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1 Introduction

Global costs of weather-related disasters have increased sharply in recent decades (see, e.g.,

Bouwer et al., 2007). While this trend increase is partly due to economic growth and exposure

of physical capital (Pielke et al., 2008; Bouwer, 2011), recent climate research is increasingly

confident in linking climate change to more frequent or severe natural disasters (National

Academy of Sciences, 2016). For instance, climate models point to increased frequency and

damage from hurricanes that make landfall (Kossin et al., 2020). Similarly, the wildfires in

the Western US states are also linked to climate change (Abatzoglou and Williams, 2016).

Emissions control and carbon taxes, which have been the main focus of research using inte-

grated assessment models (Nordhaus, 2017; Golosov, Hassler, Krusell, and Tsyvinski, 2014),

will only impact such losses decades down the road to the extent they are even implemented

globally.

At the same time, willingness to pay to avoid weather disasters are likely to be large

given household risk preferences and permanence of such shocks. Hence, mitigation of natural

disaster risks at the regional level, be it adaptations to flooding from tropical cyclones or

damage from wildfires, may need to play a major role going forward. In contrast to global

mitigation of disaster risks via decarbonization, such regional-level strategies have thus far

been relatively under-emphasized both in climate change research and practice (Bouwer et

al., 2007). Among key questions are what determines regional-level mitigation, how valuable

is it for social welfare, and what are the tax, growth and asset pricing implications?

To answer these questions, we start by introducing costly mitigation into a continuous-time

stochastic general-equilibrium model with disasters along the lines emphasized by Rietz (1988)

and Barro (2006). Output is determined by an AK growth function augmented with capital

adjustment costs and disaster shocks following a Poisson process as in Pindyck and Wang

(2013). Convex adjustment costs to capital (e.g., Hayashi, 1982) make capital stock illiquid

and hence give rise to rents for installed capital and the value of capital (Tobin’s average

q). Households are endowed with one of the two widely-used non-expected risk preferences:

recursive utility proposed by Epstein and Zin (1989), which separates risk aversion from the

elasticity of intertemporal substitution,1or Campbell and Cochrane (1999), which uses external

1Recent work in the context of valuing emissions curtailment points to the importance of using such risk
preferences in generating a high social cost of carbon (see, e.g., Jensen and Traeger (2014), Bansal, Ochoa,
and Kiku (2017), Cai and Lontzek (2019), Daniel, Litterman, and Wagner (2019), and Barnett, Brock, and
Hansen (2020)).
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habit preferences to generate state-dependent risk aversion.

Absent mitigation spending today, the percentage losses of capital stock due to jump ar-

rivals follow a Pareto distribution and are i.i.d. across arrivals (Gabaix, 2009).2 There are

two mitigation technologies that ameliorate damages conditional on an arrival. The first type

reduces the exposure of a firm’s capital to a draw from the conditional damage distribution.

The second type changes the conditional damage distribution by reducing the fat-tailedness of

damages in the sense of first-order stochastic dominance. How much the disaster distribution

changes (e.g., how much of the fat-tailedness of damages is reduced) depends on the aggregate

mitigation spending in the region and benefits all firms in the region. Our mitigation tech-

nologies are motivated by best practices for dealing with disasters such as tropical cyclones,

where mitigation is a mix of private efforts such as temporary barriers like sandbags to pro-

tect buildings (corresponding to the first type) and public or government efforts such as an

early warning system and infrastructure maintenance and preparedness (corresponding to the

second type).3

Since mitigation strategies naturally depend on perceived risks, a defining aspect of costly

mitigation in the age of climate change is that it depends on households learning about

the consequences of global warming for disasters based on past arrivals. Each new disas-

ter brings additional evidence that will result in belief updating regarding the consequences.

For instance, scientific consensus on the impact of global warming on the frequency of hur-

ricanes changed markedly in 2005, when a record number of hurricanes including Katrina

made landfall (Emanuel, 2005). Recent weather disasters have moved public opinion on

the consequences of climate change (see, e.g., the Yale Climate Opinion Maps website at

https://climatecommunication.yale.edu/visualizations-data/ycom-us/.)

Our model thus also features households learning from natural disaster arrivals about

whether the disaster arrival rate is high or low (i.e., what we refer to as a bad (B) versus

good (G) state). The B state corresponds to more frequent arrivals due to global warming,

while the G state corresponds to no or mild effects of climate change. An important feature

of our learning model is that “bad” news (an unexpected arrival) leads to a discontinuous

jump (worsening) of belief, as a disaster arrival is a discrete event also serving as a discrete

2For instance, the literature on weather disasters points to persistent declines in growth and productivity
due to destruction of physical capital (Dell, Jones, and Olken, 2014). Of course, weather disasters are related
to extreme temperature and precipitation.

3These mitigation technologies are in line with existing work on the value of protective investments (Kousky,
Luttmer, and Zeckhauser, 2006; Anbarci, Escaleras, and Register, 2005; Smith et al., 2006).
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signal.4 Absent any arrivals, belief drifts gradually towards the G state, as no news is good

news when it comes to no arrival of disasters. Such a model is consistent with uncertainty

regarding disaster arrival rates that will be resolved over time and the importance of modeling

uncertainty of climate models more generally (Barnett, Brock, and Hansen, 2020).

The planner’s first-best solution is characterized by an endogenously derived non-linear

ordinary differential equation in the case of Epstein and Zin (1989) preferences for a welfare

measure (proportional to the certainty equivalent wealth) together with first-order conditions

for investment and the two types of mitigation spending that depend on household belief re-

garding disaster arrivals. The boundary conditions are given by solutions when the household

belief is permanently in the G or B state.5 In our model with Campbell and Cochrane (1999)

external habit preferences, the solution is characterized by a non-linear partial differential

equation (PDE) system with household belief and the surplus consumption ratio as state

variables.

The planner’s first-best solution features an optimal mix of both types of mitigation spend-

ing. However, firms only spend on exposure mitigation and nothing on distribution mitigation

in laissez faire market economies. The reason is externalities: whereas firms benefit directly

from their spending on exposure mitigation (e.g., placing sandbags around their plants to

control flooding from tropical cyclones), the benefits of distribution mitigation depend on ag-

gregate spending and are shared by all. Since firms do not internalize the benefits of aggregate

risk mitigation, they underspend on total mitigation in market economies. We prove that an

optimal tax on capital to fund government spending on distribution mitigation restores the

first-best solution while still maintaining a balanced budget.

Our model can be applied to different weather disasters. We use it to value mitigation

that reduces the damages of tropical cyclones globally. Tropical cyclones include hurricanes,

typhoons, cyclones, and tropical storms.6 Hsiang and Jina (2014) estimate that nearly 35%

of the global population is seriously affected, making them one of the most broadly relevant

forms of disasters in addition to being one of the most costly. Building on their work, we

4Our model generates time-varying disaster arrival rates via learning (also see e.g., Wachter and Zhu,
2019). Learning about a model parameter (e.g., in Colin-Dufresne, Johannes, and Lochstoer, 2016) and
disaster models with time-varying arrival rates (as in Gabaix, 2012; Gourio, 2012; and Wachter, 2013) have
been shown to be quantitively important to simultaneously explain business cycles and asset price fluctuations.

5The solutions for the two special cases (at the boundaries) generalize the solution for the model in Pindyck
and Wang (2013), which originally examined the general-equilibrium effects of disasters in a continuous-time
production model with Poisson arrivals of disasters, by allowing for mitigation.

6They are referred to as tropical storms or hurricanes in Atlantic, typhoons in the Pacific, and cyclones in
Indian Ocean.
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gather historical data on major cyclone strikes. For a sample of 109 countries over the period

of 1960-2010, we estimate that a typical country in our sample is exposed to one major cyclone

strike every 7.4 years (implying a cyclone arrival rate of 0.135 per annum) and a reduction of

GDP growth rate by around 1% per disaster.

To discipline our rational learning model, we use data from the most recent survey of

leading climate model projections (Knutson et al., 2020) on the increased frequency of major

tropical cyclones. These projections are for a world where global temperatures are 2o Celsius

higher than pre-industrial levels, which is expected within this century absent major decar-

bonization. The median projection of the arrival rate is a 13% increase from the pre-industrial

level and the most pessimistic projection is a 125% increase. Using these moments, we cali-

brate the annual frequency of major tropical cyclones caused by global warming to be 0.304

in the bad state, which is more than double that of the arrival rate pre-climate change. The

prior that the economy is in the bad state is set at 0.104 so as to match the median projection

of a 13% increase of the disaster arrival rate from the pre-climate change level.

We then gather data on government flood control budgets for a subset of these countries

that are highly exposed to tropical cyclones. The median budget is around 0.1% of a country’s

capital stock. Studies indicate that private mitigation efforts also plays a supporting role along

side government efforts (Genovese and Thaler, 2020). We use these moments to discipline our

calibration of the optimal spending to mitigate the disaster risk.

For our baseline analysis, we focus on Epstein and Zin (1989) household preferences, choos-

ing parameters along the lines of the long-run risk literature following Bansal and Yaron (2004).

For a typical country exposed to major tropical cyclones, we find that a disaster arrival has

large quantitative and persistent effects on beliefs. An arrival immediately leads to a jump in

belief from a prior of 0.104 to 0.207 (i.e., a doubling of belief that the economy is in the B

state). Since belief drifts smoothly toward the optimistic scenario absent jumps and remains

persistently high for a while even after a disaster arrival, there is also an increase of mitigation

spending (i.e., the annual tax rate) of 10%. A comparison of the first-best solution and the

market economy solution shows that disaster distribution mitigation plays a more significant

role when the economy becomes riskier with more frequent arrivals.

Our model provides a learning-based explanation for why disaster arrivals are followed by

persistently low economic growth for a number of years (Hsiang and Jina, 2014). Such an

effect is absent from disaster models with no learning such as in Pindyck and Wang (2013),
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where there are only direct effects of capital destruction but no indirect effects to economic

growth. The tax and mitigation implications along with the asset pricing implications are also

new to the literature and can be tested using event studies. For instance, damages conditional

on arrival are higher when an economy has few prior arrivals and long inter-arrival times since

perceived risks and mitigation spending or preparedness are low as a result.7

We also use our model to calculate two sets of willingness-to-pay (WTP) for flood risk

mitigation: (1) the difference between welfare in the first-best economy and the economy

without any mitigation and (2) the difference between welfare in the market economy with

private mitigation and the economy without any mitigation. The first-best economy WTP is

high, around 17% at the prior belief that the economy is in the bad state is 0.104, and then

rises to nearly 19% with an arrival of a major cyclone. The market-economy WTP is close to

the first-best economy WTP when perceived risks are low. The wedge between the first-best

economy WTP and the market-economy WTP gives the welfare gains from having an optimal

tax. But this wedge increases with perceived risks.8

We show that these conclusions regarding mitigation are robust to two important changes

to our model. The first is a generalized belief updating process that allows the underlying state

to switch between the good and bad states. The second is having different risk preferences.

However, the implications for the behavior of consumption and investment after a disaster

arrival can differ depending on risk preferences.

2 Model

In this section, we develop a model in which there is an externality when it comes to the

mitigation of disaster risks in a market economy. Time is continuous and the horizon is

infinite. There is a continuum of identical firms and households, both with a unit measure.

7See Hong, Karolyi, and Scheinkman (2020) for a review of recent findings on weather disasters and climate
risks including the impact of sea-level rise on coastal property prices. Beliefs of the risks are shown to play a
role (Bakkensen and Barrage, 2017).

8The caveat to these calculations is that traditional willingness-to-pay calculations to avoid disasters as in
our model is sensitive to modeling of multiple disasters and when disasters affect both consumption and loss
of life (Martin and Pindyck, 2015).
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2.1 Firm’s and Households’ Optimization Problems

Firm production. A firm produces output, Yt, using its capital stock, Kt, the sole factor

of production. Specifically, Yt is proportional to its contemporaneous capital stock Kt:

Yt = AKt , (1)

where A > 0 is a constant that defines productivity. This is a version of the AK model but

importantly augmented with capital adjustment costs as we show later.

Firm investment, capital accumulation, and arrival of jumps (disasters). Let It

denote firm investment. The firm’s capital stock Kt evolves as:9

dKt = It−dt+ σKt−dWt −Nt−Kt−(1− Z)dJt . (2)

The second term captures continuous diffusive shocks to capital, where Wt is a standard

Brownian motion and the parameter σ is the diffusion volatility. This term is the standard

source of shocks for AK models in macroeconomics and sometimes is interpreted as stochastic

depreciation shocks. The last term in (2) captures the loss to the firm’s capital from a

stochastic arrival of a disaster.

The process Jt in (2) is a Poisson process where each jump arrives at a constant but

unobservable rate, which we denote by λ. We will return to discuss the details for the arrival

rate λ. There is no limit to the number of these jump shocks.10 If a jump does not arrive at t,

i.e., dJt = 0, the third term disappears. To emphasize the timing of potential jumps, we use

t− to denote the pre-jump time so that a discrete jump may or may not arrive at t. The Nt−

process is chosen by the firm to mitigate its exposures to disasters, which we introduce later.

Distribution of damage (1−Z). Let Z denote the stochastic recovery fraction of the cap-

ital stock conditional on a jump arrival absent firm mitigation spending, which corresponds

to Nt− = 1. Let Ξ(Z) and ξ(Z) denote the cumulative distribution function (cdf) and prob-

ability density function (pdf) for Z, respectively. While the firm takes the distribution of

Z as given, the society as a whole can spend resources to influence the distribution of Z by

9This capital accumulation technology has been widely used in macro and finance. For example, see Barro
(2006) and Pindyck and Wang (2013).

10Stochastic fluctuations in the capital stock have been widely used in the growth literature with an AK
technology, but unlike the existing literature, we examine the economic effects of shocks to capital that involve
discrete (disaster) jumps.
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making disasters less damaging to the economy. We introduce the determinants of Ξ(Z) at

the aggregate level in Section 2.4.

Without mitigating disaster exposure (which implies Nt− = 1), upon a disaster arrival at t

(dJt = 1), a stochastic fraction (1−Z) ∈ (0, 1) of the firm’s capital stock Kt− is permanently

destroyed at t and hence the surviving capital stock is Kt = ZKt−. (For example, if the firm

incurred no disaster exposure mitigation spending at t− and a shock arrived at t destroying 15

percent of capital stock, we would have Z = 0.85.) Naturally, anticipating damages caused by

these disasters, the firm has incentives to ex-ante mitigate its exposures to disaster shocks by

spending resources (e.g., sandbags to keep a building from flooding during a tropical cyclone.)

Firm’s disaster exposure mitigation. Let Xe
t− denote the firm’s disaster exposure mit-

igation spending, where the superscript e refers to “exposure” at t−. With this spending

at t−, should a disaster arrive at t, the firm decreases its capital loss from (1 − Z)Kt− to

Nt−(1 − Z)Kt−, where Nt− ∈ [0, 1] depends on Xe
t−. This effect of mitigation spending on

capital stock dynamics is captured by the Nt− term in (2). Let xet− = Xe
t−/Kt− denote the

firm’s scaled disaster exposure mitigation spending.

To preserve our model’s homogeneity property, we assume that Nt− is a function of xet−:

Nt− = N(xet−) . (3)

Equations (2) and (3) imply that if we double Xe
t− and capital stock Kt− simultaneously, the

benefit from reducing disaster damages (in units of goods) also doubles. To see why, observe

that Nt− = N(xet−) is unchanged with the simultaneous doubling of Xe
t− and Kt− but the

amount of loss reduced by mitigation, is doubled since Kt− has doubled.

We require N ′(xe) ≤ 0 as mitigation spending reduces damages. Additionally, the marginal

effect of spending on reducing damages is decreasing in xe, which implies N ′′(xe) ≥ 0. Finally,

by definition, N(0) = 1, as no mitigation spending (xe = 0) no damage reduction.

Capital adjustment costs and firm’s objective. Following the q theory of investment

(e.g., Hayashi, 1982 and Abel and Eberly, 1994), we assume that when investing Itdt, the

firm also incurs capital adjustment costs, which we denote by Φtdt. That is, the total cost of

investment per unit of time is (It + Φt) including both capital purchase and adjustment costs.

Let CFt denote the firm’s cash flow/dividend payout. Then, a firm’s payout is given by:

CFt = Yt − (It + Φt)−Xe
t . (4)
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Let cft = CFt/Kt denote the scaled cash flow and it = It/Kt denote the investment-capital

ratio. Next, we specify the capital adjustment cost function. Following Hayashi (1982), we

assume that Φ(I,K) is homogeneous with degree one in I and K by writing:

Φ(I,K) = φ(i)K , (5)

where φ(i) is increasing and convex.11

The representative firm chooses investment I and the disaster exposure mitigation spending

Xe to maximize its risk-adjusted present value of future cash flows by solving:12

max
I,Xe

E
[∫ ∞

0

Mt

M0

(Yt − (It + Φt)−Xe
t ) dt

]
, (6)

where M is the equilibrium stochastic discount factor (SDF) that the firm takes as given. Let

Q0 denote the firm’s value at t = 0, the solution for (6). Because installing capital is costly,

installed capital earns rents in equilibrium so that Tobin’s average q, the ratio between the

firm’s value (Q0) and the replacement cost of capital (K0), exceeds one.13

Households’ preferences. Next, we turn to the household’s side. We consider two widely

used preferences in the macro finance literature: Epstein-Zin (1989) recursive utility and

Campbell-Cochrane (1999) external habit preferences. We first work with the Duffie and

Epstein (1992) continuous-time version of Epstein and Zin (1989) and Weil (1990). Then we

re-solve our model with external habit formation in Section 8. The life-time utility of our

representative consumer’s Duffie-Epstein-Zin homothetic recursive preferences is given by:

V0 = E
[∫ ∞

0

f(Ct, Vt)dt

]
, (7)

where f(C, V ) is known as the normalized aggregator given by

f(C, V ) =
ρ

1− ψ−1
C1−ψ−1 − ((1− γ)V )ω

((1− γ)V )ω−1
(8)

and ω = (1 − ψ−1)/(1 − γ). Here ρ is the rate of time preference, ψ is the elasticity of

intertemporal substitution (EIS), γ is the coefficient of relative risk aversion. Unlike expected

11Homogeneous adjustment cost functions are analytically tractable and have been widely used in the q
theory of investment literature. Hayashi (1982) showed that with homogeneous adjustment costs and perfect
capital markets, marginal and average q are equal.

12Financial markets are perfectly competitive and complete. While the firm can hold financial positions
(e.g., DIS contracts in net zero supply), these financial hedging transactions generate zero NPV for the firm.
Therefore, financial hedging policies are indeterminate, a version of the Modigliani-Miller financing irrelevant
result. The firm can thus ignore financial contracts without loss of generality.

13In Barro (2006), he also analyzes an endogenous AK growth model with disaster risks but without capital
adjustment costs in a discrete-time setting. Therefore, Tobin’s average q in his model is always one.
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utility, recursive preferences as defined by (7) and (8) disentangle risk aversion from the

EIS.14 An important feature of these preferences is that the marginal benefit of consumption

is fC = ρC−ψ−1/[(1−γ)V ]ω−1, which depends not only on current consumption but also on V .

