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Figure 1: CBOE Volatility Index (VIX)

1. Introduction

The Covid-19 shock is primarily a real (non-financial) shock with supply and demand elements.

However, the shock also generated a large reaction in financial markets that had the potential to

significantly exacerbate the direct drop in aggregate demand caused by the real shock. Figure

1 illustrates that the (implied) stock market volatility spiked to levels comparable to the global

financial crisis of 2008—2009. Other indicators of financial distress exhibited similar patterns–

e.g., investment grade and high yield spreads tripled, and the S&P 500 dropped by 30% in a

matter of weeks (a drop, per unit time, larger than the worst drop during the Great Depression).

The Fed (with the backing of the Treasury) had to pledge close to 20% of US GDP in funding

for a wide range of credit and market supporting facilities to stop the free fall.1 Central banks

in the Group of Seven countries purchased $1.4 trillion of financial assets in March alone. The

final story is yet to be told.

1Here is a brief chronology of the Fed’s main policy actions since early March until April 9th: On 03/03,
implements a 50bps emergency rate cut; on 03/12, adds repos of up to $500b/week, purchases wider range of
securities under current $60b/month program; on 03/15, cuts rates by 100bps to zero and initiates QE bond buying
program of $700b, lowers swap lines with major central banks by 25bps; on 03/17, establishes a commercial paper
funding facility to provide stability to short-term CP market; on 03/19, launches USD liquidity-swap lines with
a broad range of countries, including major Emerging Markets; on 04/09, implements $2.3t emergency measures,
among them a $500b Municipal Liquidity Facility for state and local governments, a $600b Main Street Lending
program, and a Paycheck Protection Program Liquidity Facility for small businesses; expands the Primary and
Secondary Market Corporate Credit Facilities and the term loan facility to buy ABS securities to $850b and
includes asset purchases of HY bonds, HY ETFs, CLOs, and CMBS securities. All other major central banks
around the world have also pursued unprecedented financial markets interventions.
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Motivated by these events, in this paper we: (i) provide a model of the endogenous risk

intolerance and severe aggregate demand contractions following a large real shock; and (ii)

demonstrate the effectiveness of Large Scale Asset Purchases (LSAPs) in addressing these con-

tractions.

Our model builds on a two-period version of the macroeconomic model in Caballero and

Simsek (2020b). That model is a variant of the New Keynesian model, but formulated in terms

of a risk-centric decomposition. Specifically, there we decompose the demand block of the equi-

librium into two relations: an output-asset price relation that captures the positive association

between asset prices and aggregate demand; and a risk balance condition that describes asset

prices given risks, risk attitudes, beliefs, and the interest rate. This decomposition facilitates

the study of the macroeconomic impact of a variety of forces that affect risky asset prices.2 In

the current model, we extend that analysis by splitting investors into risk-tolerant and risk-

intolerant agents– we dub the risk tolerant agents “banks”(interpreted broadly to include the

shadow financial system and other agents able/willing to hold substantial risk) and the risk in-

tolerant agents “households”(also interpreted broadly). The key implication of this assumption

is that banks are levered in equilibrium, and therefore are highly exposed to aggregate shocks

and the sequence of events that these shocks may trigger.3

To fix ideas, consider a large negative supply shock (e.g., the supply component of the Covid-

19 shock).4 This shock exerts downward pressure on risky asset prices (which include credit,

equity, real estate, as well as other assets). As banks incur losses, their leverage rises. With

higher leverage, banks require a higher Sharpe ratio (risk premium per unit of risk) to hold the

same amount of risky assets. Risk-intolerant households also require a higher Sharpe ratio to

hold the risky assets unloaded by banks wishing to reduce their leverage. Both of these channels

lead to a rise in the market’s required Sharpe ratio.

As a benchmark, suppose that the banks’ initial leverage is not too high and the supply

shock is temporary. In this case, a small decline in asset prices may be all that is needed to

increase the Sharpe ratio as much as the market demands. Asset prices and aggregate demand

are relatively high and the natural interest rate (“rstar”) may not decline. Intuitively, supply is

temporarily low but asset prices and demand per unit of current supply are not necessarily low,

as investors expect a speedy recovery.

2The decomposition is suported by a growing empirical literature that shows risky asset prices can substantially
affect aggregate demand. See Gilchrist and Zakrajšek (2012) on the effect of credit spreads on investment and
consumption; Mian and Sufi (2014) and Chodorow-Reich et al. (2019) on the effect of house and stock prices,
respectively, on consumption and (nontradable) employment; Pflueger et al. (forthcoming) on the effect of financial
market risk perceptions on economic activity and interest rates.

3Moreover, banks’leverage and exposure can be indirect. For example, the US entered the Covid-19 shock with
well capitalized (regular) banks and highly indebted corporations. However, to the extent that banks had lent to
these highly levered corporations, banks themselves are highly levered with respect to large aggregate shocks. It
is no accident that on 04/14/2020 JPMorgan Chase announced its highest loan-loss provision in a decade. Since
then, all other major banks have made similar announcements in their earnings reports.

4As we show in Section 2, adding a demand shock exacerbates our main results. We chose to focus on the
supply component of the Covid-19 shock because it allows us to isolate the endogenous component of the aggregate
demand contraction.
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In contrast, we focus on scenarios in which banks’ initial leverage is high (or the supply

shock is suffi ciently large). In this case, even a temporary supply shock greatly reduces effective

risk tolerance and increases the required Sharpe ratio. This higher required Sharpe ratio exerts

substantial downward pressure on asset prices and aggregate demand, and reduces “rstar.”The

decline in risk tolerance overwhelms the expected recovery effect and induces a disproportionate

decline in demand that exceeds the decline in supply. When the supply shock is more persistent,

the downward pressure on asset prices is stronger and the (negative) gap between aggregate

demand and supply becomes even greater.

The first line of defense is conventional monetary policy that cuts the interest rate (consistent

with lower “rstar”). Cutting interest rates provides the market with the greater Sharpe ratio

that it requires and relieves the downward pressure on asset prices. Asset prices and aggregate

demand decline in proportion to the reduction in supply but no more. However, if the interest

rate is constrained, then asset prices decline beyond the reduction in supply. Lower prices

provide the market with a greater Sharpe ratio but they also generate a demand recession:

output falls beyond the reduction in potential output. To make matters worse, the decline in

asset prices further reduces the banks’wealth share (and raises their leverage), which further

increases the required Sharpe ratio and depresses asset prices, triggering a downward spiral. We

show that, when banks’initial leverage is suffi ciently high, the feedback between asset prices and

risk intolerance becomes so strong that multiple equilibria are possible. In the worst of these

equilibria, banks go bankrupt.

This description of events suggests that policies where the consolidated government (e.g.,

the Fed and the Treasury in the U.S.) absorbs some of the risk that banks are struggling to

hold can be highly effective. We loosely refer to these policies as large-scale asset purchases

(LSAPs). We show that, by transferring risk to the government’s balance sheet, LSAPs reduce

the market’s required Sharpe ratio. This improves asset prices and aggregate demand and

mitigates the recession. Moreover, LSAPs are powerful because they reverse the downward

spiral. In particular, when the aggregate demand amplification of the supply shock is severe,

the government might find it optimal to deploy LSAPs even if it is less risk tolerant than

the market. The government optimally chooses larger LSAPs when it has greater future fiscal

capacity. In the Covid-19 episode, the spike in VIX began to reverse immediately after the

major central banks’policy actions (Figure 1 and Footnote 1), which suggests the interventions

were effective in containing the initial downward spiral.

Finally, we extend the model to show how firms’debt overhang problems interact with our

risk-centric mechanism. The corporate debt overhang problem creates a feedback between asset

prices and productivity. This feedback makes the market’s effective risk tolerance (and hence the

required Sharpe ratio) more sensitive to asset prices, which in turn strengthens our amplification

mechanism as well as the effectiveness of LSAPs.

Section 2 describes the model. Section 3 shows how LSAPs operate in this environment.

Section 4 presents an extension with debt overhang. Section 5 concludes. Appendix A contains
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derivations omitted from the text.

Literature review. At a methodological level this paper adopts the risk-centric perspective

in Caballero and Simsek (2020b,a). The novel ingredient is that the supply shock endogenously

lowers risk tolerance. The mechanism of endogenous leverage and asset price spirals is also

central in He and Krishnamurthy (2013); Brunnermeier and Sannikov (2014).5 Their focus is

on the financial frictions on the supply side of the economy rather than on the heterogeneity

of investors’portfolios and the feedback loops with aggregate demand when monetary policy is

constrained. Also related is Caballero and Krishnamurthy (2009), who show how the endogenous

leverage of the US economy caused by the global demand for safe assets creates instability with

respect to supply shocks, but they do not discuss the role of aggregate demand and central bank

policy.

While they do not look at the effect of large real shocks, the mechanism in Kekre and Lenel

(2020) is close to ours. In particular, they calibrate a model in the spirit of Caballero and Simsek

(2020b) and show the power of monetary policy in affecting the risk premium when agents have

heterogeneous risk tolerance. Similarly, Caballero and Farhi (2018) show that when a large

share of wealth is allocated to extremely risk-intolerant agents (Knightians) in a New Keynesian

framework with a zero lower bound on interest rates, the economy may fall into a “safety trap.”

Like our paper, they show that asset market policies where the government absorbs part of the

risk of the economy (and replace it with safe assets) can be highly effective. However, their focus

is on the macroeconomic implications of a chronic scarcity of safe assets rather than on the role

of endogenous risk intolerance following a large real shock.

In terms of whether demand factors can exacerbate the direct effect of a supply shock, the

closest paper to ours is Guerrieri et al. (2020) (see also Baqaee and Farhi (2020); Bigio et al.

