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The mortality experienced during the Great Influenza Pandemic of 1918-1920 likely 

provides the best historical information on the plausible upper found for outcomes under the 

ongoing coronavirus (COVID-19) pandemic.  Barro, Ursúa, and Weng (2020) discussed the 

cross-country data on flu-related deaths.  Based on information for 48 countries, that study found 

that the Great Influenza killed around 40 million people, 2.1 percent of the world’s population.  

When applied to current population, the corresponding number of deaths is a staggering 150 

million. 

An important issue is how public-health interventions, such as those being implemented 

currently in most countries for the ongoing coronavirus pandemic, affect mortality.  For the 

Great Influenza Pandemic, information of this type is unavailable across countries but does exist 

for U.S. cities.  The present study assesses the effects of these interventions on death rates. 

 

Non-Pharmaceutical Interventions and Flu-Related Death Rates 

 Markel, et al. (2007) studied effects of non-pharmaceutical public-health interventions 

(NPIs) on flu-related deaths in large U.S. cities over the 24-week period corresponding to the 

peak of the epidemic, September 1918-February 1919.  The weekly data on flu-related excess 

death rates in this period come from the U.S. Census Bureau, Weekly Health Index, reproduced 

in Collins, et al. (1930, Appendix, Table B).  Continuous weekly data over the study period are 

available for 45 of the 50 largest cities, corresponding to those for which the central-city 

population in the 1910 U.S. Census exceeded 100,000.1 

 The extensive research by Markel, et al. (2007, Table 1 and appendix figures) included 

collection of data on NPIs for 43 of the 45 cities covered by the weekly Census data on 

 
1The five missing cities are Bridgeport, Jersey City, Memphis, Paterson, and Scranton. 
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mortality.  (Atlanta and Detroit were excluded because of missing information.)  The NPIs were 

organized into three broad categories: school closings, prohibitions on public gatherings, and 

quarantine/isolation.2  The underlying information comes from articles in two newspapers in 

each city, along with other sources.  The main data were reported as days in which NPIs of the 

various types were in effect, with a focus on a variable that considers the presence of any type of 

NPI.  For example, when school closings and prohibitions on public gatherings prevail on the 

same day, the variable records two days’ worth of NPI.3  Barry (2007a, 2007b) raises objections 

to the NPI data collected by Markel, et al. (2007) for New York City, and I discuss these 

objections below. 

 The present analysis considers two characteristics of each city’s flu-related excess death 

rates:  first, the cumulative death rate out of the total population over the full 24-week study 

period, and second, the ratio of the peak weekly death rate during the period to the average of the 

weekly death rates.  (This average equals the cumulative death rate divided by 24.)  A lower 

cumulative death rate is a reasonable gauge of the ultimate success of the NPIs.  In contrast, a 

lower relative peak implies a smoother pattern, often described as a “flattening of the curve,” 

which can be desirable from the standpoint of easing burdens on the healthcare system, possibly 

leading thereby to fewer deaths.  However, for a given cumulative death rate (and a given initial 

death rate, which is typically close to zero), if an NPI lowers the relative peak, the implication is 

that the intervention delays deaths but does not ultimately avoid them. 

 
2Hatchett, Mecher, and Lipsitch (2007) consider many more categories of NPIs but analyze only 17 of the 43 cities 
considered by  Markel, et al. (2007).  Bootsma and Ferguson (2007) studied the timing of the introduction of a set 
of NPIs in 16 cities (15 of those considered by Markel plus Atlanta).  Velde (2020, Figure 4) constructed measures 
of business closings for 42 cities (those considered by Markel plus Atlanta and Detroit, with Lowell, Milwaukee, and 
New Haven omitted).  Measures of NPIs across countries in 2020 are in UBS (2020). 
3Correia, Luck, and Verner (2020) also use the Markel data on NPIs, focusing on how number and speed of 
implementation of NPIs impact manufacturing employment and output in cities.  Lilley, Lilley, and Rinaldi (2020) 
critique the methodology used by Correia, Luck, and Verner. 
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 There is some concern that NPIs (measured, say, by length of time in force) and flu-

