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1 Introduction

Financial crises have a common character. There is a pre-crisis period that is marked by a

runup in credit, leverage, low risk spreads, and an expansion in output. Credit and asset

valuations appear “frothy” before a crisis. The transition to the crisis is sharp. There are

losses to the financial sector, defaults and bank-runs, a jump in risk spreads, and contraction

in credit and output. The aftermath of the crisis is a gradual recovery in credit, output,

and fall in risk spreads. These patterns emerge from a large and growing body of research

examining financial crises episodes across countries and time, dating back to the 19th cen-

tury. See Bordo et al. (2001), Borio and Lowe (2002), Claessens et al. (2010), Reinhart and

Rogoff (2009a), Schularick and Taylor (2012), Jordà et al. (2011), Jordà et al. (2013), Baron

and Xiong (2017), and Krishnamurthy and Muir (2017). This empirical research describes

and quantifies these common patterns.

Theoretical research on crises has fallen into two categories. The first emphasizes frictions

in financial intermediation that drive an amplification mechanism. The key idea is that the

fragility of the financial sector, measured typically as high leverage or low levels of equity

capital-to-assets, is an endogenous state variable. An unexpected large-loss event hitting the

economy in a state where the financial sector is fragile sets in motion mechanisms whereby

the shock is amplified, there is disintermediation, a rise in risk spreads and contraction in

output. Recovery takes time, tracking a gradual re-intermediation. The amplification model

speaks directly to the transition to crisis and the aftermath of the crisis. See work by Gertler

and Kiyotaki (2010), He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), He

and Krishnamurthy (2019), and Li (2019).

The second line of research emphasizes the role of beliefs, and harkens back to Kindel-

berger (1978). Agents pre-crisis see a string of good-news shocks that makes them optimistic

about the path of the economy. Lending grows, risk spreads are low, and output grows.

Bad-news events realize that lead agents to revise their views of the economy, creating the

transition to the crisis. A slow-recovery follows as beliefs slowly revert back to a steady-

state level. The key state variable in these models is agents’ beliefs. There are two flavors

of these models: one in which learning and belief updating is Bayesian (Moreira and Savov,

2017) and the other where updating is non-rational (Bordalo et al., 2018). Bordalo et al.

(2018) argues forcefully for a form of non-rational learning whereby beliefs over-react to

current news. These authors argue that such over-reaction is essential to capture the pre-

crisis froth, the sharp response to news in the transition to a crisis, and the slow recovery

dynamics post-crisis.

The objective of this paper is to assess these two crisis mechanisms quantitatively in

light of the established data patterns. We build a model with a financial intermediary

sector subject to capital constraints and financed in part by demandable debt. There are
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two sources of shocks in the model, a Brownian shock to the return on capital and an

illiquidity shock where the market for capital assets temporarily freezes up and debtors

refuse to rollover their debts, as in a bank run. In this latter state, sales of capital assets

incur a liquidation cost, or alternatively loans against capital are charged an illiquidity

premium. The economy transits through booms and busts driven by the Brownian shock

and its impact on the dynamics of real capital and the equity capital of the financial sector.

Crises are events where both the financial sector equity capital is low and the illiquidity

shock occurs. In this case, there are runs on banks leading to disintermediation, declines

in asset values, and a reduction in output. The financial frictions model of our paper is

a variant of Li (2019). It draw on ingredients from the recent macro-finance literature on

financial crises and intermediation frictions, and particularly He and Krishnamurthy (2013);

Brunnermeier and Sannikov (2014); Gertler and Kiyotaki (2015).

Into this financial frictions model, we introduce a role for beliefs. Agents in the economy

take decisions based on their beliefs about the likelihood of the illiquidity shock. The

illiquidity shock is a Poisson event, the intensity of which follows a two-state Markov process.

Agents infer the state and hence the likelihood of the illiquidity shock based on history. A

string of no-shock realizations leads them to believe that shocks are unlikely (i.e. the true

state is the low intensity state). A shock occurrence leads them to think that shocks are

more likely (i.e., the true state is the high intensity state). We consider two flavors of

this learning mechanism, a Bayesian rational updating process and non-rational diagnostic

updating process which overweighs current realizations. The Bayesian learning mechanism

is fairly standard. Our modeling is closest to Moreira and Savov (2017). The diagnostic

updating process is motivated by the work of Bordalo et al. (2018), and is also related to

the models of Greenwood et al. (2019) and Maxted (2019).

We begin by a studying a baseline model with financial frictions where the intensity of

the illiquidity shock is constant, so there is no role for beliefs. The key state variable is the

banker wealth-share, as is common in the macro-finance literature. We find that this model

is able to quantitatively match data on the crisis and its aftermath. In particular, the model

generates a sharp drop in asset prices, credit, and output. The mean drop in our model is in

line with the data, but more telling, the skewness of these variables and their comovement

also matches that of the data. That is, a key feature of financial crises is non-linearity,

reflected in a skewed distribution of output declines. The model’s amplification mechanism

generates skew in line with that of the data. The model also generates a slow recovery,

due to the persistence mechanism of financial frictions models. However, the model fails

to match the pre-crisis evidence. In the model, the fragility of the economy to a crisis is

measured by the banker wealth-share state variable. When this is low, a negative shock

triggers a crisis. Thus a crisis is more likely when negative shocks reduce banker wealth (at

the same time, raising leverage). However, this means that forward looking asset prices will

account for the increased fragility as the wealth share state variable falls. As a result, the
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model implies that credit spreads will rise and bank credit will fall in the period before a

crisis, contrary to the data. Despite this failure, our baseline model matches the Baron and

Xiong (2017) fact that credit growth predicts low returns on risky assets. In our model,

both credit and risk premia are driven by the single state variable, banker wealth share.

High banker wealth drives up credit and lowers risk premia generating the magnitude and

sign in line with the data.

We next consider a model where the frequency of the illiquidity shock follows a hidden

two-state Markov process and agents update their beliefs over the state based on history in

a Bayesian fashion. This modeling adds agents’ beliefs of the shock probability as a second

state variable. If a crisis has not occurred for some time, agent beliefs drift towards the

low likelihood state. Bankers choose to increase leverage as they are less concerned about

liquidity risk. Risk spreads fall and credit grows. From this state, if an illiquidity shock

arrives, beliefs jump towards the high likelihood state and banker wealth falls. There is

amplification of the shock and persistence. The model continues to match the crisis and

aftermath for similar reasons as our pure financial frictions model. Moreover, this model

can match the pre-crisis froth. Spreads are low and credit is high before a crisis. More

surprisingly, low spreads and high credit help predict a crisis. The reason is that bankers

act more risk tolerant in the pre-crisis period. This is the reason they drive down spreads/risk

premia and increase credit. They also take actions that effectively shift more GDP outcomes

into tail states. It may be surprising that we find that there are times when crises are more

likely and yet risk prices are low and bankers take more leverage. Our model ties these

observations together by generating more risk tolerance in the pre-crisis period, driven by

the beliefs state variable.

Our Bayesian model matches the crisis and aftermath data qualitatively and quantita-

tively. It matches the pre-crisis froth evidence qualitatively, generating signs in line with

the data. However, our calibrated model does not quantitatively match the extent of froth

documented in the literature. In our model simulations, we typically get about half-way to

the froth that is reflected in the data. This could either be that our minimalist model needs

more financial frictions bells-and-whistles, or it could be that the model needs a non-rational

component of learning. We opt to pursue the latter route in the final version of our model.

We model belief updating in a diagnostic fashion, over-extrapolating from recent ob-

servations. We show this model matches the crisis and aftermath evidence as well as the

other model variants we consider, and additionally gets closer to quantitatively matching

the pre-crisis froth evidence. The reason is the diagnostic belief process gives us a degree of

freedom to drive agent beliefs in the pre-crisis period even lower than that of the Bayesian

model. This extra degree of freedom helps us match the data.

This paper’s goals and approach is closest to that of two other recent papers, Greenwood

et al. (2019) and Maxted (2019). Both of these papers construct models of the boom-bust
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crisis cycle with a role for beliefs. Greenwood et al. (2019) present a model where lenders

extend credit based on beliefs over the default probabilities of borrowers. There is a feedback

between realized default and beliefs regarding default probabilities, similar to the model of

this paper, that creates a persistence and amplification mechanism. Like us, their paper

aims to match facts on credit growth, credit spreads, and risk premia. But their model is

not a full macroeconomic model, and thus does not speak to other macroeconomic data such

as output and the conditional distribution of output growth. Their model also does not have

an intermediary sector, so cannot assess the role of intermediary frictions relative to beliefs.

Finally, lenders are risk neutral in their model, so that without diagnostic expectations, risk

premia are zero. As a result, their model does not give the Bayesian belief process a chance

of explaining the data. Maxted (2019) presents a macro-finance model that is closer to ours.

There is an intermediation sector that is central to crisis dynamics. The paper also considers

a full macroeconomic setting, and can thus speak to more macro data. Nevertheless, the

paper considers only a subset of the crisis data that we aim to match in this paper. Like

Greenwood et al. (2019), the paper does not allow an evaluation of a Bayesian belief process.

Without diagnostic expectations, the model of the paper collapses to a pure intermediation

model along the lines of He and Krishnamurthy (2019). The other main difference relative to

our model is that the diagnostic belief shifts the mean drift of the capital process, whereas in

our case the effect is on the tail of the distribution (we are similar to Greenwood et al. (2019)

in this regard). Although it is not entirely clear at this stage which approach (shifting mean

versus shifting mass in tail) is the right way forward, one difference in these two approaches

is that ours has a direct impact on risk premia, whereas the mean shift has no direct impact

on risk premia.1

The rest of this paper is as follows. In Section 2, we review general patterns of the crisis

cycle in the data. In Section 3, we set up a model that nests three cases: baseline model,

Bayesian-belief model, and the diagnostic-belief model. In Section 4, we solve and calibrate

these three versions of the model to match data patterns. In Section 5, 6, and 7, we evaluate

the baseline model, the Bayesian model, and the diagnostic model, respectively. We then

conclude in Section 8.

1There are other recent papers that also touch on the issues of this paper. Gertler et al. (2020) introduces
bank runs unto a macro-intermediation model. Beliefs, modeled via a sunspot, play a role in driving crisis
dynamics. The objective of their paper is to study the 2007-2009 financial crisis rather than disentangling
mechanisms underlying the crisis cycle facts. Bordalo et al. (2019) introduce diagnostic beliefs into a
relatively standard RBC model. Their model does not have an intermediation mechanism and thus helps
to understand the role of diagnostic beliefs. Finally, Farboodi and Kondor (2020) present a model of time-
varying sentiment that generates a credit cycle that is qualitatively in line with the facts. All agents in their
model are rational, so that sentiment evolves in a Bayesian manner. Thus, like us, they show that the basic
facts of the credit cycle can be generated within a Bayesian model. The objective of the paper is different
than ours, as their model is not suited to a quantification exercise and does not have an intermediary sector.
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2 The Crisis Cycle

This section reviews broad patterns of the crisis cycle, drawn from the empirical literature

on crises. Along the way we list (numbered below) specific quantitative estimates from the

literature which guide our modeling exercise.

What is a financial crisis? Jordà et al. (2011) state:

In line with the previous studies we define financial crises as events dur-

ing which a country’s banking sector experiences bank runs, sharp increases in

default rates accompanied by large losses of capital that result in public inter-

vention, bankruptcy, or forced merger of financial institutions

We focus on events, as per the quotation, as financial crises. These events are banking crises

and do not necessarily include currency crises or sovereign debt crises, which are other crises

of interest, unless such events coincide with a banking crisis. Jordà et al. (2011)’s dating

of banking crises is closely related to the approach of Bordo et al. (2001), Reinhart and

Rogoff (2009a), and Laeven and Valencia (2013). Bordo and Meissner (2016) discuss the

approaches that researchers have taken to crisis-dating as well the drawbacks of different

approaches.

1. We target an unconditional frequency of financial crises of 4%. In an article written

for the Annual Review of Economics, Taylor (2015) reports the historical frequency of

financial crises to be 6%. This data point is obtained from a sample of countries in both

developing and advanced stages, and covers the period after 1860. The Handbook of

Macroeconomics chapter by Bordo and Meissner (2016) reports numbers in the range

of 2 to 4% across the studies by Bordo et al. (2001) and Reinhart and Rogoff (2009a).

Another evidence comes from Jordà et al. (2013), which shows that the average frequency

of crises is 3.6% using data from multiple countries. In light of the above evidence, we

pick the medium value 4% as our target.

2. Baron and Xiong (2017) measure equity market crashes, defined as a fall in bank equity

market prices in excess of 30%. They report that crashes occur with a frequency of 3.2%

per quarter in a sample from 1920 to 2012. Note that not every equity crash corresponds

to a real crisis, which is a point also emphasized by Greenwood et al. (2019).

Figure 1 plots the mean path of credit spread, credit, and GDP across a sample of 41

international financial crises identified by Jordà et al. (2013). The figure is drawn from

Krishnamurthy and Muir (2017) which includes data on credit spreads relative to other

studies of crises. Date 0 on the figure corresponds to the date of a financial crisis. The

top-left panel plots the path of the mean across-country credit spread, relative to the mean
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Figure 1: Mean path of credit spread, bank credit, and GDP across a sample of 41 financial
crises identified in Jordà et al. (2013). Units for spread path are 0.4 means that spreads are
0.4σs above their average for a given country. Units for credit path are that 5 indicates that
credit/GDP is 5% above the trend for a given country. Units for GDP path are that −8
means that GDP is 8% below trend for a given country. Source: Krishnamurthy and Muir
(2017)

spread for country-i, from 5-years before the crisis to 5-years after the crisis. The units

here are that 0.4 means that spreads are 0.4σs larger than the country’s time-series average

spread, while -0.2 means that spreads are 0.2σs below the country’s time-series average. The

data is annual from 14 countries spanning a period from 1879 to 2013.

