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Figure 1: CBOE Volatility Index (VIX)

1. Introduction

The Covid-19 shock is primarily a real (non-financial) shock that reduced aggregate supply

(potential output). However, the shock also generated a large reaction in financial markets

that had the potential to significantly depress aggregate demand (spending by households

and firms) beyond the decline in supply. Figure 1 illustrates that the (perceived) stock

market volatility spiked to levels comparable to the global financial crisis of 2008-2009.

Other indicators of financial distress exhibited similar patterns– e.g., investment grade

and high yield spreads tripled, and the S&P 500 dropped by 30% in a matter of weeks (a

drop, per unit time, larger than the worst drop during the Great Depression). The Fed

(with the backing of the Treasury) had to pledge close to 20% of US GDP in funding for a

wide range of credit and market supporting facilities to stop the free fall.1 Central banks

1Here is a brief chronology of the Fed’s main policy actions since early March until April 9th: On 03/03,
implements a 50bps emergency rate cut; on 03/12, adds repo of up to $500b/week, purchases wider range
of securities under current $60b/month program; on 03/15, cuts rates by 100bps to zero and initiates
QE bond buying program of $700b, lowers swap lines with major central banks by 25bps; on 03/17,
establishes a commercial paper funding facility to provide stability to short-term CP market; on 03/19,
launches USD liquidity-swap lines with a broad range of countries, including major Emerging Markets;
on 04/09, implements $2.3t emergency measures, among them a $500b Municipal Liquidity Facility for
state and local governments, a $600b Main Street Lending program, and a Paycheck Protection Program
Liquidity Facility for small businesses; expands the Primary and Secondary Market Corporate Credit
Facilities and the term loan facility to buy ABS securities to $850b and includes asset purchases of HY
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in the Group of Seven countries purchased $1.4 trillion of financial assets in March alone.

The final story is yet to be told.

In this paper we provide a model of the amplification of large supply shocks that fol-

lows from the endogenous asset price spirals and the severe aggregate demand contractions

that these spirals generate. Our model builds on a two-period version of the macroeco-

nomic model in Caballero and Simsek (forthcoming). Briefly, that model is a variant

of the New Keynesian model, but formulated in terms of a risk-centric decomposition.

Specifically, there we decompose the demand block of the equilibrium into two relations:

an output-asset price relation that captures the positive association between asset prices

and aggregate demand; and a risk balance condition that describes asset prices given risks,

risk attitudes, beliefs, and the interest rate. This decomposition facilitates the study of

the macroeconomic impact of a variety of forces that affect risky asset prices.2 In the

current model, we extend that analysis by splitting investors into risk-tolerant and risk-

intolerant agents– we dub the risk tolerant agents “banks”(interpreted broadly to include

the shadow financial system and other agents able/willing to hold substantial risk) and

the risk intolerant ones “households”(also interpreted broadly). The key implication of

this assumption is that banks are levered in equilibrium, and therefore are highly exposed

to aggregate supply shocks and the sequence of events that these shocks may trigger.3

To fix ideas, consider a large negative supply shock (e.g., a Covid-19 shock). This

shock exerts downward pressure on risky asset prices (which include credit, equity, real

estate, as well as other assets). As banks incur losses, their leverage rises. With higher

leverage, banks require a higher Sharpe ratio (risk premium per unit of risk) to hold the

same amount of risky assets. Risk-intolerant households also require a higher Sharpe ratio

to hold the risky assets unloaded by banks wishing to reduce their leverage. Either way,

the result is a rise in the market’s required Sharpe ratio.

As a benchmark, suppose the banks’initial leverage is not too high and the supply

bonds, HY ETFs, CLOs, and CMBS securities. All other major central banks around the world have
also pursued unprecedented financial markets interventions.

2The decomposition is suported by a growing empirical literature that shows risky asset prices can
substantially affect aggregate demand. See Gilchrist and Zakrajšek (2012) on the effect of credit spreads
on investment and consumption; Mian and Sufi (2014) and Chodorow-Reich et al. (2019) on the effect
of house and stock prices, respectively, on consumption and (nontradable) employment; Pflueger et al.
(forthcoming) on the effect of financial market risk perceptions on economic activity and interest rates.

3Moreover, banks’leverage and exposure can be indirect. For example, the US entered the Covid-19
shock with well capitalized (regular) banks and highly indebted corporations. However, to the extent
that banks had lent to these highly levered corporations, banks themselves are highly levered with respect
to large aggregate shocks. It is no accident that on 04/14/2020 JPMorgan Chase announced its highest
loan-loss provision in a decade. Since then, all other major banks have made similar announcements in
their earnings reports.
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shock is temporary. In this case, a small decline in asset prices may be all that is needed

to increase the Sharpe ratio as much as the market demands. Asset prices and aggregate

demand are relatively high and the natural interest rate (“rstar”) may not decline. Intu-

itively, supply is temporarily low but asset prices and demand per unit of current supply

are not necessarily low, as investors expect a speedy recovery.

In contrast, we focus on scenarios in which banks’initial leverage is high (or the supply

shock is suffi ciently large). In this case, even a temporary supply shock greatly reduces

effective risk tolerance and increases the required Sharpe ratio. This exerts substantial

downward pressure on asset prices and aggregate demand, and reduces “rstar.”The decline

in risk tolerance overwhelms the expected recovery effect and induces a disproportionate

decline in demand that exceeds the decline in supply. When the supply shock is more

persistent, the downward pressure on asset prices is stronger and the (negative) gap

between aggregate demand and supply becomes even greater.

The first line of defense is conventional monetary policy that cuts the interest rate

(consistent with lower “rstar”). This provides the market with the greater Sharpe ratio

that it requires and defuses the downward pressure on asset prices. Asset prices and

aggregate demand decline in proportion to the reduction in supply but no more. How-

ever, if the interest rate is constrained, then asset prices decline beyond the reduction

in supply. Lower prices provide the market with a greater Sharpe ratio but they also

generate a demand recession: output falls beyond the reduction in potential output. To

make matters worse, the decline in asset prices further reduces the banks’wealth share

(and raises their leverage), which further increases the required Sharpe ratio and depresses

asset prices, triggering a downward spiral. We show that when banks’initial leverage is

suffi ciently high, the feedback between asset prices and risk intolerance becomes so strong

that multiple equilibria are possible. In the worst of these equilibria, banks go bankrupt.

This description of events suggests that policies where the consolidated government

(e.g., the Fed and the Treasury in the U.S.) absorbs some of the risk that banks are

struggling to hold can be highly effective. We loosely refer to these policies as large-scale

asset purchases (LSAPs). We show that to the extent that the government has future

fiscal capacity, LSAPs are powerful because they reverse the downward spirals. That is,

they exhibit a high multiplier precisely when the economy is most unstable. We further

show that it is optimal for the government to deploy LSAPs when the aggregate demand

amplification of the supply shock is severe, even if the government is less risk tolerant than

the market. In the Covid-19 episode, the spike in VIX began to reverse after the major

central banks’policy actions (Figure 1 and Footnote 1), which suggests the interventions

were effective in containing the initial downward spiral.
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Section 2 describes the model. Section 3 shows how LSAPs operate in this environ-

ment. Section 4 concludes. Appendix A contains derivations omitted from the text.

Literature review. At a methodological level this paper adopts the risk-centric per-

spective in Caballero and Simsek (forthcoming, 2020). The novel ingredient is that the

supply shock endogenously lowers risk tolerance. The mechanism of endogenous leverage

and asset price spirals is also central in Brunnermeier and Sannikov (2014).4 Their focus

is on financial frictions on the supply side of the economy rather than on the heterogene-

ity of investors’portfolios and the feedback loops with aggregate demand when monetary

policy is constrained. Also related is Caballero and Krishnamurthy (2009), who show

how the endogenous leverage of the US economy caused by the global demand for safe

assets creates instability with respect to supply shocks, but they do not discuss the role

of aggregate demand and central bank policy in such a mechanism.

While they do not look at the effect of large supply shocks, the mechanism in Kekre

and Lenel (2020) is close to ours. In particular, they calibrate a model in the spirit of

Caballero and Simsek (forthcoming) and show the power of monetary policy in affecting

the risk premium when agents have heterogeneous risk tolerance. Similarly, Caballero

and Farhi (2018) show that when a large share of wealth is allocated to extremely risk-

intolerant agents (Knightians) in a New Keynesian framework with a zero lower bound

on interest rates, the economy may fall into a “safety trap.”Like our paper, they show

that asset market policies where the government absorbs part of the risk of the economy

(and replace it with safe assets) can be highly effective. However, their focus is on the

macroeconomic implications of a chronic scarcity of safe assets rather than on the role of

endogenous risk intolerance following a large supply shock.

