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ABSTRACT

A key issue for the ongoing COVID-19 pandemic is whether non-pharmaceutical public-health 
interventions (NPIs) retard death rates. Good information about these effects comes from flu-
related excess deaths in large U.S. cities during the second wave of the Great Influenza 
Pandemic, September 1918-February 1919. NPIs, as measured by an extension of Markel, et al. 
(2007), are in three categories: school closings, prohibitions on public gatherings, and quarantine/
isolation. Although an increase in NPIs flattened the curve in the sense of reducing the ratio of 
peak to average death rates, the estimated effect on overall deaths is small and statistically 
insignificant. One possibility is that the NPIs were not more successful in curtailing overall 
mortality because the average duration of each type of NPI was only around one month. Another 
possibility is that NPIs mainly delay deaths rather than eliminating them.
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The mortality experienced during the Great Influenza Pandemic of 1918-1920 likely 

provides the best historical information on the plausible upper found for outcomes under the 

ongoing coronavirus (COVID-19) pandemic.  Barro, Ursúa, and Weng (2020) compiled and 

discussed the cross-country data on flu-related deaths during the Great Influenza Pandemic.  

Based on information for 48 countries, that study found that the Pandemic killed around 40 

million people, 2.1 percent of the world’s population.  When applied to current population, the 

corresponding number of deaths is 150 million. 

An important issue is how public-health interventions, such as those being implemented 

currently in U.S. states and most countries for the ongoing coronavirus pandemic, affect 

mortality.  A difficulty in isolating causal effects of NPIs in the current environment is reverse 

causality; for example, U.S. state and city governments clearly react to numbers on mortality, 

hospitalizations, and cases by adjusting the extent of interventions.  Specifically, when the extent 

of disease increases, governments are more likely to close their economies, and vice versa.  

Although reasonable from the perspective of desirable policy, this endogenous reaction makes it 

difficult to assess the effects of the NPIs.  For scientific purposes, the ideal setting would be 

controlled experiments, whereby NPIs were adjusted randomly across governmental 

jurisdictions.  This kind of experimentation does not exist today or during the Great Influenza 

Pandemic.  But the nature of the evolution of the Great Influenza across U.S. cities offers the 

potential to use instrumental variables to assess the causal effects of NPIs on death rates. 

 

I. Non-Pharmaceutical Interventions and Flu-Related Death Rates 

 Epidemiologists, notably Markel, et al. (2007); Hatchett, Mecher, and Lipsitch (2007); 

and Bootsma and Ferguson (2007), have studied effects of non-pharmaceutical public-health 
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interventions (NPIs) on flu-related excess deaths in large U.S. cities over the 24-week period 

corresponding to the peak of the Great Influenza Pandemic, September 1918-February 1919.  

Subsequently, I use the label “the epidemiologists” to refer to this trio of authors.  The weekly 

data on flu-related excess death rates come from U.S. Census Bureau, Weekly Health Index, 

reproduced in Collins, et al. (1930, Appendix, Table B).  Continuous weekly data over the study 

period are available for 45 of the 50 largest U.S. cities, where this group of 50 corresponds to a 

central-city population in the 1910 U.S. Census of at least 100,000.1  Monthly data on flu-related 

excess deaths are available for these cities back to 1910 (Collins, Appendix Table A). 

 The extensive research by Markel, et al. (2007, Table 1 and supplemental figures) 

involved collection of data on NPIs from September 1918 to February 1919 for 43 of the 45 

cities that have full weekly data on flu-related excess mortality.  Atlanta and Detroit were 

excluded, but the current study adds these cities to the sample.  The Markel data on NPIs were 

organized into three broad categories: school closings, prohibitions on public gatherings, and 

quarantine/isolation.2  The underlying information comes from articles in two newspapers in 

each city, along with other sources.  The main data were reported as number of days in which 

NPIs of the various types were in effect, with a focus on a variable that considers the presence of 

any type of NPI.  For example, when school closings and prohibitions on public gatherings 

prevail on the same day, the variable records two days’ worth of NPI.3  Barry (2007a, 2007b) 

raises objections to the NPI data collected by Markel, et al. (2007) for New York City, and these 

 
1The five missing cities are Bridgeport, Jersey City, Memphis, Paterson, and Scranton. 
2Hatchett, Mecher, and Lipsitch (2007) consider many more categories of NPIs but analyze only 17 of the 43 cities 
considered by  Markel, et al. (2007).  Bootsma and Ferguson (2007) studied the timing of the introduction of a set 
of NPIs in 16 cities (15 of those considered by Markel plus Atlanta).  Measures of NPIs across countries in 2020 are 
in UBS (2020).  Measures of NPIs across U.S. states and localities in 2020 are in Opportunity Insights (2020) and 
Goolsbee and Syverson (2020). 
3Correia, Luck, and Verner (2020) also use the Markel data on NPIs, focusing on how number and speed of 
implementation of NPIs impact manufacturing employment and output in U.S. cities.  Lilley, Lilley, and Rinaldi 
(2020) critique the methodology used by Correia, Luck, and Verner. 
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objections are discussed below.  Business closings, emphasized in the context of the ongoing 

coronavirus pandemic, were not implemented in broad form during the Great Influenza, although 

staggering of business hours was common.4  Likely because of the absence of substantial 

business closings, Markel, et al. (2007) did not focus on this category of NPI.  However, the 

variable for prohibitions of public gatherings includes closings of theatres, bars, entertainment 

and sporting events, and so on. 

 The present analysis considers two characteristics of each city’s flu-related excess death 

rates:  first, the overall death rate out of the total population over the full 24-week study period, 

and second, the ratio of the peak weekly death rate during the period to the average of the weekly 

death rates.  (This average equals the overall death rate divided by 24.)  A lower overall death 

rate is a reasonable gauge of the ultimate success of the NPIs.  In contrast, a lower relative peak 

implies a smoother pattern, often described as a “flattening of the curve,” which can be desirable 

from the standpoint of easing burdens on the healthcare system, possibly leading thereby to 

fewer deaths.  However, for a given overall death rate (and a given initial death rate, which is 

typically close to zero), if an NPI lowers the relative peak, the implication is that the intervention 

delays deaths but does not ultimately avoid them. 