This more flexible recursive utility is widely used in asset pricing and macroeconomics for at

least two important reasons: 1) conceptually, risk aversion is very distinct from the EIS, which

this preference is able to capture; 2) quantitative and empirical fit with various asset pricing

facts are infeasible with standard CRRA utility but attainable with this recursive utility, as

shown by Bansal and Yaron (2004) and the large follow-up long-run risk literature. We show

that in our model, the EIS parameter plays an important role as well.

2.2 Bayesian Belief Updating about the Disaster Arrival Frequency

Next, we turn to the disaster arrival process. Since the arrival rate while constant is unob-

servable to the agent, an arrival of a disaster not only directly destroys capital stock, but also

serves as a signal from which households and firms update their beliefs about λ.

While the true disaster arrival rate λ is constant, households and firms do not have complete

information about this true value of λ. What the households and firms know at time 0 is that

the true value of λ is either λG or λB with λB > λG. If the true λ is λB rather than λG,

capital stock is more likely to be hit by a disaster (i.e., a negative jump). We refer to the

low-arrival-rate and high-arrival-rate scenarios as the good (G) state and the bad (B) state,

respectively. Additionally, all agents are endowed with the same prior belief π0− that the true

λ is λB. That is, our model features incomplete, symmetric information. All agents have the

same information sets, share the same prior, and use the same Bayes rule to update beliefs.

The agent learns about the true value of the unobservable constant λ over time.15 Let πt

denote the time-t posterior belief that λ = λB. That is,

πt = Pt(λ = λB) , (10)

where Pt( · ) is the conditional probability operator at t. The expected jump arrival rate at t,

14If γ = ψ−1 so that ω = 1, we have the standard constant-relative-risk-aversion (CRRA) expected utility,
represented by the additively separable aggregator:

f(C, V ) =
ρC1−γ

1− γ − ρ V. (9)

15In Section OA of the Online Appendix, we generalize our model to a setting where the unobservable
disaster arrival rate λ is stochastic and follows a two-state continuous-time Markov chain.
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denoted by λt, is given by

λt = Et(λ) = λ(πt) = λBπt + λG(1− πt) , (11)

which is a weighted average of λB and λG. A higher value of πt corresponds to a belief that

the economy is more likely in State B where the jump arrival rate is λB > λG.

What leads the agent’s belief to worsen (increasing π) is jump arrivals. What leads the

belief to revise favorably is no jump arrivals. In this sense, no-jump news is good news.

Mathematically, the agent updates belief by following the Bayes rule:16

dπt = σπ(πt−) (dJt − λt−dt) , (12)

where

σπ(π) =
π(1− π)(λB − λG)

λ(π)
=
π(1− π)(λB − λG)

λBπ + λG(1− π)
> 0 . (13)

Here, signals come from Jt. Because Et−[dJt] = λt−dt, (12) implies that π is a martingale.

When a disaster strikes at t, the belief immediately increases from the pre-jump level πt−

to πt = πJt by σπ(πt−), where

πJt = πt− + σπ(πt−) =
πt− λB
λ(πt−)

> πt− . (14)

Note that the percentage change of belief in response to the arrival of a jump, πJt /πt−, which

equals λB/λ(πt−), decreases with the prior π. That is, a disaster arrival causes a larger

percentage increase of belief if the agent is more optimistic (i.e., with a lower prior πt−).

If there is no arrival over time interval dt, the household becomes more optimistic. Math-

ematically, if dJt = 0, we have

dπt
dt

= µπ(πt−)dt = πt−(1− πt−)(λG − λB) , (15)

where µπ(πt−) = −σπ(πt−)λ(πt−) . Equation (15) is a logistic differential equation. Conditional

on no jump during a time interval (s, t), i.e., dJv = 0 for s < v ≤ t, we obtain the following

closed-form logistic function for πt by integrating {πv; v ∈ (s, t)} from s to t:

πt =
πse
−(λB−λG)(t−s)

1 + πs(e−(λB−λG)(t−s) − 1)
. (16)

In Figure 1, we plot a simulated path for π starting from π0− = 0.1. It shows that absent

a jump arrival, belief becomes more optimistic and πt decreases deterministically between two

consecutive jumps following the logistic function given in (16). Once a jump arrives at t, the

belief worsens moving upward to πJt given in (14) by a discrete amount σπ(πt−).

16See Theorem 19.6 in Liptser and Shiryaev (2001).
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Figure 1: This figure simulates a path for jump arrival times in Panel A and plots the cor-
responding belief updating process in Panel B starting with π0 = 0.1. The belief decreases
deterministically in the absence of jumps but discretely increases upward upon a jump arrival.

2.3 Competitive Market Structure and Equilibrium

Next, we turn to the competitive market structure and define market equilibrium. Financial

markets are dynamically complete. Without loss of generality, it is sufficient to assume that

the following financial securities exist at all time t: (i) a risk-free asset thats pays interest at

the rate of rt and (ii) the aggregate equity market.17

Let {Qt} denote the equilibrium ex-dividend aggregate stock market value and {Dt} denote

the aggregate dividends, respectively. The cum-dividend return is given by

dQt + Dt−dt

Qt−
= µQ(πt−)dt+ σdWt +

(
QJt
Qt−

− 1

)
dJt , (17)

where µQ(π) is the expected stock market return (leaving aside the jump effect) to be deter-

mined later. We later verify that the diffusion volatility of the stock market return equals σ,

the same as the diffusion volatility in capital accumulation process given in (2).

Competitive equilibrium. We define the recursive competitive equilibrium as follows: (a.)

Taking the equilibrium risk-free rate r and the aggregate stock market return given in (17) as

17For markets to be dynamically complete, we also need actuarially fair diffusion and jump hedging contracts
for each possible Z as in Pindyck and Wang (2013). The net demand is zero for all hedging contracts. As
introducing these hedging contracts do not alter the equilibrium outcomes, for expositional simplicity, we omit
these hedging contracts and refer readers to Pindyck and Wang (2013) for related detailed analysis.
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given, the representative household chooses consumption C and allocation to the aggregate

stock market H to maximize lifetime utility given by (7)-(8);18 (b.) Taking the equilibrium

SDF {Mt; t ≥ 0} as given, the representative firm chooses investment I and the disaster

exposure mitigation spending Xe to maximize its market value given in (6); (c.) The interest

rate r, the stock market return process (17), and the SDF {Mt; t ≥ 0} are consistent with the

households’ and firms’ optimal decisions and all markets clear in equilibrium.

2.4 Source of Externality: Technology Reducing Tail Risk of the
Damage Distribution Ξ(Z) for All Firms

Next, we introduce a mitigation technology, which reduces the tail risk of the aggregate disaster

distribution Ξ(Z). Adding this feature into the model is important as it captures a key real-

world relevant aspect of aggregate risk mitigation, namely externalities. We assume that this

new technology curtails the left tail risk of the aggregate distribution for the fractional loss

(1− Z) by making larger fractional damages to capital stock (1− Z) less likely.

To ease exposition of economic insights, we distinguish aggregate variables from micro level

variables in notations. Throughout this paper, we use boldfaced letters to refer to aggregate

variables. We assume that only the aggregate spending made at t− can curtail left-tail large

downside risks at t if a jump arrives at t. The idea is that changing the distribution of Z for all

firms is very costly and requires a spending that is at the order of a fraction of the aggregate

capital stock K. Let Xd
t− denote the aggregate spending on this distribution-tail-curtailing

technology, where the superscript d refers to the notion that this spending is to make the

distribution of fractional loss (1 − Z) less damaging. Let xdt− = Xd
t−/Kt− denote the scaled

aggregate distribution mitigation spending. Since aggregate risk reduction is a public good,

no firm has incentives to spend on this new technology. This is the reason why market fail.

Specifically, by spending on disaster distribution (public) mitigation, we change the distri-

bution of the post-jump fractional recovery Z from Ξ(Z) to Ξ(Z; xdt−). While simultaneously

doubling the aggregate disaster distribution mitigation spending Xd
t− and the aggregate capi-

tal stock Kt− does not change the distribution Ξ(Z; xdt−), as the ratio xdt− = Xd
t−/Kt− remains

unchanged, doing so doubles the benefit of this public spending (i.e., the total reduction of

damages) in levels as the benefit is proportional to Kt−(1− Z) at the aggregate level.19

18Since each household is infinitesimally small and has no impact on any aggregate variables, there is no
incentive to spend on mitigation. We provide additional discussions later in the paper.

19This is similar to the homogeneity assumption for disaster distribution (private) mitigation spending Xe
t−.
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In contrast to the exposure mitigation technology, which works at the firm level, this

disaster distribution mitigation technology operates at the aggregate level and hence features

an externality since its effectiveness depends on collective contributions of all firms.

We have completed the description of our market economy model. Before solving it in

Section 4, we first analyze three versions of the planner’s problems with varying degrees

of access to the mitigation technologies. The solutions for these planner’s models serve as

important benchmarks for our analysis.

3 Planner’s Solutions

The social planner chooses consumption C, investment I, the aggregate disaster distribution

mitigation spending Xd, and the aggregate disaster exposure mitigation spending Xe to maxi-

mize the representative household’s utility given in (7)-(8) subject to the representative firm’s

production/capital accumulation technology, the disaster exposure and distribution mitiga-

tion technologies, and the aggregate resource constraint described in Section 2. We report

planner’s solution for three cases: 1.) the first-best case where the planner has access to both

types of mitigation technologies; 2.) the case where the planner only has access to the disaster

exposure mitigation technology introduced in Section 2.1; and 3.) the case where the planner

has access to neither mitigation technology.

3.1 Planner’s First-Best Solution with Mitigation Technology

With access to both types of mitigation technologies, the planner attains the first-best out-

come. To save on notation, we drop the subscript fb in this subsection until the end when we

summarize the main results.

Dynamic programming. Let V (K, π) denote the representative household’s value func-

tion. The Hamilton-Jacobi-Bellman (HJB) equation for the planner is:

0 = max
C, I,xe xd

f(C, V ) + IVK(K, π) + µπ(π)Vπ(K, π) +
1

2
σ2K2VKK(K, π)

+λ(π)Exd
[
V
(
KJ , πJ

)
− V (K, π)

]
, (18)

where πJ is the post-jump belief given in (14), KJ is the post-jump capital stock given by

KJ = (1−N(xe)(1− Z)) K , (19)
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µπ(π) is the expected change of belief absent jumps given in (15), λ(π) is the jump arrival

rate given in (11), and Exd [ · ] is the expectation operator with respect to the pdf ξ(Z; xd) for

the recovery fraction Z for a given level of scaled disaster distribution mitigation spending xd.

The first term on the right side of (18) is the household’s normalized aggregator (Duffie

and Epstein, 1992); the second term captures how investment I affects V (K, π); the third

term reflects how belief updating (in the absence of jumps) impacts V (K, π); and the fourth

term captures the effect of capital-stock diffusion shocks on V (K, π). It is worth noting that

as the signals in our learning model are discrete (jump arrivals), there is no diffusion volatility

induced quadratic variation term involving Vππ in the HJB equation (18).

Direct (value destroying) versus learning effects. Finally, the last term (on the second

line) of (18) captures the effect of jumps on the expected change in V (K, π). This term

captures rich economic forces and warrants additional explanations. When a jump arrives at t

(dJt = 1), capital falls from Kt− at time t− to (1−Z)Kt− absent exposure mitigation spending.

By spending xet− to mitigate the exposure, the planner reduces the capital loss from (1−Z)Kt−

by N(xet−)(1− Z)Kt−, so that the post-jump capital is KJt = (1−N(xet−)(1− Z))Kt− at t.

In sum, a jump triggers two effects on V (K, π). First, there is a direct capital destruction

effect. As a jump arrival lowers capital stock from Kt− to KJt = (1−N(xet−)(1−Z))Kt−, the

value function decreases from V (Kt−, πt−) to V (KJt , πt−) even if we ignore the agent’s belief

updating due to learning. Second, there is a learning (belief-updating) effect. As a jump

arrival also cause the belief to increase from πt− to πJt given in (14), the agent becomes more

pessimistic causing the value function to further decrease from V (KJt , πt−) to V (KJt , π
J
t ).

These two effects reinforce each other over time leading to potentially significant losses.

The planner chooses consumption C, investment I, two types of scaled mitigation spend-

ings, xd and xe, to maximize recursive utility given in (7)-(8) by setting the sum of all the

five terms on the right side of (18) to zero, implied by the optimality argument underpinning

the HJB equation for recursive utility (see Duffie and Epstein, 1992). Because of the resource

constraint, it is sufficient to focus on I, xd and xe as control variables.

First-order conditions for investment and two types of mitigation spending. The

first-order condition (FOC) for investment I is

(1 + ΦI(I,K))fC(C, V ) = VK(K, π) . (20)
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The right side of (20), VK(K, π), is the marginal (utility) benefit of accumulating capital

stock. The left side of (20) is the marginal cost of accumulating capital, which is given by

the product of forgone marginal utility of consumption fC(C, V ) and the marginal cost of

accumulating capital, (1 + ΦI(I,K)). Because of capital adjustment costs, increasing K by

one unit requires incurring investment costs more than one unit, which explains the marginal

adjustment cost ΦI(I,K). Because of non-separability of preferences, fC(C, V ) depends on

not just consumption C but also the continuation utility V .

The FOC for the scaled aggregate disaster distribution mitigation spending, xd ≥ 0, is

fC(C, V ) =
1

K
λ(π)

∫ 1

0

[
∂ξ(Z; xd)

∂xd
V
(
KJ , πJ

)]
dZ , (21)

if the solution is positive, xd > 0.20 The planner optimally chooses xd to equate the marginal

cost of mitigation, which is the forgone marginal (utility) benefit of consumption fC(C, V )

given on the left side of (21), with the marginal benefit of mitigation given on the right side

of (21).21 By spending xd per unit of capital to make the distribution of Z less damaging,

the planner changes the pdf ξ(Z; xd) for the fractional capital recovery, Z, from ξ(Z; 0) to

ξ(Z; xd). The FOC for the scaled aggregate disaster exposure mitigation spending xe is

fC(C, V ) = −λ(π)N ′(xe)Exd
[
(1− Z)VK

(
KJ , πJ

)]
, (22)

if the solution is strictly positive, xe > 0.22 The planner optimally chooses xe to equate the

marginal benefit of reducing the disaster exposure with the marginal cost of doing so. By

spending xet− per unit of capital, the planner reduces the post-jump fractional capital loss

from (1− Z)Kt− to Kt− −KJt = N(xet−)(1− Z)Kt−.

Using the homogeneity property to simplify the solution. Our model has the fol-

lowing homogeneity property. If we double capital stock K, it is optimal for the planner to

simultaneously double its policies including the two types of mitigation spendings Xd and

Xe, investment I, and consumption C at all time. As a result, the value function V (K, π) is

homogeneous with degree (1− γ) in K. We can write Vfb(K, π) as follows:

Vfb(K, π) =
1

1− γ (bfb(π)K)1−γ , (23)

20Otherwise, xd = 0 as mitigation in reality cannot be negative. When do we see xd = 0? One scenario
is when the mitigation technology is very inefficient. Technically in this case the agent may want to choose
negative mitigation spending (shorting the mitigation spending in a sense) if negative mitigation spending were
feasible, as doing so allows the agent to boost investment or consumption, which can be welfare enhancing.

21We verify that the second-order condition (SOC) λ(π)
∫ 1

0

[
∂2ξ(Z;xd)
∂(xd)2

V
(
KJ , πJ

)]
dZ < 0 is satisfied.

22Otherwise, xe = 0 since mitigation cannot be negative.
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where bfb(π) is a welfare measure proportional to certainty equivalent wealth under first best

to be determined as part of the solution. Using the FOCs (20), (21), (22) and substituting

the value function V (K, π) given in (23) into the HJB equation (18), and simplifying the

equations, we obtain the following four-equation ODE system for b(π), i(π), xd(π) and xe(π):

0 =
ρ

1− ψ−1

[[
b(π)

ρ(1 + φ′(i(π)))

]1−ψ
− 1

]
+ i(π)− γσ2

2
+ µπ(π)

b′(π)

b(π)

+
λ(π)

1− γ

(b (πJ )
b(π)

)1−γ

Exd(π)((1−N(xe(π))(1− Z))1−γ)− 1

 , (24)

b(π) = [A− i(π)− φ(i(π))− xd(π)− xe(π)]1/(1−ψ) [ρ(1 + φ′(i(π)))]
−ψ/(1−ψ)

, (25)

1

1 + φ′(i(π))
= λ(π)

[
b
(
πJ
)

b(π)

]1−γ
N ′(xe(π))Exd(π)

[
(Z − 1)(1−N(xe(π))(1− Z))−γ

]
, (26)

1

1 + φ′(i(π))
=

λ(π)

1− γ

[
b
(
πJ
)

b(π)

]1−γ ∫ 1

0

[
∂ξ(Z; xd(π))

∂xd
(1−N(xe(π))(1− Z))1−γ

]
dZ . (27)

We derive the system of ODEs (24)-(27) in Appendix A.1.

Next, we provide the boundary conditions at π = 0 and π = 1 and discuss the intuition. As

we show, the model at the two boundaries map to the full model in Pindyck and Wang (2013),

but generalized to allow for mitigation spending. When π = 0, the economy is permanently

in state G. Therefore there is no learning and the solution boils down to solving the four

unknowns, b(0), i(0), xd(0), and xe(0), via the following four-equation system:

−

[
b(0)

ρ(1+φ′(i(0)))

]1−ψ
− 1

1− ψ−1 ρ = i(0)− γσ2

2
+
λG

[
Exd(0)((1−N(xe(0))(1− Z))1−γ)− 1

]
1− γ , (28)

b(0) [ρ(1 + φ′(i(0)))]
ψ/(1−ψ)

= [A− i(0)− φ(i(0))− xd(0)− xe(0)]1/(1−ψ) , (29)

1

1 + φ′(i(0))
= λGN

′(xe(0))Exd(0)
[
(Z − 1)(1−N(xe(0))(1− Z))−γ

]
, (30)

1

1 + φ′(i(0))
=

λG
1− γ

∫ 1

0

[
∂ξ(Z; xd(0))

∂xd
(1−N(xe(0))(1− Z))1−γ

]
dZ . (31)

Once π reaches zero at time t (i.e., πt = 0), i, xd, xe, c, and welfare measure b all remain

constant at all time s ≥ t. By applying essentially the same analysis to the other boundary

at π = 1, i.e., when the economy reaches state B, we solve for the four unknowns, b(1), i(1),

xd(1) and xe(1), via (A.4)-(A.7), another four-equation system in Appendix A.1.

Next, we summarize our model’s solution for the entire belief region π ∈ [0, 1].
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Proposition 1 The first-best solution is given by the value function (23) and the quartet

policy rules, bfb(π), ifb(π), xdfb(π), and xefb(π), where 0 ≤ π ≤ 1, via the four-equation ODE

system (24)-(27) with the conditions (28)-(31) for π = 0 and (A.4)-(A.7) for π = 1.

