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As of 2019, eight million American adults and four million American youth report using

e-cigarettes, and many more youth now vape e-cigarettes than smoke traditional combustible

cigarettes. There is significant disagreement about whether regulators should encourage or dis-

courage this popular new product. Optimists point out that the widespread adoption suggests

that e-cigarettes generate substantial consumer surplus. Furthermore, e-cigarettes can be a useful

smoking cessation aid (Hajek et al. 2019), and vaping may be less harmful than smoking cigarettes

(National Academy of Sciences 2018). On the other hand, pessimists point out that widespread

adoption of an addictive product is not necessarily good for well-being. Furthermore, vaping might

be a gateway to smoking for youth, and the exact health effects of vaping are uncertain, as under-

scored by a recent spate of vaping-related illnesses and deaths (Gotts et al. 2019).

This disagreement has played out in divergent and sometimes conflicting policies. Three-

quarters of Americans live in places with no e-cigarette taxes, while the states and local areas

that do tax e-cigarettes impose very different rates. Many regulators think of e-cigarettes as a

promising harm reduction tool for current smokers (Gottlieb 2018; Zeller 2019), but San Francisco

has effectively banned all e-cigarette sales while keeping combustible cigarettes legal.

Is vaping in fact a substitute for smoking cigarettes, or a complement? Is this different for

youth versus adults? What is the state of expert knowledge about the relative harms of vaping

versus smoking? What is the socially optimal e-cigarette tax rate? Could it be optimal to ban

all e-cigarette sales? How certain can we be about any policy prescriptions? This paper lays out

a model of optimal e-cigarette regulation and derives equations for optimal taxes and welfare as

functions of several sufficient statistics. We then estimate key statistics using an array of empirical

data and propose answers to the above questions.

Our theoretical model extends the sufficient statistic approach to behavioral public economics

(Chetty, Looney and Kroft 2009; Mullainathan, Schwartzstein and Congdon 2012; Allcott and

Taubinsky 2015; Bernheim and Taubinsky 2018; Farhi and Gabaix 2020) to a dynamic setting

appropriate for studying addictive goods. We model heterogeneous consumers who consume a

numeraire good plus two habit-forming goods (cigarettes and e-cigarettes) that impose internalities

and externalities. By “internalities,” we mean that the social planner believes that consumers’

choices do not maximize their own long-run utility, perhaps because of present focus, projection

bias or related misperceptions of addiction, or biased beliefs about health harms.1 The social

planner can tax or ban either good.

In this framework, the optimal e-cigarette tax depends on three sufficient statistics: the marginal

uninternalized harms (externalities and internalities) from vaping, the marginal uninternalized

harms from smoking cigarettes, and the extent to which vaping and smoking are complements

1For more discussion and evidence on internalities related to smoking and vaping, see Viscusi (1990; 2016), Gruber
and Koszegi (2001; 2004), Gruber and Mullainathan (2005), Chaloupka et al. (2015), Ashley, Nardinelli and Lavaty
(2015), Cutler et al. (2015; 2016), Jin et al. (2015), DeCicca et al. (2017), Kenkel et al. (2019), Levy, Norton and
Smith (2018), Chaloupka, Levy and White (2019), and DeCicca, Kenkel and Lovenheim (2020).
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or substitutes. The welfare effect of banning e-cigarettes compared to keeping taxes at current

levels depends on those same statistics plus the perceived consumer surplus loss as revealed by the

e-cigarette demand curve. Optimally set taxes are always preferred to a ban in our model, but a

ban may increase welfare relative to the status quo if tax rates are constrained by political issues,

tax evasion, or other factors. Furthermore, a type-specific ban (for example, a youth sales ban)

may be optimal given that uninternalized harms vary across types and type-specific taxes are hard

to implement.

To estimate e-cigarette demand, we use Nielsen scanner data on e-cigarette sales at 27,000 stores

across the country from 2013–2017. To identify the price elasticity, we exploit changes in state and

local e-cigarette taxes. Before the tax changes, there is no trend in retail prices or quantities sold.

After the tax changes, tax-inclusive retail prices rise and persistently, and quantities sold drop. Our

primary estimate suggests an own-price elasticity of about −1.32. We also estimate the elasticity

of substitution between e-cigarettes and cigarettes using tax changes and sales for both goods. Our

primary estimates suggest statistically insignificant substitutability. However, the point estimates

vary somewhat across specifications, and aggregate scanner data cannot identify heterogeneous

substitution parameters: vaping and smoking could still be substitutes for adults and complements

for youth.

We thus turn to a more novel strategy to identify substitution patterns, exploiting the fact

that different demographic groups have very different demand for e-cigarettes. Specifically, White

people, men, non-college graduates, lower-income people, and younger adults (but older youth) vape

more than non-Whites, women, etc. Some of these demand differences may be related to broader

preferences for new technologies: we show that the demographics of e-cigarette early adopters—

in particular, their age profile—is similar to the demographics of internet and social media early

adopters. Between 2004 and 2012, i.e. before e-cigarettes became popular, the demographic groups

that would later have higher e-cigarette demand had steady linear declines in cigarette smoking

relative to demographics with lower latent demand. If that relative decline accelerated after e-

cigarettes became popular, this would suggest that vaping caused smoking to decrease, and thus

that e-cigarettes are substitutes for combustible cigarettes. On the other hand, if that relative

decline slowed, this would suggest that vaping caused more smoking, and thus that e-cigarettes are

a gateway to combustible cigarettes.

This approach is a cousin of the “shift-share” identification strategy popularized by Bartik

(1991): we primarily exploit cross-sectional variation in demand across demographics with the

time-series growth in e-cigarette use. The identifying assumption is that any changes in relative

smoking trends for high- versus low-vaping demographics were caused by the introduction of e-

cigarettes. In support of this assumption, we find that smoking decreases were close to linear in

the years before e-cigarettes were introduced and that the estimates are consistent across different

demographics.
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We implement this demographic shift-share strategy using data from five large nationally rep-

resentative surveys comprising 7.4 million observations collected over 2004–2018: the Behavioral

Risk Factor Surveillance Survey, the National Health Interview Survey, the National Survey of Drug

Use and Health, Monitoring the Future, and the National Youth Tobacco Survey. Our estimates

are consistent with our earlier estimates identified from tax changes in suggesting that on average,

vaping is not a significant complement or substitute for smoking. Our confidence intervals rule out

that the introduction of e-cigarettes affected the 2004–2018 smoking decrease by more than 5 to

11 percent in either direction. To believe that e-cigarettes increased or decreased smoking by more

than that, one would have to think that high-vaping demographics (young adults, White people,

men, etc.) coincidentally all had unpredicted decreases or increases in cigarette demand over the

past six years that exactly offset the alleged effects of their vaping.

There is great uncertainty about the uninternalized harms from vaping, and research is evolving

rapidly. To aggregate the state of knowledge about the harms from e-cigarettes, we surveyed the

corresponding authors of papers on the health impacts of e-cigarettes in the landmark National

Academy of Sciences (2018) study as well as economists who have written on cigarettes or e-

cigarettes. The average expert who responded believes that the external and internal harms from

vaping are 48 and 101 percent as large as those from smoking cigarettes. There is substantial

disagreement: the interquartile ranges of beliefs about these two relative harms are 10 to 75 percent

and 27 to 180 percent, respectively. These results paint a very different picture compared to a

prominent and controversial early estimate that vaping was only five percent as harmful as smoking

cigarettes (Nutt et al. 2014). We estimate the dollar value of the uninternalized harms from vaping

by combining the expert survey results with prior estimates of the internalities and externalities

from smoking from Gruber and Kőszegi (2001), Sloan et al. (2004), Cutler et al. (2015), and

Chaloupka, Levy and White (2019).

Finally, we use our model to evaluate optimal e-cigarette regulation, using Monte Carlo sim-

ulations to account for uncertainty. The above three empirical results have clear implications for

optimal policy. Relatively elastic demand implies relatively small perceived consumer surplus losses

from an e-cigarette ban. Limited substitutability with combustible cigarettes means that optimal

e-cigarette policy depends little on the uninternalized distortions from smoking. Large uninternal-

ized harms from vaping increase the optimal tax rate and increase the welfare gains from a ban

compared to current tax rates.

The optimal e-cigarette tax is positive in 97 percent of simulations, and it exceeds the average

existing e-cigarette tax in about 95 percent of simulations. It is easy to see why in our model,

existing e-cigarette taxes are probably too low. Experts in our survey believe that vaping every day

is not much less harmful than smoking every day and that vaping is more harmful for youth than

adults. At typical usage, one pack of cigarettes is equivalent to somewhat less than 1 milliliter of e-

liquid. Thus, the optimal e-cigarette tax per milliliter will roughly equal the per-pack uninternalized
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harm from adult smoking. We cite estimates of the adult smoking uninternalized harm ranging

from $5 per pack to over $80 per pack; relying on Cutler et al. (2015) and Sloan et al. (2004)

suggests $18. By contrast, the average existing e-cigarette tax is only $0.89/ml.

Since existing e-cigarette taxes are far below optimal in our model, this raises the possibility that

a complete ban would generate higher social welfare than current taxes. Eliminating youth vaping

increases welfare in 92 percent of model simulations. Thus, the existing regulations banning sales

to minors and banning all sales of flavored e-cigarettes (which are especially appealing to minors)

likely increase welfare in our model. More controversially, eliminating adult vaping is preferred

to the status quo in 90 percent of simulations. At our mean parameter values, fully banning e-

cigarettes increases welfare by $91 per person per year, or $25 billion per year over the 279 million

people aged 12 and older nationwide.

The key caveat to these optimal tax and welfare calculations is that they hinge on assumptions

about the uninternalized harms from vaping, and our experts are more pessimistic than prior

literature might have suggested. For example, Viscusi (2016) argues that vaping could be at least

100 times safer than smoking and finds that people overestimate vaping risks relative to that

benchmark, a bias that would cause people to vape too little. We show that when our model is

calibrated with risk misperceptions suggested by Viscusi (2016), it is optimal to heavily subsidize

e-cigarettes instead of taxing or banning them. This calculation underscores that our theory,

empirical estimates, and policy analyses can be informative even for readers who disagree with our

experts about uninternalized harms.

There are a number of additional important caveats. First, the Nielsen scanner data cover

only about 2.5 percent of e-cigarette retail, and our price elasticity estimate is biased if this is an

unrepresentative sample. Second, because we identify e-cigarette demand off of relatively limited

price variation, we must make strong functional form assumptions to estimate inframarginal demand

and perceived consumer surplus; this is a standard problem when analyzing the welfare effects of

bans or new products (e.g. Hausman 1996). Third, our substitution estimates are identified for a

time horizon of several years; we do not yet know if youth vapers will transition to combustible

cigarettes later in life or if adult smokers need more time to substitute to e-cigarettes. Fourth,

the key parameters may change in the future for any number of reasons, including the coronavirus

pandemic and the recent ban on flavored e-cigarettes.

Our work builds on a growing literature on e-cigarettes. Our primary contribution is to pro-

vide a framework for modeling optimal policy combined with new estimates of the key empirical

parameters. A related paper by Kenkel et al. (2019) presents survey data suggesting that behav-

ioral biases reduce vaping and carries out simulations showing that such behavioral biases against

vaping imply that taxing or banning e-cigarettes reduces welfare. As described above, our model

makes similar predictions in the presence of behavioral bias against vaping, but our expert survey

responses point in the opposite direction.
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To our knowledge, our September 2019 working paper was the first estimate of the aggregate

price elasticity of e-cigarette demand using tax variation and scanner data (instead of survey data).

This distinction may be important: tax changes provide long-run and potentially exogenous vari-

ation, and most surveys have imperfect measures of the intensive margin of e-cigarette use. Cotti

et al. (2020) released an independent analysis in January 2020, and other papers study the ef-

fect of price changes in survey data2 or use scanner data to estimate different e-cigarette demand

parameters.3

There is conflicting evidence on whether vaping and smoking are complements or substitutes.

A series of papers find that youth who vape are more likely to smoke in the future, even after

controlling for observable characteristics that predict both vaping and smoking.4 Although it is

possible that unobserved confounders could cause both smoking and vaping, many public health

researchers have taken this as evidence that vaping causes future smoking, and thus that regulating

vaping would improve public health.5 A series of other papers using quasi-experimental strategies

have come to the opposite conclusion, finding that vaping and smoking are substitutes. However,

there is some disagreement even between papers that use similar identification.6 Our demographic

shift-share approach is novel, and it may help to resolve the disagreement between existing papers.

Our work speaks to three literatures outside of e-cigarettes. First, we extend the behavioral

public economics literature on optimal sin taxes (Gruber and Koszegi 2001, 2004; O’Donoghue

and Rabin 2006; Allcott and Taubinsky 2015; Bernheim and Taubinsky 2018; Allcott, Lockwood

and Taubinsky 2019; Farhi and Gabaix 2020; and others). Second, our demographic shift-share

2Pesko and Warman (2017), Pesko et al. (2018), Saffer et al. (2018), and Cantrell et al. (2019) estimate the
association between price variation observed in Nielsen scanner data and survey measures of e-cigarette use. Pesko,
Courtemanche and Maclean (2019) estimate the effect of cigarette and e-cigarette tax changes on survey measures of
e-cigarette use.

3Zheng et al. (2017) and Huang et al. (2018) estimate the short run residual demand elasticity faced by particular
types of stores, using data at the city-month-store type level. Stoklosa, Drope and Chaloupka (2016) estimate the
short-run demand elasticity in the EU using country-by-month data. For our research question, the parameter of
interest is the aggregate long-run demand elasticity. Short-run and long-run elasticity may differ due to stockpiling
and habit formation, and the residual demand function faced by a set of stores could naturally differ from aggregate
demand elasticity as consumers substitute across stores.

4See Leventhal et al. (2015), Primack et al. (2015), Watkins, Glantz and Chaffee (2018), Berry et al. (2019), and
others, and see Chatterjee et al. (2016) and Soneji et al. (2017) for systematic reviews.