In terms of one of our central underlying questions, which is whether demand factors

can exacerbate the direct effect of the supply shock, the closest paper to ours is Guer-

rieri et al. (2020). They provide a clean decomposition of the ingredients needed for an

affi rmative answer in a two-period, deterministic model. They conclude that, in such a

model, aggregate demand cannot exacerbate the supply recession when the economy has a

single sector, regardless of whether markets are complete or incomplete. In contrast, they

show that in a multi-sector environment there are configurations of preference parameters

where demand responds by more than supply, especially so if markets are incomplete.

Our risk-based mechanism is orthogonal to theirs. In fact, our model has a single sector.

The Covid-19 shock has triggered a large response among macroeconomists. For ex-

4See also Kiyotaki and Moore (1997); Shleifer and Vishny (1997); Lorenzoni (2008); Geanakoplos
(2010); Adrian and Shin (2010); He and Krishnamurthy (2013); Di Tella (2017); Dávila and Korinek
(2018); Cao et al. (2019).
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ample, Eichenbaum et al. (2020); Faria-e Castro (2020) embed pandemic shocks and their

constraints on economic activity within DSGE models and study the role of fiscal policy

and different containment strategies. Baker et al. (2020) document the dramatic spike in

uncertainty and study its impact in a real business cycle model. Our analysis is comple-

mentary as we emphasize the excessive aggregate demand contraction that results from

supply shocks– which is exacerbated by uncertainty– and we highlight the damage caused

by the pricing of uncertainty. Fornaro and Wolf (2020) provide a stylized New Keynesian

model and capture the Covid-19 shock as a decline in (exogenous and endogenous) ex-

pected growth. Their mechanisms and policy analysis do not operate through endogenous

spikes in risk intolerance and asset price spirals, which is our focus. Correia et al. (2020)

use the 1918 flu pandemic to empirically analyze the economic costs of pandemics and

find a role for both supply- and demand-side channels, consistent with our analysis.

There are also several papers that embed SIR type epidemiological models into macro-

economic models and study the optimal containment policy that balances health concerns

and economic costs (e.g., Atkeson (2020); Alvarez et al. (2020); Eichenbaum et al. (2020);

Gourinchas (2020); Baldwin (2020); Berger et al. (2020); Callum et al. (2020); Bethune

and Korinek (2020)). We do not address this important trade-off and take as given the

broad supply implications of the containment policies.

Finally, our policy analysis is related to a growing literature on the role of central bank

asset purchases in stimulating aggregate demand when conventional monetary policy is

constrained. Empirical evidence suggests these policies have a meaningful impact on asset

prices (see Bernanke (2020)) but the underlying mechanisms are not fully understood. The

literature emphasizes either financial frictions (e.g., Gertler and Karadi (2011); Del Negro

et al. (2017)), portfolio balance effects in segmented markets (e.g., Vayanos and Vila

(2009); Ray (2019)), or signaling effects (see, e.g., Bhattarai et al. (2015)). The mechanism

in our paper is different and relies on the government’s ability to absorb aggregate risk

using its future tax capacity in a non-Ricardian model (see also Silva (2016)).5

2. The Baseline Model

We present a simple two period model that illustrates how a supply shock can be amplified

by an aggregate demand contraction that exceeds the supply shock itself. The mechanism

operates through risk markets: The decline in asset prices due to the supply shock lowers

the wealth share and increases the leverage of risk-tolerant agents. As these agents attempt

5Our mechanism builds upon the extensive literature spurred by Holmström and Tirole (1998) on the
taxation power of the government to expand the supply of liquidity.
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to withdraw from risk, asset prices and aggregate demand drop. The demand-induced

decline in asset prices further lowers the wealth share of risk-tolerant agents, and so on.

A two-period risk-centric aggregate demand model. Consider an economy with

two dates, t ∈ {0, 1}, a single consumption good, and a single factor, capital. There is
no investment or depreciation and capital is normalized to one unit. We let zt denote the

productivity of capital in period t. Potential output is equal to productivity, zt, but actual

output can be below this level due to a shortage of aggregate demand, yt ≤ zt. We assume

output is equal to its potential at the last date, y1 = z1, and focus on the endogenous

determination of output at the previous date, y0 ≤ z0. We assume the productivity at

date 1 is uncertain and log-normally distributed,

log y1 = log z1 ∼ N

(
log z1 −

σ2

2
, σ2
)
. (1)

Note that z1 captures the expected productivity, and σ captures its volatility.

There are two types of assets. There is a “market portfolio”that represents claims to

all output (which accrue to production firms as earnings), and a risk-free asset in zero net

supply. We denote the (ex-dividend) price of the market portfolio at date 0 with z0Q0,

so that Q0 corresponds to the price per unit of productivity. We denote the log risk-free

interest rate with rf , and the log return of the market portfolio with

r (z0, z1) = log

(
z1
z0Q0

)
. (2)

There are two types of agents, i ∈ {b, h}. Type b agents (“banks”) are more risk
tolerant than type h agents (“households”). Formally, agents have Epstein-Zin utility

with risk aversion parameters given by 1/τ i that satisfy τ b > τh. We refer to τ i as agent

i’s risk tolerance. Agents also have common EIS equal to one (for simplicity), and common

discount rate denoted by e−ρ.

Agents are endowed with initial positions that satisfy:

ãb0 = max
(
0, ab0

)
and ãh0 = min

(
y0 + z0Q0, a

h
0

)
, (3)

where

ab0 = κ0 (y0 + z0Q0)−
(
1 + e−ρ

)
κ0l0 (4)

ah0 = (1− κ0) (y0 + z0Q0) +
(
1 + e−ρ

)
κ0l0,

for some κ0, l0 ∈ (0, 1) .
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Eq. (4) describes banks’endowments and net wealth assuming they are not bankrupt.

Banks initially hold a fraction of the market portfolio, κ0, and owe (1 + e−ρ)κ0l0 units of

safe debt. We have normalized these positions so that in the benchmark, defined as the

case when there is no demand recession (effi cient) and the supply shock is normalized to

one, z0 = 1, banks’leverage ratio (defined as their debt-to-asset ratio) is l0. Households

hold the mirror image positions: they hold the residual fraction of the market portfolio,

1−κ0, as well as banks’safe debt. Eq. (3) adjusts agents’net wealth for the possibility of
bankruptcy. When ab0 < 0, the value of banks’assets is less than their outstanding debt.

In this case, banks are bankrupt and their actual net wealth is zero, ãb0 = 0. Households

take over banks’assets. They hold all of the market portfolio so their net wealth becomes

ãh0 = y0 + z0Q0.

Given the initial endowments in (3), agents choose their consumption and new asset

positions, ci0 and a
i
0, and what fraction of their assets to allocate to the market portfolio,

ωi0, with the residual fraction invested in the risk-free asset. We formally state and solve

the investors’problem in the appendix. The assumption on the EIS implies households

spend a fraction of their wealth,

ci0 =
1

1 + e−ρ
ãi0 and ai0 =

e−ρ

1 + e−ρ
ãi0. (5)

Agents’optimal weight on the market portfolio is approximately given by

ωi0σ ' τ i
E [r (z0, z1)] +

σ2

2
− rf

σ
. (6)

This is a standard mean-variance portfolio optimality condition that says the risk of

agents’optimal portfolio (the left side) is proportional to the Sharpe ratio on the mar-

ket portfolio (the right side). This equation holds exactly in continuous time but only

approximately in discrete time. We assume the equation is exact to simplify the analysis.

Asset markets clearing condition can be written as∑
i

ωi0a
i
0 = z0Q0. (7)

The supply side of the economy is described by New-Keynesian firms that have fixed

nominal prices. These firms meet the available demand at these prices as long as prices

are higher than their marginal cost. Output is determined by the aggregate demand for
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goods (consumption) up to the capacity constraint,

y0 =
∑
i

ci0 ≤ z0. (8)

Finally, we assume that the interest rate policy attempts to replicate the supply-

determined output level, subject to a lower bound constraint, rf ≥ 0. Specifically, suppose
the monetary policy follows a standard Taylor rule, rf = max (0, ψ (y0 − z0)). We focus
on the limit ψ →∞, in which case this rule implies that either the interest rate is positive
and output is at its potential, rf = rf∗ > 0 and y0 = z0; or the interest rate is constrained

and there is a demand recession, rf = 0 and y0 ≤ z0. Here, rf∗ denotes the natural

interest rate consistent with potential output, y0 = z0 [see Eq. (17) below].

Equilibrium characterization. We next characterize the equilibrium. Using Eq. (5),

aggregate consumption is a fraction of aggregate wealth,

c0 =
1

1 + e−ρ
(y0 + z0Q0) . (9)

Combining this expression with Eq. (8), we obtain the following equation:

y0 = eρz0Q0. (10)

We refer to this equation as the output-asset price relation. The condition says that higher

asset prices increase aggregate wealth and consumption, which leads to greater output.