See Appendix A.1 for a proof.

3.2 The Case with Exposure Mitigation Technology Only

To connect to the competitive market equilibrium solution (reported in Section 4), it is useful

to analyze the planner’s solution for the case where there is disaster exposure mitigation

technology but no disaster distribution mitigation technology. That is, we shut down the

distribution mitigation technology described in Section 2.4 in this version of our planner’s

model. For value functions and policy rules, we use the hat ̂ to differentiate from the other

ones. Using the same argument as that for the planner’s first-best solution, we know that

the value function, V̂ (K, π), is homogeneous with degree (1− γ) in K:

V̂ (K, π) =
1

1− γ
(
b̂(π)K

)1−γ
, (32)

but with a different welfare measure, b̂(π) (also proportional to the certainty equivalent

wealth). Setting x̂d(π) = 0 for all values of π, we obtain the solution for b̂(π) together

with the optimal investment î(π) and the disaster exposure mitigation spending x̂e(π).

Proposition 2 Without disaster risk mitigation technology ( x̂d(π) = 0), the planner’s solu-

tion is given by the value function (32), where b̂(π), î(π), and x̂e(π) solve (24), (25), and (26)

together with the boundary conditions (28), (29), and (30) and (A.4), (A.5), and (A.6).

In Section 4, we show that the market economy model is equivalent to this version of the

planner’s model. Next, we turn to the case where the planner has access to neither mitigation

technology.

3.3 The Case with Neither Types of Mitigation Technology

To quantify the value of mitigation technology for the society, it is useful to summarize the

planner’s solution when we shut down both mitigation technologies. For value functions and

policy rules, we use the underline to differentiate from the other ones. Using the same

argument as for the two cases we just analyzed, we know that the planner’s value function,
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V (K, π), is homogeneous with degree (1− γ) in K:

V (K, π) =
1

1− γ
(
b(π)K

)1−γ
, (33)

where b(π) is a welfare measure (also proportional to the certainty equivalent wealth) but

different from b(π) and b̂(π) just analyzed. The next proposition summarizes the key results

for b(π) and the optimal investment-capital ratio i(π) in the setting where xd(π) = xe(π) = 0.

Proposition 3 With access to neither types of disaster risk mitigation technology ( xd(π) =

xe(π) = 0), the planner’s solution is given by the value function (33), where b(π) and i(π)

jointly solve (24)-(25) together with the boundary conditions (28)-(29) and (A.4)-(A.5).

4 Competitive Equilibrium Solution

While the planner’s (first-best) public mitigation spending is strictly positive, no firms have

incentives to mitigate aggregate risk distribution in a market economy. Moreover, we show

that the market solution is equivalent to the planner’s solution for the case where only the

disaster exposure mitigation technology is available (given in Section 3.2.)

4.1 Firm’s Optimization Problem

When making its decisions, the firm takes the equilibrium risk-free rate rt and the market

price of (diffusion and jump) risks as given. Formally, the firm maximizes its market value

given by (6) taking the following equilibrium SDF Mt as given:

dMt

Mt−
= −rt−dt− γσdWt + (ηt − 1) (dJt − λ(πt−)dt) , (34)

where the equilibrium risk-free rate is a function of belief (πt−): rt− = r(πt−) and the equi-

librium market price of jump risk ηt depends on belief πt− and the realized value of Z, i.e.,

ηt = η(πt−;Z).23 The first term on the right side of (34) states that the equilibrium drift of

dMt/Mt− has to equal −rt−dt, a standard asset-pricing result (Duffie, 2001). The second term

on the right side of (34) is the diffusion martingale and γσ is the equilibrium market price of

diffusion risk as in Pindyck and Wang (2013) and verified later. As λ(πt−)dt = Et− (dJt), the

last term in (34) is a jump martingale and implies that when a jump arrives at t, the SDF

changes discretely from Mt− to MJt by a multiple of stochastic ηt:

MJt
Mt−

= ηt . (35)

23We provide equilibrium solutions for r(πt−) and η(πt−;Z) in Section 6 and Subsections 4.3, respectively.
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Applying the Ito’s Lemma to firm value Q(Kt, πt) = q(πt)Kt given in (6) and using (34),

we obtain the following HJB equation for the firm’s Tobins q, q(π), (see Appendix B.1):

r(π)q(π) = max
i, xe, xd

A− i− φ(i)− xe − xd + iq(π) + µπ(π)q′(π)− γσ2q(π)

+ λ(π)Exd
[
η(π;Z)

(
q(πJ )(1−N(xe)(1− Z))− q(π)

)]
. (36)

The expectation operator in (36) takes the aggregate disaster mitigation spending in the

economy, xd, as given. In addition to the preceding HJB equation, we also have two FOCs.

First, (36) implies that xd = 0, as a firm is infinitesimal and hence mitigating aggregate

disaster distribution brings no benefit but only cost to itself.24 Note that when choosing its

xd, the firm takes the aggregate xd which determines the expectation in (36) as given. Of

course in equilibrium, Xd equals the sum of all Xd chosen by firms and households.25 Second,

unlike xd, (36) implies a rather different FOC for the firm’s exposure mitigation spending xe:

1 = −λ(π)q(πJ )N ′(xe)Exd [(1− Z)η(π;Z)] . (37)

By spending a dollar at the margin on exposure risk mitigation, the firm reduces the destruc-

tion of its capital stock by −(1 − Z)N ′(xe) > 0 units should a jump arrive. Upon a jump

arrival, the gross percentage change of SDF is MJt /Mt− = η(πt−;Z) and the Tobin’s q jumps

from q(π) to q(πJ ). To obtain the marginal benefit of spending on exposure mitigation Xe,

we multiply the marginal reduction of capital stock destruction caused by a jump arrival,

−(1 − Z)N ′(xe) > 0, by λ(π)q(πJ )η(π;Z), and then integrate over all possible values of Z.

We then obtain the expected marginal value of mitigating the disaster exposure, the right side

of (37), which equals the unit marginal cost of mitigating the exposure on the left side.

In contrast, the firm does not spend on the disaster distribution mitigation technology, as

doing so yields no private payoff. The FOC for investment implied by (36) is:

q(π) = 1 + φ′(i(π)) , (38)

which is the standard investment optimality condition that equates the marginal q to the

marginal cost of investing 1 + φ′(i(π)) (the homogeneity property) as in Hayashi (1982).

24To be precise, since the firm’s FOC for xd only has marginal cost but no marginal benefit, the FOC cannot
hold with equality and hence the corner solution xd = 0 is optimal.

25Using the law of large numbers, in equilibrium the aggregate mitigation spending in a laissez-faire economy
equals the sum of all mitigation distribution disaster spendings by households and firms, i.e., Xd =

∫
Xddνf +∫

Xddνc, where νf is the unit measure of firms and νc is the unit measure of households/consumers.
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4.2 Household’s Optimization Problem

The household maximizes utility taking the risk-free rate process r(πt) and the stock market

return process, given by (17), as given. We show that the household’s value function Jt =

J(Wt, πt) takes the form of:

J(W,π) =
1

1− γ (u(π)W )1−γ , (39)

where u(π) is a welfare measure that will be endogenously determined.

The household chooses consumption C, allocation to the stock market H, disaster exposure

mitigation spending Xe, and distribution mitigation spending Xd to maximize utility. The

HJB equation for the household in our decentralized market setting is given by

0 = max
C,H,Xe, Xd

f(C, J) + µπ(π)Jπ + λ(π)

∫ 1

0

[
J
(
WJ , πJ

)
− J(W,π)

]
ξ(Z; xd)dZ

+ [r(π)W + (µQ(π)− r(π))H − C] JW +
σ2H2JWW

2
, (40)

where µQ(π) is defined in (17), πJ is the post-jump belief given in (14), and WJ is the

post-jump wealth given by

WJ
t = Wt− +

(
QJt
Qt−

− 1

)
Ht− . (41)

Households spend nothing on disaster distribution mitigation (Xd = 0), as doing so yields

no benefit. Each household is infinitesimally small and cannot possibly change the aggregate

disaster distribution Ξ(Z; xd), which only depends on aggregate xd. Since neither households

nor firms have incentives to spend on public mitigation, in equilibrium the aggregate xd is

zero. Similarly, since households have no power to influence the stock market, they have no

incentives to spend on exposure mitigation either, Xe = 0.

Now we turn to the post-jump wealth given in (41). The second term in (41) is the change

of the portfolio’s market value upon the arrival of a disaster, where QJt is the post-jump

aggregate stock market value at t. The homogeneity property implies that Qt = q(πt)Kt

where q(πt) is the Tobin’s q for the aggregate capital stock K and equals the firm’s average q:

q(πt) = q(πt) in equilibrium. When a jump arrives, the aggregate stock market value changes

from Qt− to QJt where:

QJt
Qt−

=
q(πJt )KJt
q(πt−)Kt−

=
q(πJt )

q(πt−)
(1−N(xet−)(1− Z)) . (42)

20



Equation (42) states that the aggregate stock market value changes from Qt− = q(πt−)Kt−

to QJt = q(πJt )KJt as a jump arrives for two reasons: 1.) capital stock decreases from Kt− to

KJt = [1−N(xet−)(1−Z)]Kt− by a fraction of N(xet−)(1−Z) and 2.) the aggregate Tobin’s q

changes from q(πt−) to q(πJt ), where πJt = πt−λB/λ(πt−) is given in (14). For brevity, we drop

the time subscripts when it does not cause confusion. That is, we write QJ /Q = QJt /Qt−.

Substituting (39) into the HJB equation (40), we obtain the following consumption rule:

C(π) = ρψu(π)1−ψW . (43)

Consumption is linear in wealth with a marginal propensity to consume of ρψu(π)1−ψ that

depends on π. The market portfolio allocation H is given by

H = −µQ(π)− r(π)

σ2

JW (W,π)

JWW (W,π)
+
λ(π)

σ2
Exd

[(
1− QJ

Q

)
JW
(
WJ , πJ

)
JWW (W,π)

]
. (44)

The first term in (44) is the standard Merton’s mean-variance demand (absent jumps) and

the second term in (44) captures the intertemporal hedging demand due to the agent’s belief

updating caused by a jump arrival.

4.3 Market Equilibrium and Solution

In equilibrium, all of the household’s wealth is invested in the stock market, Wt = Ht = Qt.

Additionally, the equilibrium aggregate disaster exposure mitigation spending in a laissez-faire

economy, Xe, equals the sum of all disaster exposure mitigation spendings by firms.26 As nei-

ther households nor firms have incentives to spend on Xd, the aggregate disaster distribution

mitigation spending is zero: Xd = 0.

In Appendix B.3, we simplify the household’s HJB equation as:

0 =
ψ−1ρψu(π)1−ψ − ρ

1− ψ−1 + µQ(π) + µπ(π)
u′(π)

u(π)
− γσ2

2
+
λ(π)

1− γ

[
Exd

(
η(π;Z,xe)

QJ

Q

)
− 1

]
,

(45)

where η(π;Z,xe) is the ratio of the pre-jump and the post-jump SDF in equilibrium:

η(π;Z,xe) =
MJt
Mt−

=
JW (QJ , πJ )

JW (Q, π)
(46)

26Since households contribute nothing to disaster exposure mitigation spending,
∫
Xedνc = 0, where νc is

the unit measure of households/consumers. Again, using the law of large numbers, the aggregate exposure
mitigation spending is given by Xe =

∫
Xedνf +

∫
Xedνc =

∫
Xedνf , where νf is the unit measure of firms.
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and µQ(π) defined in (17) is given by27

µQ(π) = r(π) + γσ2 + λ(π)Exd
[
η(π;Z,xe)

(
1− QJ

Q

)]
(47)

=
c(π)

q(π)
+ i(π) + µπ(π)

q′(π)

q(π)
. (48)

The second equality in (46) states that η(π;Z,xe) also equals the ratio of the household’s

post-jump marginal value of wealth JW (QJ , πJ ) and the pre-jump marginal value of wealth

JW (Q, π). In equilibrium both the household’s pre-jump and post-wealth wealth areis in the

stock market and hence W = Q and WJ = QJ . Using the homogeneity property, we write

η(π;Z,xe) as:

η(π;Z,xe) =

(
u(πJ )

u(π)

)1−γ (
q(πJ )

q(π)

)−γ
(1−N(xe)(1− Z))−γ . (49)

Using (42) for QJt /Qt− and (49) for η(π;Z,xe), we obtain the ODE (45) for the welfare

measure u(π) with belief π being the only state variable.

In sum, the model solution is given by 1.) the ODE (45) for u(π) and the FOCs (43)-(44)

for households and 2.) the ODE (36) for q(π) and the FOCs (37)-(38) for firms. Next, we

show that this solution of our market model is the same as that of a planner’s problem, where

the planner has no access to the disaster mitigation technology (xd(π) = 0.) That is, rather

than solving for u(π) and q(π) in our market economy, it is equivalent to solve for b(π) and

optimal policies in the planner’s economy and interpret them as the market economy solution.

Proposition 4 The competitive equilibrium solution is the same as the planner’s solution

(summarized in Proposition 2) where there is no mitigation technology to change the distribu-

tion of the recovery fraction Z (xd(π) = 0).

See Appendix B.3 for proof. Note that this proposition states that the Welfare Theorem

applies when there is no distribution mitigation technology.

5 Taxation, First-Best, and Welfare

In this section, we show that introducing optimal capital taxation into our competitive market

economy of Section 2 changes the market economy solution given in Section 4 to the one

implied by the planner’s first-best solution given in Section 3.1.

27We use the FOC given in (44) and the equilibrium condition Ht = Wt to obtain (47). Substituting the
resource constraint c(π) = A− i(π)− φ(i(π))− xe(π) into the ODE (36) for q(π), we obtain (48).
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5.1 Firm and Household Optimization under Capital Taxation

The government taxes the firm’s capital stock Kt at a rate of τt = xdfb,t, where xdfb,t is the

first-best mitigation spending to change the distribution of Z, obtained in Section 3.1. Then,

the government spends Xd
t = τtKt to reduce the tail risk of the disaster distribution.28 We

make the dependence of the tax rate τt on πt explicit by writing τt = τ(πt) = xdfb,t = xdfb(πt).

Facing a capital tax rate of τ(πt), each firm solves the following problem:

max
I,Xe, Xd

E
[∫ ∞

0

(
Mt

M0

[
(A− τ(πt))Kt − It − Φt −Xe

t−Xd
t

])
dt

]
, (50)

taking the equilibrium SDF Mt as given. First, the firm has no incentive to spend on disaster

distribution mitigation, again as doing so is costly but yields no benefit for the firm. Thus,

Xd = 0. The tax makes the firm behave as if its productivity is lowered from A to A− τ(πt).

Applying the Ito’s Lemma to firm value Q(Kt, πt) = q(πt)Kt given in (6) and using (34), we

obtain the following HJB equation for q(πt):

r(π)q(π) = max
i, xe

A− τ(π)− i− φ(i)− xe + i(π)q(π) + µπ(π)q′(π)− γσ2q(π)

+ λ(π)Exd
[
η(π;Z,xe)

(
q(πJ )(1−N(xe)(1− Z))− q(π)

)]
. (51)

Note that the tax rate τ(π) appears in (51). The FOCs for i and xe are given by (37) and

(38), respectively, the same as in the no-tax competitive-market economy model of Section 4.

The household’s problem is the same as in Section 4. That is, the HJB equation (45) for

u(π) and the FOCs (43) for consumption and (44) for the stock market portfolio allocation

characterize the household’s problem. Next, we prove that with optimal capital taxation the

competitive-market economy yields the first-best solution.

5.2 Optimal Taxation in Markets Restores First-Best

In this section, we show that the household’s value function in the competitive economy with

optimal taxes is the same as the value function under the first-best. As the household’s

value function in a market economy depends on wealth W while the planner’s value function

depends on K, we use the equilibrium result Wt = q(πt)Kt to write the household’s value

function as J(Wt, πt) = J(q(πt)Kt, πt) in the market economy with taxation. Therefore, the

value functions in the two economies are equal, V (Kt, πt) = J(Wt, πt), if and only if b(π) in

the first-best economy equals the product u(π)q(π) in the competitive economy with taxes.

28Equivalently the government can impose via a tax on sales Yt = AKt at the firm level.
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Specifically, we show the following results: (1.) the first-order conditions for i(π) and

xe(π) in the competitive economy with an optimal tax rate (set at the planner’s first best

distribution mitigation xdfb,t) are the same as the corresponding first-order conditions in the

planner’s economy; (2.) the implied ODE for u(π)q(π) in the competitive market economy is

the same as the ODE (24) for b(π) in the planner’s economy; (3.) all the boundary conditions

at π = 0 and π = 1 in the two economies are the same. Below is a step-by-step proof.

First, combining the equilibrium aggregate investment FOC, q(π) = 1+φ′(i(π)), implied by

(38) with the optimal scaled consumption rule c(π) = ρψu(π)1−ψq(π) = (ρq(π))ψ [u(π)q(π)]1−ψ,

implied by (43) and W = q(π)K, we obtain the following expression for consumption:

c(π) = [ρ(1 + φ′(i(π)))]
ψ

[u(π)q(π)]1−ψ . (52)

Using the goods market clear condition c(π) = A− τ(π)− i(π)− φ(i(π))− xe(π) and the

conjecture b(π) = u(π)q(π), we obtain the following expression:

b(π) = [A− τ(π)− i(π)− φ(i(π))− xe(π)]1/(1−ψ) [ρ(1 + φ′(i(π)))]
−ψ/(1−ψ)

, (53)

which is the same as the investment FOC, given in (25), for the planner’s problem, provided

that the capital tax rate equals xdfb(π): τ(π) = xdfb(π). Note that (53) summarizes both the

consumer’s and the firm’s optimization FOCs in the market economy with optimal taxes.

Second, substituting (49) for η into the disaster exposure mitigation (xe) FOC (37) in the

competitive market economy, we obtain

1 = −λ(π)q(πJ )N ′(xe)Exd

[
(1− Z)

(
u(πJ )

u(π)

)1−γ (
q(πJ )

q(π)

)−γ
(1−N(xe)(1− Z))−γ

]
. (54)

Using the investment FOC q(π) = 1 + φ′(i(π)), the equilibrium conditions, q(π) = q(π),

i(π) = i(π), and the conjecture b(π) = u(π)q(π) between the two economies, we obtain

1 = −N ′(xe(π))λ(π)(1 + φ′(i(π)))

[
b(πJ )

b(π)

]1−γ
Exd(π)

[
(1− Z)(1−N(xe(π))(1− Z))−γ

]
, (55)

which is the same as the planner’s FOC (26) for xe. So far, we have verified that the FOCs

for investment and exposure mitigation spending in the two economies are the same.

