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1 Introduction

A key parameter in workhorse models of disease transmission is the rate at which sick people

infect susceptible people. A large set of policy measures such as compulsory social distancing

aim at reducing this rate. In this paper, we model the rate of transmission as reflecting the

choice of rational individuals who weigh the cost of getting infected against the benefits

derived from social activity. These benefits capture both social and economic returns from

physical human interaction.

To motivate the exercise, we use micro-data from SafeGraph to show that individuals

across the United States substantially reduced their exposure to others long before state and

local governments imposed the first “shelter-in-place” restrictions in response to the Covid-

19 pandemic. We then show how to integrate such optimizing behavior into an otherwise

standard epidemiological model. Specifically, we use optimal control theory to derive two

ordinary differential equations (ODEs) which capture individual optimality. Together with

two standard differential equations from epidemiological models, the resulting system of four

differential equations fully summarizes the model and can easily be solved.

The model is consistent with the observation that social activity fell drastically before

there were any legally-mandated restrictions on movement. It is thus a natural laboratory

for evaluating social distancing policies. To do so, we also show how to characterize the

symmetric Pareto optimal allocation. Optimal policy chooses a time path for the amount of

social activity, recognizing the health consequences of a high level of activity. Optimal policy

can likewise be described by the solution to a simple system of four ODEs. Comparison with

the laissez-faire benchmark elucidates the external effects in disease transmission. Moreover,

we show how perfect altruism eliminates the gap between equilibrium and optimum.

The internal benefits of social distancing come from the fact that someone is less likely

to get sick if they engage in more social distancing. This is reflected in individual behavior.

The external benefit comes from the fact that they are less likely to get other people sick,

particularly other strangers. While individuals internalize the cost of social distancing,

optimal policy also recognizes that individuals may ignore the external benefit of reducing the

risk of transmitting illness. Moreover, optimal policy internalizes the effect of an additional

sick person on the quality of health care available to inframarginal individuals.

We then turn quantitative. Since the model is very parsimonious, the calibration targets

various epidemiological findings such as the initial growth rate of the disease, the duration

of infectivity, and the fatality rate.

Our most important findings are the following: First, the laissez-faire equilibrium reduc-

tion in social activity due to the internalized cost of infection is strong. It delays the peak
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outbreak and leads to a substantial reduction in the number of expected fatalities, relative

to a no-response benchmark. However, individuals only reduce activity once the risk of

infection becomes non-negligible.

Second, and in contrast, social distancing optimally starts as soon as the disease emerges,

discontinuously suppressing social activity. This discrete drop in activity delays the pandemic

and hence buys time. Because of the hope for a cure, this strictly reduces the expected

number of deaths and yields a welfare gain.

Third, optimal social distancing is persistent. Absent a cure, social activity remains

depressed for years. This is the flip side of delay. Because the pool of susceptible individuals

drains only slowly, activity needs to remain suppressed for a long time unless a cure is found.

Nevertheless, asymptotically social activity returns to normal, with infections stopping only

because of herd immunity as the product of the disease’s basic reproduction number R0 and

the share of people who are susceptible falls below one.

Fourth, social distancing is never too restrictive. At any point in time, the effective

reproduction number for a disease is the expected number of people that an infected person

infects. In contrast to the basic reproduction number, it accounts for the current level of

social activity and the fraction of people who are susceptible. Importantly, optimal policy

keeps the effective reproduction number above the fraction of people who are susceptible,

although for a long time only mildly so. That is, social activity is such that, if almost everyone

were susceptible to the disease, the disease would grow over time. That means that optimal

social activity lets infections grow until the susceptible population is sufficiently small that

the number of infected people starts to shrink. As the stock of infected individuals falls,

the optimal ratio of the effective reproduction number to the fraction of susceptible people

grows until it eventually converges to the basic reproduction number.

To understand why social distancing is never too restrictive, first observe that social

activity optimally returns to its pre-pandemic level in the long run, even if a cure is never

found. To understand why, suppose to the contrary that social distancing is permanently

imposed, suppressing social activity below the first-best (disease-free world) level. That

means that a small increase in social activity has a first-order impact on welfare. Of course,

there is a cost to increasing social activity: it will lead to an increase in infections. However,

since the number of infected people must converge to zero in the long run, by waiting long

enough to increase social activity, the number of additional infections can be made arbitrarily

small while the benefit from a marginal increase in social activity remains positive.

Now consider the role of social distancing in the short run. With a low initial infection

rate, pushing the effective reproduction number below the share of susceptible people implies

that the total number of individuals who get infected over any time interval will be small.

2



That means that the health status of the population—the share of susceptible and infected

people—will barely change. It follows that if it is optimal to keep the effective reproduction

number below the share of susceptible people initially, it will be optimal to do so at any later

date. But we have just argued that this cannot be the case. Thus the effective reproduction

number must always be bigger than the share of susceptible people. In our calibrated model,

it is mildly so for a sustained period. We note that this argument is predicated on the

assumption that the initial infection rate is small, since otherwise a period of strong social

distancing may have a big effect on the health status of the population. Indeed, we verify

that if the initial infection rate is large enough, an optimal policy may temporarily push the

effective reproduction number below the share of susceptible people.

We then revisit our micro-data and contrast it quantitatively with the model under

our baseline calibration. The model captures both the drop in social activity prior to any

government intervention and the pace of the contraction surprisingly well. We corroborate

this with additional aggregated data from Sweden that display similar patterns.

We then consider several robustness exercises with respect to our calibration. An impor-

tant takeaway is that even large parameter changes matter little for the shape of equilibrium

or optimal social activity. Optimal policy is fairly insensitive even to large parameter changes

and is well summarized by the points discussed above: Immediate social distancing that ends

only slowly but is not overly restrictive. This is reassuring given the large current amount of

parameter uncertainty. These robustness exercises also document that our basic framework

naturally accommodates a rich set of extensions. We therefore conclude with an additional

set of proposed extension that we believe are of first order.

2 Related Work

Our basic approach builds on the susceptible-infected-recovered (SIR) model (Kermack and

McKendrick, 1927). There is a rapidly growing body of work that uses this epidemiological

model, together with standard economic models, to understand the interplay between disease

transmission and economic activity.

The basic epidemiology model is reviewed in Atkeson (2020), who analyzes the optimal

lock down policy in an economic environment. Following a similar approach, Eichenbaum,

Rebelo and Trabandt (2020) study the two-way interaction of disease dynamics and economic

activity in a macroeconomic SIR model. While theirs is a substantially richer environment,

we obtain a larger degree of analytical tractability and treat equilibrium and optimum in a

unified fashion that simply adds two ODEs to the SIR model. A further key difference is

that, in their model, disease transmission and its externalities happens through consumption
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and the government acts through a tax on consumption. In our setup, disease transmission

happens through general activity, both economic and social and the government acts through

restricting social activity. This allows us to directly map to newly available data on social

activity, for example the SafeGraph data on foot traffic we discuss below.

Other papers that focus on the individual response to a pandemic include Garibaldi,

Moen and Pissarides (2020), who use tools from search and matching and Krueger, Uhlig

and Xie (2020), who focus on the shift in the sectoral composition of consumption as a force

that mitigates the economic fallout of the pandemic.