(2020)). They provide a clean decomposition of the ingredients needed for an affi rmative answer

in a two-period, deterministic model. They conclude that, in such a model, aggregate demand

cannot exacerbate the supply recession when the economy has a single sector, regardless of

whether markets are complete or incomplete. In contrast, they show that in a multi-sector

environment there are configurations of preference parameters where demand responds by more

than supply, especially if markets are incomplete. Our risk-based mechanism is orthogonal to

theirs. In fact, our model has a single sector.

The Covid-19 shock has triggered a large response among macroeconomists. For example,

Eichenbaum et al. (2020); Faria-e Castro (2020) embed pandemic shocks and their constraints

on economic activity within DSGE models and study the role of fiscal policy and different con-

tainment strategies. Baker et al. (2020) document the dramatic spike in uncertainty and study

its impact in a real business cycle model. Our analysis is complementary as we emphasize the

excessive aggregate demand contraction that results from supply shocks– which is exacerbated

by uncertainty– and we highlight the damage caused by the pricing of uncertainty. Fornaro

5See also Kiyotaki and Moore (1997); Shleifer and Vishny (1997); Lorenzoni (2008); Geanakoplos (2010); Adrian
and Shin (2010); Beaudry and Lahiri (2014); Di Tella (2017); Dávila and Korinek (2018); Cao et al. (2019).
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and Wolf (2020) provide a stylized New Keynesian model and capture the Covid-19 shock as a

decline in (exogenous and endogenous) expected growth. Their mechanisms and policy analysis

do not operate through endogenous spikes in risk intolerance and asset price spirals, which is

our focus. Correia et al. (2020) use the 1918 flu pandemic to empirically analyze the economic

costs of pandemics and find a role for both supply- and demand-side channels, consistent with

our analysis.6

Our paper is also related to a growing empirical finance literature that analyzes the drivers

of asset prices in the Covid-19 recession (e.g., Gormsen and Koijen (2020); Landier and Thes-

mar (2020); Ramelli and Wagner (forthcoming); Croce et al. (2020)). This literature typically

attributes the large decline and the subsequent recovery of risky asset prices in the Covid-19

recession to changes in the risk premium. From the lens of our model, the initial shock and its

amplification increased the risk premium, whereas LSAPs helped to reduce it. In line with this

interpretation, the literature finds that the central bank asset purchases had a large positive

impact on asset prices (Fed (2020); Cavallino and De Fiore (2020); Haddad et al. (2020)) even

in emerging markets (Arslan et al. (2020)).

Finally, our policy analysis is related to a growing literature on the role of central bank asset

purchases in stimulating aggregate demand when conventional monetary policy is constrained.

Empirical evidence suggests these policies have a meaningful impact on asset prices (see Bernanke

(2020)) but the underlying mechanisms are not fully understood. The literature emphasizes

either financial frictions (e.g., Gertler and Karadi (2011); Del Negro et al. (2017)), portfolio

balance effects in segmented markets (e.g., Vayanos and Vila (2009); Ray (2019)), or signaling

effects (see, e.g., Bhattarai et al. (2015)). The mechanism in our paper is different and relies on

the government’s ability to absorb aggregate risk using its future tax capacity in a non-Ricardian

model (see also Silva (2016)).7

2. A Model of Endogenous Risk Tolerance

We present a simple two period model that illustrates how a supply shock can reduce risk toler-

ance in financial markets and induce an aggregate demand contraction that amplifies the supply

shock. Later on, we discuss how adding exogenous demand shocks (as in the case for Covid-19)

strengthens our results. The mechanism operates through heterogeneous risk tolerance: The

decline in asset prices due to the supply shock lowers the wealth share and increases the leverage

of risk-tolerant agents. As these agents attempt to lower their exposure to risk, the effective risk

tolerance declines and reduces asset prices and aggregate demand. The demand-induced decline

6There are also several papers that embed SIR type epidemiological models into macroeconomic models and
study the optimal containment policy that balances health concerns and economic costs (e.g., Alvarez et al. (2020);
Gourinchas (2020); Berger et al. (2020); Callum et al. (2020); Bethune and Korinek (2020)). We do not address
this important trade-off and take as given the broad supply implications of the containment policies.

7Our policy mechanism builds upon the extensive literature spurred by Holmström and Tirole (1998) on the
taxation power of the government to expand the supply of liquidity.
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in asset prices further lowers the wealth share of risk-tolerant agents, and so on.

A two-period risk-centric aggregate demand model. Consider an economy with two

dates, t ∈ {0, 1}, a single consumption good, and a single factor, capital. There is no investment
or depreciation and capital is normalized to one unit. We let zt denote the productivity of capital

in period t. Potential output is equal to productivity, zt, but actual output can be below this

level due to a shortage of aggregate demand, yt ≤ zt. We assume output is equal to its potential
at the last date, y1 = z1, and focus on the endogenous determination of output at the previous

date, y0 ≤ z0. We assume productivity at date 1 is uncertain and log-normally distributed,

log y1 = log z1 ∼ N
(
log z1 −

σ2

2
, σ2
)
. (1)

Note that z1 captures the expected productivity, and σ captures its volatility.

There are two types of assets. There is a “market portfolio” that represents claims to all

output (which accrue to production firms as earnings), and a risk-free asset in zero net supply.

We denote the (ex-dividend) price of the market portfolio at date 0 with z0Q0, so that Q0
corresponds to the price per unit of productivity. We denote the log risk-free interest rate with

rf , and the log return of the market portfolio with

r (z0, z1) = log

(
z1
z0Q0

)
. (2)

There are two types of agents, i ∈ {b, h}. Type b agents (“banks”) are more risk tolerant
than type h agents (“households”). Formally, agents have Epstein-Zin utility with risk aversion

parameters given by 1/τ i that satisfy τ b > τh. We refer to τ i as agent i’s risk tolerance. Agents

also have common EIS equal to one (for simplicity), and common discount factor denoted by

e−ρ.

Agents are endowed with initial positions that satisfy:

ãb0 = max
(
0, ab0

)
and ãh0 = min

(
y0 + z0Q0, a

h
0

)
, (3)

where

ab0 = κ0 (y0 + z0Q0)−
(
1 + e−ρ

)
κ0l0 (4)

ah0 = (1− κ0) (y0 + z0Q0) +
(
1 + e−ρ

)
κ0l0,

for some κ0, l0 ∈ (0, 1) .

Eq. (4) describes banks’endowments and net wealth assuming they are not bankrupt. Banks

initially hold a fraction of the market portfolio, κ0, and owe (1 + e−ρ)κ0l0 units of safe debt. We

have normalized these positions so that in the benchmark, defined as the case when there is no

demand recession (effi cient) and the supply shock is normalized to one, z0 = 1, banks’leverage

ratio (defined as their debt-to-asset ratio) is l0. Households hold the mirror image positions:
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they hold the residual fraction of the market portfolio, 1− κ0, as well as banks’safe debt. Eq.
(3) adjusts agents’net wealth for the possibility of bankruptcy. When ab0 < 0, the value of banks’

assets is less than their outstanding debt. In this case, banks are bankrupt and their actual net

wealth is zero, ãb0 = 0. Households take over banks’assets and hold all of the market portfolio,

so their net wealth becomes ãh0 = y0 + z0Q0.

Given the initial endowments in (3), agents choose their consumption and new asset positions,

ci0 and a
i
0, and what fraction of their assets to allocate to the market portfolio, ω

i
0, with the

residual fraction invested in the risk-free asset. We formally state and solve the investors’

problem in the appendix. The assumption on the EIS implies that households spend a fraction

of their wealth,

ci0 =
1

1 + e−ρ
ãi0 and ai0 =

e−ρ

1 + e−ρ
ãi0. (5)

Agents’optimal weight on the market portfolio is approximately given by

ωi0σ ' τ i
E [r (z0, z1)] +

σ2

2 − r
f

σ
. (6)

This is a standard mean-variance portfolio optimality condition that says the risk of agents’

optimal portfolio (the left side) is proportional to the Sharpe ratio on the market portfolio (the

right side). This equation holds exactly in continuous time but only approximately in discrete

time. We assume the equation is exact to simplify the analysis.

The asset markets clearing condition can be written as∑
i

ωi0a
i
0 = z0Q0. (7)

The supply side of the economy is described by New Keynesian firms that have fixed nominal

prices. These firms meet the available demand at these prices as long as prices are higher than

their marginal cost. Output is determined by the aggregate demand for goods (consumption)

up to the capacity constraint,

y0 =
∑
i

ci0 ≤ z0. (8)

Finally, we assume that the interest rate policy attempts to replicate the supply-determined

output level, subject to a lower bound constraint, rf ≥ 0. Specifically, suppose monetary policy
follows a standard Taylor rule, rf = max (0, ψ (y0 − z0)). We focus on the limit ψ → ∞, in
which case this rule implies that either the interest rate is positive and output is at its potential,

rf = rf∗ > 0 and y0 = z0; or the interest rate is constrained and there is a demand recession,

rf = 0 and y0 ≤ z0. Here, rf∗ denotes the natural interest rate consistent with potential output,
y0 = z0 [see Eq. (17) below].
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Equilibrium characterization. We next characterize the equilibrium. Using Eq. (5), aggre-

gate consumption is a fraction of aggregate wealth,

c0 =
1

1 + e−ρ
(y0 + z0Q0) . (9)

Using y0 = c0 [cf. Eq. (8)], we obtain the following equation:

y0 = eρz0Q0. (10)

We refer to this equation as the output-asset price relation. This condition says that higher asset

prices increase aggregate wealth and consumption, which leads to greater output (see Remark

1 for discussion and various enrichments).

