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Abstract

Banks usually hold large amounts of domestic debt which makes them vulnerable to their

own sovereign’s default risk. At the same time, governments often resort to costly bailouts

when their banking sector is in trouble. We investigate how the network structure and the

distribution of ownership of sovereign debt within the banking sector jointly affect the optimal

bailout policy under this “doom loop”. We argue that rescuing banks with high domestic

sovereign exposure is optimal if these banks are sufficiently central, even though that requires

larger bailout expenditures than rescuing otherwise identical low-exposure banks. Our model

illustrates how the “doom loop” exacerbates the “too interconnected to fail” problem.
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1. Introduction

Throughout modern economic history, almost every major crisis has added its own signature

terms to the dictionary of economic thought. For the European sovereign debt crisis that

followed the Great Recession in 2008/09, one of the front-running candidates is certainly the

so-called bank-sovereign “doom loop” - a term that has made its way into the vocabulary of5

policymakers, journalists, and researchers alike. The nexus between sovereigns and banks was
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identified as a major culprit responsible for the amplification of adverse shocks during the crisis.

The doom loop can be described as follows: Banks usually hold large amounts of domestic

public debt which makes them vulnerable to sovereign default risk. For instance, as of March

2021 some euro area banking sectors held well beyond 15% of their government’s total stock10

of outstanding debt securities. At the same time, governments often resort to costly public

bailouts when their domestic banking sector is at risk. If these bailouts are debt-financed and

lead to an increase in risk premia on sovereign debt (i.e., a decrease in bond prices), bank assets

drop in value and the size of the bailouts required to keep the banks solvent increases further. If

a significant fraction of banks’ assets consists of domestic sovereign debt, this adverse feedback15

loop can leave both the government’s and banks’ balance sheets severely impaired.1

[Figure 1 about here.]

Historical examples for the devastating force of the “doom loop” include Greece, where turmoil

in sovereign debt markets damaged Greek banks’ balance sheets and made large bailouts nec-

essary that further weakened Greece’s fiscal position; and Ireland, where the loop originated in20

the banking sector and thus worked in the opposite direction.

Even though it was the European sovereign debt crisis that provided the blueprint for a

crisis of the “doom loop” type, there is renewed public and academic interest in the topic in

the face of the recent Covid-19 pandemic. Hard-hit countries such as Italy (where the public

debt-to-GDP ratio was already relatively high prior to the pandemic) provide the most fertile25

ground for a revival of the doom loop. On the one hand, strict shutdown measures during the

pandemic led to high amounts of non-performing loans that weighed on banks’ balance sheets.

On the other hand, unprecedented fiscal spending efforts exerted upward pressure on the level

of sovereign debt and, most likely, interest rate spreads. It is therefore not surprising that the

topic of bank bailouts has returned to the agenda of policymakers in Italy and elsewhere.230

In this paper, we investigate how the distribution of sovereign debt across banks and the

1Note for example that Italian banks currently hold around 10% of their assets in domestic sovereign debt
(Figure 1).

2For example, on 28 April 2020 the rating agency Fitch lowered Italy’s sovereign rating on the grounds of the
expected repercussions from the Covid-19 pandemic; just two weeks later, on 12 May 2020, a downgrade of four
of the biggest Italian banks (UniCredit, Intesa Sanpaolo, Mediobanca, UBI) followed suit. However, thanks in
part to the ECB’s accommodative monetary policy, Italian sovereign spreads have not persistently increased.
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structure of the interbank network jointly affect the government’s optimal bailout decision in

the presence of the doom loop. In doing so, we combine two strands of literature that have so far

evolved separately, namely the doom loop literature (e.g. Acharya et al. (2014), Brunnermeier

et al. (2016), Cooper and Nikolov (2018), Farhi and Tirole (2018)) and the literature about35

contagion in financial networks (Allen and Gale (2000), Battiston et al. (2012a,b), Acemoglu

et al. (2015), Elliott et al. (2014), Cabrales et al. (2017)). More precisely, we consider an

exogenous network of (unsecured) interbank liabilities after an adverse shock has rendered a

set of banks insolvent. Each bank holds an exogenous amount of its own government’s bonds.

Without any government intervention, there may be a default cascade in the banking system40

that causes large welfare losses due to bankruptcy deadweight costs (depositors are protected

by a well-functioning deposit insurance scheme). The government can, however, reduce these

losses by bailing out some or all of the failing banks. To do so, the government must borrow

the required funds in the sovereign debt market which pushes down bond prices and thus puts

further pressure on banks’ balance sheets. A rational government internalizes this “second-45

round” effect, so bailouts are, by definition, large enough to cover the total shortfall of the

banks to be rescued. The government trades off the welfare losses of a default cascade against

those associated with a higher sovereign default probability, as bank liabilities effectively move

onto the government’s balance sheet.

Our model is related to existing models of intervention in networks, but there is a funda-50

mental difference: Without the doom loop, bailouts of different banks would be complementary

in the sense that bailing out one bank weakly decreases the pecuniary cost of bailing out other

banks (because their shortfall weakly decreases). In our model, however, this relationship can

break down if other banks possess large holdings of sovereign debt. In such a case, bailing out

one bank might make bailouts of other banks even more expensive. In other words, there can55

be both “crowding out” and “crowding in” of further bailouts.

Existing literature distinguishes two types of financial contagion, namely direct contagion

due to counterparty default (see Glasserman and Young (2016) for a survey) and indirect con-

tagion through common asset exposures, fire sales, or deposit withdrawals (Shleifer and Vishny

(2011); Greenwood et al. (2015)). There is an ongoing debate about which type of contagion60

is empirically more relevant, and many studies (including Upper (2011), Brunnermeier et al.
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(2009), and Glasserman and Young (2015)) suggest that it is the latter. The main argument

is that with empirically observed interbank debt levels, shocks would have to be unrealistically

large in order to explain past crisis episodes with direct contagion only.

We argue that direct contagion is an economically significant channel for two main reasons:65

First, as observed in Glasserman and Young (2015), bankruptcy deadweight losses significantly

increase the costs resulting from direct contractual exposures. In this regard, during a hearing

before the House Committee on Oversight and Government Reform in January 2010, former US

Treasury Secretary Timothy Geithner cited fear of the fallout from legal disputes and protracted

negotiations with counterparties in case of bankruptcy as one of the main justifications for AIG’s70

bailout in 2008. Second, the usual drivers of indirect contagion (e.g., deposit withdrawals or

fire sales) are themselves a function of underlying counterparty risk and hence direct contagion.

For instance, depositors may run on banks partly because they expect their bank to suffer from

the default of a counterparty in the network. Even though losses due to fire-sale contagion and

deposit withdrawals may be larger, one would need a clean empirical identification strategy to75

disentangle the two channels.3

In our model, direct and indirect contagion interact in a nontrivial fashion: The government,

by preventing direct contagion (default cascades), can trigger indirect contagion of otherwise

healthy banks that hold domestic sovereign bonds (common asset holdings). However, our

paper abstracts from more general macroeconomic effects, such as an increase in unemployment,80

a reduction in output, or a contraction of government revenues, that might result from bank

failures. These effects, which can be thought of as macroeconomic externalities, were, of course,

central to some of the earlier doom loop literature (see, e.g., Brunnermeier et al. (2016)).

Our first set of results applies to the special case of complete bailouts where the government

can only bail out all banks or none. We show (not surprisingly) that the doom loop makes85

complete bailouts socially more costly if a larger amount of sovereign debt is held by domestic

banks. Moreover, for a given aggregate amount of sovereign debt held by the banking sector,

it is socially preferable that it be held by relatively well-capitalized banks. The intuition for

3To the best of our knowledge, no natural experiment exists that allows to measure the effect of systemic
risk from fire-sales and deposit withdrawals independently of the counterparty contagion channel stemming from
contractual relations.

4



these results is straightforward: Financing a bailout imposes a cost on banks that are exposed

to sovereign default risk. The larger those banks’ loss-absorbing equity buffer, the lower welfare90

losses will be. If, in contrast, public debt is largely held by weakly capitalized banks, the doom

loop hits them with a stronger force and the required bailout may become very large.

Our second set of results generalizes the bailout decision by allowing the government to

bail out any subset of banks (partial bailouts). The government chooses the set of surviving

banks to maximize social welfare, taking into account impacts of the bailout of any bank on95

other banks and on sovereign risk. Our analysis shows that whether or not a given bank will

be bailed out depends jointly on its position in the network and its sovereign debt exposure.