related death rates are simultaneously determined.  On the one hand, the basic hypothesis is that 

more NPIs reduce death rates.  On the other hand, NPIs implemented by city governments are 

likely to respond to death rates in terms of numbers realized or anticipated.  The implicit 

assumption in Markel, et al. (2007), Hatchett, et al. (2007), and Bootsma and Ferguson (2007) is 

that NPIs are determined exogenously; that is, shifts in actual or anticipated death rates do not 

impact the chosen NPIs.  The present research attempts to take account of the potential 

endogeneity of NPIs. 

An important consideration is that the second wave of the U.S. flu epidemic began by late 

August 1918, likely coming from Europe and then appearing around Boston at the army base 

Fort Devens and the Navy’s Commonwealth Pier facility.4  Shortly thereafter, sailors leaving 

Boston on ships spread the flu to Philadelphia and New Orleans, leading subsequently to spread 

to other places.  From this perspective, the distance from Boston may serve as an exogenous 

measure of how early the flu epidemic tended to reach the various cities in the sample.  

Specifically, cities further from Boston typically had more time to prepare and were, therefore, 

more likely to react in terms of the implementation of NPIs.5   Empirically, distance from 

Boston, entered in a quadratic form, has considerable explanatory power for the NPI variable.  

The pair-wide relationship between distance and NPIs, shown in Figure 1, is positive with a 

simple correlation coefficient of 0.65.  Because of this strong relationship, the distance measures 

are good candidates as instrumental variables related to NPIs. 

 

 
4For a discussion, see Barry (2004, pp. 181 ff.). 
5Possibly the distance measure could be improved by calculating the time required to transit from Boston to a 
particular location, given the transportation technology available in 1918.  For example, physical distance would 
overstate the time required to reach places, such as New Orleans, that were accessible from Boston by boat. 
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Regression Results 

Table 1 has regression results for the 43 U.S. cities in the 24-week period from 

September 8, 1918 to February 22, 1919.  Descriptive statistics for the variables used are in 

Table 2.  The analysis in Table 1 considers two dependent variables: the cumulative excess flu-

related death rate and the relative peak death rate. 

Flu-related death rates in each city likely depend on healthcare facilities, age structure, 

and other demographic characteristics.  To take account of these effects, the analysis includes as 

an explanatory variable the flu-related gross mortality rate from a prior period6—specifically, the 

median rate for 1910-1916, corresponding to the months, September-February, used for the 

dependent variable.  This variable is calculated from the information given in Collins, et al. 

(1930, appendix, Table A).  The idea is that this measure would reflect city characteristics such 

as healthcare facilities and demographics to the extent that they influence flu-related deaths in 

general and, therefore, likely the excess deaths experienced during the 1918-1919 pandemic.  

The analysis also includes as an additional explanatory variable a measure of a city’s weather, 

given by the log of heating-degree days. 

Columns 1 and 2 of Table 1 show estimated effects of NPIs on the cumulative flu-related 

excess death rate.  The pair-wise association is in Figure 2.  This relationship is negative, as 

expected (simple correlation coefficient equals -0.34).  The estimated coefficients on NPIs in 

columns 1 and 2 are negative but insignificantly different from zero.  Results from OLS and two-

stage least-squares are similar,7 indicating that treating NPIs as exogenous—as in Markel, et al. 

 
6A variable of this type was used by Bootsma and Ferguson (2007, p. 7588). 
7A possible concern with the TSLS results is that greater distance, by allowing more time to prepare, may have 
impacted flu-related deaths directly, not just through influencing NPIs.  Since development of medical treatments 
would not have been relevant, the main possibility here is likely to be through preparation of healthcare facilities.  
In any event, the estimated effects of NPIs on cumulative death rates turned out to be minor. 
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(2007), Hatchett, et al. (2007), and Bootsma and Ferguson (2007)—may be satisfactory for this 

part of the analysis.8 

The estimated coefficient of the prior flu-related gross death rate is positive and 

