4.2 Model Simulation

We simulate the model at a monthly frequency but analyze simulations at a yearly frequency

to be consistent with the data. The procedure of simulation is as follows for each version of

the model.

• From initial values wt = 0.1 and λt = λ̄, we draw shocks.

• We set the simulation interval as dt = 1/12 (a month), and generate the independent

Brownian shocks dBt ∼ N (0,
√
dt), as well as an independent frequency of illiquidity

shock process λ̃t. Based on the illiquidity shock process λ̃t, we generate illiquidity shocks

dNt that hits with probability λ̃tdt for the time interval dt.

• Once shocks are generated, we solve for the dynamics of state variables, including wt, λt,

and Kt. For the static belief model, λt = λ̄. For the diagnostic belief model, we need to

generate λθt based on λt.

• With state variables determined, we generate all other quantities and prices of the model.

• We discard the first one thousand data points of each simulation path collected in this

manner. As a result, the initial values do not affect our computed moments. The sim-

ulation approximates picking initial conditions from the ergodic distribution of the state

variables.

• Finally, we average all of the monthly quantities for a given year to get an annual data

set. For prices, we use the first observation of every year.

In order to map model outputs to data, we define the following events:

• A financial distress: in the year, there is at least one illiquidity shock dNt = 1.

• A financial crisis: bank credit/GDP in a given year falls into the lowest 4% quantile of

the distribution of bank credit/GDP (Fact 1).

In our model, large output declines in a year coincide with the financial illiquidity events.

Therefore, financial crises under the above definition are a subset of financial illiquidity

events.

4.3 Parameter Calibration and Estimation

Our calibration strategy is to identify each model parameter with a corresponding moment.

We apply a combination of calibration and estimation for model parameters. Specifically,
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we directly set parameter values for those with standard values in the literature. Then we

estimate the rest of parameters based on moments chosen to best reflect the economics of a

given parameter.

A list of the calibrated parameters for the core model (not including the credit spread)

are shown in Table 1. We follow the macroeconomics literature to set annual depreciation

rate δ = 0.1 (Gertler and Kiyotaki, 2010), annual time discount rate ρ = 4% (Gertler and

Kiyotaki, 2010), and investment adjustment cost χ = 3 (He and Krishnamurthy, 2019). For

the emergency liquidity costs (α0), we do not have good data for the historical financial

crises to pin these down. From data of the 2008 crisis, the effective liquidation loss is about

0.05, which is the value of α0 ·β in Li (2019). Alternatively, we can interpret this liquidation

loss as a funding premium. The value of α0 = 0.05 translates to a 10% premium for a

illiquidity event that lasts 6 months.

Table 1: Calibrated Parameters for the Core Model

Parameters Choice Moment

δ Depreciation rate 10% Depreciation rate in the literature

ρ Time discount rate 4% Discount rate in the literature

χ Investment adjustment cost 3 Adjustment cost in literature

α0 Distress illiquidity costs 0.05 Data

For the credit spread, we have the following calibration (summary in Table 2)

Table 2: Calibrated Parameters for the Credit Spread Construction

Parameters Choice Moment

τ Risky bond maturity 7 Years Maturity of 7 years.

π Maturing probability in illiquidity 0.31 Average default intensity of 0.04

mEcrises[κ
p
t ]− Additional loss in crises 0.1 Additional loss of 10% in crises

mEnon-crises[κ
p
t ]

mEcrises[κ
p
t ] + κ̂0 Baseline default loss 0.55 Average loss rate of 0.55

• In our baseline calibration, we target the an average maturity of τ = 7 years, which is the

average maturity of bonds used in Krishnamurthy and Muir (2017).

• According to Chen, Collin-Dufresne and Goldstein (2008), the 10-year BAA (AAA) de-

fault rate is 4.89% (0.63%). The difference in their default rates is 4.26%. We use 4% as
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our target. In the model, the default rate is

πλ̄ = 0.04

where λ̄ is the average frequency of financial illiquidity, which is 12.8% according to our

calibration. Therefore, we have π = 0.31.

• The total loss given default is m · κpt + κ̂0 if a illiquidity shock dNt hits, where κ
p
t is the

percentage decline of capital price pt during a crisis shock. The price jump component

κpt is large during crises but close to zero otherwise. We calibrate the loss given default

to that of BAA bonds, which from Moodys data has been 55% on average over the last

three decades and rose by 10% during the 2008 crisis. As a result, we set m so that m ·κpt
during crises is 10% larger than other defaults. Then we set the average of losses during

default to 55% to get κ̂0.

Finally, we should note that we define our spread measures in units of standard-deviation

differences relative to the unconditional mean value of the credit spread. This is what

Krishnamurthy and Muir (2017) do in their empirical work. As a result of this normalization,

the results are relatively insensitive to the exact values of the credit-spread calibration.

Then we proceed to estimate other parameters, including λH , λL, λH→L, λL→H , Ā, A,

σK , η, and θ. We note that as long as λL is close to zero, the impact of its value is negligible.

Therefore, we pick λL = 0.001 directly. After experimentation with the model, we find that

the following moments to be particularly informative for each parameter:

1. Yearly frequency of bank equity crashes (fact 2): This moment maps to the frequency

of financial illiquidity shocks and helps discipline λH . From Baron and Xiong (2017),

the probability of a equity return below -30% is 3.2% at the quarterly frequency, which

implies an annual frequency of about 12%, i.e. 1− (1− 3.2%)4.

2. Credit spread changes during a crisis (fact 3). The spike in the credit spread is 0.7σs.

This moment helps determine λL→H , which affects the degree of surprise in beliefs due

to the realizations of illiquidity shocks.

3. Half-life of credit spread recovery (fact 5). According to Krishnamurthy and Muir (2017),

the half-life is 2.5 years. This moment primarily determines λH→L, since the speed of

recovery of beliefs after a illiquidity shock is directly affected by the underlying transition

probability.

4. Investment to capital ratio: We use the same target as He and Krishnamurthy (2019).

This moment mainly affects the average of productivity parameters, Ā and A.

5. Average output decline during a crisis (fact 4): We target -9.1% as explained in Section

2. This moment is most directly related to the productivity differential Ā− A.
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6. Average output growth volatility: According to Bohn’s historical data, the volatility of

real GDP growth from 1791 to 2012 for the U.S. is 4%. This moment mainly affects the

capital volatility σK .

7. We map banks in the model to depository institutions and broker dealers in the flow of

funds. Bank equity is defined as total bank assets minus total bank liabilities. Since

our model only captures runnable liabilities, we define effective bank liabilities as total

liabilities minus insured deposits. Then we calculate bank leverage as (bank equity +

effective bank liabilities)/bank equity. Using all data available, we find that bank leverage

is approximately 5. More details are provided in Appendix B. This moment disciplines η,

the transition rate from bankers to households, which affects the stationary distribution

of leverage in the model. For example, setting η very low leads to a stationary distribution

where almost all of the wealth is in bankers’ hands and average leverage in equilibrium

is very low.

8. The diagnostic parameter θ is disciplined by fact 8. Conditioning on a crisis at year t,

and looking at the 5 years before the crisis, Krishnamurthy and Muir (2017) show that

credit spreads are 0.34σs below their country mean (where this country mean is defined

to exclude the crisis and 5 years after the crisis).

The models have different sets of estimated parameters, as represented in Table 3. For

each model, we only use moments that are related to the economics of that model. For the

Bayesian model, we use moments 1–7. For the diagnostic model, we use moments 1–8. In

this way, both models are exactly identified. For the static belief model, we use moments

1–7 (overidentified) to give it the best chance to match the data as the Bayesian model.

Table 3: Comparison of Model Parameters to be Estimated

This table lays out the set of estimated parameters in different models. “–” denotes not
having the parameter, while “�” denotes the opposite.

Parameters Static Belief Model Bayesian Belief Model Diagnostic Belief Model

λH � � �
λL→H – � �
λH→L – � �
Ā+ A � � �
Ā− A � � �
σK � � �
η � � �
θ – – �
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5 Model Evaluation

This section evaluates the models we consider and explains the mechanisms that help the

models match the crisis data patterns.

5.1 Targeted Moments

We target means across crises in choosing parameters. Table 4 presents the model’s fit in

hitting the targets. We re-calibrate the model parameters to best match moments for each

version of the model, thus giving each model the best chance to represent the data. Although

each version of the model is at least exactly identified (static belief model is overidentified),

because the state-space is restricted, we do not fit all of the moments accurately. The static

belief model, in particular, misses the spread change in the crisis by a wide margin. It is

possible to fit this moment if we increase the exogenous liquidation cost α0, but we opt to

keep α0 constant across all of the models to better illustrate the mechanisms underlying the

models.

[TABLE 4 HERE]

Figure 6 plots the path of the model-generated credit spread, bank credit/GDP and GDP

around a crisis at t = 0. The credit spread and bank credit variables are plotted in units of

standard-deviations from their mean value over the sample. The figure should be compared

to the data in Figure 1. We see that the model is able to generate the jump in spreads,

contraction in credit, and drop in GDP. For both the Bayesian and Diagnostic model, the

magnitudes of the spread spike and GDP decline are also in line with the data. During a

crisis, spreads jump about 60% in the model (that is, 0.6 σs) and 70% in the data. As noted

above, the magnitude of the spread spike in the static belief model is too small relative to

the data. The magnitude of the credit contraction of around 0.8σs is larger than the data

counterpart of 0.33σs. This is likely because in our model all credit is extended via banks,

while in the data, there are other intermediaries involved in the credit process. Note that

we have not explicitly targeted the credit contraction in the calibration.

