
NBER WORKING PAPER SERIES

ADVANCES IN STRUCTURAL VECTOR AUTOREGRESSIONS WITH IMPERFECT 
IDENTIFYING INFORMATION

Christiane Baumeister
James D. Hamilton

Working Paper 27014
http://www.nber.org/papers/w27014

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
April 2020

We thank Diego Kaenzig and Lam Nguyen for helpful comments on an earlier draft of this paper. 
The views expressed herein are those of the authors and do not necessarily reflect the views of the 
National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2020 by Christiane Baumeister and James D. Hamilton. All rights reserved. Short sections of 
text, not to exceed two paragraphs, may be quoted without explicit permission provided that full 
credit, including © notice, is given to the source.



Advances in Structural Vector Autoregressions with Imperfect Identifying Information
Christiane Baumeister and James D. Hamilton
NBER Working Paper No. 27014
April 2020
JEL No. C11,C32,Q43

ABSTRACT

This paper examines methods for structural interpretation of vector autoregressions when the 
identifying information is regarded as imperfect or incomplete. We suggest that a Bayesian 
approach offers a unifying theme for guiding inference in such settings. Among other advantages, 
the unified approach solves a problem with calculating elasticities that appears not to have been 
recognized by earlier researchers. We also call attention to some computational concerns of 
which researchers who approach this problem using other methods should be aware.

Christiane Baumeister
Department of Economics
University of Notre Dame
3028 Jenkins Nanovic Hall
Notre Dame, IN 46556
and NBER
cbaumeis@nd.edu

James D. Hamilton
Department of Economics, 0508
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0508
and NBER
jhamilton@ucsd.edu



1 Introduction.

The problem of identification — drawing causal or structural conclusions from the correlations

we observe in the data — is often the core challenge of empirical economic research. The tradi-

tional approach to identification is to bring in additional information in the form of identifying

assumptions, such as restrictions that certain magnitudes have to be zero. Although this ap-

proach is very common in empirical economic studies, it would be hard to find an economic

researcher who does not entertain some doubts about whether the identifying restrictions are

really valid.

These doubts have led to substantial interest among empirical macroeconomists in methods

that make use of incomplete identifying assumptions, such as restrictions on the signs rather

than the magnitudes of certain parameters of interest. These methods have been applied to

interpreting vector autoregressions in hundreds of published studies.1 Surveys of the literature

have been provided by Kilian and Lütkepohl (2017), Uhlig (2017), and Kilian and Zhou (2020).

In this paper we propose a unifying principle for approaching these questions that much

of the literature has overlooked. We suggest that what are usually thought of as identifying

assumptions should more generally be described as information that the analyst had about

the economic structure before seeing the data. We maintain that such information is most

naturally represented as a Bayesian prior distribution over certain features of the economic

structure. Traditional point identification can be viewed as a special case of a dogmatic

Bayesian prior — values that we knew for certain before we saw the data. The natural way to

acknowledge that our prior information about the structure is less than perfect is to reduce the

confidence reflected in those prior distributions. Application of Bayes’ Law will then result

in those doubts about the true structure being incorporated in the conclusions we draw after

having seen the data.

In Section 2 we illustrate this theme using a number of earlier studies and correct some

misunderstandings that have appeared in the recent literature. Section 3 demonstrates that a

common approach to estimating elasticities in sign-restricted vector autoregressions, used for

example by Kilian and Murphy (2012, 2014), Güntner (2014), Riggi and Venditti (2015), Kil-

ian and Lütkepohl (2017), Ludvigson, Ma, and Ng (2017), Antolín-Díaz and Rubio-Ramírez

(2018), Basher et al. (2018), Herrera and Rangaraju (2020), and Zhou (2020), is incorrect.

We show how a unified Bayesian approach fixes this problem. Section 4 comments on some

computational issues of which users of sign-restricted vector autoregressions should be aware.

Here we again note an advantage of a unified Bayesian approach in avoiding these problems.

Section 5 discusses auxiliary identifying information in the form of instruments or proxy vari-

ables. Section 6 briefly concludes.

Our core recommendation is that instead of regarding identifying assumptions as something

1See Baumeister and Hamilton (2020a) for a partial list of these.
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one simply has to make, researchers should reflect carefully on what we know on the basis of

other data sets or economic theory and how confident we are in this knowledge. Both the

prior information and our doubts about the quality of the information should be incorporated

in any conclusions we draw from the data.