Setting y0 = z0 in (10), we obtain the effi cient level of asset price per productivity as

Q∗ = e−ρ. (11)

This is the asset price per unit of productivity that ensures the economy operates at the

supply determined level. If there is a supply shock that reduces z0, asset prices should

fall proportionally to z0Q∗, but no further. Any further reduction in asset prices would

trigger a demand recession as illustrated by (10).

Next consider the characterization of the equilibrium asset price, z0Q0. To facilitate

this analysis, we define banks’(post-z0-shock) wealth share as

α0 ≡
ab0
z0Q0

.
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Households’wealth share is the residual, 1−α0 ≡ ah0
z0Q0

. Using this notation, we can write

the asset market clearing condition (7) as

α0ω
b
0 + (1− α0)ωh0 = 1. (12)

The equilibrium asset price is determined by this condition together with agents’wealth

shares, α0, 1− α0, and their optimal portfolio weights, ωb0, ωh0 .
To calculate the wealth shares, we use the output-asset price relation in (10) together

with agents’initial positions in (3) and their optimal saving rule in (5). For the banks’

wealth share, we obtain

α0 = α0 (z) ≡ max
(
0,

(
1− l0

z

)
κ0

)
where z = z0

Q0
Q∗
. (13)

To understand this expression, first consider the benchmark with Q0 = Q∗ and the supply

shock normalized to one, z0 = 1. In this benchmark, z = 1 and banks’wealth share is

given by α0 = (1− l0)κ0: their initial assets net of their leverage. Now suppose asset
valuations fall, z = z0 (Q0/Q

∗) < 1, either because of a decline in productivity, z0, or

a decline in the asset price per productivity, Q0. This causes banks’wealth share to

fall below the benchmark (and households’wealth share increases above the benchmark).

Intuitively, since banks are levered, a decline in asset valuations reduces their wealth more

than it reduces households’wealth. This mechanism will play an important role for our

results. If asset valuations decline beyond banks’initial leverage, z = z0 (Q0/Q
∗) < l0,

banks are bankrupt and their wealth share falls to zero.

To calculate the optimal portfolio weights, we use Eq. (6) together with the expected

return on the market portfolio from Eqs. (1− 2) to obtain

ωi0σ = τ i
log z1

z0
− log (Q0)− rf

σ
. (14)

Combining Eqs. (12− 14), we obtain the central equation of our analysis, the risk
balance condition:

σ

τ 0

(
z0

Q0
Q∗

) = log z1
z0
− log (Q0)− rf

σ
. (15)
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Here, τ 0 (·) denotes the effective risk tolerance defined as

τ 0 (z) ≡ α0 (z) τ
b + (1− α0 (z)) τh

= max

(
τh, τh +

(
1− l0

z

)
κ0
(
τ b − τh

))
. (16)

Eq. (15) says that the risk the economy generates normalized by the effective risk

tolerance (the left side) should be compensated by a suffi ciently high reward for risk (the

right side). Specifically, the right side is the actual Sharpe ratio on the market portfolio:

the risk premium per unit of risk. In the rest of the paper, we refer to the expression on

the left side as the required Sharpe ratio, and note that the equilibrium in risk markets

obtains when the required and actual Sharpe ratios are the same.

Eq. (16) illustrates that the effective risk tolerance– which determines the required

Sharpe ratio– depends on a wealth-weighted average of investors’risk tolerances. The

second line solves for the effective risk tolerance and shows that it is increasing in z = z0
Q0
Q∗ .

In particular, a decline in asset prices– either through reduced productivity, z0, or reduced

valuation per productivity, Q0– reduces the effective risk tolerance. Lower asset prices

reduce banks’wealth share, which lowers the effective risk tolerance since τ b > τh. If

banks go bankrupt, the effective risk tolerance is given by the households’ tolerance,

τ 0 (z) = τh.

The equilibrium is then determined by the output-asset price relation (10), the risk

balance condition (15), and monetary policy.

Temporary supply shocks can reduce aggregate demand and interest rates.
We next consider the comparative statics of temporary supply shocks– a reduction in z0
keeping z1 unchanged. An example is the Covid-19 shock. In this context, we illustrate

how, when banks’outstanding leverage is suffi ciently high, temporary supply shocks reduce

aggregate demand by more than the aggregate supply shock, and hence reduce interest

rates.

First suppose there is no lower bound on the interest rate. In this case, monetary policy

always ensures output is equal to its supply-determined level, rf = rf∗ and y0 = z0. This

requires the asset price per productivity to be at its effi cient level, Q0 = Q∗ [cf. (11)].

Combining this with Eq. (15), the interest rate also needs to be at a particular level,

rf∗ = ρ+ log
z1
z0
− σ2

τ 0 (z0)
. (17)
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Consider a decline in z0 keeping z1 unchanged. Eq. (17) illustrates that this exerts

two effects on the risk-free interest rate. On the one hand, a decline in z0 increases the

expected growth rate, z1
z0
, which increases the interest rate. Intuitively, while asset prices

are currently relatively low, they are expected to recover. This raises the Sharpe ratio and

induces agents to invest in the market portfolio [cf. (14)], which exerts upward pressure

on the asset price per productivity. The interest rate increases to keep asset prices at

the effi cient level. On the other hand, a decline in z0 also reduces banks’wealth share

[cf. (13)], which decreases the interest rate. Since banks are levered, a decline in asset

valuations reduces their wealth more than the households’wealth. This decreases effective

risk tolerance and puts downward pressure on asset prices and the interest rate.

The second channel dominates (locally), drf∗

dz0
> 0, as long as the parameters satisfy

z0 > l0 (no bankruptcy) and

l0
z0
κ0
(
τ b − τh

)
>

(
τ 0 (z0)

σ

)2
, (18)

where τ 0 (z0) = τh +

(
1− l0

z0

)
κ0
(
τ b − τh

)
.

All else equal, temporary supply shocks are more likely to reduce aggregate demand by

more than supply when agents’ risk tolerance is more heterogeneous (greater τ b − τh,

keeping τ 0 (z0) constant), when banks have greater initial leverage (greater l0), and when

the shock is more severe (lower z0). In fact, when households are very risk intolerant,

τh = 0, condition (18) is satisfied whenever the debt to productivity ratio exceeds a

threshold, l0
z0
≥ d̃ ∈ (0, 1).

For the rest of the paper, we isolate our leverage mechanism and simplify the analysis

by assuming

log z1 = log z0 + g, (19)

where g is an exogenous growth parameter. Hence, we focus on permanent supply shocks,

which simplifies the equations but it is not necessary for our results: we could have instead

worked with parameters that satisfy (18). With Eq. (19), the risk-free interest rate is

given by

rf∗ = ρ+ g − σ2

τ 0 (z0)
. (20)

Hence, in this case a decrease in z0 always (weakly) reduces aggregate demand and the

interest rate.
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Supply shocks can trigger downward asset price spirals. We next consider the

case where there is a lower bound on the interest rate. In this case, the supply shock can

cause a demand recession. We assume the parameters satisfy [cf. (16)]

τ 0 (1) ≥
σ2

ρ+ g
> τh. (21)

The first inequality ensures that when supply is equal to its benchmark level, z0 = 1, there

is an equilibrium with an unconstrained (positive) interest rate. The second inequality

ensures that, if households control all the wealth in the economy, the interest rate is

constrained (zero).

Our next result characterizes the equilibrium for different levels of the productivity

shock, z0. To state the result, we define the normalized asset price per productivity,

Q̃0 ≡ Q0
Q∗ ∈ [0, 1], which simplifies the notation. We also define two cutoffs for productivity

that we denote with zh and z∗.

The first cutoff, zh, is the productivity level below which there is an equilibrium where

banks go bankrupt and households control all wealth. To calculate this cutoff, suppose

there is bankruptcy. Using the risk balance condition (15) with τ 0 = τh (and rf = 0), we

obtain

Q̃h =
Qh

Q∗
≡ exp

(
g + ρ− σ2

τh

)
< 1. (22)

Note that Q̃h is the minimum normalized asset price. Suppose the price falls to this level,

Q̃0 = Q̃h. Then, Eq. (13) implies banks will indeed go bankrupt as long as productivity

is suffi ciently low:

z0 < zh ≡ l0

Q̃h
. (23)

When z0 < zh, there is always a bankruptcy equilibrium. Note that the cutoff zh is

increasing in l0: bankruptcy is more likely when banks have greater initial leverage.

The second cutoff, z∗, is the productivity level above which there is a supply deter-

mined equilibrium with the effi cient price Q̃0 = 1. To calculate this cutoff, we use the risk

balance condition (15) with Q̃0 = 1 and rf = 0 to obtain the value of z∗ < 1 that solves

τ 0 (z
∗) =

σ2

ρ+ g
. (24)

When z0 > z∗, there is always an equilibrium with the effi cient asset price.