We see that spreads run below their average value in the years before the crisis. They

rise in the crisis, going as high as 0.4σs over their mean value in the year after the crisis

date, before returning over the next 5 years to the mean value. The half-life of the credit

spread recovery is 2.5 years in this figure.

The top-right panel plots the path of the quantity of bank credit divided by GDP. The

credit variable is expressed as the average across-country percentage change in the quantity

of credit/GDP from 5-years before the crisis to a given year, after demeaning by the sample

growth rate in credit for country-i. The value of 5 for time 0 means that credit/GDP is 5%

above the country trend. We see that credit grows faster than average in the years leading

up to the crisis at time zero. After this point, credit reverses so that by time +5 the variable

is back near the country average.

The bottom-left panel plots GDP, again as average percentage change from 5-years before

the crisis, after demeaning by the sample growth rate in GDP for country-i. GDP grows

slightly faster than average in the years preceding the crisis. GDP falls below trend in the

crisis and remains low up to 5 years after the crisis.
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Transition to crisis: A crisis is characterized by a sharp jump in credit spreads, a reversal

in the quantity of credit and a decline in GDP. From the data underlying Figure 1, we see

that:

3. Credit spreads rise by 0.7σs of their mean value at the crisis.

4. GDP declines by 9.1%. Reinhart and Rogoff (2009b) report a peak-to-trough decline in

GDP across a larger sample of crises of 9.3%. Jordà et al. (2013) report a 5-year decline

in GDP from the date of crisis of around 8%. Cerra and Saxena (2008) report output

losses from banking crises of 7.5% with these losses persisting out to 10 years. We will

use the 9.1% number in our quantitative exercise.

The rise in credit spreads in the year of the crisis is mirrored in other asset prices.

Reinhart and Rogoff (2009a) report that equity prices decline by an average of 55.9% during

banking crises. Muir (2017) shows that the price-dividend ratio on the stock market falls in

a crisis, and the excess return on stocks rises during the crisis, indicated a generalized rise

in asset market risk premia.

Aftermath and severity of crisis:

5. The half-life of the recovery of the credit spread to its mean value is 2.5 years.

6. There is variation in the severity of the crisis. Figure 2, Panel A presents data on the

variation in the severity of the crisis, as measured by 3-year GDP growth following a

crisis. The figure reflects significant variation in crisis severity.

7. The variation in the severity of the crisis is correlated with the increase in spreads mea-

sured at the transition into the crisis, as illustrated in Figure 2, Panel B. Krishnamurthy

and Muir (2017) report a coefficient of −7.46 (s.e. 1.46) from a regression of 3-year GDP

growth following a crisis on the increase in credit spreads from the year before the crisis

to the year of a crisis.

Pre-crisis period: In the pre-crisis period, credit markets appear frothy, reflecting low

credit spreads and high credit growth. In particular,

8. Conditioning on a crisis at year t, and looking at the 5 years prior to the crisis, Krishna-

murthy and Muir (2017) show that credit spreads are 0.34σs below their country mean

(where this country mean is defined to exclude the crisis and 5 years after the crisis).

9. Conditioning on a crisis at year t, credit/GDP in the 5 years before the crisis is 5%

above country mean. The relation between a lending boom and subsequent crisis is well

documented in the literature. See Gourinchas et al. (2001), Schularick and Taylor (2012),

and Baron and Xiong (2017).
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Figure 2: Panel A presents a histogram of 3-year GDP growth from the start of a crisis, as
dated by Jordà et al. (2013). Panel B presents a scatter plot of the spike in spreads in the
year of the crisis against 3-year GDP growth after the crisis..

Predicting Crises: There is also evidence that periods of frothy conditions predict and

not just precede crises. There are two quantitative estimates that we will aim to match.

10. Schularick and Taylor (2012) find that a one-standard deviation increase in credit growth

over the preceding 5 years (= 0.07 in their sample) translates to an increased probability

of a financial crisis of 2.8% over the next year.

11. Conditioning on an episode where credit spreads are below their median value 5 years

in a row, Krishnamurthy and Muir (2017) estimate that the conditional probability of a

crisis rises by 1.76%.

3 A Model of Financial Crises with Amplification and

Sentiment

In this section, we present a model of financial crises that incorporates both a financial

amplification mechanism and a role for sentiment. We fix a probability space (Ω,F ,P) and
assume all stochastic processes are adapted to this space and satisfy the usual conditions.

The economy evolves in continuous time. It is populated by a continuum of unit mass of

two classes of agents, households and bankers. For clarity, aggregate variables are in capital

letters and individual variables are in lower case letters. The basic setup is a variant of Li

(2019), which is drawn from Brunnermeier and Sannikov (2014) and Kiyotaki and Moore
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(1997).

3.1 Agents and Assets

Households maximize expected value of the discounted log utility,

∫ ∞

0

e−ρt log(cht )dt (1)

and bankers optimize expected value of the same form of discounted log utility,

∫ ∞

0

e−ρt log(cbt)dt (2)

The expectation could be either rational or behavioral, as we will specify later.

We introduce two shocks that allow us to distinguish between financial crises and other

fluctuations. The first is a Brownian shock dBt that reflects every-day economic fluctuations.

The second is a Poisson shock dNt that we call a “financial distress” shock. As will be clear,

this shock triggers illiquidity and bank runs, and a possible financial crisis.

Output is produced by capital. We will simplify by assuming that the capital is held

directly by either banks or households. In a richer and more realistic model, the capital will

be held and operated by firms which receive loans from banks or households, along the lines

of Holmstrom and Tirole (1997). We simplify by collapsing firms into banks, and assuming

the banks own the capital.

Our key assumption is that credit flowing through banks allows the economy to achieve

higher output and returns to capital. Intermediation is a socially valuable service, and for ex-

ample, disintermediation in a crisis reduces output. We capture this feature by assuming that

banker-operated capital has productivity Ā, which is higher than the household-operated

capital productivity of A.

The dynamic evolution of productive capital owned by agent j ∈ {banker, household} is

dkj,t
kj,t

= µK
t dt− δdt+ σKdBt (3)

where the rate of new capital installation µK
t is endogenously determined through invest-

ment, δ is the exogenous depreciation rate, and σK is exogenous capital growth volatility.

Denote the price of productive capital as pt. Investment undertaken by an owner of

productive capital is chosen to solve:

max
µK
t

ptµ
K
t − φ(µK

t ),
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where φ(·) is an investment adjustment cost:

φ(µK) = µK +
χ

2
(µK − δ)2. (4)

That is, we assume quadratic costs to investment, leading to the q-theory of investment

pt = φ′(µK
t ) ⇒ µK

t = δ +
pt − 1

χ
. (5)

The return on capital held by agent j =banker is

dR̄K
j,t =

d(ptkj,t)

ptkj,t
+

(Ā− φ(µK
t ))kj,t

ptkj,t
dt. (6)

The return to capital held by a household, denoted by dRK
j,t, is the same except for the lower

productivity A.

The dynamics of capital price pt is denoted as

dpt
pt−

= µp
tdt+ σp

t dBt − κpt−dNt, (7)

where µp
t , σ

p
t , and κpt− are all endogenously determined. The “minus” notation (i.e. pt−)

reflects a pre-jump asset price, as will be made clear.

3.2 Financing, Distress and Bank Runs

Since banker held capital is more productive than household held capital, there is room for

an intermediation relationship whereby households provide some funds to bankers to invest

in capital. We assume that the only form of financing is short-term (instantaneous) debt.

Bankers cannot raise equity, long-term debt, or other forms of financing. When we refer to

bank equity, we mean the net-worth of bankers, wb
t . That is, the financing side of the model

is one of inside equity and outside short-term debt. These model simplifications do sweep

aside important issues but we nevertheless go down this path because our aim is to build a

simple quantitative amplification mechanism and see how well it matches data, rather than

explore the micro-foundations of intermediary models.

We assume that in the event of a distress shock, all short-term debt holders run to their

own bank and withdraw financing in a coordinated fashion. Raising resources to cover this

withdrawal is temporarily costly. That is, asset markets are temporarily illiquid in the

distress event. We assume that if a bank raises F units of resources it pays a cost of α0F .

The cost can be thought of as a fire-sale liquidation cost when selling capital. Alternatively,

the cost can be mapped into a premium on raising emergency financing from other banks or
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other households in the economy. In this latter case, we need to step outside the modeling

and interpret the distress event as lasting longer than dt. Then, α0 is proportional to the

spread over the riskless rate that the bank pays to obtain funds over the distress episode (if

the event lasts dt then a financing spread maps into a cost of order dt). Finally, we assume

that the cost is not dissipated but is paid to households. This assumption is not essential

to the analysis.

Note that we do not model a Diamond and Dybvig (1983) bank-run game. We simply

assume that the shock leads all debtors to pull their funding. It is possible to model the

game in detail following Li (2019) whose model is the basis for this paper. However, we

learn from that study that the model’s positive implications are almost the same with and

without the deeper model of the bank-run game. Li (2019)’s objectives are normative, to

study how policies forestall liquidity crises, whereas this study’s objective is positive, to

quantitatively understand mechanisms contributing to financial crises.

3.3 Beliefs and Crises

The intensity of the distress shock process dNt follows a two state continuous-time Markov

process, λ̃t ∈ {λL, λH}. This intensity changes from λL to λH at rate λL→H , and changes

from λH to λL at rate λL→H . Agents, neither bankers nor households, observe λ̃t. Instead

agents infer λ̃t from observing the history of Nt, i.e., via realizations of the shock process.

We denote the expectation λt = Et[λ̃t]. Using Bayes rule,

Lemma 1 (Bayesian Belief Process).

dλt =

(

(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)

dt+
(λt− − λL)(λH − λt−)

λt−
dNt (8)

Therefore, if distress occurs, the expected intensity λt jumps up. As time goes by, without

further distress shocks, the expected intensity λt gradually falls.

3.4 Diagnostic Expectations

Section 3.3 outlines our model when agents form expectations over λt in a rational fashion,

using Bayes rule. We also consider a version of our model where agents overweight recent

observations. Specifically, we model the diagnostic beliefs of (Bordalo et al., 2018). We

adapt their model to our continuous dynamic equilibrium environment.

Denote the rational belief of the probability of λ̃t = λH as πt, and the diagnostic belief
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for the probability of λ̃t = λH as πθ
t . Then we define the diagnostic beliefs as

πθ
t = πt ·

(
πt

Et−t0 [πt]

)θ
1

Zt

(9)

1− πθ
t = (1− πt) ·

(
1− πt

Et−t0 [1− πt]

)θ
1

Zt

(10)

where Zt is a normalization to ensure that (9) and (10) add up to 1. We call the lag t0 as

the “look-back period,” which is one in the discrete time model of Bordalo et al. (2018). In

our case, the diagnostic beliefs of the process are simply distorted rational beliefs with the

benchmark from t0 time ago. The process πθ
t features both overreaction and underreaction,

depending on the gap between current πt and past πt−t0 .

Denote the diagnostic belief for the expected intensity of distress shocks as

λθt = Eθ
t [λ̃] :

∆
= πθ

t λH + (1− πθ
t )λL

where Eθ is the expectation with respect to the probability distribution under the diagnostic

belief. Then we have the following result:

Lemma 2 (Diagnostic Belief Process). The diagnostic belief λθt = Eθ
t [λ̃] is

λθt = λL + (λt − λL)
(λH − λt) + (λt − λL)

(
λT
t −λL

λH−λT
t

/ λt−λL

λH−λt
)
θ

(λH − λt) + (λt − λL)
(11)

where λTt = Et−T [λ̃t] is the expected value of λ̃t under the rational expectation.

In Figure 3, we plot the evolution dynamics of the rational and diagnostic belief processes,

where the diagnostic belief process is described by (11). We find that when θ is small, as

shown in panel (a), the pre-distress belief is slightly lower than the rational belief, and then

jumps to a higher level after a distress shock. Initially, there is overreaction, but after one

year, the perceived frequency of the distress shock is below the Bayesian belief. When θ

is large, as shown in panel (b), the pre-distress belief is much lower, and the post-distress

overreaction is stronger. One year after the distress shock, the perceived frequency of distress

becomes much smaller.

From now on, we denote agents’ expectations as Eθ, where θ = 0 denotes the rational

expectation, and θ > 0 denotes the diagnostic expectation.

3.5 State Variables and Decisions

To study the decision problems of all households and bankers, we need to properly define

aggregate state variables. We define the total wealth of banks as W b
t and the total wealth of

12
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(b) θ = 5

Figure 3: Simulation of Beliefs with Different Values of the Diagnostic Parameter θ. The
parameter θ ≥ 0 means the strength of the behavioral feature of the diagnostic belief. Other
parameters are set as λL = 0.001, λH = 0.5, λH→L = 0.5, λL→H = 0.1. These parameters
imply that a financial distress shock happens once about each 12 years. The behavioral
belief process is fully described by (11).

households as W h
t . Then we have three state variables. One is the wealth share of bankers,

denoted by

wt =
W b

t

W b
t +W h

t

, (12)

The second is the expected jump intensity λt. The final one is the total productive capital

Kt. We construct an equilibrium whereby all relevant object scale linearly with capital.

This reduces the computational problem to solving a model with two state variables, wt and

λt.

Denote wb
t as the wealth of a representative banker. Similarly, denote wh

t as the wealth

of a representative household. Let the associated value function be V b(wb
t , wt, λt) and

V h(wh
t , wt, λt), respectively, at time t. To guarantee a non-degenerate wealth distribution,

we assume bankers randomly transit to becoming households at rate η.2 Bankers take this

transition possibility into account in their optimization problems.