We identify a measure of centrality (“node depth” as in Glasserman and Young (2015)) that

captures a bank’s contagion potential depending on its position in the network. Among two

otherwise identical banks, the government prefers to bail out the one with higher node depth;100

this would be true even without of the doom loop. With the doom loop active, however, the

presence of sovereign debt on banks’ balance sheets - even if it is completely equally distributed

- further strengthens the importance of centrality as a determinant of the government’s decision

of which bank(s) to bail out.

We also find that, in general, higher domestic sovereign exposure decreases banks’ chances of105

being bailed out because of a “doom loop multiplier” effect: Every dollar raised for the bailout

of a given bank lowers the value of sovereign debt on its balance sheet and thus increases

the required bailout expenditure. However, for systemically important banks there can be a

countervailing force: Letting a systemically important bank fail while others are bailed out can

lead to large additional deadweight losses among its creditors due to the associated drop in110

the value of its sovereign debt holdings. This finding implies that given a network of interbank

liabilities, banks can use their sovereign debt position as a strategic tool to increase the odds of

being bailed out. Our model thus provides a novel, network-based explanation for the increase

in “home bias” in banks’ sovereign portfolios during the European sovereign debt crisis.

2. Related Literature115

As noted in the introduction, our paper leverages insights from two strands of literature: the

financial contagion literature and the large “doom loop” literature that has emerged in recent
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years in response to the European sovereign debt crisis.

The financial contagion literature began well before the 2008 crisis, with the seminal articles

of Kiyotaki and Moore (1997) and Allen and Gale (2000) who examined the financial stability120

implications of different network structures. These studies use stylized networks to show how

contagion propagates when individual financial institutions are hit by idiosyncratic negative

liquidity shocks. Subsequent developments include Eisenberg and Noe (2001); Greenwald and

Stiglitz (1993) who explore how bankruptcy costs contribute to bankruptcy cascades and show

the existence of multiple equilibria; Glasserman and Young (2015) who, taking account of125

bankruptcy costs, assess the extent of contagion; Battiston et al. (2012a,b) who analyze the

effect of diversification on systemic stability; Acemoglu et al. (2015) who focus on the systemic

risk implications of different network topologies; and Elliott et al. (2014) and Cabrales et al.

(2017) who model network linkages as equity cross-holdings or direct claims on other banks’

projects. We refer to Cabrales et al. (2016) and Glasserman and Young (2016) for excellent130

surveys on contagion in financial networks.

Closely related to our paper is the small, yet growing, literature that analyzes government

interventions in interbank networks. For example, Bernard et al. (2022) study under which

conditions the government can credibly commit to organize an incentive-compatible bail-in in

which solvent banks contribute to rescuing the defaulting banks. Altinoglu and Stiglitz (2020)135

show how systemically important institutions can emerge as a result of banks expecting a public

bailout. Erol (2019) shows that the expectation of bailouts leads to higher connectivity and a

core-periphery network structure. In these papers, the government’s willingness to bail out the

banks ex post makes the whole banking system more fragile ex ante. In contrast to our model,

however, Erol (2019) does not model the government’s bailout decision explicitly.140

The doom loop literature itself has developed along two strands, as noted by Brunnermeier

et al. (2016). The first is the “real economy loop” where sovereign stress reduces economic

activity and lowers tax revenues, thereby increasing the stress even more. A standard channel

through with this occurs is credit: sovereign stress reduces the value of public debt on banks’

balance sheets and thereby induces a credit crunch.4 The second is the direct “bailout loop”145

4Altavilla et al. (2017) and Popov and Van Horen (2015) find that during the European sovereign debt crisis
banks with higher exposure to stressed sovereigns cut their lending to the domestic real economy significantly
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that constitutes the focus of this paper.

Acharya et al. (2014) provide empirical evidence for both “directions” of the loop. They

show that (a) bailouts triggered the rise of sovereign credit risk in 2008 and (b) changes in

sovereign CDS rates in turn explain changes in bank CDS rates. The perceived stabilization

of the banking sector through a bailout can thus turn out to be a “Pyrrhic victory”. In more150

recent work, Hur et al. (2021) confirm the finding that the “diabolic loop” caused by bank

bailouts can be too costly to justify them.

Acharya et al. (2014) and Farhi and Tirole (2018) develop theoretical models of the “deadly

embrace” that are related to ours, but do not consider interbank linkages and therefore the

implications of network structure. Cooper and Nikolov (2018) study the strategic interaction155

between banks and the government. They show that if the government cannot commit to a

credible no-bailout policy, banks in a subgame perfect Nash equilibrium anticipate a bailout and

choose insufficient equity buffers. While in our model banks are inactive agents with exogenous

balance sheets, our analysis of partial bailouts suggests that in a dynamic setting banks could

influence the odds of being bailed out through their sovereign debt exposure.160

Finally, our paper indirectly relates to a strand of literature that empirically tests different

hypotheses of why euro area banks exhibited increasing sovereign debt “home bias” during and

after the crisis. Altavilla et al. (2017) and Crosignani (2021) all find that the observed increase

in domestic sovereign debt holdings during the crisis was stronger for poorly capitalized banks.

This finding is worrisome if viewed in the context of our results on complete bailouts. As we165

show in the paper, bailouts are socially more costly if domestic sovereign debt is largely held

by fragile banks.

3. Model

Our model has three periods t = 0, 1, 2 and features a set of banks N = {1, . . . , n} and

a benevolent government that maximizes welfare. In the initial period t = 0, an exogenous,170

unanticipated shock (e.g. a pandemic or the burst of a housing bubble) hits a subset of the

banks and lowers the value of their assets below that of their liabilities. Without a public

more than banks with low exposure.

7



bailout in t = 1 a cascade of bank defaults with associated bankruptcy deadweight costs may

unfold. However, the government can decide to issue new debt in t = 1 and transfer funds to

the insolvent banks to prevent the default cascade. In period t = 2 all sovereign debt matures175

and the government can either repay or not. We describe all relevant model components and

the government’s tradeoff in the following paragraphs.

3.1. Banks

The banks are connected through an exogenous network of unsecured interbank liabilities

described by the matrix L = (Lij) for i, j ∈ N , where Lij ≥ 0 represents the gross value of bank180

j’s liability to bank i and Lii = 0 ∀i ∈ N . We denote the total interbank liabilities of bank

j by Lj =
∑n

i=1 L
ij and use L to denote the corresponding n × 1 vector. Moreover, it will be

useful to define the relative liability matrix Π with entries πij = Lij/Lj if Lj 6= 0 and πij = 0

otherwise. In words, πij ∈ [0, 1] is the share of bank j’s interbank liabilities that it owes to

bank i. Hence, the n× 1 vector (ΠL) contains the book values of each bank’s interbank assets.185

For instance, (ΠL)i =
∑n

j=1 π
ijLj is the book value of bank i’s interbank assets.

In addition to interbank assets and liabilities, bank i’s balance sheet contains (a) outside

assets ci ≥ 0 (including cash and loans to the non-financial sector), (b) (senior) deposits di > 0,

and (c) exogenous domestic sovereign bond holdings bi ≥ 0 evaluated at the endogenous price

qt. The value of equity at t = 0, defined as assets minus liabilities, is denoted by

V i
0 =

(
ci +

n∑
j=1

πijLj + q0b
i − di − Li

)+

∀i ∈ N, (1)

where we denote by x+ = max(x, 0) the positive part of x. To simplify notation, we define n×1

vectors d = (di)ni=1, c = (ci)ni=1, b = (bi)ni=1 and V0 = (V i
0 )ni=1. A stylized balance sheet at time

t = 0 is shown in Figure 2.

[Figure 2 about here.]190

Some banks face a shortfall of χ0 ≡ (L + d − c − q0b − (ΠL))+, e.g., as a consequence of a

natural disaster or a pandemic. Since all bank liabilities are due at t = 1 the insolvent banks

will have to default on their obligations if they are not bailed out. We denote the set of these

fundamentally defaulting banks by F ≡ {i|χi0 > 0}.

8



Since banks are interlinked through debt contracts, the fundamental default of one or more195

banks can lead to further defaults elsewhere in the system. If bank j defaults, it has to liquidate

all its (interbank and other) assets and repay its creditors according to their seniority. Deposits

dj have seniority over interbank liabilities Lj, and thanks to deposit insurance, depositors are

always reimbursed for their losses. Among interbank creditors, the total repayment pj < Lj is

then distributed pro rata, i.e., the creditor bank i of a defaulting bank j is repaid according to200

its share πij in bank j’s interbank liabilities.