Third, substituting (48) into (45) and using the consumption rule c(π) = ρψu(π)1−ψq(π)
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implied by the FOC (43), we may rewrite the ODE (45) for the household’s u(π) as

0 =
ρψu(π)1−ψ − ρ

1− ψ−1 + i(π) + µπ(π)
q′(π)

q(π)
+ µπ(π)

u′(π)

u(π)
− γσ2

2

+
λ(π)

1− γ

[
Exd

(
η(π;Z,xe)

QJ

Q

)
− 1

]
=

ρψu(π)1−ψ − ρ
1− ψ−1 + i(π) + µπ(π)

(
u′(π)

u(π)
+
q′(π)

q(π)

)
− γσ2

2

+
λ(π)

1− γ

(u (πJ )q
(
πJ
)

u(π)q(π)

)1−γ

Exd((1−N(xe)(1− Z))1−γ)− 1

 . (56)

We obtain (56) by using η(π;Z,xe) given in (49) and QJ /Q given in (42).

Finally, using the conjecture b(π) = u(π)q(π) = u(π)(1 + φ′(i(π))), we may simplify the

ODE (56) and obtain the following ODE for b(π) = u(π)q(π):

0 =
ρ

1− ψ−1

[[
b(π)

ρ(1 + φ′(i(π)))

]1−ψ
− 1

]
+ i(π) + µπ(π)

b′(π)

b(π)
− γσ2

2

+
λ(π)

1− γ

(b (πJ )
b(π)

)1−γ

Exd((1−N(xe)(1− Z))1−γ)− 1

 , (57)

which is the same as the ODE (24) for b(π) in the planner’s (first-best) economy.

Finally, applying the same arguments as the above to the boundaries at π = 0 and π = 1,

we can show that the two economies have the same FOCs and, moreover, b(0) and b(1) in

the planner’s economy equal to u(0)q(0) and u(1)q(1) in the market economy with optimal

taxation, respectively.

In sum, we have verified that setting the optimal capital tax at τ(π) = xdfb(π) in the market

economy yields the same resource allocation as in the planner’s first-best economy. The next

proposition summarizes this result.

Proposition 5 In a competitive market economy, household consumption, corporate invest-

ment, and disaster risk exposure mitigation attain the first-best levels in Section 3.1, provided

that the government sets the capital tax rate τ(πt) to the first-best level xdfb(πt) for all firms

and then spends 100% of the tax proceeds each period to mitigate the tail risk of the disaster

distribution, i.e., τ(πt) = xdfb(πt). The government balances its budget period by period.

6 Asset Prices

We next compute the equilibrium asset prices for the various economies that we have analyzed:

1.) market economy with optimal taxation (which yields the same outcome as the planner’s
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first-best economy); 2.) laissez faire market economy with both mitigation technology; 3.)

competitive markets with neither mitigation technology.

The next proposition summarizes the equilibrium asset-pricing implications for a given

market economy type. The proofs are in Appendices A.2 and B.3.

Proposition 6 Tobin’s average q for the aggregate capital stock is q(π) = 1 +φ′(i(π)), where

i(π) is the optimal investment-capital ratio. The equilibrium risk-free rate, r(π), is given by

r(π) = ρ+ ψ−1i(π)− γ(ψ−1 + 1)σ2

2
−
[
(1− ψ−1)

(
u′(π)

u(π)
+

q′(π)

q(π)

)
− q′(π)

q(π)

]
µπ(π)

− λ(π)
[
Exd(η(π;Z,xe))− 1

]
− λ(π)

ψ−1 − γ
1− γ

[
1− Exd

(
QJ

Q
η(π;Z,xe)

)]
, (58)

where η(π;Z,xe) given in (49) is the (gross) percentage change of the marginal value of wealth

(SDF), M, upon a jump arrival and QJ /Q is the jump-triggered (gross) percentage change of

the stock market value given in (42). The stock market risk premium, rp(π), is

rp(π) = γσ2 − λ(π)Exd
[
(η(π;Z,xe)− 1)

(
QJ

Q
− 1

)]
. (59)

Out of the six terms in (58), the first three terms are the standard contributing factors

to the interest rate in AK models with diffusion shocks. The fourth term captures the effect

of belief updating. The fifth term describes how the jump-induced expected change of the

marginal value of wealth (MJ /M) contributes to the risk-free rate. The sixth term captures

the additional effect of jumps on the equilibrium risk-free rate due to the household’s recursive

(non-separable) Epstein-Zin preferences rather than expected utility.29

There are two terms for the stock market risk premium given in (59). The first term is the

standard diffusion risk premium as in Lucas (1978).30 The second term captures the jump risk

premium, which equals the expectation over the product of the (net) percentage change of

marginal value of wealth (M), given by (η(π;Z,xe)−1), and the (net) percentage change of the

stock market value given in (42), both of which are caused by jump arrivals. A downward jump

causes the household’s marginal utility to increase (η(π;Z,xe) = MJ /M ≥ 1). Therefore, if

the stock market valuation decreases upon a jump arrival, (QJ < Q), the jump risk premium

(the second term) is then positive.

29To be precise, for recursive utility, fCV 6= 0, which means that the SDF Mt is not additively separable.
This non-separability makes jumps to have an additional intertemporal effect on the risk-free rate. Note that
for expected utility where γ = ψ−1, this term disappears.

30While both Lucas (1978) and Bansal and Yaron (2004) are discrete-time models, but the insight for
diffusion risk premium is the same in discrete-time and continuous-time models. Diffusion shocks in continuous-
time formulations correspond to Gaussian shocks in discrete time formulations.
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7 Application to Tropical Cyclones and Flood Control

We apply our model to flood control spendings that mitigate the damages of tropical cyclones

on economic growth and welfare.

7.1 Distributional and Functional Form Specifications

As in Barro (2006) and Pindyck and Wang (2013), we assume that the cdf of the recovery

fraction Z from a cyclone strike is given by a power law over Z ∈ (0, 1 ):

Ξ(Z; xd) = Zβ(xd) , (60)

where β(xd) is the exponent function that depends on scaled disaster distribution mitigation

xd. To ensure that our model is well defined, we require β(xd) > γ − 1. Conditional on a

jump arrival, the expected fractional capital loss for a firm is given by

`(π) = N(xe)(1− Exd(Z)) =
N(xe)

β(xd) + 1
. (61)

The larger the value of β( · ), the smaller the expected fractional loss Exd(1−Z) even absent

the firm’s disaster exposure mitigation xe. To capture the benefit of public mitigation, we

assume that β(xd) is increasing in xd, β′(xd) > 0. The benefit of public disaster distribution

mitigation xd is to increase the capital stock recovery (upon the arrival of a disaster) in the

sense of first-order stochastic dominance, i.e., Ξ(Z; xda) ≤ Ξ(Z; xdb) for Z < 1 if xda > xdb .

Let gt = g(πt) denote a firm’s expected growth rate including the jump effect. The

homogeneity property implies that growth is independent of the capital stock K and hence

g(π) = i(π)− λ(π)`(π) = i(π)− λ(π)N(xe)

β(xd(π)) + 1
. (62)

In addition, we specify the firm’s exposure mitigation technology N(xe) as follows:

N(xe) = 1− (xe)α , (63)

where 0 < α < 1. That is, the more exposure mitigation spending the smaller the damage

(the lower the level of N(xe)). Additionally, the marginal benefit of xe on reducing damages

diminishes. Moreover, we use the following linear specification for β(xd) which governs the

public disaster distribution mitigation technology:

β(xd) = β0 + β1x
d , (64)
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with β0 ≥ max{γ − 1, 0} and β1 > 0. The coefficient β0 is the exponent for the c.d.f. for the

fractional recovery Z in the absence of mitigation. The coefficient β1 is a key parameter in our

model and measures the efficiency of the aggregate disaster distribution mitigation technology.

Finally, we use the widely used quadratic adjustment cost function (e.g., Hayashi, 1982):

φ(i) =
θi2

2
, (65)

where the parameter θ measures how costly it is to adjust capital.

7.2 Calibration and Parameter Choices

We use our calibration to highlight the importance of learning and both (public and private)

mitigation spendings for welfare analysis for a typical country exposed to tropical cyclones.

λG, λB and π0. Our model better maps into major hurricanes that make landfall. To this end

we gather data on major cyclones that made landfall. Our sample contains annual observations

for the real GDP per capita growth rate and cyclone landfalls across 109 countries from 1960

to 2010, with 5,410 county-year observations in total. These are the same set of countries as

in Hsiang and Jina (2014) excluding Taiwan for which there is no GDP data from the World

Bank Development Indicator. Note that we cannot use Hsiang and Jina (2014) findings since

they focus on estimating the marginal effect of windspeed on GDP growth damage.

We define an indicator variable, Landfalli,t, that equals one if a country i experienced at

least one cyclone landfall in year t. We refer to Landfalli,t as our (cyclone) landfall disaster

exposure measure, where Landfalli,t = 1 iff the cyclone scale is “tropical storm” and above.

We assign the 109 countries into 4 regions: North Atlantic (including North America, the

Caribbean, and West Europe) West Pacific (including Oceania), North India (including North

India, Middle East, North Africa, and Central Europe), and South Atlantic (including Latin

America and Sub-Saharan Africa).

Table 1 shows the summary statistics of cyclone landfalls in the sample for each region.

As a typical country in our sample is exposed to one major cyclone strike every 7.4 years,

we set the arrival rate at λG = 1/7.4 = 0.135 per annum, which is representative of a world

without global warming (π = 0). To calibrate λB, we use data from the most recent au-

thoritative survey of climate model projections for the increased frequency of major cyclones

(Knutson et al., 2020). This survey covers the projections of about 50 models for the change
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Table 1: Summary statistics of cyclone landfall

Region (1) Total # of (2) Total # of (3) Freq. of landfalls = (2)/(1):
country-year obs. cyclone landfall obs. Disaster arrival rate estimate λ

North Atlantic 1,587 229 0.144
West Pacific 638 326 0.511
North India 719 75 0.104
South Atlantic 2,466 99 0.040

Global 5,410 729 0.135

in frequency of major tropical cyclones assuming the world is 2oc higher than in the pre-

industrial era, which is expected around the end of this century assuming business as usual.

The median projection is a 13% increase relative to λG and the most pessimistic projection

is 2.25 times of λG. We thus obtain λB = 2.25λG = 0.304 and a prior belief of π0 = 0.104

so that the expected arrival rate E(λ) = π0λB + (1− π0)λG = 0.153, which is a 13% increase

from λG = 0.135. While there is heterogeneity across regions, we focus our analysis on the

global mean primarily because climate models’ projections by region are quite uncertain.

β0, β1 and α. To calibrate the three mitigation technology parameters, we use the following

three moments from the data. First, we estimate the impact of a major cyclone making

landfall on GDP growth. Table 2 reports the estimation results for each region and also for

the world (with all countries pooled together). The dependent variable is the per capita GDP

growth rate. The independent variable is the Landfall indicator. The panel regression has

country fixed effects, year fixed effects, and country-specific quadratic time trends. A landfall

disaster reduces the annual growth rate by 0.61%, 0.29%, 0.88%, and 2.75% in North Atlantic,

West Pacific, North India, and South Atlantic respectively, and by 0.77% in the global sample.

Table 2: Baseline model estimation results

Dependent variable is the growth rate of real GDP per capita

(1) (2) (3) (4) (5)
North Atlantic West Pacific North India South Atlantic Global

Landfall -0.0061* -0.0029* -0.0088*** -0.0275*** -0.0077***
(-2.01) (-1.94) (-3.35) (-3.69) (-4.29)

Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Time trends Yes Yes Yes Yes Yes

Second, we gather data on government flood control budgets focusing on countries in the

West Pacific (including Oceania). We are able to obtain through various sources 72 country-
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year observations of government flood control budget for a cross section of eight countries.31

The mean annual government flood control budget is around 0.10% (8.5 bps) of capital stock

with a standard deviation of 5 bps across country-years.

In sum, we calibrate β0, β1 and α in a world without global warming under the assumption

that countries are optimally mitigating cyclone arrivals with a prior of 0.104. We use the

following three moments. First, the optimal public mitigation equals 0.1% of the capital stock,

xd(0.104) = 0.1%. Second, studies indicate that private mitigation also plays an important

role and on par with that of public mitigation. So we set the optimal private mitigation

spending of around 0.04% of the capital stock, xe(0.104) = 0.04%. Third, for the reduction

of the expected annual GDP growth rate from the arrival of a major cyclone, the estimates

range quite a bit from a low of 0.29% to a large damage of 2.75% per annum depending on

the region. We use the mid-range of these estimates and set N(xe)Exd(1 − Z) = 1.2%. We

use these moments from data to discipline our model on the optimal mitigation.

EIS ψ. Estimates of the EIS ψ in the literature vary considerably, ranging from a low value

near zero (e.g., Hall, 1988) to values as high as two. Bansal and Yaron (2004) show that an

EIS larger than one is necessary to generate plausible equilibrium asset pricing predictions in

long-run risk (LRR) settings. We choose ψ = 1.5 following the LRR literature.

Table 3: Parameter Values

Parameters Symbol Value

jump arrival rate in State G λG 0.135
power law exponent absent mitigation β0 16
mitigation technology parameter β1 10, 000
mitigation technology parameter α 0.05
jump arrival rate in State B λB 0.304
prior of being in State B π0 0.104

elasticity of intertemporal substitution ψ 1.5
time rate of preference ρ 5%
productivity A 15%
quadratic adjustment cost parameter θ 15
coefficient of relative risk aversion γ 3.5
capital diffusion volatility σ 14%

All parameter values, whenever applicable, are continuously compounded and annualized.

31West Pacific countries include China, Japan, Korea, and the Philippines. Oceania countries include
Australia, Indonesia, New Zealand and Papua New Guinea.
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Other parameters. We calibrate the adjustment cost parameter θ along with the time rate

of preference ρ, risk aversion γ, diffusion volatility σ, and productivity A by targeting five key

moments for state G. These include the annual (real) risk-free rate of 2.50%, the expected

annual stock market risk premium of 6.98%, the annual stock market return volatility of
√

0.0206 = 14.14%, the expected growth rate of 4.83%, and Tobin’s q of 1.75 (e.g., in line

with Eberly, Rebelo and Vincent, 2012), when the prior is 0.104. Doing so yields the following

parameter values: σ = 14%, θ = 15, γ = 3.5, A = 15%, and ρ = 5%. These parameter values

are broadly in line with those used in the literature.32

We report the values for all the twelve parameters in Table 3.

7.3 Impact of Major Cyclone Arrival
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Figure 2: This figure compares the planner’s first-best solution (solid blue lines) with the
market economy solution (dashed red lines). The parameters values are given in Table 3.

Taxes, private versus public mitigation, investment, and consumption. First con-

sider the first-best solution (solid blue lines) in Figure 2. The pink solid dots map to the

32As an example, while using a different calibration strategy (for example, they do not target the capital
adjustment costs), Barro and Jin (2011) also report the calibrated coefficient of relative risk aversion in their
paper is about three and time rate of preference around 5%. Our estimates are also close to those in Pindyck
and Wang (2013), even though they use a different set of moments for the disaster arrival rate and the damage
function.
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results at the prior of π0− = 0.104, imputed from the distribution of climate model projec-

tions surveyed by Knutson et al. (2020). The black solid dots correspond to the results at the

post-jump belief of πJ0 = 0.207 as a cyclone arrival changes π immediately from the prior of

π0− to the posterior of πJ0 by a discrete size of σπ(π0−) = 0.103.

Panel A of Figure 2 shows that the first-best scaled public mitigation xd increases from

0.1% to about 0.11% per annum. The market solution without taxes features no public

mitigation spending regardless of beliefs due to externalities.

Panel B shows that private mitigation xe in the market economy is higher than in the

planner’s first-best economy at all levels of π. The marginal benefit of private mitigation is

higher in the market economy than in the planner’s economy, as the former has no public

mitigation and firms thus optimally spend more on private mitigation to manage aggregate

climate risk. The total mitigation spending, xe + xd, is lower in the market economy than in

the first-best solution. That is, aggregate risk mitigation is under-provided in a laissez faire

economy.

Panel C shows that investment i decreases as belief worsens in both economies. The rate

at which i decreases with π in the first-best solution is slower (less steep) than in the market

economy. Similarly, Panel D shows that the rate at which c increases with π in the first-best

solution is also slower (less steep) than in the market economy.

Suppose that we live in an economy with neither mitigation technology (status quo) and

then can gain access to both types of mitigation technologies by paying a cost. How much

would we be willing to pay for such a transition in a laissez faire market economy versus in

the planner’s economy? To answer this question, we introduce the following willingness to

pay (WTP) metrics following Pindyck and Wang (2013).

Welfare gains from having access to mitigation technologies. Let ζp(π) denote the

fraction of capital stock that the society is willing to give up in a market economy with neither

mitigation technology33 for an option to transition to the planner’s first-best economy with

both mitigation technologies. To make the society indifferent between these two choices, the

following condition has to hold:

Vfb((1− ζp(π))K, π) = V (K, π) , (66)

33The market economy here yields the same first-best outcome as a planner’s economy, as there is no
externality nor other frictions and the welfare theorems hold.
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where V (K, π) given in (33) is the value function under the status quo in the economy with

neither mitigation technology (see Proposition 3) and Vfb given in (23) is the planner’s value

function in the first-best economy with access to both mitigation technologies (see Proposition

1). Note that the capital stock level appearing in Vfb( · , π) is (1 − ζp(π))K adjusted for the

WTP calculation (as a ζp(π) fraction of K is given up).

Similarly, let ζm(π) denote the fraction of capital stock that society is willing to give up

under the status quo in the market economy with neither mitigation technology for an option

to transitioning into the market economy, which has access to both types of the mitigation

technologies (analyzed in Section 4.) We define ζm(π) by using

V̂ ((1− ζm(π))K, π) = V (K, π) , (67)

where V̂ is the value function as a function of K and π in the market economy with both

mitigation technologies given in (32) (see Propositions 2 and 4). It is important to note that

although both technologies are available in the market economy, only the private mitigation

technology has demand in equilibrium. Therefore, the WTP ζm only captures the society’s

WTP for the disaster exposure mitigation technology.

By using the homogeneity properties of the value functions, Vfb, V̂ , and V for the first-

best, market economy (with access to both mitigation technologies), and the market economy

(with access to neither mitigation technology), we obtain

ζp(π) = 1− b(π)

bfb(π)
and ζm(π) = 1− b(π)

b̂(π)
> 0 . (68)

The result ζp(π) > ζm(π) follows from bfb(π) > b̂(π) > b(π). The WTP ζm(π) measures the

welfare enhancement solely due to optimal private mitigation regulation/spending, as neither

firms nor households incur any public mitigation spending in a market economy: (xd = 0).

Therefore, the WTP wedge ζp(π) − ζm(π) measures the additional welfare gain due to

having access to the public mitigation technology in an economy that already has access to

the private mitigation technology.