2 Alternative approaches to structural identification.

A wide class of dynamic structural models takes the form

Ayt = Bxt−1 + ut. (1)

Here yt is an (n×1) vector of observed variables and xt−1 is a (k×1) vector containing m lags

of y and a constant term, x′t−1 = (y
′

t−1,y
′

t−2, ...,y
′

t−m, 1)
′, so k = mn + 1. This is a system

of n structural equations in which A is an (n × n) matrix of contemporaneous coefficients

and B captures structural dynamics. The structural shocks ut are assumed to be mutually

uncorrelated white noise with E(utu
′

t) given by the diagonal matrix D.
2

Associated with this system is a reduced-form vector autoregression:

yt = Φxt−1 + εt (2)

Φ = A−1B. (3)

The relation between reduced-form residuals and the structural shocks is

εt = A
−1ut (4)

E(εtε
′

t) = Ω = A
−1D(A−1)′. (5)

The reduced-form parameters Φ and Ω are readily estimated by OLS. However, knowledge of

the reduced-form parameters is not enough information to uncover the structural parameters

A,B, and D of interest. Drawing an inference about the structural parameters requires

bringing in additional information about the structure from other sources.

2.1 The traditional approach to identification.

The traditional approach to structural estimation is based on imposing enough restrictions on

the structural parameters to achieve point identification, that is, a unique mapping from the

reduced-form parameters Φ and Ω into the structural parameters A,B, and D. Often these

2Specifying D to be diagonal is motivated by the idea that the structural shocks are primitive and do not
have common causes. The idea behind the structural model is to characterize contemporaneous relations
between the variables in terms of off-diagonal elements of A; see Bernanke (1986).
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come in the form of restrictions that certain elements of A have to be zero. One of literally

thousands of studies that we could use to illustrate this approach is the Cholesky identification

scheme used by Kilian (2009). In his application, yt is a (3× 1) vector consisting of monthly

measures of the quantity of oil produced globally, world real economic activity, and the real

price of oil: yt = (qt, yt, pt)
′. The number of lags m was taken to be 24, and the system of

structural equations can be written3

qt = αqyyt + αqppt + b
′

1xt−1 + u1t (6)

yt = αyqqt + αyppt + b
′

2xt−1 + u2t (7)

pt = αpqqt + αpyyt + b
′

3xt−1 + u3t. (8)

Equation (6) models the behavior of oil producers with αqp the short-run price elasticity of

supply. Equation (7) describes the determinants of global economic activity and (8) describes

the behavior of oil consumers, with αpq the reciprocal of the short-run price elasticity of

demand.

Kilian (2009) achieved identification by imposing αqy = αqp = 0, which implies that

producers do not respond immediately to changes in economic activity or the price, and

αyp = 0, meaning that the price of oil has no contemporaneous effect on economic activity.

Column 1 of Figure 1 plots the responses of the three variables to a negative shock to the supply

of oil under this traditional Cholesky identification scheme.4 An oil production shortfall is

followed a few months later by a modest increase in price and decrease in economic activity.

2.2 A generalization of the traditional approach.

Unfortunately, convincing zero restrictions are a rare commodity in economics. They are hard

to come up with and are often difficult to defend. Bayesian methods allow us to incorporate

prior information in a much less restrictive way. The Bayesian idea is to represent prior infor-

mation in the form of a probability distribution over the structural parameters. The value of

the prior density p(A,B,D) is higher for values of parameters that we think are more plausible

a priori and lower for those that we think are less plausible. The value could be zero for para-

meter configurations that we are absolutely certain can be ruled out. Algorithms for imple-

menting this approach are available at https://sites.google.com/site/cjsbaumeister/research.

Baumeister and Hamilton (2019) showed how the above Cholesky example can be viewed

as a special case of the more general Bayesian approach. We used degenerate priors for αqy,

3The empirical illustrations below are taken from Baumeister and Hamilton (2019), where a detailed de-
scription of the data can be found.

4Kilian (2009) measured the monthly growth in oil production at an annual rate, whereas we are measuring
it at a monthly rate. This is why the units in the (1,1) panel of our Figure 1 are 1/12 the units reported in
the (1,1) panel of Kilian’s Figure 3.
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αqp, and αyp centered at zero and with zero variance to represent the inference of an analyst

who was absolutely certain that these three parameters had to be zero. We used priors

with fat tails and a huge variance for αyq, αpq, αpy, thus treating essentially any value for

these parameters as reasonable. The impulse-response functions that result from Bayesian

inference using this prior distribution are plotted in the second column of Figure 1. Not

surprisingly, this is identical to the first column. The Cholesky approach to identification

can be given a Bayesian interpretation, where the prior information is that we claim to know

with certainty that the elements in the upper-triangular block of A were all zero but have no

useful information at all about elements in the lower-triangular block of A.

Expressing the prior information that is implicit in the traditional approach in this way

invites us to consider a natural generalization. We may have good information that the short-

run supply elasticity αqp is small. But it is hard to claim that we know with absolute certainty

that αqp has to be zero. On the other hand, we may also have some useful information that the

short-run demand elasticity is not large in absolute value. The identifying information that

we lose by becoming less dogmatic about the supply elasticity can be compensated in part by

incorporating imperfect prior information about other structural parameters like the demand

elasticity. Baumeister and Hamilton (2019) illustrated how this idea could be implemented

in practice.