As in Glasserman and Young (2015) we assume that whenever a bank defaults, some of

its assets are destroyed (“deadweight loss”). More precisely, the default of bank j comes at a

deadweight loss of βχj1 where χj1 ≡ (Lj + dj − cj − q1b
j −
∑n

k=1 π
jkpk)+ is bank j’s shortfall in

period t = 1 and β > 0 a scaling parameter.5 The deadweight loss is increasing in the bank’s205

shortfall and can be interpreted as legal costs or losses due to delays or an inefficient allocation

of resources during the bankruptcy procedure.

We further assume that interbank liabilities are cleared simultaneously at t = 1, as in

Eisenberg and Noe (2001).6 This leads to the following definition:

Definition 1. A clearing payment vector p = (p1, . . . , pn) for a financial system (L,Π, c, d, b)

is a fixed point of

pi =


Li if ci + q1b

i +
∑n

j=1 π
ijpj ≥ Li + di(

ci + q1b
i +

n∑
j=1

πijpj − di − βχi1

)+

otherwise
(2)

The existence of multiple, Pareto ranked clearing payment vectors in this setting follows210

directly from Proposition 3 in Glasserman and Young (2015). Following the standard convention

in this literature, we focus on the unique Pareto dominant clearing payment p̄, i.e., the “best

case” scenario with the highest repayments.7 We define the set of defaulting banks under a

5According to our definition, the deadweight loss caused by a defaulting bank is bounded from above by the
total value of its assets. This feature reflects the fact that large banks can generally cause more damage than
small banks. To keep the model tractable, we focus on settings where this upper bound is not binding, i.e., χi0
and β are small enough to ensure that no bank’s assets are completely wiped out in bankruptcy.

6Uncertainty about the order of defaults and delays in repayments would add to the severity of default
cascades. In the model, we capture these frictions in reduced form as deadweight losses.

7In a recent article, Jackson and Pernoud (2020) study the optimal bailout transfers needed to avoid self-
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clearing payment vector p̄ as D(p̄) ≡ {i|p̄i < Li}. Clearly, D(p̄) ⊇ F because D(p̄) can also

include banks that default due to contagion effects triggered by fundamentally defaulting banks.215

3.2. Government

In our model, the government faces a tradeoff in minimizing expected welfare losses at t = 1.

On the one hand, it wants to avoid bank defaults and the associated deadweight losses. On

the other hand, rescuing banks with debt-financed bailouts is also costly because liabilities are

effectively moved from private to the public balance sheet, resulting in higher sovereign spreads220

and a higher probability of a costly sovereign default.

We assume that all sovereign debt matures in the final period t = 2 and is held either by

domestic banks or risk-neutral investors (external to the network), so the (exogenous) total

initial stock of sovereign debt is given by B0 =
∑n

i=1 b
i + bInv0 , where bInv0 denotes the holdings

of risk-neutral non-bank investors.225

At t = 1 the government can choose to prevent a default cascade by issuing additional debt

to finance bank bailout transfers.8 More precisely, the government chooses the set S ⊆ N

of surviving banks (and equivalently its complement Sc = N \ S) to minimize the expected

welfare losses arising from bank bankruptcies and (expected) sovereign default, to be defined

further below. By choosing the set of surviving banks, the government effectively also chooses

(a) the unique clearing payment vector p̄(S) : p̄i = Li ∀i ∈ S, and (b) the unique set of bailout

transfers that is just sufficient to cover the shortfalls of all banks in S:

ti(S, q1) =
(
Li + di − ci − q1b

i − (Πp̄(S))i
)+ ∀i ∈ S (3)

To raise a given amount of total bailouts T (S, q1) =
∑

i∈S t
i(S, q1), the government needs to

fulfilling cycles of defaults, i.e., how to achieve the Pareto dominant clearing payment vector.
8Our notion of bailouts, i.e., direct transfers (equivalent to a capital injection in our model), is not the

only conceivable way to prevent bank failures. For example, debt renegotiation, forced mergers with healthy
banks, or voluntary, incentive-compatible bail-ins of surviving creditor banks as in Bernard et al. (2022) are also
appropriate resolution policies. A fourth alternative would be a tax-financed bailout (instead of debt-financed),
which would affect the price of sovereign debt as well through a loss in GDP. The optimal bailout design is
outside the scope of this paper.
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increase the outstanding debt level to B1 > B0, so to satisfy the following budget constraint:

q1(B1 −B0) = T (S, q1) (4)

In the final period t = 2 the government raises taxes to repay its obligations B1. We assume

that the government’s tax capacity (i.e., the maximum revenue it can raise) τ̃ is a random vari-

able that follows a continuous and strictly monotonic cumulative distribution function (CDF)

F (τ).9 If τ ≥ B1, the government raises exactly enough to repay all debt in full. If, however,

τ < B1, we assume the government collects nothing and fully defaults on all its obligations,

i.e. bondholders do not receive any repayment at all.10 It then follows that the probability of a

sovereign default is given by P (Default) = F (B1) = F
(
B0 + T (S,q1)

q1

)
. Because the cumulative

distribution function is increasing, it follows immediately that the default probability increases

with the required bailout expenditures, but decreases with respect to the bond price q1. In

words, a higher bond price in period t = 1 will make a sovereign default less likely. At the same

time, however, the bond price depends on the government’s default probability in the following

way: The marginal buyers of sovereign bonds are investors who discount future cash flows at

the risk-free gross interest rate R ≥ 1. Because we assume that these investors are risk-neutral

and have deep pockets, the market-clearing sovereign debt price is given by

q1 =
1− P (Default)

R
=

1− F
(
B0 + T (S,q1)

q1

)
R

. (5)

At this price q1 risk-neutral investors are indifferent between buying the bond with expected

payoff 1− P (Default) and the risk-free asset that guarantees the return R.

Equation (5) is a nonlinear equation which, in general, admits multiple solutions. As a result,

there may exist multiple equilibrium sovereign debt prices, just like in the canonical models

9One interpretation would be that the government can raise any revenue it desires, but only at a stochastic
cost. In this alternative scenario the government would optimally default whenever the realization of this cost
exceeds some threshold.

10This assumption buys us tractability and leads to a simple analytical expression for q1. If one were to assume
partial repayment, the numerator in equation (5) would also include the integral over all possible realizations
of τ̃ and the corresponding pro rata repayments. The economic mechanism we want to capture is qualitatively
unaffected by this “all-or-nothing” assumption on tax collection.
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of self-fulfilling debt crises such as Calvo (1988) or Cole and Kehoe (2000). This multiplicity230

arises from the fact that both sides of equation (5) are increasing in q1. How many equilibrium

prices exist depends on the parameters R and B0, the bailout transfer in (3) and, importantly,

the shape and domain of F (τ). We make the following assumption:

Assumption 1. For a given network (L,Π, c, d, b) and parameters (B0, R), the tax capacity τ̃

follows a Pareto distribution with a heavy tail, i.e.,

F (τ) = 1−
(
B0

τ

)α
(6)

with τ ≥ B0 and α < 1.

This assumption has several implications. First of all, it imposes a lower bound on the235

space of possible realizations of τ̃ and implies F (B0) = 0, so it ensures that without an increase

in debt the government can always repay its debt with certainty. As a consequence, without

bailouts the equilibrium price in the sovereign debt market is pinned down at q1 = R−1.11

Second, because F (B0 + ε) > 0 ∀ε > 0, if public debt increases (e.g. due to a positive

bailout at t = 1) the government will default at t = 2 with a non-zero probability. In other240

words, even a small bailout always comes at the cost of increasing sovereign spreads.12

Finally, the parameter α < 1 guarantees a unique equilibrium sovereign debt price q1 ∈

(0, R−1).13 Note that the Pareto distribution has been chosen for analytical tractability, but

any other distribution with sufficiently slow decay would also yield a unique equilibrium price

under mild extra conditions. Even with more general distributions that would generate multiple245

(stable or unstable) equilibrium prices, our results would still survive locally for the doom loop

equilibria with q1 < R−1. For an extensive discussion, see Online Appendix OA.A.1.

What remains to be defined is the initial sovereign debt price q0. We assume that market

11This normalization is without loss of generality. When the government considers a bailout, it is concerned
with the implied change in its default probability, not with the level.

12Note that if a monetary authority were to lower the risk-free rate R it would stabilize bond prices and thus
help to mitigate the impact of the doom loop. Alternative tools include outright bond purchases and collateral
policy, whereby the central bank can extend the set of securities (e.g., to include more risky sovereign bonds)
that banks can use as collateral to obtain lender-of-last-resort funding.