Proposition 1. Consider the equilibrium with condition (21). Let zh and z∗ denote the

cutoffs defined by Eqs. (23) and (24).
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(i) If z0 > zh, then the equilibrium is unique and does not feature bankruptcy. If

z0 ∈
(
zh, z∗

)
(assuming the interval is nonempty), then the equilibrium features an interior

asset price, Q̃0 ∈
(
Q̃h, 1

)
, that solves

σ

τh +
(
1− l0

z0Q̃0

)
κ0 (τ b − τh)

=
g + ρ− log

(
Q̃0

)
σ

. (25)

Reducing productivity reduces the equilibrium price per productivity, dQ̃0
dz0

> 0. If z0 ≥ z∗

(as well as z0 > zh), the equilibrium features the effi cient asset price, Q̃0 = 1.

(ii) If z0 ≤ zh, then there is a bankruptcy equilibrium with the low asset price, Q̃0 =

Q̃h < 1. There might also be other equilibria. When z0 ∈
[
z∗, zh

]
(assuming the interval

is nonempty), there is also an equilibrium with the effi cient asset price, Q̃0 = 1.

The first part of Proposition 1 shows that the equilibrium is unique as long as the

shock is not severe enough to trigger bankruptcy (z0 > zh). In this region, when the

supply shock is below a cutoff (z0 < z∗), the equilibrium features a demand recession.

More severe supply shocks lead to lower asset prices and more severe demand recessions.

As we will see below, these supply shocks also generate downward spirals and have an

amplified effect on asset prices and aggregate demand. The second part of Proposition 1

shows that, when the shock is suffi ciently severe to trigger bankruptcy (z0 < zh), these

amplification mechanisms can lead to multiple equilibria.

To illustrate the first part of Proposition 1, consider the case with an interior equilib-

rium price. Substituting rf = 0 and Q̃0 = Q0/Q
∗ in the risk balance condition (15), we

find that the price solves Eq. (25). This equation has a natural interpretation. The right

side is the actual Sharpe ratio (with constrained interest rate rf = 0). It is decreasing in

Q̃0: lower asset prices increase the risk premium and the Sharpe ratio. The left side is the

required Sharpe ratio (assuming there is no bankruptcy). It is also decreasing in Q̃0: lower

asset prices transfer (relative) wealth from banks to households, which reduces the effec-

tive risk tolerance and requires a greater Sharpe ratio for agents to absorb the risk. Figure

2 illustrates these curves for a particular parameterization that satisfies zh < z∗. When

z0 ∈
(
zh, z∗

)
, there is an interior equilibrium that corresponds to the intersection of the

two curves. When z0 > z∗, the curves do not intersect and there is a corner equilibrium

with the effi cient asset price Q̃0 = 1.

Figure 2 also illustrates how supply shocks can generate downward spirals in asset

prices. The dashed line corresponds to the benchmark productivity realization, z0 = 1,

which leads to effi cient asset prices. Starting from this level, a decline in productivity can

13
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Figure 2: Effect of supply shocks when the interest rate is constrained– the case with a
unique equilibrium.

lead to a substantially lower asset price per productivity (the intersection of the two solid

lines). A decline in z0 damages banks’balance sheets and increases the required Sharpe

ratio. This leads to a reduction in asset prices– in order to increase the actual Sharpe

ratio. The reduction in asset prices further damages banks’balance sheets and increases

the required Sharpe ratio, which further reduces asset prices, and so on. In equilibrium,

the Sharpe ratio rises more than the initial increase (captured by the vertical shift from

the dashed to the solid red line). Consequently, the asset price falls considerably more

than the direct effect of the negative supply shock.

To illustrate the second part of Proposition 1, consider parameters that satisfy z∗ < zh

and a shock that satisfies, z0 ∈
[
z∗, zh

]
. Since z0 < zh, there is a bankruptcy equilibrium

with the lowest asset price, Q̃0 = Q̃h. However, since z0 > z∗, there is also an equilibrium

with the effi cient asset price, Q̃0 = 1. Figure 3 illustrates these equilibria by plotting

the required and the actual Sharpe ratio curves. The high and the low-price equilibria

are marked with H and L, respectively. There is also an interior equilibrium that corre-

sponds to the intersection of the two curves. (However, this equilibrium is unstable: small

deviations would bring the equilibrium to either H or L).

To see the intuition for multiplicity, suppose we are currently at the high-price equilib-

rium H in Figure 3. In this equilibrium, high prices support banks’balance sheets, which

raises the effective risk tolerance and reduces the required Sharpe ratio. This in turn keeps

asset prices high. If prices fall suffi ciently, then banks’balance sheets become substantially

14
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Figure 3: Effect of supply shocks when the interest rate is constrained– the case with
multiple equilibria.

weaker, which rapidly reduces the effective risk tolerance and raises the required Sharpe

ratio. This in turn reinforces the large fall in asset prices and culminates in the low-price

equilibrium L that features bankruptcy. As this discussion suggests, multiplicity is more

likely when banks have greater leverage. In fact, the parameters used in Figure 3 are the

same as those used in Figure 2, with the difference that we raise banks’initial leverage

l0 (and also adjust banks’risk tolerance τ b to keep the benchmark risk tolerance τ 0 (1)

unchanged).

3. Large-scale Asset Purchases

The powerful downward spiral caused by the endogenous decline in risk tolerance suggests

that policy interventions that absorb some of the risky assets during such events can

be very powerful. To address this issue, we now introduce unconventional monetary

policy in the form of large-scale asset purchases (LSAPs). This requires introducing a

fiscal authority: even if the asset purchases are made by the central bank, the gains and

losses from these positions ultimately accrue to the treasury. We merge the fiscal and

monetary authorities into a third agent which we refer to as the government and denote

by superscript g.

The government in our model is endowed with no resources in period 0 and a given

amount of resources in period 1, denoted by ηgz1. We think of ηgz1 as the government’s
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future tax capacity. It can be “microfounded” by introducing a group of agents other

than banks and households (e.g., the future generation) from which the government will

be able to extract some taxes. We assume future tax capacity is proportional to future

productivity, which simplifies the analysis but is not necessary for our results (in fact,

making the government’s tax capacity safer would strengthen our results). For simplicity

the government starts with no assets. At the end of the period, it decides whether and

how much to borrow, bg0 ≥ 0, and what fraction of the borrowed funds to invest in the
risky asset, ω̃g0 ≥ 0, with the residual fraction invested in the safe asset. In period 1,

the government receives its tax revenues as well as the returns from its investments, pays

back its debt, and spends the residual amount.

In the appendix, we show that the government’s budget constraint can be rewritten

analogously to the banks’and households’budget constraints. Specifically, the govern-

ment’s net wealth in period 0 is

ag0 = z0Q0η
g, (26)

and its total fraction of wealth invested in the market portfolio is

ωg0 = 1 +
bg0ω̃

g
0

ag0
. (27)

The government can be thought of as selling its future tax receipts and reinvesting the

proceeds in the available assets. The value of its tax receipts is given by (26) and its

net investment is given by (27). The requirements bg0 ≥ 0 and ω̃
g
0 ≥ 0 translate into a

requirement that the government takes a levered position, ωg0 ≥ 1. The government is
already fully exposed to the market portfolio through its future tax revenues, and it can

further increase its exposure by borrowing and investing in risky assets.

Finally, the presence of the government changes the asset market clearing condition

as follows [cf. (7)]: ∑
i∈{b,h,g}

ωi0a
i
0 = z0Q0 (1 + ηg) . (28)

The right side illustrates that the government’s tax capacity implicitly expands the supply

of the market portfolio. The left side illustrates that the government also expands demand.

Given a government portfolio choice ωg0 ≥ 1, the definition of equilibrium generalizes in

straightforward fashion. In the rest of the section, we characterize the equilibrium taking

ωg0 ≥ 1 as given and illustrate the comparative statics of LSAPs. We then introduce the
government’s preferences and characterize the optimal LSAP policy.
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Equilibrium with large-scale asset purchases. Investors’optimality conditions are

the same. Therefore much of the earlier analysis applies in this setting. Specifically, Eqs.

(10) , (13), and (14) still hold. Using Eq. (28), we also obtain the analogue of the market

clearing condition (12):

α0ω
b
0 + (1− α0)ωh0 + ηgωg0 = 1 + ηg. (29)

Combining these observations, we obtain the analogue of the risk balance condition (15):

σ (1− λ)
τ 0 (z0Q0/Q∗)

=
g − log (Q0)− rf

σ
, (30)

where λ = ηg (ωg0 − 1) and τ 0 (z) is given by the same expression as before [cf. (16)].
Eq. (30) illustrates that LSAPs effectively take some risk out of the market. Specifi-

cally, the risk balance condition is equivalent to an economy in which the risk is reduced

by a fraction, λ = ηg (ωg0 − 1). How much risk LSAPs remove depends on the govern-
ment’s tax capacity, ηg, and the riskiness of its portfolio, ωg0 ≥ 1. When ηg = 0 or ω

g
0 = 1

the policy does not reduce risk and the risk balance condition (and the equilibrium) is the

same as before. In subsequent analysis, we refer to λ as the size of the LSAP program.