[FIGURE 6 HERE]

All of the models match the sharp transition in the crisis, driven by the model’s ampli-

fication mechanism, and output that is below trend for a sustained period post-crisis. The

figures also reveal how the pre-crisis patterns vary across the models. In the years before

the crisis, bank credit and GDP are rising while credit spreads are below normal in both

dynamic belief models. In the static beliefs model, spreads are slightly higher than normal,
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while credit is falling. This contrast points to the need for time-variation in beliefs to fit the

data.

5.2 Ergodic Distributions

In Figure 5, we graph the ergodic distributions of the state (wt, λt) for the three models.

Underlying movements in w are driven by three forces: the exogenous diffusion shocks to

capital shift wealth, creating paths from the center of the distribution to both right and

left; paths that go to the left are pushed back to the middle because in low w states, risk

premia are high and bankers expected wealth growth is high; the transition rate of bankers

into households, η, result in a drift in w of −ηw, which pushes all paths to the left. The

result of these forces is a mean-reverting w process and the single-peaked distribution. The

jump to the λ process leads to a jump in beliefs, which leads to a fall in asset prices and

hence a jump in w to the left. Additionally, on such a realization, λt is temporarily high so

that more jumps are realized. This creates an increased mass at low w states.

In the diagnostic model (panels c and d), the realization of a jump leads to a large

adjustment in w, relative to the Bayesian model, because agents shift from over-optimistic

to over-pessimistic. As a result, more mass is shifted to low-w states.

[FIGURE 5 HERE]

5.3 Non-targeted Moments

The success in matching the mean patterns of crises verifies that our model’s mechanisms can

speak to the data. However, as we have noted, our calibration explicitly targets the means.

We next describe the model’s fit in the cross-section of crises, which are non-targeted

moments. Within the sample of crises, there are smaller and larger crises. The moments

we report measure variation within these crises. We discuss the model’s fit of these non-

targeted moments in this section, and delve further into the fit in the next sections. Table

5 summarizes the model’s performance in matching non-targeted moments.

Panel A reports that all of the models are able to fit the data patterns on the crisis and

its aftermath. First, in the data, episodes where credit spreads increase more are followed

by larger output contractions. The first row of Panel A reports these moments from the

models and data. Second, crises that are preceded by a run up in bank credit are also more

severe crises. The second row of Panel A reports the models’ fit with data on this dimension.

In general, all three of the models are in the ballpark of the data. Note that this is true

even in the static belief model, despite the fact that this model misses on the mean spike in

credit spreads.
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Panel B reports that all of the models are able to fit the negative data relationship

between bank credit and risk premia. The panel is not explicitly about financial crises,

but more generally about the relationship between movements in credit and risk premia.

In the data, credit growth is negatively correlated with excess equity returns (Baron and

Xiong, 2017). Periods of high credit growth are followed by low returns, and periods of low

credit growth are followed by high returns. We verify that all of the models we consider

deliver this relation. They do so via time variation in the supply of risk-bearing capacity.

The state variables of the model, such as w, capture variation in the effective risk aversion

of the banking sector. When effective risk aversion is low, banks lend more and credit

grows, while risk premia are low; the opposite pattern holds when risk aversion is high. This

mechanism thus delivers the relation between bank credit and risk premia. The fact that this

relationship holds even in the model with static beliefs bears stressing: a sentiment/belief

mechanism is not necessary to replicate the credit/risk premia relationship.

Panels C and D consider the pre-crisis patterns where we see divergence across the

models. In Panel C, we examine whether the model can reproduce the fact that spreads are

below normal before crises. The first row considers the mean pre-crisis spread. Note that

the diagnostic model explicitly targets the mean pre-crisis spread in the calibration. Both

the diagnostic model and the Bayesian model deliver the below normal spread, while the

static belief model delivers an above normal spread. We explain this failure in further detail

below. The second row of Panel C asks whether within crises, worse crises are preceded by

even lower spreads. This is true in the data, as seen in the data column. The Bayesian

belief model is unable to match this fact, while the diagnostic model gets closer, but still

fails. We will also explain this failure later in the paper. Panel D considers the predictive

relationship between measures of credit market excess and subsequent crises. We again

see that the static belief model fails to generate a sign in keeping with the data. Both of

the belief models succeed in this dimension, with the diagnostic model coming nearer to

quantitatively matching the data moment.

[TABLE 5 HERE]

5.4 Mechanism 1: Frictional Intermediation and Leverage

Figure 7 graphs the histogram of 3-year GDP growth in crises. Focus first on the black

dashed line corresponding to the static belief model. In a model with no financial amplifica-

tion and only diffusion shocks to AKt, output growth would be normally distributed. Thus,

we conclude that the left-skewed output growth distribution in line with the data can be

generated by the financial amplification mechanism.

[FIGURE 7 HERE]
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Adding beliefs to the mix, as in the diagnostic and Bayesian models, produces more left-

skew and places more mass in the left tail. The reason is that a illiquidity event not only

triggers a jump down in w and a fall in GDP, but also an increase in λ. The amplification

mechanism plus the change in belief drive an output distribution that is somewhat more

left-skewed than the data.

In the data, the skewness in output growth matches the skewness of the jump in credit

spreads in the crisis (fact 7). Panel A in Table 5 evaluates the relationship between the

jump in credit spreads in this model and the fall in GDP, which is in line with the data.

The bottom row of Panel A evaluates the relation between the run-up in bank credit at the

start of the crisis and the subsequent severity of the crisis. This is a relation reported by

several empirical studies (Jordà, Schularick and Taylor, 2013).

We note that all of the variants of the model, even the static belief model, produces

comovements between credit spreads, bank leverage, and output growth, in line with the

data. We have also seen in Panel B of Table 5 that all of the models generate the negative

relation between bank credit and excess equity returns (risk premia). The models capture

this moment because all of the models embed variation in the supply of risk-bearing capacity

that drives both leverage and risk premia.

These observations indicate that the frictional intermediation mechanism, which is the

only mechanism present in the static belief model, can capture the patterns of the economy

in a crisis and its aftermath. Again, it is possible to improve the quantitative fit of the static

belief model for the crisis and if its aftermath if we allow α0 to vary across models and be

determined via the estimation. We choose not to go down this path because, as we explain

next, this static belief model fails to fit the pre-crisis facts even qualitatively.

5.5 Mechanism 2: Beliefs and Leverage

We report in Table 5 Panel C that the static belief model generates a spread that is higher

than normal in the pre-crisis period, contrary to the data. The failure can be understood

as follows. The amplification mechanism of the model, which is what drives the response of

the economy to the illiquidity shock, is governed by the single state-variable w. If w is low

(and leverage is high), a negative shock triggers a large fall in GDP and a crisis. However,

since the credit spread is forward-looking, variation in the spread is also driven by w. The

economy is more vulnerable when w is low, and hence credit spreads are higher when w is

low. As a result, the static belief model generates an above normal spread before a crisis,

contrary to the data.

The belief models are able to generate a spread with the right sign of the data.3 To

3 We report the results of a regression of spreads on a dummy that takes the value of one for the 5 years

31



understand the economics here, consider Figure 8. We graph the policy function of bankers,

for both Bayesian and diagnostic models, in choosing leverage as a function of the true state

λ (denoted “rational” in the figure). Bankers in our model lever up to gain high returns

on capital, but at the cost of the illiquidity event where they suffer bankruptcy costs from

liquidating capital. Thus there is a risk/return tradeoff that drives their leverage decision.

When λ is low, the illiquidity event is less likely, and the banker chooses high leverage;

hence, the negative slope in the curves in the figure. When λ is low and leverage is high,

if a illiquidity shock dNt occurs, then its impact on GDP will be severe and more likely to

result in the large GDP decline of a crisis. This endogenous relationship between illiquidity

risk and vulnerability generates low credit spread before crises.

The diagnostic model generates a magnitude in line with the data, but note that the

pre-crisis spread is the moment we have explicitly targeted to pin down the belief distortion

parameter θ. The Bayesian model gets a spread that is below normal, and about half-way

towards matching the data fact that spreads are about 0.34σs lower than normal in the pre-

crisis period. Moreover, in the data, more severe crises are preceded by even lower spreads.

The Bayesian model fails to capture this fact (see Panel C in Table 5). The reason can

be understood by examining Figure 9. Here we plot the relationship between spreads right

before an illiquidity shock triggers a crisis, and the GDP decline in the crisis. The blue line

corresponds to the Bayesian belief model. Note that the relationship is non-monotonic, and

for low spreads, the slope is negative. There are two forces driving spreads pre-crisis. One

is the belief mechanism, as reflected in Figure 8. The other is the w mechanism of the static

belief model. This latter mechanism drives a negative relation between spreads and output

growth; i.e., spreads are lower when w is higher, and hence vulnerability to an illiquidity

shock is lower. These two forces compete against each other. In our calibrated model, the

w mechanism dominates at low values of spread (the reason is that λ is as low as possible,

weakening the belief mechanism).

[FIGURE 8 HERE]

[FIGURE 9 HERE]

The diagnostic model strengthens the belief mechanism and helps bring the model closer

to matching the pre-crisis froth patterns. Consider the red dashed curve in Figure 8. We plot

the banker’s leverage decision as a function of the true lambda – not the agent’s perceived

diagnostic lambda. Clearly, at lambda of zero, the true and diagnostic lambda are the same.

But as lambda becomes larger than zero, the diagnostic agent chooses higher leverage than

the Bayesian agent. This is because the banker is overoptimistic and thinks lambda is lower

before a crisis. This regression also includes a control for the 5 years after the crisis so that the pre-crisis
dummy indicates the level of spreads relative to non-crises periods.
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than it actually is. When the true lambda is larger than a threshold, the banker is on average

over-pessimistic and thinks lambda is higher than it actually is, thus choosing lower leverage.