13Strictly speaking, a “market breakdown” equilibrium in which q1 = 0 (the government defaults with cer-
tainty) always exists for T > 0 as limτ→∞ F (τ) = 1 because F (·) is a CDF. In our analysis we deliberately
ignore this extreme coordination failure.
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participants at t = 0 cannot anticipate the government’s bailout choice (even after the negative

shock hits bank assets), so it is not reflected in the t = 0 bond price given by

q0 =
1− F (B0)

R
=

1

R
. (7)

As a consequence, whenever T (S, q1) > 0, we have q1 < q0, i.e., the sovereign spread jumps up

at t = 1. In contrast, whenever T (S, q1) = 0, we have q1 = q0 = 1/R.14

We are now in a position to formally state the government’s problem: The government

chooses the optimal subset of surviving banks to solve

max
S⊆N

w(S) = −

[
β
∑
i∈Sc

(
Li + di − ci − q1b

i −
n∑
j=1

πij p̄j(S)

)
+ γB1P (Default)

]

s.t. q1 =
1− F

(
B0 + T (S,q1)

q1

)
R

T (S, q1) =
∑
i∈S

(
Li + di − ci − q1b

i − (Πp̄(S))i
)+
,

(8)

i.e., it maximizes welfare w(S) by minimizing welfare losses (in squared brackets) from two250

sources: The first welfare cost term contains the part of defaulting banks’ assets that is lost in

bankruptcy. The parameter γ > 0 measures deadweight losses per unit of defaulted sovereign

debt, and is a proxy for litigation costs and the penalty of losing access to debt markets. The

two constraints indicate that the government internalizes the effect of its choice of S on the

bond price and bailout expenditures (jointly determined).255

Note that the deposit insurance budget is separate from the “bailout budget”, i.e., the

government is not concerned with the cost of reimbursing depositors. In practice, deposit

insurance schemes are usually funded through banks’ ex-ante contributions. According to a

survey by Baudino et al. (2019), even though most deposit insurance schemes ultimately benefit

from a fiscal backstop, the vast majority of them uses private sources first if their main deposit260

insurance fund is depleted. For example, in 2009 the Federal Deposit Insurance Corporation

(FDIC) required insured banks to prepay three years worth of deposit insurance premiums in

14Acharya et al. (2014) showed that bank bailouts triggered the doom loop. This result motivates our
assumption that the initial shock and the government’s bailout response are unanticipated events.
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order to replenish its depleted reserves.15 By recouping used funds from within the banking

industry, deposit insurance schemes aim to avoid taxpayer bailouts “through the backdoor”.

4. Equilibrium Bailout Transfers and the Doom Loop265

We begin with an observation about the sovereign debt price q1. As explained in Online

Appendix OA.A, it is decreasing in the amount of bailout expenditures, i.e., a higher price q1

can only be achieved through lower bailout expenditures and vice versa.

Lemma 1. The equilibrium price of sovereign debt q1 is decreasing in equilibrium aggregate

bailout transfers T (S, q1).270

Using Lemma 1, we next analyze the bailout decisions in the presence of a doom loop. In

Section 4.1, we focus on complete bailouts, i.e., we restrict the government’s choice to either N

(all banks are bailed out, so p̄ = L) or D(p̄)c (no bailout). In Section 4.2, we extend the analysis

to the more general case where the government can optimally choose the set of surviving banks.

All proofs of technical results are relegated to Online Appendix OA.C.275

4.1. The Doom Loop with Complete Bailouts

To analyze how the sovereign debt distribution affects the strength of the doom loop and

thus the government’s bailout decision, it is helpful to first define the bailout space, i.e., the set

of initial shocks for which the government prefers a complete bailout to inaction in equilibrium.

Since we model the adverse shock as a reduction of banks’ “cash assets”, everything else equal, a280

larger initial shock corresponds to a (componentwise) weakly smaller vector c. We can therefore

define the bailout space as a subset of the space of vectors c (i.e., “cash” assets) for a given

network structure and parameters.

Definition 2. For given (L,Π, b, d), bankruptcy cost parameter β, risk-free interest rate R,

and fiscal parameters (B0, α, γ), the bailout space is defined as

Ψ ≡
{
c ∈ Rn : wB > wNB

}
(9)

15See https://www.fdic.gov/news/press-releases/2009/pr09212.html.
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with wB = w(N) and wNB = w(D(p̄)c).

For comparative statics results regarding the bailout space, please see Online Appendix285

OA.B.

Our main research question is how the interbank network topology and the distribution

of sovereign debt jointly affect the government’s bailout choice. In the context of complete

bailouts, answering this question boils down to evaluating the relative effects of sovereign debt

distribution and network structure on wB and wNB.290

First note that in the case of complete bailouts all interbank liabilities are paid in full, so

the network structure only matters for wNB, as the required bailout that determines wB is

independent of the network structure. In contrast, the presence and distribution of sovereign

debt only affects wB as without a bailout there is no doom loop and we have q1 = 1/R in

equilibrium. Specifically, what matters for wB is (a) how much debt the banking sector holds,295

and (b) which banks hold the debt. We address both points in the following two propositions.

Proposition 1 (Sovereign exposure and the bailout space). For an identical initial level of

public debt B0, let (L,Π, c̃, d, b̃) and (L,Π, ĉ, d, b̂) be two financial systems such that

1. b̂i ≥ b̃i ∀i ∈ N with at least one inequality strict

2. ĉi = c̃i − (b̂i − b̃i)/R > 0.300

Then with complete bailouts ŵB ≤ w̃B and Ψ̂ ⊆ Ψ̃.

Conditions 1 and 2 in the Proposition ensure that if we move from the tilde-system to the

hat-system, every bank that now holds more sovereign debt holds less cash, so that the overall

initial equity or shortfall positions remain unchanged (χ̂0 = χ̃0). In other words, these banks

only differ in their asset composition across the two scenarios, but not in their total asset size305

or leverage. The idea of the proposition is that increasing the amount of domestic sovereign

debt held by banks amplifies the feedback loop between a falling debt price q1 and even higher

transfers T (N, q1). Therefore, complete bailouts become more costly and as a result Ψ becomes

smaller. Note however that ŵB is only weakly smaller than w̃B, because it is possible that the

banks with increased sovereign exposure are well capitalized and do not require a bailout in the310

first place. In that case, even though their shareholders suffer higher book value losses than in

the tilde-system, these do not translate into defaults and hence do not affect the bailout space.
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Clearly, if the banks with sovereign exposure are well capitalized, they can absorb a drop

in q1 better than poorly capitalized banks. This higher loss-absorbing capacity mitigates the

“doom loop”-related cost of a bailout because fewer banks need to be bailed out (see equation315

(3)). Even if bailing out the fundamentally defaulting banks makes additional bailouts necessary

(i.e. ti(N, q1) > 0 for some i /∈ F due to q1 ↓), this bailout will still be less costly than if the

sovereign debt was held entirely by the F -banks. We present an example to illustrate the

economic forces at play.

Example 1. Let B ≡ {i : bi > 0} denote the set of banks that hold sovereign debt and consider320

the following scenario: Suppose there is only one fundamentally defaulting bank i, and all

sovereign debt in the banking sector is held by a bank j 6= i, so F and B would be disjoint

singletons. Suppose further that the government chooses to bail out bank i, thereby causing a

drop in the bond price that would render bank j insolvent. Then, according to our definition of

complete bailouts, the government also has to transfer bailout funds to bank j ∈ B. However,325

as long as bank j initially had a positive equity buffer, the total required bailout (ti + tj) will

be smaller than if only bank i had held the sovereign debt stock (i.e. if F = B = {i}) and the

doom loop had hit bank i without any capital buffer mitigation.

The insight from this stylized example carries over to more dispersed distributions of

sovereign debt among banks. We formally state this intuitive result in the following propo-330

sition:

Proposition 2 (Sovereign exposure and capital buffers). Let (L,Π, c̃, d, b̃) and (L,Π, ĉ, d, b̂) be

two financial systems such that

1. b̂i < b̃i ∀i : V i
0 < b̃i(R−1 − q̃max1 )

2.
∑

i∈N b̂
i =

∑
i∈N b̃

i
335

3. ĉi = c̃i − (b̂i − b̃i)/R > 0,

where q̃max1 is the unique positive solution of Rq̃max1 = 1 − F
(∑

i∈F χi
0

q̃max
1

)
. Then with complete

bailouts ŵB > w̃B and Ψ̂ ⊃ Ψ̃.