Setting y0 = z0 in (10), we obtain the effi cient level of asset price per productivity as

Q∗ = e−ρ. (11)

This is the asset price per unit of productivity that ensures the economy operates at the supply

determined level. If there is a supply shock that reduces z0, asset prices should fall proportionally

to z0Q∗, but no further. Any further reduction in asset prices would trigger a demand recession

as illustrated by (10).

Next consider the characterization of the equilibrium asset price, z0Q0. To facilitate this

analysis, we define banks’(post-z0-shock) wealth share as

α0 ≡
ab0
z0Q0

.

Households’wealth share is the residual, 1 − α0 ≡ ah0
z0Q0

. Using this notation, we can write the

asset market clearing condition (7) as

α0ω
b
0 + (1− α0)ωh0 = 1. (12)

The equilibrium asset price is determined by this condition together with agents’wealth shares,

α0, 1− α0, and their optimal portfolio weights, ωb0, ωh0 .
To calculate the wealth shares, we use the output-asset price relation in (10) together with

agents’initial positions in (3) and their optimal saving rule in (5). For the banks’wealth share,

we obtain

α0 = α0 (z) ≡ max
(
0,

(
1− l0

z

)
κ0

)
where z = z0

Q0
Q∗
. (13)

To understand this expression, first consider the benchmark with Q0 = Q∗ and the supply shock

normalized to one, z0 = 1. In this benchmark, z = 1 and banks’wealth share is given by

α0 = (1− l0)κ0: their initial assets net of their leverage. Now suppose asset valuations fall,
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z = z0 (Q0/Q
∗) < 1, either because of a decline in productivity, z0, or a decline in the asset

price per productivity, Q0. This causes banks’wealth share to fall below the benchmark (and

households’wealth share increases above the benchmark). Intuitively, since banks are levered,

a decline in asset valuations reduces their wealth more than it reduces households’wealth. This

mechanism will play an important role for our results. If asset valuations decline beyond banks’

initial leverage, z = z0 (Q0/Q
∗) < l0, banks are bankrupt and their wealth share falls to zero.

To calculate the optimal portfolio weights, we use Eq. (6) together with the expected return

on the market portfolio from Eqs. (1− 2) to obtain

ωi0σ = τ i
log z1z0 − log (Q0)− r

f

σ
. (14)

Combining Eqs. (12− 14), we arrive at the central equation of our analysis, the risk balance
condition:

σ

τ0

(
z0

Q0
Q∗

) = log z1z0 − log (Q0)− r
f

σ
. (15)

Here, τ0 (·) denotes the effective risk tolerance defined as

τ0 (z) ≡ α0 (z) τ
b + (1− α0 (z)) τh

= max

(
τh, τh +

(
1− l0

z

)
κ0

(
τ b − τh

))
. (16)

Eq. (15) says that the risk the economy generates normalized by the effective risk tolerance

(the left side) should be compensated by a suffi ciently high reward for risk (the right side).

Specifically, the right side is the actual Sharpe ratio on the market portfolio: the risk premium

per unit of risk. In the rest of the paper, we refer to the expression on the left side as the

required Sharpe ratio, and note that the equilibrium in risk markets obtains when the required

and actual Sharpe ratios are the same.

Eq. (16) illustrates that the effective risk tolerance– which determines the required Sharpe

ratio– depends on a wealth-weighted average of investors’risk tolerances. The second line solves

for the effective risk tolerance and shows that it is increasing in z = z0
Q0
Q∗ . In particular, a decline

in asset prices– either through reduced productivity, z0, or reduced valuation per productivity,

Q0– reduces the effective risk tolerance. Lower asset prices reduce banks’wealth share, which

lowers the effective risk tolerance since τ b > τh. If banks go bankrupt, the effective risk tolerance

is the households’tolerance, τ0 (z) = τh.

The equilibrium is then determined by the output-asset price relation (10), the risk balance

condition (15), and monetary policy.

Remark 1. The output-asset price relation can also be interpreted as a reduced form for various
channels that link asset prices and aggregate demand. For example, suppose we split consumers

(and income) between our agents (share γ) and a group of hand-to-mouth consumers (share

9



1− γ). Then, Eq. (9) becomes

c0 =
γ

1 + e−ρ
(y0 + z0Q0) + (1− γ) y0.

Using y0 = c0, we once again obtain Eq. (10). In Caballero and Simsek (2020b) we show that

adding investment also leaves the relation qualitatively unchanged (due to a Q-theory mecha-

nism); and in Section 4 we show that adding a corporate debt overhang problem strengthens the

relation (output becomes even more sensitive to asset prices).

Temporary supply shocks can reduce aggregate demand and interest rates. We

next consider the comparative statics of temporary supply shocks– a reduction in z0 keeping z1
unchanged. An example is the Covid-19 shock. In this context, we illustrate how, when banks’

outstanding leverage is suffi ciently high, temporary supply shocks reduce aggregate demand by

more than the aggregate supply shock, and hence reduce interest rates.

First suppose there is no lower bound on the interest rate. In this case, monetary policy

always ensures output is equal to its supply-determined level, rf = rf∗ and y0 = z0. This

outcome requires the asset price per productivity to be at its effi cient level, Q0 = Q∗ [cf. (11)].

Combining this with Eq. (15), the interest rate also needs to be at a particular level,

rf∗ = ρ+ log
z1
z0
− σ2

τ0 (z0)
. (17)

Consider a decline in z0 keeping z1 unchanged. Eq. (17) illustrates that this decline exerts

two effects on the risk-free interest rate. On the one hand, a decline in z0 increases the expected

growth rate, z1z0 , which increases the interest rate. Intuitively, while asset prices are currently

relatively low, they are expected to recover. This raises the Sharpe ratio and induces agents to

invest in the market portfolio [cf. (14)], which exerts upward pressure on the asset price per

productivity. The interest rate increases to keep asset prices at the effi cient level. On the other

hand, a decline in z0 also reduces banks’wealth share [cf. (13)], which decreases the interest

rate. Since banks are levered, a decline in asset valuations reduces their wealth more than the

households’wealth. This decreases effective risk tolerance and puts downward pressure on asset

prices and the interest rate.

The second channel dominates (locally), dr
f∗

dz0
> 0, as long as the parameters satisfy z0 > l0

(no bankruptcy) and

l0
z0
κ0

(
τ b − τh

)
>

(
τ0 (z0)

σ

)2
, (18)

where τ0 (z0) = τh +

(
1− l0

z0

)
κ0

(
τ b − τh

)
.

All else equal, temporary supply shocks are more likely to reduce aggregate demand by more
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than supply when agents’risk tolerance is more heterogeneous (greater τ b − τh, keeping τ0 (z0)
constant), when banks have greater initial leverage (greater l0), and when the shock is more

severe (lower z0). In fact, when households are very risk intolerant, τh = 0, condition (18) is

satisfied whenever the debt to productivity ratio exceeds a threshold, l0z0 ≥ d̃ ∈ (0, 1).
For the rest of the paper, we isolate our leverage mechanism and simplify the analysis by

assuming

log z1 = log z0 + g, (19)

where g is an exogenous growth parameter. Hence, we focus on permanent supply shocks, which

simplifies the equations but is not necessary for our results: we could have instead worked with

parameters that satisfy (18). With Eq. (19), the risk-free interest rate is given by

rf∗ = ρ+ g − σ2

τ0 (z0)
. (20)

In this case a decrease in z0 always (weakly) reduces aggregate demand and the interest rate.

Supply shocks can trigger downward asset price spirals. We next consider the case

where there is a lower bound on the interest rate. In this case, the supply shock can cause a

demand recession. We assume the parameters satisfy [cf. (16)]

τ0 (1) ≥
σ2

ρ+ g
> τh. (21)

The first inequality ensures that when supply is equal to its benchmark level, z0 = 1, there is an

equilibrium with an unconstrained (positive) interest rate. The second inequality ensures that,

if households control all the wealth in the economy, the interest rate is constrained (zero).

Our next result characterizes the equilibrium for different levels of the productivity shock,

z0. To state the result, we define the normalized asset price per productivity, Q̃0 ≡ Q0
Q∗ ∈ [0, 1],

which simplifies the notation. We also define two cutoffs for productivity that we denote with

zh and z∗.

Below the first cutoff, zh, there is an equilibrium where banks go bankrupt and households

control all wealth. To calculate this cutoff, suppose there is bankruptcy. Using the risk balance

condition (15) with τ0 = τh (and rf = 0), we obtain

Q̃h =
Qh

Q∗
≡ exp

(
g + ρ− σ2

τh

)
< 1. (22)

Note that Q̃h is the minimum normalized asset price. Suppose the price falls to this level,

Q̃0 = Q̃h. Then, Eq. (13) implies banks will indeed go bankrupt as long as productivity is

suffi ciently low:

z0 < zh ≡ l0

Q̃h
. (23)

11



When z0 < zh, there is always a bankruptcy equilibrium. Note that the cutoff zh is increasing

in l0: bankruptcy is more likely when banks have greater initial leverage.

The second cutoff, z∗, is the productivity level above which there is a supply determined

equilibrium with the effi cient price Q̃0 = 1. To calculate this cutoff, we use the risk balance

condition (15) with Q̃0 = 1 and rf = 0 to obtain the value of z∗ < 1 that solves

τ0 (z
∗) =

σ2

ρ+ g
. (24)

When z0 > z∗, there is always an equilibrium with the effi cient asset price.

Proposition 1. Consider the equilibrium with condition (21). Let zh and z∗ denote the cutoffs

defined by Eqs. (23) and (24).