In Panel A of Figure 3, we plot the society’s WTP ζm(π) for a market economy which uses

the private mitigation technology (the dashed red line) and the WTP ζp(π) for the planner’s

economy (or the market economy with optimal capital taxation and hence access to both

mitigation technologies) (the solid blue line).34 Naturally, more pessimistic beliefs lead to a

34We can decompose the WTPs into the risk premium and timing premium components by building on the
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Figure 3: This figure compares the planner’s first-best solution (solid blue lines) with the
market economy solution (dashed red lines). The parameters values are given in Table 3.

higher use of mitigation technology for both economies. For the first-best solution, the WTP

increases from 17.2% (the pink dot) to 19.5% (the black dot), which is around 13% increase.

Conditional damage `(π) and the expected growth rate g(π). In Panel B of Figure 3,

we corroborate the benefit of using the mitigation technology by showing that the conditional

damage `(π) decreases as belief worsens and private/public mitigation spendings increase.

In the market economy, the firm only pays for private mitigation xe, which increases with

π. Therefore, in the aggregate economy we have xe = xe and xd = 0. As a result, the

conditional damage for the aggregate economy is `(π) = N(xe(π))/(β0 + 1) decreases with

π. In the first-best economy, there are both private and public mitigation spendings. Recall

that the total disaster risk reduction is larger in the first-best economy than in the market

economy explaining why the solid blue line for `(π) in the planner’s economy is lower than the

dashed red line for `(π) in the market economy. Because of larger risk mitigation and smaller

idea and extending the procedure proposed by Epstein, Farhi, and Strzalecki (2014). We show that for our
calibrated baseline where γ = 3 > 1/ψ = 1/1.5, while the timing premium is also important, the risk premium
component is the major contributor to the total WTP.
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conditional damage `(π) in the first-best economy than in the market economy, the expected

growth rate g(π) is higher in the former than the latter economy (Panel C).

Tobin’s q, interest rate, and risk premium. Finally, in Panels D, E, and F of Figure

3, we plot Tobin’s average q, the interest rate r(π), and risk premium rp(π) for both the

first-best and market economies. We show that in both economies the average q decreases as

belief worsens tracking the investment-capital ratio i(π). Note that the interest rate and risk

premium are relatively insensitive to the change of belief.

7.4 Comparative Statics

In Online Appendix OD, we conduct comparative static analyses with respect to four key

parameters: the EIS ψ, the disaster arrival rate λB in state B, the time rate of preference ρ,

and the coefficient of relative risk aversion γ.

First, we compare the results for three values of the EIS ψ: 0.286 (the expected utility case

as γ = 3.5), 1 and 1.5 (our baseline). Our main mitigation findings are robust across these

three parameter values. The main difference lies in valuation ratios, e.g., the price-dividend

ratio. When EIS ψ = 1, the price-dividend ratio, q/c, equals 1/ρ, the inverse of the time rate

of preference, for all levels of π, which is known in the asset pricing literature, e.g., Weil (1990)

and Wachter (2013). When ψ is greater (less) than one, this q/c ratio decreases (increases)

with π. That is, equity valuation ratios react negatively to bad (e.g., disaster arrival) news

consistent with the reason why the long-run risk literature chooses ψ > 1.

Second, we compare the results for three values of λB: 0.15, 0.3 (baseline) and 0.6 per

annum. The effects of an economically meaningful change of λ are quantitatively significant.

For example, doubling the arrival rate of disaster in state B from λB = 0.3 (our baseline) to

λB = 0.6 roughly doubles the WTP for mitigation.

Third, we compare the results for three widely used values of the time rate of preference ρ:

3%, 4%, and 5% (our baseline). Decreasing ρ (e.g., from 5% to 4%) has a large quantitative

effect on mitigation spendings and willingness-to-pay for mitigation. Decreasing ρ from 5%

(our baseline) to 4% makes the agents allocate more resources for mitigation and investment

to finance future consumption. At the prior belief of 0.104, this change nearly doubles the

WTP from our baseline.

Finally, we compare the results for three values of the coefficient of relative risk aversion

γ: 1.5, 3.5, and 10. We find that the quantitative effects of changing γ from 3.5 to 10 are
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large. For example, when π = 0.104 as we increase γ from 3.5 to 10, the WTP ζp increases

from 17.2% to 29.4%, the disaster distribution mitigation spending xd increases from 0.1% to

0.13%, and the disaster exposure mitigation spending xe decreases from 0.04% to 0.03%. The

effects of changing risk aversion become even larger as belief worsens.

7.5 Generalized Learning Model with Stochastic Arrival Rate λ

The disaster arrival rate in our baseline model of Section 2, while unobservable, is constant.35

In Appendix OA, we generalize our baseline model to allow for the unobservable disaster

arrival rate to be stochastic, by using a two-state Markov Chain (see, e.g., Wachter and Zhu

(2019, 2021)).36 We show that our main quantitative results and conclusions continue to hold

in the generalized model where the transition probability between state G and B is small.

8 External Habit Model

In this section, we replace the Epstein-Zin recursive utility used in our baseline model of

Section 2 with another widely-used risk preference—the external habit model proposed by

Campbell and Cochrane (1999).37 For brevity, we focus on the planner’s solution.

8.1 Model

The representative agent has a non-expected utility over consumption {Ct; t ≥ 0} relative to

a stochastic habit process {Ht; t ≥ 0} (Campbell and Cochrane, 1999) given by:

E
(∫ ∞

0

ρe−ρtU(Ct,Ht)dt

)
, (69)

where ρ > 0 is the time rate of preference, U(C,H) = (C−H)1−γ

1−γ , and γ > 0 is a curvature

parameter. It is convenient to work with St, the surplus consumption ratio at t defined as

St =
Ct −Ht

Ct
. (70)

Let st be its natural logarithm: st = ln(St). As in Campbell and Cochrane (1999) and

this literature, we assume that st follows a mean-reverting process with stochastic volatility:

dst = (1− κ)(s− st)dt+ δ(st)σdWt , (71)

35Collin-Dufresne, Johannes, and Lochstoer (2016) develop equilibrium asset pricing models where the agent
learns about the parameter to address standard macro asset-pricing challenges.

36Ghaderi, Kilic, and Seo (2022) develop a Bayesian learning model that builds on Wachter (2013).
37An alternative to the external habit model analyzed in this section is to specify an internal habit formation

model as in Jermann (1998). Due to space constraints, we leave the internal habit formation model out.
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where s > 0 is the steady-state value of st and κ measures the degree of persistence.38 The

function δ(st) in (71) is the same sensitivity function as the one in Campbell and Cochrane

(1999) and stated in Section OB of the Online Appendix. The production side of the economy

and the learning model are the same as in our baseline model of Section 2.

Planner’s solution. The (log) surplus consumption ratio {st; t ≥ 0} acting as the exoge-

nous preferences shock is the new state variable. Let V (K, π, s) denote the household’s value

function. The following HJB equation characterizes the planner’s optimal resource allocation:

ρV = max
C, I,xe xd

ρ
(Ces)1−γ

1− γ + IVK + µπ(π)Vπ + (1− κ)(s− s)Vs +
σ2K2VKK

2
+

1

2
σ2δ(s)2Vss

+ σ2δ(s)KVKs + λ(π)Exd
[
V
(
(1−N(xe)(1− Z))K, πJ , s

)
− V (K, π, s)

]
. (72)

Unlike in our baseline model with the Epstein-Zin utility, the agent now not only takes into

account the evolution of s (via the drift term involving Vs and the quadratic-variation term

involving Vss), but also has incentives to hedge against shocks to the surplus consumption

ratio (via the quadratic-covariation term involving VKs).

We show that the value function V (K, π, s) is homogeneous with degree (1− γ) in K:

V (K, π, s) =
1

1− γ (b(π, s)K)1−γ , (73)

where b(π, s) is a measure of welfare proportional to the certainty equivalent wealth under

optimality. (To ease comparison, we still use b as the function for the welfare measure here

but with the understanding that the b function for external habit model depends on both π

and s and differs from the b function for our baseline Epstein-Zin model.)

Importantly, unlike the welfare measure (b(π)) in our baseline planner’s model of Section

3, b(π, s) in our external habit model depends on not only belief π but also the (log) surplus

consumption ratio s. In Online Appendix OB, we provide details summarizing how we obtain

the PDE for b(π, s) together with optimal policies and boundary conditions. Our external

habit model is technically more challenging than our baseline model with Epstein-Zin utility,

as the external habit becomes an additional state variable in addition to capital stock and

belief.39

38We write 1− κ as the rate of mean reversion as in Campbell and Cochrane (2015). The higher the value
of κ, the more persistent the st process. The κ = 1 special case corresponds to a unit-root process.

39Because of the homogeneity property of the Epstein-Zin utility, only capital stock and belief are state
variables after simplifying the model solution.
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8.2 Quantitative Results

We calibrate our external habit model by targeting the same moments as we do for our

baseline model whenever feasible. We highlight two main results. First, the quantitative

implications on mitigation spendings and welfare in our external habit model are similar to

those in our baseline model with Epstein-Zin preferences. Second, the two models generate

opposite predictions on how investment i and Tobin’s average q respond as belief becomes

more pessimistic (π increases). While i and q increase with π in our habit model, the opposite

holds in our baseline Epstein-Zin model. To see why, note that replacing the Epstein-Zin utility

with the external Campbell-Cochrane habit model induces two key changes: (1) introducing

pure external habit and (2) dropping the EIS ψ parameter. While the first force significantly

raises risk aversion, the latter makes the agent much less willing to substitute consumption

over time in response to changes in the interest rate, especially when endogenous risk aversion

is high (which implies a very low EIS).40

9 Conclusion

We develop a model where households learn from exogenous natural disaster arrivals about

arrival rates and spend to mitigate potential future damages. Mitigation—by curtailing aggre-

gate risk and insuring sustainable growth—is undersupplied relative to the first-best planner’s

solution in competitive markets due to externalities. The planner’s solution can be imple-

mented via a capital tax and mitigation subsidy scheme. Our model provides an integrated

assessment of the cost and benefit of mitigation efforts such as flood protection via an aggre-

gate risk management rationale. It also delivers a number of new results for the literature

on the adaptation of the economy to global warming. While the literature on local fiscal

multipliers (Leduc and Wilson (2013) and Ramey (2011)) is a cautionary tale on the limits of

general equilibrium analysis such ours in understanding the impact of government spending,

our analysis suggests it is possible to arrive at robust conclusions on the effectiveness of pub-

lic and private mitigation investments for reducing the conditional damage of disasters and

improving social welfare.

40From the long-run risk literature and the comparative static analysis for our baseline Epstein-Zin model
with respect to ψ in Section OD of the Online Appendix, we know that an EIS (lower than one) causes the
valuation ratios, e.g., the price-dividend ratio, to go up in response to bad news. Our habit model inherits
this property, which explains the key differences between the two utility models.
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Appendices

A Proof for Planner’s First-Best Economy in Section 3

A.1 Planner’s Resource Allocation

Substituting the value function (23) into the FOC (20) for investment, the FOC (21) for the aggregate

disaster distribution mitigation spending, and the FOC (22) for the aggregate disaster exposure

mitigation spending, we obtain:

b(π) = c(π)1/(1−ψ)
[
ρ(1 + φ′(i(π)))

]−ψ/(1−ψ)
, (A.1)

ρc(π)−ψ
−1
b(π)ψ

−1−1 =
λ(π)

1− γ

(
b(πJ )

b(π)

)1−γ ∫ 1

0

[
∂ξ(Z; xd)

∂xd
(1−N(xe(π))(1− Z))1−γ

]
dZ , (A.2)

ρc(π)−ψ
−1
b(π)ψ

−1−1 = λ(π)

[
b
(
πJ
)

b(π)

]1−γ
N ′(xe(π))Exd(π)

[
(Z − 1)(1−N(xe(π))(1− Z))−γ

]
,

(A.3)

where the post-jump πJ is given in (14) as a function of the pre-jump π. Substituting the resource

constraint, c(π) = A− i(π)−φ(i(π))−xd(π)−xe(π), into (A.1), we obtain (25). Substituting (A.1)

into (A.3), we obtain (26) and substituting (A.1) into (A.2), we obtain (27). Finally, substituting

the value function (23) and the FOC (25) into the HJB equation (18), we obtain the ODE (24).

At π = 1, we have the following four equations that characterize b(1), i(1), xd(1), and xe(1):

0 =

(
b(1)

ρ(1+φ′(i(1)))

)1−ψ
− 1

1− ψ−1 ρ+ i(1)− γσ2

2
+
λB

[
Exd(1)((1−N(xe(1))(1− Z))1−γ)− 1

]
1− γ , (A.4)

b(1) = [A− i(1)− φ(i(1))− xd(1)− xe(1)]1/(1−ψ)
[
ρ(1 + φ′(i(1)))

]−ψ/(1−ψ)
, (A.5)

1 = λB(1 + φ′(i(1)))N ′(xe(1))Exd(1)
[
(Z − 1)(1−N(xe(1))(1− Z))−γ

]
, (A.6)

1 =
λB(1 + φ′(i(1)))

1− γ

∫ 1

0

[
∂ξ(Z; xd(1))

∂xd
(1−N(xe(1))(1− Z))1−γ

]
dZ . (A.7)

Solving (A.4)-(A.7) yields b(1), i(1), xd(1), and xe(1). Similarly, we obtain the four equations, (28)-

(31), for the left boundary, π = 0. Solving these four equations yields b(0), i(0), xd(0), and xe(0).

In sum, we now have fully characterized the model solution summarized in Proposition 1.

A.2 Asset Pricing Implications of the Planner’s Problem

Duffie and Epstein (1992) show that the SDF {Mt : t ≥ 0} implied by the planner’s solution is given

by:

Mt = exp

[∫ t

0
fV (Cs, Vs) ds

]
fC(Ct, Vt) . (A.8)

Using the FOC for investment (20), the value function (23), and the resource constraint, we obtain:

fC(C, V ) =
1

1 + φ′(i(π))
b(π)1−γK−γ (A.9)

42



and

fV (C, V ) =
ρ

1− ψ−1

[
(1− ω)C1−ψ−1

((1− γ))ω−1
V −ω − (1− γ)

]
= −ε(π) , (A.10)

where

ε(π) = −ρ(1− γ)

1− ψ−1

[(
c(π)

b(π)

)1−ψ−1 (
ψ−1 − γ

1− γ

)
− 1

]
. (A.11)

Using the equilibrium relation between b(π) and c(π), we simplify (A.11) as:

ε(π) = ρ+
(
ψ−1 − γ

) [
i(π)− γσ2

2
+ µπ(π)

b′(π)

b(π)

]

+
(
ψ−1 − γ

) λ(π)

1− γ

(b (πJ )
b(π)

)1−γ

Exd
[
(1−N(xe)(1− Z))1−γ

]
− 1

 , (A.12)

where the post-jump belief πJ is given in (14) as a function of the pre-jump belief π. Note that for

expected utility where ψ = 1/γ, we have ε(π) = ρ. Using Ito’s Lemma and the optimal allocation,

we obtain

dMt

Mt−
= −ε(π)dt− γ [i(π)dt+ σdWt] +

γ(γ + 1)

2
σ2dt+

(
(1− γ)

b′(π)

b(π)
− i′(π)φ′′(i(π))

1 + φ′(i(π))

)
µπ(π)dt

+

 1 + φ′ (i(π))

1 + φ′ (i(πJ ))

(
b
(
πJ
)

b(π)

)1−γ

(1−N(xe)(1− Z))−γ − 1

 dJt . (A.13)

As the expected percentage change of Mt equals −rt per unit of time (Duffie, 2001), we obtain the

following expression for the interest rate:

r(π) = ρ+ ψ−1i(π)− γ(ψ−1 + 1)σ2

2
−
[
(1− ψ−1)b

′(π)

b(π)
− i′(π)φ′′(i(π))

1 + φ′(i(π))

]
µπ(π)

− λ(π)

 1 + φ′ (i(π))

1 + φ′ (i(πJ ))

(
b
(
πJ
)

b(π)

)1−γ

Exd((1−N(xe)(1− Z))−γ)− 1


− λ(π)

ψ−1 − γ
1− γ

1−
(
b
(
πJ
)

b(π)

)1−γ

Exd((1−N(xe)(1− Z))1−γ)

 . (A.14)

Since Dt = Ct in equilibrium and Mt−Dt−dt + d(MtQt) is a martingale under the physical

measure (Duffie, 2001), using Ito’s Lemma, setting its drift to zero, and simplifying the expression,

we obtain

c(π)

q(π)
= ρ− (1− ψ−1)

[
i(π)− γσ2

2
+ µπ(π)

b′(π)

b(π)

]

+ λ(π)ω

1−
(
b
(
πJ
)

b(π)

)1−γ

Exd [1−N(xe)(1− Z)]1−γ

 , (A.15)

where ω = (1 − ψ−1)/(1 − γ). We obtain Tobin’s average q from (A.15). For the special case with

ψ = 1 and any risk aversion γ > 0, the dividend yield (and equivalently the consumption-wealth

ratio) is c(π)/q(π) = ρ.
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B Proof for Market Equilibrium Solution in Section 4

B.1 Firm Value Maximization

First, using Ito’s Lemma, we obtain the following dynamics for Qt = Q(Kt, πt):

dQt =

(
IQK +

1

2
σ2K2QKK + µπ(π)Qπ

)
dt+ σKQKdWt

+
(
Q((1−N(xe)(1− Z))K,πJ )−Q(K,π)

)
dJt . (B.16)

No arbitrage implies that the drift of Mt−(AKt− − It− − Φ(It−,Kt−)−Xe
t− −Xd

t−)dt+ d (MtQt) is

zero, where the SDF is given by (34). By applying Ito’s Lemma to this martingale, we obtain

0 = max
I,xe,xd

M(AK − I − Φ(I,K)− xeK − xdK) + M
(
QK +

1

2
σ2K2QKK + µπ(π)Qπ

)
+Q

[
−r(π)− λ(π)

(
Exd(η(π;Z,xe))− 1

)]
M−Mγσ2KQK

+ λ(π)Exd
[
η(π;Z,xe)Q((1−N(xe)(1− Z))K,πJ )−Q(K,π)

]
M . (B.17)

And then by using the homogeneity property Q(K,π) = q(π)K, we obtain the simplified HJB

equation (36). Simplifying the FOC for the exposure mitigation spending implied by (B.17), we

obtain (37). Similarly, simplifying the investment FOC implied by (B.17), we obtain (38).

B.2 Household’s Optimization Problem

We conjecture and verify that the cum-dividend return of the aggregate asset market is given by

dQt + Dt−dt

Qt−
= µQ(πt−)dt+ σdWt +

(
QJt
Qt−

− 1

)
dJt , (B.18)

where µQ(π) is the expected cum-dividend return (leaving aside the jump effect), defined in (17),

to be determined in equilibrium. In (B.18), the diffusion volatility in equilibrium equals σ, the

same parameter for the capital accumulation process given in (2). The representative household

accumulates wealth as:41

dWt = r(πt−)Wt−dt+ (µQ(πt−)− r)Ht−dt+ σHt−dWt − Ct−dt+

(
QJt
Qt−

− 1

)
Ht−dJt . (B.19)

By using the W process given in (B.19), we obtain the HJB equation (40) for the household’s

value function. The FOCs for consumption C and the market portfolio allocation H are given by

fC(C, J) = JW (W,π) (B.20)

σ2HJWW (W,π) = −(µQ(π)− r(π))JW (W,π) + λ(π)Exd
[(

1− QJ

Q

)
JW

(
WJ , πJ

)]
. (B.21)

Subsituting (39) into (B.20), we obtain the optimal consumption rule given by (43). Simplifying the

FOC for H given by (B.21), we obtain (44).