The two financial systems described in the proposition only differ in the distribution of

domestic sovereign debt, with aggregate sovereign exposure in the banking system and initial340
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shortfalls held constant (conditions 1 and 3 imply χ̂0 = χ̃0 ≡ χ0). More precisely, the banks

with capital buffers V i
0 below an exogenous threshold hold less sovereign debt in the hat-system

than in the tilde-system (condition 1), which requires that banks with V i
0 above the threshold

hold more.16 Then, the proposition states that redistributing domestic sovereign debt from

weakly capitalized banks to more healthy banks makes a complete bailout less costly. The345

intuition behind this result is that if banks with sovereign exposure have larger capital buffers

they can absorb a drop in the value of sovereign debt more easily without becoming insolvent

themselves (and thus requiring a bailout). Therefore, aggregate bailouts and welfare losses are

smaller.

We conclude our discussion of the benchmark case with complete bailouts by briefly touch-350

ing upon the policy dimension of our findings. Proposition 2 suggests that from an ex ante

perspective (with uncertainty about idiosyncratic fundamental shocks) it is socially preferable

that domestic sovereign debt be held by the “safest” banks, i.e., those that are the least likely

to default fundamentally. Against this backdrop, the findings in Acharya and Steffen (2015),

Altavilla et al. (2017), and Crosignani (2021) that in the recent European sovereign debt crisis355

the most fragile banks increased their domestic sovereign exposure disproportionally becomes

even more worrisome; rather than “too big to fail” they might have become “too debt-loaded to

be saved”. Our results therefore provide an immediate rationale for bank capital requirements

that increase with sovereign debt exposure (e.g. through non-zero risk-weights). We refer to

Véron (2017) for a detailed proposal and a comprehensive survey of the policy debate.360

4.2. The Doom Loop with Optimal Bailouts

The magnitude of past bailout expenditures, combined with extensive media coverage of

bailouts, may have given the impression that banks are effectively always bailed out (with the

prominent exception of Lehman Brothers in 2008). In fact, however, there have been many bank

failures since the global financial crisis in which junior creditors incurred losses. For example,365

according to a list published by the FDIC, 563 US-banks have failed since October 1, 2000.17

16This threshold depends on q̃max1 , i.e., the upper bound on the bond price in case of a bailout. This is the
price that would prevail if only the initial shortfall had to be covered because none of the banks in F held any
sovereign debt. Hence, the banks referred to in condition 1 are those whose capital buffers could not even absorb
the lowest possible drop in the sovereign bond price.

17See https://www.fdic.gov/resources/resolutions/bank-failures/failed-bank-list/ for details.
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In Europe, severe banking crises in Iceland and Cyprus even saw (mostly foreign) depositors

lose large shares of their investments. Moreover, the failure of the Spanish Banco Popular in

2017 was the first litmus test of the new bail-in regime with significant creditor participation.

Hence, real-world bailouts have not always and everywhere been complete.370

In fact, recent regulatory reforms such as the establishment of the Single Resolution Mech-

anism (SRM) in the euro area are supposed to make bank failures less costly, and so to ideally

avoid public bailouts altogether. In the context of our model, these efforts can be understood

as a reduction in the parameter β, which makes it more attractive to let at least some banks

fail. In that sense, studying optimal partial bailouts is even more policy-relevant now than it375

was ten years ago.

Once we drop the restriction to complete bailouts, the problem in (8) becomes a highly

complex optimization over sets that involves several nonlinearities and fixed points. Hence, it

is generally difficult to make analytical statements about the optimal set of surviving banks

S∗.18 Therefore, to develop a better understanding of the economic forces that determine380

the government’s bailout decision, from now on we ignore the “global” solution of (8) and

focus instead on “local” analysis in the following sense: Suppose that instead of choosing the

optimal subset among all feasible subsets of surviving banks, the government could only bail

out one bank at a time. Starting from the laissez faire outcome with defaulting banks D(p̄),

the government computes for every troubled bank the net welfare gain that would result from385

bailing it out. As long as a welfare improvement is possible in this way, the government adds

the bank with the highest net welfare gain to the set of surviving banks. The procedure stops

once there is no troubled bank left that can be bailed out without increasing welfare losses.

There is no guarantee that the set thus constructed coincides with the “globally” optimal

set S∗ which solves (8). However, the fictional sequential procedure allows us to at least analyze390

“local” optima, i.e., we can pin down bank-specific properties that determine which bank will

be bailed out at any given step of the procedure. In this way, even though it is impossible to

characterize the global solution of the optimal bailout problem analytically, we can make valid

statements about incremental improvements. What is more, the sequential procedure allows

18It is, however, possible to solve (8) numerically. For details about the algorithm we use, see Online Appendix
OA.E.
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at least a partial characterization of the “globally” optimal solution: Suppose the government395

starts from the no-bailout scenario. If it can find at least one bank whose bailout would deliver

a positive net welfare gain, then the optimal solution is definitely not “no bailout”. By the

same logic, starting from the complete bailout scenario, if there is at least one rescued bank that

would increase welfare if it failed instead, the optimal solution cannot be a complete bailout.

We begin the analysis with a useful decomposition of the net welfare effect of bailing out400

bank i which we call ∆iw. On the one hand, the bailout brings a benefit by not only avoiding

direct bankruptcy deadweight losses βχi1, but also by increasing bank i’s interbank repayments

from p̄i to Li, thus reducing the shortfalls and deadweight losses of i’s creditors, their creditors,

and so forth. Some troubled banks may even become solvent as a result. On the other hand,

the bailout comes at a cost: First, the increase in sovereign debt implies a lower sovereign405

debt price q1 and a higher probability of sovereign default; second, the drop in q1 increases the

shortfalls and deadweight losses in other banks that are still insolvent after bailing out bank i.

We refer to these two sources of welfare losses, respectively, as γ-component and β-component,

named after their respective coefficients in the social welfare function (8). In what follows we

first elaborate on all components individually before we state the decomposition in a lemma.410

We start with an observation about the benefit of bailing out bank i: For a given set of

surviving banks S, by bailing out bank i ∈ Sc the government avoids bankruptcy deadweight

losses of

β
∑
j∈I

[
χj1 + (Lj − p̄j(S))×(∑

k

πkj + (1 + β)
∑
k

∑
l

πlkπkj + (1 + β)2
∑
k

∑
l

∑
m

πmlπlkπkj + . . .

)]
,

(10)

where I denotes the set of banks that become solvent through the bailout (with i ∈ I) and

all summations except the first are over the remaining default set Sc \ I. The expression in

(10) captures (a) the direct impact of avoiding bankruptcy deadweight losses βχj1 for banks in

I, and (b) the indirect impact of their increased interbank repayments. The idea is that the

increase in repayments from p̄j(S) to Lj not only increases j’s creditors’ assets available for415

repayment, but also reduces their shortfall and hence their deadweight losses. For example, if
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bank j fully repays, its creditor k’s shortfall decreases by πkj(Lj − p̄j(S)) and its repayment p̄k

even increases by (1 + β)πkj(Lj − p̄j(S)), and so on. In other words, the positive effect of the

bailout travels through the subnetwork of defaulting banks and is amplified by the bankruptcy

cost coefficient β at each node.420

The expression in (10) can be further simplified. Observe that the increase in interbank

repayments is bounded from above by Lj, namely if bank j originally could not even partially

repay its interbank liabilities (p̄j(S) = 0). Otherwise, that is if p̄j(S) > 0 ∀j ∈ I : Lj > 0, we

can use Definition 1 to show that Lj − p̄j(S) = (1 + β)χj1. For ease of notation we restrict our

subsequent analysis to the latter case, so that the expression in (10) becomes

β
∑
j∈I

χj1

(
1 + (1 + β)

∑
k

πkj + (1 + β)2
∑
k

∑
l

πlkπkj + . . .

)
︸ ︷︷ ︸

Cj

(11)

We remark, however, that our results would qualitatively hold in the general case where depos-

itors receive payments through deposit insurance, i.e., if there exists some bank j with positive

interbank liabilities Lj > 0 which makes zero payments to its creditors in the network.

Borrowing from Glasserman and Young (2015), we refer to the term in parentheses as the

“node depth” of bank j and denote it by Cj which stands for “centrality”. Node depth measures425

the extent to which any loss originating at bank j gets spread and amplified in the subnetwork

of defaulting banks. Therefore, it is naturally increasing in the set of defaulting banks, i.e., for

a given network Π, node depth of any individual bank is weakly higher if more banks default.

Let D be a set of defaulting nodes, and ΠD be the |D| × |D| matrix obtained by restricting the

relative liabilities matrix Π to D. Moreover, denote by ID be the |D|× |D| identity matrix, and430

let Π′D denote the transpose of matrix ΠD. Then, the vector of node depths of banks in D is

given by [ID − (1 + β)Π′D]−1 · 1D if the spectral radius of (1 + β)Π′D is less than one.