(i) If z0 > zh, then the equilibrium is unique and does not feature bankruptcy. If z0 ∈
(
zh, z∗

)
(assuming the interval is nonempty), then the equilibrium features an interior asset price, Q̃0 ∈(
Q̃h, 1

)
, that solves

σ

τh +
(
1− l0

z0Q̃0

)
κ0 (τ b − τh)

=
g + ρ− log

(
Q̃0

)
σ

. (25)

Reducing productivity reduces the equilibrium price per productivity, dQ̃0dz0
> 0. If z0 ≥ z∗ (as well

as z0 > zh), the equilibrium features the effi cient asset price, Q̃0 = 1.

(ii) If z0 ≤ zh, then there is a bankruptcy equilibrium with the low asset price, Q̃0 = Q̃h < 1.

There might also be other equilibria. When z0 ∈
[
z∗, zh

]
(assuming the interval is nonempty),

there is also an equilibrium with the effi cient asset price, Q̃0 = 1.

The first part of Proposition 1 shows that the equilibrium is unique as long as the shock

is not severe enough to trigger bankruptcy (z0 > zh). In this region, when the supply shock

is below a cutoff (z0 < z∗), the equilibrium features a demand recession. More severe supply

shocks lead to lower asset prices and more severe demand recessions. As we will see below,

these supply shocks also generate downward spirals and have an amplified effect on asset prices

and aggregate demand. The second part of Proposition 1 shows that, when the shock is severe

enough to trigger bankruptcy (z0 < zh), these amplification mechanisms can lead to multiple

equilibria.

To illustrate the first part, consider parameters that lead to a unique and interior equilibrium

price, zh < z0 < z∗. Substituting rf = 0 and Q̃0 = Q0/Q
∗ in the risk balance condition (15),

we find that the price solves Eq. (25). This equation has a natural interpretation. The right

side is the actual Sharpe ratio (with constrained interest rate rf = 0). It is decreasing in Q̃0:

lower asset prices increase the risk premium and the Sharpe ratio. The left side is the required

Sharpe ratio (assuming there is no bankruptcy). It is also decreasing in Q̃0: lower asset prices
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Figure 2: Effect of supply shocks when the interest rate is constrained– the case with a unique
equilibrium.

transfer (relative) wealth from banks to households, which reduces the effective risk tolerance

and requires a greater Sharpe ratio for agents to absorb the risk.

Figure 2 plots these curves and the resulting equilibrium for a particular parameterization

that satisfies zh < z∗. The dashed lines correspond to the benchmark productivity level, z0 = 1,

which satisfies z0 > z∗ (by assumption). In this benchmark case, there is a corner equilibrium

in which the asset price is effi cient, Q̃0 = 1, and the interest rate is positive, rf > 0. The

solid lines consider a lower productivity level, z0 ∈
(
zh, z∗

)
, and illustrate how a supply shock

can generate severe downward spirals in asset prices. Starting from the benchmark, a decline

in productivity reduces asset prices and effective risk tolerance. This shifts the curve for the

required Sharpe ratio upward. The central bank reacts by cutting interest rates, which increases

the actual Sharpe ratio, but the central bank encounters a lower bound constraint, rf = 0.

When the risk free rate cannot fall any farther, asset prices and aggregate demand decline more

than the decline in productivity– to increase the actual Sharpe ratio. The reduction in asset

prices further damages banks’ balance sheets and increases the required Sharpe ratio, which

further reduces asset prices, and so on.

The figure also illustrates that, due to this amplification mechanism, the Sharpe ratio rises

more than the initial impact of the shock (captured by the vertical shift from the dashed to the

solid red line). Consequently, the asset price falls considerably more than the direct effect of

the negative supply shock. Moreover, there is greater amplification when the risk tolerance and

the required Sharpe ratio are more sensitive to asset prices (when the solid red line is steeper),

which happens with greater l0 or lower z0 [cf. Eq. (25)]. Hence, supply shocks induce a larger

contraction in asset prices and aggregate demand when banks have greater leverage or the shock
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Figure 3: Effect of supply shocks when the interest rate is constrained– the case with multiple
equilibria.

is more severe.

To illustrate the second part of Proposition 1, consider parameters that allow for bankruptcy

and multiple equilibria, z∗ < z0 < zh. Since z0 < zh, there is a bankruptcy equilibrium with

the lowest asset price, Q̃0 = Q̃h. However, since z0 > z∗, there is also an equilibrium with the

effi cient asset price, Q̃0 = 1.

Figure 3 illustrates these equilibria by plotting the required and the actual Sharpe ratio

curves. The high and the low-price equilibria are marked with H and L, respectively.8 Starting

from the high-price equilibrium H, a decline in asset prices weakens banks’ balance sheets

substantially, which rapidly raises the required Sharpe ratio. This in turn reinforces the large

fall in asset prices and culminates in the low-price equilibrium L that features bankruptcy. As

this discussion suggests, multiplicity is more likely when banks have greater leverage. In fact,

the parameters used in Figure 3 are the same as those used in Figure 2, with the difference that

we raise banks’initial leverage l0 (and also adjust banks’risk tolerance τ b to keep the benchmark

risk tolerance τ0 (1) unchanged).

Adding demand shocks. In our analysis we focus on the endogenous response of asset

prices and aggregate demand to a large supply shock. However, the Covid-19 shock is a complex

combination of supply and demand shocks. There are at least three ways to introduce these

demand shocks into our framework. First, as in Caballero and Simsek (2020b), agents’ risk

perception, σ, may rise. Second, consumers may become more conservative and lower their

8There is also an interior equilibrium that corresponds to the intersection of the two curves. However, this
equilibrium is unstable: small deviations would bring the equilibrium to either H or L.

14



discount rate, ρ (increase saving). Third, consumers may become more pessimistic about growth,

g, as in Lorenzoni (2009); Caballero and Simsek (2020a). Eq. (20) illustrates that all these

channels put direct downward pressure on rf∗, which translates into a larger aggregate demand

recession once rf reaches the lower bound.

3. Large-scale Asset Purchases

The powerful downward spiral caused by the endogenous decline in risk tolerance suggests that

policy interventions that absorb some risky assets during such events can be very powerful.

We now introduce unconventional monetary policy in the form of large-scale asset purchases

(LSAPs) and demonstrate its effectiveness in reversing the spiral.

Modeling LSAPs requires introducing a fiscal authority: even if the asset purchases are

made by the central bank, the gains and losses from these positions ultimately accrue to the

treasury. We merge the fiscal and monetary authorities into a third agent which we refer to as

the government and denote by superscript g.

Formally, the government is endowed with no resources in period 0 and a given amount of

resources in period 1, denoted by ηgz1. We think of ηgz1 as the government’s future tax capacity.

It can be “microfounded” by introducing a group of agents other than banks and households

(e.g., the future generation) from which the government will be able to extract some taxes. We

assume future tax capacity is proportional to future productivity, which simplifies the analysis

but is not necessary for our results (in fact, making the government’s tax capacity safer would

strengthen our results). For simplicity the government starts with no assets. It then decides

whether and how much to borrow, bg0 ≥ 0, and what fraction of the borrowed funds to invest
in the risky asset, ω̃g0 ≥ 0, with the residual fraction invested in the safe asset. In period 1, the
government receives its tax revenues as well as the returns from its investments, pays back its

debt, and spends the residual amount.

In the appendix, we show that the government’s budget constraint can be rewritten anal-

ogously to the banks’and households’budget constraints. Specifically, the government’s net

wealth in period 0 is

ag0 = z0Q0η
g, (26)

and its total fraction of wealth invested in the market portfolio is

ωg0 = 1 +
bg0ω̃

g
0

ag0
. (27)

The government can be thought of as selling its future tax receipts and reinvesting the proceeds

in the available assets. The value of its tax receipts is given by (26) and its net investment

is given by (27). The requirements bg0 ≥ 0 and ω̃
g
0 ≥ 0 translate into a requirement that the

government takes a levered position, ωg0 ≥ 1. The government is already fully exposed to the
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market portfolio through its future tax revenues, and it can further increase its exposure by

borrowing and investing in risky assets.

Finally, the presence of the government changes the asset market clearing condition [cf. (7)]:∑
i∈{b,h,g}

ωi0a
i
0 = z0Q0 (1 + η

g) . (28)

The right side illustrates that the government’s tax capacity implicitly expands the supply of the

market portfolio. The left side illustrates that the government also expands demand. Given a

government portfolio choice ωg0 ≥ 1, our definition of equilibrium generalizes in straightforward

fashion. In the rest of the section, we characterize the equilibrium taking ωg0 ≥ 1 as given and
illustrate the comparative statics of LSAPs. We then introduce the government’s preferences

and characterize the optimal LSAP policy.

Equilibrium with large-scale asset purchases. Investors’ optimality conditions are the

same. Therefore much of the earlier analysis applies in this setting. Specifically, Eqs. (10) , (13),

and (14) still hold. Using Eq. (28), we also obtain the analogue of the market clearing condition

(12):

α0ω
b
0 + (1− α0)ωh0 + ηgω

g
0 = 1 + η

g. (29)

Combining these observations, we obtain the analogue of the risk balance condition (15):

σ (1− λ)
τ0 (z0Q0/Q∗)

=
g − log (Q0)− rf

σ
, (30)

where λ = ηg (ωg0 − 1) and τ0 (z) is given by the same expression as before [cf. (16)].
Eq. (30) illustrates that LSAPs effectively take some risk out of the market. Specifically, the

risk balance condition is equivalent to an economy in which the risk is reduced by a fraction,

λ = ηg (ωg0 − 1). How much risk LSAPs remove depends on the government’s tax capacity, ηg,
and the riskiness of its portfolio, ωg0 ≥ 1. When ηg = 0 or ωg0 = 1 the policy does not reduce

risk and the risk balance condition (and the equilibrium) is the same as before. In subsequent

analysis, we refer to λ as the size of the LSAPs program.