2.3 Sign-restricted vector autoregressions.

Another popular approach to structural identification imposes constraints not that parameters

like αqp have to be zero but instead that they cannot be negative. Methods for inference based

on inequality constraints were developed by Faust (1998), Canova and De Nicoló (2002), Uhlig

(2005) and Rubio-Ramírez, Waggoner and Zha (2010) (hereafter RWZ). The RWZ algorithm

generates a draw for the reduced-form parameters Φ and Ω from a Normal-inverted-Wishart

distribution and then transforms each Ω into a draw for the contemporaneous impacts of one-

standard-deviation structural shocks (H∗= A−1D1/2) using a QR decomposition of a matrix

of standard Normals that comes from the researcher’s random-number generator.5 Draws

are only retained if they satisfy the sign and other restrictions that the researcher imposes.

The set of retained draws is then typically summarized in terms of 68% intervals around the

median.

This approach can also be described as Bayesian inference. Implicit in the draws gener-

ated by the RWZ algorithm is a prior probability distribution p(A,B,D) over the structural

parameters. For example, Baumeister and Hamilton (2015) showed that conditional on Ω the

RWZ algorithm implies a Cauchy distribution over parameters like αqp. The common prac-

5Specifically, the researcher generates an (n × n) matrix G consisting of independent standard Normals,
factors this as G = QR where Q is an orthonormal matrix and R is upper triangular, and then generates H∗

from H∗ = PQ for P the Cholesky factor of Ω.
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tice of reporting medians and 68% probability regions of the retained draws would be fine if

the researcher viewed the implicit prior p(A,B,D) as accurately incorporating information

that the researcher had about the structural model before seeing the data. However, the

typical empirical application makes no defense or even acknowledgement of the implicit prior

distribution. If one uses literally no prior information other than the sign restrictions, as

many applied studies seem to claim, there is no statistical basis for reporting only 68% of the

retained draws. The boundaries of the 68% region are simply an artifact of the researcher’s

random number generator, not a summary of some feature in the data. If researchers claim

not to have used any identifying information other than the sign restrictions, then what they

should be reporting is the identified set, namely, all the retained values. For more discussion

see Watson (2019) and Baumeister and Hamilton (2020a).

2.4 Identification using sign and other restrictions.

Unfortunately, if the identification is based on sign restrictions alone, the identified set is

typically too large to be useful. The conclusion that “anything is possible” is not very

informative. For this reason, many applied researchers impose additional restrictions along

with the sign conditions to throw out more of the draws proposed by the RWZ algorithm;

examples include Kilian and Murphy (2012, 2014), Riggi and Venditti (2015), Carter et al.

(2017), De Santis and Zimic (2018), and Foroni and Stracca (2019). For illustration we

examine the application in Kilian and Murphy (2012). They analyzed the 3-variable system

(6)-(8) over almost the same sample as Kilian (2009). They discarded draws that did not

satisfy the sign restrictions

sign(H∗) =





+ + +

+ + −

− + +




 . (9)

They further discarded any draw that implied a value for the short-run supply elasticity αqp

that was greater than 0.0258.6 The impulse-response functions that they arrived at are plotted

in the third column of Figure 1.7 Although motivated by a seemingly different identification

strategy, the graphs in column 3 are remarkably similar to those in column 1. Restricting

the short-run supply elasticity to fall in (0, 0.0258) turns out in practice to be very similar to

forcing it to exactly equal zero.

Again if we viewed this algorithm as resulting from a Bayesian prior distribution (which

Kilian and Murphy did not), the claim would be that we know on the basis of information

before seeing the data that an elasticity of 0.0257 is plausible but a value of 0.0259 is completely

6Many other studies using a number of different variables have also imposed a 0.0258 bound on the oil
supply elasticity. Examples include Kilian and Murphy (2014), Güntner (2014), Basher et al. (2018), and
Geiger and Scharler (2019).

7These correspond to the solid lines in row 1 of Figure 5 in Kilian and Murphy (2012).
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impossible. A more natural representation of prior information might take the form that while

we think a value of 0.0259 is less likely than a value of 0.0257, we cannot say that a value of

0.0259 is completely impossible.

Other researchers have tried to arrive at sharper inference by imposing dynamic sign re-

strictions. For example, the prior implicit in Kilian and Murphy (2014) maintains that the re-

searcher knows before seeing the data not just the signs of the effect of an oil supply disruption

u1t on production, economic activity, and price upon impact (∂qt+s/∂u1t, ∂yt+s/∂u1t, ∂pt+s/∂u1t

for s = 0) but also knows with certainty the signs of the effects s = 1, 2, ..., 12 months after

the shock as well. From the Bayesian perspective, this amounts to a joint prior distribution

p(A,B) over the contemporaneous and lagged structural coefficients. Baumeister and Hamil-

ton (2015) showed how to perform Bayesian analysis when prior information takes this form.

However, Canova and Paustian (2011) cautioned that researchers’ confidence about the signs

of general equilibrium effects at higher horizons is often misplaced. Baumeister and Hamilton

(2015, Section 4) argued that we might typically expect effects at horizon s to be similar to

those at horizon s − 1, with decreasing confidence in that prior information the larger is s.