2Without this assumption, the banker, who earns a higher return on capital, will come to own almost all
of the wealth of the economy.
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Bankers

Each banker can invest in productive capital and borrow from households or other banks via

short-term debt at interest rate rft . Note that short-term debt is riskless even though the

price of capital will jump in equilibrium. This is because a forward-looking banker with log

utility will never make a portfolio choice that leaves him with negative wealth in any state.

Denote the banker’s portfolio choice (as a fraction of the banker’s wealth wb
t ) in productive

capital as xKt , and the interbank borrowing and lending as xft with equilibrium rate rft .

Then the borrowing from household is xKt + xft − 1. Total borrowing is xKt + xft − 1. If

xKt + xft − 1 > 0 bankers lever up to own capital, while if xKt + xft − 1 < 0, bankers save

some of their wealth in riskless debt.

Starting from time t, the time that banker will switch to becoming a household is denoted

as T , which is exponentially distributed with rate η. A banker with wealth wb
t solves the

problem

V b(wb
t , wt, λt) = sup

cbt≥0, xK
t−,x

f
t−≥0

Eθ[

∫ T

t

e−ρ(s−t) log(cbs)ds+ e−ρTV h(wb
T , wT )

∣
∣wb

t , wt ], (13)

subject to the solvency constraint

wb
t ≥ 0. (14)

The second part of the objective function is the transition to a household, which changes

the continuation value from V b to V h.

Households

Each household chooses the consumption rate cht and capital holding yKt as a fraction of

household wealth for the following objective

V h(wh
t , wt, λt) = sup

cht ≥0, yKt ≥0

Eθ[

∫ ∞

t

e−ρ(s−t) ln(chs )ds
∣
∣wh

t , wt ], (15)

subject to the solvency constraint

wh
t ≥ 0. (16)

3.6 Equilibrium Definition

Denote the share of capital owned by bankers as

ψt =
xKt W

b
t

xKt W
b
t + yKt W

h
t

. (17)
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Then the aggregate production of consumption goods is

Yt = (ψtĀ+ (1− ψt)A)Kt. (18)

Because Ā > A, output is increasing in ψt.

Given that there is no heterogeneity within bankers and within households, we can express

the dynamics of aggregate wealth as

dW b
t

W b
t

=
dwb

t

wb
t

− ηdt (19)

dW h
t

W h
t

=
dwh

t

wh
t

+ η
W b

t

W h
t

dt, (20)

where the second terms in both (19) and (20) are due to the transition of bankers to house-

holds.

We derive a Markov equilibrium, where all choices only depend on the state variables

wt and λt. Let ĉb = cb/wb be the consumption of a representative banker as a fraction of

the banker’s wealth, and ĉh = ch/wh similarly. The following formalizes the equilibrium

definition.

Definition 1 (Equilibrium). An equilibrium is a set of functions, including the price of

capital p(wt, λt), bank debt yield r(wt, λt), household consumption wealth ratio ĉh(wt, λt)

and lending xK(wt, λt), banker consumption wealth ratio ĉb(wt) and lending yK(wt, λt), such

that

 Consumption, investment and portfolio choices are optimal.

 Capital good market clears

W b
t x

K
t +W h

t y
K
t = ptKt. (21)

 The aggregate non-financial wealth of households and banks equal to total value of capital

W b
t +W h

t = ptKt. (22)

 Interbank market clears

W b
t x

f
t = 0 (23)

 Consumption goods market clears

ĉbtW
b
t + ĉhtW

h
t = (ψtĀ+ (1− ψt)A)Kt − itKt. (24)

Equilibrium Construction with Diagnostic Beliefs. Under diagnostic beliefs we as-
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sume that while agents’ beliefs are diagnostic, they think that their and all other agents’

beliefs are rational. In other words, the policy functions are the same as those under ratio-

nal beliefs. But because these policy functions are evaluated under diagnostic beliefs, the

equilibrium outcomes are different. The solution strategy for the diagnostic belief model is

to solve the rational decision rules under rational belief θ = 0, and then simulate the model

with diagnostic belief of θ > 0.

3.7 State-Dependence and Distress Dynamics

We solve the model and illustrate the nonlinear and state-dependent effects of a financial

distress event and the dynamics of the capital price around distress shocks.

Figure 4, Panel (a) graphs the price of capital in blue as a function the banker’s wealth

share, wt, which is one of the state variables in the equilibrium (λt is the other state variable).

We note that the price of capital is increasing in wt upto a point and then is flat thereafter.

In the increasing portion, both bankers and households own capital. As the wealth share

increases, more of the capital is in the bankers’ hands and hence more of the capital produces

the higher dividend of Ā. This force leads to positive relation between the price of capital

and the wealth share. To the right of the dashed line, all of the capital is in the bankers’

hands. Now, it will be the case that as the wealth share of bankers rises to the right of

the dashed line, the risk premium required by bankers to absorb capital risk falls, which by

itself would raise capital prices. However, because of log utility, the interest rate rises to

offset the fall in risk premium and the net effect on the discount rate is to keep the price of

capital constant to the right of the dashed-line.

There are two cases of interest. If the distress shock occurs when banker wealth share

is high – on the right side of the dashed line in panel (a) – bankers suffer the exogenous

liquidation loss, which then means that the post-shock wealth share jumps to the left, as

indicated by the red arrow. But since at this new wealth share, the price of capital is the

same as at the old wealth share, there is no endogenous fall in the price of capital. On the

other hand, on the left side of the dashed line, the exogenous loss leads to a fall in banker

wealth share, which leads to an endogenous fall in the price of capital, which implies further

losses to bankers, and so on. The post-shock capital price traces along the red dashed line,

reflecting a downward jump in the capital price and the banker wealth share state variable.

The exogenous loss is amplified in this case. Our model thereby captures an amplification

mechanism, where the degree is state-dependent.

Figure 4, Panel (b) illustrates the price path of capital in a case where one distress shock

occurs at time T and the wealth share is in the amplification region. We see that the pre-

distress shock price of capital follows a smooth path governed by the Brownian diffusion

dZt. From T− to T the price of capital jumps downwards. After T , the price of capital
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(b) Path of the capital price around a bank run.

Figure 4: Illustration of a bank run in equilibrium
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again follows a smooth path.

The rest of this section goes through this logic algebraically. For simplicity, we omit the

t or t− subscriptions in the following sections. For an individual bank we can define the net

funding withdrawal that has to be fulfilled by productive capital during a distress as

∆x = (xK + xf − 1)+ (25)

To simplify the above expression, we prove that banks take leverage in equilibrium.

Lemma 3. In equilibrium, banks always borrow from households and take leverage, i.e.,

xK ≥ 1

Proof is provided in Appendix A.4. Because of Lemma 3, we have

xd = ∆x = xK + xf − 1 (26)

From the banker optimization problem, we have the following first order conditions:

rf − rd = λ
α

1− xKκp − α∆x
(27)

µR +
Ā

p
− rf = (σK + σp)2xK + λ

κp

1− xKκp − α∆x
(28)

where µR is the ex-dividend return of productive capital, with µR = µp − δ + µK + σKσp −
φ(µK)/p. As clearly illustrated, if the total volatility (σK + σp) increases, keeping the

portfolio choice xK the same, a banker requires a larger amount of risk compensation.

Furthermore, if the expected intensity λ of the financial distress shock rises, then the risk

premium also rises. Finally, we observe that keeping everything else equal, a larger jump κp

in the capital price leads to a higher risk premium.

Equation (28) also indicates how the belief λ affects bank leverage xK . All else equal, we

find that a higher λ results in a lower xK . Further, in equilibrium, the lower xK will result

in less severe crisis (lower κp), which partly offsets the direct impact of λ on xK .

We next derive the excess expected return on capital. We rewrite the banker budget

dynamics as

dwb

wb
=

(

rf + xK(µR +
Ā

p
− λκp − rf )− xd(rd − rf )− λαxd

)

dt− ĉdt

+xK(σK + σp)dBt − κb(dNt − λdt)
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where the last component is the compensated Poisson process dNt − λdt, which is a Mar-

tingale. It is clear that the excess return of capital above the risk-free rate of bankers is

µR + Ā/p− λκp − rf . Using (28), we can express this capital risk premium as

µR +
Ā

p
− λκp − rf = (σK + σp)2xK + λκp

xKκp + α∆x

1− xKκp − α∆x
(29)

which takes into account the downward impact of asset returns due to the realizations of

distress shocks. From this equation, we find that this premium is strictly positive in a

rational model.

3.8 Credit Spreads

We define a credit spread in this section that is needed in mapping the model to credit

spread data. It is important to state at the outset that the defaultable bonds we price

are in zero net supply. They are not issued by banks or households and do not affect the

general equilibrium. We define the credit spread as the yield differential between a risky

zero-coupon bond and a zero-coupon safe bond with the same [expected] maturity. Define

τ as the expected maturity of the bond. We assume that the bond matures based on the

realization of Poisson event with intensity 1/τ . This modeling allows for a simple recursive

formulation for bond pricing. Moreover, we suppose that a fraction of the maturity events

result in default while another fraction result in full repayment. In particular, we assume

that a bond matures in two cases: (1) conditional on the financial distress dNt shock, the

bond matures with probability π; (2) conditional on another independent Poisson process

dN τ
t (with intensity λτt ), the bond matures with probability 1. The two intensities sum up

to a fixed number, i.e.,

πλt + λτt = 1/τ (30)

where τ can be interpreted as the maturity of the bond. We can see that

1/τ ≥ πλH

and therefore,

τ ≤ 1

πλH

which is the maximum maturity of bonds that we can define with this method.

Each risky bond has a face value of 1, and one unit value of a risky asset is continuously

posted to back this risky bond, i.e., the bond is fully collateralized if the bond matures

as long as there is no jump in the value of the risky asset. If dNt hits when the bond

matures, the underlying risky asset’s value jumps downwards by m ·κpt−+ κ̂0. The first term

varies with economic conditions. It contains capital price drop κpt−, and a multiplier m that
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measures the exposure of the collateral to capital price decline. The second term here a

constant “baseline” loss given default. If maturity occurs with no distress event, we assume

that the bond pays back in full. Thus, the loss function upon maturity for the risky bond is

κ̂t = (m · κpt− + κ̂0)dNt (31)

This structure gives a time-varying default probability. Specifically, when a bond ma-

tures, the probability of default is

πλt
πλt + λτt

= τπλt (32)

Therefore, the unconditional probability of default is τπλ̄, where λ̄ is the unconditional

average of the expected distress frequency.

Denote the current market value of this risky bond as vt = v(wt, λt), and the market

value of the safe bond as v̄t. Then we define the credit spread as

St(pt0) =
1

τ
log(1/vt)−

1

τ
log(1/v̄t) (33)

We expect St ≥ 0, given that risky bonds may default, and default occurs in high marginal

utility states. Solving for this credit spread involves solving an endogenous jump equation

with second-order derivatives. Details are provided in Appendix A.7.

4 Model Solution and Calibration

In this section, we solve and calibrate three variants of the model:

1. Benchmark Model: The variation in beliefs about the distress state is turned-off by setting

λH = λL = λ̄. The intensity of crises is constant at λt = λ̄.

2. Bayesian (rational) Model: Agents form beliefs over the distress state following Bayes

rule, and this belief varies over time (i.e., λL < λH).

3. Diagnostic (behavioral) Model: Agents form beliefs over the distress state via diagnostic

expectations, and belief varies over time (i.e., λL < λH).

The benchmark model only has one parameter λ̄ governing the crisis frequency process.

The Bayesian model has four parameters: λH , λL, λL→H , and λH→L. However, as we set λL

near zero, this model has three parameters and therefore adds two degrees of freedom relative

to the baseline model. The diagnostic model adds θ as one more degree of freedom (the

’look-back period” parameter t0 is set to 1, the implicit value from discrete time diagnostic
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belief process such as Bordalo et al. (2018)). We explain how these parameters are calibrated

below.

4.1 Solution Methodology

The challenge of solving this model comes from both multiple state variables and the en-

dogenous jumps in the state variables. To ensure stability, we use a functional iteration

method that begins with an initial guess of the capital price function p(0)(w, λ), and then

iterates over the equilibrium equation system to get an updated price p(1). This updating

step involves solving a fixed-point problem at each state (w, λ). Then we iterate until at

step k, we have
∫ 1

0

∫ λH

λL

|p(k+1)(w, λ)− p(k)(w, λ)|dλdw < ε

for a small positive number ε.

To search for parameter values that best match moments, we need to solve the model

repeatedly for a large combination of parameter values. A simple discretization of the

parameter space (5 parameters for the benchmark, 7 parameters for the Bayesian model,

and 8 parameters for the diagnostic model) renders the task computationally infeasible. To

resolve this difficulty, we apply the Smolyak grid method (Judd et al., 2014) to generate a

discretized state space. For each version of the model, we follow the estimation procedure:

 Discretize the state space of parameters around their initial values. We pick a discretiza-

tion level of 3 in the Smolyak discretization. This results in 177 combinations for the

benchmark model, 241 combinations for the Bayesian model, and 389 combinations for

the diagnostic model. Simulate all of these models and collect their moment values.

 Denote the moments in the data as m1, · · · , mJ , and the moments from the model as

m̂1, · · · , m̂J . From all of the parameter combinations, pick the one that minimizes the

objective
J∑

j=1

|m̂j −mj|
mj

.

 Once we have picked a set of parameters, we search in a smaller region around this set

of parameters, and find a new best set of parameters in the smaller region. We iterate

the above process until the difference between the optimized objective value between two

iterations is below a threshold.

The algorithm is time-consuming. We parallel the process and solve it using high perfor-

mance clusters.