In this context, first consider the equilibrium when the interest rate constraint does not bind.

Substituting Q0 = Q∗ = exp (−ρ) into (30), we solve for the effi cient interest rate [cf. Eq. (20)]:

rf∗ = g + ρ− σ2

τ0 (z0)
(1− λ) .

When the interest rate is not constrained, LSAPs do not affect asset prices, z0Q∗, or output,

y0 = z0, but they translate into higher interest rates. As LSAPs take risk out of the market,

they exert upward pressure on asset valuations and aggregate demand. Conventional monetary

policy responds by raising the interest rate to keep asset prices and aggregate demand consistent
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with potential output.

We next consider the case in which the interest rate can be constrained and generalize

Proposition 1. We assume the following analogue of (21):

τ0 (1) ≥
σ2

ρ+ g
>

τh

1− λ . (31)

As before, we also define two cutoff productivity levels, zh (λ) , z∗ (λ). Let

zh (λ) =
l0

Q̃h (λ)
where Q̃h (λ) = exp

(
g + ρ− σ2 (1− λ)

τh

)
< 1. (32)

As before, zh (λ) is the cutoff productivity below which there is a bankruptcy equilibrium, and

Q̃h (λ) is the normalized price in a bankruptcy equilibrium [cf. (22− 23)]. Increasing λ increases
the normalized price, Q̃h (λ), and decreases the cutoff, zh (λ): LSAPs increase the worst-case

asset price level and shrink the set of productivity realizations that allow for bankruptcy.

Let z∗ (λ) ∈ (0, 1) denote the unique solution to

τ0 (z
∗)

1− λ =
σ2

ρ+ g
. (33)

As before, z∗ (λ) is the cutoff productivity above which there is a supply determined equilibrium

with effi cient prices [cf. (24)]. LSAPs expand the set of productivity realizations that allow for

an effi cient price equilibrium. The next result characterizes the equilibrium when it is unique and

interior. The case with multiple equilibria is similar to Proposition 1 and discussed subsequently.

Proposition 2. Consider the equilibrium with LSAPs, λ = ηg (ωg0 − 1) ≥ 0, and conditions

(31). Suppose z0 ∈
[
zh (λ) , z∗ (λ)

]
given the cutoffs in Eqs. (32− 33). There exists a unique

equilibrium with an interior normalized price, Q̃0 ∈
(
Q̃h (λ) , 1

)
, that solves

σ (1− λ)
τh +

(
1− l0

z0Q̃0

)
κ0 (τ b − τh)

=
g + ρ− log

(
Q̃0

)
σ

. (34)

The normalized price is increasing in the size of the LSAP program, dQ̃0dλ > 0.

Consider Figure 4, which illustrates Eq. (34). LSAPs shift the required Sharpe ratio curve

downward without affecting the actual Sharpe ratio curve. In equilibrium, this leads to a lower

Sharpe ratio and a higher asset price. In fact, LSAPs have an amplified effect on the Sharpe

ratio: the change in the equilibrium Sharpe ratio is much greater than the initial downward

shift of the curve. As LSAPs increase asset prices, they improve banks’balance sheets, which

further reduces the required Sharpe ratio and raises asset prices. Essentially, LSAPs help undo

the downward spirals created by supply shocks illustrated in Figure 2.

17



0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

0.45

0.5

0.55

0.6

0.65

0.7

Figure 4: Effect of LSAPs when the interest rate is constrained– the case with a unique equi-
librium.

LSAPs can have even more powerful effects when there are multiple equilibria. Figure

5 illustrates this by plotting the effect of LSAPs for parameters that lead to multiplicity. The

solid red line illustrates the risk premium curve without policy, which leads to multiple equilibria

(denoted by L and H in the figure). The dashed red line illustrates the effect of LSAPs with

the same magnitude as in the previous case with a unique equilibrium. In this case, LSAPs

eliminate the low-price equilibrium. By removing risk from the market, the policy reduces the

required Sharpe ratio and increases asset prices, which triggers a virtuous spiral that culminates

in the high-price equilibrium (denoted by H ′ in the figure).

Optimal large-scale asset purchases. We next introduce an objective function for the

government and analyze the resulting optimal LSAPs policy. Suppose the government chooses

its portfolio weight, ωg0 ≥ 1, to maximize

log
(
Q̃0

)
− 1
2
e−ρ

(
ηg
1

τ g
(σωg0)

2
+

1

τ0 (1)
(σ (1− ηg (ωg0 − 1)))

2
)
. (35)

The government’s objective function features three terms. The first term, log Q̃0 < 0, captures

the government’s desire to close the output gap in period 0. In our model, this is equivalent

to closing asset price gaps [cf. (10)]. The second term, 1
τg (σω

g
0)
2, captures the risk in the

government’s portfolio. We assume the government has similar preferences as agents but with

risk tolerance τ g. The remaining term captures the residual risk in agents’ portfolios. The

government evaluates these risks according to the benchmark effective risk tolerance, τ0 (1)–

ignoring changes in the effective risk tolerance due to the shock. This does not play an important
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Figure 5: Effect of LSAPs when the interest rate is constrained– the case with multiple equilib-
ria.

role beyond simplifying the analysis (and it makes the case for LSAPs weaker). Finally, the

government weights its own utility and the agents’utility with ηg and 1, respectively (the initial

endowments of the market portfolio).9

We also assume the government is weakly less risk tolerant than the agents:

τ g ≤ τ0 (1) . (36)

This ensures that, if there was no demand recession, the government would not use LSAPs.

That is, the reason for LSAPs in our model is not a financial friction. Instead, the government

uses LSAPs to respond to the demand recession when it cannot cut interest rates. To see this

reasoning, we rewrite (35) in terms of the size of the LSAP program, λ = ηg (ωg0 − 1), to obtain
the problem

max
λ≥0

log
(
Q̃0 (λ)

)
− 1
2
e−ρσ2

(
ηg
1

τ g

(
1 +

λ

ηg

)2
+

1

τ0 (1)
(1− λ)2

)
.

Suppose there is a unique and interior equilibrium price denoted by Q̃0 (λ) [cf. Proposition 2].

The condition for an optimum with a positive LSAP, λ > 0, is then given by

9The functional forms in (35) reflect agents’utility functions and they are motivated by the standard Pareto
criterion. In Appendix A.2, we consider a slight variant of the model in which banks and the households are
merged into a single agent, “the market,” with exogenous risk tolerance τm. We derive a constrained Pareto
problem and show that it features the objective in (35) with τm = τ0 (1).
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[
1

τ g

(
1 +

λ

ηg

)
− 1

τ0 (1)
(1− λ)

]
σ2 =

1

e−ρ
Q̃′0 (λ)

Q̃0 (λ)
. (37)

Eq. (37) says that the government stops purchasing risky assets when its marginal cost of

portfolio risk relative to the market (the left side) is equal to the marginal impact of the LSAPs

on asset prices, Q̃
′
0(λ)

Q̃0(λ)
. If the marginal impact of LSAPs was zero, then the corner solution λ = 0

would be optimal since the government is relatively less risk tolerant. When the economy is in

a demand recession, the latter term is strictly positive, Q̃′0(λ)

Q̃0(λ)
> 0 [cf. Proposition 2], so the

government might find it optimal to use LSAPs.

Eq. (37) also suggests that the size of the optimal LSAPs satisfies intuitive comparative

statics (which we verify in numerical simulations). The optimal LSAP is increasing in the

government’s risk tolerance, τ g > 0, and its tax capacity, ηg > 0. Greater capacity helps because

it enables the government to achieve the same impact on financial markets with a smaller impact

on its own risk exposure.

More subtly, we find that (as long as banks are not bankrupt under the optimal LSAPs) the

government tends to engage in larger LSAPs when the supply shock is more severe (lower z0)

and when the private sector initially has greater leverage (greater l0). Figure 6 illustrates these

results for the parameters in our earlier analysis (see Figures 2 and 4). We set the government’s

risk tolerance to be the same as households’risk tolerance, τ g = τh, so it is quite costly for the

government to absorb risk. Nonetheless, the government chooses to use LSAPs. The left panel

shows that increasing the severity of the shock increases the size of the optimal LSAPs. The

right panel shows that increasing banks’initial leverage has the same effect. In this panel, as we

increase l0 we also adjust banks’risk tolerance to keep the effective benchmark risk tolerance

τ0 (1) unchanged (which leads to a more meaningful comparison).

To see the intuition, consider how the severity of the supply shock affects the equilibrium and

the government’s trade-off. Our earlier Figure 2 shows that a lower z0 increases the steepness

of the required Sharpe ratio curve. When the required Sharpe ratio curve is steeper, downward

spirals are more severe. LSAPs then have a greater impact on asset prices because they help

undo these spirals [cf. Figure 4]. Consequently, lower z0 increases the marginal benefit from the

LSAPs, Q̃
′
0(λ)

Q̃0(λ)
, which implies larger optimal LSAPs. Likewise, greater initial l0 exacerbates the

downward spirals and increases the marginal benefit from LSAPs.