As a result, the leverage/lambda curve steepens under the diagnostic model. Returning to

Figure 9, we see that by strengthening the leverage/lambda relationship, the diagnostic

model generates a stronger relationship between the extent of low spreads and crisis output

declines. As a result, the diagnostic model better fits the spread/output relation as reflected

in Panel C of Table 5.

This analysis indicates a “recipe”: to strengthen the pre-crisis relationship, a model needs

to steepen the leverage/lambda curve, even beyond that of the curves in Figure 8. Increasing

the belief distortion helps in this regard. But it worth stressing that other specifications

of the banker’s problem – altering the corporate financing frictions, for example – can also

deliver this steepening. This is an important observation because it indicates that while the

data patterns allow us to easily rule out the static belief models, the diagnostic vs. Bayesian

belief models are not convincingly identified in the data.

5.6 Pre-crisis: Predicting a Crisis with High Bank Credit

Next, we consider the evidence that high bank credit and low spreads predict crises and not

just precede crises. To see the difference, note that the former conditions in the event of a

crisis. Table 5 Panel D presents the crisis prediction result. To replicate the predictability

regressions in Krishnamurthy and Muir (2017), we define “high froth” as the past 5-year

average of a dummy that indicates whether the credit spread is below its median value.

Similarly, we define “high credit” as the past 5-year average of a dummy that indicates

whether bank credit/GDP is above its median value.

In the dynamic belief models, we find the variables have the right signs, although the

models are low in terms of magnitudes. The static belief model fails again, generating a

sign that is the opposite of the data. See Table 5 Panel D.

To understand what drives the mechanism in the dynamic belief models, consider Figure

10. We plot the density of GDP growth over the next year conditional on the level of

credit/GDP today. The red lines correspond to the Bayesian model and the dashed-blue

lines correspond to the static-belief case. In panel (a) of the figure, we condition on low bank

credit/GDP, which is typically the outcome when w is low and/or λ is high. This is a case

where the banker faces higher illiquidity risk and endogenously chooses lower leverage. As a

result, the economy is faced with moderate volatility of GDP but this volatility is confined

to the center of the distribution and there is little mass at the left tail. Next, consider panels

(b) and (c). In these cases, we progressively condition on higher levels of credit and hence

lower effective banker risk aversion. The dotted black vertical line on the figure indicates

the cutoff we have used to define a financial crisis. Mass is now pushed from the center of
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the distribution towards the left-tail crisis states. Effectively, the more risk-tolerant banker

is willing to take on more risk when making decisions. There is less risk at the center of the

distribution, but more mass in the tail. As a result, high credit states forecast more left-tail

events.

The static belief model has only w as the state variable to drive effective risk aversion.

With only this state variable driving decisions, the banker chooses leverage in a manner that

crises are avoided when w and credit are higher. As shown in Panel C and D of Table 5,

the signs on the credit-crisis relationship are the opposite of that in the data. This result

reinforces a lesson of our analysis that we do need a model with two state variables to explain

the entire crisis cycle.

[FIGURE 10 HERE]

Figure 11 plots the distribution of GDP growth over the next year conditional on different

levels of credit in the diagnostic model. We plot the diagnostic’s model distribution in green

dashed lines and the Bayesian model in red. We can see that the forces that work to generate

the relation between high credit and crises are similar but stronger in the diagnostic model

compared to the Bayesian model. As we go from top to bottom panel in the figure, the mass

in the left tail rises. The improvement of the diagnostic model is again due to steepening

the leverage/lambda relationship.

[FIGURE 11 HERE]

Figure 12 examines the predictive relation in a different way. In the figure, we plot the

banker’s wealth return conditional on different values of credit. Recall that our banker has

log utility, so the mean and variance of this distribution are the key statistics driving banker

utility and the leverage decision. The banker’s wealth volatility is highest in the low credit

case (top panel) driven by a significant mass spread between -0.2 and 0.4 at the center of the

distribution. Distress and bankruptcy costs are salient to the banker, and thus he chooses

low leverage. In the bottom panel high credit case, the output distribution is tight so that

over most of the distribution, there is little distress for the banker. While there is a tail of

wealth losses in crisis states, the banker’s decision to take high leverage is largely driven by

the tight central peak of the distribution. The banker understands that the typical negative

shock will have small effects on his wealth, and is willing to gamble on avoiding the large

tail shock. Note also that the banker’s wealth process is different from the economy-wide

GDP process, as should be expected in a model where banks drive systemic risk. Banker

wealth is more sensitive than GDP to small shocks, and since such shocks are more likely,

they are the drivers of the banker’s leverage decision. As a result, the model produces the

surprising result that in the Bayesian model, even if illiquidity events are less likely (low λ),

crises are more likely.
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[FIGURE 12 HERE]

Once one understands these mechanisms, it becomes clear that the result is more gen-

eral than our model’s specific mechanisms. High credit growth occurs when bankers are

effectively less risk-averse. This leads to the relation between high credit and low expected

returns/risk premia. Additionally, the less risk-averse banker is more willing to take risks

and as a result, GDP outcomes have mass pushed out to the tails. In our model, time

variation in beliefs regarding illiquidity risk generates variation in banker’s willingness to

take the risk.

5.7 Pre-crisis: Predicting a Crisis with Low Credit Spread

We next turn to the relation driving froth (low credit spreads) and crises as reflected in Table

5 Panel D. As we will explain, this relation holds for the belief models in the parameterization

we study, but need not hold generally. Figure 13 draws density plots of next-year GDP

growth for the Bayesian and static belief model conditional on different levels of the credit

spread. We can see that the static belief model gets the sign of the mass shift wrong. The

Bayesian model, on the other hand, succeeds in this dimension.

[FIGURE 13 HERE]

The logic here is more nuanced than for the high credit relation of the last section. There

are two forces driving variation in the credit spread that are salient for understanding the

mechanisms: (1) higher λ means more illiquidity events and hence higher spreads; (2) worse

crises mean lower loss-given default (via κpt ) and hence higher spreads. If we imagine shutting

down effect (2), then we can understand the froth relation easily. When λ is low, the banker is

effectively less risk-averse, and hence the economy is more subject to large GDP downturns.

This force pushes more mass into crisis states but does not increase credit spreads ex-ante.

Hence we arrive at the positive relation between froth and crises. Now, if we add back effect

(2), the froth relation is weakened and can potentially flip the sign to resemble the static

belief model. The reason is that more crises imply larger losses given default and hence

higher ex-ante spreads. The sign of the froth relation depends quantitatively on the exact

cyclicality of recoveries in default. We have calibrated our model to the history of recoveries

on BAA bonds in the U.S., as reported by Moodys.

Table 6 illustrates this point for the extreme case where we set κ0 = 0, and hence recovery

has no fixed component. We now see that the froth relation has a negative sign and no longer

matches the data. The high credit relation continues to match the data.

[TABLE 6 HERE]
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Figure 14 draws the GDP distributions conditional on credit spreads for the diagnostic

model. We see again that the relative to the Bayesian model, the diagnostic model shifts

more mass to the left tail when spreads are low, and leverage is endogenously high. As a

result, the diagnostic model gets closer to matching the data in Table 5 Panel D.

[FIGURE 14 HERE]

5.8 Conditional Risk Premium

A negative result of our analysis is that the qualitative patterns of the crisis cycle do not

allow one to distinguish between diagnostic and Bayesian belief models. We find that a

financial friction mechanism plus a belief mechanism can capture the main features of the

crisis cycle. We also learn that both the Bayesian and diagnostic belief models work in the

right direction, with the diagnostic model getting the quantitative results closer to the data.

The key to this improvement is that the diagnostic model steepens the leverage/lambda

relationship.

Are there other data that help identify diagnostic beliefs? Bordalo, Gennaioli and Shleifer

(2018) argues for the importance of survey expectations to measure agent beliefs. Ratio-

nality requires that the frequency of financial crises be consistent with agents’ beliefs, and

measuring such beliefs may allow one to discipline a non-Bayesian component of beliefs.

The difficulty with this approach is that financial crises are infrequent, and survey measures

do not cover the breadth of history and countries necessary to investigate this possibility

rigorously.

An approach that is more in line with that of this paper in terms of matching data from

historical crises is from Baron and Xiong (2017). They observe that the expected returns

on bank equity as well as the market can be negative conditional on bank-credit growth

in the highest quartile of its distribution (see Table V and Figure III of their paper). The

statistical strength of this result is weak relative to other results in the paper. It only holds

at longer horizons and only for bank equity and not for broad equity returns. However,

let us take this as a fact since such evidence is inconsistent with any model of rationality.4

Figure 15 plots the associated figures from our model (the equivalent of their Figure III). Our

model matches the general pattern of a negative slope, but our calibration does not generate

returns that fall below zero. To be clear, this is not an impossibility result: parameters do

exist such that diagnostic expectations generate negative expected returns (see Greenwood,

Hanson and Jin (2019)). The result illustrated by the figure is in the context of our specific

model and calibration that matches parameters, as indicated in Table 3.

4Note that we are discussing equity returns which have a positive β with respect to systematic risk
factors. For other assets, such as fixed income or housing, it is possible that a collateralizability premium
or convenience yield can generate a negative expected return.
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[FIGURE 15 HERE]

6 Policy Impact under Diagnostic and Bayesian Beliefs

Does it matter for policy purposes whether we live in a world with diagnostic beliefs or one

with Bayesian beliefs? Although our model is not suited for welfare analysis, it can shed

light on the impact of a policy change on economic outcomes. In this section, we run the

following experiment: we start the economy in a boom state (time t = 0) with low credit

spread and high leverage, and then consider an unexpected policy that transfers wealth from

households to bankers so that the banker wealth share w0 increases by 10%. The idea is

to recapitalize banks to “lean against the wind” so that the severity of a crisis is reduced

if an illiquidity shock dNt hits. This exercise is similar to Gertler, Kiyotaki and Prestipino

(2020). Under each version of the model, we calculate the “derivative” of the nonlinear

impulse response of quantities and asset prices with respect to the recapitalization policy.