 For illustrative purposes, Figure 1 shows the weekly evolution of flu-related excess death 

rates from September 1918 to February 1919 in 8 of the 45 cities studied:  Boston, New York, 

Philadelphia, Pittsburgh, Chicago, New Orleans, St. Louis, and San Francisco.  The typical 

pattern is that the excess death rate starts around zero, rises to a sharp peak, then falls rapidly and 

remains positive for several more weeks.  For example, Boston and especially Philadelphia have 

pronounced peaks in early to mid-October 1918.  Pittsburgh has a smaller peak but high death 

 
4Velde (2020, Figure 4) constructed measures of these types of restrictions on business activity for 42 cities (those 
considered by Markel plus Atlanta and Detroit, with Lowell, Milwaukee, and New Haven omitted). 
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rates over a longer period around the peak.  New York and Chicago have smaller peaks and a 

milder overall experience.  New Orleans and San Francisco show second peaks in early 1919.  

St. Louis has the mildest outcomes overall without a pronounced peak. 

 The epidemiologists used standard epidemiological models to study the dynamics of flu-

related deaths during the Great Influenza Pandemic, as illustrated by Figure 1.  The present 

analysis focuses instead on two measures of overall outcomes—the overall death rate over the 

study period (which corresponds to the areas under the curves in Figure 1) and the size of the 

peak weekly death rate, when measured relative to the average of the weekly death rates. 

 As mentioned, there is concern that NPIs—measured, say, by length of time in force—

and flu-related death rates are simultaneously determined at the level of cities.  On the one hand, 

the basic hypothesis is that more NPIs reduce death rates.  On the other hand, NPIs implemented 

by city governments are likely to respond to death rates in terms of numbers realized or 

anticipated.  The implicit assumption in the statistical analysis by the epidemiologists is that 

NPIs are determined exogenously; that is, shifts in actual or anticipated death rates do not impact 

the chosen NPIs.  Bootsma and Ferguson (p. 7592) recognize the endogeneity problem—

“Causality will never be proven, because, unsurprisingly, control measures were nearly always 

introduced as case incidence was increasing and removed after it had peaked”—but did not deal 

with it.  The present research attempts to account for the potential endogeneity of NPIs by 

employing instrumental variables. 

 Appendix Table A1 shows all of the data used for the 45 large U.S. cities in the sample.  

The variables include measures of flu-related excess death rates, measures of non-pharmaceutical 

interventions (NPIs), and other variables.  Table 1 has descriptive statistics for the variables 

detailed in Appendix Table A1. 
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II. Regression Analysis 

 In the parts of their analysis that assess overall outcomes for flu-related death rates, the 

epidemiologists rely on an array of pair-wise correlations involving NPIs, flu-related death rates, 

and other variables.  One shortcoming of this approach is that it does not account for possible 

correlations with variables outside of each pair—for example, in assessing the connection 

between NPIs and death rates, there is no consideration of the association of NPIs with other 

variables that influence mortality.  In addition, as already noted, the approach does not even 

attempt to establish causation between the two variables in each pair—is it NPIs that affect death 

rates or vice versa or both? 

 The present analysis deals with these issues by employing the multivariate-regression 

framework familiar to economists.  This analysis includes the use of instrumental variables to 

possibly isolate causal effects of NPIs on flu-related death rates. 

 

A. First-Stage Regression for NPIs 

An important consideration is that the second wave of the Great Influenza began in the 

United States by late August 1918, likely coming from Europe and then appearing around 

Boston at the army base Fort Devens and the Navy’s Commonwealth Pier facility.5  Shortly 

thereafter, sailors leaving Boston on ships spread the flu to Philadelphia and New Orleans, 

leading subsequently to spread to other places.  From this perspective, distance from Boston 

(shown in Appendix Table A1, column 10) may serve as an exogenous measure of how early the 

flu epidemic tended to reach each city in the sample.  Specifically, cities further from Boston 

typically had more time to prepare and were, therefore, more likely to react in terms of the 

 
5For a discussion, see Barry (2004, pp. 181 ff.). 
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implementation of NPIs.6   Empirically, distance from Boston, entered in a quadratic form, has 

considerable explanatory power for the NPI variable.  The pair-wide relationship between 

distance and overall NPIs, shown in Figure 2, is positive with a simple correlation coefficient 

of 0.65.  (The NPI variable is in Appendix Table A1, column 3.) 

Although distance from Boston is clearly exogenous, the distance-from-Boston variable 

might be problematic for instrumental estimation if this variable affects flu-related deaths 

directly (or is correlated with other variables that relate to these deaths).  That is, the effects of 

distance on mortality may not work solely through the channel of influencing choices of NPIs.  

This issue is taken up in subsequent discussion. 

Another possibility is that differences across cities in political structure may result in 

exogenous differences in choices of NPIs.  A clear difference in 1918 was between cities with an 

elected powerful mayor interacting with an elected city council versus the Commission form of 

government, which was first adopted in 1901 and involved the election of commissioners who 

had joint executive authority.  In these systems, the mayor, either elected or chosen by the 

commissioners, had little power.  In later years, this system was replaced particularly by the city-

manager form of municipal government, a structure that also superseded some of the strong-

mayor administrations.  In 1918, at least 14 of the 45 cities in the sample had a Commission or 

other form of government that lacked a strong mayor (including Washington DC, which was run 

by the federal government).  The largest cities in the non-mayoral group were Buffalo, Newark, 

New Orleans, and Washington DC.  In general, more densely populated cities were more likely 

to have mayoral systems in 1918. 

 
6Possibly the distance measure could be improved by using the time required to transit from Boston to a particular 
location, given the transportation technology available in 1918.  However, a measure of time required to transit 
from Boston to each city by train or boat did not improve on the explanatory power of the first-stage regression 
for explaining NPIs. 
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The underlying conjecture is that having a mayoral system, which tends to feature a high 

concentration of political power, is more likely than a system without a powerful mayor to enact 

NPIs aimed to counter the spread of the Great Influenza.  Hence, the expectation is that a dummy 

variable for the presence of a strong mayor (shown in Appendix Table A1, column 11) would 

have a positive coefficient in a first-stage regression for explaining the duration of NPIs 

implemented by each city. 

A first-stage OLS regression for NPIs across 45 cities for September 1918-February 1919  

is: 

   (1)  NPI = 0.068* + 0.202***∙(distance Boston) - 0.035**∙(distance Boston)2 + 0.045∙Mayor, 
                       (0.039)   (0.053)                                    (0.016)                                    (0.031) 
 
where R2 = 0.50, mean of dependent variable = 0.24 (years), standard error of regression = 0.093, 
standard errors of coefficients are in parentheses, and statistical significance of each coefficient 
is denoted by *** at 1%, ** at 5%, and * at 10%.  The p-value for the coefficients of the two 
distance variables jointly is 0.000. 
 
Equation (1) implies that the estimated marginal effect of distance on NPIs is positive for most of 

the sample and is roughly zero at the furthest away cities on the west coast, for which the 

distance variable is around 3 (in thousands of miles).  The estimated coefficient of the mayoral 

dummy variable is positive, as expected, but insignificantly different from zero at the 10% level. 