statistically significant at the 1% level in columns 1 and 2.  The coefficient of the log of heating-

degree days is negative and statistically significant at the 5% level.  This result indicates, 

surprisingly, that colder places (during fall and winter) are estimated to have significantly lower 

excess flu-related death rates.9 

Columns 3 and 4 of Table 1 consider the estimated effects of NPIs on the relative peak 

death rate.  The pairwise association is in Figure 3.  This relationship is negative, as expected, 

with a simple correlation coefficient of -0.59.  The estimated coefficients on the NPI variable in 

columns 3 (OLS) and 4 (TSLS) are negative and highly statistically significant, with the 

coefficient under TSLS  notably larger in magnitude.  The higher magnitude under TSLS likely 

arises because a higher relative peak death rate encourages the enactment of NPIs with longer 

duration.  Therefore, in the OLS results (column 3), the magnitude of the negative effect on 

death rates is attenuated.10  Overall, there is clear evidence that an increase in NPIs flattens the 

pattern of excess flu-related death rates, gauged by the drop in the ratio of the peak weekly death 

rate to the sample average of the weekly death rates.  This result indicates that NPIs—as 

measured by Markel, et al. (2007)—do matter.  But this influence shows up far more in the 

relative peak death rate than in the cumulative death rate. 

 
8The instrumental variables aside from distance to Boston and its square are the gross flu-related death rate for 
1910-16 and the log of heating-degree days.  The F-Statistic for the first-stage equation for NPIs is 10.8.  Most of 
the explanatory power here comes from the two distance variables. 
9The simple correlation coefficient between the log of heating-degree days and the gross flu-related mortality rate 
for 1910-1916 is positive but close to zero. 
10Measurement error in the NPI variable can also be a source of this attenuation. 
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Columns 5-8 of Table 1 consider the separate roles of the three types of NPIs considered 

by Markel, et al. (2007)—school closings, prohibitions of public gatherings, and 

quarantine/isolation.  There are insufficient instruments to allow for endogeneity of all three 

types of NPIs individually.  However, it seems plausible that, while the overall duration of NPIs 

is endogenous with respect to flu-related death rates, the distribution among the three types may 

be exogenous.  Therefore, the TSLS estimation in columns 5 and 8 includes on the instrument 

list the variables used before in columns 2 and 4 along with the difference between the duration 

of the various NPIs (school closings minus prohibitions of public gatherings and school closings 

minus quarantine/isolation). 

For the cumulative excess flu-related death rate, the OLS results are in column 5 and the 

TSLS results in column 6.  The only significant coefficients related to NPIs are the negative ones 

on prohibitions of public gatherings.  The results in columns 5 and 6 reject the hypothesis at a 

p-value of 0.03 that the coefficients of the three NPI variables are the same.  The results reject 

the hypothesis that the coefficients of all three NPI variables equal zero with a p-value of 0.04 in 

column 5 (OLS) and 0.06 in column 6 (TSLS).  The estimated coefficients are similar from OLS 

and TSLS, indicating, as in columns 1 and 2, that it may be satisfactory to treat overall NPIs as 

exogenous with respect to the cumulative flu death rate.  There is also some evidence that 

restrictions on public gatherings retarded cumulative excess flu death rates. 

For the relative peak death rate, the OLS results are in column 7 and the TSLS results in 

column 8.  As in columns 3 and 4, the allowance for endogeneity of overall NPIs makes a 

substantial difference, with the magnitudes of the estimated coefficients notably higher under 

TSLS (column 8) compared to that under OLS (column 7).  The TSLS results (column 8) show 

that the magnitudes of the effects of the three types of NPIs are similar, with the hypothesis of 
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equal coefficients accepted with a p-value of 0.95.  The three coefficients are jointly significantly 

different from zero, with a p-value of 0.001.  An inference from the results is that, for the 

analysis of relative peak death rates, it is satisfactory to combine the three types of interventions 

into a single form, as done in the first part of the table (column 4). 