See Baumeister and Hamilton (2018, Table 2) and (2019, page 1896) for illustrations of how

this works in practice.

2.5 Relaxing the influence of prior information.

By representing prior information in the form of a density p(A,B,D), the analyst is formally

summarizing how much we trust the prior information. If we are very certain, the prior should

have a small variance, and will end up having a big influence on the posterior distribution. If

we are very uncertain, we would use a large variance, and the prior will have little influence

on the posterior distribution.

To illustrate alternative uses of prior information, we examine in further detail the implicit

prior in Kilian and Murphy (2012, 2014), which maintained that a value for the short-run

oil supply elasticity of 0.0257 was plausible but a value of 0.0259 was completely impossible.

Where did such precise information come from? Kilian and Murphy (2012) obtained the cutoff

0.0258 from observations in August 1990 after Iraq invaded Kuwait. They divided the increase

in oil production in countries other than Iraq and Kuwait in August of 1990 (1.17%) by the

increase in oil price in August of 1990 (45.3%), finding 1.17/45.3 = 0.0258. However, Caldara,

Cavallo and Iacoviello (2019) noted that the reason that world production only increased by

1.17% was because of a 19.5% cut from United Arab Emirates, who feared they too would

be invaded if they did not cut production. In August 1990, the increase in production from

countries other than Iraq, Kuwait and U.A.E. was 1.95%. If one used that figure instead of

Kilian and Murphy’s 1.17%, the implied elasticity would have been 1.95/45.3 = 0.043.

Zhou (2020) accordingly used 0.04 as the upper bound on the oil supply elasticity. Again
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this took the form of an implicit prior belief that a value of 0.039 is plausible while 0.041 is

completely impossible. But Caldara, Cavallo and Iacoviello identified dozens of other episodes

like August 1990 in which a few countries’ production was affected by specific disruptions.

Examples include strikes by Norwegian oil workers, Libyan civil conflict, and hurricanes in

the Gulf of Mexico. In each of these episodes we can measure the price change and increase

of production outside of the impacted countries. The authors used all episodes like this

together as instrumental variables to estimate the short-run world oil supply elasticity. They

arrived at an estimate of 0.081 with a standard error of 0.037. In a different analysis of

individual wells in North Dakota, Bjørnland, Nordvik and Rohrer (2019) concluded, “while

output from conventional wells appear non-responsive to price fluctuations in the short-term,

we find supply elasticity to be positive and in the range of 0.3-0.9 for shale oil wells, depending

on wells and firms characteristics.”

Given this prior evidence, we suggest that researchers would not want to impose a strict

upper bound, but instead should use a continuous distribution that attaches less and less

probability to larger and larger values to summarize existing knowledge. One option is the

distribution in Baumeister and Hamilton (2019), which used a Student t with location pa-

rameter 0.1, scale parameter 0.2, 3 degrees of freedom, and truncated to be positive.8 This

distribution has a standard deviation of 0.25, reflecting confidence that the parameter is likely

well below unity, but not restricting it much beyond that. Our overall results were broadly

consistent with those in Kilian and Murphy (2012, 2014), though we concluded that supply

shocks had somewhat larger effects than they did.

By contrast, the uniform (0, 0.0258) prior that is implicit in Kilian and Murphy (2012,

2014) has a standard deviation of only 0.0074. This very small variance and dogmatic upper

bound of the prior causes it to have a big influence on the results, and explains the remarkable

correspondence between columns 1 and 3 of Figure 1.9

As a robustness check, Baumeister and Hamilton (2019) also used a prior that assigns

an 80% probability that the supply elasticity is uniform over the Kilian-Murphy range of

(0, 0.0258) and only a 20% weight on the truncated Student t(0.1,0.2,3). This mixture prior

resulted in the identical conclusions as our baseline analysis.10

8Contrary to the assertions in Kilian and Zhou (2019, 2020), Baumeister and Hamilton’s algorithm for
Bayesian inference can use any bounded density for p(A). There are no computational or other considerations
forcing us to use a truncated Student t distribution. We often choose Student t because it includes the Cauchy
distribution implicit in the RWZ algorithm as a special case (a Cauchy variable is a Student t with one degree
of freedom) as well as including the Normal distribution as a special case (a Normal variable is a Student t
with infinite degrees of freedom). Using 3 degrees of freedom gives the prior much fatter tails than the Normal
but still ensures that the prior has a finite variance, which can be an advantage for certain objectives such as
calculating a posterior mean.