5For example, an important review article by Soneji et al. (2017, page 788) concludes that “e-cigarette use was
associated with greater risk for subsequent cigarette smoking initiation and past 30-day cigarette smoking. Strong
e-cigarette regulation could potentially curb use among youth and possibly limit the future population-level burden of
cigarette smoking.” Similarly, an earlier review article by Chatterjee et al. (2016, page 1) concludes that “[Electronic
cigarettes] are associated with higher incidence of combustible cigarette smoking. Policy makers need to recognize the
insidious nature of this campaign by the tobacco industry and design policies to regulate it.” The National Academy
of Sciences (2018, page 555) study concludes, “the committee considered the overall body of evidence of a causal
effect of e-cigarette use on risk of transition from never to ever smoking to be substantial.”

6Friedman (2015), Pesko and Currie (2019), Pesko, Hughes and Faisal (2016), Cooper and Pesko (2017), Pesko
and Warman (2017), Saffer et al. (2018), Saffer et al. (2019), Abouk et al. (2019), Cantrell et al. (2019), Dave, Feng
and Pesko (2019), Pesko et al. (2019), and Cotti et al. (2020) find that e-cigarettes and cigarettes are substitutes.
Using similar identification (state-level tax variation and bans on e-cigarette sales to minors), however, Abouk and
Adams (2017) and Cotti, Nesson and Tefft (2018) find that they are complements.
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design is related to Boxell, Gentzkow and Shapiro (2017), who identify the effects of the internet

on political polarization by exploiting age differences in internet adoption, and DeCicca et al.

(2017), who identify the effects of menthol cigarettes by exploiting racial differences in tastes for

menthol. Third, our work is broadly related to studies of the welfare effects of other new products

(Trajtenberg 1989; Hausman 1996; Petrin 2002; Nevo 2003; Goolsbee and Petrin 2004; Gentzkow

2007; Aguiar and Waldfogel 2018; and others).

Section 1 lays out the theoretical framework. Sections 2 and 3 present the data and smoking

and vaping trends. Sections 4 and 5 present estimates of price elasticity and substitution patterns.

Sections 6 and 7 present the expert survey results and optimal policy analysis, and Section 8

concludes.

1 Theoretical Framework

E-cigarette regulation involves setting constant taxes on an addictive good, motivated by both

externalities and consumer bias. To match this application, we introduce a dynamic model of

consumers who impose externalities and do not necessarily maximize their utility. We then solve

for optimal constant tax rates and the welfare effects of banning e-cigarettes compared to keeping

taxes at some baseline level. Our model can be thought of as a less parameterized version of the

dynamic optimal tax model in Gruber and Koszegi (2001) or a simple dynamic extension of static

optimal corrective taxation models such as Diamond (1973), O’Donoghue and Rabin (2006), Allcott

and Taubinsky (2015), and Farhi and Gabaix (2020).

1.1 Consumption, Bias, and Welfare

Setup. There are infinite periods indexed by t. There is a numeraire good n and two other goods

indexed by j or k: cigarettes c and e-cigarettes e. All goods are produced at constant marginal

cost in competitive markets. A social planner sets constant taxes τ = {τ c, τ e} and maintains a

balanced budget in each period using a lump sum transfer Tt. Let p = {pc, pe} denote the vector of

after-tax prices for c and e; n is sold at price 1. While τ and p might vary in the equations below,

let τ̃ and p̃ denote vectors of baseline taxes and market prices. We write j or k as superscripts to

avoid confusion with other subscripts throughout the paper; any time t superscripts are exponents.

Heterogeneous consumers have finite types indexed by θ with measure sθ and
∑

θ sθ = 1. Let

qt = {qct , qet } and qnt denote possible consumption levels in period t, and let qθt = {qcθt, qeθt} denote

the actual consumption chosen by type θ. Type θ consumers are endowed with income zθt in period

t, giving post-transfer income zθt+Tt. For simplicity, there is no saving or borrowing across periods,

so consumers have a period-specific budget constraint zθt + Tt = p · qt + qnt .

Consumers have quasi-linear flow utility in period t that depends on current consumption and

a state variable St representing the consumption capital stock from past smoking and vaping. St
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evolves according to St+1 = Λ(St, qt), with Λ increasing in both arguments. Discounted utility

from period 0 is

Uθ =
∞∑
t=0

δt [uθ (qt;St) + qnt + zθt + Tt] , (1)

where δ < 1 is the discount factor and uθ is concave in qt. In this general formulation, past

consumption St can affect both the level of utility (for example, by affecting health) and the

marginal utility of consuming c and e (through habit formation). Furthermore, cigarettes and e-

cigarettes can be complements or substitutes both in period t and in the long run. For example,

they may be substitutes in period t sub-utility uθ but complements in the long run through effects

on St+1.

Optimizing consumers. Consider first a standard optimizing consumer. Let V ∗θ (St) be the

optimizing consumer’s value function, after substituting in the period-specific budget constraint.

V ∗θ (St) is the solution to the Bellman equation

V ∗θ (St) = max
qt

[uθ(qt;St)− p · qt + zθt + Tt + δV ∗θ (St+1)] , (2)

subject to St+1 = Λ(St, qt).

The optimizing consumer’s first-order condition for good j is

0 = pj −

(
∂uθ (q∗θt;St)

∂qjt
+ δ

∂V ∗θ (St+1)

∂St+1
· ∂St+1

∂qjt

)
, (3)

where q∗θt denotes optimal consumption for type θ.

Non-optimizing consumers. An important motivation for regulating both cigarettes and e-

cigarettes is that consumers may not maximize their utility, perhaps because they have biased beliefs

about the health costs of smoking, because they do not correctly predict future habit formation

due to forces such as projection bias, or because they are present biased. To model this, we allow

consumers to choose qθt that differs from q∗θt and thus may not maximize utility. These quantities

could be derived by assuming that consumers maximize some specific “perceived” utility function

such as quasi-hyperbolic utility, but we focus on insights that hold in general for any structural

model.7 Define Vθ(St) ≤ V ∗θ (St) as type θ’s value function, i.e. the present discounted utility

derived from (potentially suboptimal) actual consumption. Substituting in the budget constraint,

we can write utility from time t as

Uθt(qt;St) = uθ(qt;St)− p · qt + zθt + Tt + δVθ(St+1), (4)

7See Mullainathan, Schwartzstein and Congdon (2012), Chetty (2015), and Bernheim and Taubinsky (2018) for
further discussion of the “reduced form” or “sufficient statistic” approach to behavioral public economics.
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subject to St+1 = Λ(St, qt). Standard optimizing consumers maximize this equation, making it

equivalent to Equation (2), but non-optimizing consumers do not.

Following the sin tax literature, we then define bias γjθ(p, St) as the difference (in units of

dollars) between price and the marginal utility of good j at the chosen consumption levels qθt:

γjθ(p, St) := pj −

(
∂uθ (qθt;St)

∂qjt
+ δ

∂Vθ (St+1)

∂St+1
· ∂St+1

∂qjt

)
. (5)

Put differently, γjθ is the period t price increase that would induce consumers of type θ to consume

q∗θt. γ
j
θ > 0 means that type θ consumes more than the privately optimal amount, γjθ < 0 means

that type θ consumes less, and γjθ = 0 when qθt = q∗θt, per Equation (3). γjθ(p, St) depends on

prices and consumption in other periods, as these factors affect flow utility and the continuation

value function.

To illustrate, consider two examples. First, consider present focused consumers whose smoking

and vaping imposes future health harms, in a model with no habit formation. Specifically, assume

that uθ(qt;St) = v(qt) − hSt, where the second term is the health harm from past consumption,

which evolves according to St+1 = ρ(St + qct + qet ) for ρ ∈ (0, 1). Considering the infinite discounted

sum of future health harms hSt, the effect of consumption on the continuation value is ∂Vθ(St+1)
∂St+1

·
∂St+1

∂qjt
= − 1

1−δρh·ρ, so the marginal utility of consumption at qθt is ∂v(qθt)

∂qjt
− δρ

1−δρh. Quasi-hyperbolic

consumers discount future harms by βθ, choosing consumption to set pj = ∂v(qθt)

∂qjt
− βθ

δρ
1−δρh.

Substituting marginal utility and the consumption choice into the definition of γjθ from Equation

(5) gives

γjθ = (1− βθ)
δρ

1− δρ
h. (6)

This is the familiar result that bias is the uninternalized future health cost.8

As a second example, imagine that projection bias causes consumers to underestimate habit

formation. Specifically, define αj := ∂St+1

∂qjt
as the habit formation from good j, and allow con-

sumers to misperceive habit formation as α̃jθ. Assume for simplicity that the marginal effect

of habit stock on future utility ∂Vθ(St+1)
∂St+1

is a constant. The marginal utility of consumption is(
∂uθ(qθt;St)

∂qjt
+ δ ∂Vθ(St+1)

∂St+1
· αj
)

, but consumers choose consumption to set pjt =
(
∂uθ(qθt;St)

∂qjt
+ δ ∂Vθ(St+1)

∂St+1
· α̃jθ
)
,

so

γjθ = δ
∂V (St+1)

∂St+1
·
(
α̃jθ − α

j
)
. (7)

Externalities and social welfare. Consumers impose linear externalities φθ = {φcθ, φeθ} on

8Since true utility from Equation (1) uses exponential discounting, this example invokes the long-run criterion,
which is not uncontroversial (Bernheim and Rangel 2009; Bernheim and Taubinsky 2018).
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the government budget, for example due to increased costs of government-sponsored health care or

reduced social security payments due to early death. The results would be the same if some or all

of the externality entered other consumers’ utility directly, for example due to second-hand smoke.

We define φθ > 0 as a negative externality and φθ < 0 as a positive externality. For simplicity, we

assume that the externality is imposed in the same period as consumption occurs.

Social welfare from period 0 as a function of taxes τ is

W (τ ) =
∑
θ

sθUθ, (8)

and the government’s balanced budget constraint requires Tt =
∑

θ (τ − φθ) · qθt for all t.

1.2 Optimal Taxes

Define the “marginal distortion” ϕjθ as the sum of the marginal bias and marginal externality for

consumer type θ:

ϕjθ(p, St) := γjθ(p, St) + φjθ. (9)

ϕjθ(p, St) will be a sufficient statistic for welfare and the optimal tax. This highlights that ex-

ternalities and internalities enter our model in the same way: they both reflect a difference (in

units of dollars) between consumers’ perceived marginal utility (revealed by the demand curve)

and marginal social welfare.

In Appendix A, we derive socially optimal taxes by maximizing Equation (8) subject to the

balanced budget constraint and consumer decision-making. The optimal tax is

τ j∗ =

∑
θ,t

δtsθ
dqjθt
dpj

ϕjθ(p, St)

∑
θ,t

δtsθ
dqjθt
dpj︸ ︷︷ ︸

average marginal distortion

+

∑
θ,t

δtsθ
dq−jθt
dpj

(
ϕ−jθ (p, St)− τ−jt

)
∑
θ,t

δtsθ
dqjθt
dpj︸ ︷︷ ︸

substitution distortion

. (10)

The first term is the average marginal distortion, familiar from Diamond (1973): the average

distortion across types, weighted by each type’s own-price response. The optimal tax is larger if

the average distortion is larger or if distortions are larger for types who are more responsive to the

tax. The second term is a substitution distortion, familiar from Allcott, Lockwood and Taubinsky

(2019) and others: the average uninternalized distortion from the substitute good, weighted by

each type’s cross-price response. The optimal tax is larger if a substitute good has a beneficial

uninternalized distortion or if a complementary good has a harmful uninternalized distortion.

The demand response
dqkθt
dpj

is a total derivative, reflecting changes in period t consumption
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caused by changes in prices in all periods, including the effects of habit formation. Both
dqkθt
dpj

and

the marginal distortion ϕjθ(p, St) can vary over time and are affected by changes in tax-inclusive

prices and consumption capital stock.

This simple extension of standard formulas has interesting implications in our application. First,

the optimal cigarette tax may have changed with the introduction of e-cigarettes. For example,

vaping is particularly popular among youth, and youth may have higher marginal internalities and

externalities. If there are now fewer youth smokers marginal to the e-cigarette tax, this would

decrease the average marginal distortion and thus decrease the optimal cigarette tax. As another

example, many states have not yet implemented e-cigarette taxes because vaping is so new. If the

average e-cigarette tax is lower than the average marginal distortion and e-cigarettes are substi-

tutes (or complements) for cigarettes, then the substitution distortion from e-cigarettes is negative

(positive) and τ c∗ would decrease (increase). As a final example, e-cigarettes could reduce the

health harms from cigarette addiction if addicted cigarette smokers can transition to vaping. With

present focus or projection bias, this reduction in the harms from addiction could imply lower bias

ϕjθ(p, St) and thus a lower optimal tax τ c∗.

A second implication is that the optimal e-cigarette tax could plausibly be negative, i.e. a

subsidy, if the substitution distortion from cigarettes is relatively large and negative. This could

arise if e-cigarettes are not very harmful (ϕeθ is small or negative), baseline cigarette taxes are “too

low” (ϕcθ − τ̃ c > 0), and e-cigarettes are substitutes for cigarettes (
dqcθ
dpe > 0).

1.3 Welfare Effect of an E-Cigarette Ban

We model an e-cigarette ban as an increase in the e-cigarette tax from current level τ̃ e to ∞ for all

periods beginning with period 0. The welfare effect of a ban is thus

∆W :=

∫ ∞
τ̃e

∂W (τ )

∂τ e
dτ e. (11)

If the cigarette and e-cigarette taxes are currently set optimally, then raising τ e to ∞ by

construction reduces welfare in our model. However, a ban may be preferred to taxation for

unmodeled reasons such as tax evasion or political constraints on tax rates. We thus allow current

taxes τ̃ to take any value, not necessarily the optimal rates. Furthermore, bias and externalities

(and thus optimal tax rates) may vary across types (e.g. youth versus adults), and it may be

administratively easier to implement a type-specific ban (e.g. a ban on sales to youth) than to

implement type-specific taxes. We thus consider type-specific bans in the welfare analysis in Section

7.