41The first four terms in (B.19) are standard as in the classic portfolio-choice problem with no insurance
or disasters (Merton, 1971). The last term is the loss of the household’s wealth from her portfolio’s exposure
to the market portfolio. (We leave out the disaster insurance demand as they net out to zero in equilibrium
and do not change the equilibrium analysis.) Pindyck and Wang (2013) provide a detailed description of
their dynamically complete markets setting (with various diffusion and stage-contingent actuarially fair jump
hedging contracts.). Our dynamically complete markets setting builds on Pindyck and Wang (2013).
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B.3 Market Equilibrium

First, the firm’s disaster exposure mitigation spending is positive and equals the aggregate exposure

mitigation spending: xe = xe > 0. Second, in equilibrium, the household invests all wealth in the

market portfolio and holds no risk-free asset, H = W and W = Q. Simplifying the FOCs, (43) and

(44), and using the value function (39), we obtain:

c(π) = ρψu(π)1−ψq(π) , (B.22)

µQ(π) = r(π) + γσ2

+ λ(π)

[
Exd(η(π;Z,xe))− q(πJ )

q(π)
Exd((1−N(xe)(1− Z))η(π;Z,xe))

]
. (B.23)

Then substituting (39) into the HJB equation (40), we obtain (45). Using these equilibrium condi-

tions, we simplify the HJB equation (40) as follows:

0 =
1

1− ψ−1
(

c(π)

q(π)
− ρ
)

+

(
µQ(π)− c(π)

q(π)

)
− γσ2

2
+ µπ(π)

u′(π)

u(π)

+
λ(π)

1− γ

[
q(πJ )

q(π)
Exd((1−N(xe)(1− Z)η(π;Z,xe)))− 1

]
. (B.24)

Third, by substituting c(π) = A− i(π)− φ(i(π))− xe into (36), we obtain

0 =
c(π)

q(π)
− r(π) + i(π) + µπ(π)

q′(π)

q(π)
− γσ2

− λ(π)

[
Exd(η(π;Z,xe))− q(πJ )

q(π)
Exd((1−N(xe)(1− Z))η(π;Z,xe))

]
. (B.25)

By using the homogeneity property and comparing (B.18) and (B.16), we obtain

µQ(π) =
c(π)

q(π)
+ i(π) + µπ(π)

q′(π)

q(π)
. (B.26)

Then substituting (B.26) into (B.24), we obtain

c(π)

q(π)
= ρ− (1− ψ−1)

[
i(π)− γσ2

2
+ µπ(π)

(
u′(π)

u(π)
+

q′(π)

q(π)

)]
+λ(π)

(
1− ψ−1

1− γ

)[
1− q(πJ )

q(π)
Exd((1−N(xe)(1− Z))η(π;Z,xe))

]
. (B.27)

Substituting (B.27) into (B.25), we obtain the following expression for the equilibrium risk-free rate:

r(π) = ρ+ ψ−1i(π)− γ(ψ−1 + 1)σ2

2
−
[
(1− ψ−1)

(
u′(π)

u(π)
+

q′(π)

q(π)

)
− q′(π)

q(π)

]
µπ(π)

− λ(π)
[
Exd(η(π;Z,xe))− 1

]
− λ(π)

[
ψ−1 − γ

1− γ

(
1− q(πJ )

q(π)
Exd((1−N(xe)(1− Z))η(π;Z,xe))

)]
. (B.28)

Using (B.18) and (B.23), we obtain the following expression for the market risk premium rp(π):

rp(π) = µQ(π) + λ(π)

(
QJ

Q
− 1

)
− r(π) = γσ2 − λ(π)Exd

[
(η(π;Z,xe)− 1)

(
QJ

Q
− 1

)]
, (B.29)

which implies (59).

In sum, we have derived the equilibrium resource allocation and the asset pricing implications

summarized in Proposition 4 and Proposition 6.
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Online Appendices

OA Model with Stochastic Disaster Arrival Rate

The disaster arrival rate in our baseline model of Section 2, while unobservable, is constant.
In this section, we generalize the baseline model to allow for the unobservable disaster arrival
rate to be stochastic. We assume that the disaster arrival rate follows a two-state continuous-
time Markov chain taking two possible values, λG in state G and λB > λG in state B. Let
ϕG denote the transition rate from state G to state B and ϕB denote the transition rate from
state B to state G. That is, over a small time period ∆t, the transition probability from the
G state to the B state is ϕG∆t and similarly the transition probability from the B state to
the G state is ϕB∆t. Our baseline unobservable constant λ model of Section 2 is a special
case of this model with ϕG = ϕB = 0.

OA.1 Model

As in our baseline model, let πt denote the conditional probability that the economy is in
state B. The belief process {πt} evolves as:

dπt = Et−[dπt] + σπ(πt−) (dJt − λt−dt) , (OA.1)

where σπ(π) is given by (13) and λt− = λBπt− + λG(1 − πt−) is the expected disaster arrival
rate at t− given in (11). Note that the second term is a martingale by construction. Since
the economy follows a two-state Markov china, the expected change of belief is given by

Et−[dπt] = (ϕG − (ϕB + ϕG)πt−)dt . (OA.2)

We can thus rewrite (OA.1) as follows:

dπt = (ϕG − (ϕB + ϕG)πt−)dt+ σπ(πt−) (dJt − λt−dt) . (OA.3)

Equation (OA.3) implies that πt in our generalized model is no longer a martingale. This is
in sharp contrast with our baseline model (with constant arrival rate), where belief πt given
in (12) is a martingale.

Rewriting the drift term in (OA.3), we see that the expected change of belief πt in our
generalized learning model is given by the difference between ϕG(1− πt−), which is the tran-
sition rate out of state G, ϕG, multiplied by 1 − πt−, the conditional probability in state G,
and ϕBπt, which is the transition rate out of state B, ϕB, multiplied by πt−, the conditional
probability in state B.1

We note that the jump martingale term (the second term in (OA.3)) in our generalized
model is the same as in the belief updating process (12) for our baseline model. As a result,
when a disaster strikes at t, the belief immediately increases from the pre-jump level πt−
to πt = πJ by σπ(πt−), where πJ is given by (14), the same as in our baseline model with
unobservable constant arrival rate λ.

1As a result, when πt = 0 (in the G state for sure), the drift of belief πt is exactly ϕG, the arrival rate from
the G to the B state. Similarly by symmetry, when πt = 1 (in the B state for sure), the drift is exactly −ϕB .
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Taking these results together, absent jump arrivals (i.e., dJt = 0), we obtain the following
expression for the rate at which belief changes, µ̂π(πt−) = dπt/dt:

µ̂π(π) = (ϕG − (ϕB + ϕG)π)− σπ(π)λ(π) = (ϕG − (ϕB + ϕG)π) + π(1− π)(λG − λB) .(OA.4)

Changing the unobservable λ from a constant to a stochastic process (two-state Markov chain)
does not change the belief updating upon the immediate arrival of a jump. However, belief
updating conditional on no jump arrival is qualitatively different from the baseline case with
unobservable constant arrival rate λ.

Next, we calculate the posterior belief πt at t conditional on no jump arrival over the time
interval (s, t), i.e., dJv = 0 for s < v ≤ t. Using (OA.3) and integrating {πv; v ∈ (s, t)} from
s to t conditional on no jump over the interval (s, t), we obtain the following function:

πt = πs −
2(δ0π

2
s + δ1πs + δ2)(e

−
√
δ21−4δ0δ2(t−s) − 1)

(
√
δ21 − 4δ0δ2 + δ1 + 2δ0πs)(e

−
√
δ21−4δ0δ2(t−s) − 1) + 2

√
δ21 − 4δ0δ2

, (OA.5)

where

δ0 = −(λG − λB) , δ1 = λG − λB − (ϕG + ϕB) , δ2 = ϕG . (OA.6)

For our baseline mode (ϕG = ϕB = 0), πt in (OA.5) can be simplified to (16).

0 2 4 6 8 10 12 14 16 18 20
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t

πt

 

 

ϕG = ϕB = 0
ϕG = 0.02, ϕB = 0
ϕG = ϕB = 0.02

Figure O-1: This figure plots the time series of πt absent jumps in our generalized model,
where the jump arrival rate, λ, is unobservable and stochastic taking two possible values
(λG = 0.135 and λB = 0.304) with a prior of π0 = 0.104 that the current value of λ is λB.
Our baseline model with constant unobservable λ corresponds to ϕG = ϕB = 0 (the dashed
red line).

In Figure O-1, we plot the belief process {πt : t ∈ (0, 20)} conditional on no jump arrival
over the period (0, t), which means dJv = 0 where v ∈ (0, t), for three cases: 1.) the stationary
case with ϕG = ϕB = 2% (the solid blue line); 2.) the case with ϕG = 2% and ϕB = 0%,
where the economy is eventually absorbed at the B state, (the dotted black line); and 3.)
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the baseline constant λ case with ϕG = ϕB = 0% (the dashed red line). The prior is set at
π0 = 0.104 for all three cases.

First, for the two cases with stochastic λ, πt increases with t even absent jump arrivals.
For example, the solid blue line (for the ϕG = ϕB = 2% case) shows that πt slowly increases to
0.105 in twenty years absent jump arrivals. For the other case where the B state is absorbing
(ϕB = 0), πt increases to 0.118 at t = 20 absent jumps (the dotted black line.) The belief
dynamics for these two cases with stochastic λ are different from our constant unobservable λ
model (the dashed red line), which shows that π decreases over time and the agent becomes
more optimistic (the no-news-is-good-news result). This difference is due to the prediction
that in our baseline model, belief change is unpredictable (as belief is a martingale), while in
the stochastic λ model, there is a force of mean reversion. So long as the transition rates ϕG
and ϕB are small (which is the practically relevant case), our baseline model (with constant
unobservable λ) and the stochastic unobservable λ model generate similar quantitative pre-
dictions. It is for reasons of parsimony that we use the constant λ model for our quantitative
analysis in the paper.

OA.2 Solution

Using the belief process {πt} given in (OA.3), we obtain the following HJB equation for the
planner’s allocation problem:

0 = max
C, I,xe xd

f(C, V ) + IVK(K, π) + µ̂π(π)Vπ(K, π) +
1

2
σ2K2VKK(K, π)

+λ(π)Exd
[
V
(
(1−N(xe)(1− Z))K, πJ

)
− V (K, π)

]
, (OA.7)

where µ̂π(π) is given in (OA.4). The FOCs for aggregate investment I, (scaled) aggregate
disaster distribution mitigation spending xd, and (scaled) aggregate disaster exposure miti-
gation spending xe are the same as those for our baseline model (with constant unobservable
λ), which are given in (20), (21), and (22), respectively.

Substituting the value function V (K, π) given in (23) and its derivatives into the HJB
equation (OA.7), using the three FOCs ((20), (21), and (22)), and simplifying these equations,
we obtain the four-equation ODE system for b(π), i(π), xd(π) and xe(π), given in

0 =
ρ

1− ψ−1

[[
b(π)

ρ(1 + φ′(i(π)))

]1−ψ
− 1

]
+ i(π)− γσ2

2
+ µ̂π(π)

b′(π)

b(π)

+
λ(π)

1− γ

(b (πJ )
b(π)

)1−γ

Exd(π)((1−N(xe(π))(1− Z))1−γ)− 1

 . (OA.8)

and (25)-(27) for π ∈ (0, 1). The key difference between (OA.8) and the ODE (24) for b(π)
in our baseline model (with constant but unobservable λ) is that the drift of π absent jumps,
µ̂π(π) given in (OA.4), appears in (OA.8) while µπ(π) given in (15) appears in the ODE (24).2

The other three equations for i(π), xd(π) and xe(π) for our stochastic λ model are (25), (26),
and (27), the same as those for our baseline model of Section 2.

2The wedge µ̂π(π) − µπ(π) = (ϕG − (ϕB + ϕG)π) precisely captures the effect of stochastic transition
between the G and B states.
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Next, we turn to the boundary conditions at π = 0 and π = 1. At π = 0, we have

0 =
ρ

1− ψ−1

[[
b(0)

ρ(1 + φ′(i(0)))

]1−ψ
− 1

]
+ i(0)− γσ2

2
+
ϕGb

′(0)

b(0)

+
λG

[
Exd(0)((1−N(xe(0))(1− Z))1−γ)− 1

]
1− γ . (OA.9)

Compared with the boundary condition (28) for b(π) at π = 0 in our baseline model of Section

2, we have a new term ϕGb
′(0)

b(0)
on the right side of (OA.9). This is because when πt = 0, while

the state at t is G for sure, it stochastically transitions out of G to B at the rate of ϕG.
Our baseline model of Section 2 is a special case with ϕG = 0. The other three boundary
conditions at π = 0 for i(π), xd(π) and xe(π) in our stochastic λ model are (29), (30), and
(31), the same as those for our baseline model of Section 2.3

Similarly, at π = 1, we have

0 =
ρ

1− ψ−1

[[
b(1)

ρ(1 + φ′(i(1)))

]1−ψ
− 1

]
+ i(1)− γσ2

2
− ϕBb

′(1)

b(1)

+
λB

[
Exd(1)((1−N(xe(1))(1− Z))1−γ)− 1

]
1− γ , (OA.10)

where the term −ϕBb
′(1)

b(1)
describes the stochastic transition into G from B. All other terms

are the same as in (A.4), the corresponding condition for our baseline model of Section 2. The
other three boundary conditions at π = 1 for i(π), xd(π) and xe(π) in our stochastic λ model
are (A.5), (A.6), and (A.7), the same as those for our baseline model of Section 2.4

Next, we summarize the solution for our generalized learning model.

Proposition 7 The first-best solution for our generalized learning model is given by the value
function (23) and the quartet policy rules, b(π), i(π), xd(π), and xe(π), where 0 ≤ π ≤ 1,
via the four-equation ODE system ((OA.8), (25), (26), and (27)) with the four conditions
((OA.9), (29), (30), and (31)) for π = 0, and ((OA.10), (A.5), (A.6), and (A.7)) for π = 1.

OA.3 Quantitative Analysis

Next, we analyze the solutions for our generalized model with stochastic unobservable λ. For
the stochastic λ model, we set both the transition rate from state G to B (ϕG) and that from
state B to G (ϕB) to 2%, i.e., ϕG = ϕB = 1/50 = 2%, which imply an average duration of 50
years for both G and B states. In the long run, the economy is in either state G or B with
equal (50%) probability.

To ease exposition and facilitate comparison with our baseline (constant unobservable λ)
model of Section 2, we use the same values for all the other parameters as in our baseline model.
Additionally, we focus on the belief transition from a prior of π0 = 0.104 to a posterior of

3Note that when π = 0, we also have πJ = 0. This is why the last term in (OA.9) does not involve b( · )
while the last term in (OA.8) for π ∈ (0, 1) does.

4As for the π = 0 case, when π = 1, we also have πJ = 1. This is why the last term in (OA.10) does not
involve b( · ) while the last term in (OA.8) for π ∈ (0, 1) does.

O-4



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
x 10

−3

π

A. xd(π)

 

 

← π0− = 0.104

ooooooooooo

← πJ
0 = 0.207

ooooooooooo

constant λ
stochastic λ

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7
x 10

−4 B. xe(π)

π

ooooooooooo
ooooooooooo

0 0.2 0.4 0.6 0.8 1
0.049

0.0492

0.0494

0.0496

0.0498

0.05

0.0502

0.0504

π

C. i(π)

ooooooooooo

ooooooooooo

0 0.2 0.4 0.6 0.8 1
0.0794

0.0796

0.0798

0.08

0.0802

0.0804

0.0806

0.0808

D. c(π)

π

ooooooooooo ooooooooooo

Figure O-2: This figure compares two learning models: the constant λ and the stochastic λ
models. The transition rates are ϕG = ϕB = 0.02 for the stochastic λ model (solid blue lines).
The transition rates are ϕG = ϕB = 0 for our baseline (constant λ) model (dashed red lines).

πJ = 0.207 upon an immediate jump arrival. Note that belief jumps by the same magnitude,
σπ(π0) = 0.103, in both constant and stochastic λ models.

In Figure O-2, we plot (scaled) public mitigation xd(π) (Panel A), (scaled) private mitiga-
tion xe(π) (Panel B), investment-capital ratio i(π) (Panel C), and consumption-capital c(π)
(Panel D) as functions of belief π for the planner’s first-best solutions: the solid blue lines are
for the stochastic λ model and the dashed red lines are for the baseline constant λ model.

Panels A and B show that for both public mitigation xd(π) and private exposure mitiga-
tion xe(π), there are essentially no differences between the two economies at all levels of π.
Quantitatively, the differences for investment and consumption are of very small (second- and
third-order effects, as we can see from the scale for the vertical axes in Panels C and D.) This
is because the transition of λ occurs once every fifty years on average.

Note that investment and consumption are even flatter (less responsive to changes of belief)
in the stochastic λ model than in the constant λ model. Figure O-3 corroborates the belief
mean reversion effect on welfare, growth, and valuation by showing that the welfare measure,
the WTP ζp(π) (Panel A), the expected growth rate g(π) (Panel C), Tobin’s average q, and
the risk-free rate r(π) are all smoother (flatter) as functions of π in the stochastic λ model
than in the constant λ model.

The intuition is as follows. As belief mean reversion in the stochastic λ model, the agent is
less optimistic in the low-π state but also less pessimistic in the high-π state, in the stochastic
λ model, i.e., compared with the constant λ model. As a result, the planner reduces both
consumption and investment in response to changes of belief (so that the planner better
smoothes investment/consumption across states and over time.)
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In sum, our analysis shows that for plausible values of slow belief mean reversion, the
quantitative results of our learning model (with stochastic λ) are similar to those of our
learning model (with constant λ). For example, there is no visual difference for conditional
damages across the two models as mitigation spending differences are essentially zero as we
see in Figure O-2. We also confirm the intuition that belief mean reversion reduces the impact
of learning on welfare, valuation and policy rules.
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Figure O-3: This figure compares two learning models: the constant λ and the stochastic λ
models. The transition rates are ϕG = ϕB = 0.02 for the stochastic λ model (solid blue lines).
The transition rates are ϕG = ϕB = 0 for our baseline (constant λ) model (dashed red lines).

OB External Habit Model

We now solve the model with external habit (Campbell-Cochrane) preferences of Section 8,
then calibrate it, and provide a quantitative analysis.