Alvarez, Argente and Lippi (2020) study a planning problem similar to ours where the

planner directly controls the amount of activity and trades of the losses from restrictions

against the health benefits. However, they exogenously fix the amount of activity absent

policy intervention, while we explicitly model the choice of social activity by individuals.

This allows us to contrast the optimal amount of social contacts with the laissez-faire one,

taking seriously that even absent mobility restrictions the negative effects of the epidemic

are partially internalized.

Some other recent papers focusing on equilibrium and optimal policy include Jones,

Philippon and Venkateswaran (2020), Hall, Jones and Klenow (2020), Dewatripont, Gold-

man, Muraille and Platteau (2020), Piguillem and Shi (2020), Barro, Ursua and Weng (2020),

Glover, Heathcote, Krueger and Rios-Rull (2020), Keppo, Kudlyak, Quercioli, Smith and

Wilson (2020), and Kaplan, Moll and Violante (2020).

The paper is also related to an older literature on social externalities, including Diamond

and Maskin (1979) and Kremer and Morcom (1998). In particular, Diamond and Maskin

(1979) introduce the distinction between a quadratic and a linear matching technology. With

quadratic matching additional social activity by others raises the likelihood of social contact

and thus disease transmission for all individuals. E.g., with more individuals in parks,

restaurants and public transit any given trip to a park/restaurant/subway visit is more

likely to lead to disease. Such a quadratic matching function has a search externality that,

traditionally, is viewed as positive (Diamond, 1982), but that turns negative in an age of

disease. It stands in contrast to a linear search technology where an individual’s social

contacts merely depend on her own social activity and not on those of others. We believe

that such a technology applies to cases where social activity and the associated risk of disease

transmission is explicitly sought out. We therefore argue that the quadratic technology is

appropriate to model the dynamics of Covid-19, while a linear technology might be the right

tool to model an epidemic like HIV.

Greenwood, Kircher, Santos and Tertilt (2019) study the HIV epidemic in Malawi using

a computational choice-theoretic equilibrium model of sexual behavior. They model the
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individual effort to find a partner in different markets, which are associated with different

degrees of risk. And indeed, the risk of infection at any given market depends on the entire

distribution of health types visiting the market in line with the arguments just made.

Budish (2020) treats disease containment as an economic constraint and discusses policies

that maximize welfare subject to the containment constraint. In turn, our framework treats

the system of differential equations governing the evolution of the sickness as the relevant

constraint. A policy-maker maximizes welfare subject to that constraint fully taking into

account the damage caused by the disease. As a consequence, the policy-maker may well

choose policies that let the epidemic spread if the cost of containment are too high. Indeed,

we find that this is always optimal, albeit at a slow pace.

3 Declining Social Activity, Early and Everywhere

In this section, we use newly available micro-data that document substantial behavioral

changes across the United States even before any policy measures were taken.

We work with micro-data data from SafeGraph.1 Among other things, SafeGraph pro-

vides highly disaggregated and detailed high-frequency information on individual travel in

the United States. The population sample is a panel of opt-in, anonymized smartphone

devices, and is well balanced across US demographics and space.

In early April 2020, SafeGraph made two datasets freely available to researchers.2 Their

first “Covid-19 Response Dataset,” named “Weekly Patterns,” registers GPS-identified visits

to Points of Interest (POI) (primarily businesses) with exact known location in the United

States at hourly frequency in a balanced panel. The data is currently available covering the

period March 1 to April 11, 2020. The dataset is large. On March 1, the dataset recorded

approximately 32.1 million individual visits to approximately 3.9 million POI.

The second dataset, named “Social Distancing Metrics,” uses information from individual

cell devices that can be assigned to a home address (using their night-time location) to

measure individual foot traffic and its response to the outbreak. The dataset goes back

to January 1, 2020 and currently, runs until April 9 and is likewise large. On March 1,

the dataset contains information from over 20 million devices across 220,000 census block

groups with at least 5 devices. Among other things, the data measures for each census

1Attribution: SafeGraph, a data company that aggregates anonymized location data from numerous
applications in order to provide insights about physical places. To enhance privacy, SafeGraph excludes
census block group information if fewer than five devices visited an establishment in a month from a given
census block group.

2For detailed information, see https://docs.safegraph.com/docs/weekly-patterns and
https://docs.safegraph.com/docs/social-distancing-metrics.
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block group the median number of minutes a device dwells at its home location (variable

median home dwell time). In addition, it also measures the number of devices that spend

the entire day-of-week at the home location (variable completely home device count).

We construct our measures at the state level. We use the first dataset to count the total

daily number of visits, for each state, to POIs. We proceed identically for our other two

measures. We subtract the median minutes spent at home from 24× 60 = 1440 and take a

daily state-wide average. We similarly construct the state-wide fraction of all devices that

leave the house at least once during any day. We express all three variables relative to a

baseline week (dividing by the corresponding day during the first week of March).

This gives us, for each state, three different measures of the decline of social activity

that naturally map to the model. Figure 1 reports our result for the first variable, visits to

POI. We plot, at any given date, the median value (across states) of the decline relative to

baseline, along with the max and min and 10th and 90th percentile.

The figure shows a remarkably uniform contraction of social activity across US states

beginning in the second week of March, leveling off at some 50 percent relative to baseline

towards the end of the month.

The figure also depicts the fraction of the US population subject to official stay-at-home

or shelter-in-place orders. The figure shows that social activity began contracting 10 days

before the first significant orders were put into place around March 20.

We complement this with the other two social distancing metrics we have available, days

spent entirely at home and daily dwell time at home. Their decline is depicted in Figure 2.

These two variables display a somewhat smaller decline of 20-30% relative to baseline. The

basic pattern remains the same: Social activity starting contracting substantially, rapidly,

and long before the first lockdown measures. This also happened across the board in the

United States.

This offers a direct and readily available measure of the extent of individual social activity

which is both the key endogenous variable in our model, as well as the key driver of the

pandemic. Since we model social activity rather than, say, consumption, our model can

directly connect with this high-frequency data. We will later confront the quantitative

properties of our model with this evidence and argue that it offers a close account of the

decline in social activity in the US in March 2020.

4 Model

The basic epidemiological framework is a continuous time SIR model with a possibility

of death, i.e. a SIRD model. Individuals susceptible to the disease may become infected
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Notes: Visits to Points of Interest in SafeGraph’s “Weekly Patterns” Covid-19 Response Dataset. We
sum daily visits within each state and express them relative to the same day during baseline week (first
week of March 2020). We plot the median (min, max, .. across states) decline relative to baseline at
any given day. The solid blue line is the median. The dark share is 10% − 90% interval, and the light
shade is min-max interval. The solid red line is the percent of the population subject to stay-at-home
or shelter-in-place orders. The population subject to these orders is based on authors’ own calculations
using https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html.

Figure 1: Declining Activity, Early and Everywhere
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Notes: Social activity based on SafeGraph’s “Social Distancing Metrics” Covid-19 Response Dataset.
Left Panel: Fraction of devices that leave assigned “home” at least once during any day. Right Panel:
Dwell time at home, median device. Measures at the census block group, we take state-wide weighted
averages and express them relative to the same day during baseline week (first week of March 2020). We
plot the median (min, max, .. across states) decline relative to baseline at any given day. The solid blue
line is the median. The dark share is 10%− 90% interval, and the light shade is min-max interval. The
solid red line is the population under lockdown. Population under lockdown is based on authors’ own
calculations using https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html.