 

Public-Health Response Time 

Columns 9 and 10 of Table 1 consider another measure of how NPIs were 

implemented—the public-health response time or PHRT constructed by Markel, et al. (2007, 

Table 1).11  A higher PHRT indicates more delay in a city introducing the first intervention 

intended to retard flu deaths.  Figure 4 shows from the pair-wise relationship that the PHRT 

variable is negatively but weakly associated with distance from Boston, with a simple correlation 

coefficient of -0.20.  Thus, while being further away from Boston clearly raises the number of 

NPIs employed (Figure 1), it has a weaker connection with acting quickly to install some form of 

NPI.  The PHRT also has positive but small simple correlation coefficients with the cumulative 

excess death rate (0.16) and the relative peak death rate (0.08). 

Because the available instruments are insufficient to distinguish the NPI and PHRT 

variables, columns 9 and 10 of Table 1 present only OLS results.  Column 9, for the cumulative 

flu death rate, shows that the estimated regression coefficient on PHRT is essentially zero.  

Column 10, for the relative peak death rate, shows, surprisingly, a significantly negative 

estimated coefficient on PHRT.  This result applies even though the simple correlation between 

PHRT and the relative peak death rate is weakly positive (Figure 4).  The regression result in 

column 10 reflects an interaction between PHRT and NPIs—these two forms of interventions are 

 
11Their definition of PHRT is the days between the date when the flu death rate reached twice a baseline death 
rate and the (usually later) date of the first non-pharmaceutical intervention. 
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inversely related (simple correlation coefficient of -0.54), meaning that places with more NPIs 

tended to respond with a shorter delay.  Therefore, the simple correlation between PHRT and the 

relative peak death rate (weakly positive) reflects partly a proxying of shorter PHRT for higher 

NPI (which has a substantially negative estimated effect on the relative peak death rate).  Once 

the NPI variable is held fixed, as in column 10, the coefficient on PHRT, which reflects the 

effect on the relative peak death rate conditional on NPI, becomes negative. 

To interpret these results, imagine that an NPI is put into effect with a duration of 30 

days.  If PHRT=0, the NPI is in place from a point near the start of the epidemic (where, 

according to Markel, et al. [2007, Table 1], the weekly death rate equals twice a baseline rate).  

In contrast, if the start of the NPI is delayed by a week, so that PHRT=0.02 years, the NPI is still 

in effect for 30 days but starts one week later and lasts one week further into the future.  The 

results suggest that, in the relevant range, the rise in the PHRT does not matter much for 

cumulative deaths but does reduce the relative peak death rate.  The latter effect likely arises 

because, with a higher PHRT, the NPIs in place match up better with the highest death rates. 

 

Interpreting the Results 

Consider what the results in Table 1 imply quantitatively about the effects of NPIs on flu-

related death rates.  There is clear evidence that an increase in NPIs (measured here by time in 

effect) smooths out deaths in the sense of reducing the relative peak death rate.  Using the 

estimated coefficient of -8.9 on NPIs from the two-stage least-squares estimation in column 4, a 

one-standard-deviation rise in the NPI variable (by 0.13 in Table 2) lowers the relative peak 

death rate by 1.2, compared with the sample mean of 4.6 (Table 2). 
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In contrast, the effects on cumulative flu death rates are much weaker.  Using the 

(statistically insignificant) point estimate of the coefficient on NPIs of -0.0010 from column 2, a 

rise in the NPI variable by 0.13 lowers the cumulative death rate by 0.0001, compared with the 

sample mean of 0.0052 (Table 2).  Thus, the smoothing out of flu deaths may have accomplished 

nothing in terms of lowering overall mortality. 

 

Measured Quarantine in New York City 

As noted before, Barry (2007a, 2007b) has raised objections to the NPI data constructed 

by Markel, et al. (2007) for New York City.12  The Markel data (appendix, slide 30) show that 

New York imposed a mandatory quarantine starting September 26, 1918, effective for 73 days.  