9Kilian and Zhou (2020, p. 22) criticized the Bayesian approach, arguing, “the problem is that, in practice,
the existing literature provides little guidance about the nature of this prior.” This criticism is misdirected.
The analyses in Kilian and Murphy (2012, 2014) and Zhou (2020) make much stronger use of prior information
than anything in Baumeister and Hamilton (2019).
10Compare column 1 with column 3 of Table 3 and row 1 with row 4 in Table 4 in Baumeister and Hamilton
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To summarize, the Bayesian approach allows the researcher to put as much or as little

reliance on prior information as is warranted, including both the extremes that one knows some

features with certainty (p(A,B,D) = 0 for some values) or that one knows essentially nothing

about other features (a prior that is flat or nearly flat over broad ranges). Many researchers

have missed this fundamental insight that Bayesian inference is a strict generalization of

conventional approaches, somehow thinking that prior information is something that is only

being used in applications like Baumeister and Hamilton (2019) but not in the thousands

of studies that attempt to do structural inference in vector autoregressions without openly

acknowledging the Bayesian interpretation of what they are doing.11

3 Objects of interest in structural inference.

One difference between the parameterization used by Baumeister and Hamilton (2015, 2019)

and that used in most sign-restricted VARs is that Baumeister and Hamilton represent the

structural model in terms of the parameters (A,B,D) whereas most sign-restricted VARs

have focused on the matrix of contemporaneous impacts of one-standard-deviation structural

shocks, H∗ = A−1D1/2. Uhlig (2017) has argued that the H∗ parameterization is to be

preferred since from the perspective of policy, what we often care about are the equilibrium

effects of possible interventions. However, if the goal is to use prior information as a tool

to allow us to draw structural conclusions from the observed correlations — and we have

argued this in fact is the core challenge for structural VARs — this information typically comes

in the form of information about A rather than H∗. Most microfounded models take the

form of a system like (1), in which individual equations represent the actions of different

agents such as consumers, firms, or government, rather than in the form of postulated general

equilibrium impacts of the actions of individual agents. Formulating a prior p(A,B,D)

typically involves looking at previous findings about elasticities (Baumeister and Hamilton,

2019; Aastveit, Bjørnland, and Cross, 2020), policy rules (Baumeister and Hamilton, 2018;

Belongia and Ireland, forthcoming), and responses of agents to permanent changes (Baumeister

and Hamilton, 2015). All of these are most naturally represented as information about A,

(2019). We also obtained very similar results for a prior that puts a weight of 95% on the Kilian and Murphy
prior.
11For example, Kilian and Lütkepohl (2017, p. 455) questioned “why a prior that merely reflects the personal

views of the user should be of wider interest to other economists.” This misses the key point: the conclusions
of every structural VAR reflect the analysts’ prior information. Indeed, we view the quoted statement as
a very strong argument in support of our recommendation to communicate carefully the basis for the prior
information and to place less weight on those findings that are more in doubt. On page 457 they argued that
examining previous studies cannot tell us “what the functional form of the prior density should be. Nor does
it tell us what the dispersion of the prior density should be.” The dispersion and fatness of the tails of the
prior density summarize not the conclusions of previous research but rather the credibility of those conclusions
and how broadly they are accepted. Less reliable information is captured by using a prior density with more
dispersion, which gives the prior less influence on the posterior inference.
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not A−1.

Moreover, many applications of sign-restricted VARs that use the H∗ parameterization

have also tried to draw conclusions about behavioral elasticities. Examples include Kilian

and Murphy (2012, 2014), Güntner (2014), Riggi and Venditti (2015), Kilian and Lütkepohl

(2017), Ludvigson, Ma, and Ng (2017), Antolín-Díaz and Rubio-Ramírez (2018), Basher et

al. (2018), Herrera and Rangaraju (2020), and Zhou (2020). These researchers based their

estimates of elasticities on the ratios of certain elements of H∗. However, such calculations

do not in fact calculate behavioral elasticities, as we now explain.

The issue can be illustrated using a 3-equation system similar to that studied in Section

2.1 with the lagged terms dropped and the demand equation reparameterized. The observed

variables are the log of quantity (qt), the log of income (yt), and the log of price (pt),

qt = γyt + αpt + ust (10)

yt = ξqt + ψpt + uyt (11)

qt = δyt + βpt + udt . (12)

These correspond to the supply equation, the income equation, and the demand equation,

respectively. The parameter β (the demand price elasticity) is the answer to the question: if

the price were to increase by 1% with income held constant, by how much would the quantity

demanded by consumers change?

How can we estimate this magnitude? Suppose for example that we knew the values of

γ, α, ξ, ψ and that the structural shocks were mutually uncorrelated. Then the supply shock

ust = qt − γyt − αpt and income shock uyt = yt − ξqt − ψpt would be valid instruments for

purposes of estimating the parameters of the demand equation, because they are correlated

with yt and pt but uncorrelated with u
d
t :

�
δ̂IV

β̂IV

�

=

� 	T
t=1u

s
tyt

	T
t=1u

s
tpt	T

t=1u
y
t yt

	T
t=1u

y
t pt

�−1 � 	T
t=1u

s
tqt	T

t=1u
y
t qt

�

. (13)

Alternatively, we could estimate δ and β by maximizing the likelihood function conditional on

ust and u
y
t . For this example, the conditional MLE is numerically identical to the IV estimates;

see the appendix for mathematical details.