Figure 2: Declining Activity, Early and Everywhere II
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through contact with other infected individuals. The infected stochastically recover or die.

Individuals do not know if they are susceptible or infected, but in our baseline model, they

can tell when they have recovered from the disease. In our baseline model, individuals are

otherwise homogeneous.

At each time t ≥ 0, a measure 1 of individuals are in one of the four states, susceptible

(s), infected (i), recovered (r), or deceased (d). Let Nj(t), j ∈ {s, i, r, d}, denote the measure

of individuals in each state. Thus Ns(t) also gives the fraction of the population that has

not gotten infected. Assume that Ni(0) > 0, so there is a seed of infection.

A susceptible individual can get infected by meeting an infected individual. However, in-

dividuals are unaware if they are infected. Infected individuals recover at rate (1−π(Ni(t)))γ

and die at rate π(Ni(t))γ, where π(Ni(t)) ∈ [0, 1] is the infected fatality rate, the fraction

of infected individuals who eventually die from the disease. We allow this to depend on the

number of infected people, reflecting the possibility that the disease overwhelms the hospital

system. A recovered individual knows that he is recovered. We assume that recovering from

the disease confers lifetime immunity, so a recovered individual no longer transmits the dis-

ease and can no longer become sick. We lump the risk and cost of death (i.e. the lost value

of life) and the cost of disease together in a single function κ(Ni(t)), the expected cost that

an infected individual pays when he exits the infected state. Again, we allow for this cost to

depend on Ni to capture that treatment quality (and hence π) might deteriorate when the

health care system becomes overrun.

Individuals discount the future at rate ρ, and a cure for the disease is found at rate δ.

For simplicity we assume that a cure, once found, is perfect and immediately wipes out the

disease.

We assume that all living individuals choose their level of social activity a, and get utility

u(a) from social activity a. Assume u is single-peaked and its maximum is attained at a

finite value a∗ > 0. Without loss of generality, normalize a∗ = 1 and u(a∗) = 0. The

first normalization keeps the notation the same as the basic SIR model in the absence of a

behavioral response to the outbreak. The latter allows us to use u as a measure of the utility

loss from social distancing.

Disease transmission depends on the rate at which individuals have social interactions.

Let Aj(t) denote the aggregate amount of social activity by all individuals of type j ∈ {s, i, r}.
We assume throughout that all individuals of a given type choose the same level of social

activity, although when we study equilibrium, we consider the deviation of a single individual

to a different level of activity. The rate that an individual of type j has social interaction

with an individual of type j′ is Aj(t)Nj(t)Aj′(t)Nj′(t), the product of the level of social

activity of the two types. In particular, the rate that susceptible individuals get sick is
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βAs(t)Ns(t)Ai(t)Ni(t), where β > 0 captures the ease of transmitting the disease. Formally,

this is a quadratic matching technology with random search.3

Together the assumptions that preferences u depend on social activity while disease

transmission depends on social interactions, is central to our view of social distancing. It

captures the idea that individuals value social activity (going to a restaurant, going for a

walk, going to the office) and, absent health issues, are indifferent about whether other

people are also engaging in social activity.4 On the other hand, if an individual goes for a

walk and doesn’t encounter anybody, they cannot get sick. Thus interactions are critical for

disease transmission.

The disease transmission function captures the idea that if a particular group chooses

little social activity Aj(t), one is unlikely to make social contact with them. It also captures

the idea that the amount of social interactions depends not only on a particular group’s

choice, but also on everyone else choices. This captures, for instance, that even an individual

frequently going to a restaurant or to the office has few social interactions if nobody else

is there. As a consequence, disease transmission displays a negative externality: increasing

social activity increases other people’s social interactions, putting them at a higher risk of

infection.

Under our modeling assumptions, the laws of motion describing the aggregate state are

given by

N ′s(t) = −βAs(t)Ns(t)Ai(t)Ni(t) (1)

N ′i(t) = βAs(t)Ns(t)Ai(t)Ni(t)− γNi(t) (2)

N ′r(t) = (1− π(Ni(t)))γNi(t) (3)

N ′d(t) = π(Ni(t))γNi(t) (4)

with each of the Nj(0) given. If Aj(t) = 1 for j ∈ {s, i} and π(·) = 0, this is the standard

SIR model (Kermack and McKendrick, 1927). Allowing π 6= 0 gives us the SIRD model. We

stress that there are not only social interactions between the susceptible and the infected,

3An alternative would be a linear technology, in which case type j individuals interact with type j′

individuals at rate
Aj(t)Nj(t)A

′
j(t)N

′
j(t)∑

j′′ A
′′
j (t)N

′′
j (t) . This formulation makes sense if type j individuals desire to interact

with somebody at rate Aj(t). With a linear technology, changing social activity by other people changes the
distribution of social interactions without changing the level. Such an alternative might be the appropriate
modeling choice for other epidemics such as HIV (Kremer and Morcom, 1998). However, for Covid-19 it
seems unlikely that additional social activity by non-infected individuals would reduce the infection risk of
the susceptible, all else equal. We highlight, however, that this assumption is crucial for certain outcomes, for
instance the optimal social activity of the recovered, which one would want to boost with a linear matching
technology.

4For an environment where interactions are critical, see Diamond (1982). One can imagine reasons why
the marginal utility of social activity is increasing or decreasing in the social activity of others.
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but also between all other groups. For instance, the recovered can optimally choose Ar(t)

without fear of infection; and susceptible individuals meet one another without consequences.

Our social matching function allows these interactions to happen, but they do not affect the

number of interactions where the disease gets transmitted.

Note that only As(t) and Ai(t) affect disease transmission. Also note our assumption

that individuals do not know whether they are susceptible or infected. We thus impose

the measurability restriction that As(t) = Ai(t) and use A(t) to denote this common level

of social activity. The expected number of others in contact with an infected individual

during the time she is infected is βA(t)2/γ. In a population in which individuals do not

change their behavior in response to the disease A(t) = a∗ = 1, e.g. when the disease first

emerged. Therefore the basic reproduction number R0, defined as the expected number

of others infected by an infected individual in a population where everyone is susceptible,

is R0 = β/γ. We also define the effective reproduction number, the expected number of

others infected by an infected individual, given the current level of social activity A(t) and

the current fraction of susceptible people Ns(t). This number is Re(t) = βA(t)2Ns(t)/γ.

Reductions in social activity drive the ratio of the effective reproduction number to the

fraction of susceptible people, Re(t)/Ns(t) below the basic reproduction number R0, which

is a primitive of the environment.

5 Laissez-faire Equilibrium

In this section, we consider the problem of an individual who is either susceptible or infected

choosing his own rate of social activity, taking the number and social activity of other infected

people as given. We then impose the equilibrium restriction that individual outcomes must

coincide with the aggregate.