This technical condition has a clear economic interpretation: For node depth to be well

defined, if there are cycles in the subnetwork of defaulting banks (i.e., if there exists a sequence

(πi1i2 , πi2i3 , . . . , πiki1), im ∈ D and m = 1, . . . , k, whose entries are all non-zero), the entries of435

the relative liability matrix ΠD have to be sufficiently small. In other words, in case of cycles

the defaulting banks need to owe a sufficient fraction of their liabilities to solvent banks outside
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of D. The higher the bankruptcy cost parameter β, the lower the relative exposures within

the defaulting set must be, otherwise there would be too much amplification of welfare losses

within D and the sums in (10) and (11) would not converge. In this case (i.e., with a spectral440

radius greater than one), unless a bank is bailed out to break the cycle, at least one bank’s

assets will be wiped out entirely.

For example, if the set of defaulting banks had a ring structure with πij = 1 if j = i + 1,

modulo n, the spectral radius would be greater than one and node depth could not be computed

using the matrix inversion formula given above. Rather than fading out, any dollar of shortfall445

at a given bank would be fully transmitted and amplified at every node as it travels through

the ring until at least one bank’s assets are completely depleted. In contrast, if the interbank

network is complete and symmetric with πij = 1
n−1
∀i, j ∈ N , node depth can be computed

as long as the total number of banks n exceeds the number of defaulting banks by a sufficient

amount. The critical number of banks increases with the default cost parameter β.19
450

Even though the algorithm used to solve the “global” problem in (8) can easily deal with

situations where the spectral radius is greater than one, we focus on the case where node depth

can be computed and used as a selection tool for our analytical results.

From an economic perspective, the expression in (11) suggests that the benefit per dollar

spent is the largest if targeted at banks with (a) high potential to avoid contagious defaults (i.e.,455

a large set I), and (b) high centrality in the sense of node depth. However, a comprehensive

analysis of the government’s tradeoff also requires to analyze the cost of a bailout.

We begin by considering the γ-component, i.e., the part of the cost that is directly related

to the pecuniary expenditure the bailout of bank i requires. The increase in the level of public

debt (and thus in the sovereign default probability) depends on four items: First of all, from460

equation (3) we can see that, ceteris paribus, a larger shortfall χi1 clearly requires higher bailout

expenditures and thus leads to a sharper increase in the sovereign default probability and a

sharper drop in the bond price q1. Second, there is a doom loop multiplier effect: a higher

sovereign exposure bi also leads to higher bailout expenditures because every dollar raised for

the bailout of bank i increases its effective shortfall by an amount proportional to bi. Therefore,465

19In Online Appendix OA.D, we derive exact conditions on model primitives which guarantee a spectral radius
smaller than unity for default sets of size two and three.
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even for identical shortfalls, bailing out banks with more sovereign debt on their balance sheets

comes with a higher γ-component than bailing out low-exposure banks. We refer to Online

Appendix OA.C for a formal proof of this “doom loop multiplier” property. Third, depending

on the sovereign exposure of banks in S, it may happen that the drop in q1 makes additional

bailout transfers to other banks necessary to prevent their insolvency. The cost of raising these470

funds will also be reflected in the γ-component. Fourth and finally, it matters whether or not

bank i is part of a cycle in the subnetwork of defaulting banks Sc. If so, then bailing out i

eventually also increases the interbank repayments it receives, thereby reducing the effective

shortfall the government needs to cover according to (3). Summing up, to minimize the γ-

component of the bailout cost, the government would ideally bail out banks that have only475

a low shortfall to begin with, hold little sovereign debt, and have interbank claims on other

defaulting banks that have themselves (direct or indirect) claims on the bailout candidate.

To complete the picture, we turn to the β-component which describes the additional default

deadweight losses that are triggered by the drop in the price of the sovereign bond, which

we denote by ∆iq1 < 0. The bailout of bank i causes deadweight losses in the amount of480

|β∆iq1b
j| for each defaulting bank j ∈ Sc \ I which will then be amplified in proportion to

their centrality Cj. This means that the side effects of a bailout can become very costly if the

remaining defaulters are highly exposed to their government and very central in the subnetwork

of defaulting banks. It is exactly this key observation that will give rise to our main result

further below.485

Lemma 2 (Decomposition of net welfare effect). For a given initial set of surviving banks S,

the net welfare effect ∆iw of bailing out bank i ∈ Sc can be written as

∆iw = β
∑
j∈I

χj1 × Cj

︸ ︷︷ ︸
Benefit

+β
∑

j∈Sc\I

∆iq1b
j × Cj

︸ ︷︷ ︸
β-component

−γ∆i(B1P (Default))︸ ︷︷ ︸
γ-component︸ ︷︷ ︸

Cost

, (12)

where ∆iq1 < 0 and ∆i(B1P (Default)) > 0 denote changes implied by the bailout of i.

The lemma allows us to make a number of statements about which banks deliver the highest

welfare improvements if bailed out. For example, note that in an economy without bank-held
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domestic sovereign debt (b = 0), the β-component would disappear and banks could be ranked

in terms of network spillovers only. More precisely, among two banks i and j with the same490

shortfall (i.e., χi1 = χj1) and the same set of contagious defaults (I \ i = J \ j) the γ-component

would be identical for both banks. The government would then prefer to bail out the bank with

higher node depth C.20 Our model thus supports the claim that banks with high liabilities to

other weakly capitalized banks can be “too interconnected to fail”.

Another thought experiment (again with b = 0) helps to emphasize the role of node depth495

and hence network structure: Consider two banks with the same node depth (Ci = Cj), but

such that i has a larger shortfall without a bailout than j, so χi1 > χj1. Depending on model

parameters (in particular for sufficiently high γ) it is possible that the government prefers to bail

out bank j if both banks’ centrality is low, but it prefers bank i if their centrality is sufficiently

high. The reason is that the benefit of a bailout is proportional to the bank’s centrality while500

the fiscal cost (γ-component) is not. Therefore, if centrality is low, the higher γ-component of

bailing out i can dominate the government’s decision, but with sufficiently high centrality the

higher benefit overcompensates the increased sovereign default risk.

In what follows we often compare two banks or two entire financial systems that are identical

in all but one dimension. This allows us to isolate specific channels and derive precise analytical505

results. We first analyze how network centrality interacts with the distribution of sovereign

debt and hence with the doom loop. Before we study non-degenerate, dispersed distributions

of sovereign debt we consider the simple benchmark in which every bank has the same exposure

to the government.

Proposition 3 (Uniform sovereign debt distribution). Let (L,Π, c̃, d, b̃) and (L,Π, ĉ, d, b̂) be510

two financial systems such that

1. b̃ = 0

2. b̂k = b′ > 0 ∀k ∈ N

3. ĉ = c̃− b̂/R (which implies χ̂1 = χ̃1 ≡ χ1).

20This insight echos a number of results from a more general literature about intervention in networks. For
instance, Galeotti et al. (2020) show that in network games of strategic complements, the optimal intervention
allocated to a given node is proportional to its eigenvector centrality.
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Moreover, let i, j ∈ Sc be two banks that differ only in their node depth, with Ci > Cj. In

particular, they have identical shortfalls χi1 = χj1 and cause the same set of contagious defaults

I \ i = J \ j. Then we have

∆̃iw > ∆̃jw, ∆̂iw > ∆̂jw, and ∆̂iw − ∆̂jw > ∆̃iw − ∆̃jw. (13)

In the proposition, the tilde-system captures the setting described above without any515

sovereign exposure (condition 1), so there is no β-component to consider. For two banks

with identical shortfalls and identical contagious defaults, the difference in node depth Ci > Cj

breaks the tie, so the government prefers to bail out bank i. The hat-system, in contrast, fea-

tures a uniform sovereign debt distribution across banks (condition 2). The proposition states

that the presence of domestic sovereign exposure on banks’ balance sheets - even if it is uni-520

formly distributed - strengthens the role of centrality as a driver of the government’s optimal

decision. The reason is that now, on top of a higher benefit, bailing out bank i is associated

with a lower β-component than bailing out bank j (remember that the β-component is increas-

ing in defaulting banks’ centrality). Put differently, even a highly symmetric sovereign debt

distribution amplifies the “too interconnected to fail” problem.525

Equipped with this general result on the interaction of centrality and sovereign exposure,

we next consider asymmetric distributions of domestic sovereign debt. Does the government

prefer to bail out banks with more or less domestic sovereign debt? From Lemma 2 we know

that domestic sovereign bonds on a bank’s balance sheet have two counteracting effects: On

the one hand, high sovereign exposure bi makes it financially costly to bail out bank i because530

every bailout dollar transferred to bank i lowers q1 and hence further increases i’s shortfall.