More generally, using the likelihood function of the observed vector of data yt along with

any additional information about structural parameters is the optimal way to form inference

about the structural parameters. As noted by Rothenberg (1973), from a frequentist per-

spective, when the additional information takes the form of complete identifying assumptions,

maximum likelihood estimation is optimal in the sense that it achieves the smallest asymptotic

variance. From a Bayesian perspective, when the additional information takes the form of
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Bayesian prior distributions, Bayesian inference is optimal in the sense of minimizing posterior

expected loss. Thus the unified approach to incorporating prior information that we are ad-

vocating is the optimal way to form an inference about parameters like β, the price elasticity

of demand.

Now consider the relation between the parameter β and the observed impacts of structural

shocks. The above structural model can be written Ayt = ut, with the impacts of the

structural shocks on the observed variables captured by the matrix

H =
∂yt
∂u′t

= A−1 (14)

= |A|−1





−β − δψ αδ − βγ α+ γψ

−ψ − βξ α− β ψ + αξ

δξ − 1 δ − γ 1− γξ




 .

What would we get if we tried to estimate the demand elasticity on the basis of the ratio of

the change in qt to the change in pt in response to a shock to supply u
s
t? For this system that

ratio is given by12

h11
h31

=
−β − δψ

δξ − 1
. (15)

In general, expression (15) is not the demand elasticity β. The reason is that if there is a

shock to ust , not only will it change the price pt, but it will also change income. The size of

the change in price is |A|−1(δξ − 1) and the size of the change in income is |A|−1(−ψ − βξ).

From the demand curve, the change in price will lead to a change in quantity demanded of

β times the change in price, namely β|A|−1(δξ − 1). Likewise the change in income will lead

to a change in quantity demanded of δ times the change in income, namely δ|A|−1(−ψ− βξ).

The observed change in quantity demanded in response to the shock in supply is the sum of

these two terms,

β
��

response to price

|A|−1(δξ − 1)
 �� 

change in price

+ δ
��

response to income

|A|−1(−ψ − βξ)
 �� 

change in income

= |A|−1(−β − δψ)
 �� 

total change

.

Dividing this by the magnitude of the change in price that results from the supply shock,

|A|−1(δξ − 1), produces the result (15).

In the special case when demand does not respond to income (δ = 0), expression (15)

would simplify to the correct answer β. But in general, expression (15) reflects a combination

of the sensitivity of demand to price and the sensitivity of demand to income.

For example, when Kilian and Murphy (2014) calculated the demand elasticity in their 4-

variable model they used an incorrect expression like (15). To calculate the supply elasticity

they used two different expressions, both of which are incorrect. They first calculated h12/h32,

12This is identical to the ratio h∗
11
/h∗

31
for H∗ = HD1/2.
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the ratio of the first to the third elements of the second column of A−1. This is the ratio

of the change in quantity to the change in price in response to what they call a flow demand

shock. They next calculated h13/h33, the ratio of the first and third elements of the third

column of A−1. This is the ratio of the change in quantity to the change in price in response

to what they call a speculative demand shock. Kilian and Murphy supposed that either of

these magnitudes could be regarded as estimates of the supply elasticity. In practice they will

be two different numbers. The way their code works is to reject a draw unless both of these

proposed measures of the supply elasticity are below 0.0258.

In the correct structural interpretation, there is a single unique magnitude that should be

called the supply elasticity. This is the (1,3) element of A = H−1, and this is the object for

which optimal inference is obtained by following the unified Bayesian approach.13

Notwithstanding, the researcher may also have some useful information about the equilib-

rium impacts of structural shocks. For example, extremely large impacts of policy changes on

broad macroeconomic variables may be regarded as unlikely, or we may claim to know a priori

the signs of certain elements of H. There is no problem incorporating information about H

as a supplement to information about A. Suppose that for the system given by (10)-(12)

(and the necessary implication of those three equations in the form of expression (14)) we

had prior information about both the price elasticity of supply p1(α) and the contemporary

effect of a supply shock on income p2(|A|
−1(−ψ − βξ)). Then we could use the product

p(A) ∝ p1(α)p2(|A|
−1(−ψ−βξ)) as a composite prior for A. As discussed by Baumeister and

Hamilton (2018), there is no problem with including multiple sources of information about

the same parameter, just as there is no problem with using multiple earlier samples that all

contain information about a common parameter to form a Bayesian prior in standard settings.

The applications in Baumeister and Hamilton (2018, 2019) and Grisse (2020) all incorporate

prior information about both A and A−1.14

13Kilian and Zhou (2020) have separately argued that one cannot talk about the elasticity of oil demand at
all in a 3-variable system like (6)-(8) because some purchased oil is not consumed as fuel but is instead stored
as inventory by refiners. This argument is fallacious. The demand price elasticity in the 3-variable system
summarizes the price sensitivity of the joint response of consumers and refiners which is a perfectly well defined
and economically relevant concept. Baumeister and Hamilton (2019) in fact analyzed a 4-variable system that
includes inventories, and Baumeister and Hamilton (2020b) demonstrated that those are correctly measuring
the concept in which Kilian and Zhou (2020) claim we should be interested, whereas the calculations based on
H∗ in Kilian and Murphy (2014) do not.
14Kilian and Zhou (2020) asserted that “Baumeister and Hamilton’s approach is not designed to handle

the restrictions on [A−1] typical of conventional oil market models, except in the special case of a recursively
identified model.” Their statement is false. The method described by Baumeister and Hamilton (2018, 2019)
for incorporating information about both A and A−1 is completely general.
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4 Computational considerations.