An individual has rational beliefs about his own probabilities of being susceptible, in-

fected, and recovered, which we denote by ns(t), ni(t), and nr(t), respectively. The individ-

ual knows when he is recovered but cannot distinguish between the susceptible and infected

states. He thus chooses two time paths for social activity, a(t) when he is susceptible or

infected and ar(t) when he is recovered. Finally, the individual discounts future utility at

rate ρ and recognizes that the problem ends at rate δ when a cure is found. Putting this

together, the individual solves

max
{a(t),ar(t)}

∫ ∞
0

e−(ρ+δ)t
(
(ns(t) + ni(t))u(a(t)) + nr(t)u(ar(t))− γni(t)κ(Ni(t))

)
dt (5)
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subject to

n′s(t) = −βa(t)ns(t)A(t)Ni(t)

n′i(t) = βa(t)ns(t)A(t)Ni(t)− γni(t)

n′r(t) = (1− π(Ni(t)))γni(t)

with ns(0) = Ns(0), ni(0) = Ni(0), and nr(0) = Nr(0) given. The laws of motions reflect

that the individual takes the time path of everyone else’s choice A(t) and the associated

aggregate infection rate Ni(t) as given. However, the individual’s past choices of a(t) affects

his probability of being in each of the states.

To solve the individual’s problem, first note that ar(t) affects the objective but none of

the constraints. It is thus optimal to set ar(t) = a∗ = 1 and then u(ar(t)) = 0 for all t.

Dropping this control variable and the unnecessary third constraint, write the current value

Hamiltonian as

H(ns(t), ni(t), a(t), λs(t), λi(t)) = (ns(t) + ni(t))u(a(t))− γni(t)κ(Ni(t))

− λs(t)βa(t)ns(t)A(t)Ni(t) + λi(t)
(
βa(t)ns(t)A(t)Ni(t)− γni(t)

)
,

where λs(t) and λi(t) are the co-state variables associated with the two remaining constraints.

There are three necessary first order conditions for optimal control. First, the derivative

of the Hamiltonian with respect to the control variable a(t) is zero:

(ns(t) + ni(t))u
′(a(t)) = (λs(t)− λi(t))βns(t)A(t)Ni(t). (6)

This static first order condition balances the returns from social activity and the risk of get-

ting infected. Second and third, the derivatives with respect to the state variables ns(t) and

ni(t) are equal to minus the time derivative of the costate, with a correction for discounting:

(ρ+ δ)λs(t)− λ′s(t) = u(a(t)) + (λi(t)− λs(t))βa(t)A(t)Ni(t), (7)

(ρ+ δ)λi(t)− λ′i(t) = u(a(t))− γ
(
κ(Ni(t)) + λi(t)

)
. (8)

There are two more necessary conditions for optimality, the transversality conditions

lim
t→∞

e−(ρ+δ)tλs(t)ns(t) = lim
t→∞

e−(ρ+δ)tλi(t)ni(t) = 0. (9)

Equilibrium requires that individual and aggregate behaviors are consistent at every

point in time, ns(t) = Ns(t), ni(t) = Ni(t), and a(t) = A(t) for all t > 0. Imposing those
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restrictions gives us a system of four differential equations and one static equation. Together

with initial conditions for Ns(0) and Ni(0) and the transversality conditions (9), these fully

summarize the model:

N ′s(t) = −βA(t)2Ns(t)Ni(t)

N ′i(t) = βA(t)2Ns(t)Ni(t)− γNi(t)

(ρ+ δ)λs(t)− λ′s(t) = u(A(t)) + (λi(t)− λs(t))βA(t)2Ni(t),

(ρ+ δ)λi(t)− λ′i(t) = u(A(t))− γ
(
κ(Ni(t)) + λi(t)

)
,

(Ns(t) +Ni(t))u
′(A(t)) = (λs(t)− λi(t))βA(t)Ns(t)Ni(t).

The first two differential equations impose As(t) = Ai(t) = A(t) on the aggregate relation-

ships (1) and (2). The last three equations correspond to equations (7), (8), and (6) with

a(t) = A(t), ni(t) = Ni(t), and ns(t) = Ns(t).

We solve this model through a backward shooting algorithm. Fix λs(T ) and λi(T ) at

their asymptotic values at some faraway date T , but make Ni(T ) slightly positive. Then

search for the value of Ns(T ) that achieves a desired initial condition for Ns and Ni at a

much earlier date. In practice, we can find the equilibrium in a few seconds.

6 Social Optimum

We now solve the problem faced by a benevolent social planner who dictates the time path of

social activity A(t) and Ar(t). The planner, like the individual, recognizes that a reduction

in contacts lowers utility directly, but she also recognizes the externalities associated with

illness. We show that this gives rise to a system of four ODEs which very closely resemble

the ODEs shaping equilibrium we just discussed.

6.1 Planner’s Problem

The planner solves

max
{A(t),Ar(t)}

∫ ∞
0

e−(ρ+δ)t
(
(Ns(t) +Ni(t))u(A(t)) +Nr(t)u(Ar(t))− γNi(t)κ(Ni(t))

)
dt (10)

subject to equations (1)–(3). As in equilibrium, it is optimal to set Ar(t) = a∗ = 1 and so

u(Ar(t)) = 0 for all t, since this does not affect the evolution of the state variables. Then
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the Hamiltonian is

H(Ns(t), Ni(t), A(t), As(t), Ai(t)) = (Ns(t) +Ni(t))u(A(t))− γNi(t)κ(Ni(t))

− µs(t)βA(t)2Ns(t)Ni(t) + µi(t)
(
βA(t)2Ns(t)Ni(t)− γNi(t)

)
.

The necessary first order condition with respect to the control A is

(Ns(t) +Ni(t))u
′(A(t)) = 2(µs(t)− µi(t))βA(t)Ni(t)Ns(t), (11)

while the necessary costate equations are

(ρ+ δ)µs(t)− µ′s(t) = u(A(t)) + (µi(t)− µs(t))βA(t)2Ni(t), (12)

(ρ+ δ)µi(t)− µ′i(t) = u(A(t))− γ
(
κ(Ni(t)) +Ni(t)κ

′(Ni(t)) + µi(t)
)

+ (µi(t)− µs(t))βA(t)2Ns(t). (13)

Finally, the planner also has necessary tranversality conditions

lim
t→∞

e−(ρ+δ)tµs(t)Ns(t) = lim
t→∞

e−(ρ+δ)tµi(t)Ni(t) = 0. (14)

There are a few key differences between the first order conditions in the equilibrium and

optimum problem. First, the planner recognizes that raising A(t) increases meetings at rate

proportional to 2A(t), while in equilibrium raising a(t) increases meetings at rate propor-

tional to A(t). This creates an extra factor of 2 in equation (11) compared to equation (6).

Second, the planner recognizes the health care externality, that the cost of being sick may

depend on how many people are sick Ni(t). This is the additional term involving the deriva-

tive of the cost function κ in equation (13) compared to equation (8). Third, the planner

recognizes that sick people get other people sick, while in equilibrium individuals do not care

about this outcome. This shows up as the last term in equation (13).

As usual, the aggregate state still satisfies

N ′s(t) = −βA(t)2Ns(t)Ni(t)

N ′i(t) = βA(t)2Ns(t)Ni(t)− γNi(t)

Thus we again have a system of four differential equations and one static equation. We again

solve it using a backward shooting algorithm, searching for the terminal value of Ns(T ) for

given Ni(T ).

Before we put numbers into the model, we briefly discuss how a model with altruism can
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encompass both laissez-faire and optimum.