21



4.2 Model Simulation

We simulate the model at a monthly frequency but analyze simulations at a yearly frequency

to be consistent with the data. The procedure of simulation is as follows for each version of

the model (benchmark, Bayesian, and diagnostic).

 From initial values wt = 0.1 and λt = λ̄, we draw shocks.

 We set the simulation interval as dt = 1/12 (a month), and generate the independent

Brownian shocks dBt ∼ N (0,
√
dt), as well as an independent frequency of distress shock

process λ̃t. Based on the distress shock process λ̃t, we generate distress shocks dNt that

hits with probability λ̃tdt for the time interval dt.

 Once shocks are generated, we solve for the dynamics of state variables, including wt, λt,

and Kt. For the benchmark model, λt = λ̄. For the diagnostic belief model, we need to

generate λθt based on λt.

 With state variables determined, we generate all other quantities and prices of the model.

 We discard the first one thousand data points of each simulation path collected in this

manner. As a result, the initial values do not affect our computed moments. The sim-

ulation approximates picking initial conditions from the ergodic distribution of the state

variables.

 Finally, we average all of monthly quantities for given year to arrive at annual data set.

For prices, we use the first observation of every year.

In order to map model outputs to data, we define the following events:

 A financial distress: in the year, there is least least one financial distress shock dNt = 1.

 A financial crisis: output growth in a given year is lower than 4% quantile of yearly output

growth distribution (Fact 1).

In our model, large output declines in a year coincide with the financial distress events.

Therefore, financial crises under the above definition are a subset of the financial distress

events.

4.3 Parameter Calibration and Estimation

Our calibration strategy is to identify each model parameter with a corresponding moment.

We apply a combination of calibration and estimation for model parameters. Specifically,
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we directly set parameter values for those with standard values in the literature. Then we

estimate the rest of parameters based on moments chosen to best reflect the economics of a

given parameter.

A list of the calibrated parameters for the core model (not including the credit spread)

are shown in Table 1. We follow the macroeconomics literature to set annual depreciation

rate δ = 0.1 (Gertler and Kiyotaki, 2010), annual time discount rate ρ = 4% (Gertler and

Kiyotaki, 2010), and investment adjustment cost χ = 3 (He and Krishnamurthy, 2019). For

the emergency liquidity costs (α0), we do not have good data for the historical financial

crises to pin these down. From data of the 2008 crisis, the effective liquidation loss is about

0.05, which is the value of α0 · β in Li (2019). In terms of a funding premium, this value

translates to a 10% premium for a distress event that lasts 6 months.

Table 1: Calibrated Parameters for the Core Model

Parameters Choice Moment

δ Depreciation rate 10% Depreciation rate in the literature

ρ Time discount rate 4% Discount rate in the literature

χ Investment adjustment cost 3 Adjustment cost in literature

α0 Distress illiquidity costs 0.05 Data

For the credit spread, we have the following calibration (summary in Table 2)

Table 2: Calibrated Parameters for the Credit Spread Construction

Parameters Choice Moment

τ Risky bond maturity 7 Years Maturity of 7 years.

π Maturing probability in distress 0.14 Average default probability of 0.1

mEcrises[κ
p
t ]− Additional loss in crises 0.1 Additional loss of 10% in crises

mEnon-crises[κ
p
t ]

mEcrises[κ
p
t ] + κ̂0 Baseline default loss 0.55 Average loss rate of 0.55

 In our baseline calibration, we target the an average maturity of τ = 7 years, which is the

average maturity of bonds used in Krishnamurthy and Muir (2017).

 According to Chen et al. (2008), the 10-year BAA (AAA) default rate is 4.89% (0.63%).

The difference in their default rates is 4.26%. We use 4% as our target. In the model, the

default rate is

πλ̄ = 0.04
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where λ̄ is the average frequency of financial distress, which is 12.8% according to our

calibration. Therefore, we have π = 0.33.

 The total loss given default is m · κpt + κ̂0 if a distress shock dNt hits, where κ
p
t is the

percentage decline of capital price pt during a crisis shock. The price jump component

κpt is large during crises but close to zero otherwise. We calibrate the loss given default

to that of BAA bonds, which from Moodys data has been 55% on average over the last

three decades and rose by 10% during the 2008 crisis. As a result, we set m so that m ·κpt
during crises is 10% larger than other defaults. Then we set the average of losses during

default to 55% to get κ̂0.

Finally, we should note that we define our spread measures in units of standard-deviation

differences relative to the unconditional mean value of the credit spread. This is what

Krishnamurthy and Muir (2017) do in their empirical work. As a result of this normalization,

the results are relatively insensitive to the exact values of the credit-spread calibration.

Then we proceed to estimate other parameters, including λH , λL, λH→L, λL→H , Ā, A,

σK , η, and θ. We note that as long as λL is close to zero, the impact of its value is negligible.

Therefore, we pick λL = 0.001 directly. After experimentation with the model, we find that

the following moments to be particularly informative for each parameter:

1. Yearly frequency of bank equity crashes (fact 2): This moment maps to the frequency

of financial distress shocks and helps discipline λH . From Baron and Xiong (2017), the

probability of a equity return below -30% is 3.2% at the quarterly frequency, which implies

an annual frequency of about 12%, i.e. 1− (1− 3.2%)4.

2. Credit spread changes during a crisis (fact 3). The spike in the credit spread is 0.7σs.

This moment helps determine λL→H , which affects the degree of surprise in beliefs due

to the realizations of distress shocks.

3. Half-life of credit spread recovery (fact 5). According to Krishnamurthy and Muir (2017),

the half-life is 2.5 years. This moment primarily determines λH→L, since the speed of

recovery of beliefs after a distress shock is directly affected by the underlying transition

probability.

4. Investment to capital ratio: We use the same target as He and Krishnamurthy (2019).

This moment mainly affects the average of productivity parameters, Ā and A.

5. Average output decline during a crisis (fact 4): We target -9.1% as explained in Section

2. This moment is most directly related to the productivity differential Ā− A.

6. Average output growth volatility: According to Bohn’s historical data, the volatility of

real GDP growth from 1791 to 2012 for the U.S. is 4%. This moment mainly affects the

capital volatility σK .
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7. Average bank leverage is 5 from Gertler and Kiyotaki (2010). This moment disciplines η,

the transition rate from bankers to households, which affects the stationary distribution

of leverage in the model. For example, setting η very low leads to a stationary distribution

where almost all of the wealth is in bankers’ hands and average leverage in equilibrium

is very low.

8. The diagnostic parameter θ is disciplined by fact 8. Conditioning on a crisis at year t,

and looking at the 5 years prior to the crisis, Krishnamurthy and Muir (2017) show that

credit spreads are 0.34σs below their country mean (where this country mean is defined

to exclude the crisis and 5 years after the crisis).

The three models (benchmark, Bayesian and diagnostic) have different sets of estimated

parameters, as represented in Table 3. For each model, we only use moments that are related

to the economics of that model. For the benchmark model, we use moment 1, 4, 5, 6, and 7.

For the Bayesian model, we use moments 1–7. For the diagnostic model, we use moments

1–8. In this way, each model is exactly identified.

Table 3: Comparison of Model Parameters to be Estimated

This table lays out the set of estimated parameters in different models. “–” denotes not
having the parameter, while “X” denotes the opposite.

Parameters Benchmark Model Bayesian Belief Model Diagnostic Belief Model

λH X X X

λL→H – X X

λH→L – X X

Ā+ A X X X

Ā− A X X X

σK X X X

η X X X

θ – – X

4.4 Model Fit

We re-calibrate the model parameters to best match moments for each model, thus giving

each model the best chance to represent the data. Although each version of the model is

exactly identified, because the state-space is restricted, we do not always perfectly fit all of

the moments. We show both the target moment values and the model results in Table 4.
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Table 4: Comparison of Calibrated Model Moments

Data Benchmark Bayesian Diagnostic

1. Frequency of financial distress 13% 13% 12% 13%

2. Avg credit spread change in crises 70% 11% 63% 49%

3. Half-life of credit spread recovery (years) 2.5 2.3 3.2 2.2

4. Investment/capital ratio 14% 14% 18% 14%

5. Avg 3-year output drop in crises -9% -8% -12% -10%

6. Output growth volatility 4% 3% 4% 5%

7. Average bank leverage 5.0 5.2 4.8 5.2

8. Pre-crisis credit spread -34% 21% -13% -34%

4.5 Ergodic Distributions

In Figure 5, we graph the ergodic distributions of the state (wt, λt) in each model. In the

benchmark model, λ is constant (panel b), while w is single-peaked. Underlying movements

in w are driven by three forces: the exogenous diffusion shocks to capital shift wealth,

creating paths from the center of the distribution to both right and left; paths that go to

the left are pushed back to the middle because in low w states, risk premia are high and

bankers expected wealth growth is high; the transition rate of bankers into households, η,

result in a drift in w of −ηw, which pushes all paths to the left. The result of these forces

is a mean-reverting w process and the single-peaked distribution.

The Bayesian model (panels c and d) add jumps to the λ process. In this model, the

realization of the distress shock leads to a jump in beliefs, which leads to a fall in asset prices

and hence a jump in w to the left. Additionally, on such a realization λt is temporarily high

so that more jumps are realized. This creates the increased mass at low w states.

In the diagnostic model (panels e and f), the realization of a jump leads to a large

adjustment in w, relative to the Bayesian model, because agents shift from over-optimistic

to over-pessimistic. As a result more mass is shifted to low-w states.
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Figure 5: Stationary Distribution of State Variables in Three Different Models
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5 Evaluation of the Benchmark Model

We summarize the evaluation of the benchmark model:

Remark 1. The benchmark model qualitatively and quantitatively matches patterns in the

crisis and its aftermath. It fails to capture the pre-crisis patterns generating correlations of

the opposite sign of the data.

The benchmark model has two state variables – the amount of capital Kt, and the banker

wealth share wt. The former determines the scale of the economy, while the latter drives

allocations and asset prices. The variation in banker wealth share can be interpreted as

driving changes in the effective risk premium in the economy. Note that in the benchmark

model, the risk of the distress event is kept constant at λt = λH .

5.1 Crisis and Aftermath

Figure 6 plots the path of the model-generated credit spread, bank credit/GDP and GDP

around a crisis at t = 0. The credit spread and bank credit variables are plotted in units of

standard-deviations from their mean value over the sample. The figure should be compared

to the data in Figure 1. Spreads jump at the crisis 20% in the model (that is, 0.2 σs) and

70% in the data. Credit contracts by about 0.4σs. In the data from Figure 1 credit/GDP

falls by about 4%, relative to a standard deviation of credit growth of 12%, so that credit

falls by 0.33σs. GDP falls by about 9% in both data and model. We miss in magnitude in

terms of spreads and credit, but we match the general pattern of the crisis and aftermath.

In particular there is a sharp transition in the crisis, driven by the model’s amplification

mechanism, and output that is below trend for a sustained period post-crisis.

[FIGURE 6 and 7 HERE]

Figure 7 plots the distribution of output growth in 3 years after the crisis date for

the model and data. The left-skewed output growth distribution is another success of

the model and is driven by the financial amplification mechanism. In a model with no

financial amplification and only diffusion shocks to AKt, output growth would be normally

distributed. Thus, the left-skew is driven entirely by the amplification mechanism

In the data, the skewness in output growth matches the skewness of the jump in credit

spreads in the crisis (fact 7). Table 5 evaluates this relationship in model and data. Column

(2) conditions on a crisis at date t and regresses the change in credit spread in the crisis

with 3-year GDP growth in the crisis. There is a clear negative relationship between these

variables, and the magnitude is near that of the the data. The bottom row of the table
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evaluates the relation between the run-up in bank credit at the start of the crisis and the

subsequent severity of the crisis. This is a relation reported by a number of empirical studies

(see Jordà et al. (2013)). Our model generates the negative relation in line with the data.

[TABLE 5 HERE]

5.2 Pre-Crisis

We have noted that spreads are low and credit growth is high entering a crisis. This froth is

not captured by the model. Table 6 reports the results of a regression of spreads on a dummy

that takes the value of one for the 5 years before a crisis. This regression also includes a

control for the 5 years after the crisis so that the pre-crisis dummy indicates the level of

spreads relative to non-crises periods. In the data, this dummy indicates that spreads are

about 0.34σs lower than normal in the pre-crisis period. In the model, the spreads are about

0.21 above normal in the pre-crisis period.

Table 7 shows that this failure also extends to predicting crises. To replicate the pre-

dictability regressions in Krishnamurthy and Muir (2017), we define “high froth” as the

past 5-year average of a dummy that indicates whether the credit spread is below its me-

dian value. Similarly, we define “high credit” as the past 5-year average of a dummy that

indicates whether bank credit/GDP is above its median value. We find that neither high

froth nor high credit precede crises, as they do in the data.

[TABLE 6, 7, and 8 HERE]

Why does our model fail pre-crisis? The reason is that the amplification mechanism

of the model, which is what drives the response of the economy to the distress shock, is

governed by the state-variable w. If w is low, the negative shock triggers a large fall in GDP

and a crisis. However, since the credit spread is forward looking, variation in the spread is

also driven by w. The economy is more vulnerable when w is low, and hence credit spreads

are higher when w is low. As a result, the benchmark model fails to replicate the froth facts

that are a prominent feature of the data.

Despite this failure, the model does match another pattern that is often taken to be a

froth fact. The relation between w and fragility drives a negative correlation between bank

credit and the model’s risk premium, as measured by the excess returns to owning capital.

When w is low, such as after a crisis, banks own less capital (or lend against less capital to

map the stylized model to the data) and hence bank credit is low. In these low w states,

effective risk aversion is high and hence the risk premium is high. As w rises, banks own

more capital and effective bank risk aversion falls. The negative relation between credit and
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risk premium is presented for both model and data in Table 8. It is worth emphasizing that

it arises in a fairly standard financial amplification model.