 Equation (1) matches up with second-stage regressions for the relative peak death rate, as 

discussed in the next section.  The F-Statistic from equation (1) for the three instrumental 

variables jointly is 13.6 (18.8 if the mayoral variable is excluded).  Hence, in accordance with 

Stock and Yogo (2005), the F-Statistics in excess of 10 indicate that the weak-instrument 

problem should not apply, so that the two-stage-least-squares estimates should be satisfactory.  

The next section also considers second-stage regressions for overall death rates, and these 

specifications include two additional explanatory variables that are regarded as exogenous: the 



9 
 

flu-related gross death rate for 1910-1916 (for the September-February period considered) and 

heating-degree days.  If these two variables are added to equation (1), the F-Statistic for the three 

instruments jointly becomes 6.4 (8.0 if the mayoral variable is excluded).  Thus, these values fall 

somewhat short of the target value of 10, and the two-stage least squares estimates may not be 

reliable. 

 

B. Second-State Regressions for Flu-Related Death Rates 

1. Effects of NPIs on overall and relative peak excess death rates.  Table 2 has 

second-stage regressions applying to the 45 U.S. cities for weeks ending from September 8, 1918 

to February 22, 1919.  The analysis considers two dependent variables: the overall excess 

flu-related death rate and the relative peak death rate (shown in Appendix Table A1, columns 1 

and 2). 

Aside from NPIs, flu-related death rates in each city likely depend on age structure and 

other demographic characteristics and would depend on the nature of healthcare facilities to the 

extent that these were effective in curbing mortality.  To take account of these effects, the 

regressions include as an explanatory variable the flu-related gross mortality rate from a prior 

period7—specifically, the median rate for 1910-1916, corresponding to the months, September-

February, used for the dependent variable.  This variable, shown in Appendix Table A1, 

column 8, is calculated from information in Collins, et al. (1930, appendix Table A).  The idea is 

that this measure would reflect city characteristics such as demographics and healthcare facilities 

to the extent that they influence flu-related deaths in general and, therefore, likely also the excess 

deaths experienced during the 1918-1919 Pandemic.  In addition, the regressions include as an 

 
7A variable of this type was used by Bootsma and Ferguson (2007, p. 7588). 
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explanatory variable a measure of a city’s weather, given by heating-degree days (Appendix 

Table A1, column 9). 

The pair-wise association between NPIs and flu-related excess death rates during the 

study period is in Figure 3.  This relationship is negative, as expected (simple correlation 

coefficient equals -0.28).  Regression results in columns 1 and 2 of Table 2 show the estimated 

effects of NPIs on the overall flu-related excess death rate.  For the OLS regression in column 1, 

the estimated coefficient on NPI is negative but insignificantly different from zero at the 10% 

level.  In the two-stage least-squares (TSLS) regression in column 2,8 the estimated coefficient 

on NPI is larger in magnitude, as would be expected with positive reverse causation between 

death rates and choices of NPIs.  However, the estimated coefficient on NPI is still 

insignificantly different from zero at the 10% level.  In terms of magnitudes, the point estimate 

of the NPI coefficient of -0.33 in column 2 means that a one-standard-deviation change in NPI 

(by 0.13 in Table 1) implies an estimated change by 0.04 in the flu-related overall death rate, 

compared to the respective mean and standard deviation of 0.52 and 0.15 (as shown in Table 1).  

Therefore, even if the point estimate of the coefficient on the NPI variable were viewed as 

reliable, only a minor part of the variations in death rates would be attributed to variations in 

NPIs. 

The estimated coefficient of the prior flu-related gross death rate is positive and 

statistically significant at the 1% level in columns 1 and 2.  As mentioned, these coefficients 

likely pick up effects from demographics and healthcare facilities.  The coefficients of heating-

degree days are negative and statistically significant at the 5% level.  These results indicate, 

 
8The instrumental variables are those shown on the right-hand side of equation (1) along with the gross flu-related 
mortality rate for the September-February months of 1910-1916 and heating-degree days. 
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surprisingly, that colder places (during fall and winter) are estimated to have significantly lower 

excess flu-related death rates.9 

The pairwise association between NPIs and the relative peak death rate is in Figure 4.  

This relationship is negative, as expected, with a simple correlation coefficient of -0.56.  

Regression results in columns 3 and 4 of Table 2 show the estimated effects of NPIs on the 

relative peak death rate. The estimated coefficients on the NPI variable in columns 3 (OLS) 

and 4 (TSLS) are negative and highly statistically significant, with the coefficient under TSLS  

notably larger in magnitude.10  Again, a higher magnitude under TSLS makes sense because a 

higher relative peak death rate would encourage the enactment of NPIs with longer duration.  In 

terms of magnitudes, the point estimate of the coefficient on the NPI variable of -8.6 in column 4 

implies that a one-standard-deviation change in NPI (by 0.13 in Table 2) implies a change in the 

relative peak death rate by 1.1, compared to the respective mean and standard deviation of 4.6 

and 1.3 (as shown in Table 2).  Hence, the variations in NPI likely account for a substantial part 

of the observed variations in relative peak death rates. 

Overall, there is clear evidence that an increase in NPIs flattens the pattern of excess flu-

related death rates, gauged by the drop in the ratio of the peak weekly death rate to the sample 

average of the weekly death rates.  This result indicates that NPIs—specifically as measured by 

Markel, et al. (2007)—do matter for flu-related mortality.  But this influence shows up far more 

in the relative peak death rate than in the overall death rate. 

Columns 5-8 of Table 2 consider the separate roles of the three types of NPIs—school 

closings, prohibitions of public gatherings, and quarantine/isolation (shown in Appendix 

 
9The simple correlation coefficient between heating-degree days and the gross flu-related mortality rate for the 
September-February months of 1910-1916 is close to zero. 
10The instrumental variables are those shown on the right-hand side of equation (1). 
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Table A1, columns 4-6).  There are insufficient instruments to allow for endogeneity of all three 

types of NPI individually.  However, it seems plausible that, while the overall duration of NPIs is 

endogenous with respect to flu-related death rates, the distribution among the three types may be 

exogenous.  Therefore, the TSLS estimation in columns 6 and 8 includes on the instrument list 

the variables used before in columns 2 and 4 along with the difference between the durations of 

the various NPIs (school closings minus prohibitions of public gatherings and school closings 

minus quarantine/isolation). 