Define ∆qjθt := qjθt(τ̃
c, τ e =∞)− qjθt(τ̃ ) as the change in period t consumption of good j from a

permanent e-cigarette ban. For e-cigarettes, this is simply period t consumption: ∆qeθt = −qeθt(p̃) <

0. Further define

11



ϕjθ(p, St) :=

∫∞
τ̃e ϕ

j
θ(p, St)

dqjθt
dτe dτ

e

∆qjθt
. (12)

This is the average distortion over the consumption of good j that is marginal to the e-cigarette

ban.

In Appendix A, we show that the welfare effect of a ban is

∆W =
∑
θ,t

δtsθ

 −
∫ ∞
τ̃e

qeθtdτ
e︸ ︷︷ ︸

perceived CS change

−
∑
j

∆qjθt

(
ϕjθ(p, St)− τ

j
)

︸ ︷︷ ︸
uninternalized distortion change

 . (13)

The first term in Equation (13) is the loss in perceived consumer surplus as traced out by the

market demand curve. For standard optimizing consumers, the word “perceived” is unnecessary.

We add the word “perceived” to emphasize that with non-optimizing consumers, this term is not the

actual change in Uθ that results from the price decrease. The second term captures the change in

uninternalized negative distortions from both cigarettes and e-cigarettes. Separating the two terms

in this way foreshadows that one can calculate ∆W by estimating perceived consumer surplus

with standard demand estimation techniques and then separately quantifying the internalities and

externalities in ϕjθ.

The period-specific welfare effects of a permanent ban will change over time as the initial stock

of consumption capital St=0 depreciates. For example, reduced St in later periods could decrease

qeθt and make demand more elastic, thereby reducing the perceived consumer surplus loss.

If ∆qcθt (ϕcθt − τ c) = 0, which holds if e-cigarettes and cigarettes are neither complements nor

substitutes or if the cigarette tax exactly internalizes the average distortion marginal to the ban,

then the e-cigarette market can be considered in isolation. Otherwise, an e-cigarette ban affects

uninternalized distortions in the cigarette market. This effect increases ∆W if ∆qcθt (ϕcθt − τ c) < 0,

which holds if the two products are substitutes (∆qcθt > 0) and the current cigarette tax is “too

high” (ϕcθt − τ c < 0) or if the two products are complements and the cigarette tax is “too low.”

In theory, the reduced uninternalized distortions from cigarettes could justify an e-cigarette ban

even if e-cigarettes have no uninternalized distortions. This is analogous to arguments for banning

drugs like marijuana on the grounds that they are not particularly harmful on their own but could

be gateways to more harmful drugs.

1.4 Empirical Implementation

For empirical implementation, we define a substitution parameter σθt :=
dqcθt/dp

e

dqeθt/dp
e representing

the ratio of demand responses to a permanent e-cigarette price change. We further define ϕjθ =
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Et
[
ϕjθ(p, St)|θ

]
, σθ := Et [σθt|θ], and qjθ := Et

[
qjθt|θ

]
as expectations over time. σθ captures the

net long-run substitutability between e-cigarettes and cigarettes.

We also impose two assumptions. First, we assume a homogeneous and time-invariant own-

price elasticity η :=
∂qeθt
∂pe

pe

qeθt
< 0, because the Nielsen RMS data do not allow us to separately

estimate elasticities by consumer type. Second, we assume pairwise zero covariance between the

marginal distortion ϕjθ(p, St), substitution σθt, consumption qjθt, and time t for each type. While

this assumes away potentially interesting dynamics, we are not able to credibly estimate how any

of these parameters covary or would change over time in response to a tax or ban.

Under these assumptions, Appendix A shows that the optimal tax formula from Equation (10)

reduces to

τ e∗ =

∑
θ

sθq
e
θ [ϕeθ + σθ (ϕcθ − τ̃ c)]∑

θ

sθq
e
θ

, (14)

where the first term inside the brackets is the e-cigarette marginal distortion, and the second term

is the uninternalized substitution distortion from cigarettes.

To estimate the welfare effect of a ban, we write the expected cigarette consumption change

as ∆qcθ = −σθqeθ(p̃). To estimate perceived consumer surplus change, some assumption is required

because observed market prices do not rise high enough to identify the demand function at high

prices. This identification problem and the use of functional form assumptions such as linear or

logit demand are common in related literature (Hausman 1996; Petrin 2002). We assume that

each type’s perceived consumer surplus change equals the area under a linear demand curve drawn

tangent to their demand function at current prices, which is the triangle ∆qeθ
p̃e

−2η < 0.

Under these assumptions, Appendix A shows that the welfare effect of an e-cigarette ban in the

average period is

∆W =
∑
θ

sθ

 ∆qeθ
p̃e

−2η︸ ︷︷ ︸
perceived CS change

−
∑
j

∆qjθ

(
ϕjθ − τ

j
)

︸ ︷︷ ︸
uninternalized distortion change

 . (15)

In the rest of the paper, we estimate τ e∗ and ∆W using these formulas.
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2 Data

2.1 Nielsen Scanner Data

For our price elasticity estimates in Section 4, we use scanner data from Nielsen’s Retail Measure-

ment Services (RMS). The data include weekly prices and sales volumes by UPC at approximately

27,000 stores in the contiguous U.S. from 96 retail chains. RMS includes e-cigarette products be-

ginning in 2013, and 2017 is the most recent year currently available. See Appendix B for RMS

data construction details.

RMS includes 53, 32, 55, and 2 percent of total sales in the grocery, mass merchandiser, drug,

and convenience store channels, respectively. In addition to its very limited coverage of convenience

stores, RMS has no coverage of vape shops or online channels where many e-cigarette products are

sold. In 2017, RMS stores sold $114 million in e-cigarette products, out of the $4.6 billion sold

nationwide as shown in Figure 1. This 2.5 percent coverage rate is an important limitation of the

data.9

We collected data on the volume of each UPC (in milliliters of e-liquid) from online databases,

manufacturer websites, store visits, and from a database kindly shared by the authors of Cotti et

al. (2020).

As shown in Appendix Table A1, 11 states, counties, or cities in the contiguous U.S. initiated

or changed e-cigarette taxes between 2013 and 2017. We use these tax changes for identification.

For our empirical analysis, we define 51 geographic “clusters”: the two counties (Montgomery

County, Maryland and Cook County, Illinois) that have county-level e-cigarette taxes, the contigu-

ous 48 states (where Maryland and Illinois exclude Montgomery County and Cook County), and

Washington, D.C.10 We collapse the UPC-store-week RMS data to the level of UPC-cluster-month,

calculating total units sold and quantity-weighted average price.

2.2 Smoking and Vaping Sample Surveys

For our substitution estimates in Section 5, we use all major annual surveys that have recorded

information on vaping and/or smoking for adults and/or youth in the U.S. since 2004: the Be-

havioral Risk Factor Surveillance System (BRFSS), the National Health Interview Survey (NHIS),

the National Survey of Drug Use and Health (NSDUH), Monitoring the Future (MTF), and the

National Youth Tobacco Survey (NYTS). Table 1 presents information on each dataset. We have

7.4 million observations across the five datasets in total, or about 500,000 per year. All estimates

9Although the household-level Nielsen Homescan data could also be useful in exploring heterogeneity and mea-
suring additional purchases outside of RMS stores, Homescan’s effective sample size is much smaller: Homescan, with
60,000 households, covers about 0.05 percent of the U.S., against the 2.5 percent in RMS.

10The city of Chicago also has an e-cigarette tax; we add this to the Cook County tax because the RMS store
data include identifiers for county but not city.
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in the paper are weighted for national representativeness for adults (people aged 18 or older) and

youth (people in grades 6-12).

Appendix B details how we construct consistent smoking and vaping variables. We construct

smoking in units of packs of cigarettes smoked per day and vaping in units of share of days vaped.

In all datasets other than BRFSS, we can directly estimate the number of packs per day smoked.

BRFSS only records whether someone smokes or vapes “every day,” “some days,” or “not at all,”

but we use conditional means from the other adult datasets to impute packs per day smoked and

share of days vaped. The datasets do not include the quantity of e-liquid used or the nicotine

content of cigarettes or e-liquid.

Demographic variables are central to our analysis. From the possible set of standard demo-

graphics (age, race/ethnicity, etc.), we include a demographic variable only if it is observed con-

sistently across all datasets. We denote the vector of demographic group indicators for person i

as Gi. For adults, Gi includes race/ethnicity (Asian, Black, other/missing, Hispanic, White), sex

(male/female), educational attainment (high school, less than high school, some college, college

graduate), income quintiles, and age groups (18–24, 25–29, 30–49, 50–64, and 65+). For youth,

Gi includes race (Black, other/missing, Hispanic, White), sex, and each grade from 6–12.11 We

refer to demographic “cells” as the interactions of our demographic group indicators, e.g. “Asian

women aged 18–24 who are college graduates and are in the lowest-income quintile.” There are

5× 2× 4× 5× 5 = 1,000 cells for adults and 4× 2× 7 = 56 cells for youth.

In our regressions, we will include “dataset controls” to address two sampling issues. First, in

2011, BRFSS was updated to sample people using cell phones instead of only people with land lines

(Pierannunzi et al. 2012). This causes an artificial change in smoking rates, and this change could

differ across demographic groups. Second, the NYTS is collected in 2004, 2006, 2009, and annually

since 2011, but not in 2005, 2007, 2008, or 2010.

2.3 E-cigarette User Survey

To estimate the average e-liquid price and quantity consumed per day, we ran a survey we call the

E-cigarette User Survey in August 2019. The sample is an online panel of U.S. e-cigarette users

provided by polling firm SurveyMonkey through their Audience Panel service. We asked whether

people now use e-cigarettes every day, some days, or not at all, the number of days vaped out of

the past 30, the milliliters of e-liquid consumed in the past 30 days, and the amount of money they

spent to buy the e-liquid consumed in the past 30 days.12 We have 147 valid responses. We weight

the sample to be representative of U.S. adults who vaped in the past 30 days on income, gender,

and vaping frequency.

11We are limited to four race/ethnicity groups in the youth dataset because Asian is not a separate category from
other race in the public-use MTF.

12The survey instrument can be accessed from https://www.surveymonkey.com/r/YRZSZZY.
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We estimate that the average e-liquid price is p̃e ≈ $3.90 per milliliter (ml). For comparison,

the popular 0.7 milliliter Juul pods cost $6.41/ml at average tax rates, while large 100 ml e-liquid

bottles can be as cheap as $0.50/ml. The average day of vaping involves Γ ≈ 0.58 milliliters of

e-liquid consumption, slightly less than one Juul pod. This is more than the unweighted average

across vapers of consumption per day, because people who vape every day consume more e-liquid

per day than people who vape on some days.

2.4 E-cigarette Expert Survey

To quantify the state of knowledge on the health effects of vaping, we carried out a survey we call

the E-cigarette Expert Survey in late January 2020. The sampling frame was the 123 corresponding

authors of papers on the health impacts of e-cigarettes that are cited in the landmark National

Academy of Sciences (2018) report (excluding those with corporate affiliations) and the 43 authors

of papers about cigarettes or e-cigarettes cited in Cutler et al. (2015), Chaloupka, Levy and White

(2019), and our September 2019 draft. We received 55 responses, 38 from the National Academy

sample and 17 from the economist sample, giving a response rate of 33 percent.13

The survey asked experts to consider “average adults who would say they vape ‘every day’

compared to average adults who would say they smoke cigarettes ‘every day,’ consuming com-

parable amounts of nicotine.” We instructed the experts to “not include vaping or smoking of

THC/marijuana.” After explaining and giving examples of externalities and internalities, we asked

five questions:

1. Imagine that every-day cigarette smoking by the average adult imposes 100 units of external

harms. In comparison, how large do you think are the external harms from every-day vaping?

2. Now imagine that every-day cigarette smoking by the average adult imposes 100 units of

misperceived internal harms. In comparison, how large do you think are the misperceived

internal harms from every-day vaping?

3. Now imagine that every-day vaping imposes 100 units of external and internal harms for

average adults. In comparison, how large do you think are the harms from every-day vaping

for average youth?

4. Do you think banning all e-cigarettes is a good idea?

5. Do you think banning flavored e-cigarette products for all users is a good idea?

Both negative and positive answers were allowed for the first three questions, although all responses

we received were strictly positive.

13The survey instrument can be accessed from https://nyu.qualtrics.com/jfe/form/SV 3J0zPeyGgeuU0Hr. We
sent the survey to the National Academy and economist samples on different days, allowing us to infer with high
probability which sample a survey response came from.
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3 Smoking and Vaping Trends

Figure 1 presents trends in U.S. sales of cigarettes and e-cigarettes. Cigarette sales decreased by

40 percent (from 20 billion to 12 billion packs) from 2004 to 2018. While the first modern e-

cigarettes became available in the late 2000s, sales were relatively low until about 2013. Sales grew

continually from 2013 to 2017 and increased notably in 2018 with the introduction of the popular

Juul e-cigarette.

Figure 2 presents trends in smoking and vaping recorded in the sample surveys. Self-reported

adult smoking in Panel (a) declined by about 45 percent (from about 0.15 to 0.08 packs per adult

per day) from 2004 to 2018. The 2011 jump in the BRFSS trend is due to the sampling frame

change discussed earlier. Youth smoking in Panel (b) dropped by an even larger proportion, from

about 0.035 to less than 0.01 packs per youth per day.

Prior work has established that the levels and trends line up imperfectly between these two

figures. In Appendix B.2.8, we calculate that the sample survey data overstate e-cigarette sales

and understate cigarette sales by an amount consistent with earlier estimates by Liber and Warner

(2018). The 2004–2018 percent smoking reductions are fairly consistent between the two figures.

Self-reported vaping grew much less quickly than the e-cigarette sales data, although the 2018

increase in self-reported youth vaping is consistent with the 2018 sales increase.

On the cigarette consumption figures, we add a vertical line to mark the time just before e-

cigarette sales started to take off in 2013. The smoking declines in Figures 1 and 2 are close to

linear, with no substantial changes as e-cigarettes became popular after 2013. Unless there was some

countervailing force that would have changed cigarette consumption at the same time that vaping

became popular, this suggests that e-cigarettes had little impact on overall cigarette consumption.

Levy et al. (2019) make a similar point focusing on youth vaping.