6.2 Perfect and Imperfect Altruism

In the laissez-faire equilibrium, people only care about their own health. In reality, diseases

are often transmitted to family and friends, and so it seems plausible that many people

would like to reduce the risk of transmitting the disease, not just the chance of getting it.

We capture this through a model of imperfect altruism, indexed by an altruism parameter

α ∈ [0, 1]. At one extreme, α = 0, individuals would not socially distance if they knew they

were sick. This is the laissez-faire equilibrium. At the other extreme, α = 1, individuals fully

internalize the cost of making others sick, except for any possible congestion in the health

care system. We show that this is the social optimum when κ is constant.

To illustrate this, we modify the individual objective function to assume individual are

concerned about making others sick:

max
{a(t),ar(t)}

∫ ∞
0

e−(ρ+δ)t
(
(ns(t) + ni(t))u(a(t)) + nr(t)u(ar(t))

− γni(t)κ(Ni(t)) + αβa(t)ni(t)A(t)Ns(t)(λi(t)− λs(t))
)
dt.

The new piece is the last term. When an individual infects a susceptible person, at rate

βa(t)ni(t)A(t)Ns(t), she suffers a utility loss equal to a fraction α of the difference λi(t) −
λs(t), where again λj(t) is the costate variable on nj(t), j ∈ {s, i}. In words, this difference

represents the private cost of getting sick.

With this modification to the objective function, we can again write down the Hamilto-

nian and find the optimality and costate equations:

(
ns(t) + ni(t)

)
u′(a(t)) = βA(t)

(
λs(t)− λi(t)

)(
ns(t)Ni(t) + αni(t)Ns(t)

)
(ρ+ δ)λs(t)− λ′s(t) = u(a(t)) + βa(t)A(t)Ni(t)

(
λi(t)− λs(t)

)
(ρ+ δ)λi(t)− λ′i(t) = u(a(t))− γ

(
κ(Ni(t)) + λi(t)

)
+ αβa(t)A(t)Ns(t)

(
λi(t)− λs(t)

)
.

As usual for equilibrium, we then impose the conditions a(t) = A(t), ns(t) = Ns(t), and

ni(t) = Ni(t). If α = 0, this returns the equilibrium equations. If α = 1 and κ is constant,

this returns the equations describing the dynamics of the planner’s solution. Intermediate

values of α capture a degree of imperfect altruism.

In this formulation, we note one natural limit of altruism: We think it is unlikely that

individuals view their own behavior as having an impact on the total number of infected

people Ni(t) and hence on the risk of death captured by κ. This is really an aggregate
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outcome, in contrast to the possibility that one person’s social activity makes someone else

sick, which an individual is more likely to believe that she can control.

7 Quantitative Exercises

7.1 Calibration

We calibrate the model at a daily frequency to US data on the 2020 Covid-19 outbreak.

We offer some robustness with regard to the most important choices made in this section in

Section 8.

To begin with, we set ρ = 0.05/365 to capture a 5% annual discount rate. In addition, we

set δ = 0.67/365, which implies an expected duration at which a cure is found of 1.5 years.

We highlight that this jointly implies a model of heavy discounting relative to a standard

economic model.

Next, we set γ = 1/7 such that the expected length of sickness lasts 1 week. We recognize

that the average disease lasts longer, but it appears that few people are infectious and

asymptomatic for longer than a week. Lauer et al. (2020) report a median incubation period

for COVID-19 of five days and that 98% of people who develop symptoms after an exposure

do so within 11.5 days. Below, we offer some robustness with regard to this choice.

We calibrate β for the model to capture data on the doubling time at the onset of the

Covid-19 outbreak. Specifically, we target an initial daily growth rate of the stock of infected

equal to 30%, consistent with a doubling time of approximately 3 days.5 From (2), we have

that
N ′

i(0)

Ni(0)
= β − γ, giving β = 0.3 + γ = 0.443. This implies a basic reproduction number

of R0 = β
γ

= 3.1. Since there appears to be considerable uncertainty and disagreement

about the value of R0 we note that this strategy of backing out its value only relies on the

expected duration of infectivity and aggregate data on doubling time in the early stages,

two numbers that appear to be relatively well understood. However, some recent estimates

suggest a higher value for R0 and several authors work with a lower γ. We therefore offer

a robustness exercise below where we use a higher value of R0 and a correspondingly lower

value of γ, while still hitting the initial 30% daily growth rate.

We work with the following period utility function,

u(a) = log a− a+ 1. (15)

We think of the first part as the gross returns from social activity, in particular consumption,

5JHU’s Center for Systems Science and Engineering reports a doubling time of 2–5 days in the US in the
very early stages of the epidemic (Dong, Du and Gardner, 2020).
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and of the second part as the cost associated with it. This gives an interior solution at a∗ = 1

in a disease-free environment, with u(1) = 0.

We now turn to the cost of disease. We assume that the infection mortality rate for

the disease is π = 0.002, independent of Ni(t). This is lower than many estimates of the

case mortality rate, but this smaller number is consistent with evidence that there are many

undetected cases in real-world populations. Importantly, a constant death rate shuts down

the health care externality which arises as health care deteriorates when many people are

infected. As we show below, we still find that it is optimal to delay infections and typically

optimal to avoid a high peak infection rate.

We think of the cost κ as equal to πv, where v is the value of a statistical life (VSL). We

follow Greenstone and Nigam (2020) in assuming that v =$10 Million for the US.6 Roughly

speaking, this number is based on evidence that a typical individual would pay $10,000 to

avoid a 0.1% probability of death. With a discount rate of ρ, this is equivalent to paying

a constant stream of ρ × $10, 000 to avoid this death risk, or equivalently $1.37 per day.

Compare this to US consumption per capita of approximately $45,000 per year or $123 per

day, and we reach the conclusion that people would permanently give up over 1.1 percent of

their consumption to avoid a 0.1 percent death risk.

To see how to map this into our model, ask someone with preferences (15) what fraction

x of her consumption she would be willing to give up to avoid a 0.1 percent probability of

death. If the answer is x = 0.011, then v solves

log(1)

ρ
− 0.001v =

log(1− 0.011)

ρ

This implies v = −1000 log 0.989
ρ

≈ 80, 000 in our model units. Multiplying these together gives

κ = πv = 160.

We note that this value is in the same ballpark as the one chosen in several other recent

paper on the outbreak. For instance, Alvarez, Argente and Lippi (2020) choose a five times

higher fatality rate π but a far lower VSL of $1.3 million. Similarly, Hall, Jones and Klenow

(2020) work with a VSL 50% higher than Alvarez, Argente and Lippi (2020) (and so still

far below our value) but a four-fold higher death rate which implies a very similar value of

κ. Finally, Eichenbaum et al. (2020) pick a VSL of $9.3 million and a fatality rate of 0.5

percent, which implies a two fold higher κ. We offer a robustness exercise below where we

consider doubling κ to reflect a higher infected fatality rate or a higher VSL.

Finally, we assume that initially Ni(0) = 10−6. Prior to date 0, we assume A(t) = a∗ = 1,

6See Greenstone and Nigam (2020) for a useful discussion of this value and the use of VSL in calculations
such as ours.
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so the disease grew without any response in social activity. From a very low initial prevalence,

this implies that approximately Ni(0)/(R0 − 1) individuals have recovered or died by date

0, leaving the remaining 0.9999985 individuals susceptible.