For the overall excess flu-related death rate, the OLS results are in column 5 and the 

TSLS results in column 6.  The only significant coefficients related to NPIs are the negative ones 

on prohibitions of public gatherings.  The results in columns 5 and 6 accept the hypothesis with 

p-values of 0.16 and 0.18, respectively, that the coefficients of the three NPI variables are the 

same.  Thus, the results conform with the specification in columns 1 and 2 that the three forms of 

NPIs can be combined into a single measure that adds up the durations of the three types. 

For the relative peak death rate, the OLS results are in column 7 and the TSLS results in 

column 8.  As in columns 3 and 4, the allowance for endogeneity of overall NPIs makes a 

substantial difference, with the magnitudes of the estimated coefficients notably larger under 

TSLS (column 8) compared to those under OLS (column 7).  The results accept the hypothesis 

that the coefficients of each form of NPI are equal, with a p-value of 0.74 for OLS and 0.90 for 

TSLS.  Thus, it is again satisfactory to combine the three types of NPIs into a single additive 

form, as in columns 3 and 4. 

 

2. Effects from public-health response time.  Columns 9-12 of Table 2 consider 

another measure of how NPIs were implemented—the public-health response time or PHRT 
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constructed by Markel, et al. (2007, Table 1) and shown in Appendix Table A1, column 7.11  A 

higher PHRT indicates more delay in a city implementing the first intervention intended to retard 

flu-related deaths.  Figure 5 shows from the pair-wise relationship that the PHRT variable is 

negatively but weakly associated with distance from Boston, with a simple correlation 

coefficient of -0.20.  Thus, while being further from Boston clearly raises the number of NPIs 

employed (Figure 2), it has a weaker connection with acting quickly to install some form of NPI.  

The PHRT also has positive but small simple correlation coefficients with the overall excess 

death rate (0.17) and the relative peak death rate (0.10). 

The available instruments are insufficient to distinguish the NPI and PHRT variables—

moreover, the first-stage regression for PHRT analogous to equation (1) has an F-Statistic of 

only 1.7.  For this reason, the TSLS results shown in Table 2, columns 10 and 12, include as 

instruments the variables discussed before related to NPI along with the PHRT variable itself. 

For the overall excess death rate, when the PHRT variable is included in columns 9 

and 10, the only significant coefficient related to NPIs is the positive one on PHRT in the OLS 

estimation (column 9).  A positive value here means that a longer delay in implementing some 

form of intervention leads to a higher overall death rate.  However, in column 9, the coefficient 

on NPI and the coefficients for NPI and PHRT jointly differ insignificantly from zero at the 10% 

level.  In the instrumental estimation (column 10), none of the NPI related coefficients differ 

significantly from zero at the 10% level.  Thus, the inclusion of the PHRT variable still does not 

provide much statistical support for the hypothesis that non-pharmaceutical interventions matter 

 
11The Markel definition of PHRT is the days between the date when the flu-related excess death rate reached twice 
a baseline death rate and the (usually later) date of the first non-pharmaceutical intervention.  Their baseline 
corresponded to the date at which the excess flu-related death rate equaled twice the average gross flu-related 
death rate for 1910-1916. 
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for overall mortality rates.  These weak statistical findings run counter to the epidemiologists’ 

stress on implementing NPIs quickly to curtail the spread of the disease.12 

For the relative peak death rate, in columns 11 and 12, the regressions still show 

significantly negative effects from the NPI variable.  The results also show, surprisingly, 

negative estimated coefficients on the PHRT variable; that is, a longer delay is estimated to 

reduce the relative peak death rate.  The estimated coefficient is significant at the 10% level in 

the case of OLS (column 11) and at the 5% level for TSLS (column 12).  These results reflect 

interactions between PHRT and NPI—these two forms of interventions are inversely related 

(simple correlation coefficient of -0.54), meaning that places with more NPIs tended to respond 

with a shorter delay.  Therefore, the simple correlation (0.10) between PHRT and the relative 

peak death rate reflects partly a proxying of larger PHRT for lower NPI (which has a 

substantially positive estimated effect on the relative peak death rate).  Once the NPI variable is 

held fixed, as in columns 11 and 12, the coefficient on PHRT becomes negative. 

To interpret these results, imagine that an NPI is put into effect with a duration of 30 

days.  If PHRT=0, the NPI is in place from a point near the beginning of the epidemic.  In 

contrast, if the start of the NPI is delayed by a week, so that PHRT=0.02 years, the NPI is still in 

effect for 30 days but begins one week later and lasts one week further into the future.  The 

results indicate that this rise in PHRT reduces the relative peak death rate.  This effect likely 

arises because, with a higher PHRT over some range, the NPIs in place match up better with the 

highest death rates. 

 

 
12See Markel, et al. (2007, p. 648); Hatchett, Mecher, and Lipsitch (2007, pp. 7583-7584); and Bootsma and 
Ferguson (2007, p. 7591). 
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3. Additional effects of distance from Boston.  A possible concern with the TSLS 

results in Table 2 is that greater distance from Boston may impact flu-related deaths directly, not 

just through influencing choices of NPIs.  One idea is that cities further from Boston, for which 

the Great Influenza tended to arrive later, just have fewer weeks in the study period from the 

local onset of the Great Influenza until the fixed end point, which is  always the week ending 

February 24, 1919.  For that reason, there could be a mechanical inverse relation between 

distance from Boston and the overall death rate.  In fact, as is clear from Figure 1, the mortality 

rates experienced in each city in the later weeks of the study period are all negligible compared 

to those from the peak weeks.  This point is also valid if the study period is extended out to the 

week ending May 31, 1919 (in which case the magnitudes in the later weeks are not only small 

but many appear as negative excess death rates).  Thus, this mechanical effect of distance from 

Boston on overall death rates turns out to be unimportant. 

Other concerns involve effects on mortality from a city’s having more time to prepare for 

the disease.  Since development of medical treatments (including a vaccine that turned out to be 

ineffective) would not have been relevant, the main possibility here is through preparation of 

healthcare facilities.13  However, it is unclear in 1918-1919 that better healthcare facilities 

mattered a lot for flu-related mortality.  Thus, this form of benefit from delaying the onset of 

disease may be unimportant. 