In our first experiment, we require that both models are calibrated to common data and

we simulate the models from an initial condition in terms of observables that is the same

across both models. In particular, we study a recap policy conditional on given initial bank

leverage and credit spread, which are both observables in the data. These observables pin

down the underlying states (w0, λ0) in the Bayesian model. In the diagnostic model, we also

need to know the reference belief λT0 at t = −T . Since, on average, the diagnostic belief is

equal to the rational belief, to reflect the average scenario, we assume λT0 = λ0. We simulate

the model at interval dt = 1/12 (one month), and introduce dNt = 1 at the first month (but

zero otherwise). To reflect the dynamics of the other shocks, we randomly generate dBt

in the simulation and simulate each model 10,000 times. For each model, we compute the

average impulse responses across simulation runs with and without the recap policy and plot

the difference between these responses in Figure 16. That is, we are plotting the difference

of the impulse response to the recap, across both types of models. In the top-left panel, we

plot the path-difference in w. At t = 0, due to the recapitalization policy, the response is

+10% in both cases as expected. At t = dt (monthly simulation so that dt = 1/12), the

illiquidity shock dNt hits and the nonlinear amplification mechanism turns on so that the

response becomes larger than the initial 10% difference. The output recoveries (top right

panel) after the illiquidity-shock are similar across Bayesian and diagnostic models. Since

we start the economy in a boom state that features high bank credit, the additional 10%

of bank equity has little impact on output initially. Upon the illiquidity shock, in both

models, the output is higher in the recap relative to no-recap, by between 1% and 2% over

the next two years. The bottom left panel plots the credit spread response. The recap leads

to a smaller rise in the credit spread. Finally, the bottom right panel illustrates the bank

credit response. The initial response-gaps are close to zero for both Bayesian and diagnostic

37



models, subsequently rising to about 15%.

The key message from Figure 16 is that the derivative of the impulse responses to a

recapitalization policy in the Bayesian and diagnostic models are quantitatively similar.

The result arises because the initial state is the same in terms of observables, the models

are calibrated to common data, and the initial condition for the diagnostic model is near

the rational model (i.e. neither over-optimistic or pessimistic).

In our second experiment, we probe whether knowledge of the exact divergence from

rational beliefs in the diagnostic model matters for outcomes. The question is whether

“getting into the minds of agents” is important for the impulse responses. The answer is

not obvious because we are simulating both models based on the same observable initial

conditions, e.g., credit spreads, which reflect agents’ beliefs. We calculate the diagnostic

model’s impulse responses in a case of overoptimism, where the initial state has the same

bank leverage and credit spread, but with λθ0 < λ0. Then we compare the results with

the no-belief distortion case of the diagnostic model in Figure 17. We again find that the

impulse response gaps are quite similar across these two cases. The key to this result is that

the initial condition in terms of observables is the same in this experiment. Finally, note

that the plots in Figure 17 are conditional on an illiquidity shock. It is also interesting to

examine the unconditional response. In the overoptimism case the true expected path of

the economy will differ from the agent’s beliefs over this path. Figure 18 plots these average

impulse response gaps. Now we see that the recap policy has a more beneficial effect in the

overoptimism case. However, the y-axis scale in these plots is far smaller than in Figure 17.

That is, these average gaps will be hard to discern in data.

In our last experiment, we do something closer to a pure comparative static exercise. We

set the parameters and the initial conditions of the rational model. Then we use the same

parameters and initial conditions in terms of state variables and simulate the diagnostic

model. We think this exercise is the least economically relevant, but sheds light on why

we find similar responses in our earlier exercises. Our previous experiments tie our hands

by forcing the diagnostic model’s parameters and states to match the same observables.

In Figure 19, we present the results. Both the Bayesian model and the diagnostic model

have the same parameters (other than the diagnostic parameter) and the same initial state

(w0 = w̄, λ0 = 0.9λ̄). We also set the initial diagnostic belief to feature overoptimism at

t = 0. We see that the recapitalization policies driver larger impulse response differences.

Output is higher by about 0.3% in the diagnostic model. We conclude that with the freedom

to choose the degree of overoptimism, we can generate a larger impact of policy. However,

as noted above, this experiment is likely the least relevant in terms of informing policy.

TABLE 7 HERE

A comparison of the simulation experiments is shown in Table 7.
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7 Conclusion

We have shown that our model with a financial amplification mechanism plus belief dynam-

ics, either driven by Bayesian or extrapolative expectations, is able to generate patterns

on the crisis cycle consistent with the empirical literature on financial crises. The model

matches the pre-crisis froth and leverage build-up. It matches the sharp transition to a

crisis, the left-skewed distribution of output declines and asset price declines, and the slow

post-crisis recovery.

We offer three main conclusions that may guide future research:

1. On the positive side, a minimal model with two state variables, one that governs financial

frictions and one that governs beliefs, can match the crisis cycle facts. Both the Bayesian

and diagnostic models are driven by two state variables, w, and λ. The dynamics of these

variables drive the model’s fit on the dimensions on which we evaluate. Our analysis shows

that these variables can have the “right” dynamics under both Bayesian and diagnostic

belief updating.

2. On the negative side, based on our analysis, we are not compelled that the data identifies

a non-rational component of beliefs. Apparently, even the Bayesian model gets the broad

patterns correct; the non-rational component just adds a kick to get these patterns closer

to the data. Considering that our baseline model is quite minimalist, it seems premature

to put too much weight on the success from the extra kick. Hence our conclusion is

that the data does pose an identification challenge for sorting among models of belief

formation.

3. Despite this identification problem, our analysis suggests that for many policy experi-

ments it may not matter whether beliefs are Bayesian or diagnostic. The response of the

economy to a given shock, such as a fall in bank capital, depends on observables such

as the credit spread and leverage. Different models map these observables to different

values of the state variables, but given the observables, impulse response of the models

we study are quite similar.
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Figure 5: Stationary Distribution of State Variables in Each Model
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Figure 10: Density of Next-Year GDP Growth in Static Belief and Bayesian Models Condi-
tional on Bank Credit/GDP. Cutoffs are 30% quantile and 90% quantile of bank credit/GDP.
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Figure 11: Density of Next-Year GDP Growth in Bayesian and Diagnostic Models Condi-
tional on Bank Credit/GDP. Cutoffs are 30% quantile and 90% quantile of bank credit/GDP.

44



−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0
1

2
3

4
5

6
7

One−Year Bank Equity Return

D
en

si
ty

Bayesian
Static Belief

(a) Conditioning on Low Bank Credit

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0
2

4
6

8

One−Year Bank Equity Return

D
en

si
ty

Bayesian
Static Belief

(b) Conditioning on Medium Bank Credit

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0
2

4
6

8

One−Year Bank Equity Return

D
en

si
ty

Bayesian
Static Belief

(c) Conditioning on High Bank Credit

Figure 12: Density of Bank Equity Return in Three Models Conditional on Bank
Credit/GDP. Cutoffs are 30% quantile and 90% quantile of bank credit/GDP.
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Figure 13: Density of Next-Year GDP Growth in Three Models Conditional on Credit
Spread. Cutoffs are 30% quantile and 90% quantile of credit spread.
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Figure 14: Density of Next-Year GDP Growth in Bayesian and Diagnostic Models Condi-
tional on Credit Spread. Cutoffs are 30% quantile and 90% quantile of bank credit/GDP.
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Figure 16: Impulse Responses of Experiment 1. In this figure, we show the impulse responses
to a recapitalization policy at t = 0 that increases banker wealth share w by 10%, in order
to “lean against the wind” and avoid future losses in a liquidity distress. The starting state
is a “boom state”, solved by matching a normal bank leverage but a credit spread 5% below
its average. In the diagnostic model, λθ0 = λ0 so that the diagnostic belief is correct at the
beginning. Both the Bayesian and the diagnostic models are the calibrated versions as in
Table 4. The impulse responses are percentage deviations between with and without the
recapitalization policy. In both cases, we introduce a dNt = 1 shock at the first month
(t = 1/12), but set dNt = 0 otherwise. The Brownian shocks dBt are randomly generated.
We simulate the model by 10000 times and show the average impulse responses in the graph.
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Figure 17: Impulse Responses of Experiment 2. Experiment 2 is identical to experiment 1
except for λθ0 > λ0 (overoptimism) in simulating the diagnostic model. Specifically, both
Bayesian and diagnostic models have the same credit spread and bank leverage at t = 0, but
the true frequency of distress in the diagnostic model is higher than the believed frequency.
More descriptions are provided in Table 7 and footnotes of Figure 16.
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Figure 18: Expected Impulse Responses of Experiment 2. In this figure, we illustrate the
expected impact of the recapitalization policy in experiment 2, by simulating dNt according
to the underlying process instead of setting dNt = 1 at t = 1/12. More descriptions of
experiment 2 are provided in Table 7 and footnotes of Figure 16 and 17.
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Figure 19: Expected Impulse Responses of Experiment 3. Experiment 3 shows the typical
evaluation of the diagnostic belief in the literature, by keeping the Bayesian component
fixed (same parameters and same starting states) but introducing the diagnostic element.
In experiment 3, unlike experiment 1 and 2, the t = 0 observables including credit spread
and bank leverage could be different across the Bayesian and diagnostic model (refer to Table
7). All impulse responses are with respect to a recapitalization policy at t = 0 that increases
banker wealth share w by 10%, in order to “lean against the wind” and avoid future losses
in a liquidity distress. The starting state is a “boom state”, with (w0, λ0) matched to the
same values as the rational model in experiment 1 (refer to Table 7). The diagnostic belief
features overoptimism so that λθ0 < λ0. The impulse responses are percentage deviations
between with and without the recapitalization policy. In both cases, we introduce a dNt = 1
shock at the first month (t = 1/12), but set dNt = 0 otherwise. The Brownian shocks
dBt are randomly generated. We simulate the model by 10000 times and show the average
impulse responses in the graph.
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Table 4: Comparison of Calibrated Model Moments