Discarding draws from the RWZ algorithm that do not satisfy specified conditions is vulnerable

to the concern of arbitrariness that we highlighted above. We think it is unreasonable to treat

a value αqp = 0.0257 as perfectly plausible but rule out αqp = 0.0259 as completely impossible.

An additional consideration is that as the criteria for rejecting draws becomes more strict, the

number of accepted draws shrinks. For example, the code for Kilian and Murphy (2014) that

is posted at the Journal of Applied Econometrics data archive generates 5 million draws for

the vector of possible parameters of which only 16 satisfy all the authors’ criteria.

Uhlig (2017) argued that when so many draws are rejected, the identification is sharp and

that this is a good thing. We have several concerns about this. The first is the question

we have been discussing up to this point, which is whether the identifying assumptions being

applied (in this case, that αqp < 0.0258) are really credible. Second is the practical issue of

what to conclude from the 16 retained draws. If the goal is to rely on no prior information

beyond the sign and other restrictions explicitly imposed, we argued above that researchers

should be reporting the identified set, that is, the set of all values consistent with the observed

data and the imposed restrictions. Sixteen observations is not enough to estimate the full

extent of this set. The fact that we end up with only a couple of usable realizations from

every million draws suggests at a minimum that the RWZ algorithm for models like this is

so inefficient that we don’t reliably find the answer we’re looking for using the method as

typically implemented.

Moreover, researchers typically report not the entire set of retained draws but instead just

highlight a summary statistic such as the median retained draw. For example, Kilian and

Murphy (2014, p. 464) reported results based on the “model with an impact price elasticity

of oil demand in use closest to the posterior median of that elasticity among the admissible

structural models.” Results from running their code as publicly posted, which incorporates

this criterion for selecting a “representative” draw, are plotted as the dotted red lines in our

Figure 2. These show the effects of what Kilian and Murphy (2014) called a speculative

demand shock on their measure of real economic activity and on the real price of oil, and

reproduce two of the panels shown in Figure 1 of their article. A researcher who ran this

code and looked at this output might describe the findings as Kilian and Murphy did on pages

464-465:

a positive speculative demand shock is associated with an immediate jump in the

real price of oil. The real price response overshoots, before declining gradually.

The effects on global real activity and global oil production are largely negative,

but small.

We reran their posted code making only one change. In the original code, the seed used in the

random number generator is 316. We reran the same code using instead a seed for the random
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number generator of 613. The blue solid lines in Figure 2 show what these imputed effects

look like when this different seed for the random number generator is used. A researcher who

ran their code using a random number seed of 613 instead of 316 might describe the findings

as follows:

a positive speculative demand shock is associated with an immediate large drop in

economic activity and a small positive effect on price.

Using a random number seed of 613 thus leads to completely different policy implications

compared to a seed of 316.

By contrast, the results in Baumeister and Hamilton (2018, 2019) are all based on 1 million

retained draws. This enables us to characterize the Bayesian posterior distribution for any

objects of interest quite accurately in a way that will be identical when one makes a change as

trivial as changing the random number seed. Moreover, Bayesian statistical decision theory

spells out exactly how we should use the posterior distribution to summarize the findings.

For detailed discussion of loss functions and optimal statistical inference see Baumeister and

Hamilton (2018).

5 Estimating structural vector autoregressions using in-

strumental variables or proxy variables.

Another promising approach to identification in structural VARs has been proposed by Stock

and Watson (2012, 2018) and Mertens and Ravn (2014). The idea is to find a proxy or

instrumental variable that is correlated with one of the structural shocks of interest. For

example, Känzig (2019) proposed to use the market response in a narrow window around

OPEC announcements as an instrument for the supply shock. If this variable is uncorrelated

with the other structural shocks, then it is a valid instrument and provides an alternative way

to achieve identification. Noh (2019) and Paul (forthcoming) showed that such IV estimates

can be easily obtained using restricted OLS regressions.

Stock and Watson (2018) noted that the validity of the instrument in conjunction with the

auxiliary assumptions that are typically implicit in these applications is empirically testable.

Noh (2019) and Paul (forthcoming) developed a particularly simple way to conduct this test.

Unfortunately, often this test rejects the hypothesis that instruments are valid. Even if it

does not reject, many researchers might still have some doubts about the instruments.