A colleague suggested the hypothesis that cities further from Boston tended to be those 

that suffered more from the first wave of the Great Influenza—roughly January to April 1918—

and, thereby, had more immunity against the second wave.14  This idea can be checked by using 

 
13Another possibility is that delay could be useful by raising the chance of spontaneous disappearance of the virus 
during the relevant timeframe. 
14The first wave of the Great Influenza appeared in the United States at least by the end of February 1918 at an 
army base in Kansas—see Barry (2004, p. 169). 
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the flu-related excess mortality rate for each city from January to April 1918.  This variable, 

from Collins, et al. (1930, Appendix Table A), is in Appendix Table A1, column 15.  The 

correlation of this excess death rate with distance from Boston turns out to be weakly 

negative, -0.12, not positive as conjectured.  The excess death rate for January to April 1918 can 

be added to the regressions in Table 2, columns 1 and 2, for explaining the overall flu-related 

excess death rate from September 1918 to February 1919.  The estimated coefficients on the 

January-April 1918 variable are 0.40 (s.e.=0.68) for column 1 (OLS) and 0.47 (0.70) for 

column 2 (TSLS); that is, the coefficients differ insignificantly from zero.  Hence, there is no 

evidence at the level of cities that greater exposure to the flu in the first wave diminished 

mortality rates in the second wave.  (Note that these regressions hold fixed the flu-related gross 

mortality rate for the September-to-February periods of 1910-1916.) 

 

4. Measured quarantine in New York City.  As mentioned before, Barry (2007a, 

2007b) has raised objections to the NPI data constructed by Markel, et al. (2007) for New York 

City.15  The Markel data (supplement, slide 30) show that New York imposed a mandatory 

quarantine starting September 26, 1918, effective for 73 days.  There were no school closings 

and no prohibitions of public gatherings.  Barry (2007a, 2007b) argues that the quarantine, while 

announced, was likely never seriously implemented, in which case it would be appropriate to 

treat New York as having an NPI of zero.  However, Aimone’s  (2010) discussion indicates that 

some aspects of a quarantine did operate in New York.  Given these uncertainties, it seems 

 
15Barry (2007b) also raises objections about measurements for Chicago, but these objections seem mainly to 
concern the form of presentation.  Markel’s (2007, supplement, slide 12) numbers for prohibitions of public 
gatherings and quarantine/isolation in Chicago are similar to those of Bootsma and Ferguson (2007, appendix, 
pp. 2-4). 
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appropriate to compare the initial results, with New York’s NPI reflecting a quarantine, with 

those modified to have no quarantine operating in New York. 

The regressions in Table 2, cols. 1-8, were redone after modifying the NPI variable and 

the quarantine/isolation component for New York to equal 0, rather than the 0.2 years used 

before.  This modification has minor effects on all of the results.  In Table 2, columns 1 and 2, 

the estimated effects of the NPI variable on cumulative death rates remain negative but close to 

zero.  In columns 3 and 4, the estimated effects of the NPI variable on the relative peak death 

rate are still negative and highly statistically significant.  The estimated coefficient falls in 

magnitude from -5.9 (s.e.=1.3) to -5.5 (1.3) in column 3 and from -8.6 (2.0) to -8.4 (1.8) in 

column 4.  Similarly, in columns 5-8, the results change only in minor ways with the revised 

treatment of New York.16  Thus, the inference is that, even if Barry (2007a, 2007b)’s criticism of 

the measurement of quarantine in New York City is valid, a modification to account for this 

objection leaves the main results intact. 

 

III. Concluding Observations 

The regressions applied to 45 large U.S. cities during the peak of the Great Influenza 

Pandemic from September 1918 to February 1919.  The results demonstrate that NPIs, as 

measured by Markel, et al. (2007), have large and statistically significant negative effects on 

relative peak flu-related excess death rates; that is, more interventions clearly flattened the curve 

for mortality.  However, the impacts on overall death rates are much weaker and are mostly 

statistically insignificantly different from zero.  Given the clear success in depressing the relative 

 
16The regressions in columns 9-12 were not rerun because it was unclear how to define the PHRT variable for New 
York when it is viewed as having never implemented an NPI. 
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peak death rate, the key question is why the NPIs implemented in 1918-1919 were not more 

successful in depressing overall deaths. 

There are two main possibilities.  One is that the NPIs were not maintained long enough 

to have a substantial negative effect on overall deaths.17  Table 1 shows that the mean durations 

of school closings and prohibitions of public gatherings were only 36 days (0.10 years), whereas 

that for quarantine/isolation was even shorter, 18 days (0.05 years).  In this view, NPIs 

maintained for longer periods—as in the interventions deployed currently in the United States 

and elsewhere to combat the COVID-19 pandemic—would have had more payoff in terms of 

avoiding overall deaths. 

The second possibility is that NPIs mostly delay deaths (consistent with the clear 

flattenings of the curves) but do not avoid them (consistent with the weak or null effects on 

overall deaths).  This assessment makes it much less likely that extensive NPIs are a good idea 

and tends, instead, to favor the approach currently employed in Sweden, whereby only limited 

NPIs are used to attempt to curtail the spread of COVID-19.  It is also possible that this second 

view was accurate for the Great Influenza Pandemic in 1918-1919 but not for the ongoing 

COVID-19 Pandemic, where delays in the spread of disease actually allow for improvements in 

healthcare facilities and medical treatments. 

The difference between interpretations one and two is of great importance for guiding 

NPI policies aimed at curbing deaths from the COVID-19 Pandemic and possible future 

pandemics.  One piece of evidence from the Great Influenza that favors the first view comes 

from Australia.  Because of a swift and strict maritime quarantine policy, Australia managed to 

avoid the Pandemic entirely during 1918 (see Barry [2004, pp. 375-376]).  In fact, Australia was 

 
17This explanation is favored by Hatchett, Mecher, and Lipsitch (2007, p. 7582) and Bootsma and Ferguson (2007, 
p. 7588).  However, these conclusions were not clearly related to the statistical findings. 
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the only one of the 48 countries studied in Barro, Ursúa, and Weng (2020, Table 1) that recorded 

a non-positive flu-related excess death rate in 1918.  Most significantly, Australia’s avoidance of 

an outbreak in 1918 did not lead to higher mortality once the flu arrived in early 1919.  

Australia’s overall flu-related death rate for 1918-1920 was only 0.3%, much lower than the 

average of 1.4% for the 48 countries.  Moreover, the presence of Australia in the southern 

hemisphere does not account for this outcome—New Zealand and South Africa had much higher 

overall flu-related morality rates in 1918-1920 (0.7% and 3.4%, respectively).  Thus, there is an 

indication that Australia’s strong NPI in the form of a strict maritime quarantine did reduce 

overall flu-related death rates. 
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Table 1 

Descriptive Statistics 

 

Variable: NPI School 
closings 

Public 
gatherings 

Quarantine PHRT Excess death 
rate 9/18-2/19 

Units years years years years years percent of 
population 

Mean 0.24 0.10 0.09 0.05 0.02 0.52 
Median 0.18 0.08 0.08 0 0.02 0.53 
Std dev. 0.13 0.06 0.05 0.07 0.02 0.15 
Max 0.47 0.29 0.22 0.26 0.10 0.82 
Min 0.08 0 0 0 -0.03 0.22 
       