In this context, first consider the equilibrium when the interest rate constraint does

not bind. Substituting Q0 = Q∗ = exp (−ρ) into (30), we solve for the effi cient interest
rate [cf. Eq. (20)]:

rf∗ = g + ρ− σ2

τ 0 (z0)
(1− λ) .

Hence, when the interest rate is not constrained, LSAPs do not affect asset prices, z0Q∗,

or output, y0 = z0, but they translate into higher interest rates. As LSAPs take risk out

of the market, they exert upward pressure on asset valuations and aggregate demand.

Conventional monetary policy responds by raising the interest rate to keep asset prices

and aggregate demand consistent with productivity.

We next consider the case in which the interest rate can be constrained and generalize

Proposition 1. We assume the following analogue of (21):

τ 0 (1) ≥
σ2

ρ+ g
>

τh

1− λ . (31)

As before, we also define two cutoff productivity levels, zh (λ) , z∗ (λ). Let

zh (λ) =
l0

Q̃h (λ)
where Q̃h (λ) = exp

(
g + ρ− σ2 (1− λ)

τh

)
< 1. (32)
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As before, zh (λ) is the cutoffproductivity below which there is a bankruptcy equilibrium,

and Q̃h (λ) is the normalized price in a bankruptcy equilibrium [cf. (22− 23)]. Increasing
λ increases the normalized price, Q̃h (λ), and decreases the cutoff, zh (λ): LSAPs increase

the worst-case asset price level and shrink the set of productivity realizations that allow

for bankruptcy.

Let z∗ (λ) ∈ (0, 1) denote the unique solution to

τ 0 (z
∗)

1− λ =
σ2

ρ+ g
. (33)

As before, z∗ (λ) is the cutoff productivity above which there is a supply determined equi-

librium with effi cient prices [cf. (24)]. LSAPs expand the set of productivity realizations

that allow for an effi cient price equilibrium. The next result characterizes the equilibrium

when it is unique and interior. The case with multiple equilibria is similar to Proposition

1 and discussed subsequently.

Proposition 2. Consider the equilibrium with LSAPs, λ = ηg (ωg0 − 1) ≥ 0, and condi-
tions (31). Suppose z0 ∈

[
zh (λ) , z∗ (λ)

]
given the cutoffs in Eqs. (32− 33). There exists

a unique equilibrium with an interior normalized price, Q̃0 ∈
(
Q̃h (λ) , 1

)
, that solves

σ (1− λ)
τh +

(
1− l0

z0Q̃0

)
κ0 (τ b − τh)

=
g + ρ− log

(
Q̃0

)
σ

. (34)

The normalized price is increasing in the size of the LSAP program, dQ̃0
dλ

> 0.

Consider Figure 4, which illustrates Eq. (34). As the figure shows, LSAPs shift the

required Sharpe ratio curve downward without affecting the actual Sharpe ratio curve. In

equilibrium, this leads to a lower Sharpe ratio and a higher asset price. In fact, LSAPs

have an amplified effect on the Sharpe ratio: the change in the equilibrium Sharpe ratio is

much greater than the initial downward shift of the curve. As LSAPs increase asset prices,

they improve banks’balance sheets, which further reduces the required Sharpe ratio and

raises asset prices. Essentially, LSAPs help undo the downward spirals created by supply

shocks illustrated in Figure 2.

LSAPs can have even more powerful effects when there are multiple equilibria. Figure

5 illustrates this by plotting the effect of LSAPs for parameters that lead to multiplicity.

The solid red line illustrates the risk premium curve without policy, which leads to multiple

equilibria (denoted by L and H in the figure). The dashed red line illustrates the effect
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Figure 4: Effect of LSAPs when the interest rate is constrained– the case with a unique
equilibrium.

of LSAPs with the same magnitude as in the previous case with a unique equilibrium. In

this case, LSAPs eliminate the low-price equilibrium. By removing risk from the market,

the policy reduces the required Sharpe ratio and increases asset prices, which triggers a

virtuous spiral that culminates in the high-price equilibrium (denoted byH ′ in the figure).

Optimal large-scale asset purchases. We next introduce an objective function for

the government and analyze the resulting optimal LSAP policy. Suppose the government

chooses its portfolio weight, ωg0 ≥ 1, to maximize:

log
(
Q̃0

)
− 1
2
e−ρ
(
ηg
1

τ g
(σωg0)

2 +
1

τ 0 (1)
(σ (1− ηg (ωg0 − 1)))

2

)
. (35)

The government’s objective function features three terms. The first term, log Q̃0 < 0,

captures the desire to close the output gap in period 0. In our model, this is equivalent

to closing asset price gaps [cf. (10)]. The second term, 1
τg
(σωg0)

2, captures the risk in the

government’s portfolio. We assume the government has similar preferences as agents but

with risk tolerance τ g. The remaining term captures the residual risk in agents’portfolios.

The government evaluates these risks according to the benchmark effective risk tolerance,

τ 0 (1)– ignoring the changes in the effective risk tolerance due to the shock. This does not

play an important role beyond simplifying the analysis (and it makes the case for LSAPs

weaker). Finally, the government weights its own utility and the agents’utility with ηg

19



0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 5: Effect of LSAPs when the interest rate is constrained– the case with multiple
equilibria.

and 1, respectively (the initial endowments of the market portfolio).6

We also assume the government is weakly less risk tolerant than the agents:

τ g ≤ τ 0 (1) . (36)

This ensures that, if there was no demand recession, the government would not use

LSAPs. That is, the reason for LSAPs in our model is not a financial friction. Instead,

the government uses LSAPs to respond to the demand recession when it cannot cut

interest rates. To see this, we rewrite (35) in terms of the size of the LSAP program,

λ = ηg (ωg0 − 1), to obtain the problem

max
λ≥0

log
(
Q̃0 (λ)

)
− 1
2
e−ρσ2

(
ηg
1

τ g

(
1 +

λ

ηg

)2
+

1

τ 0 (1)
(1− λ)2

)
.

Suppose there is a unique and interior equilibrium price denoted by Q̃0 (λ) [cf. Proposition

2]. The condition for an optimum with a positive LSAP, λ > 0, is then given by

6The functional forms in (35) reflect agents’utility functions and they are motivated by the standard
Pareto criterion. In Appendix A.2, we consider a slight variant of the model in which banks and the
households are merged into a single agent, “the market,”with exogenous risk tolerance τm. We derive a
constrained Pareto problem and show that it features the objective in (35) with τm = τ0 (1).

20



1

τ g

(
1 +

λ

ηg

)
σ2 =

1

τ 0 (1)
(1− λ)σ2 + 1

e−ρ
Q̃′0 (λ)

Q̃0 (λ)
. (37)

Eq. (37) says that the government’s optimal tolerance-adjusted portfolio risk (the left

side) is the sum of the market’s tolerance-adjusted risk and the marginal effect of the

LSAPs on asset prices, Q̃
′
0(λ)

Q̃0(λ)
. If the latter was zero, then the corner solution λ = 0 would

be optimal since the government is relatively less risk tolerant. When the economy is in

a demand recession, the latter term is strictly positive, Q̃
′
0(λ)

Q̃0(λ)
> 0 [cf. Proposition 2], so

the government might find it optimal to use LSAPs.

Eq. (37) also suggests that the size of the optimal LSAP satisfies intuitive comparative

statics (which we verify in numerical simulations). The optimal LSAP is increasing in the

government’s risk tolerance, τ g > 0, and its tax capacity, ηg > 0. Greater capacity helps

because it enables the government to achieve the same impact on financial markets with

a smaller impact on its own risk exposure.

More subtly, we find that (as long as banks are not bankrupt under the optimal LSAP)

the government tends to engage in larger LSAP when the supply shock is more severe

(lower z0) and when the private sector initially has greater leverage (greater l0). Figure 6

illustrates these results for the parameters in our earlier analysis (see Figures 2 and 4). We

set the government’s risk tolerance to be the same as households’risk tolerance, τ g = τh,

so it is quite costly for the government to absorb risk. Nonetheless, the government chooses

to use LSAPs. The left panel shows that increasing the severity of the shock increases the

size of the optimal LSAP. The right panel shows that increasing banks’initial leverage

has the same effect. In this panel, as we increase l0 we also adjust banks’risk tolerance

to keep the effective benchmark risk tolerance τ 0 (1) unchanged (which leads to a more

meaningful comparison).