In (71), δ(st) is the sensitivity function proportional to the conditional volatility of dst in
response to dWt, which we assume is given by the following square-root function:

δ(s) =
1

S

√
1− 2(s− s)− 1 , s ≤ smax (OA.11)

and δ(s) = 0 for s > smax, where smax = s+ 1−S2

2
and S = es.5

5Additionally, we set S = σ
√

γ
1−κ as in Campbell and Cochrane (1999).
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OB.1 Solution

Using the surplus consumption ratio process {st} given in (71) and the external habit utility
function given in (69), we obtain the HJB equation (72) for the planner’s resource allocation
problem. Substituting the value function given in (73) into the HJB equation (72), we obtain

0 = max
c, i,xe xd

ρ

1− γ

[(
c(π, s)es

b(π, s)

)1−γ

− 1

]
+ i(π, s) + µπ(π)

bπ(π, s)

b(π, s)
+ (1− κ)(s− s)bs(π, s)

b(π, s)

−γσ
2

2
+
σ2δ(s)2

2

(
bss(π, s)

b(π, s)
− γ (bs(π, s))

2

b(π, s)2

)
+ (1− γ)σ2δ(s)

bs(π, s)

b(π, s)

+
λ(π)

1− γ

(b (πJ , s)
b(π, s)

)1−γ

Exd((1−N(xe(π, s))(1− Z))1−γ)− 1

 . (OA.12)

Using the resource constraint c = A− i− φ(i)− xd − xe to simplify the FOC for investment
i, we obtain the ODE system for b(π, s), i(π, s), xe(π, s) and xd(π, s) in the region where
π ∈ (0, 1) and s ∈ (−∞, smax):

0 =
ρ

1− γ

[(
b(π, s)e−s

ρ(1 + φ′(i(π, s)))

)1−γ−1

− 1

]
+ i(π, s) + (1− κ)(s− s)bs(π, s)

b(π, s)

+ µπ(π)
bπ(π, s)

b(π, s)
− γσ2

2
+
σ2δ(s)2

2

(
bss(π, s)

b(π, s)
− γ (bs(π, s))

2

b(π, s)2

)
+ (1− γ)σ2δ(s)

bs(π, s)

b(π, s)

+
λ(π)

1− γ

(b (πJ , s)
b(π, s)

)1−γ

Exd(π,s)((1−N(xe(π, s))(1− Z))1−γ)− 1

 ,

(OA.13)

b(π, s) = [A− i(π, s)− φ(i(π, s))− xd(π, s)− xe(π, s)]γ/(γ−1) [ρq(π, s)]1/(1−γ) es , (OA.14)

1

q(π, s)
= λ(π)

[
b
(
πJ , s

)
b(π, s)

]1−γ
N ′(xe(π, s))Exd(π,s)

[
(Z − 1)(1−N(xe(π, s))(1− Z))−γ

]
,

(OA.15)

1

q(π, s)
=

λ(π)

1− γ

[
b
(
πJ , s

)
b(π, s)

]1−γ ∫ 1

0

[
∂ξ(Z; xd(π, s))

∂xd
(1−N(xe(π, s))(1− Z))1−γ

]
dZ ,

(OA.16)

where q(π, s) is given by
q(π, s) = 1 + φ′(i(π, s)) . (OA.17)

Using the resource constraint c = A − i − φ(i) − xd − xe to simplify the FOCs for the
two types of mitigation spending, xe and xd, we obtain the optimal exposure mitigation and
distribution mitigation spending rules, (OA.15) and (OA.16) for xe and xd, respectively.
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Since π = 0 is an absorbing state, we have the following boundary conditions at π = 0:

0 =
ρ

1− γ

[(
b(0, s)e−s

ρ(1 + φ′(i(0, s)))

)1−γ−1

− 1

]
+ i(0, s) + (1− κ)(s− s)bs(0, s)

b(0, s)

+
σ2δ(s)2

2

(
bss(0, s)

b(0, s)
− γ (bs(0, s))

2

b(0, s)2

)
+ (1− γ)σ2δ(s)

bs(0, s)

b(0, s)

+
λG

1− γ
[
Exd(π,s)((1−N(xe(0, s))(1− Z))1−γ)− 1

]
, (OA.18)

b(0, s) = [A− i(0, s)− φ(i(0, s))− xd(0, s)− xe(0, s)]γ/(γ−1) [ρq(0, s)]1/(1−γ) es ,(OA.19)
1

q(0, s)
= λGN

′(xe(0, s))Exd(π,s)
[
(Z − 1)(1−N(xe(0, s))(1− Z))−γ

]
, (OA.20)

1

q(0, s)
=

λG
1− γ

∫ 1

0

[
∂ξ(Z; xd(0, s))

∂xd
(1−N(xe(0, s))(1− Z))1−γ

]
dZ , (OA.21)

where q(0, s) = 1 + φ′(i(0, s)).
Similarly, at the π = 1 absorbing state, we have the following boundary conditions:

0 =
ρ

1− γ

[(
b(1, s)e−s

ρ(1 + φ′(i(1, s)))

)1−γ−1

− 1

]
+ i(1, s) + (1− κ)(s− s)bs(1, s)

b(1, s)

+
σ2δ(s)2

2

(
bss(1, s)

b(1, s)
− γ (bs(1, s))

2

b(1, s)2

)
+ (1− γ)σ2δ(s)

bs(1, s)

b(1, s)

+
λB

1− γ
[
Exd(1,s)((1−N(xe(1, s))(1− Z))1−γ)− 1

]
, (OA.22)

b(1, s) = [A− i(1, s)− φ(i(1, s))− xd(1, s)− xe(1, s)]γ/(γ−1) [ρq(1, s)]1/(1−γ) es ,(OA.23)
1

q(1, s)
= λBN

′(xe(1, s))Exd(1,s)
[
(Z − 1)(1−N(xe(1, s))(1− Z))−γ

]
, (OA.24)

1

q(1, s)
=

λB
1− γ

∫ 1

0

[
∂ξ(Z; xd(1, s))

∂xd
(1−N(xe(1, s))(1− Z))1−γ

]
dZ , (OA.25)

where q(1, s) = 1 + φ′(i(1, s)).
At s = smax, we have the following boundary condition:

0 =
ρ

1− γ

[(
b(π, smax)e

−smax

ρ(1 + φ′(i(π, smax)))

)1−γ−1

− 1

]
+ i(π, smax) + (1− κ)(s− smax)

bs(π, smax)

b(π, smax)

− γσ2

2
+ µπ(π)

bπ(π, smax)

b(π, smax)

+
λ(π)

1− γ

(b (πJ , smax

)
b(π, smax)

)1−γ

Exd(π,smax)((1−N(xe(π, smax))(1− Z))1−γ)− 1

 .
(OA.26)

Additionally, i(π, smax), xe(π, smax) and xd(π, smax), satisfy (OA.14)- (OA.16) at s = smax.
6

We summarize our model’s solution in the following proposition.

6Note that as s→ −∞ is not reachable in equilibrium, we can ignore the corresponding boundary conditions
for our numerical analysis.
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Proposition 8 The first-best solution for our external habit model is given by the value func-
tion (73) and the quartet policy rules, b(π, s), i(π, s), xd(π, s), and xe(π, s), where 0 ≤ π ≤ 1
and −∞ < s ≤ smax, via the four-equation ODE system (OA.13), (OA.14), (OA.15) and
(OA.16), together with the boundary conditions (OA.18)-(OA.21) for π = 0, (OA.22)-(OA.25)
for π = 1, (OA.26) and (OA.14)-(OA.16) for s = smax.

Next, we use the equilibrium resource allocation to derive our model’s asset pricing impli-
cations.

OB.2 Asset Pricing Implications

Using the planner’s solution, we can also infer the SDF process for the equilibrium outcome
(under optimal taxation which supports the first-best equilibrium outcome) by applying the
Ito’s Lemma to Mt given below

Mt = e−ρt
UC(Ct,Ht)

UC(C0,H0)
= e−ρt

(
CtSt
C0S0

)−γ
. (OA.27)

We then use the no-arbitrage restriction for the SDF to obtain the equilibrium risk-free rate,
the market price of risk, and the stock market risk premium.

Using (OA.27), we obtain the following expression for the logarithmic SDF, ln(Mt):

ln(Mt) = −ρt− γ (ln(Ct) + ln(St)− ln(C0)− ln(S0)) . (OA.28)

Then using Ito’s lemma, we obtain

dMt

Mt

= −ρdt− γ
(

i(π, s)− σ2

2

)
dt+ (1− κ)(s− st)

(
(1− γ)

bs(π, s)

b(π, s)
− qs(π, s)

q(π, s)
− 1

)
dt

+µπ(π)

(
(1− γ)

bπ(π, s)

b(π, s)
− qπ(π, s)

q(π, s)

)
dt−

[
(1− γ)

bs(π, s)
2

b(π, s)2
− qs(π, s)

2

q(π, s)2

]
(σδ(s))2

2
dt

+
σM(π, s)2

2
dt− σM(π, s)dWt + [η(π, s;Z,xe)− 1] dJt , (OA.29)

where

η(π, s;Z,xe) =
q(π, s)

q(πJ , s)

(
b
(
πJ , s

)
b(π, s)

)1−γ

(1−N(xe(π, s))(1− Z))−γ , (OA.30)

and

σM(π, s) =

[(
1 +

qs(π, s)

q(π, s)
− (1− γ)

bs(π, s)

b(π, s)

)
δ(s) + γ

]
σ . (OA.31)

Using the equilibrium restriction that the drift of dMt

Mt
equals−rt−dt, we obtain the following

expression for the equilibrium risk-free rate:

r(π, s) = ρ+ γ

(
i(π, s)− σ2

2

)
− (1− κ)(s− st)

(
(1− γ)

bs(π, s)

b(π, s)
− qs(π, s)

q(π, s)
− 1

)
− µπ(π)

(
(1− γ)

bπ(π, s)

b(π, s)
− qπ(π, s)

q(π, s)

)
+

[
(1− γ)

bs(π, s)
2

b(π, s)2
− qs(π, s)

2

q(π, s)2

]
(σδ(s))2

2

− σM(π, s)2

2
− λ(π)

[
Exd(η(π, s;Z,xe))− 1

]
. (OA.32)
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Using the equilibrium SDF, we may calculate firm value, Q(K, π, s) by using

Q(Kt, πt, st) =

∫ ∞
t

Mv

Mt

(AKv − Iv − Φ(Iv, Kv)−Xe
v)dv . (OA.33)

Applying the Ito’s Lemma to firm value Q(K, π, s) = q(π, s)K and using (OA.29), we obtain
the following PDE for q(π, s):

r(π, s)q(π, s) = max
i, xe

A− i− φ(i)− xe + (i− σM(π, s)σ)q(π, s) + µπ(π)qπ(π, s)

+
[
(1− κ)(s− s) + δ(s)σ2 − σM(π, s)δ(s)σ

]
qs(π, s) +

σ2δ(s)2

2
qss(π, s)

+ λ(π)Exd
[
η(π, s;Z,xe)

(
q(πJ , s)(1−N(xe)(1− Z))− q(π, s)

)]
.

(OA.34)

The cum-dividend return dRt over the period dt is given by

dRt =
(AKt− − It − Φ(It−, Kt−)−Xe

t−)dt

Qt−
+
dQt

Qt−

=
A− it− − φ(it−)− xet−

q(πt−, st−)
dt+

dq(πt, st)

q(πt−, st−)
+
dKt

Kt−
+
< dq(πt, st), dKt >

q(πt−, st−)Kt−

=
A− it− − φ(it−)− xet− + (1− κ)(s− st−)qs(πt−, st−) + σ2δ(st−)2

2
qss(πt−, st−)

q(πt−, st−)
dt

+
µπ(πt−)qπ(πt−, st−)

q(πt−, st−)
dt+ it−dt+

qs(πt−, st−)δ(st−)

q(πt−, st−)
σ2dt+

[
qs(πt−, st−)δ(st−)

q(πt−, st−)
+ 1

]
σdWt

+

[
((1−N(xet−)(1− Z))q

(
πJt , st−

)
q(πt−, st−)

− 1

]
dJt

=

[
r(πt−, st−) + σM(πt−, st−)

(
σ + δ(st−)σ

qs(πt−, st−)

q(πt−, st−)

)]
dt

−λ(π)Exdt−

[
η(πt−, st−;Z,xet−)

(
(1−N(xet−)(1− Z))q

(
πJt , st−

)
q(πt−, st−)

− 1

)]
dt

+

[
qs(πt−, st−)δ(st−)

q(πt−, st−)
+ 1

]
σdWt +

[
(1−N(xet−)(1− Z))q

(
πJt , st−

)
q(πt−, st−)

− 1

]
dJt . (OA.35)

Finally, using the equilibrium conditions q(π, s) = q(π, s) and xe(π, s) = xe(π, s), we write

dQt + Dt−dt

Qt−
=

(
µQ(πt−, st−) + λ(πt−)

(
QJt
Qt−

− 1

))
dt (OA.36)

+

[
qs(πt−, st−)δ(st−)

q(πt−, st−)
+ 1

]
σdWt +

(
QJt
Qt−

− 1

)
(dJt − λ(πt−)dt) ,

where

QJt
Qt−

=
(1−N(xet−)(1− Z))q

(
πJt , st−

)
q(πt−, st−)

, (OA.37)
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and

µQ(πt−, st−) = r(πt−, st−) + σM(πt−, st−)

(
1 + δ(st−)

qs(πt−, st−)

q(πt−, st−)

)
σ

+λ(πt−)Exdt−

[
η(πt−, st−;Z,xet−)

(
1− QJt

Qt−

)]
. (OA.38)

The market risk premium is

rp(πt−, st−) = µQ(πt−, st−) + λ(πt−)

(
QJt
Qt−

− 1

)
− r(πt−, st−)

= σM(πt−, st−)

(
1 + δ(st−)

qs(πt−, st−)

q(πt−, st−)

)
σ

−λ(πt−)Exdt−

[(
η(πt−, st−;Z,xet−)− 1

)(QJt
Qt−

− 1

)]
. (OA.39)

Next, we calibrate the model and provide a quantitative analysis.

Table 4: Parameter Values for External Habit Model

Parameters Symbol Value

jump arrival rate in State G λG 0.135
power law exponent absent mitigation β0 14
mitigation technology parameter β1 10, 000
mitigation technology parameter α 0.05
jump arrival rate in State B λB 0.304
prior of being in State B π0 0.104

surplus consumption parameter κ 0.9
time rate of preference ρ 4%
productivity A 15%
quadratic adjustment cost parameter θ 11
coefficient of relative risk aversion γ 3
capital diffusion volatility σ 14%

All parameter values, whenever applicable, are continuously compounded and annualized.

OB.3 Quantitative Analysis

Calibration. We first calibrate our model with the Campbell-Cochrane external habit
model to match the key global warming and macro moments.

The key new parameter for the external habit model is the (log) surplus consumption
parameter κ. We set the persistence parameter for external habit at κ = 0.9 per annum
as in Campbell and Cochrane (1999). We calibrate β0, β1 and α in a world with no or low
global warming risk, i.e., under the assumption that countries are optimally mitigating cyclone
arrivals with belief π0 = 0.104. We use the following three moments at the steady state level
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of the surplus consumption ratio S:7 1.) the optimal public mitigation of 0.1% of the capital
stock, xd(0.104) = 0.1%; 2.) the optimal private mitigation of 0.04% of the capital stock,
xe(0.104) = 0.04%; and 3.) a reduction of the expected annual GDP growth rate by 1.3% per
annum caused by the arrival of a major cyclone, N(xe)Exd(1− Z) = 1.3%.

As in our baseline model with Epstein-Zin utility, we calibrate the adjustment cost pa-
rameter θ along with the time rate of preference ρ, risk aversion γ, diffusion volatility σ, and
productivity A by targeting five key moments for state G. These include the annual (real)
risk-free rate of 2.5%, the expected annual stock market risk premium of 7%, the annual stock
market return volatility of

√
0.0206 = 14%, the expected growth rate of 4.4%, and Tobin’s

q of 1.5 (e.g., in line with Eberly, Rebelo and Vincent, 2012), when the prior is π0 = 0.104.
The resulting parameter values are σ = 14%, θ = 11, γ = 3, A = 15%, and ρ = 4%. These
parameter values are in line with those used in the literature. Moreover, these calibrated
parameter values are close to those in our baseline calibration with Epstein-Zin utility, even
though the building blocks of the two models differ significantly.

We report the values for all the twelve parameters in Table 4.
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Figure O-4: This figure compares the first-best planner’s model solutions for the external
habit model (solid blue lines) and the baseline model with Epstein-Zin recursive utility. The
parameter values for our baseline (Epstein-Zin) model are summarized in Table 3 and those
for the external habit (Campbell-Cochrane) model are summarized in Table 4.

OB.4 Quantitative Results

In Figures O-4 and O-5, we compare the external habit model at the steady state where
S = S = 0.857 with the Epstein-Zin recursive utility model. Recall that both models are

7The steady-state value of S is S = 0.857 and Smax = 0.979.
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recalibrated to match climate change and macro finance moments at the belief level of π =
10.4%. Panel A of Figure O-4 shows that the distribution mitigation xd(π) policies for the two
(different utility) models are quite close to each other. Similarly, Panel B of Figure O-4 shows
that the exposure mitigation xe(π) policies for the two models are also quite close. These two
findings suggest that our main results on how changes of belief impact disaster distribution
and exposure mitigation spendings are reasonably robust to preference specifications. This is
encouraging as our key results are not sensitive to the choices of our preferences.
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Figure O-5: This figure compares the first-best planner’s model solutions for the external
habit model (solid blue lines) and the baseline model with Epstein-Zin recursive utility. The
parameter values for our baseline (Epstein-Zin) model are summarized in Table 3 and those
for the external habit (Campbell-Cochrane) model are summarized in Table 4.

Panel C of Figure O-4 shows that the investment-capital ratio is a bit higher with Epstein-
Zin preferences than with external habit at the steady state where S = S = 0.857. Panel
D of Figure O-4 shows that the consumption-capital ratio is a bit lower with Epstein-Zin
preferences than with external habit, which is expected as the sum of total mitigation spending,
investment, and consumption is the same and equals the productivity A in the two models.
Nonetheless, the quantitative differences between the two models in terms of consumption
and investment are of the second order. Again, this is good news as our results seem robust
to changing preferences assumptions.

It is interesting to note that while i(π) decreases with π for the Epstein-Zin utility model,
i(π) increases with π in the external habit model. This difference is caused by the long-run
risk force in the Epstein-Zin utility specification, where the EIS ψ > 1. To generate the
prediction that worsening belief (increasing π) lowers Tobin’s q and equivalently investment
(as investment increases with Tobin’s q), we require ψ > 1.

The external habit model differs from the baseline Epstein-Zin utility model in two ways.
First, risk aversion is significantly enhanced by and also varies with external habit. Second,
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the EIS implied by our external habit model also generates a time-varying elasticity of in-
tertemporal substitution (EIS). As risk aversion increases with habit stock, the EIS decreases.
This is why our model predicts investment (and hence Tobin’s q) increases with belief.