Variable: Relative peak 

death rate 
Distance 
Boston 

Death rate 
1910-1916 

Heating-
degree days 

POP 
1910 

POP 
density 1910 

Units ratio 1000 
miles 

percent of 
population 

degrees 
Fahrenheit 

1000s 1000s/sq. mile 

Mean 4.57 1.01 0.086 11.0 434 8.6 
Median 4.43 0.83 0.086 11.9 224 7.5 
Std dev. 1.32 0.92 0.023 3.8 760 4.5 
Max 7.93 3.10 0.147 16.9 4768 18.6 
Min 2.82 0 0.040 1.0 100 1.7 

 

 

Note:  These statistics apply to the variables defined and shown in Appendix Table A1. 
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Table 2 

Effects from Non-Pharmaceutical Interventions (NPIs) 

45 U.S. Cities, September 1918-February 1919 

 

 

Dependent variable: Overall Flu-Related 
Excess Death Rate 

Relative Peak  
Death Rate 

 (1) (2) (3) (4) 
Method: OLS TSLS OLS TSLS 
Constant 0.41** 

(0.14) 
0.54** 
(0.20) 

5.96*** 
(0.36) 

6.61*** 
(0.50) 

Non-pharmaceutical 
   interventions, NPI 

-0.11 
(0.17) 

-0.33 
(0.30) 

-5.9*** 
(1.3) 

-8.6*** 
(2.0) 

Flu-related gross death rate 
   1910-1916 

2.90*** 
(0.94) 

2.24* 
(1.22) 

-- -- 

Heating-degree days -0.0105** 
(0.0049) 

-0.0123** 
(0.0054) 

-- -- 

R-squared 0.37 0.35 0.31 0.25 
Standard error of  
   regression 

0.119 0.121 1.11 1.16 

Number of observations 45 45 45 45 
 

  



24 
 

Table 2, continued 

 

Dependent variable: Excess 
Death  
Rate 

Excess 
Death  
Rate 

Relative 
Peak  

Death Rate 

Relative 
Peak  

Death Rate 
 (5) (6) (7) (8) 
Method: OLS TSLS OLS TSLS 
Constant 0.34** 

(0.14) 
0.50** 
(0.20) 

5.86*** 
(0.39) 

6.52*** 
(0.54) 

School closings 0.51 
(0.41) 

0.27 
(0.48) 

-6.7* 
(3.6) 

-8.3** 
(3.9) 

Prohibitions on  
   public gatherings 

-0.97** 
(0.47) 

-1.24** 
(0.55) 

-3.2 
(4.4) 

-7.5 
(5.2) 

Quarantine/isolation 0.12 
(0.28) 

-0.16 
(0.39) 

-7.2*** 
(2.3) 

-9.4*** 
(2.8) 

p-value, 3 NPIs same  
   coefficients 

0.16 0.18 0.74 0.90 

p-value, 3 NPI  
   coefficients=0 

0.25 0.18 0.001 0.001 

Flu-related gross  
   death rate 1910-16 

3.33*** 
(0.96) 

2.53** 
(1.24) 

-- -- 

Heating-degree days -0.0070 
(0.0051) 

-0.0091 
(0.0056) 

-- -- 

R-squared 0.43 0.39 0.32 0.26 
Standard error of  
   regression 

0.12 0.12 1.13 1.18 

Number of  
   observations 

45 45 45 45 
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Table 2, continued 

 
Dependent variable: Overall Flu-Related 

Excess Death Rate 
Relative Peak  

Death Rate 
 (9) (10) (11) (12) 
Method: OLS TSLS OLS TSLS 
Constant 0.25 

(0.15) 
0.36 

(0.24) 
6.69*** 
(0.51) 

7.46*** 
(0.72) 

Non-pharmaceutical 
   interventions, NPI 

0.15 
(0.21) 

-0.03 
(0.38) 

-7.46*** 
(1.52) 

-10.0*** 
(2.3) 

Public-health response  
   time, PHRT 

2.19** 
(1.06) 

1.61 
(1.45) 

-17.7* 
(9.0) 

-25.8** 
(10.7) 

p-value, NPI & PHRT 
   jointly 

0.11 0.14 0.000 0.000 

Flu-related gross death rate 
   1910-1916 

3.65*** 
(0.98) 

3.11** 
(1.36) 

-- -- 

Heating-degree days -0.0113** 
(0.0047) 

-0.0120** 
(0.0049) 

-- -- 

R-squared 0.43 0.42 0.37 0.33 
Standard error of  
   regression 

0.114 0.116 1.07 1.11 

Number of observations 45 45 45 45 
 
 
 
***Significant at 1% level. 
**Significant at 5% level. 
*Significant at 10% level. 
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Notes to Table 2 

The sample applies to 45 large U.S. cities observed from week ending September 14, 
1918 to that ending February 22, 1919.  The dependent variable in columns 1, 2, 5, 6, 9, and 10 
is the overall excess flu-related death rate, given in Appendix Table A1, column 1.  The 
dependent variable in columns 3, 4, 7, 8, 11, and 12 is the relative peak death rate, given in 
Appendix Table A1, column 2.  Standard errors of coefficients are in parentheses.  OLS is 
ordinary least-squares.  TSLS is two-stage least-squares.  In column 2, the instrumental variables 
are the distance from Boston and its square, the mayor dummy, the flu-related gross mortality 
rate for the September-February periods of 1910-1916, and heating-degree days.  In column 4, 
the instrumental variables are the distance from Boston and its square and the mayor dummy.  In 
columns 6 and 8, the instrument lists include also the difference between school closings and 
prohibitions of public gatherings and between school closings and quarantine.  In columns 11 
and 12, the instrument lists include also the PHRT variable.  All variables are shown in 
Appendix Table A1. 
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Figure 1 

Evolution of Flu-Related Excess Death Rates in Selected Cities 

September 1918-February 1919 
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Figure 1, continued 

 

 
 

 

Note:  The graphs show the evolution of the weekly flu-related excess death rate (percent of city 
population) for each city from the week ending September 14, 1918 to that ending February 22, 
1919.  Data are from Collins, et al. (1930, Appendix Table B). 
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Figure 2 

Relationship between Distance from Boston (thousands of miles)  

and NPIs (years of implementation) 

 

 
 

 

Note:  The sample is for 45 U.S. cities.  Distance from Boston is the minimum distance shown 
by Google Maps.  Non-Pharmaceutical Interventions (NPIs) from September 1918 to February 
1919 are from Markel, et al. (2007, Table 1), updated to include Atlanta and Detroit.  See 
Appendix Table A1.  
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Figure 3 

Relationship between NPIs and Excess Flu-Related Death Rate 

 

 
 