To quantify this idea, recall the substitution parameter σθ = Et [dqcθt/dq
e
θt|θ], in units of cigarette

packs per day vaped. The introduction of e-cigarettes increases qeθt from 0 to qeθt(p̃), which in turn

changes cigarette consumption by σθq
e
θt(p̃). In the sample survey data, the average day of smoking

by an adult (youth) involves 0.5 (0.15) packs smoked. Thus, σθ ≈ −0.5 (σθ ≈ −0.15) implies that

the average smoking day and the average vaping day are perfect substitutes for adults (youth), and

σθ ≈ 0.5 (σθ ≈ 0.15) implies that they are perfect complements for adults (youth).

An average vaping day costs 0.58ml × $3.90/ml ≈ $2.26 of e-liquid, so if the $6.9 billion in 2018

e-cigarette sales were all for e-liquid, this would be equivalent to 3.05 billion average vaping days. At

0.5 cigarette packs per average smoking day, 3.05 billion average smoking days would equal about

1.5 billion packs. Thus, if the average vaping and average smoking days were perfect complements

(substitutes) over a several-year horizon, cigarette sales would have increased (decreased) by 1.5

billion packs per year by 2018 relative to a counterfactual without e-cigarettes. Since the sales

decline on Figure 1 is close to linear over 2004–2018, daily vaping and daily smoking could therefore
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only be perfect complements or perfect substitutes if the counterfactual sales trend would have been

noticeably different from its long-standing historical pattern.

We can do a similar exercise for the sample survey data in Figure 2. In each panel, the left

and right y-axes have the same scales. Panel (a) shows that adults vaped on share 0.025 of days in

2018. Thus, if σθ = 0.5 (or σθ = −0.5) over several years, adult cigarette consumption would have

increased (or decreased) by about 0.0125 packs per day relative to counterfactual. Since the adult

cigarette consumption decline on Panel (a) is close to linear over 2004–2018, σ must be relatively

close to zero unless the counterfactual smoking trend would have changed noticeably after 2013.

This visual argument is particularly clear for youth, who vape on share 0.05 to 0.08 of days in 2018

but have a steady linear decline in cigarette consumption to less than 0.01 packs per day by 2018.

Of course, this visual argument relies on strong assumptions about counterfactual trends and

cannot easily rule out values of σ closer to 0. We build on this intuition for a more precise estimate

of σ in Section 5.

4 Price Elasticity

4.1 Empirical Strategy

In this section, we use tax changes to estimate the own price elasticity η and the substitution

parameter σθ using Nielsen RMS data. We index UPCs by k, geographic clusters by s, and months

by t. Let qekst, p̃
e
kst, and τ̃ ekst denote quantity sold, sales-weighted average tax-inclusive price, and the

ad-valorem tax rate, respectively, for e-cigarette UPCs. Let p̃cst and τ̃ cst denote the sales-weighted

average tax inclusive price and average tax rate as a percentage of tax-exclusive price, respectively,

for cigarettes in a given state and month.14 Let Xst denote a cluster-specific linear time trend and

an additional vector of controls for potential confounders that might be correlated with both taxes

and consumption: the state unemployment rate and beer tax rate as well as indicators for whether

the state has an indoor vaping ban, has a medical marijuana law, has passed or implemented a

prescription drug program, and implemented the Medicaid expansion.

Let E0st be an indicator variable that takes value 1 if month t is 0–2 months after an e-cigarette

tax change in cluster s, and define the vector Qkst = [E0st, E0st ln(τ ekst + 1)]. The event study

figure presented below suggest that prices and sales are slow to adjust in the first quarter after a

tax change; controlling for Qkst identifies the elasticity η beginning in the second quarter. Finally,

let νkt, µks, and ξst, respectively denote UPC-month, UPC-cluster, and census division-month fixed

effects.

Our primary specification is

14Some e-cigarette taxes are “specific” taxes per milliliter of e-liquid, and all cigarette taxes are specific taxes per
pack. We transform these tax rates to the implied ad-valorem rate using the UPC’s size and price. See Appendix B
for details.
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ln(qekst + 1) = η ln(p̃ekst) + χe ln(p̃cst) + βXst + κQkst + νkt + µks + ξst + εkst, (16)

where we instrument for ln(p̃ekst) and ln(p̃cst) with ln(τ̃ ekst+1) and ln(τ̃ cst+1). The coefficient η is our

estimate of the own-price elasticity of demand for e-cigarettes. The coefficient χe is the elasticity

of substitution, which we transform into σθ below.

We keep the estimates at the UPC level instead of aggregating for two reasons. First, unlike

cigarettes, there is no individual unit that is natural to aggregate across UPCs: vapor products are

primarily e-liquid refills but also include e-cigarette base units and starter kits with both base units

and e-liquid. Second, the price variation across UPCs provides additional variation to identify the

effects of ad-valorem taxes. To estimate the aggregate elasticity of demand for e-cigarettes using

UPC-level data while accounting for the possibility that elasticities might vary by UPC, we would

like to weight observations by sales. To avoid mechanical biases arising from the effect of taxes on

sales, we weight each UPC-cluster-month observation by the UPC’s sales in non-taxed clusters in

that calendar year, normalized by total sales across all UPCs in non-taxed clusters in that year.

We cluster standard errors by geographic cluster.

We also present event study figures to test for any trends before tax changes and examine how

the tax effects vary over time. In four geographic clusters, e-cigarette tax rates change twice during

the sample period. We index tax change events within a cluster by v ∈ {1, 2}, and we define Vs as

the set of changes within cluster s. We define ∆ ln(τ̃ksv + 1) as the change in the log e-cigarette

tax variable that occurs for UPC k in cluster s in event v. Let Eqst represent an indicator variable

that takes value 1 if month t is q quarters after an e-cigarette tax change in cluster s, with E0st as

defined above.15 We then estimate

ykst =
∑
v∈Vs

∑
q∈Q

ηqEqst∆ ln(τ̃ksv + 1) + χe ln(τ̃ cst + 1) + βXst + νkt + µks + ξst + εkst, (17)

for ykst ∈ {ln(qkst+1), ln p̃kst}. Since we have µks fixed effects and ∆ ln(τ̃ksv +1) is constant within

ks for each tax change event, we let Q be a mutually exclusive and exhaustive set of event time

indicators excluding −1 (the quarter before the tax change) to avoid collinearity.

This empirical strategy has several limitations. First, as we have discussed, RMS covers only

2.5 percent of national e-cigarette sales. The demand elasticity estimated in RMS might differ from

the true nationwide demand elasticity if RMS stores serve a non-representative set of e-cigarette

consumers or if consumers substitute toward or away from RMS stores in response to a tax. For

example, consumers might substitute purchases to retailers in other states or to illegal retailers that

evade taxes. Second, while we observe sales for up to several years after a tax change, our estimates

15Specifically, E1st = 1 if month t is 3–5 months after a tax change, E2st = −1 if month t is 1–3 months before a
tax change, etc.
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may still not reflect the full long-run price elasticity if habit formation takes longer to manifest.

Third, we must assume that no other factors affected e-cigarette demand at the same time as the tax

changes. Rees-Jones and Rozema (2020) show that local media coverage of cigarettes increases as

cigarette taxes are debated and implemented, and such forces could also change e-cigarette demand

as e-cigarette taxes are implemented.

4.2 Event Study Figures

Panels (a) and (b) of Figure 3 presents estimates of Equation (17) with ln p̃ekst and ln(qekst+1) as the

dependent variables. Panel (a) shows that we have a strong first stage: in the six quarters after a

tax change, retail prices rise by 0.5–0.8 log points, suggesting substantial but not full pass-through

of the tax. Panel (b) presents the reduced form: in the six quarters after a tax change, quantities

decline by 0.7–1.2 log points. We can divide these first stage and reduced form coefficients for

an approximate IV estimate of η ≈ −1.5, although this approximation to a Wald estimator only

holds if the other endogenous variable (cigarette price) has no effect on e-cigarette price or demand.

There is no trend in either prices or quantities in the six quarters before the tax change. Appendix

Figure A2 shows that we get very similar point estimates and more precise standard errors when

we exclude the cluster-specific linear time trends.

4.3 Parameter Estimates

Table 2 presents estimates of Equation (16). Panel (a) presents the first stages and reduced form.

Columns 1 and 2 show that a tax on one good strongly predicts that good’s price, but not the other

good’s price. Column 3 shows that e-cigarette taxes reduce e-cigarette demand, while cigarette taxes

have a positive but insignificant coefficient.

Panel (b) presents the instrumental variables estimates of η and χe. Our primary estimate in

column 1 suggests that e-cigarette demand is more than unit elastic, with η̂ ≈ −1.32. Columns

2–4 progressively add fixed effects; after the UPC-cluster effects, the additional fixed effects make

little difference. Column 5 presents the primary estimates without the cluster-specific linear time

trend; this reduces the estimate to η̂ ≈ −1.00. Column 6 shows that the additional controls in Xst

make little difference. Column 7 presents estimates in a “quasi-panel” in which we add zero-sales

observations for all UPCs that had non-zero sales in cluster s in any prior month, but the panel

begins with the first month in which we observe any sales in that UPC-cluster. We impute price

p̃ekst from the last month a sale was observed in that cluster. This also does not substantially change

the estimates.

In column 1, the point estimate of the substitution elasticity is χ̂e ≈ 0.27, with standard error

of 0.46. In the other columns, χ̂e is more positive but not statistically different at conventional

levels. Column 5 shows that excluding the cluster-specific linear time trends gives χ̂e ≈ 0.66, with
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a standard error of 0.34. Appendix Table A2 presents symmetric estimates of cigarette demand on

cigarette and e-cigarette prices (instrumented by taxes), using an equation analogous to Equation

(16). The resulting substitution parameter is χc ≈ −0.06, with a standard error of 0.30. Excluding

the cluster-specific linear time controls gives χ̂c ≈ 0.77, with a standard error of 0.26. Appendix

Figure A3 shows that without these linear time controls, there is an upward trend in cigarette

purchases in the six quarters before the e-cigarette tax change. If that upward trend would have

continued after the tax change, this would produce an upward-biased estimate of the cross-price

elasticity χc. This is why we include the cluster-specific linear time controls in our primary speci-

fication.16

Appendix Tables A3 and A4 present additional robustness checks. The price elasticity estimates

do not change substantially if we limit the identification of η to the 18-month window around the tax

change, exclude e-cigarette UPCs with imputed volumes, or include only clusters with ad-valorem

taxes, excluding clusters with specific taxes. When we exclude the controls Qkst and thereby also

identify off of the effects in the quarter beginning with the tax change, the e-cigarette η̂ estimate

moves slightly toward zero. This is consistent with the small quantity effect in quarter q = 0 shown

in Panel (b) of Figure 3.

We can use the cross-price elasticities to estimate the average substitution parameter σ. Be-

ginning with χe from Table 2 and using Slutsky symmetry and quasi-linear demand, we have a

population average substitution parameter

σ =
∂qcθ/∂p

e

∂qeθ/∂p
e

=
∂qeθ/∂p

c

∂qeθ/∂p
e

=
χe

η

p̃eΓ

p̃c
, (18)

where Γ converts p̃e to units of dollars per day vaped, giving σ in the desired units of packs of

cigarettes per day vaped. This gives σ̂ ≈ −0.059 (standard error ≈ 0.091), consistent with mild

substitutability. Similarly, beginning with χc from Appendix Table A2, we have

σθ =
∂qcθ/∂p

e

∂qeθ/∂p
e

=
χc

η

qcθ
qeθ
. (19)

Using qcθ and qeθ from the sample survey data displayed in Figure 2, this gives σ̂youth ≈ 0.005 (SE

≈ 0.027) and σ̂adult ≈ 0.144 (SE≈ 0.766). Combining these two estimates using a minimum distance

estimator gives σyouth ≈ −0.000 (almost exactly zero, with SE ≈ 0.026) and σ̂adult ≈ −0.056 (SE

≈ 0.090). See Appendix D.1 for additional details.

These substitution parameter estimates are credible because they are identified from plausibly

exogenous tax changes in administrative data. However, we have seen that the point estimates are

somewhat sensitive to controls, and we are not able to estimate separate substitution elasticities for

16Using analogous regressions in the RMS data, Cotti et al. (2020) estimate an e-cigarette own-price elasticity of
-1.5, closely in line with our estimates. They do not include linear time trends in any specification, and their cross-
price elasticity estimates χe and χc are approximately 1, indistinguishable from our estimates from specifications
excluding cluster-specific linear time trends.
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youth versus adults. An additional alternative approach to estimating the substitution parameter

σθ would therefore be valuable.

5 Substitution Patterns

5.1 Graphical Illustrations

In this section, we extend the graphical analysis of cigarette smoking trends from Section 3 into a

formal empirical strategy for estimating the substitution parameter σ. While Section 3 considered

aggregate nationwide data, we now exploit the fact that e-cigarette demand varies substantially

across demographic groups.

To demonstrate this demand variation, we regress e-cigarette use on a vector demographic group

indicators Gi using the following equation:

qeit = κGi + ξeit, (20)

where i indexes individuals in the sample surveys and t indexes years. Figure 4 presents results for

adults and youth. White people (the omitted race category), men, non-college graduates, lower-

income people, and younger adults (but older youth) have higher e-cigarette demand.17

What explains this variation? Academic papers (Hartwell et al. 2017; Pepper et al. 2014;

Perikleous et al. 2018) and industry sources (Bour 2019) discuss early adopters of e-cigarettes and

often draw analogies to early adopters of other technologies. To explore this, Appendix Figure A5

presents estimates of Equation (20) for social media use in 2008 and internet use in 2000. As with

e-cigarettes, men and younger adults were more likely to adopt these other new technologies. One

difference is that people with less formal education are conditionally more likely to vape, whereas

they were conditionally less likely to be early adopters of social media and the internet.

Figure 5 presents smoking and vaping trends for people with above- versus below-median pre-

dicted vaping κ̂Gi. Cigarette use is residual of dataset controls that address the 2011 BRFSS

sampling frame change and rescale cigarette use to levels in the NSDUH. As in Figure 2, the right

and left panels are on the same scales. The figures show that high-vaping demographics are also

high-smoking demographics, and the high-smoking demographics are reducing smoking faster than

low-smoking demographics. For both high- and low-vaping demographics, smoking is decreasing at

a very steady annual rate beginning in 2004.