There were no school closings and no prohibitions of public gatherings.  Barry (2007a, 2007b) 

argues that the quarantine, while announced, was likely never implemented, in which case it 

would be appropriate to treat New York as having an NPI of zero.  However, Aimone’s  (2010) 

discussion indicates that some aspects of a quarantine did operate in New York.  Given these 

uncertainties, it seems appropriate to compare the initial results, with New York’s NPI reflecting 

the quarantine, with those modified to have no quarantine operating in New York. 

The regressions for Table 1, cols. 1-8, were redone after modifying the NPI variable and 

the quarantine/isolation component for New York to equal 0, rather than the 0.2 years used 

before.  This modification has minor effects on all of the results.  In Table 1, cols. 1 and 2, the 

estimated effects of the NPI variable on cumulative death rates remain negative but close to zero.  

In cols. 3 and 4, the estimated effects of the NPI variable on the relative peak death rate are still 

 
12Barry (2007b) also raises objections about measurements for Chicago, but these objections seem mainly to 
concern the form of presentation.  Markel’s (2007, appendix, slide 12) numbers for prohibitions of public 
gatherings and isolation in Chicago are similar to those of Bootsma and Ferguson (2007, appendix, pp. 2-4). 



11 
 

negative and highly statistically significant.  The estimated coefficient falls in magnitude 

from -6.2 (s.e.=1.3) to -5.8 (1.3) in col. 3 and from -8.9 (1.9) to -8.4 (1.8) in col. 4.  Similarly, in 

cols. 5-8, the results change only in minor ways with the revised treatment of New York.13  

Thus, the inference is that, while Barry (2007a, 2007b)’s criticism of the measurement of 

quarantine in New York City may be valid, a modification to account for this objection leaves 

the main results intact. 

 

Concluding observations 

Given the clear success in depressing the relative peak death rate, the likely reason that 

the NPIs implemented in 1918-1919 were ultimately not very successful in depressing overall 

deaths is that the NPIs were not maintained long enough.  Table 2 shows that the mean durations 

of school closings and prohibitions of public gatherings were only 36 days (0.10 years), whereas 

that for quarantine/isolation was 18 days (0.05 years).   

These conclusions accord in part with those reached by Hatchett, et al. (2007) and 

Bootsma and Ferguson (2007).14  The lesson for the ongoing coronavirus pandemic in 2020 is 

 
13The regressions in cols. 9 and 10 were not rerun because it was unclear how to define the PHRT variable for New 
York when it is viewed as having never implemented an NPI. 
14According to Hatchett, et al. (2007, p. 7582): “… cities in which multiple interventions were implemented at an 
early phase of the epidemic had peak death rates [approximately] 50% lower than those that did not … Cities in 
which multiple interventions were implemented at an early phase of the epidemic also showed a trend toward 
lower cumulative excess mortality, but the difference was smaller ([approximately] 20%) and less statistically 
significant than that for peak death rates.  This finding was not unexpected, given that few cities maintained NPIs 
longer than six weeks in 1918.”  Similarly, Bootsma and Ferguson (2007, p. 7588) reported: “ … we found the time-
limited interventions used reduced total mortality only moderately (perhaps 10-30%), and that the impact was 
often very limited because of interventions being introduced too late and lifted too early.”  The present results 
accord with these conclusions related to the duration of NPIs but not with the those from delay, which were 
gauged by the public-health response time (PHRT).  Given the NPI variable—that is, how long NPIs were 
employed—the results did not show that earlier action, in the range observed within the sample, significantly 
reduced cumulative or relative peak death rates. 
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that, to curtail overall deaths, the NPIs used have to be maintained for substantially longer than a 

few weeks.  Most likely, 12 weeks work much better than 4-6 weeks. 
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Table 1 

Effects from Non-Pharmaceutical Interventions (NPIs) 

43 U.S. Cities, September 1918-February 1919 

 

Dependent variable: Cumulative Flu  
Excess Death Rate 

Relative Peak  
Death Rate 

 (1) (2) (3) (4) 
Method: OLS TSLS OLS TSLS 
Constant 0.0046** 

(0.0013) 
0.0044** 
(0.0019) 