To see the intuition, consider how the severity of the supply shock affects the equilib-

rium and the government’s trade-off. Our earlier Figure 2 shows that lower z0 increases

the steepness of the required risk premium curve. When the required risk premium curve

is steeper, downward spirals are more severe. LSAPs then have a greater impact on asset

prices because they help undo these spirals [cf. Figure 4]. Consequently, lower z0 in-

creases the marginal benefit from the LSAPs, Q̃
′
0(λ)

Q̃0(λ)
, which implies larger optimal LSAPs.

Likewise, greater initial l0 exacerbates the downward spirals and increases the marginal

benefit from LSAPs.

As this intuition suggests, these results apply for an interior equilibrium but they

might not hold for a corner equilibrium in which banks are bankrupt. With bankruptcy,

there are parameters where improving productivity z0 increases the optimal LSAP. This
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Figure 6: Optimal LSAP as a function of productivity, z0 (left panel, inverted scale) and
banks’initial leverage, l0 (right panel).

happens when the government finds it too costly to save the banks via a large enough

LSAP program. As z0 improves, the government at some point finds it optimal to save

the banks, which induces a discrete upward jump in the optimal LSAP. Likewise, when

banks are bankrupt, decreasing their initial leverage might increase the optimal LSAP.

4. Final Remarks

In this paper we show how asset price spirals and aggregate demand can amplify supply

shocks when economic agents have heterogeneous risk tolerance. As supply drops, so do

asset prices and the wealth share of risk tolerant agents. Thus, the “representative agent”

becomes less risk tolerant and demands a higher Sharpe ratio from the market to hold

its risky assets. With unconstrained monetary policy, a cut in interest rates is the most

effective mechanism to increase the market’s Sharpe ratio. If the monetary authority

cannot cut interest rates, asset prices drop further and drag down aggregate demand and

the wealth share of risk tolerant agents, triggering a downward spiral.

This perspective hints that effective risk-centric policies align the required and actual

Sharpe ratios at asset price levels consistent with effi cient output. In the body of the paper

we discussed one such policy: LSAPs. This policy works by reducing the supply of risk

that economic agents need to absorb in equilibrium, which puts upward pressure on asset

prices, which increases the risk tolerant agents’wealth share, which increases effective
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risk tolerance, and so on. This multiplier is stronger if the economy is more unstable

at the outset, which is a direct function of the amount of leverage in the system. Our

analysis is highly supportive of the unprecedented (in terms of size and speed) asset market

interventions by the Fed and other major central banks around the world in response to

the financial distress caused by the Covid-19 shock, and it highlights the importance of

targeting assets held by levered investors. Importantly, the rationale for this policy in our

framework is not to protect “the financial pipeline,”however important this may be, but

to boost aggregate demand when conventional monetary policy is constrained.

More loosely, one could think of other policy mechanisms to influence the required

and actual Sharpe ratios. For example, loosening capital requirements is likely to increase

effective risk tolerance and hence reduce the required Sharpe ratio. By the same token,

any public guarantee or put policy that reduces perceived volatility is likely to reduce the

gap between required and actual Sharpe ratios at any given asset price level. We will

explore some of these policies in future work.

Finally, we chose to illustrate the key results in a simple two-period model. However,

we have explored the continuous time version of this model along the lines of Caballero and

Simsek (forthcoming) and found similar mechanisms at work, but with stronger feedbacks

as current negative shocks feed into future demand recessions, which feed back into asset

prices. We will add these results in future versions of this paper.

References

Adrian, T., Shin, H. S., 2010. Liquidity and leverage. Journal of financial intermediation
19 (3), 418—437.

Alvarez, F., Argente, D., Lippi, F., 2020. A simple planning problem for covid-19 lock-
down. University of Chicago, Becker Friedman Institute for Economics Working Pa-
per (2020-34).

Atkeson, A., 2020. What will be the economic impact of covid-19 in the us? rough
estimates of disease scenarios. NBER Working Paper No. 26867.

Baker, S. R., Bloom, N., Davis, S. J., Terry, S. J., 2020. Covid-induced economic uncer-
tainty. BFI working paper.

Baldwin, R., 2020. The supply side matters: Guns versus butter, covid-style. VOX CEPR
Policy Portal 22.

Berger, D. W., Herkenhoff, K. F., Mongey, S., 2020. An seir infectious disease model with
testing and conditional quarantine. NBER Working Paper No. 26901.

23



Bernanke, B. S., 2020. The new tools of monetary policy. American Economic Review
110 (4), 943—83.

Bethune, Z., Korinek, A., 2020. Covid-19 infection externalities: Trading off lives vs.
livelihoods. NBER working paper No. 27009.

Bhattarai, S., Eggertsson, G. B., Gafarov, B., 2015. Time consistency and the duration
of government debt: A signalling theory of quantitative easing. NBER working paper
No. 21336.

Brunnermeier, M. K., Sannikov, Y., 2014. A macroeconomic model with a financial sector.
American Economic Review 104 (2), 379—421.

Caballero, R. J., Farhi, E., 2018. The safety trap. The Review of Economic Studies 85 (1),
223—274.

Caballero, R. J., Krishnamurthy, A., 2009. Global imbalances and financial fragility.
American Economic Review 99 (2), 584—88.

Caballero, R. J., Simsek, A., 2020. Prudential monetary policy. NBER working paper no.
25977.

Caballero, R. J., Simsek, A., forthcoming. A risk-centric model of demand recessions and
speculation. The Quarterly Journal of Economics.

Callum, J., Philippon, T., Venkateswaran, V., 2020. Optimal mitigation policies in a
pandemic. NBER Working Paper No. 26901.

Campbell, J. Y., Viceira, L. M., 2002. Strategic asset allocation: portfolio choice for
long-term investors. Oxford University Press.

Cao, D., Luo, W., Nie, G., 2019. Fisherian asset price deflation and the zero lower bound.
working paper.

Chodorow-Reich, G., Nenov, P. T., Simsek, A., 2019. Stock market wealth and the real
economy: A local labor market approach. NBER working paper no. 25959.

Correia, S., Luck, S., Verner, E., 2020. Pandemics depress the economy, public health
interventions do not: Evidence from the 1918 flu. working paper.

Dávila, E., Korinek, A., 2018. Pecuniary externalities in economies with financial frictions.
The Review of Economic Studies 85 (1), 352—395.

Del Negro, M., Eggertsson, G., Ferrero, A., Kiyotaki, N., 2017. The great escape? a quan-
titative evaluation of the fed’s liquidity facilities. American Economic Review 107 (3),
824—57.

Di Tella, S., 2017. Uncertainty shocks and balance sheet recessions. Journal of Political
Economy 125 (6), 2038—2081.

24



Eichenbaum, M. S., Rebelo, S., Trabandt, M., 2020. The macroeconomics of epidemics.
NBER Working Paper No. 26882.

Faria-e Castro, M., 2020. Fiscal policy during a pandemic. working paper.

Fornaro, L., Wolf, M., 2020. Covid-19 coronavirus and macroeconomic policy. CEPR
Discussion Paper No. DP14529.

Geanakoplos, J., 2010. The leverage cycle. NBER macroeconomics annual 24 (1), 1—66.

Gertler, M., Karadi, P., 2011. A model of unconventional monetary policy. Journal of
monetary Economics 58 (1), 17—34.

Gilchrist, S., Zakrajšek, E., 2012. Credit spreads and business cycle fluctuations. American
Economic Review 102 (4), 1692—1720.

Gourinchas, P.-O., 2020. Flattening the pandemic and recession curves. working paper.

Guerrieri, V., Lorenzoni, G., Straub, L., Werning, I., 2020. Macroeconomic implications of
covid-19: Can negative supply shocks cause demand shortages? NBER working paper
no. 26918.

He, Z., Krishnamurthy, A., 2013. Intermediary asset pricing. American Economic Review
103 (2), 732—70.

Holmström, B., Tirole, J., 1998. Private and public supply of liquidity. Journal of political
Economy 106 (1), 1—40.

Kekre, R., Lenel, M., 2020. Monetary policy, redistribution, and risk premia. University
of Chicago, Becker Friedman Institute for Economics Working Paper (2020-02).

Kiyotaki, N., Moore, J., 1997. Credit cycles. Journal of political economy 105 (2), 211—248.

Lorenzoni, G., 2008. Ineffi cient credit booms. The Review of Economic Studies 75 (3),
809—833.

Mian, A., Sufi, A., 2014. What explains the 2007—2009 drop in employment? Economet-
rica 82 (6), 2197—2223.

Pflueger, C., Siriwardane, E., Sunderam, A., forthcoming. Financial market risk percep-
tions and the macroeconomy. The Quarterly Journal of Economics.

Ray, W., 2019. Monetary policy and the limits to arbitrage: Insights from a new keynesian
preferred habitat model. working paper.

Shleifer, A., Vishny, R. W., 1997. The limits of arbitrage. The Journal of finance 52 (1),
35—55.

Silva, D. H., 2016. The risk channel of unconventional monetary policy. working paper.