Note:  The sample is for 45 U.S. cities.  NPIs from September 1918 to February 1919 is from 
Markel, et al. (2007, Table 1), updated to include Atlanta and Detroit.  Overall flu-related excess 
death rate for September 1918 to February 1919 is calculated from Collins, et al. (1930, 
Appendix, Table B).  See Appendix Table A1.  
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Figure 4 

Relationship between NPIs and Relative Peak Death Rate  

 

 
 

 

Note:  The sample is for 45 U.S. cities.  NPIs from September 1918 to February 1919 is from 
Markel, et al. (2007, Table 1), updated to include Atlanta and Detroit.  The relative peak death 
rate, defined as the ratio of the peak weekly death rate to the average of the weekly death rates, is 
calculated from Collins, et al. (1930, Appendix, Table B).  See Appendix Table A1. 
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Figure 5 

Relationship between Distance from Boston (thousands of miles)  

and Public-Health Response Time (PHRT in years) 

 

 
 

 

Note:  The sample is for 45 U.S. cities.  Distance from Boston is the minimum distance shown 
by Google Maps.  The public-health response time or PHRT is from Markel, et al. (2007, 
Table 1), updated to include Atlanta and Detroit.  See Appendix Table A1. 
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Appendix Table A1  Data Used in Regressions 

 (1) (2) (3) (4) (5) 
City Excess death 

rate 9/18-2/19 
Relative peak 

death rate 
NPI School 

closings 
Public 

gatherings 
Albany 0.576 6.917 0.129 0.090 0.038 
Atlanta 0.364 3.297 0.240 0.112 0.049 
Baltimore 0.661 7.843 0.118 0.071 0.047 
Birmingham 0.638 2.821 0.132 0.071 0.060 
Boston 0.729 5.333 0.137 0.071 0.066 
Buffalo 0.548 6.350 0.134 0.077 0.058 
Cambridge 0.544 5.603 0.134 0.071 0.063 
Chicago 0.391 5.402 0.186 0.000 0.107 
Cincinnati 0.465 3.510 0.337 0.173 0.164 
Cleveland 0.501 4.216 0.271 0.063 0.077 
Columbus 0.329 3.647 0.403 0.186 0.216 
Dayton 0.435 5.021 0.427 0.093 0.222 
Denver 0.654 2.826 0.414 0.219 0.093 
Detroit 0.311 4.090 0.077 0.030 0.047 
Fall River 0.645 6.177 0.164 0.088 0.077 
Grand Rapids 0.215 4.019 0.170 0.044 0.077 
Indianapolis 0.306 3.216 0.225 0.104 0.066 
Kansas City MO 0.621 2.937 0.466 0.205 0.115 
Los Angeles 0.527 3.142 0.422 0.290 0.132 
Louisville 0.427 4.215 0.397 0.162 0.162 
Lowell 0.530 5.660 0.162 0.082 0.079 
Milwaukee 0.291 3.134 0.362 0.107 0.148 
Minneapolis 0.287 3.261 0.318 0.156 0.148 
Nashville 0.638 6.132 0.151 0.071 0.079 
New Haven 0.610 4.485 0.107 0.000 0.107 
New Orleans 0.760 5.589 0.214 0.112 0.101 
New York 0.474 4.709 0.200 0.000 0.000 
Newark 0.556 4.532 0.090 0.052 0.038 
Oakland 0.538 5.086 0.348 0.110 0.088 
Omaha 0.587 3.475 0.384 0.077 0.118 
Philadelphia 0.778 7.928 0.140 0.077 0.063 
Pittsburgh 0.821 3.888 0.145 0.068 0.077 
Portland OR 0.520 2.815 0.444 0.101 0.096 
Providence 0.591 4.345 0.115 0.060 0.055 
Richmond 0.522 5.333 0.164 0.082 0.082 
Rochester 0.387 4.651 0.148 0.074 0.074 
San Francisco 0.691 5.140 0.184 0.101 0.082 
Seattle 0.427 2.923 0.460 0.099 0.101 
Spokane 0.478 3.816 0.449 0.189 0.181 
St. Louis 0.374 3.658 0.392 0.200 0.192 
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St. Paul 0.421 3.249 0.077 0.033 0.044 
Syracuse 0.570 6.358 0.107 0.058 0.049 
Toledo 0.314 4.433 0.279 0.142 0.137 
Washington DC 0.647 5.416 0.175 0.088 0.088 
Worcester 0.640 4.875 0.121 0.060 0.060 
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Table A1, continued 

 (6) (7) (8) (9) (10) 
City Quarantine Response 

time, 
PHRT 

Death rate 
1910-1916 

Heating-
degree days 

Distance 
from 

Boston 
Albany 0.000 0.008 0.093 15.2 169 
Atlanta 0.079 0.000 0.104 5.6 1076 
Baltimore 0.000 0.027 0.115 8.3 401 
Birmingham 0.000 0.025 0.110 5.4 1182 
Boston 0.000 0.036 0.110 12.2 0 
Buffalo 0.000 0.033 0.080 14.7 455 
Cambridge 0.000 0.038 0.098 12.2 3 
Chicago 0.079 -0.005 0.111 12.3 983 
Cincinnati 0.000 0.005 0.091 10.5 869 
Cleveland 0.132 -0.005 0.067 11.4 640 
Columbus 0.000 0.014 0.074 11.8 763 
Dayton 0.112 -0.014 0.078 12.4 833 
Denver 0.101 0.025 0.086 13.1 1972 
Detroit 0.000 0.027 0.083 13.0 707 
Fall River 0.000 0.027 0.108 12.9 53 
Grand Rapids 0.049 0.047 0.045 14.5 837 
Indianapolis 0.055 0.019 0.076 11.9 936 
Kansas City MO 0.145 0.000 0.081 10.3 1410 
Los Angeles 0.000 0.014 0.060 1.0 2983 
Louisville 0.074 0.016 0.083 8.9 969 
Lowell 0.000 0.030 0.097 14.2 30 
Milwaukee 0.107 0.014 0.066 14.8 1074 
Minneapolis 0.014 0.016 0.067 16.9 1391 
Nashville 0.000 0.003 0.122 7.6 1105 
New Haven 0.000 0.060 0.119 12.4 138 
New Orleans 0.000 0.019 0.114 1.5 1526 
New York 0.200 -0.030 0.103 10.2 215 
Newark 0.000 0.027 0.088 10.1 225 
Oakland 0.151 0.011 0.064 2.6 3089 
Omaha 0.189 0.003 0.073 13.1 1435 
Philadelphia 0.000 0.022 0.091 10.7 308 
Pittsburgh 0.000 0.019 0.147 11.4 572 
Portland OR 0.247 0.011 0.045 8.5 3088 
Providence 0.000 0.052 0.099 14.4 51 
Richmond 0.000 0.019 0.108 8.2 556 
Rochester NY 0.000 0.008 0.073 14.6 392 
San Francisco 0.000 0.030 0.074 3.7 3095 
Seattle 0.260 0.014 0.040 9.4 3039 
Spokane 0.079 0.003 0.055 15.6 2762 
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St. Louis 0.000 0.003 0.098 10.5 1171 
St. Paul 0.000 0.096 0.053 16.0 1383 
Syracuse 0.000 0.052 0.077 15.1 312 
Toledo 0.000 0.005 0.066 13.6 754 
Washington DC 0.000 0.027 0.086 8.3 440 
Worcester 0.000 0.041 0.096 12.6 43 
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Table A1, continued 