Figure O-5 reports the WTP, conditional damage `(π), the expected growth rate g(π),
Tobin’s average q(π), the risk-free rate r(π), and the market risk premium rp(π). While there
are some differences, we see that these two models, calibrated to match key moments, generate
quantitatively similar results.

In sum, these findings are encouraging when it comes to interpreting our key results.
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Figure O-6: This figure plots the optimal policies for the planner’s first-best economy (solid
blue lines) and the market economy (dashed red lines) as functions of surplus consumption
ratio S, for the external habit (Campbell-Cochrane) model, where π = 0.104.

In Figure O-6, we focus on the external habit utility model by comparing two formulations:
the planner’s first-best economy (solid blue lines) with the market economy solution (dashed
red lines). We plot the two mitigation spending, investment, and consumption policies for
varying levels of S, for a given belief π = 0.104.

Panel A of Figure O-6 shows that there is no public mitigation in a competitive market
economy for the same externality argument as in our baseline model with Epstein-Zin utility.
This panel also shows that xd increases as the surplus consumption ratio increases. Similarly,
both the exposure mitigation spending and investment increase with S (Panels B and C). The
intuition for these results is as follows. As we increase S, the marginal utility of consumption
(and SDF Mt) decrease, which causes c to decrease with S (see Panel D). Additionally, the
marginal value of investment and that of mitigation (for both types) increase, which causes
xd, xe, and i to increase with S as shown in Panels A, B, and C).

Finally, we note that the private mitigation spending xe is larger for the market economy
than for the planner’s economy. This is because the marginal benefit of private mitigation
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is higher in the market economy as there is no public mitigation. In contrast, as the public
mitigation spending xd is positive and significant under the planner’s economy, the additional
value of private mitigation spending in the planner’s economy is much smaller and hence xe

is much smaller under the planner’s economy than under the market economy (a substitution
effect.)

In sum, we show that time-varying risk aversion induced by external habit influences
optimal mitigation policies, but the general results that we obtain from our baseline model
with Epstein-Zin utility remains valid in our external habit model.

OC Details on Numerical Analysis

In this appendix, we offer a detailed discussion of numerical analysis used in our paper. We
proceed as follows. First, we compare the technical differences between our baseline model
of Section 2, where the unobservable disaster arrival rate λ is constant, and Pindyck and
Wang (2013). Second, we discuss the additional technical complication in our generalized
learning model of Section OA, where the disaster arrival rate λ is stochastic and unobservable.
Third, we discuss how our model with external habit of Section 8 further brings technical
complications to our analysis.

OC.1 Comparing Baseline Model with Pindyck and Wang (2013)

Recall that Pindyck and Wang (2013), henceforth PW (2013), is a jump diffusion model with
stochastic capital recovery, Epstein-Zin recursive utility, and capital adjustment costs, but
features no learning and no mitigation. As a result, the state variable in PW (2013) is capital
stock K. Then using the homogeneity property, PW (2013) show that their model solution can
be further simplified. To be precise, to solve the PW (2013) model, one first solves a simple
nonlinear equation for the optimal constant investment-capital ratio i∗ (given by equation
(12) in their paper), then calculates a welfare measure (proportional to certainty equivalent
wealth) b by substituting i∗ into equation (11) in their paper, and finally obtain equilibrium
asset pricing implications and conduct willingness-to-pay (WTP) calculations. That is, there
is no differential equation or even coupled nonlinear equations involved. Therefore, in terms of
numerical solution, PW (2013) is very simple. The PW (2013) model is purposefully designed
with parsimony and transparency to highlight the key features of disasters in mind.

The economics and technical details for our baseline model (with constant unobservable
disaster arrival rate λ) are inevitably more involved than PW (2013), as we need to incorporate
learning and two types of mitigation into PW (2013). As a result, there are two state variables
in our baseline model: belief π and capital stock K. After using the homogeneity property,
we still need to deal with a numerical problem that has one more dimension than PW (2013).
Specifically, this one-dimensional problem involves a system of ordinary differential equations
(ODEs). To obtain solutions for four unknown functions, b(π), i(π), xe(π), and xd(π), we
need to solve the ODE system of four inter-connected nonlinear differential equations subject
to various boundary conditions. It is worth noting that this ODE system is more difficult
to work with than some ODEs that we see in various economics and finance applications,
e.g., the ODEs appearing in dynamic contracting, e.g., DeMarzo and Sannikov (2006) and
Sannikov (2008), are easier to work with.

It is also worth emphasizing that our model has both jumps and diffusion shocks. Jumps
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further complicate our numerical analysis. For diffusion models, finite difference methods only
require local information, as discretizing a second-order ODE (of diffusion models) calls for
analyzing tridiagonal matrix. In contrast, as belief may jump in our model, to solve the model
at a given level of π, we also need to take into account the nonlocal effect of jump on value
function and policy rules.

As a reference to the technical difficulty of our ODE system, our baseline model’s technical
difficulty is at least at par with the technical difficulty level of Brunnermeier and Sannikov
(2014), which is a diffusion model and hence analyzing tridiagonal matrices is sufficient when
solving the coupled ODEs in that paper. In terms of numerical analysis, jumps effectively
increase the difficulty of our numerical analysis by increasing the dimension of our problem
by “0.5 dimension.”

To solve the interconnected ODE system, we also need a set of four interconnected non-
linear equations for the boundary π = 0 and similarly another set of four interconnected
nonlinear equations for the boundary π = 1. Since both boundaries in our baseline model are
absorbing, they are relatively easy to work with but are technically still more involved than
the full PW (2013) model. This is because for our boundary conditions at π = 0 and π = 1,
we solve for four unknowns simultaneously while in PW (2013), we only need to sequentially
solve one unknown using one nonlinear equation.

OC.2 Additional Difficulties in Stochastic λ Model of Section OA

In our generalized learning model where the arrival rate is stochastic and unobservable, while
we still characterize the solution with four interconnected ODEs in the interior belief region
where π ∈ (0, 1), the boundary conditions are more complicated posing additional technical
and numerical challenges. To be precise, with stochastic transitions between the G and B
states, i.e., ϕG > 0 and/or ϕB > 0, the two belief boundaries, π = 0 and π = 1, are no longer
absorbing. Therefore, we can no longer first solve the four nonlinear equation system to pin
down the values of welfare b and policy functions (i, xe, and xd) at each boundary. To be

precise, consider the boundary π = 0, the term ϕGb
′(0)

b(0)
in the ODE (OA.9) is no longer zero.

Indeed, to solve for b(0), we need information about b′(0), which depends on the solution in
the interior region π ∈ (0, 1).

In sum, the interconnected ODE system in the π ∈ (0, 1) region and the nonlinear equation
systems at the boundaries, π = 0 and π = 1, are interdependent, as summarized in Proposition
7. This interdependence between the interior region and the boundary conditions further
complicate our numerical analysis. We can no longer solve the ODE by first solving the
boundary values and then focus on the ODE system for the interior region as we do for our
baseline model with constant unobservable λ.

Despite these challenges, we are able to obtain very high precision for our numerical solu-
tion.

OC.3 Additional Difficulties of External Habit Model of Section 8

Replacing Epstein-Zin recursive utility with Campbell-Cochrane external habit model invites a
new state variable and inevitably we face an optimization problem with three state variables:
(log) surplus consumption ratio s being the new state variable in addition to belief π and
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capital stock K. As we have shown in Section OB, using the homogeneity property, we
can simplify our model to a two-dimensional problem, which yields an interconnected partial
differential equation (PDE) system.

The interconnected PDE system in the π ∈ (0, 1) region and the nonlinear equation systems
at the two belief boundaries, π = 0 and π = 1, as well as the boundary conditions, (OA.26) and
(OA.14)-(OA.16) for s = smax have to be solved jointly. Proposition 8 summarizes the entire
PDE system with 4 interconnected PDEs in the interior region with 12 nonlinear (differential)
equations for the boundaries. This system is numerically quite challenging.

Moreover, we note that as the boundary s = smax is not absorbing, the value function
b(π, s) at s = smax depends on bs(π, smax) and other equilibrium objects, which have to be
solved jointly with the PDEs in the interior region where s ∈ (−∞, smax). This further
complicates our numerical analysis.

In sum, compared with our Epstein-Zin-utility-based models which require us to solve
interconnected ODE system, Campbell-Cochrane external-habit-based model is technically
much more challenging, as we have to solve an involved interconnected PDE problem described
above.
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Figure O-7: This figure plots the planner’s first-best solution for three values of the EIS
ψ: 1/γ = 0.286, 1, 1.5 for our baseline learning model (with Epstein-Zin utility). The other
parameter values are given in Table 3.

Summary. In this online appendix, we have summarized the numerical challenges for the
various models developed in this paper. The technical difficulties for our numerical solution are
substantial and our numerical solution is significantly different from the ones in the literature.
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OD Comparative Statics

OD.1 Elasticity of Intertemporal Substitution ψ

In Figure O-7, we plot the first-best solutions for three levels of the EIS ψ: γ = 0.286, 1, 1.5.
Panels A and B show that the larger the EIS ψ the higher both public mitigation xd and
private mitigation xe spendings. Quantitatively, these differences are not very large. Panel C
shows that the larger the EIS ψ the higher the investment-capital ratio i(π). Panel D shows
that the higher the EIS ψ the lower the consumption-capital ratio c(π), as c = A−(i+xd+xe).
Panel E shows that the larger the EIS ψ the higher Tobin’s average q(π). This follows directly
from the comparative static result of changing ψ on i (Panel C), as Tobin’s q is increasing with
i: q(π) = 1 + φ′(i(π)). Panel F shows that the larger the EIS ψ the higher the price-dividend
ratio q(π)/c(π), which follows from the comparative effects shown in Panels D and E.

The intuition for these results is as follows. The higher the EIS ψ, the more willing
the agent is to substituting consumption over time. As a result, the agent spends more on
mitigation and also invests more for the future.
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Figure O-8: This figure plots the planner’s first-best solution for three values of the EIS
ψ: 1/γ = 0.286, 1, 1.5 for our baseline learning model (with Epstein-Zin utility). The other
parameter values are given in Table 3.

Additionally, we show that whether the price-dividend ratio q(π)/c(π) increases or de-
creases when disaster arrives (which increases (worsens) belief π) crucially depends on whether
the EIS ψ is larger or smaller than one. In our baseline case where ψ = 1.5 > 1, the equilibrium
price-dividend ratio q(π)/c(π) decreases when a disaster arrives (i.e., when π increases). This
result is consistent with Bansal and Yaron (2004) and the subsequent long-run risk literature,
who show that the price-dividend ratio decreases in response to a negative growth shock when
the EIS parameter ψ is set to be larger than one. Unlike Bansal and Yaron’s pure exchange
economy, our model features production and hence we need to compute the endogenous divi-
dend c together with value of capital, Tobin’s q, in order to obtain the price-dividend ratio.
However, we obtain the same results for the effect of EIS on the price-dividend ratio.

For the unity EIS (ψ = 1) Epstein-Zin utility case, which is a generalized version of
expected logarithmic utility (with a flexible choice of risk aversion parameter γ), the wealth
and the substitution effects exactly offset each other. As a result, the equilibrium price-
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dividend ratio remains constant, i.e., q(π)/c(π) = 1/ρ = 20 at all levels of π (See the dotted
line in Panel F.) Finally, with ψ = 1/γ = 0.286 < 1, the wealth effect is stronger than
the substitution effect. For this case, as belief worsens (increases), the price-dividend ratio
q(π)/c(π) increases, which is empirically counterfactual. This is one reason (among others)
why Epstein-Zin utility with an EIS larger than one (ψ > 1) is a more appealing utility
specification than commonly used expected utility for asset pricing.

In Figure O-8, we plot the WTPs for three levels of the EIS (Panel A). Note that the WTP
curves for the three levels of ψ are reasonably close. In Panel B, the higher the EIS ψ, the
lower the conditional damages `(π). This is because the agent with a higher EIS mitigates
more as we show in Panels A and B of Figure O-7. As a result, the higher EIS the lower the
conditional damages `(π).
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Figure O-9: This figure plots the planner’s first-best solution for three values of the EIS
ψ: 1/γ = 0.286, 1, 1.5 for our baseline learning model (with Epstein-Zin utility). The other
parameter values are given in Table 3.

Figure O-9 of Panel A shows that the higher the EIS ψ, the higher the expected growth
rate g(π). This result follows from 1.) the higher the EIS the higher investment result (as
shown in Panel C in Figure O-7) and 2.) the higher the EIS the smaller damage `(π) (as
shown in Panel B of Figure O-8.)

Panel B of Figure O-9 shows that the higher the EIS the more willing the agent is to
substituting consumption over time and in equilibrium the lower the interest rate. Note that
the effect of the EIS on risk premium rp(π) is negligible (Panel C.)

OD.2 Disaster Arrival Rate λB in State B

In Figure O-10, we plot the first-best solutions for three levels of the disaster arrival rate in
state B: λB = 0.15, 0.3, 0.6. Panel A shows that the higher the disaster arrival rate λB in
state B, the higher the public mitigation spending xd. Moreover, the more pessimistic the
agent’s belief the stronger this effect. Note that the wedge between the lines for two different
levels of λ widens as π increases.

Panel B shows that increasing the arrival rate λB has a highly nonlinear effect on the
private mitigation spending xe. Increasing λB from 0.15 to 0.3 significantly increases the
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Figure O-10: This figure plots the planner’s first-best solution for three values of the annual
disaster arrival rate λB: 0.15, 0.3, 0.6 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 3.

mitigation spending (for sufficiently large values of π.) However, further increasing λB from
0.3 to 0.6 has limited effects on the private mitigation spending xe.

Panel C shows that as λB increases, investment falls. The higher the belief level π (the
more pessimistic the agent) the larger the impact of λB on i. Panel D shows that the impact
of λB on consumption c(π) is ambiguous due to the general equilibrium effect.

In Figure O-11, we show that λB has a large effect on the WTP ζp (Panel A). For example,
as a jump arrival changes the belief from prior π0− = 0.104 to posterior πJ0 = 0.207, the
WTP increases from 26.8% to 33.3% when λB = 0.6. In contrast, when λB = 0.15, the WTP
barely changes from 14.3% to 14.5% in response to the same jump arrival. Panel B shows that
the higher the arrival rate λB the smaller the conditional damage `(π). This is intuitive as
mitigation spending is higher when λB is larger. However, as investment is lower when λB is
larger, the impact of λB on the growth rate g(π) is minimal as the two channels (investment
and conditional damage) offset each other (Panel C). Panel D shows that the higher the arrival
rate λB the lower Tobin’s q, tracking the impact of λB on i as q = 1 + θi. Panel E shows that
the quantitative effect of λB on the risk-free rate r is moderate at best and Panel F shows
that the effect of λB on the market risk premium rp is very small.

OD.3 Time Rate of Preference ρ

In our baseline calculation, we set the time rate of preference ρ at 5% per annum, a commonly
used value. Next, we compare our baseline model results with two other economies with lower
discount rates: ρ = 3% and ρ = 4%.
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Figure O-11: This figure plots the planner’s first-best solution for three values of the annual
disaster arrival rate λB: 0.15, 0.3, 0.6 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 3.
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Figure O-12: This figure plots the planner’s first-best solution for three values of the an-
nual time rate of preference ρ: 3%, 4%, 5% for our baseline learning model (with Epstein-Zin
utility). The other parameter values are given in Table 3.
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Figure O-13: This figure plots the planner’s first-best solution for three values of the an-
nual time rate of preference ρ: 3%, 4%, 5% for our baseline learning model (with Epstein-Zin
utility). The other parameter values are given in Table 3.

Panels A and B of Figure O-12 show that the higher the time rate of preference ρ, the less
the planner spends on both types of mitigation spendings, xd and xe. Similarly, Panel C of
Figure O-12 shows that the higher the time rate of preference ρ, the less the planner invests
and Panel D shows that the higher the time rate of preference ρ the more the agent consumes.
The quantitative effects on consumption are large. For example increasing ρ from 4% to 5%
roughly increases consumption c from 6% to 8% per annum.

In Figure O-13, we show that the quantitative effects of the time rate of preference ρ on
the WTP is large (Panel A). For example, as a jump arrival changes the belief from prior
π0− = 0.104 to posterior πJ0 = 0.207, the WTP increases from 23.7% to 26.7% when ρ = 4%,
and increases from 38.4% to 42.3% when ρ = 3%.

The higher the time rate of preference ρ the higher the conditional damage `(π) (Panel B)
and the lower the Tobin’s q (Panel D) as the agent is less patient and puts a smaller weight
on the future. Since these two forces push towards the same direction, the higher the discount
rate ρ the lower growth rate g (Panel C).

Finally, Panel E shows that the quantitative effect of ρ on the risk-free rate r is moderate
at best and Panel F shows that the effect of ρ on the market risk premium rp is very small.
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OD.4 Coefficient of Relative Risk Aversion γ

In our baseline calculation, we set the coefficient of relative risk aversion γ at 3.5, which is
within the range of widely used values (e.g., 2 to 5). Next, we compare our baseline model
results to two other economies with γ = 1.5 and γ = 10.
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Figure O-14: This figure plots the planner’s first-best solution for three values of coefficient of
relative risk aversion γ: 1.5, 3.5, 10 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 3.

Panel A of Figure O-14 shows that the higher the coefficient of relative risk aversion γ,
the more the planner spends on distribution mitigation xd and the less the planner spends
on exposure mitigation xe. The higher the coefficient of relative risk aversion γ the less the
planner invests (Panel C), the more the agent consumes (Panel D) the lower Tobin’s average
q (Panel E) and the lower the price-dividend ratio q(π)/i(π) (Panel F).

In Figure O-15, we show that the quantitative effects of increasing risk aversion from
γ = 3.5 to γ = 10 on the WTP is large (Panel A). For example, when π = 0.104 as we
increase γ from 3.5 to 10, the WTP ζp increases from 17.2% to 29.4%, the disaster distribution
mitigation spending xd increases from 0.1% to 0.13%, and the disaster exposure mitigation
spending xe decreases from 0.04% to 0.03%. The effects of changing risk aversion become
even larger as belief worsens.

The higher the coefficient of relative risk aversion γ the lower the conditional damage `(π)
(Panel B of Figure O-15) but the lower the growth rate g(π) (Panel A of Figure O-16). This is
because a more risk-averse agent mitigates more but invests less. Quantitatively, the negative
effect of increasing γ via investment on growth dominates the positive effect of increasing γ
via mitigation. As a result, the net effect of increasing γ on growth is negative.

Finally, Panels B and C of Figure O-16 show that the quantitative effects of γ on the
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Figure O-15: This figure plots the planner’s first-best solution for three values of the coefficient
of relative risk aversion γ: 1.5, 3.5, 10 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 3.

risk-free rate r and the market risk premium rp are very large, as we expect (in line with
standard asset pricing results.)
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Figure O-16: This figure plots the planner’s first-best solution for three values of the coefficient
of relative risk aversion γ: 1.5, 3.5, 10 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 3.
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