As this intuition suggests, these results apply for an interior equilibrium but they might

not hold for a corner equilibrium in which banks are bankrupt. With bankruptcy, there are

parameters where improving productivity z0 increases the optimal LSAPs. This happens when

the government finds it too costly to save the banks via a large LSAPs program. As z0 improves,

the government at some point finds it optimal to save the banks, which induces a discrete upward

jump in the optimal LSAPs. Likewise, when banks are bankrupt, decreasing their initial leverage

might increase the optimal LSAPs.
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Figure 6: Optimal LSAP as a function of productivity, z0 (left panel, inverted scale) and banks’
initial leverage, l0 (right panel).

4. Debt Overhang and Firm Insolvencies

Since our main goal in this paper is to isolate the feedback between investors’endogenous risk

tolerance and a large supply shock, we removed all other financial mechanisms. One financial

mechanism that is particularly concerning in the context of the Covid-19 shock is firms’debt

overhang. In this section we add debt overhang and show how it interacts with our risk-centric

mechanism. Effectively, the corporate debt overhang problem creates a feedback between asset

prices and productivity. This feedback makes the market’s effective risk tolerance (and hence

the required Sharpe ratio) more sensitive to asset prices, which strengthens our amplification

mechanism and makes LSAPs more effective.

Recall that our baseline model features (New Keynesian) production firms that manage

capital, produce (according to demand), and distribute their earnings to the households. The

market portfolio (which the agents trade among themselves) is a financial claim on all production

firms. In this section, we assume production firms not only manage capital but also have debt

liabilities (or debt claims) on each other. The market portfolio consists of the outstanding equity

shares of all production firms. The value of an individual firm’s equity is the value of its capital

net of its debt liability (or plus its debt claim). Firms’debt liabilities and claims sum to zero (for

simplicity), so the value of the market portfolio is still equal to the value of aggregate capital.

However, the value of an indebted firm’s equity share is less than the value of its capital. If the

outstanding debt is too large, then the firm becomes insolvent.

Formally, there is a continuum of mass one of firms denoted by ν ∈ [0, 1]. Each firm manages
one unit of capital and starts with an outstanding debt position, b0 (ν), that must be settled at
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date 0. If b0 (ν) > 0, the firm has a debt liability to other firms. If b0 (ν) < 0, the firm has debt

claims on other firms. These outstanding positions are distributed according to a cumulative

distribution function dF (·) that satisfies
∫
ν b0 (ν) dF (ν) = 0.

The firm can pay its debt using its earnings y0 (ν), or by issuing new claims backed by the

(end-of-period) value of its assets (capital) z0Q0. To make the analysis stark, we assume the

firm faces no borrowing constraints. For concreteness, consider a firm whose debt exceeds its

earnings, b0 (ν) > y0 (ν). First suppose the firm’s debt is not too large,

b0 (ν) ≤ y0 (ν) + z0Q0. (38)

We assume this firm issues new equity shares without frictions so that (at the end of the period)

the firm becomes entirely equity financed and previous debtholders own a fraction of the firm

ζ ∈ [0, 1] that satisfies b0 (ν) − y0 (ν) = ζQ0z0.10 Next consider a firm with more debt that

violates condition (38). These firms cannot fully pay back their debt: they become insolvent

and go through a bankruptcy process that restructures their debt.

We assume bankruptcy is costly: specifically, insolvent firms’productivity shrinks to a frac-

tion of solvent firms’ productivity, γ ∈ [0, 1] (for both periods 0 and 1). The parameter γ
captures the effi ciency of bankruptcy (or reallocation, when bankruptcy is not available). If

γ = 1, a bankrupt firm continues to operate at the same productivity as before. If γ < 1, which

is empirically more likely, bankruptcy lowers the firm’s productivity.11

To close the model, we assume aggregate demand at date 0 is distributed among the solvent

and insolvent firms according to their relative productivity levels. Specifically, let y0 denote

output of a solvent firm. We assume output of an insolvent firm is given by γy0. Letting

S ∈ (0, 1) denote the fraction of solvent firms, aggregate output is given by

y0 = Sy0 where S = S + (1− S) γ = γ + (1− γ)S.

Likewise, we denote the value of a solvent firm’s assets by Q0z0. Then, the aggregate value of

assets (or the market portfolio) is given by Sz0Q0. Note that the asset price per (effective)

productivity is still given by Q0. The rest of the model is unchanged.

Most of the analysis is similar to Section 2. Specifically, we have the following analogue of

Eq. (9):

c0 =
1

1 + e−ρ
S (y0 + z0Q0) .

Using the aggregate resource constraint, y0 = Sy0 = c0, we find y0 = eρz0Q0. That is, the

10While we describe a specific financing arrangement, other arrangements would also work and would lead to
identical allocations. Under no arbitrage (which holds in our model) and no borrowing constraints (which we
assume) the firm’s value is independent of whether it issues debt or equity (or other claims) and from whom it
borrows.
11The parameter γ is likely to be especially low in the Covid-19 recession because the virus and lockdown

measures have restricted bankruptcy courts’capacity.
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output-asset price relation in (10) applies for a solvent firm. The effi cient asset price per pro-

ductivity is still given by Q∗ = e−ρ. As before, we define Q̃0 = Q0/Q
∗ ∈ [0, 1] as the normalized

price per productivity.

Combining these observations with the solvency constraint (38), we solve for the fraction of

solvent firms:

S = Pr
{
b (ν) ≤

(
1 + e−ρ

)
z0Q̃0

}
= F

((
1 + e−ρ

)
z0Q̃0

)
.

This in turn implies the following aggregate output-asset price relation [cf. (10)]:

y0 = S
(
Q̃0

)
z0Q̃0 where S

(
Q̃0

)
≡ γ + (1− γ)F

((
1 + e−ρ

)
z0Q̃0

)
. (39)

Intuitively, debt overhang strengthens the output-asset price relation. Higher asset prices

not only increase aggregate demand, as in our earlier analysis, but they also increase aggregate

supply by enabling a greater fraction of indebted firms to remain solvent.

Next consider the characterization of the normalized asset price per productivity, Q̃0 ∈ [0, 1].
Most of the analysis from Section 2 applies in this case. The main difference concerns banks’

wealth share, which is now given by

α0 = α0 (z) where z = S
(
Q̃0

)
z0Q̃0.

Here, α0 (z) is the same function as before [cf. (13)]. Consequently, the risk balance condition

is now given by [cf. (15)]:

σ

τ0

(
S
(
Q̃0

)
z0Q̃0

) = ρ+ g − log
(
Q̃0

)
− rf

σ
. (40)

Intuitively, debt overhang strengthens the impact of asset prices on risk tolerance. An

increase in firm insolvencies (a decrease in S) reduces the aggregate value of assets, which in

turn reduces banks’wealth share. This reduces the market’s effective risk tolerance and increases

the required Sharpe ratio.12

The equilibrium is characterized by Eqs. (39) and (40) and the interest rate policy. Figure

7 illustrates the equilibrium for the earlier example that features a constrained interest rate

rf = 0. We assume the outstanding claims are uniformly distributed over [−b, b] for some b ≥ 0.
As before, the left panel shows the equilibrium as the intersection of the required and actual

Sharpe ratios. The dashed red line plots the required Sharpe ratio for the baseline case in which

firms either do not have outstanding debt, or bankruptcy is very effi cient. The solid red line

shows the required Sharpe ratio when firms are indebted and bankruptcy is less effi cient. Debt

overhang shifts the curve for the required Sharpe ratio upward. This lowers the normalized asset

12The actual Sharpe ratio remains unchanged because asset prices and future payoffs both scale linearly with
S: that is, log Sz1

Sz0
= g.
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Figure 7: The effect of supply shocks when the interest rate is constrained and firms have a debt
overhang problem and face costly insolvencies.

price and exacerbates the demand recession (solid blue and red lines).

The right panel sheds further light on the mechanism by plotting the fraction of solvent

firms, S. With debt overhang, the supply shock in this example would induce some insolvencies

even if there were no demand recession, Q̃0 = 1. However, the equilibrium features substantially

more insolvencies. Intuitively, low demand and asset prices (Q̃0 < 1) push a greater fraction of

firms into distress by reducing their earnings and asset prices.

Importantly, Figure 7 illustrates that debt overhang also worsens asset price spirals (captured

by the steepening of the required Sharpe ratio curve)– as it makes the effective risk tolerance

more sensitive to asset prices [cf. (40)]. This feature, together with our analysis in the previous

section, suggests debt overhang also makes LSAPs more effective (e.g., Figure 4), which we

verify in numerical simulations.

5. Final Remarks

In this paper we show that real (non-financial) shocks can endogenously reduce the market’s

risk tolerance and induce large contractions in asset prices and aggregate demand, and we

demonstrate the effectiveness of LSAPs in mitigating these contractions. The key ingredient is

heterogeneity in investors’risk tolerance. As aggregate conditions worsen, asset prices and the

wealth share of risk tolerant agents decline. Thus, the “representative agent”becomes less risk

tolerant and demands a higher Sharpe ratio to hold risky assets. With unconstrained monetary

policy, a cut in interest rates is the most effective mechanism to increase the market’s Sharpe

ratio. If the central bank cannot cut interest rates, asset prices drop further and drag down

aggregate demand and the wealth share of risk tolerant agents, triggering a downward spiral.

LSAPs improve asset prices and aggregate demand by transferring risk to the government’s
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balance sheet, and can be powerful since they reverse the downward spiral. Optimal LSAPs are

larger when the government has greater future fiscal capacity and when the economy is more

unstable at the outset, which happens when bank’s initial leverage is greater and when the shock

is more severe. Corporate debt overhang problems strengthen our mechanisms by making the

wealth share of risk tolerant agents (and thus the market’s risk tolerance) more sensitive to asset

prices.