6 Evaluation of the Bayesian Model

The takeaway from the last section is that an amplification model can match the crisis and

its aftermath. But from the standpoint of that model, the data fact that high bank credit

(frothy conditions) align with both low excess returns and an increased likelihood of a crisis

is a puzzle. This is one of the main points made by Baron and Xiong (2017).

This section turns to the model with time-varying beliefs driven by a Bayesian updating

process. We summarize our findings:

Remark 2. The Bayesian model qualitatively and quantitatively matches patterns in the

crisis and its aftermath. It delivers the right signs to match the pre-crisis evidence on credit

growth, crises and risk premium. However, our calibration does not match the extent of

pre-crisis froth present in the data.

These last set of points are the somewhat surprising conclusions of our analysis. We

begin this section reviewing the model’s fit on crisis and aftermath before turning to the

surprising results.

Relative to the benchmark model, this model adds both an amplification mechanism and

a role for sentiment. Both w and λ are state variables the drive the economy. It is the

interaction of these forces that drive our results.

6.1 Crisis and aftermath

Figure 8 plots the path of spreads, credit and GDP around the crisis. We see that the

model is able to generate the jump in spreads, contraction in credit, and drop in GDP. The

magnitudes of the spread spike and GDP decline are also in line with the data. However,

the magnitude of the credit contraction of around 0.8σs is larger than the data counterpart

of 0.33σs.

The figures also reveals the pre-crisis pattern which now looks closer to the data. In the

years before the crisis, credit spreads are lower than normal, and both bank credit and GDP

are rising.

[FIGURE 8 and 9 HERE]

[TABLE 9 HERE]
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Figure 9 graphs the histogram of 3-year GDP growth in crises. The model distribution

is again left-skewed, although more so than the data. Relative to the data, there is more

mass in the left tail. The reason is that a distress event not only triggers a jump down

in w and a fall in GDP, but also an increase in λ. The amplification mechanism plus the

change in belief drive a significantly left-skewed output distribution. Table 9 evaluates the

relationship between the jump in credit spreads in this model and the fall in GDP. We see

that the model is able to match the relation between the spread spike and GDP decline

both qualitatively and quantitatively. The model’s relation between bank credit and GDP

growth is of the right magnitude but somewhat larger than its data counterpart.

6.2 Pre-crisis, Conditional on a Crisis at time t

The crisis and aftermath results should not be surprising in light of the behavior of the

benchmark model. In both cases, it is the amplification mechanism that is doing the work

of matching the data.

We next turn to the pre-crisis evidence. Table 10 shows that conditioning on a crisis at

date t, the spread in the 5 years before the crisis is 0.21σs lower than normal. The coefficient

has the right sign and is about half-way to the data coefficient. We discuss in further depth

how our model is able to get the negative sign.

[TABLE 10 HERE]

The reason for the sign flip can be understood from Figure 10 which graphs the policy

function of bankers in choosing leverage as a function of the state variable λ. Bankers in our

model lever up to gain high returns on capital, but at the cost of the distress event where

they suffer bankruptcy costs from liquidating capital. Thus there is a simple risk/return

tradeoff that drives their leverage decision. When λ is low, the distress event is less likely,

and the banker chooses high leverage. However, in this case, if a distress shock dNt occurs,

then its impact on GDP will be severe and more likely to result in the large GDP decline

of a crisis. This endogenous risk premium and vulnerability relationship generates the low

credit spread before crises.

[FIGURE 10 HERE]

6.3 Pre-crisis: Predicting a Crisis

We next consider the evidence that high bank credit and low spreads predict crises and not

just precede crises. To see the difference, note that the former conditions on the event of a

crisis.
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We first replicate in Table 11 the model’s finding that high credit is associated with low

risk premia. The result should not be surprising as bank credit is effectively a proxy for a

high w and low λ, and the risk premium is decreasing in both of these variables.

[TABLE 11 HERE]

Table 12 presents the crisis prediction result. We see that the variables now have the

right signs (although the model is low in terms of magnitudes).

[TABLE 12 HERE]

6.4 High Credit Mechanism

To understand what drives the mechanism, consider Figure 11. We plot the density of GDP

growth over the next year conditional on the level of credit/GDP today. We will focus on the

red lines which correspond to the Bayesian model. In panel (a) of the figure, we condition

on low bank credit/GDP which is typically the outcome when w is low and/or λ is high.

This is a case where the banker faces distress costs and risks and endogenously chooses

lower leverage. As a result, the economy is faced with moderate volatility of GDP but this

volatility is confined to the center of the distribution and there is little mass at the left tail.

Next consider panels (b) and (c). In these cases, we progressively condition on higher levels

of credit and hence lower effective banker risk aversion. The dotted black vertical line on

the figure indicates the cutoff we have used to define a financial crisis. Mass is now pushed

from the center of the distribution towards the left-tail crisis states. Effectively, the more

risk-tolerant banker is willing to take on more risk when making decisions. There is less risk

at the center of the distribution, but more mass in the tail. As a result, high credit states

forecast more left-tail events.

[FIGURE 11 HERE]

Once one understands this latter mechanism, it becomes clear that the result is more

general than our model’s specific mechanism. High credit growth occurs when bankers are

effectively less risk averse. This leads to the relation between high credit and low expected

returns/risk premia. Additionally, the less risk averse banker is more willing to take risks

and as a result GDP outcomes have mass pushed out to the tails.

The Bayesian model is thus able to replicate both of the Baron and Xiong (2017) facts.

Or said another way, their facts do not identify a non-Bayesian component of beliefs playing

an important role in financial crises. Plausibly, other facts do identify such a phenomena,

as we discuss in the next sections.
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Figure 11 presents density plots for the benchmark model in blue. It is evident that the

predictive relation does not hold in this model. The benchmark model has only w as the

state variable to drive effective risk aversion. With only this state variable driving decisions,

the banker chooses leverage in a manner that crises are avoided when w and credit are

higher. A lesson of our analysis is that we do need a model with two state variables to

explain the entire crisis cycle.

[FIGURE 12 HERE]

Figure 12 makes this point in a different way. In the figure we plot the banker’s wealth

return conditional on different values of credit. Recall that our banker has log utility, so the

mean and variance of this distribution are the key statistics driving banker utility and the

leverage decision. The banker’s wealth volatility is highest in the low credit case (top panel)

driven by significant mass spread between -0.2 and 0.4 at the center of the distribution.

Distress and bankruptcy costs are salient to the banker and hence he chooses low leverage.

In the bottom panel high credit case, the output distribution is tight so that over most of

the distribution there is little distress for the banker. While there is a tail of wealth losses

in crisis states, the banker’s decision to take high leverage is largely driven by the tight

central peak of the distribution. The banker understand that the typical negative shock will

have small effects on his wealth, and is willing to gamble on avoiding the large tail shock.

Note also that the banker’s wealth process is different than the economy-wide GDP process,

as should be expected in a model where banks drive systemic risk. Banker wealth is more

sensitive than GDP to small shocks, and since such shocks are more likely, they are the

drivers of the banker’s leverage decision. As a result, the model produces the surprising

result that in the Bayesian model even if distress events are less likely (low λ), crises are

more likely.

6.5 Credit Spread Mechanism

We next turn to the relation driving froth and crises. As we will explain, this relation holds

in the parameterization we study, but need not hold generally. Figure 13 draws density

plots of next-year GDP growth for the Bayesian and benchmark model. We can see that the

benchmark model gets the sign of the mass shift wrong. The Bayesian model on the other

hand succeeds in this dimension.

[FIGURE 13 HERE]

The logic here is more nuanced than for the high credit relation of the last section.

There are two forces driving variation in the credit spread that are salient for understanding
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the mechanisms: (1) higher λ means more distress events and hence higher spreads; (2)

worse crises means lower loss-given default (via κpt ) and hence higher spreads. If we imagine

shutting down effect (2), then we can understand the froth relation easily. When λ is low, the

banker is effectively less risk averse and hence the economy is more subject to large GDP

downturns. This force pushes more mass into crisis states, but does not increase credit

spreads ex-ante. Hence we arrive at the positive relation between froth and crises. Now, if

add back effect (2), the froth relation is weakened and can potentially flip the sign to resemble

the benchmark model. The reason is that more crises imply larger losses given default and

hence higher ex-ante spreads. The sign of the froth relation depends quantitatively on the

exact cyclicality of recoveries in default. We have calibrated our model to the history of

recoveries on BAA bonds in the U.S., as reported by Moodys.

Table 13 illustrate this point for the extreme case where we set κ0 = 0 and hence recovery

has no fixed component. We now see that the froth relation has a negative sign and no longer

matches the data. The high credit relation continues to match the data.

[TABLE 13 HERE]

7 Evaluation of the Diagnostic Model

Our conclusion from the previous sections’ analysis is that relations between froth and

credit growth identify that time-variation in beliefs or sentiments are essential to match the

dynamics of a financial crisis, but focusing only on matching signs of data patterns does not

allow one to discriminate between Bayesian and non-Bayesian belief models.

We focus on magnitudes to help discipline the non-Bayesian model. The key feature of

the diagnostic expectations model is that beliefs over-extrapolate from recent observation.

They are too optimistic in the boom and too pessimistic in the bust. We push on the

optimism observation and aim to match the data fact that credit spreads are 0.34σs below

normal in the pre-crisis period. Note that the jump in spreads in the crisis helps pin down

λH .

Our main findings of this section are:

Remark 3. The diagnostic model qualitatively and quantitatively matches patterns in the

crisis and its aftermath. In particular it matches magnitudes in the pre-crisis evidence on

credit growth, credit spreads, crises and risk premia.
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7.1 Crisis and Aftermath

Figure 14 plots the path of spreads, credit and GDP around the crisis. We see that the

model is able to generate the jump in spreads, contraction in credit, and drop in GDP.

The magnitudes of the spread spike and GDP decline are also in line with the data. The

magnitude of the credit contraction of around 0.8σs is larger than the data counterpart of

0.33σs. As with the Bayesian model, the figures also reveals the pre-crisis pattern of froth:

credit spreads are falling and below average, while credit and GDP are growing.

[FIGURE 14 and 15 HERE]

Figure 15 graphs the histogram of 3-year GDP growth in crises. The model distribution is

again left-skewed, although more so than the data. The reason is the same as in the Bayesian

model: a distress event triggers a jump down in w and a fall in GDP. The amplification

mechanism plus the jump drives a significantly left-skewed output distribution. Table 14

evaluates the relationship between the jump in credit spreads in this model and the fall in

GDP. The model’s relation between credit spread, bank credit and GDP growth are of the

right magnitude and sign, but do miss, relative to their data counterparts. The Bayesian

model’s fit is slightly better than this model.

[TABLE 14 HERE]

7.2 Pre-crisis, Conditional on a Crisis at time t

We next turn to the pre-crisis evidence. The diagnostic model is able to fit the patterns

pre-crisis well. The signs in the fit are same as that of the Bayesian model, indicating that

signs do not discriminate between these models of belief formation. Table 15 shows that

conditioning on a crisis at date t, the spread in the 5 years before the crisis is 0.34σs lower

than normal. The logic here is similar to the Bayesian model, and the magnitude now

matches the data. Table 16 shows that the diagnostic model is able to match the result that

high credit is associated with low risk premia. Table 17 presents the crisis prediction result.

We see that the variables now have the right signs and are close, although still low in terms

of magnitudes).

[TABLE 15, 16, and 17 HERE]

Figure 16 plots the distribution of GDP growth over the next year conditional on different

levels of credit. We plot the diagnostic’s model distribution in green dashed lines and the

Bayesian model in red. We can see that the forces that work to generate the relation between
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high credit and crises are similar albeit stronger in the diagnostic model compared to the

Bayesian model. As we go from top to bottom panel in the figure, the mass in the left tail

rises. Figure 17 draws these distributions conditional on credit spreads. We see again that

the diagnostic model has the force that shifts mass to the left tail when spreads are low and

leverage is endogenously high.

[FIGURE 16 and 17 HERE]

7.3 Conditional Risk Premium

Are there other data that help identify diagnostic beliefs? Bordalo et al. (2018) argues

for the importance of survey expectations to measure agent beliefs. Rationality requires

that the frequency of financial crises be consistent with agents’ beliefs, and measuring such

beliefs may allow one to discipline a non-Bayesian component of beliefs. The difficulty with

this approach is that financial crises are infrequent, and survey measures do not cover the

breadth of history and countries necessary to investigate this possibility rigorously.

An approach that is more in line with that of this paper in terms of matching data from

historical crises is from Baron and Xiong (2017). They observe that the expected returns

on bank equity as well as the market can be negative conditional on bank-credit growth

in the highest quartile of its distribution (see Table V and Figure III of their paper). The

statistical strength of this result is weak relative to other results in the paper. It only holds

at longer horizons and only for bank equity and not for broad equity returns. However,

let us take this as a fact since such evidence is inconsistent with any model of rationality.

Figure 18 plots the associated figures from our model (the equivalent of their Figure III). Our

model matches the general pattern of a negative slope, but our calibration does not generate

returns that fall below zero. To be clear this is not an impossibility result: parameters do

exist such that diagnostic expectations generate negative expected returns (see Greenwood

et al. (2019)). The result illustrated by the figure is in the context of our specific model and

calibration that matches parameters as indicated in Table 3.

[FIGURE 18 HERE]

8 Conclusion

We have shown that our model with a financial amplification mechanism plus belief dynam-

ics, either driven by Bayesian or extrapolative expectations, is able to generate patterns

on the crisis cycle consistent with the empirical literature on financial crises. The model

matches the pre-crisis froth and leverage build-up. It matches the sharp transition to a
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crisis, the left-skewed distribution of output declines and asset price declines, and the slow

post-crisis recovery.