The vertical red line before 2013 again marks the time when e-cigarette sales start to take off.

Recall that in the sample survey data, the average day of smoking by an adult (youth) involves 0.5

(0.15) packs smoked. If an average day of vaping were a perfect complement (or perfect substitute)

17Appendix Figure A4 shows that these patterns are similar across the multiple datasets that record vaping,
although the estimated coefficients vary slightly.
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for an average day of smoking, one would expect that the relative cigarette consumption of high-

vaping demographics would start to increase (or decrease) after 2013. In reality, is difficult to

visually detect any change in the annual smoking decreases as e-cigarettes become popular.

Figure 6 continues this logic by presenting the difference in cigarette use between the same high-

and low-vaping demographics. The dashed line is a time trend fitted only on pre-2013 data, while

the solid line is a time trend fitted only on post-2013 data. The top (bottom) of the shaded area at

the right of the figure presents the predicted difference in smoking if σθ = 1 (σθ = −1), i.e. if daily

vaping were a perfect complement (perfect substitute) for smoking one pack per day.18 For adults,

the actual smoking difference is slightly below the pre-2013 prediction until 2018, but much closer

to zero than to the σθ = −1 bound. This suggests limited complementarity or substitutability.

For youth, the actual smoking difference is almost exactly the same as the pre-2013 prediction,

suggesting close to zero complementarity or substitutability.

Appendix Figures A6–A9 present versions of Figure 5 for splits of each specific demographic

group (sex, race, age/grade, education, and income). Appendix Figures A10–A13 present versions

of Figure 6 for the most predictive split of each demographic group (e.g. Whites versus non-Whites,

college versus non-college adults, etc.). These allow informal overidentification tests. The results

are quite similar across all groups, suggesting limited complementarity or substitutability, with one

exception: the adult income split suggests very strong complementarity, as there is little difference

in vaping by income, and thus even small deviations from trends by income group are large when

scaled by the small vaping difference. In econometric terms, this means that income is a relatively

weak instrument. This will not drive the formal estimates below because other vaping predictors

generate more variation in q̂eit.

5.2 Empirical Strategy

To identify σθ, we estimate the extent to which the demographic differences in vaping affect cigarette

consumption after e-cigarettes are introduced. Specifically, we regress cigarette consumption on e-

cigarette consumption using two-stage least squares (2SLS), instrumenting for e-cigarette consump-

tion with demographic-by-time predictors and controlling for linear time trends. Let νt denote year

indicators, and let µdgt denote “dataset controls” to address the 2011 BRFSS sampling change and

the fact that NYTS is not available in certain years.19 The second stage regression is

18To construct the perfect complement (substitute) predictions, we predict smoking using the pre-2013 time trend
and then add (subtract) average vaping in the years when it is observed. Specifically, define q̂cHt and q̂cLt as the
predicted smoking rates for people in high- and low-vaping demographics, and define qeHt and qeLt as their actual
vaping rates in year t. The perfect complement and substitute bounds for group g ∈ {H,L} are q̂cgt±qegt. The bounds
plotted on the figure are (q̂cHt − q̂cLt)± (qeHt − qeLt).

19For adults and youth, νdgt includes an indicator for each dataset (with NSDUH as the omitted dataset) interacted
with the demographic indicators Gi. For adults, νdgt also includes a pre-2011 indicator and a pre-2011 BRFSS
indicator, both interacted with Gi. The νdgt controls thereby address the variability introduced by BRFSS and
NYTS sampling and rescale smoking to levels in the NSDUH.
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qcit = σq̂eit + λGi + ω(t− 2004)Gi + νt + µdgt + εit. (21)

The inclusion of group-specific intercepts and time trendsGi and (t−2004)Gi mean that we identify

σθ from changes in smoking conditional on those linear trends. However, because we now exploit

demand variation across demographic groups, we can also include time dummies νt that soak up

demand shifts that are common across groups in levels, although not in proportions.

The instruments for vaping qeit, denoted Zit, are Gi · 1[t ≥ 2013], Gi · 1[t ≥ 2013] · (t − 2012),

and Gi · 1[t = 2018], where 1[·] denotes the indicator function. The first two sets of instruments

allow vaping to have different levels and trends by demographic group after vaping begins to grow

in 2013. The third set is useful in fitting the 2018 increase in youth vaping seen in Figure 2.

The first stage is

q̃eit = ζZit + λ1Gi + ω1(t− 2004)Gi + ν1
t + µ1

dgt + εit, (22)

where e-cigarette consumption q̃eit is defined below, and we use “1” superscripts to indicate first-

stage parameters.

We must modify the first stage for two reasons. First, qeit is not recorded in any dataset for the

years between when e-cigarettes were introduced and 2014 (for youth) and 2016 (for adults). We

denote this initial year with vaping data as t. Second, qeit is not recorded at all in the NSDUH data,

and it is missing for about ten percent of observations in dataset-years when it is supposed to be

recorded.

To address the missing qeit for early years, we impute the averages by demographic group as-

suming linear growth from zero in 2012 to the level in year t. This assumption is motivated by the

sales trends from Figure 1, which showed limited vaping until 2013 and roughly linear growth for

the several years after that. We predict vaping by demographic group by estimating Equation (20)

with data from year t, giving demographic coefficients κ̂t, and then construct observed or imputed

vaping as follows:

q̃eit =


qeit, t ≥ t

κ̂tGi · t−2012
t−2012 , 2013 ≤ t < t− 1

0, t ≤ 2012

 . (23)

We carry out this imputation in all datasets other than NSDUH.

To address the missing vaping data in the NSDUH (for all years) and in other datasets (beginning

in year t), we use two-sample 2SLS. We estimate the first stage (Equation (22)) in all datasets other

than NSDUH, construct the fitted values q̂eit for all observations, and run the second stage (Equation

(21)) with all observations.20 We bootstrap the entire procedure including imputation steps and

20We impute predicted values with dataset controls for the NSDUH by assuming that NSDUH is the average of
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draw bootstrap samples by demographic cell.

This approach is a cousin of the “shift-share” identification strategy popularized by Bartik

(1991) and Blanchard and Katz (1992), and discussed in Goldsmith-Pinkham, Sorkin and Swift

(2019): we primarily exploit cross-sectional variation in demand across demographic groups with the

time-series growth of e-cigarette use. The exclusion restriction is that the instruments affected post-

2013 smoking only through vaping—intuitively, that there would have been no changes in smoking

trends for higher- versus lower-vaping demographics if e-cigarettes had not been introduced.

We provide two types of suggestive evidence in favor of the exclusion restriction. First, we

present a set of informal overidentification tests using different demographic groups as instruments.

If the estimates remain stable across different demographic groups, then any potential confounder

must have affected all demographic groups. Second, we present graphical event studies that test

for trends in smoking in demographics with high versus low latent e-cigarette demand, before e-

cigarettes were introduced. If there are no such trends, then any potential confounder must have

arisen at the same time as e-cigarettes became popular.

The event study regression is analogous to our second stage (Equation (21)), except that ζ is

allowed to vary by year:

qcit = ζt (κ̂Gi) + λGi + ω(t− 2004)Gi + νt + µdgt + εit, (24)

where ζt is a vector of time-varying coefficients and κ̂Gi is the fitted value from an estimate of

Equation (20) using vaping in all years observed. Because we have demographic group intercepts

and time trends and κ̂Gi varies only by demographic group, we must omit at least two years from

the ζt parameters. The more years we omit, the more precisely we can estimate the time trends

ω. We estimate one indicator for the combined 2004–2010 period and one for each individual year

after, omitting 2012, the year before vaping starts to become popular.

5.3 Event Study Figures

Figure 7 presents estimates of the ζt parameters from Equation (24), the event study specification.

For adults, the 2004–2010 and 2011 indicators are very close to the omitted year (2012), implying

no differential smoking trends prior to e-cigarette introduction for demographic groups with higher

versus lower e-cigarette demand. The estimates are not statistically distinguishable from zero in

any year.

For youth, the 2004–2010 point estimate is below the omitted year, and the 2011 estimate is

slightly above, although the latter difference is not statistically significant with 95 percent con-

fidence. Consistent with Figure 6, the point estimates are very close to zero in the years after

e-cigarettes are introduced.

NHIS and post-2011 BRFSS.
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5.4 Parameter Estimates

Figure 8 presents separate estimates of Equation (21) for adults and youth. The first row of

each panel presents our preferred estimates. For adults (youth), the primary point estimates are

σ̂θ ≈ 0.03 (σ̂θ ≈ 0.01). This implies that groups that are ten percentage points more likely to vape

on a given day reduced smoking by 0.003 (0.001) packs per day relative to trend. Both adult and

youth estimates are statistically indistinguishable from zero. We can rule out σ coefficients of less

than −0.16 or more than 0.29 for adults (less than −0.03 or more than 0.06 for youth) with 95

percent confidence.

The subsequent rows in each panel present robustness checks. Control for 2003 smoking allows

the smoking trends to differ for demographics with higher versus lower initial smoking rates, by

including an additional control for the 2003 smoking rate in person i’s demographic cell and the

interaction of that variable with a linear time trend. Vaping begins in 2012 modifies the construction

of q̃eit in Equation (23) to use 2012 instead of 2013 as the year when e-cigarettes first saw non-

negligible use. The standard errors widen slightly as the linear demographic time trends ω must

be estimated off fewer years, but the point estimates do not change much. No imputed vaping data

uses only observed vaping qeit instead of imputing missing qeit beginning in 2013.

In the youth estimates, Demog. cell predictors uses demographic cells, rather than linear demo-

graphic groups, in Gi. Drop race other/missing is motivated by Appendix Figure A4, which shows

that the predicted vaping among people whose race is other/missing differs in MTF versus NYTS.

The next set of robustness checks, Predictors excl. age (or race, etc.) omit age (or race, or other

demographic categories) from the vaping predictors Gi. These are informal overidentification tests,

allowing us to see whether the results are driven by any one demographic category. Consistent

with the earlier informal overidentification tests in Appendix Figures A10–A13, the point estimates

move little when we exclude any given demographic category. The standard errors illustrate that

most of the identifying variation is from age (for adults) and grade (for youth), consistent with fact

that these are the most predictive demographic categories illustrated in Figure 4.

The final set of robustness checks presents estimates using each dataset individually in the

second stage regression. Our primary results from combining three datasets are about the average

of the estimates from each individual dataset. The point estimates differ somewhat across datasets,

which highlights the importance of our efforts to use all available data.

To argue that vaping is a material complement or substitute to smoking over our sample period,

one would have to believe that some unobserved force increased or decreased smoking over the exact

period that vaping became popular, breaking a previously steady downward trend. One would also

have to believe that this unobserved force affected all demographic groups. And since the primary

σ estimates are similar in the RMS data and the sample surveys, one would have to believe that

this force could confound both sets of estimates.

Table 3 helps to put the primary results in context. We multiply σ̂θ for θ ∈ {adults, youth}
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by 2018 average vaping qeθ to estimate the change in smoking caused by the introduction of e-

cigarettes. For the average adult, we can reject with 95 percent confidence that vaping increased

(decreased) smoking by 0.007 (0.004) packs per day, or about 8 percent (4 percent) of average

cigarette consumption. For the average youth, we can rule out with 95 percent confidence that

vaping increased (decreased) smoking by more than 0.003 (0.001) packs per day, or about 51 (21)

percent of average consumption. The percent terms are larger for youth because they already had

low baseline smoking, but both substitution parameters are economically precise zeros in the sense

that they rule out any material gateway effect (long-run complementarity) from vaping to smoking

through 2018. We cannot rule out gateway effects that have not yet manifested themselves as of

the 2018 surveys—for example, if high-vaping youth demographics will transition to smoking over

a longer period.

Aggregating across all adults and youth, we can rule out that the introduction of e-cigarettes

increased (decreased) smoking by more than about 660 (354) million packs in 2018. Furthermore,

we can rule out that the introduction of e-cigarettes changed cigarette demand by more than 5 to

11 percent of the total decrease observed from 2004–2018. Thus, these estimates suggest that while

e-cigarettes may be smoking cessation aids from some people and gateways to smoking for others,

neither of these effects dominates in an economically significant way.

An important caveat to our welfare analysis is that we do not study the effects of e-cigarettes on

other behaviors that may involve uninternalized harms. One key concern is that e-cigarettes may

make it easier to consume marijuana. In Appendix D.2, we study trends in marijuana use among

youth, for whom this concern is particularly salient. We find no evidence that youth marijuana use

grew as e-cigarettes became popular. However, marijuana is increasingly being consumed through

vaping, and this may be a more harmful form of consumption: the 2,807 lung injuries and 68

deaths from vaping in 2019 and early 2020 were primarily linked to marijuana e-liquids (Centers

for Disease Control 2020).

6 Expert Survey

In this section, we present results from the E-cigarette Expert Survey. Figure 9 presents the

distribution of responses to the first two questions on the survey: the ratios of internalities and

externalities from daily vaping relative to daily smoking for the average adult. The mean (median)

expert believes that the externalities and internalities from vaping are 48 (25) and 101 (80) percent

as large as those from smoking cigarettes. There is substantial disagreement: the interquartile

ranges of these two harm ratios are 10 to 75 percent and 27 to 180 percent, respectively.

The mean and median expert believe that the uninternalized harms from vaping are about twice

as large for youth as they are for adults; see Appendix Figure A16 for the full distribution across

experts. These three key results—material harms relative to combustible cigarettes, substantial

27



uncertainty, and much larger harms for youth compared to adults—will be central to our welfare

analysis.

Our sample includes both economists and health researchers cited in the National Academy of

Sciences (2018) e-cigarette study. Appendix Figure A15 shows that these two subgroups report

almost the exact same average internality ratio for vaping relative to smoking, while economists

report slightly lower external harm and youth/adult harm ratios than health experts report. As

we discuss below, the relative internality will be particularly important for our policy analysis, so

it is notable that these two subgroups agree.