Data Static Belief Bayesian Diagnostic

1. Frequency of financial distress 13% 13% 12% 13%

2. Avg credit spread change in crises 70% 15% 63% 67%

3. Half-life of credit spread recovery (years) 2.5 2.3 3.2 2.6

4. Investment/capital ratio 14% 14% 18% 14%

5. Avg 3-year output drop in crises -9% -8% -8% -11%

6. Output growth volatility 4% 3% 4% 5%

7. Average bank leverage 5.0 5.2 4.8 5.2

8. Pre-crisis credit spread -34% -32%
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Table 5: Model Simulation and Data: Non-targeted Moments

Panel A: Credit Spread, Bank Credit, and Crisis Severity

Dependent variable: GDP Growth from t to t+ 3

Static Belief Bayesian Diagnostic Data

(1) (2) (3) (4) (5) (6) (7) (8)

Δcredit spreadt∗crisist −6.19 −4.07 −3.94 −7.46
(0.16)

(bank credit
GDP )t∗crisist −1.40 −2.61 −3.72 −0.95

(0.30)

Observations 641 641

Note: Model and data regressions are normalized so that the coefficients reflect the impact of one sigma
change in spreads, and bank credit/GDP.

Panel B: Bank Credit and Risk Premia

Dependent variable: Average realized excess return t+1

Static Belief Bayesian Diagnostic Data

(bank credit
GDP )t −0.02 −0.01 −0.01 −0.02

(0.01)

Observations 867

Note: Model excess return is defined as the return to capital minus the risk-free rate. Data excess return is
from Online Appendix Table 3 of Baron and Xiong (2017). To ensure comparability, the model return to
capital has been normalized to equal the standard deviation of returns reported by Baron and Xiong (2017).

Panel C: Credit Spread Before Crises

Dependent variable: credit spreadt

Static Belief Bayesian Diagnostic Data

(1) (2) (3) (4) (5) (6) (7)

pre-crisis indicator 0.22 −0.14 −0.32 −0.34
(0.15)

mild crisis −0.16 −0.31 −0.27
(0.15)

severe crisis −0.09 −0.33 −0.45
(0.18)

Observations 634 634

Note: regression is: st = α+β ·1{t is within 5-year window before a crisis}+ controls. For both model and
data, controls include an indicator of within 5 years after the last crisis. Data regression has more controls
such as country fixed effect.

Panel D: Predicting Crises

Dependent variable: crisist+1 to t+5

Static Belief Bayesian Diagnostic Data

(1) (2) (3) (4) (5) (6) (7) (8)

HighFroth t −0.76 0.06 0.38 1.76
(0.91)

HighCreditt −0.90 0.09 0.38 0.55
(0.46)

Observations 528 549

Note: HighFroth measures if spreads have been abnormally low in the last 5 years. HighCredit measures if
credit growth has been abnormally high in the last 5 years.
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Table 6: Predicting Crises when κ̂0 = 0 in the Bayesian Model

Dependent variable: crisist+1 to t+5

Model simulation Data

(1) (2) (3) (4)

Frotht −0.14 1.76
(0.91)

High Creditt 0.14 0.55
(0.46)

Observations 528 549

Note: HighFroth measures if spreads have been abnormally low in the last 5 years.
HighCredit measures if credit growth has been abnormally high in the last 5 years.

Table 7: Policy Experiments

Experiment 1 Experiment 2 Experiment 3

Same
Observables

Same Parameters,
Overoptimism

Same Parameters
and States

Initial States of the Bayesian Model (θ = 0)

Bank Leverage0 4.2

same as
experiment 1

same as
experiment 1

Credit Spread0 0.95

w0 0.239

λ0 0.112

λθ0 0.112

Initial States of the Diagnostic Model (θ = 1.38)

Bank Leverage0 4.2 4.2 4.2

Credit Spread0 0.95 0.95 0.85

w0 0.234 0.234 0.239

λ0 0.117 0.168 0.112

λθ0 0.117 0.117 0.034

Note: This table compares the initial states of the three simulation experiments. In experiment
one and two, the Bayesian model and diagnostic model are both calibrated to the same set
of moments, and they have the same bank leverage and credit spread at the beginning of the
simulation. In experiment one, the diagnostic belief is correct at t = 0, but in experiment two,
the diagnostic belief features overoptimism as the underlying λ0 > λθ

0. In experiment 3, both
the Bayesian and the diagnostic model have the same parameters as the calibrated Bayesian
model, and same starting states (w0, λ0). However, the behavioral belief λθ

0 is below λ0 and
there is overoptimism.
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A Model Solutions

A.1 Proof of Lemma 1

We will derive the Bayesian belief process λt in two different ways. The first method is

by applying the theorem in Liptser and Shiryaev (2013). The second one is by taking

the continuous-time limit of a discrete-time process. The reason that we show the second

method is because we will use the connection between discrete-time and continuous-time

processes to prove the results for the diagnostic belief in Lemma 2.

Method 1

We can represent the Poisson process of bank-run as

Nt =

∫ t

0

1λ̃s=λL
dNL

t +

∫ t

0

1λ̃s=λH
dNH

t = At +Mt

where NH
t and NL

t are two independent Poisson processes, Mt is a martingale, and At is a

previsible process

At =

∫ t

0

(1λ̃s=λL
λL + 1λ̃s=λH

λH)dt

Denote FN
t = σ{Ns, 0 ≤ s ≤ t}, θ̃ = 1λ̃t=λH

, and

θt = E[θ̃t|FN
t ] = P (λ̃t = λH |FN

t )

Then according to Theorem 18.3 of Liptser and Shiryaev (2013), the compensator of Nt that

is measurable with respect to FN
t is

Āt =

∫ t

0

E[(1λ̃s=λLλL + 1λ̃s=λHλH)|FN
s−]ds =

∫ t

0

((1− θs−)λL + θs−λH)ds

Moroever, the compensator of θt is∫ t

0

(
1λ̃s=λH

(−λH→L) + 1λ̃s=λL
λL→H

)
ds

and the FN
t− measurable version is

∫ t

0

(θs−(−λH→L) + (1− θs−)λL→H)ds

Finally, the martingale component of θ̃t is independent from the jumps in Nt. Thus we can
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apply Theorem 19.6 of Liptser and Shiryaev (2013) to get

dθt = (θt−(−λH→L) + (1− θt−)λL→H) dt+ E[λ̃t(
dAt

dĀt

− 1)|FN
t−]d(Nt − Āt)

= (θt−(−λH→L) + (1− θt−)λL→H) dt+E[1λ̃t=λH (
1λ̃t=λLλL + 1λ̃t=λHλH

(1− θt−)λL + θt−λH
−1)|FN

t−](dNt−((1−θt−)λL+θt−λH

= (θt−(−λH→L) + (1− θt−)λL→H) dt+
θt−(1− θt−)(λH − λL)

(1− θt−)λL + θt−λH
(dNt−((1−θt−)λL+θt−λH)dt)

= (θt−(−λH→L) + (1− θt−)λL→H − θt−(1− θt−)(λH − λL)) dt+
θt−(1− θt−)(λH − λL)

(1− θt−)λL + θt−λH
dNt

Denote λt = E[λ̃t|FN
t ]. We can get the motion of λt from

λt = E[1λ̃t=λH
|FN

t ]λH + E[1λ̃t=λL
|FN

t ]λL

⇒ θt =
λt − λL
λH − λL

which results in

dλt =

(
(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)
dt+

(λt− − λL)(λH − λt−)
λt−

dNt

Method 2

Consider a discrete time Markov process λ̃k with two states λH and λL. We define

Δt ∗ λ̃k as the probability of a financial distress shock within a single period. The transition

probability from high to low is λH→LΔt, and the transition probability from low to high

is λL→HΔt. Agents observe the realizations of financial distress shocks, and update their

beliefs. Denote the crash realization process as Nk ∈ {0, 1}, and the filtration as Fk =

σ{N1, N2, · · · , Nk}. Denote the updated belief at period k as λk = E[λ̃k|Fk], with λ̃k the

state of the hidden Markov process. In each period, the financial distress shock first realizes,

and then the agent updates belief for that period.