We offer two main conclusions that may guide future research:

1. On the positive side, a minimal model with two state variables, one that governs financial

frictions and one that governs beliefs, can match the crisis cycle facts. Both the Bayesian

and diagnostic model are driven by two state variables, w and λ. The dynamics of these

variables drive the model’s fit on the dimensions on which we evaluate. Our analysis shows

that these variables can have the “right” dynamics under both Bayesian and diagnostic

belief updating.

2. On the negative side, based on our analysis we are not compelled that the data identifies

a non-rational component of beliefs. Apparently, even the Bayesian model gets the broad

patterns correct; the non-rational component just adds a kick to get these patterns closer

to the data. Considering that our baseline model is quite minimalist, it seems premature

to put too much weight on the success from the extra kick. Hence our conclusion is

that the data does pose an identification challenge for sorting among models of belief

formation.
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Figure 6: Dynamics of the Benchmark Model Around Crises. Credit spread and bank credit
are measured as standard-deviations from the mean value. For example, credit spread raising
to 0.2 means that it is larger than the value at year 0 by 0.2σs. GDP is measured in terms
of percentage deviation from the long-run mean value.
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Figure 7: Distribution of Output Growth 3 Years after Crisis: Benchmark Model and Data
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Figure 8: Dynamics of the Bayesian Model Around Crises. Credit spread and bank credit are
measured as standard-deviations from the mean value. For example, credit spread raising
to 0.2 means that it is larger than the value at year 0 by 0.2σs. GDP is measured in terms
of percentage deviation from the long-run mean value.
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Figure 9: 3-Year GDP Growth: Bayesian Model versus Data
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Figure 10: Leverage and Lambda. This figure plots the leverage of banks as a function of
state variable λ, given different levels of another state variable w.
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Figure 11: Density of Next-Year GDP Growth in Three Models Conditional on Bank
Credit/GDP. Cutoffs are 30% quantile and 90% quantile of bank credit/GDP.
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Figure 12: Density of Bank Equity Return in Three Models Conditional on Bank
Credit/GDP. Cutoffs are 30% quantile and 90% quantile of bank credit/GDP.
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Figure 13: Density of Next-Year GDP Growth in Three Models Conditional on Credit
Spread. Cutoffs are 30% quantile and 90% quantile of credit spread.
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Figure 16: Density of Next-Year GDP Growth in Bayesian and Diagnostic Models Condi-
tional on Bank Credit/GDP. Cutoffs are 30% quantile and 90% quantile of bank credit/GDP.
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Figure 17: Density of Next-Year GDP Growth in Bayesian and Diagnostic Models Condi-
tional on Credit Spread. Cutoffs are 30% quantile and 90% quantile of bank credit/GDP.
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47



Table 5: GDP Growth and Credit Spread in the Benchmark Model

Dependent variable: GDP Growth from t to t+ 3

Model Simulations Data

(1) (2) (3) (4) (5) (6)

∆credit spreadt −4.77 −2.00
(0.47)

∆credit spreadt∗crisist −6.19 −7.46
(0.16)

(bank credit
GDP

)t∗crisist −1.40 −0.95
(0.30)

Observations 641 641 641

Note: Note: Model and data regressions are normalized so that the coefficients reflect the
impact of one sigma change in spreads, and bank credit/GDP.

Table 6: Credit Spread Before Crises in the Benchmark Model

Dependent variable: credit spreadt

Model Simulations Data

(1) (2)

pre-crisis indicator 0.21 −0.34
(0.15)

Observations 634

Note: regression is: st = α+β ·1{t is within 5-year window before a crisis}+controls.
For both model and data, controls include an indicator of within 5 years after the last
crisis. Data regression has more controls such as country fixed effect.
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Table 7: Predicting Crises in the Benchmark Model

Dependent variable: crisist+1 to t+5

Model Simulations Data

(1) (2) (3) (4)

HighFrotht −0.74 1.76
(0.91)

HighCreditt −0.89 0.55
(0.46)

Observations 528 549

Note: HighFroth measures if spreads have been abnormally low in the last 5 years.
HighCredit measures if credit growth has been abnormally high in the last 5 years.
See Section 5.2 for further details.

Table 8: Bank Credit Predicting Capital Excess Return in the Benchmark Model

Dependent variable:

Average realized excess return t+1

(1) Model Simulations (2) Data

(bank credit
GDP

)t −0.02 −0.02
(0.01)

Observations 867

Note: Model excess return is defined as the return to capital minus
the risk-free rate. Data excess return is the excess equity index return
from Online Appendix Table 3 of Baron and Xiong (2017). To ensure
comparability, the model return to capital has been normalized to
equal the standard deviation of returns reported by Baron and Xiong.
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Table 9: GDP Growth and Credit Spread in the Bayesian Model

Dependent variable: GDP Growth from t to t+ 3

Model Simulations Data

(1) (2) (3) (4) (5) (6)

∆credit spreadt −4.57 −2.00
(0.47)

∆credit spreadt∗crisist −4.06 −7.46
(0.16)

(bank credit
GDP

)t∗crisist −2.61 −0.95
(0.30)

Observations 641 641 641

Note: Note: Model and data regressions are normalized so that the coefficients reflect the
impact of one sigma change in spreads, and bank credit/GDP.

Table 10: Credit Spread Before Crises in the Bayesian Model

Dependent variable: credit spreadt

Model Simulations Data

(1) (2)

pre-crisis indicator −0.13 −0.34
(0.15)

Observations 634

Note: regression is: st = α+β ·1{t is within 5-year window before a crisis}+controls.
For both model and data, controls include an indicator of within 5 years after the last
crisis. Data regression has more controls such as country fixed effect.
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Table 11: Bank Credit Predicting Capital Excess Return in the Bayesian Model

Dependent variable:

Average realized excess return t+1

(1) Model Simulations (2) Data

(bank credit
GDP

)t −0.01 −0.02
(0.01)

Observations 867

Note: Model excess return is defined as the return to capital minus
the risk-free rate. Data excess return is the excess equity index return
from Online Appendix Table 3 of Baron and Xiong (2017). To ensure
comparability, the model return to capital has been normalized to
equal the standard deviation of returns reported by Baron and Xiong.

Table 12: Predicting Crises in the Bayesian Model

Dependent variable: crisist+1 to t+5

Model Simulations Data

(1) (2) (3) (4)

HighFrotht 0.05 1.76
(0.91)

HighCreditt 0.08 0.55
(0.46)

Observations 528 549

Note: HighFroth measures if spreads have been abnormally low in the last 5 years.
HighCredit measures if credit growth has been abnormally high in the last 5 years.
See Section 5.2 for further details.
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Table 13: Predicting Crises when κ̂0 = 0 in the Bayesian Model

Dependent variable: crisist+1 to t+5

Model simulation Data

(1) (2) (3) (4)

Frotht −0.14 1.76
(0.91)

High Creditt 0.14 0.55
(0.46)

Observations 528 549

Note: HighFroth measures if spreads have been abnormally low in the last 5 years.
HighCredit measures if credit growth has been abnormally high in the last 5 years.
See Section 5.2 for further details.

Table 14: GDP Growth and Credit Spread in the Diagnostic Model

Dependent variable: GDP Growth from t to t+ 3

Model Simulations Data

(1) (2) (3) (4) (5) (6)

∆credit spreadt −4.49 −2.00
(0.47)

∆credit spreadt∗crisist −3.95 −7.46
(0.16)

(bank credit
GDP

)t∗crisist −3.74 −0.95
(0.30)

Observations 641 641 641

Note: Note: Model and data regressions are normalized so that the coefficients reflect the
impact of one sigma change in spreads, and bank credit/GDP.
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Table 15: Credit Spread Before Crises in the Diagnostic Model

Dependent variable: credit spreadt

Model Simulations Data

(1) (2)

pre-crisis indicator −0.34 −0.34
(0.15)

Observations 634

Note: regression is: st = α+β ·1{t is within 5-year window before a crisis}+controls.
For both model and data, controls include an indicator of within 5 years after the last
crisis. Data regression has more controls such as country fixed effect.
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Table 16: Bank Credit Predicting Capital Excess Return in the Diagnostic Model

Dependent variable:

Average realized excess return t+1

(1) Model Simulations (2) Data

(bank credit
GDP

)t −0.01 −0.02
(0.01)

Observations 867

Note: Model excess return is defined as the return to capital minus
the risk-free rate. Data excess return is the excess equity index return
from Online Appendix Table 3 of Baron and Xiong (2017). To ensure
comparability, the model return to capital has been normalized to
equal the standard deviation of returns reported by Baron and Xiong.

Table 17: Predicting Crises in the Diagnostic Model

Dependent variable: crisist+1 to t+5

Model Simulations Data

(1) (2) (3) (4)

HighFrotht 0.41 1.76
(0.91)

HighCreditt 0.41 0.55
(0.46)

Observations 528 549

Note: HighFroth measures if spreads have been abnormally low in the last 5 years.
HighCredit measures if credit growth has been abnormally high in the last 5 years.
See Section 5.2 for further details.
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A Model Solutions

A.1 Proof of Lemma 1

We will derive the Bayesian belief process λt in two different ways. The first method is

by applying the theorem in Liptser and Shiryaev (2013). The second one is by taking

the continuous-time limit of a discrete-time process. The reason that we show the second

method is because we will use the connection between discrete-time and continuous-time

processes to prove the results for the diagnostic belief in Lemma 2.

Method 1

We can represent the Poisson process of bank-run as

Nt =

∫ t

0

1λ̃s=λL
dNL

t +

∫ t

0

1λ̃s=λH
dNH

t = At +Mt

where NH
t and NL

t are two independent Poisson processes, Mt is a martingale, and At is a

previsible process

At =

∫ t

0

(1λ̃s=λL
λL + 1λ̃s=λH

λH)dt

Denote FN
t = σ{Ns, 0 ≤ s ≤ t}, θ̃ = 1λ̃t=λH

, and

θt = E[θ̃t|FN
t ] = P (λ̃t = λH |FN

t )

Then according to Theorem 18.3 of Liptser and Shiryaev (2013), the compensator of Nt that

is measurable with respect to FN
t is

Āt =

∫ t

0

E[(1λ̃s=λLλL + 1λ̃s=λHλH)|FN
s−]ds =

∫ t

0

((1− θs−)λL + θs−λH)ds

Moroever, the compensator of θt is

∫ t

0

(
1λ̃s=λH

(−λH→L) + 1λ̃s=λL
λL→H

)
ds

and the FN
t− measurable version is

∫ t

0

(θs−(−λH→L) + (1− θs−)λL→H)ds

Finally, the martingale component of θ̃t is independent from the jumps in Nt. Thus we can
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apply Theorem 19.6 of Liptser and Shiryaev (2013) to get

dθt = (θt−(−λH→L) + (1− θt−)λL→H) dt+ E[λ̃t(
dAt

dĀt

− 1)|FN
t−]d(Nt − Āt)

= (θt−(−λH→L) + (1− θt−)λL→H) dt+E[1λ̃t=λH (
1λ̃t=λLλL + 1λ̃t=λHλH

(1− θt−)λL + θt−λH
−1)|FN

t−](dNt−((1−θt−)λL+θt−λH

= (θt−(−λH→L) + (1− θt−)λL→H) dt+
θt−(1− θt−)(λH − λL)

(1− θt−)λL + θt−λH
(dNt−((1−θt−)λL+θt−λH)dt)

= (θt−(−λH→L) + (1− θt−)λL→H − θt−(1− θt−)(λH − λL)) dt+
θt−(1− θt−)(λH − λL)

(1− θt−)λL + θt−λH
dNt

Denote λt = E[λ̃t|FN
t ]. We can get the motion of λt from

λt = E[1λ̃t=λH
|FN

t ]λH + E[1λ̃t=λL
|FN

t ]λL

⇒ θt =
λt − λL
λH − λL

which results in

dλt =

(

(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)

dt+
(λt− − λL)(λH − λt−)

λt−
dNt

Method 2

Consider a discrete time Markov process λ̃k with two states λH and λL. We define

∆t ∗ λ̃k as the probability of a financial distress shock within a single period. The transition

probability from high to low is λH→L∆t, and the transition probability from low to high

is λL→H∆t. Agents observe the realizations of financial distress shocks, and update their

beliefs. Denote the crash realization process as Nk ∈ {0, 1}, and the filtration as Fk =

σ{N1, N2, · · · , Nk}. Denote the updated belief at period k as λk = E[λ̃k|Fk], with λ̃k the

state of the hidden Markov process. In each period, the financial distress shock first realizes,

and then the agent updates belief for that period.