These results paint a substantially different picture than might have been expected on the

basis of prior literature. A prominent early estimate suggested that e-cigarettes were only five

percent as harmful as combustible cigarettes (Nutt et al. 2014). Viscusi (2016) argued that early

evidence suggested that vaping could be at least 100 times safer than smoking. The National

Academy of Sciences (2018, page 1) concluded that “e-cigarettes are likely to be far less harmful

than combustible tobacco cigarettes.” This difference is remarkable given that our experts are the

same people who wrote the research cited in that study.

There are several potential reasons for these differences. First, while prior estimates quantified

health harms, our expert survey focused on uninternalized externalities and internalities. This is

crucial: our model from Section 1 clarifies that externalities and internalities are what matter for

policy, not health harms per se, and these concepts are different. For example, some internalities

might be caused by failing to anticipate the financial cost of addiction, and health harms can result

in increased health care costs (a negative externality) or early mortality (a potential positive fiscal

externality).

Second, our survey may reflect recent changes in the state of expert knowledge. Nutt et al.

(2014) wrote that there was a “lack of hard evidence” for their conclusions, and Eissenberg et al.

(2020) argue that e-cigarettes and e-liquids are more harmful than they were a few years ago and

that “evidence of potential harm has accumulated.”

Third, our results might suffer from common problems with unincentivized surveys, such as

noisy or expressive responses. Fourth, our 33 percent response rate could suggest sample selection

bias. However, even if all non-respondents would have rated vaping as zero percent as harmful

as smoking, the average beliefs about relative harms in our full sampling frame would still be 33

percent as large as our estimates, and thus larger than Nutt et al.’s (2014) five percent.

Our final two questions elicited experts’ views on public policy. About 52 percent of experts

support a ban on flavored e-cigarettes, and 22 percent support a ban on all e-cigarettes. This

disagreement among experts highlights the importance of quantitative policy analysis.
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7 Optimal Regulation

7.1 Parameter Calibrations

In this section, we estimate the optimal e-cigarette tax using Equation (14) and the welfare effects

of an e-cigarette ban using Equation (15). We use Monte Carlo simulations to capture the sampling

variation in each parameter. Specifically, we re-estimate Equations (14) and (15) one million times,

drawing each parameter in each equation from its distribution. Unless otherwise stated below, we

draw each parameter from a normal distribution with mean and standard deviation equal to its

point estimate and standard error.

Table 4 summarizes the parameters, their mean values in our primary simulations, and their

sources. To further acknowledge uncertainty, we will also consider alternative assumptions for the

key parameters in the next section. We use parameters from 2018, the most recent available year,

and we inflate monetary amounts to 2018 dollars. We consider two consumer types θ ∈ {a, y},
representing adults and youth.

We use the empirical estimate of η from Table 2 and the adult and youth σ from Figure 8. To

avoid positive own-price elasticities, we re-draw any positive draw of η; this happens in only about

0.02 percent of simulations. We compute sθ, the share of each type, by calculating the number of

youth ages 12–17 and adults ages 18–100 in the 2018 American Community Survey.

Current youth and adult e-cigarette consumption qeθ(p̃) are the 2018 averages from the sample

surveys plotted in Figure 2. Vaping is now in units of milliliters (ml) per person-day, and the e-

cigarette tax rate and marginal distortion are in dollars per ml. We transform qeθ from the original

survey units (share of days) to ml/person-day using Γ, the e-liquid consumption on an average

vaping day from our E-cigarette User Survey.

We import the cigarette average marginal bias and externality from existing literature. For lack

of data, we assume that these parameters are homogeneous across types.21 We follow Cutler et al.

(2015) in assuming that the marginal bias is γc = (1−β)HS , where β is the present focus parameter

and HS is the discounted future private cost of smoking per pack. As we showed in an example in

Section 1, this is the correct formula for marginal bias if present focus is the only behavioral bias, the

social planner uses the long-run criterion (so that normative utility uses exponential discounting),

and there is no habit formation. With habit formation, γc would be smaller with sophisticated

present focus and probably larger with naive present focus (Gruber and Kőszegi 2001). Projection

bias would probably increase γc. We use the stylized γc = (1 − β)HS because of these modeling

21In reality, the cigarette distortion varies across people. For example, internalities and externalities could be
larger for young people who are not yet addicted to nicotine. Furthermore, some correlation studies show that full
smoking cessation is associated with disproportionately large health gains compared to partial smoking reduction
(Song, Sung and Cho 2008) and that “dual use” of cigarettes and e-cigarettes is associated with particularly large
toxicant exposures compared to only smoking or vaping (Goniewicz et al. 2018), although it is not clear whether
these results are causal.
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uncertainties.

We assume that the present discounted private health cost from smoking is HS = $44.40 per

pack, inflating the estimate from Gruber and Kőszegi (2001) to 2018 dollars. We import β = 0.67

and its standard error from the Chaloupka, Levy and White (2019) experimental estimates of

internalities from smoking. This gives a mean estimate of γc = (1 − β)HS ≈ $14.65. We assume

that the marginal externality from smoking is φc ≈ $3.21 per pack, inflating the estimate from

Sloan et al. (2004) to 2018 dollars.22 We assume that HS and φc are known with certainty, as there

are no standard errors in the original sources. Adding the internality and externality, our mean

estimate of the smoking marginal distortion is ϕc ≈ $17.86 per pack.

To estimate the internalities and externalities from adult vaping, we multiply the existing es-

timates of smoking marginal bias and externality by the relative harms from vaping elicited from

the E-cigarette Expert Survey. Define αγa := γea/γ
c
a and αφa := φea/φ

c
a as the ratios of marginal in-

ternalities and externalities, respectively, for daily vaping versus daily smoking for adults. We use

the means and empirical distributions of αγa and αφa from Figure 9, and we draw the tuple (αγa, α
φ
a)

jointly from the distribution of experts to allow these parameters to be correlated. We transform

the α parameters from their original units (distortion per every-day vaper / distortion per every-day

smoker) using Γ and Ωa ≈ 0.51, the cigarette consumption on the average day smoked for adults

in the sample surveys. The marginal distortion from adult vaping is then ϕea = Ωa
Γ

(
αγaγc + αφaφc

)
,

in units of $/ml.

To estimate the marginal distortion from youth vaping, we multiply the adult marginal distor-

tion by the ratio of youth to adult harms elicited on the expert survey: ϕey = ρϕea. We draw ρ from

the empirical distribution in Figure A16.

We use the 2018 population-weighted average tax rates τ̃ c and τ̃ e across states, and we use

p̃e ≈ $3.90 per ml from our E-cigarette User Survey. Note that only about 1/4 of the U.S. population

lives in states, counties, or cities with e-cigarette taxes, so τ̃ e is about 1/4 of the average tax rate

in areas that currently have taxes.

Appendix F provides additional details about empirical implementation.

7.2 Optimal Regulation Results

Three key parameters. Three key parameters drive our results on optimal regulation. First,

we estimate that e-cigarette demand is more than unit elastic. This relatively elastic demand

reduces the perceived consumer surplus from vaping, pushing toward the possibility that a ban

might increase welfare.

Second, our point estimates of the substitution parameter σ imply very limited complementarity

22Most of this amount represents cross-subsidies from non-smokers to smokers that may no longer occur because
most life insurance policies adjust for smoking status (DeCicca, Kenkel and Lovenheim 2020). On the other hand,
health care costs have increased substantially in the past two decades.
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or substitutability between e-cigarettes and cigarettes. This means that in our mean Monte Carlo

simulation, optimal e-cigarette policy places little weight on cigarette market distortions. However,

cigarette market distortions will matter for simulation draws with σ further from zero.

Third, prior research suggests large bias and externalities associated with smoking, and our

experts believe that vaping is almost as harmful as smoking. This will imply that the optimal e-

cigarette tax is much higher than current levels and that a ban might even increase welfare relative

to current taxes. To see this, recall that the smoking marginal distortion is ϕc ≈ $17.86 per pack.

Define αa := αγaγ
c+αφaφ

c

γc+φc as the relative uninternalized harms from vaping every day compared to

smoking every day. At our mean parameter values, we have αa ≈ 1.01·$14.65+0.48·$3.21
$14.65+$3.21 ≈ 0.92,

implying that our average expert thinks that the marginal distortion from vaping every day is 92

percent as large as the marginal distortion from smoking every day. Ωa ≈ 0.51 packs of cigarettes

(Γ ≈ 0.58 ml) are consumed in an average day of smoking (vaping). Thus, the adult vaping

marginal distortion per milliliter is slightly less than the smoking marginal distortion per pack:

ϕe = ϕcαaΩa/Γ ≈ 17.86× 0.92× 0.51/0.58 ≈ $14.45/ml. The optimal tax will be higher than that,

because the youth vaping marginal distortion is higher by proportion ρ ≈ 2.11. In comparison,

the current average e-cigarette tax in states, counties, and cities that have taxes is $0.89/ml, more

than an order of magnitude less. One may disagree with our experts or with our other parameter

assumptions, but it would take very different assumptions to change the conclusion that existing

e-cigarette taxes are too low in the context of our model.

Optimal taxes. Figure 10 presents the distribution of optimal taxes over Monte Carlo sim-

ulation draws. As discussed in Section 1, the optimal tax could be negative (i.e. a subsidy) if

cigarettes are much more harmful than e-cigarettes and the two goods are substitutes. Neither of

these is the case at our mean estimates, and the optimal tax is positive in 97 percent of simulations.

The vertical line marks the current average e-cigarette tax in states and local areas that have taxes,

$0.89/ml. The optimal tax exceeds that current average in about 95 percent of simulations. Thus,

the model predicts with high confidence that it is optimal to impose some positive e-cigarette tax,

and indeed a larger tax than the current norm.

Welfare effects of a ban. Figure 11 presents the welfare effects of an e-cigarette ban, sepa-

rately for youth and adults. Recall that in our model, the optimal tax is always preferred to a ban,

and we compare a ban to the status quo with current tax rates.

A successfully implemented youth vaping ban increases welfare in 92 percent of simulations,

and the welfare gains in the median simulation are about $181 per youth per year. There is a large

mass of draws with welfare gains above $200, driven by the right tail of the ρ distribution from

experts who reported that vaping is very harmful for youth relative to adults.23 While the U.S.

already bans e-cigarette sales to minors, complete bans including sales to adults are rare and more

controversial. The model predicts that an adult vaping ban would increase welfare in about 90

23Appendix Figure A17 presents parameter regions where the youth ban increases welfare.
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percent of simulations, and the welfare gains in the median simulation are about $50 per American

adult per year.

Sources of uncertainty. What parameters generate the most uncertainty in setting optimal

policy? Figure 12 presents the variance in predicted welfare effects of a ban from Monte Carlo

simulations that hold each listed parameter fixed, as a fraction of the variance in the primary sim-

ulations in Figure 11. The key message is that the αa parameters, and in particular αγa, contribute

by far the most to policy uncertainty. Tangibly, our e-cigarette experts disagree substantially about

the harms from vaping compared to smoking, and this disagreement matters for policy evaluation.

An equivalent figure showing the contribution of each parameter to uncertainty in the optimal tax

tells the same story.

Welfare effects at different αa. Given that αa is the key source of policy uncertainty, Figure

13 presents the mean and 95 percent confidence intervals for the welfare effects of an e-cigarette

ban for a range of αa from 0 to 2. Note that because η enters Equation (15) in the denominator,

the bounds on ∆W are not symmetric; for draws of η close to 0, the perceived consumer surplus

from e-cigarettes becomes large.

Nutt et al. (2014) concluded that e-cigarettes were about 5 percent as harmful as combustible

cigarettes. At αa = 0.05, a ban has almost exactly zero welfare effect in the mean simulation. At

about αa ≈ 1/3, meaning that vaping has about 1/3 the uninternalized harms of smoking, the

model predicts with 95 percent confidence that a ban increases welfare relative relative to current

tax rates.

Alternative assumptions. To further understand the sources of policy uncertainty, Table 5

presents optimal tax rates and welfare effects of a ban under alternative assumptions. In each row

of Panels (a) and (b), we present the mean τ e∗ or ∆W at the parameter assumption listed in the

first column for the 25th percentile, mean, and 75th percentile of αa across our experts, drawing

the other parameters from their distributions. The first 12 rows are parallel across the two panels.

Row 1 presents the primary specification. At the mean parameter values, the optimal tax is

$18/ml. Because this is so much higher than the current average e-cigarette tax τ̃ e, banning e-

cigarettes is preferred to the status quo. A complete e-cigarette ban for youth and adults increases

welfare by $91 per person per year, or $25 billion per year over the 279 million people aged 12 and

older nationwide. Even at the 25th percentile of experts’ αa distribution, the optimal e-cigarette

tax is considerably larger than the average existing state or local e-cigarette tax, and a ban increases

welfare.

Rows 2–5 present alternative assumptions for the substitution parameter σ. Since smoking

generates uninternalized distortions (ϕc > τ̃ c), more substitutability (more negative σ) pushes

toward a lower optimal tax and lower welfare gains from a ban, and more complementarity (more

positive σ) pushes in the other direction. Row 2 uses the minimum distance estimates from the

Nielsen RMS data in Section 4, σ̂adult ≈ −0.056 and σyouth ≈ −0.000, which suggest slightly more
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substitutability between smoking and vaping. This pushes toward a lower optimal tax and lower

welfare gains from a ban. Row 3 uses the σ̂ parameters from both Sections 4 and 5, combined using

a minimum distance estimator as described in Appendix D.1.

Rows 4 and 5 present results assuming that an average day of vaping is a perfect complement

(σ = 0.5 for adults and σ = 0.15 for youth) or a perfect substitute (σ = −0.5 for adults and

σ = −0.15 for youth) for an average day of smoking. For perfect substitutes and lower values of αa,

it is optimal to subsidize e-cigarettes, and a ban reduces welfare. These parameters are consistent

with some policy arguments to encourage e-cigarettes as a harm-reduction approach for existing

smokers, but only if αa is on the low end of our experts’ beliefs.

Row 6 allows the social planner to set the optimal cigarette tax τ c = τ c∗ = ϕc. Optimal policy

then considers the e-cigarette market in isolation. Because our primary estimates already use σ ≈ 0,

this makes little difference relative to Row 1.