 (11) (12) (13) (14) (15) 
City Mayor 

dummy 
Population 

1910 
Area Population 

Density 1910 
Excess death 
rate, 1-4/18 

Albany 1 100.3 10.8 9.3 -0.002 
Atlanta 1 154.8 25.7 6.0 0.051 
Baltimore 1 558.5 30.1 18.6 0.036 
Birmingham 0 132.7 48.3 2.7 0.119 
Boston 1 670.6 41.1 16.3 0.035 
Buffalo 0 423.7 38.7 10.9 0.022 
Cambridge 1 104.8 6.3 16.6 0.029 
Chicago 1 2185.3 185.1 11.8 -0.019 
Cincinnati 1 363.6 49.8 7.3 0.033 
Cleveland 1 560.7 45.6 12.3 0.031 
Columbus 1 181.5 20.3 8.9 0.019 
Dayton 0 116.6 15.7 7.4 0.010 
Denver 1 213.4 57.9 3.7 0.022 
Detroit 1 465.8 40.8 11.4 0.026 
Fall River 1 119.3 33.9 3.5 -0.029 
Grand Rapids 0 112.6 16.8 6.7 0.013 
Indianapolis 1 233.6 33.0 7.1 0.031 
Kansas City MO 1 248.4 58.5 4.2 0.063 
Los Angeles 1 319.2 99.2 3.2 -0.005 
Louisville 1 223.9 20.7 10.8 0.065 
Lowell 0 106.3 13.0 8.2 0.045 
Milwaukee 1 373.9 22.8 16.4 0.022 
Minneapolis 1 301.4 50.1 6.0 0.016 
Nashville 0 110.4 17.1 6.5 0.091 
New Haven 1 133.6 17.9 7.5 0.007 
New Orleans 0 339.1 196.0 1.7 0.014 
New York 1 4767.9 286.8 16.6 0.026 
Newark 0 347.5 23.2 15.0 0.036 
Oakland 0 150.2 45.7 3.3 0.022 
Omaha 0 124.1 24.1 5.1 0.019 
Philadelphia 1 1549.0 130.2 11.9 0.050 
Pittsburgh 1 533.9 41.4 12.9 0.126 
Portland OR 0 207.2 48.4 4.3 0.014 
Providence 1 224.3 17.7 12.7 0.020 
Richmond 1 127.6 10.0 12.8 -0.003 
Rochester NY 1 218.1 20.1 10.9 0.020 
San Francisco 1 416.9 46.5 9.0 0.016 
Seattle 1 237.2 55.9 4.2 0.014 
Spokane 0 104.4 36.8 2.8 0.013 
St. Louis 1 687.0 61.4 11.2 0.037 
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St. Paul 0 214.7 52.2 4.1 0.011 
Syracuse 1 137.2 17.3 7.9 0.032 
Toledo 1 168.5 25.0 6.7 0.021 
Washington DC 0 331.1 60.0 5.5 0.043 
Worcester 1 146.0 37.0 3.9 0.023 
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Notes to Table A1 

The sample comprises 45 of the 50 U.S. cities with center-city populations in 1910 above 
100,000.  These 45 have weekly data on flu-related excess death rates over the second and most 
deadly wave of the Great Influenza Pandemic: the 24 weeks from week ending September 14, 
1918 to week ending February 22, 1919.  The remaining 5 large cities lack parts of the weekly 
data over this period. 

Flu-related death rates are calculated as percent of city population.  Excess death rate 
9/18-2/19 is the overall flu-related excess death rate over the 24-week sample from the week 
ending September 14, 1918 to the week ending February 22, 1919.  These values are calculated 
from the weekly data given in Collins, et al. (1930, Appendix Table B).  (A typo in the data for 
Pittsburgh for November 23, 1918 was corrected based on the information in Davis [1918].)  The 
excess death rate is the difference between the rate for each city and week and the median of flu-
related death rates for the corresponding city and week for 1910-1916.  The relative peak death 
rate is the ratio of the highest weekly death rate in the 24-week sample to the average death rate 
(the overall value divided by 24).  NPI is the duration in years of three forms of non-
pharmaceutical interventions—school closings, prohibition of public gatherings, and 
quarantine/isolation—over the 24-week sample, as estimated by Markel, et al. (2007, Table 1 
and supplemental figures).  Data on NPIs for Atlanta and Detroit were obtained from information 
in, respectively, The Atlanta Constitution and The Detroit Free Press, Public Health Reports for 
the two cities, and the Influenza Encyclopedia, available at influenzaarchive.org.  The three 
forms of NPIs are shown separately, and NPI is the sum of these three.  The public-health 
response time or PHRT, defined in Markel, et al. (2007, Table 1), is the difference in years 
between the date of the first NPI implementation and the time when the weekly excess flu-
related death rate reached twice the median gross death rate applicable to the corresponding 
month in 1910-1916. 

The flu-related gross death rate for 1910-1916 is calculated from the median values 
shown for the September-February months in Collins, et al. (1930, Appendix Table A).  Heating-
degree days, based on average daily temperature and a target of 60 degrees Fahrenheit, is from 
weatherdatadepot.com and applies around the year 2000.  The data are for the full calendar year 
but are expressed per day.  Distance from Boston is the minimum distance in thousands of miles 
from Google Maps.  Mayor dummy is for the presence of a strong elected mayor in 1918, as 
opposed to a Commission or other form of city government.  The underlying information comes 
from CQ Researcher (1930) and Wikipedia.  Population 1910 (in thousands) and area (in square 
miles) are for central cities  from 1910 U.S. Census.  Population density is the ratio of population 
to area.  Excess death rate 1-4/18 is the overall flu-related excess death rate for the 4-month 
period from January 1918 to April 1918 from the monthly data given in Collins, et al. (1930, 
Appendix Table A). 

 

http://www.influenzaarchive.org/
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