Suppose that the belief on the probability at high state λH is πk at period k. Then the

relationship between πk and λk is as follows:

λk = πkλH + (1− πk)λL

Observing Nk+1 = nk ∈ {0, 1}, the belief πk+1 is

πk+1 = P (λ̃k+1 = λH |Nk+1 = nk+1, πk)
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=
P (Nk+1 = nk+1|λ̃k+1 = λH , πk)P (λ̃k+1 = λH |πk)

P (Nk+1 = nk+1|λ̃k+1 = λH , πk)P (λ̃k+1 = λH |πk) + P (Nk+1 = nk+1|λ̃k+1 = λL, πk)P (λ̃k+1 = λL|πk)
Note that the probabilities P (λ̃k+1 = λH |πk) and P (λ̃k+1 = λL|πk) can be calculated from

the Markov one-step transition

(

πk

1− πk

)T (

1− λH→L∆t λH→L∆t

λL→H∆t 1− λL→H∆t

)

=

(

πk(1− λH→L∆t) + (1− πk)λL→H∆t

πkλH→L∆t+ (1− πk)(1− λL→H∆t)

)T

which results in

P (λ̃k+1 = λH |πk) = πk(1− λH→L∆t) + (1− πk)λL→H∆t

and

P (λ̃k+1 = λL|πk) = πkλH→L∆t+ (1− πk)(1− λL→H∆t)

Therefore, the belief πk+1 is

πk+1 =
((nk+1λH∆t+ (1− nk+1)(1− λH∆t))(πk(1− λH→L∆t) + (1− πk)λL→H∆t))

(

(nk+1λH∆t+ (1− nk+1)(1− λH∆t))(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+(nk+1λL∆t+ (1− nk+1)(1− λL∆t))(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)

Now it is easier to separately discuss nk+1 = 0 and nk+1 = 1. Suppose that no financial

distress shock happens (nk+1 = 0), then we have

πk+1 =
(1− λH∆t) (πk(1− λH→L∆t) + (1− πk)λL→H∆t)

(

(1− λH∆t)(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+(1− λL∆t)(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)

Suppose that a financial distress shock happens (nk+1 = 1), then we have

πk+1 =
λH∆t (πk(1− λH→L∆t) + (1− πk)λL→H∆t)

(

λH∆t(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+λL∆t(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)

=
λH (πk(1− λH→L∆t) + (1− πk)λL→H∆t)

(

λH(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+λL(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)

Note that taking ∆t → 0 will result in πk+1 = πk when nk+1 = 0. This is reasonable,

because this is like calculating µtdt for the λt process in continuous time, which is a small

order term. An appropriate way to derive the time limit is to calculate

lim
∆t→0

πk+1 − πk
∆t

|nk+1=0,Fk

59



= lim
∆t→0

1

∆t






(1− λH∆t) (πk(1− λH→L∆t) + (1− πk)λL→H∆t)

−πk(1− λH∆t)(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

−πk(1− λL∆t)(πkλH→L∆t+ (1− πk)(1− λL→H∆t))






= lim
∆t→0

1

∆t

(

(1− πk)(1− λH∆t) (πk(1− λH→L∆t) + (1− πk)λL→H∆t)

−πk(1− λL∆t)(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)

= lim
∆t→0

1

∆t

(

(1− πk) (πk − πkλH→L∆t+ (1− πk)λL→H∆t− λHπk∆t)

−πk (πkλH→L∆t+ (1− πk)(1− λL→H∆t)− λL(1− πk)∆t)

)

(removing ∆t2 terms)

= −πkλH→L + (1− πk)λL→H − (λH − λL)πk(1− πk)

Therefore, we have

lim
∆t→0

πk+1 − πk
∆t

|nk+1=0,Fk
= −πkλH→L + (1− πk)λL→H − (λH − λL)πk(1− πk) (34)

To build an exact connection to λk, we can write λk in terms of πk as

πk =
λk − λL
λH − λL

(35)

Then the limit of ∆t→ 0 expressed with λk is

1

λH − λL

λk+1 − λk
∆t

|nk+1=0,Fk
= − λk − λL

λH − λL
λH→L+

λH − λk
λH − λL

λL→H−(λH−λL)
λk − λL
λH − λL

λH − λk
λH − λL

which can be simplified as

lim
∆t→0

λk+1 − λk
∆t

|nk+1=0,Fk
= (λL − λk)λH→L + (λH − λk)λL→H − (λk − λL)(λH − λk) (36)

Suppose that a financial distress shock happens (nk+1 = 1). By taking ∆t → 0, the

updating is

πk+1|nk+1=1,Fk
=

λHπk
λHπk + λL(1− πk)

Using (35), the updating is
1

πk+1

= 1 +
λL
λH

1− πk
πk

λk+1 =
λH(λk − λL)

λk
+ λL =

(λH + λL)λk − λHλL
λk

which implies

λk+1 − λk|nk+1=1,Fk
=

(λH + λL)λk − λHλL
λk

− λk =
(λH − λk)(λk − λL)

λk
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Finally, we express the above with the continuous-time notation dNt and dt to get

dλt =

(

(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)

dt+
(λH − λt−)(λt− − λL)

λt−
dNt

which is the same as method 1.

A.2 Proof of Lemma 2

To prove Lemma 2, we start with discrete time process and then take the continuous-

time limit. The discrete-time distress frequency process λ̃t is the same as Section A.1.

Specifically, the process has two states λH and λL, with transition probability from high

to low as λH→L∆t, and the transition probability from low to high as λL→H∆t. Agents

observe the realizations of financial distress shocks, and update their beliefs. Denote the

crash realization process as Nk ∈ {0, 1}, and the filtration as Fk = σ{N1, N2, · · · , Nk}.
Denote the updated belief at period k as λk = E[λ̃k|Fk], with λ̃k the state of the hidden

Markov process. Also denote the probability πk = P (λ̃k = λH), which implies

λk = πkλH + (1− πk)λL

We choose the period length ∆t so that T (∆t) = t0/∆t is an integer, where t0 is the

“look-back period” for the diagnostic belief. Then we denote the reference probability for

the diagnostic belief at period k as

πT
k = P (λ̃k = λH |πk−T (∆t))

We already know from method 2 of Section A.1 that when ∆t → 0, the continuous-

time limit of the Bayesian belief process results in (8). Our task now is to prove that the

discrete-time diagnostic belief process converges to a continuous-time process as in (11). By

definition, the diagnostic belief at period k is

πθ
k = πk · (

πk
πT
k

)θ
1

Zk

1− πθ
k = (1− πk) · (

1− πk
1− πT

k

)θ
1

Zk

with

Zk =
1

πk · ( πk

πT
k

)θ + (1− πk) · ( 1−πk

1−πT
k

)
θ
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which implies

πθ
k = πk(

πk
πT
k

)θ
1

πk(
πk

πT
k

)θ + (1− πk)(
1−πk

1−πT
k

)
θ

= πk
1

πk + (1− πk)(
πT
k

1−πT
k

/ πk

1−πk
)
θ

Therefore, if πT
k < πk, then πθ

k > πk, leading to an overreaction. Now we can replace the

probability with λt. Define the expected λ̃k under the diagnostic belief as λθk. Then we have

λθk − λL = (λk − λL)
(λH − λk) + (λk − λL)

(
λT
k
−λL

λH−λT
k

/ λk−λL

λH−λk
)
θ

(λH − λk) + (λk − λL)

where

λTk = πT
k λH + (1− πT

k )λL

The key is to derive πT
k and λTk under the limit of ∆t→ 0 while keeping t = k∆t constant.

Using the probability transition matrix, we get

(

P (λk = λH |πT
k )

P (λk = λL|πT
k )

)′

=

(

πk−T

1− πk−T

)′(

1− λH→L∆t λH→L∆t

λL→H∆t 1− λL→H∆t

)T

where the ′ notation denotes transpose of a matrix. The limit of the above expression with

∆t→ 0 is effectively the transition of a continuous time Markov chain, with rate matrix

Q =

(

−λH→L λH→L

λL→H −λL→H

)

A decomposition reveals that the two eigenvalues of this matrix are 0 and −(a + b), where

a = λH→L and b = λL→H . The associated eigenvector formed matrix is

Q̄ =

(

1 −a
1 b

)

with the inverse

Q̄−1 =
1

a+ b

(

b a

−1 1

)

Then we can decompose

Q = Q̄

(

0

−(a+ b)

)

Q̄−1
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Then the transition for t units of time is

Q̄

(

1

e−(a+b)t

)

Q̄−1 =
1

a+ b

(

b+ ae−(a+b)t a− be−(a+b)t

b− be−(a+b)t a+ be−(a+b)t

)

Using the t notation (t = k ∗∆t), and taking the limit ∆t → 0 while keeping t unchanged,

we have

lim
∆t→0

(

P (λk = λH |πT
k )

P (λk = λL|πT
k )

)T

=

(

P (λt = λH |πt−t0)

P (λt = λL|πt−t0)

)T

=

(

πt−t0

1− πt−t0

)T

1

a+ b

(

b+ ae−(a+b)t0 a− be−(a+b)t0

b− be−(a+b)t0 a+ be−(a+b)t0

)

∆
=

(

aHπt−t0 + aL(1− πt−t0)

bHπt−t0 + bL(1− πt−t0)

)T

where (

aH bH

aL bL

)

=
1

a+ b

(

b+ ae−(a+b)t0 a− ae−(a+b)t0

b− be−(a+b)t0 a+ be−(a+b)t0

)

(37)

Therefore, the intensity process follows

λθt − λL = (λt − λL)
(λH − λt) + (λt − λL)

(
λT
t −λL

λH−λT
t

/ λt−λL

λH−λt
)
θ

(λH − λt) + (λt − λL)
(38)

where

λTt − λL = aH(λt−t0 − λL) + aL(λH − λt−t0) (39)

λH − λTt = bH(λt−t0 − λL) + bL(λH − λt−t0) (40)

When the total transition rates a+ b are low, we have aH ≈ 1, aL ≈ 0, bH ≈ 0, and bH ≈ 1.

Then we have λTt ≈ λt−t0 . When λTt > λt, i.e., the likelihood of a crisis is decreasing, then

the subjective probability is even lower, with λθt < λt. When λTt < λt, i.e., the likelihood

of a crisis is increasing, then the subjective probability is even higher, with λθt > λt. These

predictions are perfectly consistent with the spirit of the diagnostic expectations. The extent

of such extrapolation is larger as θ becomes larger, and we have λθt = λt when θ = 0.

A.3 Wealth Dynamics

To solve the model, we start with deriving the wealth dynamics of households and bankers.

In order to simplify notations, we omit the subscripts t and t−.

First, from (24) and (22), we get the following equation that links consumption, produc-
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tion and investment:

wċb + (1− w)ċh =
ψAH + (1− ψ)AL − i

p
. (41)

Second, from (21) and (22), we get the following portfolio equation on capital

xKw + yK(1− w) = 1. (42)

Third, we can rewrite (17) as a function of state variables and portfolio choices, i.e.

ψ =
xKw

xKw + yK(1− w)
= xKw, (43)

where the first equality is by definition and the second equality is by (42).

To proceed, we need to express the evolution dynamics of state variable w. Define

µR = µp − δ + µK + σKσp − φ(µK)

p
(44)

Return on banker wealth is

dwb

wb
t−

∆
= µbdt+ σbdB − κbt−dN

=

(

rd + xK(µR +
AH

p
− rd) + xf (rf − rd)− ρ

)

dt+ xK(σK + σp)dB − κbt−dN

(45)

The jump component is

xKκp + α∆x (46)

where

∆x = (xK + xf − 1)+ (47)

The return on household wealth is

dwh

wh
t−

∆
= µhdt+ σhdB − κht−dN

=

(

rd + yK(µR +
AL

p
− rd)− ρ

)

dt+ yK(σK + σp)dB − κht−dN

(48)

where

κh = yKκp − κfs
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A.4 Proof of Lemma 3

According to the equilibrium market clearing condition for the interbank market, we have

xf = 0

in equilibrium. As a result, in equilibrium,

∆x = (xK − 1)+

Suppose that in equilibrium, xK < 1. This implies that ∆x = 0. Then we can easily derive

the first order condition for households and bankers holding capital as

µR +
Ā

p
− rd = (σK + σp)2xK + λκp

1

1− xKκp

µR +
A

p
− rd = (σK + σp)2yK + λκp

1

1− yKκp

which together imply that

Ā− A

p
=

(

(σK + σp)
2
+

λ(κp)2

(1− xKκp)(1− yKκp)

)

(xK − yK) (49)

The first bracket on the right hand side is always positive, since the nonnegative wealth

constraint implies xKκp < 1 and yKκp < 1. However, due to the budget constraint

wxK + (1− w)yK = 1

and the assumption of xK < 1, we must have

yK > xK

which implies that the right-hand side of (49) should be negative. This is a contradiction

since the left-hand side of (49) is positive.

Importantly, all of the above derivations go through regardless of whether we use the

Bayesian Bayesian belief or the diagnostic belief, as long as bankers and households have

the same belief.

In summary, we have xK ≥ 1 in equilibrium.
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A.5 Equilibrium Solutions

Optimal investment rate is

µK∗

=
p− 1

χ
+ δ (50)

The resulting optimal investment is

i(p) = φ(µK∗

) =
(p− 1)2

2χ
+
p− 1

χ
+ δ (51)

Then we can apply Ito’s lemma on the definition of wealth share in (12) and get the dynamics

of w as

dw

w
∆
= µwdt+ σwdB − κwt−dN

= (1− w)
(

µb − µh + (σh)
2 − σbσh − w(σb − σh)

2 − η
)

dt

+ (1− w)(σb − σh)dB − (1− wt−)
1− 1−κb

t−

1−κh
t−

1 + wt−(
1−κb

t−

1−κh
t−

− 1)
dN.

(52)

With dynamics of the state variable w, we apply Ito’s lemma on price function p(w) to get







µp = pwwµ
w +

1

2
pww(wσ

w)2 + pλµ
λ(λ)

σp = pww(1− w)(σb − σh)

κpt− = 1− p(wt−

1− κbt−
1− κht− − wt−(κbt− − κht−)

, λt))/p(wt−, λt−).

(53)

To fully characterize the economy, we also need to know the dynamics of aggregate capital

quantity K, although it is not a state variable since everything else is scalable with respect

to K. Denote the Ito process for K as

dK

Kt−

= µK∗dt− δdt+ σKdB, (54)

With (46), (45), (48), and (53), we get a system of equations for other jumps:







κb = xKκp + α∆x

κh = yKκp − κfs

κfs = α∆x w
1−w

κp = 1− p(w 1−κb

1−κh−w(κb−κh)
, λ+ κλ(λ))/p(w, λ)

(55)

From (45), (48), and (53), we get the relation between capital price volatility and volatility
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of the banker’s return on wealth as follows:







σp = pww(1− w)(σb − σh)

σh = yK(σK + σp)

σb = xK(σK + σp).