Rows 7–9 present alternative assumptions for the cigarette marginal bias γc and externality φc.

This significantly affects optimal policy, primarily because the e-cigarette marginal distortions ϕeθ
also depend on these parameters. Row 7 assumes that the conventional wisdom of policymakers is

more informative about the marginal distortion from smoking than the academic research we use

in our primary estimates. In that row, we assume that existing average cigarette taxes τ̃ c are set

optimally and rescale γc and φc so that ϕc = τ̃ c. This substantially reduces the resulting e-cigarette

marginal distortions ϕeθ, reducing the optimal e-cigarette tax and suggesting that a ban reduces

welfare at lower αa values.

Rows 8 and 9 set the cigarette internality γc at $1.80 per pack and $80 per pack, to match

the estimates in Gruber and Kőszegi (2001) and Chaloupka, Levy and White (2019), respectively.

Even in row 8, banning e-cigarettes increases welfare, and the optimal tax is considerably higher

than the current norm at the mean αa.

Rows 10 and 11 consider the youth and adult markets in isolation. Since the mean ρ ≈ 2.11,

the optimal e-cigarette tax for youth is about twice as large as the optimal tax for adults. The

per-youth gains from a youth-specific ban are 4–5 times larger than the per-adult gains from an

adult-specific ban. These calculations underscore that if leakage or enforcement issues make it

easier to impose type-specific bans than type-specific taxes, there are parameter configurations

under which a youth sales ban plus a tax on the remaining sales to adults could be the constrained

optimum in our model.

Row 12 further highlights the uncertainty in our model’s policy prescriptions. For this row,

we use the σ̂ and η̂ from column 5 of Table 2, the estimates without cluster-specific linear time

trends, which imply more substitutability and more inelastic demand. The more negative σ̂ implies

a substitution distortion of about $-5/ml, meaning that it is optimal to subsidize e-cigarettes to

reduce uninternalized harms from cigarette use. We also use the argument of Viscusi (2016) that

γe < 0 (i.e. bias causes people to vape too little) because people underestimate health risks. Viscusi
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(2016, Table 2) finds that people believe that the mortality risks from typical vaping are 66 percent

as large as those from smoking a pack of cigarettes per day (total mortality of 33.3 versus 50.3 out of

100). He cites other research to argue that the true relative risk is only 1 percent. Thus, e-cigarette

users overestimate the health harms of e-cigarettes by (0.66 − 0.01)HS ≈ 0.65 · $44.40 ≈ $29 per

day of vaping. Translating to $/ml using Γ and assuming that this is the only e-cigarette distortion

implies ϕe ≈ $-51/ml. The results in Row 12 show that under these assumptions, the optimal

policy is to heavily subsidize e-cigarettes instead of taxing or banning them.

Panel (b) of Table 5 includes additional rows that are particularly relevant for evaluating a ban.

Rows 13 and 14 present alternative assumptions for the elasticity η. Since we assume that the

perceived consumer surplus loss from a ban is the area under a line drawn tangent to the demand

curve at current prices, more inelastic demand implies larger perceived consumer surplus loss.

The resulting changes in perceived consumer surplus are still far outweighed by the uninternalized

distortions.

In many markets, youth are more price elastic than adults, but our aggregate Nielsen RMS data

do not allow us to estimate separate elasticities by type. Row 15 keeps the adult elasticity at the

RMS estimate and assumes that youth demand is 50 percent more elastic. This increases the net

welfare gains from a ban, but the change relative to Row 1 is small because youth represent only

nine percent of the population.

The e-liquid price in Nielsen RMS is p̃e ≈ $6.58/ml, somewhat higher than in our E-cigarette

User Survey. Using this higher value in Row 16 increases the perceived consumer surplus loss,

which reduces the net welfare gains from a ban.

Rows 17 and 18 present alternative assumptions for the baseline e-cigarette tax τ̃ e. Row 17

assumes that τ̃ e = ϕe, so there is no uninternalized e-cigarette distortion. Since σ ≈ 0, setting the

optimal e-cigarette tax removes essentially all economic justification for a ban, and the welfare gain

from a ban equals the perceived consumer surplus change, which is negative. However, current

tax rates are far below our primary estimate of ϕe. Row 18 shows that even doubling τ̃ e still

leaves ample welfare gains from a ban. Thus, any factors that make it difficult to materially raise e-

cigarette taxes could provide justification for a ban if our experts are right about the uninternalized

harms.

Row 19 presents a set of combined assumptions that reduce the welfare gains from a ban:

reducing the demand elasticity to η = −0.5 (increasing perceived consumer surplus), halving the

cigarette marginal distortion (and thus halving the resulting e-cigarette distortion), and making

vaping a slight substitute (instead of slight complement) for smoking. Under these assumptions, a

ban still increases welfare at the mean αa, but it reduces welfare at lower draws of αa.
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8 Conclusion

Electronic cigarettes are one of the most controversial new products of the past decade, due to

uncertainty about their health effects and whether they are primarily a cessation aid or a gateway

drug for traditional combustible cigarettes. We lay out a simple dynamic behavioral optimal policy

framework that delivers formulas for the optimal e-cigarette tax and welfare effects of a ban as

functions of several sufficient statistics. We estimate these statistics using Nielsen RMS scanner

data, sample surveys, and a new survey of e-cigarette experts. We find that e-cigarette demand

is price elastic, vaping is neither a significant complement nor substitute for smoking combustible

cigarettes over the medium term, and our experts believe that vaping is almost as harmful as

smoking.

Our Monte Carlo simulations make clear that parameter uncertainty generates substantial un-

certainty in policy predictions, even within the context of our model. However, three conclusions

seem robust. First, since most of the policy uncertainty in our model is driven by uncertainty over

the uninternalized externalities and internalities from vaping, more research on those parameters

would be very valuable. Second, eliminating youth vaping increases welfare in 92 percent of our

model simulations, suggesting that existing regulations banning e-cigarette sales to minors and all

sales of flavored e-cigarettes (which are especially appealing to minors) probably increase welfare.

Third, if our experts are correct about the large uninternalized harms from vaping, in our model

the optimal tax on e-cigarettes is probably much higher than the current norm.
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Table 1: Smoking and Vaping Sample Surveys

Dataset Population Observations Years Notes
BRFSS Adults 5,346,115 2004–2018 Sampling change in 2011
MTF Youth 591,740 2005–2018 Inconsistent race data in 2004
NHIS Adults 412,888 2004–2018
NSDUH Adult sample 590,303 2004–2018 No vaping data
NSDUH Youth sample 268,676 2004–2018 No vaping data

NYTS Youth 227,813
2004, 2006,
2009, 2011–2018

Notes: Datasets are the Behavioral Risk Factor Surveillance System (BRFSS), the National Health Interview
Survey (NHIS), the National Survey of Drug Use and Health (NSDUH), Monitoring the Future (MTF), and
the National Youth Tobacco Survey (NYTS)
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Table 2: Own- and Cross-Price Elasticity of Demand for E-cigarettes

(a) First Stage and Reduced Form

(1) (2) (3)
Dependent variable: ln(e-cig price) ln(cig price) ln(e-cig units)

ln(e-cig % tax rate + 1) 0.580 0.126 -0.730
(0.048) (0.051) (0.144)

ln(cig % tax rate + 1) -0.011 0.620 0.181
(0.061) (0.087) (0.285)

Observations 285,985 285,985 285,985

(b) Instrumental Variables Estimates

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: ln(e-cig units) ln(e-cig units) ln(e-cig units) ln(e-cig units) ln(e-cig units) ln(e-cig units) ln(e-cig units)
ln(e-cig price) -1.318 -1.513 -1.060 -0.924 -1.000 -1.406 -1.290

(0.366) (0.322) (0.420) (0.370) (0.246) (0.308) (0.498)
ln(cig price) 0.267 0.612 0.588 0.610 0.655 0.327 0.447

(0.459) (0.550) (0.538) (0.527) (0.344) (0.458) (0.599)
UPC-cluster FE Yes No Yes Yes Yes Yes Yes
UPC-month FE Yes No No Yes Yes Yes Yes
Division-month FE Yes No No No Yes Yes Yes
Cluster × month trend Yes No No No No Yes Yes
Quasi-panel No No No No No No Yes
Time-varying state controls Yes Yes Yes Yes Yes No Yes
Observations 285,985 286,491 286,303 285,985 285,985 285,985 499,664

Notes: This table presents estimates of the own- and cross-price elasticity of demand for e-cigarettes from Equation (16), using UPC-cluster-month data.
There are 51 geographic clusters: the two counties that have e-cigarette taxes, each of the contiguous 48 states (excluding those two counties), and Washington,
D.C. Standard errors are clustered by geographic cluster. Observations are weighted by the UPC’s sales in non-taxed clusters in that calendar year, divided
by total sales across all UPCs in that year in non-taxed clusters. Panel (a) presents the first stage and reduced form, using the same set of controls as in our
primary estimate in column 1 of Panel (b). Panel (b) presents the instrumental variables estimates. Time-varying state controls are the state unemployment
rate and beer tax rate as well as indicators for whether the state has an indoor vaping ban, has a medical marijuana law, has passed or implemented a
prescription drug program, and implemented the Medicaid expansion. Column 7 presents estimates in a “quasi-panel” in which we add zero-sales observations
for all UPCs that had non-zero sales in cluster s in any prior month, beginning with the month in which the UPC first had sales.
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Table 3: Effects of Vaping on Smoking

Adults Youth
σ̂ (packs per day/share of days) 0.03 0.01
95% confidence interval (-0.16, 0.29) (-0.03, 0.06)

2018 average vaping (share of days) 0.024 0.053
Effect of vaping on smoking (packs/day) 0.00083 0.00068
95% confidence interval (-0.00374, 0.00690) (-0.00138, 0.00329)

2018 average smoking (packs/day) 0.082 0.006
Effect of vaping on smoking (%) 1.0 10.6
95% confidence interval (-4.5, 8.4) (-21.4, 51.2)

2018 implied total smoking (million packs) 7,495 58.7
Effect of vaping on smoking (million packs) 76.0 6.2
95% confidence interval (-340.9, 629.7) (-12.6, 30.0)

2004–2018 smoking decrease (packs/day) 0.071 0.030
Effect of vaping on smoking (% of decrease) -1.2 -2.3
95% confidence interval (-9.8, 5.3) (-11.1, 4.7)

Notes: This table presents estimates of the substitution parameter σθ :=
dqcθ
dqeθ

and further analysis. We

compute the effect of vaping on smoking (packs/day) by multiplying σ̂ by average vaping. We compute the
effect of vaping on smoking (%) by dividing the effect of vaping on smoking (packs/day) by average packs
per day smoked in 2018. We compute the effect of vaping on smoking in 2018 (million packs) by multiplying
the effect of vaping on smoking (%) by the total smoking in 2018 (million packs) implied by the sample
survey data. We compute the effect of vaping on smoking (% of decrease) by dividing the effect of vaping on
smoking (packs per day) by the change in packs per day smoked from 2004–2018. The confidence intervals
for σ̂ reflect the 2.5th and 97.5th percentiles of estimates from 200 bootstrap replications, where we draw
bootstrap samples by demographic cell.
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Table 4: Parameters for Policy Analysis

Object Description and units Mean Data source
η E-cigarette own-price elasticity -1.318 RMS (Table 2)
σadult E-cig effect on smoking (packs/day vaped) 0.035 Figure 8
σyouth E-cig effect on smoking (packs/day vaped) 0.013 Figure 8
sadult Population share adults 0.910 2018 American Community Survey
syouth Population share youth 0.090 2018 American Community Survey
qeadult Share of person-days vaped 0.024 BRFSS, NHIS 2018
qeyouth Share of person-days vaped 0.053 MTF, NYTS 2018

Γ Average e-liquid use (ml/day vaped) 0.58 E-cigarette User Survey
HS Present discounted cost of smoking per pack 44.4 Gruber and Kőszegi (2001)
β Present bias 0.670 Chaloupka et al. (2019)
φc Cigarette marginal externality ($/pack) 3.21 Sloan et al. (2004)

αγadult
Internality from vaping every day
Internality from smoking every day 1.015 E-cigarette Expert Survey

αφadult
Externality from vaping every day
Externality from smoking every day 0.481 E-cigarette Expert Survey

ρ Ratio of youth to adult e-cigarette distortion 2.112 E-cigarette Expert Survey
Ωadult Average cigarette use (packs/day smoked) 0.506 BRFSS, NHIS (2018)
p̃e E-liquid price ($/ml) 3.90 E-cigarette User Survey
τ̃ c Average cigarette tax ($/pack) 2.92 Tax Policy Center (2019), ACS
τ̃e Average e-liquid tax ($/ml) 0.233 Tax Foundation, RMS, Census

Notes: This table summarizes the parameters used for policy analysis. All dollar values are inflated to 2018
dollars. BRFSS, NHIS, MTF, and NYTS refer to sample surveys described in Table 1. Cigarette and e-liquid
tax rates are averages across all U.S. states, weighted by population; the cigarette tax includes the federal
cigarette tax of $1.01 per pack.
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Table 5: Optimal Tax and Welfare Effects of a Ban under Alternative Assumptions

(a) Optimal E-cigarette Tax ($/ml)

(1) (2) (3)

Parameter assumptions
αadult = 0.29

(p25)
αadult = 0.92

(mean)
αadult = 1.64

(p75)
1. Primary specification 6.41 18.26 31.91
2. σθ = σ̂ from Nielsen RMS 4.40 16.25 29.93
3. σθ = combined σ̂θ 5.20 17.05 30.74
4. Perfect complements 17.06 28.91 42.57
5. Perfect substitutes -5.86 5.99 19.66
6. τ c = ϕc 5.60 17.46 31.13
7. Rescale distortions so ϕc = τ̃ c 0.91 2.85 5.08
8. γc = 1.8 1.68 5.01 8.84
9. γc = 80 30.42 85.61 149.21
10. sadult = 0, syouth = 1 10.22 31.09 55.12
11. sadult = 1 , syouth = 0 5.58 15.47 26.86
12. σθ and η from Nielsen RMS without
time trends, Viscusi (2016) ϕe