Suppose that the belief on the probability at high state λH is πk at period k. Then the

relationship between πk and λk is as follows:

λk = πkλH + (1− πk)λL

Observing Nk+1 = nk ∈ {0, 1}, the belief πk+1 is

πk+1 = P (λ̃k+1 = λH |Nk+1 = nk+1, πk)
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=
P (Nk+1 = nk+1|λ̃k+1 = λH , πk)P (λ̃k+1 = λH |πk)

P (Nk+1 = nk+1|λ̃k+1 = λH , πk)P (λ̃k+1 = λH |πk) + P (Nk+1 = nk+1|λ̃k+1 = λL, πk)P (λ̃k+1 = λL|πk)
Note that the probabilities P (λ̃k+1 = λH |πk) and P (λ̃k+1 = λL|πk) can be calculated from

the Markov one-step transition

(
πk

1− πk

)T (
1− λH→LΔt λH→LΔt

λL→HΔt 1− λL→HΔt

)
=

(
πk(1− λH→LΔt) + (1− πk)λL→HΔt

πkλH→LΔt+ (1− πk)(1− λL→HΔt)

)T

which results in

P (λ̃k+1 = λH |πk) = πk(1− λH→LΔt) + (1− πk)λL→HΔt

and

P (λ̃k+1 = λL|πk) = πkλH→LΔt+ (1− πk)(1− λL→HΔt)

Therefore, the belief πk+1 is

πk+1 =
((nk+1λHΔt+ (1− nk+1)(1− λHΔt))(πk(1− λH→LΔt) + (1− πk)λL→HΔt))(
(nk+1λHΔt+ (1− nk+1)(1− λHΔt))(πk(1− λH→LΔt) + (1− πk)λL→HΔt)

+(nk+1λLΔt+ (1− nk+1)(1− λLΔt))(πkλH→LΔt+ (1− πk)(1− λL→HΔt))

)

Now it is easier to separately discuss nk+1 = 0 and nk+1 = 1. Suppose that no financial

distress shock happens (nk+1 = 0), then we have

πk+1 =
(1− λHΔt) (πk(1− λH→LΔt) + (1− πk)λL→HΔt)(
(1− λHΔt)(πk(1− λH→LΔt) + (1− πk)λL→HΔt)

+(1− λLΔt)(πkλH→LΔt+ (1− πk)(1− λL→HΔt))

)

Suppose that a financial distress shock happens (nk+1 = 1), then we have

πk+1 =
λHΔt (πk(1− λH→LΔt) + (1− πk)λL→HΔt)(
λHΔt(πk(1− λH→LΔt) + (1− πk)λL→HΔt)

+λLΔt(πkλH→LΔt+ (1− πk)(1− λL→HΔt))

)

=
λH (πk(1− λH→LΔt) + (1− πk)λL→HΔt)(
λH(πk(1− λH→LΔt) + (1− πk)λL→HΔt)

+λL(πkλH→LΔt+ (1− πk)(1− λL→HΔt))

)

Note that taking Δt → 0 will result in πk+1 = πk when nk+1 = 0. This is reasonable,

because this is like calculating μtdt for the λt process in continuous time, which is a small

order term. An appropriate way to derive the time limit is to calculate

lim
Δt→0

πk+1 − πk
Δt

|nk+1=0,Fk

61



= lim
Δt→0

1

Δt

⎛
⎜⎝ (1− λHΔt) (πk(1− λH→LΔt) + (1− πk)λL→HΔt)

−πk(1− λHΔt)(πk(1− λH→LΔt) + (1− πk)λL→HΔt)

−πk(1− λLΔt)(πkλH→LΔt+ (1− πk)(1− λL→HΔt))

⎞
⎟⎠

= lim
Δt→0

1

Δt

(
(1− πk)(1− λHΔt) (πk(1− λH→LΔt) + (1− πk)λL→HΔt)

−πk(1− λLΔt)(πkλH→LΔt+ (1− πk)(1− λL→HΔt))

)

= lim
Δt→0

1

Δt

(
(1− πk) (πk − πkλH→LΔt+ (1− πk)λL→HΔt− λHπkΔt)

−πk (πkλH→LΔt+ (1− πk)(1− λL→HΔt)− λL(1− πk)Δt)

)
(removing Δt2 terms)

= −πkλH→L + (1− πk)λL→H − (λH − λL)πk(1− πk)

Therefore, we have

lim
Δt→0

πk+1 − πk
Δt

|nk+1=0,Fk
= −πkλH→L + (1− πk)λL→H − (λH − λL)πk(1− πk) (34)

To build an exact connection to λk, we can write λk in terms of πk as

πk =
λk − λL
λH − λL

(35)

Then the limit of Δt→ 0 expressed with λk is

1

λH − λL

λk+1 − λk
Δt

|nk+1=0,Fk
= − λk − λL

λH − λL
λH→L+

λH − λk
λH − λL

λL→H−(λH−λL) λk − λL
λH − λL

λH − λk
λH − λL

which can be simplified as

lim
Δt→0

λk+1 − λk
Δt

|nk+1=0,Fk
= (λL − λk)λH→L + (λH − λk)λL→H − (λk − λL)(λH − λk) (36)

Suppose that a financial distress shock happens (nk+1 = 1). By taking Δt → 0, the

updating is

πk+1|nk+1=1,Fk
=

λHπk
λHπk + λL(1− πk)

Using (35), the updating is
1

πk+1

= 1 +
λL
λH

1− πk
πk

λk+1 =
λH(λk − λL)

λk
+ λL =

(λH + λL)λk − λHλL
λk

which implies

λk+1 − λk|nk+1=1,Fk
=

(λH + λL)λk − λHλL
λk

− λk =
(λH − λk)(λk − λL)

λk
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Finally, we express the above with the continuous-time notation dNt and dt to get

dλt =

(
(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)
dt+

(λH − λt−)(λt− − λL)

λt−
dNt

which is the same as method 1.

A.2 Proof of Lemma 2

To prove Lemma 2, we start with discrete time process and then take the continuous-

time limit. The discrete-time distress frequency process λ̃t is the same as Section A.1.

Specifically, the process has two states λH and λL, with transition probability from high

to low as λH→LΔt, and the transition probability from low to high as λL→HΔt. Agents

observe the realizations of financial distress shocks, and update their beliefs. Denote the

crash realization process as Nk ∈ {0, 1}, and the filtration as Fk = σ{N1, N2, · · · , Nk}.
Denote the updated belief at period k as λk = E[λ̃k|Fk], with λ̃k the state of the hidden

Markov process. Also denote the probability πk = P (λ̃k = λH), which implies

λk = πkλH + (1− πk)λL

We choose the period length Δt so that T (Δt) = t0/Δt is an integer, where t0 is the

“look-back period” for the diagnostic belief. Then we denote the reference probability for

the diagnostic belief at period k as

πT
k = P (λ̃k = λH |πk−T (Δt))

We already know from method 2 of Section A.1 that when Δt → 0, the continuous-

time limit of the Bayesian belief process results in (8). Our task now is to prove that the

discrete-time diagnostic belief process converges to a continuous-time process as in (11). By

definition, the diagnostic belief at period k is

πθ
k = πk · ( πk

πT
k

)θ
1

Zk

1− πθ
k = (1− πk) · ( 1− πk

1− πT
k

)θ
1

Zk

with

Zk =
1

πk · ( πk

πT
k
)θ + (1− πk) · ( 1−πk

1−πT
k
)
θ
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which implies

πθ
k = πk(

πk
πT
k

)θ
1

πk(
πk

πT
k
)θ + (1− πk)(

1−πk

1−πT
k
)
θ

= πk
1

πk + (1− πk)(
πT
k

1−πT
k
/ πk

1−πk
)
θ

Therefore, if πT
k < πk, then πθ

k > πk, leading to an overreaction. Now we can replace the

probability with λt. Define the expected λ̃k under the diagnostic belief as λθk. Then we have

λθk − λL = (λk − λL)
(λH − λk) + (λk − λL)

(
λT
k −λL

λH−λT
k
/ λk−λL

λH−λk
)
θ

(λH − λk) + (λk − λL)

where

λTk = πT
k λH + (1− πT

k )λL

The key is to derive πT
k and λTk under the limit of Δt→ 0 while keeping t = kΔt constant.

Using the probability transition matrix, we get

(
P (λk = λH |πT

k )

P (λk = λL|πT
k )

)′

=

(
πk−T

1− πk−T

)′(
1− λH→LΔt λH→LΔt

λL→HΔt 1− λL→HΔt

)T

where the ′ notation denotes transpose of a matrix. The limit of the above expression with

Δt→ 0 is effectively the transition of a continuous time Markov chain, with rate matrix

Q =

(
−λH→L λH→L

λL→H −λL→H

)

A decomposition reveals that the two eigenvalues of this matrix are 0 and −(a + b), where

a = λH→L and b = λL→H . The associated eigenvector formed matrix is

Q̄ =

(
1 −a
1 b

)

with the inverse

Q̄−1 =
1

a+ b

(
b a

−1 1

)

Then we can decompose

Q = Q̄

(
0

−(a+ b)

)
Q̄−1
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Then the transition for t units of time is

Q̄

(
1

e−(a+b)t

)
Q̄−1 =

1

a+ b

(
b+ ae−(a+b)t a− be−(a+b)t

b− be−(a+b)t a+ be−(a+b)t

)

Using the t notation (t = k ∗Δt), and taking the limit Δt → 0 while keeping t unchanged,

we have

lim
Δt→0

(
P (λk = λH |πT

k )

P (λk = λL|πT
k )

)T

=

(
P (λt = λH |πt−t0)

P (λt = λL|πt−t0)

)T

=

(
πt−t0

1− πt−t0

)T
1

a+ b

(
b+ ae−(a+b)t0 a− be−(a+b)t0

b− be−(a+b)t0 a+ be−(a+b)t0

)

Δ
=

(
aHπt−t0 + aL(1− πt−t0)

bHπt−t0 + bL(1− πt−t0)

)T

where (
aH bH

aL bL

)
=

1

a+ b

(
b+ ae−(a+b)t0 a− ae−(a+b)t0

b− be−(a+b)t0 a+ be−(a+b)t0

)
(37)

Therefore, the intensity process follows

λθt − λL = (λt − λL)
(λH − λt) + (λt − λL)

(
λT
t −λL

λH−λT
t
/ λt−λL

λH−λt
)
θ
(λH − λt) + (λt − λL)

(38)

where

λTt − λL = aH(λt−t0 − λL) + aL(λH − λt−t0) (39)

λH − λTt = bH(λt−t0 − λL) + bL(λH − λt−t0) (40)

When the total transition rates a+ b are low, we have aH ≈ 1, aL ≈ 0, bH ≈ 0, and bH ≈ 1.

Then we have λTt ≈ λt−t0 . When λTt > λt, i.e., the likelihood of a crisis is decreasing, then

the subjective probability is even lower, with λθt < λt. When λTt < λt, i.e., the likelihood

of a crisis is increasing, then the subjective probability is even higher, with λθt > λt. These

predictions are perfectly consistent with the spirit of the diagnostic expectations. The extent

of such extrapolation is larger as θ becomes larger, and we have λθt = λt when θ = 0.