Vayanos, D., Vila, J.-L., 2009. A preferred-habitat model of the term structure of interest
rates. NBER working paper No. 15487.

25



A. Appendix: Omitted derivations

This appendix presents the derivations and proofs omitted from the main text. We start

by presenting the details of the baseline case without LSAPs. We then consider the case

with LSAPs. Throughout, recall that the market portfolio is the claim to all output.

Combining Eqs. (1) and (2), the return on the market portfolio at date 1 is also log

normally distributed, that is,

r (z0, z1) = log

(
z1
z0Q0

)
∼ N

(
log

z1
z0
− log (Q0)−

σ2

2
, σ2
)
. (A.1)

For most of our analysis, we also assume log z1
z0
= g, which further simplifies this expression

[cf. Eq. (19)].

A.1. Baseline model without policy

Most of the analysis is provided in the main text. Here, we formally state the agents’

problem that incorporates the log-Normal approximation. We also derive the optimality

conditions. We then complete the characterization of equilibrium and prove Proposition

1.

Approximate portfolio problem and optimality conditions. Without an approx-

imation, type i agents would solve the following problem,

ui,exact0

(
ãi0
)

= max
c0,a0,ω

log c0 + e−ρ log ui1 (A.2)

where ui1 =
(
E
[
c1 (z0, z1)

(τ i−1)/τ i
])τ i/(τ i−1)

s.t. c0 + a0 = ãi0

and c1 (z0, z1) = a0
(
ω exp (r (z0, z1)) + (1− ω) exp

(
rf
))
. (A.3)

Here, c1 (z0, z1) denotes total financial wealth, which equals consumption (since the econ-

omy ends at date 1). Note that the agent has Epstein-Zin preferences with EIS coeffi cient

equal to one and the RRA coeffi cient equal to 1/τ i > 0. The case with τ i = 1 is equivalent

to time-separable log utility. Agents’initial endowments, ai0, are given by (3).

In view of the Epstein-Zin functional form, agents can be thought of as solving the

intertemporal problem,

ui0
(
ãi0
)
= max

a0
log
(
ãi0 − a0

)
+ e−ρ log

(
RCE,ia0

)
. (A.4)
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Here, RCE,i denotes investors’certainty-equivalent portfolio return per dollar. Absent an

approximation, it would correspond to the solution to the following portfolio optimization

problem:

RCE,i,exact = max
ω

(
E
[
(Rp (z0, z1))

(τ i−1)/τ i
])τ i/(τ i−1)

(A.5)

and Rp (z0, z1) = ω exp (r (z0, z1)) + (1− ω) exp
(
rf
)
.

The variable, Rp (z0, z1), denotes the realized portfolio return per dollar.

In our analysis, we assume that agents choose portfolios (and evaluate the resulting

certainty-equivalent return, RCE,i) by solving the following approximate portfolio prob-

lem:

logRCE,i − rf = max
ω

ωπ − 1
2

1

τ i
ω2σ2 (A.6)

where π = E [r (z0, z1)] +
σ2

2
− rf .

Here, π denotes the risk premium on the market portfolio and σ is its standard deviation

(measured in log returns). The problem says that the agent trades off its portfolio mean

(in excess of the risk-free rate), ωπ, with its portfolio variance, ω2σ2. This approximation

becomes exact if the portfolio return follows a log-Normal distribution. In general, this

is not the case and it holds only approximately. This approximation works well for

calibrations with relatively short time horizons and it becomes exact in continuous time.

The approximation is widely used in the literature (see Campbell and Viceira (2002)).

The first order condition for problem (A.4) implies Eq. (5) in the main text. That is,

regardless of her certainty-equivalent portfolio return, the investor consumes and saves a

constant fraction of her lifetime wealth.

The first order condition for problem (A.6) implies Eq. (6) in the main text.

Characterization of equilibrium. We characterize the equilibrium and prove Propo-

sition 1. We first characterize the equilibrium in terms of an auxiliary function. Consider

the function:

F
(
Q̃0; z0

)
=

σ2

τ 0 −
κ0l0(τb−τh)

z0Q̃0

+ log
(
Q̃0

)
− (g + ρ) (A.7)

where τ 0 = τh + κ0
(
τ b − τh

)
.
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This function is defined over the domain Q̃0 ∈
(
Q
0
,∞
)
, where Q

0
=

κ0l0(τb−τh)/z0
τ0

. Eq.

(15) implies that every interior equilibrium, Q̃0 ∈
(
Q̃h
0 , 1
)
, corresponds to a zero of this

function. Conversely, every zero of the function that falls in the range, Q̃0 ∈
(
Q̃h
0 , 1
)
,

corresponds to an interior equilibrium. The zeros that fall outside this range do not

correspond to an equilibrium. Finally, there is a corner equilibrium with Q̃0 = 1 (and

rf ≥ 0) iffF (1; z0) ≤ 0; and there is a corner equilibrium with Q̃0 = Q̃h
0 (and bankruptcy)

iff F
(
Q̃h
0 ; z0

)
≥ 0.

We next establish some properties of the auxiliary function that facilities the proof.

Consider the monotone change of variables:

τ 0 = τ 0 −
κ0l0

(
τ b − τh

)
z0Q̃0

⇔ Q̃0 =
κ0l0

(
τ b − τh

)
/z0

τ 0 − τ 0
. (A.8)

In terms of the new variable, the auxiliary function corresponds to the transformed func-

tion:

f (τ 0) ≡
σ2

τ 0
− log (τ 0 − τ 0) + log l0 − log z0 − (g + ρ) . (A.9)

This function has the domain τ 0 ∈ (0, τ 0), and it is strictly convex, that is:

f ′′ (τ 0) =
2σ2

τ 30
+

1

(τ 0 − τ 0)2
> 0

The function also satisfies limτ0→0 f (τ 0) = limτ0→∞ f (τ 0) = ∞. These observations

imply that the zeros of the transformed function f (·) have the same characteristics as an
upward-pointing parabola. The original function F (·; z0) adopts the same characteristics.
In particular, the function either does not have any (interior) zero:

F
(
Q̃0; z0

)
≥ 0 for Q̃0 ∈

(
Q
0
,∞
)
, (A.10)

or it has exactly two interior zeros:

F
(
Q10; z0

)
= F

(
Q20; z0

)
= 0 for Q

0
< Q10 < Q20 (A.11)

with F
(
Q̃0; z0

)
< 0 for Q̃0 ∈

(
Q10, Q

2
0

)
and F

(
Q̃0; z0

)
> 0 otherwise.

Proof of Proposition 1. Consider the first part that concerns the case, z0 > zh = l0
Q̃h
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[cf. (23)]. This condition implies the auxiliary function in (A.7) satisfies:

F
(
Q̃h
0 ; z0

)
=

σ2

τ 0

(
z0Q̃h

0

) + log (Q̃h
0

)
− (g + ρ)

<
σ2

τh
+ log

(
Q̃h
0

)
− (g + ρ) = 0. (A.12)

Here, the inequality follows since z0 > zh = l0
Q̃h
implies τ 0

(
z0Q̃

h
0

)
> τ (l0) = τh. The

equality follows from the definition of Q̃h
0 . This rules out the corner equilibrium with

Q̃0 = Q̃h
0 . Combining this observation with Eq. (A.11) also implies that we must have

the case (A.11) with Q̃h
0 falling between the two zeros. This in turn implies there is a

unique equilibrium that depends on the sign of F (1; z0). When F (1; z0) > 0, there is an

interior equilibrium with Q̃0 ∈
(
Q̃h
0 , 1
)
. When F (1; z0) ≤ 0, there is a corner equilibrium

with Q̃0 = 1. Note also that F (1; z0) = σ2

τ0(z0)
− (g + ρ) implies that the condition,

F (1; z0) > 0, is equivalent to z0 < z∗ from the definition of z∗ [cf. (24)]. This proves that

there is a unique interior equilibrium when z0 < z∗ (and z0 > zh) and there is a unique

corner equilibrium when z0 ≥ z∗ (and z0 > zh).

Next consider the comparative statics of the interior equilibrium with respect to z0.

Note that F
(
Q̃0; z0

)
is decreasing in z0. Therefore, greater z0 shifts F

(
Q̃0; z0

)
downward,

which increases the (greater) zero of the function that corresponds to the equilibrium. This

establishes dQ̃0
dz0

> 0 and completes the proof of the first part.

Next suppose z0 < zh = l0
Q̃h
. We have the opposite of (A.12), which implies that there

is a corner equilibrium with Q̃0 = Q̃h
0 . In this case, there can also be other equilibria. To

see this, consider z0 ∈
(
z∗, zh

)
(assuming the interval is nonempty). Then, we have:

F (1; z0) =
σ2

τ 0 (z0)
− (g + ρ) <

σ2

τ 0 (z∗)
− (g + ρ) = 0. (A.13)

Here, the inequality follows since z0 > z∗ and the equality follows from the definition of

z∗. This implies that there is a corner equilibrium with Q̃0 = 1. In particular in this

case Q̃0 = Q̃h
0 and Q̃0 = 1 are both corner equilibria. This completes the proof of the

proposition.