6.11*** 
(0.36) 

6.75*** 
(0.49) 

Non-pharmaceutical 
   interventions (NPIs) 

-0.0014 
(0.0016) 

-0.0010 
(0.0028) 

-6.2*** 
(1.3) 

-8.9*** 
(1.9) 

Flu-related gross death rate 
   1910-1916 

3.18*** 
(0.86) 

3.29*** 
(1.08) 

-- -- 

Log(heating-degree days) -0.00075** 
(0.00029) 

-0.00074** 
(0.00031) 

-- -- 

R-squared 0.45 0.45 0.35 0.28 
Standard error of  
   regression 

0.0011 0.0011 1.09 1.15 

Number of observations 43 43 43 43 
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Table 1, continued 

 

Dependent variable: Cumulative 
Flu Death 

Rate 

Cumulative 
Flu Death  

Rate 

Relative 
Peak Death 

Rate 

Relative 
Peak Death 

Rate 

Cumulative 
Flu Death 

Rate 

Relative 
Peak Death 

Rate 
 (5) (6) (7) (8) (9) (10) 
Method: OLS TSLS OLS TSLS OLS OLS 
Constant 0.0038*** 

(0.0013) 
0.0036** 
(0.0017) 

6.03*** 
(0.40) 

6.71*** 
(0.54) 

0.0034** 
(0.0015) 

7.00*** 
(0.51) 

Non-pharmaceutical  
   interventions, NPIs 

-- -- -- -- 0.0005 
(0.0020) 

-8.14*** 
(1.50) 

School closings 0.0055 
(0.0038) 

0.0060 
(0.0043) 

-6.6* 
(3.6) 

-8.3** 
(3.9) 

-- -- 

Prohibitions on  
   public gatherings 

-0.0123*** 
(0.0043) 

-0.0118** 
(0.0048) 

-4.4 
(4.5) 

-8.7* 
(5.2) 

-- -- 

Quarantine/isolation 0.0023 
(0.0025) 

0.0028 
(0.0033) 

-7.2*** 
(2.3) 

-9.5*** 
(2.7) 

-- -- 

p-value, 3 NPIs same  
   coefficients 

0.026 0.027 0.86 0.95 -- -- 

p-value, 3 NPI  
   coefficients=0 

0.043 0.059 0.001 0.001   

Public-health 
response time, PHRT 

-- -- -- -- 0.015 
(0.010) 

-21.0** 
(8.9) 

Flu-related gross  
   death rate 1910-16 

3.74*** 
(0.83) 

3.87*** 
(1.03) 

-- -- 3.73*** 
(0.93) 

-- 

Log(heating-degree  
   days) 

-0.00054* 
(0.00030) 

-0.00052* 
(0.00030) 

-- -- -0.00075** 
(0.00029) 

-- 

R-squared 0.55 0.55 0.35 0.29 0.48 0.43 
Standard error of  
   regression 

0.0010 0.0010 1.12 1.17 0.0011 1.04 

Number of  
   observations 

43 43 43 43 43 43 

 
 
***Significant at 1% level. 
**Significant at 5% level. 
*Significant at 10% level. 
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Notes to Table 1: 

Standard errors of coefficients are in parentheses.  OLS is ordinary least-squares.  TSLS 
is two-stage least-squares.  In columns 2 & 4, the instrumental variables are the distance from 
Boston and its square, the flu-related gross mortality rate 1910-1916, and the log of heating-
degree days.  In columns 6 & 8, the instrument list includes also the difference between school 
closings and prohibitions of public gatherings and between school closings and 
quarantine/isolation. 