This “doom loop multiplier” effect (which translates into a high γ-component) is stronger for

larger bi. On the other hand, high sovereign exposure also generates welfare losses through the

β-component if bank i is not bailed out, especially if i’s node depth is high. In other words, a

higher bi increases the effective shortfall of bank i and hence the required bailout expenditures,535

but it can also make it extremely socially costly not to save bank i in a partial bailout.

Therefore, whether a given bank i ∈ B will optimally be bailed out depends on the relative

strength of these two forces. Crucially, whereas the first effect applies to each bank equally, the
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second effect is proportional to a bank’s network centrality. In particular, a bank with high

centrality and sovereign exposure is more likely to be bailed out than an identical bank with540

little or no exposure. In contrast, peripheral banks (for which the second effect is negligible)

are unambiguously less likely to be saved the more sovereign bonds they hold. We formalize

this main result in the following proposition.

Proposition 4 (Sovereign debt distribution within networks). Let i, j ∈ Sc be two banks that

differ only in their asset composition (bi > bj and ci < cj). In particular, they have identical

shortfalls χi1 = χj1 ≡ χ1 and centrality Ci = Cj ≡ C and cause the same set of contagious

defaults I \ i = J \ j. Then ∃C∗ such that

∆iw > ∆jw iff C ≥ C∗ (14)

as long as bi

bj
> ∆iq1

∆jq1
> 1. The threshold C∗ is increasing in γ and decreasing in β.

If the government has to choose between two otherwise identical banks, whether it will pick545

the one with more or less domestic sovereign exposure depends on the banks’ centrality C.

The reason is that the welfare losses due to the β-component (which are higher if bank j with

the smaller sovereign exposure is saved) are proportional to centrality C, as shown in Lemma

2. Hence, for large C (e.g., if the interbank network is highly interconnected) the difference in

β-components dominates the difference in the γ-components so that bailing out bank i becomes550

more attractive. In contrast, in less interconnected systems (low C) the β-component carries

only little weight in the welfare comparison and the lower γ-component leads the government

to bail out bank j.

Finally, note that our proposition requires that the difference in sovereign exposures must

overcompensate the difference in absolute price changes, i.e. bi and bj must be sufficiently555

different. Otherwise the fact that saving bank i has a stronger price impact (|∆qi1| > |∆q
j
1|)

dominates the β-component so that the government unambiguously prefers to save bank j,

regardless of centrality.

We illustrate the result through a stylized numerical example with n = 4 banks: Suppose

the government initially owes a debt stock of B0 = 120 (which may be interpreted as 120% of560

GDP), of which 20% is held by the domestic banking sector, so
∑

i∈N b
i = 24. The gross risk-free
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interest rate is R = 1.02, hence the initial sovereign bond price is given by q0 = R−1 = 0.9804.

Moreover, we pick the shape parameter of the (Pareto) tax capacity distribution to be α = 0.9

which delivers quantitatively reasonable movements in sovereign spreads.

[Table 1 about here.]565

Table 1 summarizes banks’ initial balance sheets (i.e. before the unanticipated fundamental

shock happens). Total balance sheet size is chosen such that the average bank holds 10% of its

balance sheet in domestic sovereign debt, similar to Italy in Figure 1. To maintain transparency

and simplicity, we initially let every bank have the same balance sheet size and leverage (equity

buffer = 10% of total assets). Note, however, that banks 1 and 3 each hold twice as much570

sovereign debt as the remaining banks. The interbank network is visualized in Figure 3.

[Figure 3 about here.]

Banks 1 and 2 have no interbank liabilities, but are lending to banks 3 and 4. All four banks’

“cash” assets are reduced by the shock such that their total assets drop by 20%, leaving them

with a shortfall of 10% each. Summing up, this is the simplest possible setup to demonstrate575

the content of the proposition; we have two sets of almost identical failing banks (1 vs. 2 and

3 vs. 4) that only differ in terms of sovereign exposure within pairs. In particular, banks 1

and 2 have a trivial node depth of C1 = C2 = 1 (because they do not have any interbank

liabilities) whereas banks 3 and 4 have C3 = C4 = 2.8. Just like the proposition states, among

the peripheral banks the government prefers bailing out the low-b bank 2 (∆2w = −4.16) to580

the high-b bank 1 (∆1w = −4.39), but among the more central banks it prefers the high-b bank

3 (∆3w = 8.07) to the low-b bank 4 (∆4w = 7.83).

One interpretation of the result in Proposition 4 is that the doom loop alters the gov-

ernment’s ranking of banks to be rescued. Whereas in a world without the doom loop (e.g.,

with b = 0), the government would be indifferent between two banks with the same shortfall585

χ1 and node depth C, the different exposures to the doom loop now break the tie. In other

words, network centrality alone is not sufficient anymore to pin down the optimal set of bailed-

out banks. This highlights the doom loop as a new channel of contagion that conventional

centrality measures cannot capture.
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Another way of looking at the effect of holding more domestic sovereign debt is across590

networks (whereas Proposition 4 is based on a within-network comparison). To this end we

consider two financial systems that are identical in every regard, except that an arbitrary

defaulting bank i holds more sovereign debt in one system that in the other (conditions 1 and 2

below). To keep the overall surplus of the system unchanged, suppose that this bank holds less

cash so that its overall shortfall remains unchanged (condition 3). The following proposition595

shows that whether the higher bi in the second system increases or decreases bank i’s position

in the government’s “bailout ranking” depends on its centrality.

Proposition 5 (Sovereign debt distribution across networks). For a fixed B0, let (L,Π, c̃, d, b̃)

and (L,Π, ĉ, d, b̂) be two financial systems such that

1. ∃!i ∈ Sc : b̂i > b̃i600

2. b̂j = b̃j and ĉj = c̃j ∀j 6= i

3. ĉi = c̃i − (b̂i − b̃i)/R.

Then ∀j 6= i ∃C∗(j) such that

∆̂iw − ∆̂jw > ∆̃iw − ∆̃jw iff Ci ≥ C∗(j). (15)

The threshold is increasing in γ and decreasing in β, |∆̂jq1| and (b̂i − b̃i).

The above proposition can be easily explained thanks to the decomposition in Lemma 2.

The benefit component is the same in both networks. On the cost side, in the hat-network605

bailing out bank i results in a larger β-component and a larger γ-component than in the tilde-

network because of the doom loop multiplier and the corresponding larger price impact. As a

consequence, the absolute net benefit of bailing out i is clearly lower in the hat-network, i.e.

∆̂iw < ∆̃iw. However, all other bailout candidates j also see their β-component increase (and

thus their ∆jw fall) because the defaulting i now holds more sovereign debt. Moreover, this610

increase in the β-component is an increasing function of i’s centrality. Hence, if i is central

enough it can even end up higher in the government’s ranking than before.

Using again our above numerical example, suppose we double low-C bank 2’s sovereign

bond holdings from 4 to 8. Then, the net welfare effect of bailing out bank 2 changes to ∆2w =
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−6.38 < −5.76 = ∆1w, thus bank 2 drops even below bank 1 in the government’s ranking. In615

contrast, if we double high-C bank 4’s bond holdings, we get ∆4w = 7.26 > 6.81 = ∆3w, then

bank 4 becomes first in the ranking.

Summing up, our results show that a higher bi does not make a bailout of i more attractive

in absolute terms, nor does it increase the government’s propensity to engage in a bailout in

the first place. However, it can make bailing out other banks even less attractive, namely if i620

is sufficiently central in the interbank network.

4.3. Testable Implications and Empirical Examples

Even though banks are not strategic in our framework, the results outlined in the previous

section have important implications for banks’ portfolio choice ex ante. We have shown that,

depending on a bank’s centrality, higher sovereign exposure can make a bailout of that bank625

more likely ex post. Hence, if banks value the prospect of a bailout and anticipate the govern-

ment’s best response, they can use their sovereign debt portfolio to affect the odds of being

bailed out. One way to illustrate this is the following: Suppose that at t = −1 banks learn their

position in the interbank network (and hence their node depth for each shock realization) and

can choose their domestic sovereign exposure. Then, banks with high centrality can increase630

the chance to be bailed out by purchasing more sovereign debt than otherwise identical banks.