A.2. Model with large-scale asset purchases

We next present the details of the extended analysis with LSAPs. We first describe

the government’s budget constraint and derive Eqs. (26) and (27). We then complete
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the characterization of the equilibrium and prove Proposition 2. Finally, we provide a

rationale for the government’s objective function (35).

Government’s budget constraints. The government is endowed with some income

(tax receipts) in period 1 given by z1ηg. At the end of period 0, the government decides

how much to borrow, bg0 ≥ 0, and what fraction of the borrowed funds to invest in the
risky asset, ω̃g0 ≥ 0, with the residual fraction invested in the safe asset. In period 1, the
government collects the tax receipts and the return on its investments, pays back its debt,

and spends the residual. Its budget constraint in period 1 can be written as:

cg1 = z1η
g + bg0

(
ω̃g0 exp (r (z0, z1))− ω̃

g
0 exp

(
rf
))
, (A.14)

where cg1 denotes government spending in period 1.

We next rewrite the budget constraint in (A.14) to make it parallel to the agents’

budget constraint in (A.3). Eq. (2) implies z1 = z0Q0 exp (r (z0, z1)). Substituting this

into the budget constraint, we obtain:

cg1 = z0Q0η
g exp (r (z0, z1)) + bg0ω̃

g
0 exp (r (z0, z1))− b

g
0ω̃

g
0 exp

(
rf
)

= ag0

((
1 +

bg0ω̃
g
0

ag0

)
exp (r (z0, z1))−

bg0ω̃
g
0

ag0
exp

(
rf
))

= ag0
(
ωg0 exp (r (z0, z1)) + (1− ω

g
0) exp

(
rf
))

where ag0 = z0Q0η
g and ωg0 = 1 +

bg0ω̃
g
0

ag0
.

The second line defines and substitutes the effective wealth of the government, ag0, and

the third line defines and substitutes the effective portfolio weight, ωg0. This establishes

Eqs. (26) and (27) in the main text. The government can be effectively thought of as

starting with the present discounted value of its tax receipts and choosing a weight on

the market portfolio that reflects its implicit holding of risky tax receipts as well as its

additional investments.

Characterization of equilibrium with LSAPs. Consider the analogue of the func-

tion (A.7) that incorporates LSAPs:

F
(
Q̃0; z0, λ

)
=

σ2 (1− λ)

τ 0 −
l0κ0(τb−τh)

z0Q̃0

+ log
(
Q̃0

)
− (g + ρ) (A.15)

where τ 0 = τh + κ0
(
τ b − τh

)
.
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Every interior equilibrium, Q̃0 ∈
(
Q̃h
0 (λ) , 1

)
, corresponds to a zero of this function.

Conversely, any zero of the function that falls in the interior range, Q̃0 ∈
(
Q̃h
0 (λ) , 1

)
,

corresponds to an equilibrium. The zeros that fall outside this range do not correspond

to an equilibrium. There is a corner equilibrium with Q̃0 = 1 iff F (1; z0, λ) ≤ 0; and

there is a corner equilibrium with Q̃0 = Q̃h
0 iff F

(
Q̃h
0 ; z0, λ

)
≥ 0. Finally, the function

F
(
Q̃0; z0, λ

)
satisfies the same property that we established for the special case with

λ = 0: one of cases (A.10) and (A.11) holds.

Proof of Proposition 2. Suppose zh (λ) < z∗ (λ) and consider a shock z0 ∈(
zh (λ) , z∗ (λ)

)
. Following the same steps as in Proposition 1, there exists a unique equi-

librium that corresponds to the (greater) zero of the function, F
(
Q̃0; z0, λ

)
, that falls in

the range, Q̃0 ∈
(
Q̃h (λ) , 1

)
. Consider the comparative statics with respect to the size

of the LSAP, λ. Eq. (A.15) implies that increasing λ shifts the function, F
(
Q̃0; z0, λ

)
,

downward. This increases the (greater) zero and raises the equilibrium price, that is,
dQ̃0
dλ

> 0.

Government’s objective function. We next provide a rationale for the functional

form assumptions in the government’s objective function (35). For concreteness, suppose

there is a future generation of agents (born in period 1) that are the residual claimant

from the government’s positions and thus consume cg1. The future generation’s utility

function is similar to the other agents’(constant relative risk aversion) with risk tolerance

τ g. We also simplify the setup by merging the other agents (banks and households) into

a single agent, which we refer to as the market, with risk tolerance τm. Finally, suppose

the government assigns the relative Pareto weights ηg and 1 to the future generation and

the market– chosen to match their relative endowments. We set up a constrained Pareto

problem in which the government’s only policy tool is to choose ωg0 ≥ 1. We we show that
the objective function is the same as (35) with τm = τ 0 (1).

First consider the characterization of equilibrium for a given ωg0 ≥ 1. Suppose τm <
σ2(1−ηg(ωg0−1))

ρ+g
, which implies there is a demand recession in period 0 despite the LSAP

(the other case is similar). Following the same steps in Section 3, the equilibrium in period

0 features rf = 0 and the asset price [cf. (34)]:

log
(
Q̃0

)
= g + ρ− σ2 (1− ηg (ωg0 − 1))

τm
< 1. (A.16)
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As before, the asset price is increasing in ωg0. The market clearing condition is:

ωm0 + ηgωg0 = 1 + ηg. (A.17)

We next calculate the market’s equilibrium utility. Using Eqs. (A.4) , (A.6), and (5),

we have:

um0 = log

(
z0Q0
1 + e−ρ

)
+ e−ρ

(
log
(
RCE,m

)
+ log

(
e−ρz0
1 + e−ρ

)
+ logQ0

)
= ũm0 + log (Q0) + e−ρ

(
ωm0 (g − logQ0) + logQ0 −

1

2

1

τm
(ωm0 )

2 σ2
)
.

The second line substitutes the equilibrium interest rate, rf = 0, and the equilibrium

return on the market portfolio, E [r (z0, z1)]+ σ2

2
= g− logQ0 [cf. Eq. (2)]. It also collects

the exogenous terms into ũm0 .

Next consider the future generation. They have the same utility function as the other

agents but with risk tolerance τ g. Their exact utility function is given by [cf. (A.4− A.5)]:

ug,exact1 = e−ρ log
(
RCE,gag0

)
with ag0 = z0Q0η

g,

where RCE,g,exact =
(
E
[
(Rp (z0, z1))

(τg−1)/τg
])τg/(τg−1)

and Rp (z0, z1) =
(
ωg0 exp (r (z0, z1)) + (1− ω

g
0) exp

(
rf
))
.

Applying the log-Normal approximation (similar to the other agents), we write this as [cf.

(A.6)]:

ug1 = e−ρ
(
log
(
RCE,g

)
+ log (z0η

g) + logQ0
)

= ũg1 + e−ρ
(
ωg0 (g − logQ0) + logQ0 −

1

2

1

τ g
(ωg0)

2 σ2
)
.

Where the second line substitutes for the equilibrium returns and collects the exogenous

terms into ũg1.

Aggregating the market’s and the future generation’s utility with weights 1 and ηg,
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the government’s objective function is:

U g
0 = Ũ g

0 + log (Q0) + e−ρ

(
− (ωm0 + ηgωg0) logQ0 + (1 + ηg) logQ0

−1
2
1
τm
(ωm0 )

2 σ2 − ηg 1
2
1
τg
(ωg0)

2 σ2

)

= Ũ g
0 + log (Q0)−

1

2
e−ρσ2

(
1

τm
(ωm0 )

2 + ηg
1

τ g
(ωg0)

2

)
(A.18)

Here, we have collected the exogenous terms into Ũ g
0 . The second line uses the market

clearing condition (A.17) to simplify the expression.

Combining Eqs. (A.18) and (A.16) (and using Q̃0 = Q0/Q
∗), the government’s con-

strained Pareto problem is:

max
ωg0

log
(
Q̃0

)
− 1
2
e−ρσ2

(
1

τm
(ωm0 )

2 + ηg
1

τ g
(ωg0)

2

)
,

where log
(
Q̃0

)
= g + ρ− σ2 (1− ηg (ωg0 − 1))

τm
.

This problem is similar to the one we solve in the main text. In particular, the objective

function is the same as in (35) after replacing τm = τ 0 (1), which provides a rationale for

the functional forms.7

7This analysis also clarifies the role of the Pareto weights, 1 and ηg. These weights are chosen to match
the agents’initial endowments, which ensures that the pecuniary externalities generated by the changes
in the price of the market portfolio “net out”[see (A.18)].
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