The sample comprises 43 U.S. cities with center-city populations in 1910 above 100,000, 
observed for the 24 weeks from week ending September 14, 1918 to week ending February 22, 
1919.  NPIs is the time in effect of three forms of non-pharmaceutical interventions: school 
closings, prohibitions on public gatherings, and quarantine/isolation, from Markel, et al. (2007, 
Table 1 and supplemental figures).  This source also reports the public health response time or 
PHRT, which is the delay from an early point of the epidemic (defined as the time when the 
weekly death rate reaches twice a baseline death rate) to the implementation of the first NPI.  
The cumulative excess flu-related death rate is calculated from data on excess flu-related deaths 
given in Collins, et al. (1930, Appendix Table B).  (An apparent typo in their data for Pittsburgh 
for November 23, 1918, was corrected based on the information in Davis [1918].)  Their excess 
death rate is the difference between the flu-related death rate for each city and week and the 
median of estimated flu-related death rates for the corresponding city and week for 1910-1916.  
The relative peak death rate over the 24-week sample is the ratio of the peak weekly excess flu-
related death rate to the average of these weekly excess death rates.  The flu-related gross death 
rate for 1910-1916 is calculated from the median values shown for the September-February 
months in Collins, et al. (1930, Appendix Table A).  Heating-degree days for the full calendar 
year, observed around 2000, is from weatherdatadepot.com.  Distance from Boston is the 
minimum distance from each city to Boston according to Google Maps. 

The 43 cities covered are Albany, Baltimore, Birmingham, Boston, Buffalo, Cambridge, 
Chicago, Cincinnati, Cleveland, Columbus, Dayton, Denver, Fall River, Grand Rapids, 
Indianapolis, Kansas City MO, Los Angeles, Louisville, Lowell, Milwaukee, Minneapolis, 
Nashville, New Haven, New Orleans, New York City, Newark, Oakland, Omaha, Philadelphia, 
Pittsburgh, Portland OR, Providence, Richmond, Rochester, St. Louis, San Francisco, Seattle, 
Spokane, Toledo, Washington DC, and Worcester.
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Table 2 

Descriptive Statistics 

 

Variable: NPIs School 
closings 

Prohibitions 
on public 
gatherings 

Quarantine/ 
Isolation 

PHRT Cumulative 
excess flu-
related death 
rate 

Units years years years years years fraction of 
population 

Mean 0.24 0.10 0.10 0.05 0.02 0.0052 
Std dev. 0.13 0.06 0.05 0.07 0.02 0.0015 
Max 0.47 0.29 0.22 0.26 0.10 0.0082 
Min 0.08 0 0 0 -0.03 0.0022 
       
Variable: Relative 

peak death 
rate 

Distance 
(Boston) 

Gross flu-
related 
death rate 
1910-16 

Log(heating-
degree days) 

POP 
1910 

POP 
density 1910 

Units ratio 1000 miles fraction 
per year 

log(degrees 
Fahr-years) 

1000s 1000s/sq. mile 

Mean 4.57 1.01 0.00086 2.28 434 8.6 
Std dev. 1.32 0.92 0.00023 0.59 760 4.5 
Max 7.93 3.10 0.00147 2.83 4768 18.6 
Min 2.82 0 0.00040 0.00 100 1.7 

 

Note:  These statistics apply to variables used in Table 1. 
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Figure 1 

Relationship between Distance from Boston (thousands of miles)  

and NPIs (years of implementation) 

 

 

 

 

Note:  Distance from Boston is the minimum distance shown by Google Maps.  NPIs is from 
Markel, et al. (2007, Table 1).  
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Figure 2 

Relationship between NPIs and Cumulative Death Rate 

 

 

 

Note:  NPIs is from Markel, et al. (2007, Table 1).  Cumulative death rate is calculated from 
Collins, et al. (1930, Appendix, Table B).   
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Figure 3 

Relationship between NPIs and Relative Peak Death Rate  

 

 

 

 

Note:  NPIs is from Markel, et al. (2007, Table 1).  The relative peak death rate, defined as the 
ratio of the peak weekly death rate to the average weekly death rate, is calculated from Collins, 
et al. (1930, Appendix, Table B). 
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Figure 4 

Relationship between Distance from Boston (thousands of miles)  

and Public Health Response Time (PHRT in years) 

 

 

 

 

Note:  Distance from Boston is the minimum distance shown by Google Maps.  The public 
health response time or PHRT is from Markel, et al. (2007, Table 1). 
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