A.3 Wealth Dynamics

To solve the model, we start with deriving the wealth dynamics of households and bankers.

In order to simplify notations, we omit the subscripts t and t−.

First, from (24) and (22), we get the following equation that links consumption, produc-
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tion and investment:

wċb + (1− w)ċh =
ψAH + (1− ψ)AL − i

p
. (41)

Second, from (21) and (22), we get the following portfolio equation on capital

xKw + yK(1− w) = 1. (42)

Third, we can rewrite (17) as a function of state variables and portfolio choices, i.e.

ψ =
xKw

xKw + yK(1− w)
= xKw, (43)

where the first equality is by definition and the second equality is by (42).

To proceed, we need to express the evolution dynamics of state variable w. Define

μR = μp − δ + μK + σKσp − φ(μK)

p
(44)

Return on banker wealth is

dwb

wb
t−

Δ
= μbdt+ σbdB − κbt−dN

=

(
rd + xK(μR +

AH

p
− rd) + xf (rf − rd)− ρ

)
dt+ xK(σK + σp)dB − κbt−dN

(45)

The jump component is

xKκp + αΔx (46)

where

Δx = (xK + xf − 1)+ (47)

The return on household wealth is

dwh

wh
t−

Δ
= μhdt+ σhdB − κht−dN

=

(
rd + yK(μR +

AL

p
− rd)− ρ

)
dt+ yK(σK + σp)dB − κht−dN

(48)

where

κh = yKκp − κfs
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A.4 Proof of Lemma 3

According to the equilibrium market clearing condition for the interbank market, we have

xf = 0

in equilibrium. As a result, in equilibrium,

Δx = (xK − 1)+

Suppose that in equilibrium, xK < 1. This implies that Δx = 0. Then we can easily derive

the first order condition for households and bankers holding capital as

μR +
Ā

p
− rd = (σK + σp)2xK + λκp

1

1− xKκp

μR +
A

p
− rd = (σK + σp)2yK + λκp

1

1− yKκp

which together imply that

Ā− A

p
=

(
(σK + σp)

2
+

λ(κp)2

(1− xKκp)(1− yKκp)

)
(xK − yK) (49)

The first bracket on the right hand side is always positive, since the nonnegative wealth

constraint implies xKκp < 1 and yKκp < 1. However, due to the budget constraint

wxK + (1− w)yK = 1

and the assumption of xK < 1, we must have

yK > xK

which implies that the right-hand side of (49) should be negative. This is a contradiction

since the left-hand side of (49) is positive.

Importantly, all of the above derivations go through regardless of whether we use the

Bayesian Bayesian belief or the diagnostic belief, as long as bankers and households have

the same belief.

In summary, we have xK ≥ 1 in equilibrium.
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A.5 Equilibrium Solutions

Optimal investment rate is

μK∗
=
p− 1

χ
+ δ (50)

The resulting optimal investment is

i(p) = φ(μK∗
) =

(p− 1)2

2χ
+
p− 1

χ
+ δ (51)

Then we can apply Ito’s lemma on the definition of wealth share in (12) and get the dynamics

of w as

dw

w
Δ
= μwdt+ σwdB − κwt−dN

= (1− w)
(
μb − μh + (σh)

2 − σbσh − w(σb − σh)
2 − η

)
dt

+ (1− w)(σb − σh)dB − (1− wt−)
1− 1−κb

t−
1−κh

t−

1 + wt−(
1−κb

t−
1−κh

t−
− 1)

dN.

(52)

With dynamics of the state variable w, we apply Ito’s lemma on price function p(w) to get⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μp = pwwμ
w +

1

2
pww(wσ

w)2 + pλμ
λ(λ)

σp = pww(1− w)(σb − σh)

κpt− = 1− p(wt−
1− κbt−

1− κht− − wt−(κbt− − κht−)
, λt))/p(wt−, λt−).

(53)

To fully characterize the economy, we also need to know the dynamics of aggregate capital

quantity K, although it is not a state variable since everything else is scalable with respect

to K. Denote the Ito process for K as

dK

Kt−
= μK∗dt− δdt+ σKdB, (54)

With (46), (45), (48), and (53), we get a system of equations for other jumps:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κb = xKκp + αΔx

κh = yKκp − κfs

κfs = αΔx w
1−w

κp = 1− p(w 1−κb

1−κh−w(κb−κh)
, λ+ κλ(λ))/p(w, λ)

(55)

From (45), (48), and (53), we get the relation between capital price volatility and volatility
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of the banker’s return on wealth as follows:⎧⎪⎨
⎪⎩

σp = pww(1− w)(σb − σh)

σh = yK(σK + σp)

σb = xK(σK + σp).

(56)

Denote fire sale benefits for each unit of household wealth as κfs, which is net wealth

transfer from bankers to households due to the temporary market pressure. By market

clearing, we have

(1− w)︸ ︷︷ ︸
total household

wealth

· κfs = IB︸︷︷︸
bankruptcy
indicator

· w︸︷︷︸
total banker

wealth

· Δx

(1− α0)pt︸ ︷︷ ︸
fire sale quantity for each

unit of banker wealth

· α0pt︸︷︷︸
wealth transfer for

each unit sale

⇒ κfs = αΔx
w

1− w
(57)

Then we have the following household first order condition:

μR +
A

p
− rd ≤ (σK + σp)2yK + λ

κp

1− yKκp + κfs
, equality if yK > 0 (58)

In equation (58), the left hand side is the excess return on productive capital over bank debt,

while the right hand side includes the cost of the additional risks from productive capital

compared to bank debt. When the excess return is lower than the cost, households do not

hold productive capital and set yK = 0.

On the other hand, the first order condition on bank productive capital holding is

μR +
Ā

p
− rd = (σK + σp)2xK + λ

κp + α

1− xKκp − αΔx
(59)

since banks always hold a positive amount of productive capital.5 The excess return of pro-

ductive capital over debt consists of three components: volatility, endogenous price decline

and fire sale losses in case of financial distress shocks.

Combining (58) and (59), we have

Ā− A

p
≥ (σK + σp)2(xK − yK) + λ

κp + α

1− xKκp − αΔx
− λ

κp

1− yKκp + κfs

where the equality holds when yK > 0.

5Suppose not, then banks are not subject to financial distress shocks by increasing its productive cap-
ital holding from 0 to a small positive number, but increases profit strictly. Thus we easily arrive at a
contradiction.
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Next, the bank first order condition over inter-bank lending is

rf − rd = λ
α

1− xKκp − αΔx
(60)

which implies that the bank debt interest rate is lower than bank risk-free rate, because

bank debt funding is runnable.

Combining (59) and (60), we arrive at the excess return expression for the productive

capital in normal time as:

μR +
Ā

p
− rf = (σK + σp)2xK + λ

κp

1− xKκp − αΔx
(61)

We note that productive capital is also subject to the losses of κpxK during a distress, which

arrives at intensity λ. As a result, the full excess return expression should be

μR +
Ā

p
− λκp − rf = (σK + σp)2xK + λκp

xKκp + αΔx

1− xKκp − αΔx
(62)

Intuitively, equation (62) implies that the excess return of productive capital above the risk-

free rate is compensating the volatility of the productive capital, as well as the potential

price drop. Note that we did not attribute the αΔx component to xK , since it is related

to the amount of shot-term debt funding. Another way to look at the above problem is to

rewrite the bank welath dynamics in terms of xK and xd, which leads to

dwb

wb
=

(
rf + xK(μR +

Ā

p
− λκp − rf )− xd(rd − rf )− λαxd

)
dt− ĉdt

+xK(σK + σp)dBt − κb(dNt − λdt)

Diagnostic Beliefs

When we solve the equilibrium jumps upon dNt with diagnostic beliefs, additional ad-

justments are needed to accomodate the distortions induced by the Diagnostic beliefs. As

we have assumed, households believe that they have Bayesian beliefs and make decisions

with the Bayesian policies. However, the realizations during a crisis will be different from

their expectations, which may cause additional disruptions. There are two steps to clear the

market during a jump with diagnostic belief:

• First, the agents interpret λθt as the Bayesian belief. After a crisis shock dNt, the market

price of capital switches to the level under this “Bayesian belief”.

• The realization of belief, however, is different from the Bayesian expectation, because

the diagnostic belief formation. Now additional price adjustment is needed to clear the

market under the diagnostic belief.
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A.6 Other Measures of Risk Premium

In this subsection, we discuss other measures of the risk premium. In the main text, we

use the credit spreads of long-term bonds as a measure of risk premium, mainly because

of the data availability of the same measure. In this part, we show several other measures

of risk premium. The first one is the bank equity excess return. we show that although

bank equity is not tradable in the model, the excess returns are still positive under Bayesian

expectations. The second one is Sharpe ratio. We show how to adjust the definition to

accommodate jumps in the model.

Bank Equity Excess Returns

We note that bank equity return is not simply dwb/wb, since this wealth growth term

also incorporates banker consumption, which should be interpreted as a dividend payment.

Formally, the expected return of bank equity is

re = rf + xK(μR +
Ā

p
− rf − λκp)− xd(rd − rf )− λαxd

Expressing the right-hand terms with (27) and (28), we have

re − rf = xK
(
(σK + σp)

2
xK + λκp

xKκp + αΔx

1− xKκp − αΔx

)
︸ ︷︷ ︸

total risk compensation for holding productive capital

+ λαxd
xKκp + αΔx

1− xKκp − αΔx︸ ︷︷ ︸
total risk compensation for taking debt

where two terms of risk compensations appear. The first term is the total risk compensation

for holding productive capital, including the risk premium of volatility and the decline in

wealth due to financial distress shocks. The second term is the total risk compensation for

raising short-term debt. Alternatively, we can write the risk compensation as the following

re − rf = xK︸︷︷︸
exposure to dBt shock

· (σK + σp)
2
xK︸ ︷︷ ︸

compensation to dBt shock

+ (xKκp + αxd)︸ ︷︷ ︸
exposure to dNt shock

· λ(xKκp + αΔx)

1− xKκp − αΔx︸ ︷︷ ︸
compensation to dNt shock

As a result, in this Bayesian model, the bank equity excess return should always be above

zero.