Nguyen (2019) suggested that we could treat potential instruments or proxies in a similar

way to other identifying information. The identifying assumption that zt is a valid instrument

for structural shock uit is a claim that the population correlation between zt and ujt for j �= i

is exactly zero. A strict generalization of this would be a prior belief that the correlation
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is close to zero, though we are not 100% certain of this. Nguyen showed how the Bayesian

approach can be used to combine imperfect confidence in the instruments with uncertain

prior information about other aspects of the structure. This allows us to perform inference

in a system in which we openly acknowledge doubts about both the validity of instruments

and about our other identifying information and to incorporate these doubts into statistical

summaries of what we can conclude from the observed data.

6 Conclusions.

Many researchers treat identifying assumptions as a necessary evil, seeing the task to be to

make enough of them to get sharp answers to questions of interest. We suggest that researchers

instead begin by thinking carefully about the meaning of the structural parameters, looking

for information that we can obtain about these from other datasets, model calibrations, or

economic theory. The next step is to summarize that knowledge in the form of a prior

density p(A) that accurately reflects both the information and our doubts, for example, using

large variances for features we honestly know little about. Once prior information has been

represented in this way, it’s simply a matter of plugging their subroutine to calculate p(A)

into the code posted at https://sites.google.com/site/cjsbaumeister/research.

Identification is not an either-or decision of whether the researcher should use hard re-

strictions, sign restrictions, or proxy variables. They can all be used together, even if we

have doubts about each one of them. A Bayesian perspective that unifies all the different

approaches into a common framework makes it possible to take advantage of the strengths of

each method while incorporating honest doubts about each into the final statistical summary.
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Appendix: The relation between IV and MLE in a simple 3-
variable example.
Equation (13) characterized the instrumental-variables estimates of elasticities in a simple

3-variable example, which we used to explain how economists typically approach estimation

of elasticities in simultaneous-equation systems. IV is closely related to (and in general,

is less efficient than) full-information maximum likelihood, which is the frequentist analog to

Bayesian inference about structural parameters using the likelihood function. In this appendix

we show that, for this simple 3-variable example, IV turns out to be identical to maximum

likelihood. Our purpose in doing so is to help explain why analysis based on the likelihood

function implied by the structural model (whether frequentist or Bayesian) is the correct and

indeed the optimal way to estimate elasticities.

Characterization of IV estimate.

Expression (13) can be rewritten
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We can partition A as
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This allows (16) to be written compactly as

ΓΩ̂η̂IV = 0 (17)

for Ω̂ the sample variance-covariance matrix of the observed data:
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Characterization of MLE.

Next consider maximum likelihood estimation. Conditional on the (2×1) vector zt = Γyt,

the remaining randomness in yt can be summarized in terms of the observed scalar wt = γ
′

⊥
yt

where γ
⊥
is the (3 × 1) vector that is orthogonal to the rows of Γ and whose third element

is normalized to be unity.15 If ut ∼ N(0,D), then yt is multivariate Normal and wt|zt ∼

N(π(δ, β)′zt, v) where given Γ, the (2×1) vector π is a known function of (δ, β). To calculate

this function, notice that yt = A
−1ut so wt = γ

′

⊥
yt = γ

′

⊥
A−1ut. Since the elements of ut are

mutually independent, the coefficients in the population projection of wt on (u
s
t , u

y
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by the first two terms of the vector γ ′
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Given Γ, this is a known function of (δ, β).

The conditional MLE of (δ, β) is the value that maximizes
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2. Note that in general the value

of π that minimizes this sum of squared residuals is the OLS estimate
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Note that γ⊥ is known from Γ and does not depend on (δ, β).
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We claim that if we choose (δ̂MLE, β̂MLE) such that
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then (18) will satisfied:
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To verify (21), first define the (3× 2) matrix
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The first two rows of (24) will be recognized as the (2× 2) identity matrix, and the third row

is zero by the proposed choice for η̂MLE. Thus
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as claimed in (21).

Demonstration of equivalence.

Note that since
�	T

t=1ztz
′

t

�
has full rank, condition (20) can equivalently be written

0′ = η̂′MLE

�	T
t=1ytz

′

t

�

= η̂′MLE

�	T
t=1yty

′

t

�
Γ′.

This is simply the transpose of (17), confirming that for this example MLE is numerically

identical to IV.
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Figure 1.  Impulse-response functions for the effects of an oil supply shock under three characterizations 

of the identifying assumptions. 

 

 

Notes to Figure 1. Effects of a one-standard-deviation decrease in ��� on ���� using the Choleski 

identification as in Kilian (2009) (column 1), using the Bayesian prior described in the text (column 2), 

and using the identification scheme in Kilian and Murphy (2012) (column 3).  
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Figure 2.  Effects of speculative oil demand shock for the Kilian and Murphy (2014) specification and 

data set using two different seeds for the random number generator. 

 
Notes to Figure 2. Left panel: effect on real activity.  Right panel: effect on real price of oil.  Red dotted 

lines: seed = 316, which was the original seed used by Kilian and Murphy (2014) and which reproduces 

panels (3,2) and (3,3) In Kilian and Murphy’s Figure 1.  Blue solid lines: seed = 613. 