More generally, our model generates a number of testable hypotheses, though actually test-

ing the model is challenging, both because of a lack of data and the complexity of the interac-

tions we have identified. Nevertheless, we have identified a few key parameters and variables

to which attention should be directed. Accordingly, the following remarks should be viewed as635

speculative, but they suggest the power of the lens on financial markets that our paper brings

to bear.

If banks understand and exploit the logic in our analysis, we should, for instance, observe

a positive correlation between banks’ node depth and their domestic sovereign bond holdings

(at least in countries where the “doom loop” is a real threat). Moreover, we should expect the640

correlation to be larger in financial systems where bankruptcy costs are higher based on the

fact that the centrality thresholds in Propositions 4 and 5 are decreasing in β.

Our results may help partly shed some light on historical bailout decisions, and highlight
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factors to account for in determining future bank bailouts. First, note that our results on

how network structure and sovereign bond holdings interact are only valid in case of an active645

“doom loop”, i.e., if sovereign bond prices drop in response to a bailout. In countries with

very safe public debt (e.g., the US, Germany, or Switzerland) the interaction highlighted in the

previous section is absent. In other words, the amount and distribution of sovereign bonds held

by domestic banks would not matter for the government’s optimal bailout decision. Thus the

bailout of AIG (and the indirect bailout of Goldman Sachs) in 2008 can be attributed either650

to their centrality in the financial system or their political influence, but not to their holdings

of government bonds and the doom loop properties upon which we have focused. In contrast,

Greece and Spain may evidence patterns that are more consistent with the predictions of our

study.

Second, for countries with more efficient resolution mechanisms (low β), our results predict655

not only fewer bank bailouts altogether, but also that optimal bailouts will generally be targeted

at banks with lower sovereign bond holdings that require smaller bailouts. The same conclusions

hold for countries that would suffer more from a sovereign default (high γ). Again, Spain,

Greece, as well as Cyprus and Iceland may provide data sets against which these hypotheses

may be tested.660

Finally, recent regulatory efforts in Europe to complete the “banking union” included at-

tempts to make bank resolutions more efficient and thus failures less costly. In our model, this

corresponds to a drop in β, which makes partial bailouts (or even “no bailout”) more attractive

relative to complete bailouts. Therefore, compared to the global financial crisis of 2008/09, we

expect to see more partial bailouts in the future, and that would provide the ultimate test for665

our theoretical predictions. Apart from being ex post optimal, there would be an additional

benefit in letting some banks fail: As Philippon and Wang (2021) show, a credible announce-

ment of partial bailouts can also help to discipline banks’ risk-taking behavior ex ante. But

even if political pressures necessitate a bailout of all banks that might be in stress, an awareness

of the interplay between the structure of the financial network and the workings of the doom670

loop should enable the design of regulatory policies that reduce the overall bailout cost.
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5. Conclusion

In this paper we study the government’s optimal bailout strategy in a banking crisis if (a)

financing a bailout depresses the value of domestic sovereign debt on bank balance sheets (the

“doom loop”) and (b) banks are connected to each other through a network of liabilities.675

We find, not surprisingly, that the doom loop is weaker (and bailouts therefore less costly) if

banks hold less domestic sovereign debt or if banks with large domestic sovereign exposure are

well capitalized. This result is directly related to the current debate about higher regulatory

capital charges for sovereign exposure in the eurozone (see Véron (2017)).

Moreover, we show that the government can rank otherwise identical banks according to680

their “node depth”, a centrality measure introduced by Glasserman and Young (2015). Com-

pared to a situation without sovereign debt on banks’ balance sheets, even a uniform distribu-

tion of sovereign debt across banks strengthens the role of centrality as a tiebreaker and thus

exacerbates the “too interconnected to fail” problem.

Our main result is that the optimal subset of banks to bail out depends jointly on their685

position in the interbank network and their domestic sovereign exposure. In particular, if banks

with high amounts of sovereign bonds are sufficiently central, the government may prefer to

save them rather than banks with low domestic sovereign exposure, even though this requires a

larger bailout. Equivalently, if there is a bailout, highly central banks are more likely to be part

of it if they hold more sovereign debt since that increases the cost of letting them fail. While690

higher sovereign exposure unambiguously makes the bailout of a given bank more expensive, it

can make bailing out other banks even more costly.

As a consequence, we argue that a bank’s position in the network may have strategic impli-

cations for its individually optimal domestic sovereign exposure. Systemically important banks

might be able to use domestic sovereign debt as a “strategic tool” to increase the likelihood695

of being bailed out. Our model therefore provides a new, network-based perspective on the

question of why banks in stressed European countries increased their domestic sovereign bond

holdings during the European sovereign debt crisis.

Our framework may be extended along several interesting dimensions. An obvious, yet

ambitious extension is to develop a fully fledged game theoretical model, in which banks take700

their position in the network as given and strategically choose their sovereign bond holdings
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to maximize an exogenously specified objective function. Banks would thus endogenously con-

struct their balance sheet in anticipation of government intervention to maximize their bailout

option.

Second, in our model the government has full information about banks’ balance sheets, in705

particular their interbank exposures. In reality, uncertainty about these interlinkages poses

a challenge to policymakers and can lead to second-best policy outcomes. Moreover, as in

Caballero and Simsek (2013), uncertainty about the structure of the financial network can

exacerbate endogenous responses such as funding withdrawals or fire sales. Ever since at least

the global financial crisis, researchers have tried to uncover “true” financial networks, e.g.710

by estimating underlying links from aggregates.21 In recent years, however, central banks

around the world have stepped up their efforts to gather the necessary data in order to monitor

systemic risk. As a result, they now have access to a wealth of information not just about

banks’ aggregate balance sheet items, but also counterparty-level exposures in different asset

classes (e.g. loans, securities, or derivatives). For instance, the ECB can construct financial715

networks using a large European credit register (AnaCredit), security holdings statistics (SHS),

or bilateral money market trading data (MMSR). Therefore, we believe that the assumption of

full information is not too far from the current reality.

Third, an alternative way to resolve banking crises (instead of public bailouts) is to encourage

mergers of failing and healthy banks. Network models like the one presented in this paper offer720

an interesting framework to study these mergers, which can be modelled as combining two nodes

(and consolidating their balance sheets). In doing so, policymakers would not only avoid bank

defaults, but also alter the network structure. However, depending on the distribution of future

shocks, a merger might also increase future instability by creating a new “too big/interconnected

to fail” institution. The resulting tradeoff is a promising topic for future research.725

Fourth, our model deliberately abstracts from the “real economy loop” in Brunnermeier et al.

(2016). We do not consider the fact that bank failures could also affect the sovereign’s credit-

worthiness without bailouts through a reduction in lending, an investment slump, and reduced

tax capacity. Incorporating this channel in our model would increase the direct macroeconomic

21See, for instance, Anand et al. (2018) for a comprehensive survey of different estimation methods.
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social benefits of a bailout ceteris paribus. A similar channel would work in the opposite direc-730

tion and make bailouts less attractive: Rising sovereign spreads (e.g. triggered by a bailout)

tend to be passed through to corporate spreads and household borrowing rates. This “crowding

out” effect, documented for example in Demirci et al. (2019), might eventually lead to lower

tax revenue and thus even higher spreads.

The magnitude of each of these effects is affected by the structure of interbank lending and735

patterns of bank ownership of assets. Real economy effects on any bank can, for instance,

be amplified or dampened by the structure of the banking network. Future research should

be directed at integrating both real economy and financial network effects. It is clear that

omitting either gives an incomplete picture. Our analysis in an idealized model where we have

abstracted from real economy effects highlights that the banking network structure plays a key740

role, and thus models based on a single representative bank can be misleading.
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Figure 1: Banks’ domestic sovereign exposure (as a share of total bank assets)

36



LiabilitiesAssets

ci

(ΠL)i

q0b
i

di

Li

V i
0

Figure 2: A solvent bank i’s balance sheet at t=0

37



Figure 3: Banks 3 and 4 each borrow from banks 1 and 2
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Table 1: Balance sheet structure of banks in the network
1 2 3 4

ci 27.5 31.4 51.0 54.9
bi 8.0 4.0 8.0 4.0
(πL)i 23.5 23.5 0 0

Total assets 58.8 58.8 58.8 58.8

di 52.9 52.9 29.4 29.4
Li 0 0 23.5 23.5

Total liabilities 52.9 52.9 52.9 52.9

Equity 5.88 5.88 5.88 5.88

Ci 1 1 2.8 2.8

∆iw -4.39 -4.16 8.07 7.83

Note: Banks 1 and 3 hold more sovereign debt than 2 and 4, respectively.
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