(56)

Denote fire sale benefits for each unit of household wealth as κfs, which is net wealth

transfer from bankers to households due to the temporary market pressure. By market

clearing, we have

(1− w)
︸ ︷︷ ︸

total household
wealth

· κfs = IB
︸︷︷︸

bankruptcy
indicator

· w
︸︷︷︸

total banker
wealth

· ∆x

(1− α0)pt
︸ ︷︷ ︸

fire sale quantity for each
unit of banker wealth

· α0pt
︸︷︷︸

wealth transfer for
each unit sale

⇒ κfs = α∆x
w

1− w
(57)

Then we have the following household first order condition:

µR +
A

p
− rd ≤ (σK + σp)2yK + λ

κp

1− yKκp + κfs
, equality if yK > 0 (58)

In equation (58), the left hand side is the excess return on productive capital over bank

deposit, while the right hand side includes the cost of the additional risks from productive

capital compared to bank deposit. When the excess return is lower than the cost, households

do not hold productive capital and set yK = 0.

On the other hand, the first order condition on bank productive capital holding is

µR +
Ā

p
− rd = (σK + σp)2xK + λ

κp + α

1− xKκp − α∆x
(59)

since banks always hold a positive amount of productive capital.3 The excess return of

productive capital over deposit consists of three components: volatility, endogenous price

decline and fire sale losses in case of financial distress shocks.

Combining (58) and (59), we have

Ā− A

p
≥ (σK + σp)2(xK − yK) + λ

κp + α

1− xKκp − α∆x
− λ

κp

1− yKκp + κfs

where the equality holds when yK > 0.

3Suppose not, then banks are not subject to financial distress shocks by increasing its productive cap-
ital holding from 0 to a small positive number, but increases profit strictly. Thus we easily arrive at a
contradiction.
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Next, the bank first order condition over inter-bank lending is

rf − rd = λ
α

1− xKκp − α∆x
(60)

which implies that the bank deposit rate is lower than bank risk-free rate, because bank

deposit funding is runnable.

Combining (59) and (60), we arrive at the excess return expression for the productive

capital in normal time as:

µR +
Ā

p
− rf = (σK + σp)2xK + λ

κp

1− xKκp − α∆x
(61)

We note that productive capital is also subject to the losses of κpxK during a distress, which

arrives at intensity λ. As a result, the full excess return expression should be

µR +
Ā

p
− λκp − rf = (σK + σp)2xK + λκp

xKκp + α∆x

1− xKκp − α∆x
(62)

Intuitively, equation (62) implies that the excess return of productive capital above the risk-

free rate is compensating the volatility of the productive capital, as well as the potential

price drop. Note that we did not attribute the α∆x component to xK , since it is related to

the amount of deposit funding. Another way to look at the above problem is to rewrite the

bank welath dynamics in terms of xK and xd, which leads to

dwb

wb
=

(

rf + xK(µR +
Ā

p
− λκp − rf )− xd(rd − rf )− λαxd

)

dt− ċdt

+xK(σK + σp)dBt − κb(dNt − λdt)

Diagnostic Beliefs

When we solve the equilibrium jumps upon dNt with diagnostic beliefs, additional ad-

justments are needed to accomodate the distortions induced by the Diagnostic beliefs. As

we have assumed, households believe that they have Bayesian beliefs and make decisions

with the Bayesian policies. However, the realizations during a crisis will be different from

their expectations, which may cause additional disruptions. There are two steps to clear the

market during a jump with diagnostic belief:

 First, the agents interpret λθt as the Bayesian belief. After a crisis shock dNt, the market

price of capital switches to the level under this “Bayesian belief”.

 The realization of belief, however, is different from the Bayesian expectation, because

the diagnostic belief formation. Now additional price adjustment is needed to clear the

market under the diagnostic belief.
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A.6 Other Measures of Risk Premium

In this subsection, we discuss other measures of the risk premium. In the main text, we

use the credit spreads of long-term bonds as a measure of risk premium, mainly because

of the data availability of the same measure. In this part, we show several other measures

of risk premium. The first one is the bank equity excess return. we show that although

bank equity is not tradable in the model, the excess returns are still positive under Bayesian

expectations. The second one is Sharpe ratio. We show how to adjust the definition to

accommodate jumps in the model.

Bank Equity Excess Returns

We note that bank equity return is not simply dwb/wb, since this wealth growth term

also incorporates banker consumption, which should be interpreted as a dividend payment.

Formally, the expected return of bank equity is

re = rf + xK(µR +
Ā

p
− rf − λκp)− xd(rd − rf )− λαxd

Expressing the right-hand terms with (27) and (28), we have

re − rf = xK
(

(σK + σp)
2
xK + λκp

xKκp + α∆x

1− xKκp − α∆x

)

︸ ︷︷ ︸

total risk compensation for holding productive capital

+ λαxd
xKκp + α∆x

1− xKκp − α∆x
︸ ︷︷ ︸

total risk compensation for taking deposits

where two terms of risk compensations appear. The first term is the total risk compensation

for holding productive capital, including the risk premium of volatility and the decline in

wealth due to financial distress shocks. The second term is the total risk compensation for

raising deposits. Alternatively, we can write the risk compensation as the following

re − rf = xK
︸︷︷︸

exposure to dBt shock

· (σK + σp)
2
xK

︸ ︷︷ ︸

compensation to dBt shock

+ (xKκp + αxd)
︸ ︷︷ ︸

exposure to dNt shock

· λ(xKκp + α∆x)

1− xKκp − α∆x
︸ ︷︷ ︸

compensation to dNt shock

As a result, in this Bayesian model, the bank equity excess return should always be above

zero.

For the Diagnostic model with diagnostic expectations, there is a “surprise” element in

the realized excess returns during a crisis, due to the additional jumps in the price of capital.

We just need to take into account the impact on the excess return by the additional jumps.

Sharpe Ratio

Another measure of the risk premium in the economy is the Sharpe ratio. However, since

we have Poisson jumps in a continuous time economy, it is not enough to only incorporate
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the Brownian terms to measure risk. For any bank-held assets with process

dRt = µdt+ σdBt − κdNt

we denote the Sharpe ratio as

SR =
E[Rt+∆t −Rt]− rf∆t

var(Rt+∆t −Rt)
≈ µ− λκ− rf

(σ)2 + λ|κ|
(63)

where we have taken the perspective of ∆t being small but positive. For productive capital,

the modified Sharpe ratio is

SR(K) =
µR + Ā

p
− λκp − rf

(σp + σK)2 + λκp

According to (29), the numerator is positive. Therefore, the model implied Sharpe ratio for

productive capital is always positive.

A.7 Credit Spread

In this section, we derive the jump differential equation for the credit spread and provide

the solution methodology.

HJB Equations

From Ito’s lemma, we have

dv(w, λ) =
∂v(w, λ)

∂w
(wµwdt+ wσwdBt) +

1

2

∂2v(w, λ)

∂w2
w2(σw)2dt

+
∂v(w, λ)

∂λ
µλ(λ)dt+ (v(w +∆w, λ+∆λ)− v(w, λ))dNt

Denote
dv(w, λ)

v(w, λ)
= µvdt+ σvdBt − κvdNt

Matching the coefficients, we have

v(w, λ)µv =
∂v(w, λ)

∂w
wµw +

1

2

∂2v(w, λ)

∂w2
w2(σw)2 +

∂v(w, λ)

∂λ
µλ(λ)

v(w, λ)σv =
∂v(w, λ)

∂w
wσw

v(w, λ)κv = v(w, λ)− v(w +∆w, λ+∆λ)
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From banker’s perspective, the optimization problem is

dwb
t

wb
t

= ...+ xvt−(
dvt
vt−

− vt− − (1− κ̂t)

vt−
ξtdNt − κvt−(1− ξt)dNt +

vt− − (1− κ̂t)

vt−
dN τ

t )

with λτt = 1/τ − πλt, ξt ∈ {0, 1}, P (ξt = 1) = π, and {ξt} is an i.i.d. process that is

independent from everything else. The jump κvt− is the amount of decline of bond price

upon the distress shock if the bond does not mature during the financial distress shock.

Rewriting the above, we have

dwb

wb
=

(

rf + xK(µR +
AH

p
− rf ) + xd(rf − rd) + xv(µv − rf )− ρ

)

dt

+
(
xK(σK + σp) + xvσv

)
dBt−(xKκp+αxd+xvξ

v − (1− κp − κ̂0)

v
+xv(1−ξ)κv)dNt−xv

v − 1

v
dN τ

t

where I have omitted the subscripts t and t− for simplicity. To solve the price of the safe

bond v̄, we can simply replace the notation v with v̄, and set the term κp and κ̂0 both to

zero.

The first order condition over xv is

µv−rf−λπ
v−(1−κp−κ̂0)

v

1− (xKκp + αxd + xv v−(1−κp−κ̂0)
v

)
−λ(1−π) κv

1− (xKκp + αxd + xvκv)
−λτ

v−1
v

1 + xv v−1
v

− (σv)2xv
︸ ︷︷ ︸

compensation for change in risk - bearing capacity

− xKσv(σK + σp)
︸ ︷︷ ︸

compesnation for covariance

= 0

Given that in equilibrium xv = 0, we have

µv − rf = λπ
1

1− κb
v − (1− κp − κ̂0)

v
+ λ(1− π)

1

1− κb
κv + λτ

v − 1

v
+ xKσv(σK + σp)

with

λτ =
1

τ
− πλ

Therefore, the excess return has three components: (1) the compensation for losses during

a distress shock, (2) the compensation for losses (negative losses mean positive benefits)

in a maturity event without distress shock, and (3) the compensation for exposure to the

volatility risk dBt, where the price of risk is xK(σK + σp). This equation together with the

matched coefficients form an HJB equation for the value of bonds,

∂v

∂w
wµw +

1

2

∂2v

∂w2
w2(σw)2 +

∂v

∂λ
µλ − rfv = xK(σK + σp)

∂v

∂w
wσw

+ λπ
1

1− κb
(
v − (1− κp − κ̂0)

)
+ λ(1− π)

1

1− κb
κvv + λτ (v − 1)

(64)
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Solution Methods

We will use the “false time derivative” method, by introducing a time dependence of v.

Define such a function as ṽ(w, λ, t). Following a similar derivation as (64), we can get the

HJB equation for ṽ as

∂ṽ

∂t
= λπ

1

1− κb
(
v − (1− κp − κ̂0)

)
+ λ(1− π)

1

1− κb
κvv + λτ (v − 1)

+xK(σK + σp)
∂v

∂w
wσw + rf ṽ −

(
∂ṽ

∂w
wµw +

1

2

∂2ṽ

∂w2
w2(σw)2 +

∂ṽ

∂λ
µλ

)

We can start with a function ṽ that satisfies ṽ(0, λ, T ) = v(0, λ), and ṽ(1, λ, T ) = v(1, λ),

and has linear interpolation in other regions. By taking T large enough, we are going

to have convergence before t reaches 0, i.e., two iterations have close to zero differences.

Denote the converged solution as ṽ(w, λ, 0). From the property of convergence, we must

have ∂ṽ(w, λ, t)/∂t|t=0 = 0. As a result, ṽ(w, λ, 0) satisfies the original PDE of v(w, λ),

which implies that v(w, λ) = ṽ(w, λ, 0).

Next, we show how to solve the boundary conditions at w = 0 and w = 1.

Boundary Conditions

We note that w = 0 and w = 1 are two absorbing boundaries. At both w = 0 and w = 1,

we have p = p or p̄ forever, and µw = σw = κp = 0. Thus, we can simplify the HJB equation

(64) into

∂v(w, λ)

∂λ
µλ(λ)− rf (w, λ)v(w, λ) = λπ

1

1− κb(w, λ)

(
v(w, λ)− (1− κ̂0)

)

+ λ(1− π)
1

1− κb(w, λ)
κv(w, λ)v(w, λ) + λτ (λ)(v(w, λ)− 1), w ∈ {0, 1}

(65)

Suppose that κv = 0 when λ = λ∗ (defined as µλ(λ∗) = 0). Then we get

v(0)(w, λ∗) =
λ∗π 1

1−κb(w,λ∗)
(1− κ̂0) + λτ (λ∗)

λ∗π 1
1−κb(w,λ∗)

+ rf (w, λ∗) + λτ (λ∗)
, w ∈ {0, 1}

Denote the value function at iteration k as v(k)(w, λ). Then for w = 1 or w = 0, the

algorithm works as follows:

 Step k: Solve for the jump κvv = v(w, λ)− v(w+ δw, λ+ δλ) using v = v(k). Denote this

value as ∆v(k). With such jump solved, we translate the jump equation (65) into an ODE

of v(w, λ), w ∈ {0, 1} as a function of λ. The ODE solution starts with the initial value

v(w, λ∗) = v(k)(w, λ∗), w ∈ {0, 1}. Solve this ODE and denote the solution as v(k+1).
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 Stop if
∫ λH

λL

|v(k+1)(w, λ)− v(k)(w, λ)| dλ < ε, w ∈ {0, 1}

for a small ε > 0.

Finally, we notice that once the λ = λ∗, it will not go up or down unless there is a dNt

shock. Once we know the jump component, we can solve v(w, λ∗) along the w dimension as

an ODE. The ODE is

∂2v

∂w2
=

(

λ∗π 1
1−κb (v − (1− κp − κ̂0)) + λ(1− π) 1

1−κbκ
vv

+λτ (v − 1) + xK(σK + σp) ∂v
∂w
wσw + rfv − ∂v

∂w
wµw

)

1
2
w2(σw)2

for w 6= 0, 1.
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