We summarize our calibration strategy in Table 1.

Parameters

Parameter Description Parameter Value Target

Conditional transmission prob. β 0.3 + γ Initial doubling time
Rate at which illness ends γ 1/7 Duration until symptomatic
Cost of infection κ 160 Death rate and VSL
Arrival rate of cure δ 0.67/365 Exp. time until vaccine/cure
Discounting ρ 0.05/365 Annual discount rate
Fraction initially affected Ni(0) 10−6

Other

Basic reproduction number R0 3.1 Implied by γ and β
Fraction initially susceptible Ns(0) 0.9999985 no social distancing before t = 0

Notes: We calibrate the model at a daily frequency.

Table 1: Calibration

7.2 Results

We next turn to our quantitative results. As a simple benchmark, we begin with the basic

SIRD model and then turn to laissez-faire equilibrium and the social optimum.

7.2.1 Basic SIRD Model

Figure 3 plots the dynamics of the pandemic in the SIRD model, that is without any be-

havioral response, A(t) = a∗ = 1, under the assumption that a cure is not found. The top

panel shows the share of people susceptible in levels. The bottom panel shows the share

infected on a log scale. The pandemic unfolds rapidly even though only one out of one mil-

lion individuals is initially infected. After several weeks, a sizable share of the population is

infected. The infection rate peaks after seven weeks above 31 percent. As a consequence of

the height of the peak, the benefits of herd immunity do not kick in before almost everyone

is sick. By 14 weeks into the infection, only 5.3 percent of the population remains susceptible

and 0.19% of the population has died, more than 600,000 people in a country the size of the

United States. Although the pandemic ends quickly, the cost of the disease is substantial.
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Notes: We set A(t) to its optimal level absent disease, a∗ = 1 and use equations (1) and (2).

Figure 3: Basic SIRD Model.

Measured in utility units, it is −136.6, equivalent to a permanent reduction in social activity

to a = 0.819.

Of course, this model completely fails to capture the experience in places that did not

institute any restrictions on social activity. For instance, Sweden hit 1040 total cases on

March 15, 2020.7 One month later, this number rose By mid April, this number had risen

to about 11,927 confirmed cases despite the laissez-faire approach taken by the Swedish

government. In contrast, our calibrated SIRD model predicts an increase by a factor of

e0.3×30, or more than 8000-fold, during this period. Likewise, the SafeGraph micro-data

document a remarkably uniform decline in individual social activity. The fact that this

decline happened across the board in the US despite the large differences in policies also

suggests that the basic SIRD model fails to capture a key aspect of this epidemic, namely

that individual behavior responds to the risk of infection.

7.2.2 Laissez-Faire Equilibrium

We thus next turn to the disease dynamics in our laissez-faire equilibrium, which are depicted

in Figure 4.8 The top two panels again depict the share of susceptible and infected. The

7Retrieved from https://www.worldometers.info/coronavirus/country/sweden/.
8Note that all the figures are conditional on no cure having been found.
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difference between laissez-faire and the basic SIRD model is stark. Despite the government

not intervening at all, the peak infection rate is one tenth of the level in the SIRD model, 3.5

percent. In turn, the response of individual behavior substantially prolongs the epidemic,

with the infection rate staying elevated for a much longer time, albeit at a lower level. This

implies that the population reaches herd immunity at a far lower level of Ni, compared with

the SIRD model. Taking into account the possibility of a cure, in expectation just under 50

percent of people eventually get sick. Thus the expected death rate is about half as high as

in the model without a behavioral response.

The third panel shows that individuals reduce their social activity by as much as 40

percent. The fourth panel depicts the ratio of the effective reproduction number to the

fraction of susceptible people, Re(t)/Ns(t) on a double log scale.9 Recall that this is the

number of newly infected individuals for each infected person which would prevail if everyone

were susceptible for a given level of social activity A(t). This falls substantially, driving

down the doubling time for the disease, but remains strictly above 1. As a consequence,

the fact that Ni eventually starts falling is a consequence of the stock of susceptible people

becoming smaller. Putting this together, the total welfare loss in equilibrium is equivalent

to a permanent reduction in social activity to A = 0.854.

We note that the dynamics of social activity, A, under laissez-faire mirrors the behavior

of Ni. The reason is simply that there is little private incentives to lower social activity when

the risk of individual infection is negligible. As a consequence, individuals do not restrict

activity until infections are rampant.

Taken together, the internalized part of the disease risk substantially delays the “wave,”

lowers the peak infection rate, and slows infections to an extent that allows the population

to achieve a higher asymptotic susceptible share. In fact, as we show next, the laissez-faire

equilibrium dynamics are closer to the optimal dynamics than to the SIRD model. This

suggests that explicitly modeling the internalized dimension of disease outbreak is of first

order importance.

7.2.3 Optimal Policy

Figure 5 contrasts the laissez-faire with the optimal policy. Reflecting the external effects

of social activity, the key property of the optimal policy is delay. While peak infection in

the SIRD model occur after 49 days and the equilibrium behavioral response delays the

peak until 62 days have lapsed, the optimal policy delays it for 341 days. Because infections

increase more slowly, the peak level of infection is also far lower under the optimal policy,

9On a double log scale, the vertical distance between two points y1 and y2 is proportional log(log y1) −
log(log y2).
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Figure 4: Laissez-Faire equilibrium.
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at 0.28 percent. We stress that this strong desire to “flatten the curve” is true in a model

without any explicit cost of peak-loading of infection rates, i.e. where κ is constant. A health

care externality would make the case for flattening the curve even stronger.

An optimal policy buys time for a cure. Asymptotically, a bit more than 1−γ/β = 0.677

of the population will eventually get sick, assuming a cure is never developed. This reflects

the fact that activity will optimally asymptote back to a∗. Taking into account the possibility

of a cure, however, reduces that to just 8.4 percent. Thus the expected death rate is one-sixth

as large under the optimal policy as in equilibrium. The resulting welfare loss is equivalent to

a permanent reduction in social activity to A = 0.907, significantly less than the equilibrium

reduction to 0.854. The welfare cost is also well below the cost of permanently suppressing

the disease by setting Re(t) = Ns(t), i.e. by setting A =
√
γ/β = 0.568 until a cure is

found. The welfare cost of this policy is equivalent to permanently reducing social activity

to A = 0.870.

The optimal policy achieves delay by acting preemptively. The third panel in Figure 5

shows the degree of social distancing in laissez-faire and optimum. At the outbreak of

the disease, equilibrium behavior does not change because the risk of individual infection

is negligible. Optimal policy, however, immediately curtails social activity. The planner

recognizes that lowering the initial transmission rate buys time. In particular, the bottom

panel shows that the ratio of the effective reproduction number to the share of susceptible

individuals Re(t)/Ns(t) is far below its uncurtailed counterpart R0 (which corresponds to the

intercept of the laissez-faire time path). Even if a full outbreak is eventually inevitable, the

social gains from immediate social distancing are of first order because of discounting and

because of the hope for a cure. The cost, however, are of second order, since u′(a∗) = 0.10

Despite the initial reduction in social activity, a remarkable feature of the optimal policy

is that social distancing is never extremely intense. The planner could, of course, push the

effective reproduction number Re(t) below the share of susceptible people Ns(t), ending the

disease, but he never chooses to do so, instead choosing values slightly above Ns(t). While

the stock of infected people Ni(t) eventually starts declining under the optimal policy, this is

a consequence of the fact that the stock of susceptible people Ns(t) falls substantially below

1, combined with a limited reduction in social activity A(t).