For the Diagnostic model with diagnostic expectations, there is a “surprise” element in

the realized excess returns during a crisis, due to the additional jumps in the price of capital.

We just need to take into account the impact on the excess return by the additional jumps.

Sharpe Ratio

Another measure of the risk premium in the economy is the Sharpe ratio. However, since

we have Poisson jumps in a continuous time economy, it is not enough to only incorporate
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the Brownian terms to measure risk. For any bank-held assets with process

dRt = μdt+ σdBt − κdNt

we denote the Sharpe ratio as

SR =
E[Rt+Δt −Rt]− rfΔt

var(Rt+Δt −Rt)
≈ μ− λκ− rf

(σ)2 + λ|κ| (63)

where we have taken the perspective of Δt being small but positive. For productive capital,

the modified Sharpe ratio is

SR(K) =
μR + Ā

p
− λκp − rf

(σp + σK)2 + λκp

According to (29), the numerator is positive. Therefore, the model implied Sharpe ratio for

productive capital is always positive.

A.7 Credit Spread

In this section, we derive the jump differential equation for the credit spread and provide

the solution methodology.

HJB Equations

From Ito’s lemma, we have

dv(w, λ) =
∂v(w, λ)

∂w
(wμwdt+ wσwdBt) +

1

2

∂2v(w, λ)

∂w2
w2(σw)2dt

+
∂v(w, λ)

∂λ
μλ(λ)dt+ (v(w +Δw, λ+Δλ)− v(w, λ))dNt

Denote
dv(w, λ)

v(w, λ)
= μvdt+ σvdBt − κvdNt

Matching the coefficients, we have

v(w, λ)μv =
∂v(w, λ)

∂w
wμw +

1

2

∂2v(w, λ)

∂w2
w2(σw)2 +

∂v(w, λ)

∂λ
μλ(λ)

v(w, λ)σv =
∂v(w, λ)

∂w
wσw

v(w, λ)κv = v(w, λ)− v(w +Δw, λ+Δλ)
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From banker’s perspective, the optimization problem is

dwb
t

wb
t

= ...+ xvt−(
dvt
vt−

− vt− − (1− κ̂t)

vt−
ξtdNt − κvt−(1− ξt)dNt +

vt− − (1− κ̂t)

vt−
dN τ

t )

with λτt = 1/τ − πλt, ξt ∈ {0, 1}, P (ξt = 1) = π, and {ξt} is an i.i.d. process that is

independent from everything else. The jump κvt− is the amount of decline of bond price

upon the distress shock if the bond does not mature during the financial distress shock.

Rewriting the above, we have

dwb

wb
=

(
rf + xK(μR +

AH

p
− rf ) + xd(rf − rd) + xv(μv − rf )− ρ

)
dt

+
(
xK(σK + σp) + xvσv

)
dBt−(xKκp+αxd+xvξ

v − (1− κp − κ̂0)

v
+xv(1−ξ)κv)dNt−xv v − 1

v
dN τ

t

where I have omitted the subscripts t and t− for simplicity. To solve the price of the safe

bond v̄, we can simply replace the notation v with v̄, and set the term κp and κ̂0 both to

zero.

The first order condition over xv is

μv−rf−λπ
v−(1−κp−κ̂0)

v

1− (xKκp + αxd + xv v−(1−κp−κ̂0)
v

)
−λ(1−π) κv

1− (xKκp + αxd + xvκv)
−λτ

v−1
v

1 + xv v−1
v

− (σv)2xv︸ ︷︷ ︸
compensation for change in risk - bearing capacity

− xKσv(σK + σp)︸ ︷︷ ︸
compesnation for covariance

= 0

Given that in equilibrium xv = 0, we have

μv − rf = λπ
1

1− κb
v − (1− κp − κ̂0)

v
+ λ(1− π)

1

1− κb
κv + λτ

v − 1

v
+ xKσv(σK + σp)

with

λτ =
1

τ
− πλ

Therefore, the excess return has three components: (1) the compensation for losses during

a distress shock, (2) the compensation for losses (negative losses mean positive benefits)

in a maturity event without distress shock, and (3) the compensation for exposure to the

volatility risk dBt, where the price of risk is xK(σK + σp). This equation together with the

matched coefficients form an HJB equation for the value of bonds,

∂v

∂w
wμw +

1

2

∂2v

∂w2
w2(σw)2 +

∂v

∂λ
μλ − rfv = xK(σK + σp)

∂v

∂w
wσw

+ λπ
1

1− κb
(
v − (1− κp − κ̂0)

)
+ λ(1− π)

1

1− κb
κvv + λτ (v − 1)

(64)
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Solution Methods

We will use the “false time derivative” method, by introducing a time dependence of v.

Define such a function as ṽ(w, λ, t). Following a similar derivation as (64), we can get the

HJB equation for ṽ as

∂ṽ

∂t
= λπ

1

1− κb
(
v − (1− κp − κ̂0)

)
+ λ(1− π)

1

1− κb
κvv + λτ (v − 1)

+xK(σK + σp)
∂v

∂w
wσw + rf ṽ −

(
∂ṽ

∂w
wμw +

1

2

∂2ṽ

∂w2
w2(σw)2 +

∂ṽ

∂λ
μλ

)

We can start with a function ṽ that satisfies ṽ(0, λ, T ) = v(0, λ), and ṽ(1, λ, T ) = v(1, λ),

and has linear interpolation in other regions. By taking T large enough, we are going

to have convergence before t reaches 0, i.e., two iterations have close to zero differences.

Denote the converged solution as ṽ(w, λ, 0). From the property of convergence, we must

have ∂ṽ(w, λ, t)/∂t|t=0 = 0. As a result, ṽ(w, λ, 0) satisfies the original PDE of v(w, λ),

which implies that v(w, λ) = ṽ(w, λ, 0).

Next, we show how to solve the boundary conditions at w = 0 and w = 1.

Boundary Conditions

We note that w = 0 and w = 1 are two absorbing boundaries. At both w = 0 and w = 1,

we have p = p or p̄ forever, and μw = σw = κp = 0. Thus, we can simplify the HJB equation

(64) into

∂v(w, λ)

∂λ
μλ(λ)− rf (w, λ)v(w, λ) = λπ

1

1− κb(w, λ)

(
v(w, λ)− (1− κ̂0)

)
+ λ(1− π)

1

1− κb(w, λ)
κv(w, λ)v(w, λ) + λτ (λ)(v(w, λ)− 1), w ∈ {0, 1}

(65)

Suppose that κv = 0 when λ = λ∗ (defined as μλ(λ∗) = 0). Then we get

v(0)(w, λ∗) =
λ∗π 1

1−κb(w,λ∗)(1− κ̂0) + λτ (λ∗)

λ∗π 1
1−κb(w,λ∗) + rf (w, λ∗) + λτ (λ∗)

, w ∈ {0, 1}

Denote the value function at iteration k as v(k)(w, λ). Then for w = 1 or w = 0, the

algorithm works as follows:

• Step k: Solve for the jump κvv = v(w, λ)− v(w+ δw, λ+ δλ) using v = v(k). Denote this

value as Δv(k). With such jump solved, we translate the jump equation (65) into an ODE

of v(w, λ), w ∈ {0, 1} as a function of λ. The ODE solution starts with the initial value

v(w, λ∗) = v(k)(w, λ∗), w ∈ {0, 1}. Solve this ODE and denote the solution as v(k+1).
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• Stop if ∫ λH

λL

|v(k+1)(w, λ)− v(k)(w, λ)| dλ < ε, w ∈ {0, 1}

for a small ε > 0.

Finally, we notice that once the λ = λ∗, it will not go up or down unless there is a dNt

shock. Once we know the jump component, we can solve v(w, λ∗) along the w dimension as

an ODE. The ODE is

∂2v

∂w2
=

(
λ∗π 1

1−κb (v − (1− κp − κ̂0)) + λ(1− π) 1
1−κbκ

vv

+λτ (v − 1) + xK(σK + σp) ∂v
∂w
wσw + rfv − ∂v

∂w
wμw

)
1
2
w2(σw)2

for w �= 0, 1.

B Leverage Target

Here we provide more details about the calculations of moment target for bank leverage. We

use the Flow of Funds data to calculate average bank leverage from runnable (non-insured)

deposits. As shown in Figure 20, bank leverage based on non-FDIC insured bank deposits

is slightly below 5. We use Egan, Hortaçsu and Matvos (2017) estimate that the fraction of

FDIC-insured deposits is 0.5.
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(a) Bank Leverage (using data on FDIC-insured deposits)
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(b) Bank Leverage (FDIC-insured deposits are inferred)

Figure 20: Bank Leverage in the Flow of Funds Data. This figure illustrates the time
series of bank leverage in the U.S. using flow of funds data. We map banks in the model
to “private depository institutions” and “security broker dealers” in flow of funds. Bank
equity is measured as total bank assets minus bank liabilities. Since the model only captures
banks’ runnable liabilities liabilities, we measure effective bank liability as total liability
minus FDIC-insured deposits, and calculate bank leverage as (effective bank liability +
bank equity)/bank equity. The data on FDIC-insured deposits are only available after 2002,
so the data sample starts from 2002 in panel (a). An alternative way is to assume a constant
fraction of FDIC-insured deposits over total deposits (here we assume a half). In panel (b),
we show the results under this alternative method.
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