Our analysis lends support to the unprecedented (in terms of size and speed) asset market

interventions by the Fed and other major central banks around the world in response to the

financial distress caused by the Covid-19 shock, and it highlights the importance of targeting

assets held by levered investors. Importantly, the rationale for this policy in our framework is

not to protect “the financial pipeline,”however important this may be, but to boost aggregate

demand when conventional monetary policy is constrained.

While we focus on LSAPs, our analysis also supports other policy mechanisms that help

reestablish equilibrium in risk markets. For example, loosening capital requirements is likely to

increase effective risk tolerance and hence reduce the required Sharpe ratio. Likewise, any public

guarantee or put policy that reduces perceived volatility is likely to reduce the gap between the

required and actual Sharpe ratios at any given asset price level. We will explore some of these

policies in future work.

An important practical concern with policies that support asset markets is the perception

that they are distributionally unfair. Two observations diminish these concerns. First, in our

framework the goal of these policies is not to transfer resources to risk-tolerant agents (“banks”)

but to boost aggregate demand. As such, these policies increase everyone’s income (see Remark

1 for an example where hand-to-mouth consumers can be a main beneficiary). Second, the

wealth share of “banks” in our model declines more than in a benchmark frictionless model in

which outcomes are supply determined. Appropriately designed LSAPs (as well as conventional

monetary policy) do not make “banks” wealthier– they only mitigate the additional decline

in their wealth share that results from a demand recession. A similar argument mitigates the

concern that LSAPs can exacerbate moral hazard (see Bornstein and Lorenzoni (2018) for a

formal analysis in the context of conventional monetary policy).

Finally, we do not argue that asset market policies should substitute for all other aggregate

demand policies. In fact, the global expansion in fiscal policy in response to the Covid-19 shock

has been as fast and remarkable as that of central banks, and this seems appropriate to us. A

pragmatic response to any severe recessionary shock mixes monetary and fiscal policy responses.

Our paper highlights that LSAPs share many features with conventional monetary policy, and

therefore provide an appropriate response when conventional monetary policy is constrained.
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A. Appendix: Omitted derivations

This appendix presents the derivations and proofs omitted from the main text. We start by

presenting the details of the baseline case without LSAPs. We then consider the case with

LSAPs. Throughout, recall that the market portfolio is the claim to all output. Combining Eqs.

(1) and (2), the return on the market portfolio at date 1 is also log normally distributed, that

is,

r (z0, z1) = log

(
z1
z0Q0

)
∼ N

(
log

z1
z0
− log (Q0)−

σ2

2
, σ2
)
. (A.1)

For most of our analysis, we also assume log z1z0 = g, which further simplifies this expression [cf.

Eq. (19)].

A.1. Baseline model without policy

Most of the analysis is provided in the main text. Here, we formally state the agents’problem

that incorporates the log-Normal approximation. We also derive the optimality conditions. We

then complete the characterization of equilibrium and prove Proposition 1.

Approximate portfolio problem and optimality conditions. Without an approximation,

type i agents would solve the following problem,

ui,exact0

(
ãi0
)

= max
c0,a0,ω

log c0 + e
−ρ log ui1 (A.2)

where ui1 =
(
E
[
c1 (z0, z1)

(τ i−1)/τ i
])τ i/(τ i−1)

s.t. c0 + a0 = ãi0

and c1 (z0, z1) = a0

(
ω exp (r (z0, z1)) + (1− ω) exp

(
rf
))
. (A.3)

Here, c1 (z0, z1) denotes total financial wealth, which equals consumption (since the economy

ends at date 1). Note that the agent has Epstein-Zin preferences with EIS coeffi cient equal to one

and the RRA coeffi cient equal to 1/τ i > 0. The case with τ i = 1 is equivalent to time-separable

log utility. Agents’initial endowments, ai0, are given by (3).

In view of the Epstein-Zin functional form, agents can be thought of as solving the intertem-

poral problem,

ui0
(
ãi0
)
= max

a0
log
(
ãi0 − a0

)
+ e−ρ log

(
RCE,ia0

)
. (A.4)

Here, RCE,i denotes investors’certainty-equivalent portfolio return per dollar. Absent an approx-

imation, it would correspond to the solution to the following portfolio optimization problem:

RCE,i,exact = max
ω

(
E
[
(Rp (z0, z1))

(τ i−1)/τ i
])τ i/(τ i−1)

(A.5)

and Rp (z0, z1) = ω exp (r (z0, z1)) + (1− ω) exp
(
rf
)
.
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The variable, Rp (z0, z1), denotes the realized portfolio return per dollar.

In our analysis, we assume that agents choose portfolios (and evaluate the resulting certainty-

equivalent return, RCE,i) by solving the following approximate portfolio problem:

logRCE,i − rf = max
ω

ωπ − 1
2

1

τ i
ω2σ2 (A.6)

where π = E [r (z0, z1)] +
σ2

2
− rf .

Here, π denotes the risk premium on the market portfolio and σ is its standard deviation

(measured in log returns). The problem says that the agent trades off its portfolio mean (in

excess of the risk-free rate), ωπ, with its portfolio variance, ω2σ2. This approximation becomes

exact if the portfolio return follows a log-Normal distribution. In general, this is not the case

and it holds only approximately. This approximation works well for calibrations with relatively

short time horizons and it becomes exact in continuous time. The approximation is widely used

in the literature (see Campbell and Viceira (2002)).

The first order condition for problem (A.4) implies Eq. (5) in the main text. That is,

regardless of her certainty-equivalent portfolio return, the investor consumes and saves a constant

fraction of her lifetime wealth.

The first order condition for problem (A.6) implies Eq. (6) in the main text.

Characterization of equilibrium. We characterize the equilibrium and prove Proposition

1. We first characterize the equilibrium in terms of an auxiliary function. Consider the function:

F
(
Q̃0; z0

)
=

σ2

τ0 −
κ0l0(τb−τh)

z0Q̃0

+ log
(
Q̃0

)
− (g + ρ) (A.7)

where τ0 = τh + κ0

(
τ b − τh

)
.

This function is defined over the domain Q̃0 ∈
(
Q
0
,∞
)
, where Q

0
=

κ0l0(τb−τh)/z0
τ0

. Eq. (15)

implies that every interior equilibrium, Q̃0 ∈
(
Q̃h0 , 1

)
, corresponds to a zero of this function.

Conversely, every zero of the function that falls in the range, Q̃0 ∈
(
Q̃h0 , 1

)
, corresponds to an

interior equilibrium. The zeros that fall outside this range do not correspond to an equilibrium.

Finally, there is a corner equilibrium with Q̃0 = 1 (and rf ≥ 0) iff F (1; z0) ≤ 0; and there is a
corner equilibrium with Q̃0 = Q̃h0 (and bankruptcy) iff F

(
Q̃h0 ; z0

)
≥ 0.

We next establish some properties of the auxiliary function that facilities the proof. Consider

the monotone change of variables:

τ0 = τ0 −
κ0l0

(
τ b − τh

)
z0Q̃0

⇔ Q̃0 =
κ0l0

(
τ b − τh

)
/z0

τ0 − τ0
. (A.8)

30



In terms of the new variable, the auxiliary function corresponds to the transformed function:

f (τ0) ≡
σ2

τ0
− log (τ0 − τ0) + log l0 − log z0 − (g + ρ) . (A.9)

This function has the domain τ0 ∈ (0, τ0), and it is strictly convex, that is:

f ′′ (τ0) =
2σ2

τ30
+

1

(τ0 − τ0)2
> 0

The function also satisfies limτ0→0 f (τ0) = limτ0→∞ f (τ0) = ∞. These observations imply
that the zeros of the transformed function f (·) have the same characteristics as an upward-
pointing parabola. The original function F (·; z0) adopts the same characteristics. In particular,
the function either does not have any (interior) zero:

F
(
Q̃0; z0

)
≥ 0 for Q̃0 ∈

(
Q
0
,∞
)
, (A.10)

or it has exactly two interior zeros:

F
(
Q10; z0

)
= F

(
Q20; z0

)
= 0 for Q

0
< Q10 < Q20 (A.11)

with F
(
Q̃0; z0

)
< 0 for Q̃0 ∈

(
Q10, Q

2
0

)
and F

(
Q̃0; z0

)
> 0 otherwise.

Proof of Proposition 1. Consider the first part that concerns the case, z0 > zh = l0
Q̃h

[cf.

(23)]. This condition implies the auxiliary function in (A.7) satisfies:

F
(
Q̃h0 ; z0

)
=

σ2

τ0

(
z0Q̃h0

) + log (Q̃h0)− (g + ρ)
<

σ2

τh
+ log

(
Q̃h0

)
− (g + ρ) = 0. (A.12)

Here, the inequality follows since z0 > zh = l0
Q̃h

implies τ0
(
z0Q̃

h
0

)
> τ (l0) = τh. The equal-

ity follows from the definition of Q̃h0 . This rules out the corner equilibrium with Q̃0 = Q̃h0 .

Combining this observation with Eq. (A.11) also implies that we must have the case (A.11)

with Q̃h0 falling between the two zeros. This in turn implies there is a unique equilibrium that

depends on the sign of F (1; z0). When F (1; z0) > 0, there is an interior equilibrium with

Q̃0 ∈
(
Q̃h0 , 1

)
. When F (1; z0) ≤ 0, there is a corner equilibrium with Q̃0 = 1. Note also that

F (1; z0) =
σ2

τ0(z0)
− (g + ρ) implies that the condition, F (1; z0) > 0, is equivalent to z0 < z∗

from the definition of z∗ [cf. (24)]. This proves that there is a unique interior equilibrium when

z0 < z∗ (and z0 > zh) and there is a unique corner equilibrium when z0 ≥ z∗ (and z0 > zh).