To gain some intuition for this observation, we note that social activity eventually needs

to return to its pre-pandemic level. The reason is that under any feasible policy, the share

of infected individuals must converge to zero.11 If A(t) were converging to a number smaller

10In contrast, Alvarez, Argente and Lippi (2020) assume the economy without disease is in a corner and
so reductions in social activity, lockdowns in their words, have a first order cost.

11Formally, we have that the sum of the number of recovered and deceased people evolve as (N ′r(t) +
N ′d(t)) = γNi(t) (equations 3 and 3). Since Nr(t) +Nd(t) is bounded above by 1, their sum must converge,
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Figure 5: Optimal Policy vs Laissez-Faire.
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than a∗ = 1, there would be a first order gain from a temporary and small increase in A, while

the cost would be negligible if Ni(t) is sufficiently small. Thus long-runs social distancing

cannot be optimal.

Now suppose we suppress Re(t) below Ns(t) at some early time t. Doing this for a while

will reduce the infection rate to a negligible share of the population. But since the number

of infected people never reaches zero, any attempt to relax social distancing will quickly lead

to a reemergence of the disease, quickly undoing the effect of keeping Re(t) below Ns(t).

Thus setting Re(t) below Ns(t) only makes sense if the intent is to keep this policy in place

forever. But we have just argued that this is not optimal.

Finally, we discuss the shape of the recovery. We note that, under laissez-faire, social

activity is almost back to its pre-pandemic level after 2 years. This is not the case under

the optimal solution, which curtails activity for decades or until a cure is found. That is

the flip-side of delay: The optimal solution delays in the hope of finding a cure. If no cure

is found, herd immunity only builds very slowly and so restrictions on social activity must

persist far longer than under laissez-faire. These restrictions do disappear eventually, with

Re(t)/Ns(t) converging to R0 as the level of the susceptible population falls slightly below

1/R0.

Overall, an important observation is that the planner achieves a delay in infections over

the first year of the pandemic without completely locking down the economy. The key instead

is an early and long-lasting reduction in social activity that is moderate in magnitude.

7.3 Revisiting the Evidence on Change in Individual Behavior

We briefly re-visit the quantitative evidence from SafeGraph from section 3. We note that

none of the targets we chose in calibrating our model were actually related to the response

of social activity to the Covid-19 outbreak. We do not take a stance on whether the hastily

implemented lockdowns and mobility restrictions are close to the social optimum. But we

believe that the response in individual behavior witnessed prior to implementation of any

policy measures should be picked up by the laissez-faire equilibrium.

Figures 1 and 2 show a decline of some 25-50% in terms of activity across our three

different metrics. We note that these metrics all have an inherent cardinality and so their

decline is quantitatively meaningful. This is well captured by our laissez-faire model which

suggests a decline of individual activity by 40% as can be seen in Figure 5.

Furthermore, we note that the model also captures the pace of the decline surprisingly

well. In the model, equilibrium social activity declines form 98% on day 20 to 63% on day

which requires Ni(t) converges to zero.
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51. The contraction in the SafeGuard data was even faster. For example, Figure 1 shows

that POI visits fell from 98 percent on March 11 to 45 percent on March 20 as state and

local governments started to issue stay-at-home and shelter-in-place orders. The difference

might reflect a delayed understanding of the seriousness of the disease.

We complement this analysis with an exploration of aggregate data available from Google

at https://www.google.com/covid19/mobility/ for Sweden. This data uses Google’s location

history to track mobility along various dimensions relative to a baseline. Sweden has arguably

been the Western country with the least restrictions on mobility and social activity through-

out March 2020. The Swedish data currently cover the time period from February 23 to

April 5.

We restrict attention to the categories “Retail & recreation,” “Transit Stations,” and

“Workplace”. The data suggest a reduction of activity of about 25%, 39%, and 28% for

these three categories, respectively. This suggests that Swedes indeed internalize parts of

the risk associated with the disease and therefore reduced activity, in line with our model.

Like the US micro-data presented in section 3, the data squares up well with the laissez-faire

dynamics under our preferred model calibration, both in terms of the size and pace of the

decline.

We also note that we could have directly targeted this type of data in our calibration, in

particular to select a value for κ. That is, a natural approach would be to let the individual

response in behavior “reveal” the perceived cost of infection instead of relying on controversial

and noisy direct measures of the infection mortality rate, π, and the value of a statistical

life, v. However, as we show below, the responsiveness of the time path of A(t) to variation

in κ ≡ πv is limited and so we have opted with the direct measures. Nonetheless, we

believe that the response of behavior absent policy intervention can be a useful source of

information to reveal perceptions given the current level of uncertainty surrounding many

key parameters.

8 Robustness

In this section, we show the laissez-faire and optimal dynamics given perturbations to various

parameters. Given the large uncertainty around many of the key modeling parameters we

consider fairly large changes. We find that our main findings are robust to alternative

parameter choices. In particular, we find that a strong laissez-faire equilibrium reduction in

social activity; an immediate and persistent optimal reduction in social activity that only

disappears in the very long run; and with one notable exception, a limit in the extent of

social distancing such that the effective reproduction number Re(t) stays above the share of
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susceptible individuals Ns(t).

8.1 Alternative Utility Function

In Figure 6, we modify the utility function to u(a) = −1
2
(1−a)2. This leaves u(1) = u′(1) = 0

and also leaves u′′(1) unchanged. However, it implies less curvature in the utility function

and in particular that u′(0) is finite. This modification reduces the marginal value of social

activity, and so both equilibrium and optimal social activity fall with this calibration. Still,

all of our takeaway messages hold with this calibration: optimal policy has an immediate

and sustained reduction in social activity, although the extent of it is limited and so the

effective reproduction number remains above the share of susceptible individuals.

8.2 Cost of Disease

This subsection shows the results for κ = 320, that is we double our baseline parameter value

of the expected cost of infection. For instance, this can be viewed as capturing a death rate

of π = 0.004 (compared with π = 0.002 in the baseline). We show the resulting dynamics

for optimum and laissez-faire in Figure 7.

Doubling the cost of infection cuts the peak equilibrium infection rate by more than half,

from 3.3 percent to 1.5 percent. The peak optimal infection rate declines by a larger percent,

although from a very low level of 0.276 percent to a negligible 0.014 percent. The optimal

policy delays a sizable outbreak for an extremely long time, effectively until a cure has been

found with very high probability. It does so by initially reducing social activity and then

continuing to suppress it to a level with Re(t) just above Ns(t) for decades. While not visible

in the figure, social activity is eventually allowed to return to normal and a fraction less than

γ/β of individuals remain disease free. We note of course that all of this again is conditional

on no cure being found, an exceedingly unlikely scenario.

8.3 Higher Duration of Infectivity and Higher R0

Some authors use a considerably longer duration of infectivity 1
γ
. For instance, Hall, Jones

and Klenow (2020) set γ = 1
18

. We follow them here but maintain the target of a 30 percent

daily growth rate in a world without social distancing. We therefore adjust β = 0.3 + 1
18

.