Next consider the comparative statics of the interior equilibrium with respect to z0. Note

that F
(
Q̃0; z0

)
is decreasing in z0. Therefore, greater z0 shifts F

(
Q̃0; z0

)
downward, which
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increases the (greater) zero of the function that corresponds to the equilibrium. This establishes
dQ̃0
dz0

> 0 and completes the proof of the first part.

Next suppose z0 < zh = l0
Q̃h
. We have the opposite of (A.12), which implies that there is a

corner equilibrium with Q̃0 = Q̃h0 . In this case, there can also be other equilibria. To see this,

consider z0 ∈
(
z∗, zh

)
(assuming the interval is nonempty). Then, we have:

F (1; z0) =
σ2

τ0 (z0)
− (g + ρ) < σ2

τ0 (z∗)
− (g + ρ) = 0. (A.13)

Here, the inequality follows since z0 > z∗ and the equality follows from the definition of z∗. This

implies that there is a corner equilibrium with Q̃0 = 1. In particular in this case Q̃0 = Q̃h0 and

Q̃0 = 1 are both corner equilibria. This completes the proof of the proposition.

A.2. Model with large-scale asset purchases

We next present the details of the extended analysis with LSAPs. We first describe the govern-

ment’s budget constraint and derive Eqs. (26) and (27). We then complete the characterization

of the equilibrium and prove Proposition 2. Finally, we provide a rationale for the government’s

objective function (35).

Government’s budget constraints. The government is endowed with some income (tax

receipts) in period 1 given by z1ηg. At the end of period 0, the government decides how much

to borrow, bg0 ≥ 0, and what fraction of the borrowed funds to invest in the risky asset, ω̃
g
0 ≥ 0,

with the residual fraction invested in the safe asset. In period 1, the government collects the

tax receipts and the return on its investments, pays back its debt, and spends the residual. Its

budget constraint in period 1 can be written as:

cg1 = z1η
g + bg0

(
ω̃g0 exp (r (z0, z1))− ω̃

g
0 exp

(
rf
))
, (A.14)

where cg1 denotes government spending in period 1.

We next rewrite the budget constraint in (A.14) to make it parallel to the agents’budget

constraint in (A.3). Eq. (2) implies z1 = z0Q0 exp (r (z0, z1)). Substituting this into the budget

constraint, we obtain:

cg1 = z0Q0η
g exp (r (z0, z1)) + b

g
0ω̃

g
0 exp (r (z0, z1))− b

g
0ω̃

g
0 exp

(
rf
)

= ag0

((
1 +

bg0ω̃
g
0

ag0

)
exp (r (z0, z1))−

bg0ω̃
g
0

ag0
exp

(
rf
))

= ag0

(
ωg0 exp (r (z0, z1)) + (1− ω

g
0) exp

(
rf
))

where ag0 = z0Q0η
g and ωg0 = 1 +

bg0ω̃
g
0

ag0
.
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The second line defines and substitutes the effective wealth of the government, ag0, and the third

line defines and substitutes the effective portfolio weight, ωg0. This establishes Eqs. (26) and

(27) in the main text. The government can be effectively thought of as starting with the present

discounted value of its tax receipts and choosing a weight on the market portfolio that reflects

its implicit holding of risky tax receipts as well as its additional investments.

Characterization of equilibrium with LSAPs. Consider the analogue of the function

(A.7) that incorporates LSAPs:

F
(
Q̃0; z0, λ

)
=

σ2 (1− λ)

τ0 −
l0κ0(τb−τh)

z0Q̃0

+ log
(
Q̃0

)
− (g + ρ) (A.15)

where τ0 = τh + κ0

(
τ b − τh

)
.

Every interior equilibrium, Q̃0 ∈
(
Q̃h0 (λ) , 1

)
, corresponds to a zero of this function. Conversely,

any zero of the function that falls in the interior range, Q̃0 ∈
(
Q̃h0 (λ) , 1

)
, corresponds to an

equilibrium. The zeros that fall outside this range do not correspond to an equilibrium. There

is a corner equilibrium with Q̃0 = 1 iff F (1; z0, λ) ≤ 0; and there is a corner equilibrium with

Q̃0 = Q̃h0 iff F
(
Q̃h0 ; z0, λ

)
≥ 0. Finally, the function F

(
Q̃0; z0, λ

)
satisfies the same property

that we established for the special case with λ = 0: one of cases (A.10) and (A.11) holds.

Proof of Proposition 2. Suppose zh (λ) < z∗ (λ) and consider a shock z0 ∈
(
zh (λ) , z∗ (λ)

)
.

Following the same steps as in Proposition 1, there exists a unique equilibrium that corresponds

to the (greater) zero of the function, F
(
Q̃0; z0, λ

)
, that falls in the range, Q̃0 ∈

(
Q̃h (λ) , 1

)
.

Consider the comparative statics with respect to the size of the LSAPs, λ. Eq. (A.15) implies

that increasing λ shifts the function, F
(
Q̃0; z0, λ

)
, downward. This increases the (greater) zero

and raises the equilibrium price, that is, dQ̃0dλ > 0.

Government’s objective function. We next provide a rationale for the functional form

assumptions in the government’s objective function (35). For concreteness, suppose there is a

future generation of agents (born in period 1) that are the residual claimant from the govern-

ment’s positions and thus consume cg1. The future generation’s utility function is similar to

the other agents’(constant relative risk aversion) with risk tolerance τ g. We also simplify the

setup by merging the other agents (banks and households) into a single agent, which we refer

to as the market, with risk tolerance τm. Finally, suppose the government assigns the relative

Pareto weights ηg and 1 to the future generation and the market– chosen to match their relative

endowments. We set up a constrained Pareto problem in which the government’s only policy

tool is to choose ωg0 ≥ 1. We we show that the objective function is the same as (35) with

τm = τ0 (1).
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First consider the characterization of equilibrium for a given ωg0 ≥ 1. Suppose τm <
σ2(1−ηg(ωg0−1))

ρ+g , which implies there is a demand recession in period 0 despite the LSAP (the

other case is similar). Following the same steps in Section 3, the equilibrium in period 0 features

rf = 0 and the asset price [cf. (34)]:

log
(
Q̃0

)
= g + ρ− σ2 (1− ηg (ωg0 − 1))

τm
< 1. (A.16)

As before, the asset price is increasing in ωg0. The market clearing condition is:

ωm0 + η
gωg0 = 1 + η

g. (A.17)

We next calculate the market’s equilibrium utility. Using Eqs. (A.4) , (A.6), and (5), we

have:

um0 = log

(
z0Q0
1 + e−ρ

)
+ e−ρ

(
log
(
RCE,m

)
+ log

(
e−ρz0
1 + e−ρ

)
+ logQ0

)
= ũm0 + log (Q0) + e

−ρ
(
ωm0 (g − logQ0) + logQ0 −

1

2

1

τm
(ωm0 )

2 σ2
)
.

The second line substitutes the equilibrium interest rate, rf = 0, and the equilibrium return on

the market portfolio, E [r (z0, z1)] + σ2

2 = g − logQ0 [cf. Eq. (2)]. It also collects the exogenous
terms into ũm0 .

Next consider the future generation. They have the same utility function as the other agents

but with risk tolerance τ g. Their exact utility function is given by [cf. (A.4−A.5)]:

ug,exact1 = e−ρ log
(
RCE,gag0

)
with ag0 = z0Q0η

g,

where RCE,g,exact =
(
E
[
(Rp (z0, z1))

(τg−1)/τg
])τg/(τg−1)

and Rp (z0, z1) =
(
ωg0 exp (r (z0, z1)) + (1− ω

g
0) exp

(
rf
))
.

Applying the log-Normal approximation (similar to the other agents), we write this as [cf. (A.6)]:

ug1 = e−ρ
(
log
(
RCE,g

)
+ log (z0η

g) + logQ0
)

= ũg1 + e
−ρ
(
ωg0 (g − logQ0) + logQ0 −

1

2

1

τ g
(ωg0)

2
σ2
)
.

Where the second line substitutes for the equilibrium returns and collects the exogenous terms

into ũg1.

Aggregating the market’s and the future generation’s utility with weights 1 and ηg, the
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government’s objective function is:

Ug0 = Ũg0 + log (Q0) + e
−ρ

(
− (ωm0 + ηgω

g
0) logQ0 + (1 + η

g) logQ0

−12
1
τm (ω

m
0 )

2 σ2 − ηg 12
1
τg (ω

g
0)
2
σ2

)

= Ũg0 + log (Q0)−
1

2
e−ρσ2

(
1

τm
(ωm0 )

2 + ηg
1

τ g
(ωg0)

2
)

(A.18)

Here, we have collected the exogenous terms into Ũg0 . The second line uses the market clearing

condition (A.17) to simplify the expression.

Combining Eqs. (A.18) and (A.16) (and using Q̃0 = Q0/Q
∗), the government’s constrained

Pareto problem is:

max
ωg0

log
(
Q̃0

)
− 1
2
e−ρσ2

(
1

τm
(ωm0 )

2 + ηg
1

τ g
(ωg0)

2
)
,

where log
(
Q̃0

)
= g + ρ− σ2 (1− ηg (ωg0 − 1))

τm
.

This problem is similar to the one we solve in the main text. In particular, the objective function

is the same as in (35) after replacing τm = τ0 (1), which provides a rationale for the functional

forms.13

13This analysis also clarifies the role of the Pareto weights, 1 and ηg. These weights are chosen to match the
agents’initial endowments, which ensures that the pecuniary externalities generated by the changes in the price
of the market portfolio “net out” [see (A.18)].
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