This gives a substantially higher basic reproduction number of R0 = 6.4.

We report the corresponding results in Figure 8. This has qualitatively little impact

on the results, but there are significant quantitative differences. Most noticeably, with a

much higher basic reproduction number, social distancing is less effective at reducing the
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Notes: See Table 1 for calibration. Only change: We assume the utility from social activity is u(a) =
− 1

2 (1− a)2. Dashed lines show the baseline calibration. The second plot is drawn on a log scale and the
fourth plot on a double log scale.

Figure 6: Optimal Policy vs Laissez-Faire with quadratic utility.
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Notes: See Table 1 for calibration. Only change: We set κ = 320 instead of κ = 160. Dashed lines show
the baseline calibration. The second plot is drawn on a log scale and the fourth plot on a double log
scale.

Figure 7: Optimal Policy vs Laissez-Faire with high cost of infection.
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infection rate. The peak infection rate in equilibrium is substantially elevated. Even more

noticeably, optimal policy now allows for a substantial wave of infections, since the cost of

suppressing it is prohibitive. Conversely, both equilibrium and optimal policy see an even

larger contraction of social activity. In either case, optimal policy still keeps Re(t) > Ns(t),

as before.

8.4 Lower Cure Probability

We have so far assumed that the expected time until a cure is 1.5 years. Figure 9 shows

what happens if we double this to 3 years. The laissez-faire equilibrium dynamics are ef-

fectively the same, reflecting the fact that individuals are insensitive to the discount rate,

and difficulties in finding a cure are equivalent to a reduction in discounting. The dynamics

of the disease, however, differ sharply under the optimal policy. In particular, the planner

allows a substantial wave of infections to occur, so the expected number of sick (and hence

fatalities) rises much more quickly. This reflects a reduction in the benefits of delay.

Still, the path of optimal policy does not change qualitatively. Immediate and long-lasting

social distancing is optimal, only briefly interrupted by a more severe constraint on activity—

still with Re(t) > Ns(t)—at the peak of the infection. In particular, social distancing lasts

even once it appears that the share of susceptible people has reached a plateau.

8.5 Stock of Initially Infected

We have experimented with the stock of the initially infected for several reasons. First, one

might think that as the fraction of initially infected individuals becomes exceedingly small

one of our key policy lessons—that the optimal policy immediately curtails social activity

to buy time—no longer holds. This is indeed true in the limit: For Ni(0) small enough the

expected uncurtailed outbreak date is so far in the future that the (social) gains from social

distancing must vanish. However, suppose we start with Ni(0) = 1/7·109, i.e. patient zero, a

natural lower bound on the initial seed. With β − γ = 0.3, in just 30 days Ni(t) exceeds

10−6 if there is no social distancing. The delay motive we have appealed to above therefore

remains quantitatively powerful.

Second, we have also substantially increased Ni(0) up to 1 percent. This could for

instance capture the situation in places where the Covid-19 appeared first, or it could capture

the situation in places where the initial policy response was botched or individuals did

not respond because of, say, false information. We plot the corresponding time paths for

equilibrium and optimum in Figure 10.
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Notes: See Table 1 for calibration. Only change: We set γ = 0.056 (instead of γ = 0.143) and β = 0.356
such that R0 = 6.4 (instead of 3.1). Dashed lines show the baseline calibration. The second plot is
drawn on a log scale and the fourth plot on a double log scale.

Figure 8: Optimal Policy vs Laissez-Faire with long duration of infectivity.
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Notes: See Table 1 for calibration. Only change: We set δ = 0.33
365 (instead of 0.67

365 ). Dashed lines show
the baseline calibration. The second plot is drawn on a log scale and the fourth plot on a double log
scale.

Figure 9: Optimal Policy vs Laissez-Faire with low probability of cure.

31



The qualitative patterns are largely unchanged but the optimal policy acts more aggres-

sively. An important observation, shown in the bottom panel of the figure, is that in this

case optimal policy suppresses social activity for the first 67 days to such an extent that

Re(t) falls below Ns(t); this cannot be shown on the double log scale. As a consequence of

the high initial stock of infections, the planner has less room to delay the wave of infections

and so drives down the stock of infections from the outset. Nonetheless, optimal policy

monotonically relaxes social distancing, ultimately relying on a reduction in the share of

susceptible individuals for the continued decline in infections. The equilibrium time path, in

turn, remains largely unchanged. Starting with more infections just shifts it ahead in time.

9 Next Steps

9.1 Heterogeneity

Several key dimensions of heterogeneity come to mind. In particular, a key feature of the

Covid-19 pandemic is the case fatality rate by age: Individuals age 65 and older seem to

have a far higher fatality rate than younger ones. At the same time, one might argue that

they have a smaller cost associated with a reduced social activity since they are primarily

retired.

We believe that our current framework can naturally and easily be extended to accom-

modate these dimensions of heterogeneity. With k types of people, we would need to solve

a system of 2k differential equations in equilibrium. Assuming a utilitarian social planner

that can separately choose the level of social activity for each type, there would be a corre-

sponding system of 2k differential equations describing the optimal policy. We are currently

working on that extension.

9.2 Antibody Tests

We have assumed that everyone knows when their infection ends. In reality, few people are

currently tested, and so many recovered people cannot be sure whether they were sick. We

can capture this by separating the recovered state into two categories, depending on whether

the individual is aware they were sick. Someone who does not know they have recovered from

Covid-19 must choose the same level of social activity as the susceptible and infected, given

their lack of information. In this environment, antibody testing may be useful for letting

recovered people know that they are recovered. This has the dual benefit of allowing those

individuals to return to a normal level of social activity and of discouraging social activity

by those who are still susceptible or infected.
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Notes: See Table 1 for calibration. Only change: We set Ni(0) = 10−2 instead of Ni(0) = 10−6. This
also reduces the initial value of Ns(0) to 0.985 instead of 0.9999985. Dashed lines show the baseline
calibration. The second plot is drawn on a log scale and the fourth plot on a double log scale.

Figure 10: Optimal Policy vs Laissez-Faire with higher stock of initially infected.
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9.3 Vaccines

We have so far assumed that at a random future date, a cure will end all costs associated

with the disease. This is an unlikely scenario. More plausible is the gradual roll-out of a

vaccine that shifts some people from susceptible to recovered without enduring an infection.

To the extent the vaccine provides imperfect coverage, even a 100 percent vaccination rate

will leave some people vulnerable to future infections, and potentially slow the recovery in

social activity.

10 Conclusion

This paper uses standard dynamic optimal choice tools from economics to integrate privately

optimal behavior and policy analysis into an epidemiological model. Our quantitative exer-

cises reveal several robust patterns: Even in laissez-faire, individuals sharply reduce social

activity due to risk of infection gradually. However, an optimal policy immediately curtails

social activity immediately and delays the full outbreak to buy time. But even the optimal

policy lets the disease eventually run its course: If no cure is found a large number of people

eventually get infected. The framework we develop is general and tractable: Optimal be-

havior and policy are encoded in an additional set of differential equations that can jointly

be solved with the epidemiological block. We therefore view the tools offered here as a nat-

ural building block to explore the role of various additional features of Covid-19 and their

interplay with optimal policy.
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