-55.82 -55.82 -55.82

(b) Welfare Effects of E-cigarette Ban ($/person-year)

(1) (2) (3)

Parameter assumptions
αadult = 0.29

(p25)
αadult = 0.92

(mean)
αadult = 1.64

(p75)
1. Primary specification 24.84 90.53 166.26
2. σθ = σ̂ from Nielsen RMS 13.74 79.56 155.51
3. σθ = combined σ̂θ 18.15 84.00 159.96
4. Perfect complements 84.17 149.99 225.89
5. Perfect substitutes -43.16 22.61 98.45
6. τ c = ϕc 20.50 86.24 162.03
7. Rescale distortions so ϕc = τ̃ c -5.63 5.17 17.61
8. γc = 1.8 -1.24 17.21 38.49
9. γc = 80 158.32 464.79 818.25
10. sadult = 0, syouth = 1 90.88 319.88 583.71
11. sadult = 1 , syouth = 0 18.29 67.77 124.82
12. σθ and η from Nielsen RMS without
time trends, Viscusi (2016) ϕe

-323.02 -323.02 -323.02

13. η = −.5 12.38 78.15 153.95
14. η = −1 23.30 89.09 164.93
15. ηyouth = 1.5× ηadult 27.61 93.31 169.09
16. Use p̃e from RMS 18.54 84.13 159.86
17. τe = ϕe -4.89 -4.89 -4.89
18. Double τe 23.62 87.49 161.48
19. Combined assumptions: η = −0.5,
half distortions, and σ = −σ̂

-9.43 23.46 61.37

Notes: Panel (a) presents estimates of the optimal e-cigarette tax using Equation (14). Panel (b) presents
estimates of the welfare effects of an e-cigarette ban relative to current tax rates using Equation (15).
The three columns present results at the 25th percentile, mean, and 75th percentile of αadult, the ratio of
uninternalized harms from vaping versus smoking. Each row varies a specific parameter assumption, and all
other parameters are drawn from their distributions.
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Figure 1: National E-cigarette and Cigarette Sales over Time
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Notes: Data are from the Euromonitor Passport Cigarette and E-Vapour Products Databases.
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Figure 2: Smoking and Vaping Trends
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(b) Youth
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Notes: This figure presents combustible cigarette and e-cigarette use by survey and year. The BRFSS
sampling frame changes in 2011, causing a jump in reported cigarette use. The NSDUH does not record
data on vaping.
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Figure 3: Event Study of E-cigarette Tax Changes

(a) First Stage: Effect on ln(Price)
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(b) Reduced Form: Effect on ln(Quantity Sold + 1)
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Notes: This figure presents estimates of the ηq parameters from Equation (17), an event study of the effects
of e-cigarette tax changes. Panel (a) presents the first stage regression of ln(e-cigarette price) on the change
in the log tax variable. Panel (b) presents the reduced form regression of the ln(e-cigarette units sold) on
the change in the log tax variable.
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Figure 4: Demographic Predictors of Vaping

(a) Adults
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(b) Youth
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Notes: These figures present coefficients from Equation (20), a regression of vaping on demographic indi-
cators. For adults, the omitted categories are White, female, college graduate, the lowest income quintile,
and age group 18–24. For youth, the omitted categories are White, female, and grade 6. Panel (a) pools
2016–2018 data from BRFSS and NHIS; Panel (b) pools 2014–2018 data from MTF and NYTS. Standard
errors are clustered by demographic cell.
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Figure 5: Smoking and Vaping Trends for High- versus Low-Vaping Demographics
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(b) Youth
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Notes: These figures present combustible cigarette and e-cigarette use for demographics with above- versus
below-median predicted vaping, as predicted by Equation (20). Average cigarette use for each group is
residual of dataset controls, which address the 2011 BRFSS sampling frame change and rescale cigarette use
to levels in the NSDUH.
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Figure 6: Difference in Smoking Trends for High versus Low Predicted Vaping
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(b) Youth
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Notes: These figures present the difference in cigarette use for demographics with above- versus below-median
predicted vaping, as predicted by Equation (20). Average cigarette use for each group is residual of dataset
controls, which address the 2011 BRFSS sampling frame change and rescale cigarette use to levels in the
NSDUH. The perfect complement (substitute) bounds show the difference in cigarette use that would be
expected if daily vaping were a perfect complement (substitute) for smoking one pack of cigarettes per day.
To construct perfect complement (substitute) bounds, we predict the difference in cigarette use using the
pre-2013 time trend, then add (subtract) the difference in share of days vaped.
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Figure 7: Event Study of E-cigarette Introduction
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(b) Youth
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Notes: These figures present estimates of ζt from Equation (24), a regression of cigarette use on predicted
vaping interacted with year indicators, controlling for linear time trends and other controls. We estimate one
indicator for the 2004–2010 period, and 2012 is the omitted year category. The confidence intervals reflect
the 2.5th and 97.5th percentiles of estimates from 200 bootstrap replications, where we draw bootstrap
samples by demographic cell.
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Figure 8: Substitution Parameters and Robustness Checks

(a) Adults
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(b) Youth
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Notes: These figures present estimates of σ from Equation (21), a regession of smoking on predicted vaping
controlling for controlling for linear time trends and other controls. Control for 2003 smoking includes
additional controls for the 2003 cigarette use in person i’s demographic cell and the interaction of that
variable with a linear time trend. Vaping begins in 2012 assumes zero vaping for all years before 2012
(instead of 2013 in the preferred estimate) and imputes vaping beginning in 2012 (instead of 2013). Demog.
cell predictors uses demographic cells, rather than linear demographic groups, inGi. Drop race other/missing
drops all observations with “other” or missing race/ethnicity. No imputed vaping data uses only observed
vaping instead of imputing missing data beginning in 2013. Predictors excl. age (or race, etc.) omits age
(or race, etc.) from the predictors in Equation (20). BRFSS (or NHIS, etc.) smoking data only uses only
BRFSS (or NHIS, etc.) data when estimating Equation (5). Drop race other/missing drops all youth whose
race/ethnicity is not Black, Hispanic, or White from both the predicted vaping and the smoking effects
regressions. The confidence intervals reflect the 2.5th and 97.5th percentiles of estimates from 200 bootstrap
replications, where we draw bootstrap samples by demographic cell.
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Figure 9: Expert Survey: Internalities and Externalities from Vaping Relative to Smok-
ing
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Notes: In our expert survey, we elicited the ratios of internalities and externalities from vaping relative to
smoking. This figure presents the distributions of those ratios across experts.
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Figure 10: Optimal E-cigarette Tax: Distribution of Monte Carlo Simulations
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Notes: This figure presents the distribution of optimal e-cigarette taxes from Equation (14) over the distri-
bution of Monte Carlo simulations. The vertical line at $0.89/ml represents the average existing e-cigarette
tax rate.
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Figure 11: Welfare Effects of E-cigarette Ban: Distribution of Monte Carlo Simulations
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Notes: This figure presents the welfare effects of an e-cigarette ban compared to current tax rates from
Equation (15) over the distribution of Monte Carlo simulations. We present separate estimates for youth-
specific and adult-specific bans.
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Figure 12: Contribution of Parameters to Policy Uncertainty
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Notes: This figure presents the variance across Monte Carlo simulations of the welfare effects of an e-cigarette
ban from Equation (15), holding the reported parameter fixed at its mean.
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Figure 13: Welfare Effects of E-cigarette Ban
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Notes: This figure presents the mean and 95 percent confidence interval of the welfare effects of an e-cigarette
ban from Equation (15) over the distribution of Monte Carlo simulations, for different values of αa, the ratio
of uninternalized harms from daily smoking versus daily vaping. The bounds are not symmetric because the
e-cigarette own-price elasticity η enters Equation (15) in the denominator.
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A Theory Appendix

A.1 Optimal Taxes

After substituting the utility function and consumer budget constraint, social welfare at time 0 is

W (τ ) =
∑
θ,t

δtsθ [uθ (qθt;St)− p · qθt + zθt + Tt] . (25)

Substituting in the balanced budget constraint Tt =
∑

θ (τ − φθ) · qθt gives

W (τ ) =
∑
θ,t

δtsθ [uθ (qt;St)− p · qt + zθt + (τ − φθ) · qθt] . (26)

The effect of a marginal change in qkt on type θ’s value function is the effect on current period

utility, ∂uθ(qθt;St)

∂qkt
−pk, plus the discounted effect on the continuation value, δ ∂Vθ(St+1)

∂St+1
· ∂St+1

∂qkt
. Thus,

recalling that p is the tax-inclusive price, the derivative of social welfare with respect to τ j is

∂Wr(τ )

∂τ j
=
∑
θ,t,k

δtsθ

[(
∂uθ (qθt;St)

∂qkt
+ δ

∂Vθ (St+1)

∂St+1
· ∂St+1

∂qkt
− pk

)
dqkt
dτ j
− qkθt +

(
τk − φkθ

) dqkθt
dτ j

+ qkθt

]

=
∑
θ,t,k

δtsθ

[
−γkθ (p, St)

dqkθt
dτ j

+
(
τk − φkθ

) dqkθt
dτ j

]

=
∑
θ,t,k

δtsθ

(
τk − ϕkθ(p, St)

) dqkθt
dτ j

, (27)

where the second line follows from the definition of γjθ(p, St) in Equation (5) and the third line

follows from the definition of ϕkθ(p, St) in Equation (9). Setting equal to zero and re-arranging gives

τ j
∑
θ,t

δtsθ
dqjθt
dτ j

=
∑
θ,t

δtsθϕ
j
θ(p, St)

dqjθt
dτ j

+
∑
θ,t

δtsθ

(
ϕ−jθ (p, St)− τ−j

) dq−jθt
dτ j

, (28)

and dividing by
∑

θ,t δ
tsθ

dqjθt
dτ j

gives Equation (10).

A.2 Welfare Effect of a Ban

The welfare effect of banning e-cigarettes beginning in period 0 is
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∆W =

∫ ∞
τ̃e

∂W (τ)

∂τ e
dτ e

=

∫ ∞
τ̃e

∑
θ,t,j

δtsθ

(
τ j − ϕjθ(p, St)

) dqjθt
dτ e

dτ e

=
∑
θ,t,j

δtsθ

[∫ ∞
τ̃e

τ j
dqjθt
dτ e

dτ e −
∫ ∞
τ̃e

ϕjθ(p, St)
dqjθt
dτ e

dτ e

]
. (29)

Integrating by parts gives

∑
j

∫ ∞
τ̃e

τ j
dqjθt
dτ e

dτ e =
∑
j

τ jqjθt

∣∣∣∣∣
∞

τ̃e

−
∫ ∞
τ̃e

qeθtdτ
e =

∑
j

τ̃ j∆qjθt −
∫ ∞
τ̃e

qeθtdτ
e. (30)

Substituting Equations (12) and (30) into Equation (29) gives

∆W =
∑
θ,t

δtsθ

−∫ ∞
τ̃e

qeθtdτ
e +

∑
j

τ̃ j∆qjθt −
∑
j

ϕjθt∆q
j
θt

 .
Re-arranging gives Equation (13).

A.3 Empirical Implementation

We impose two assumptions to estimate both the optimal tax and the welfare effect of a ban.

Assumption 1. Homogeneous and constant own-price elasticity: ηjθt = ηj, for all (θ, t).

Assumption 2. Zero covariance: ϕjθ(p, St), σ
j
θt, q

j
θt, and t have pairwise zero covariance conditional

on θ.

Optimal tax. Define ηj =
dqjθt/dp

j

qjθt/p
j

and σjθt :=
dq−jθt /dp

j

dqjθt/dp
j

as the own-price elasticity and substi-

tution parameters. The η and σθt defined in Section 1 are for j = e. Since ηj =
dqjθt/dp

j

qjθt/p
j

, we have

dqjθt
dpj

= ηjqjθt/p
j and

dq−jθt
dpj

= σjθtη
jqjθ/p

j . Under Assumption 1, the optimal tax from Equation (10)

becomes

τ∗j =

∑
θ,t

δtsθq
j
θtϕ

j
θ(p, St)∑

θ,t

δtsθq
j
θt

+

∑
θ,t

δtsθq
j
θtσ

j
θt

(
ϕ−jθ (p, St)− τ−jt

)
∑
θ,t

δtsθq
j
θt

. (31)

Adding Assumption 2 yields

3



Online Appendix Optimal Regulation of E-cigarettes: Theory and Evidence

τ∗j =

∑
θ

sθq
j
θϕ

j
θ∑

θ

sθq
j
θ

+

∑
θ

sθq
j
θσ

j
θ

(
ϕ−jθ − τ

−j
t

)
∑
θ

sθq
j
θ

. (32)

Welfare effect of ban. We add a further functional form assumption to identify the perceived

consumer surplus change.

Assumption 3. Perceived consumer surplus change: −
∫∞
τ̃e q

e
θ(p)dτ e = ∆qeθ

p̃e

−2η .

Under Assumption 3, Equation (13) becomes

∆W =
∑
θ,t

δtsθ

∆qeθt
p̃e

−2η
−
∑
j

∆qjθt

(
ϕjθ(p, St)− τ

j
) . (33)

Adding Assumption 2 yields

∆W =
1

1− δ
∑
θ

sθ

∆qeθ
p̃e

−2η
−
∑
j

∆qjθ

(
ϕjθ − τ

j
) . (34)

Multiplying by 1− δ gives the average per-period welfare effect:

∆W =
∑
θ

sθ

∆qeθ
p̃e

−2η
−
∑
j

∆qjθ

(
ϕjθ − τ

j
) . (35)

B Data Appendix

B.1 RMS Data

B.1.1 Data Construction

We construct two datasets: (1) a UPC-cluster-month dataset of e-cigarette units sold and prices

data, and (2) a UPC-cluster-month dataset of cigarette units sold and prices data.

Sample restrictions. We exclude data from stores that are not observed for the full 2013–

2017 sample period. Since UPCs with low sales are more likely to enter and exit the sample and

create an unbalanced panel, we drop UPCs with less than $100,000 in total sales from the analysis

sample.

Weeks that occur in two months are assigned to the later month (i.e., the month in which the

week’s Saturday falls).

4



Online Appendix Optimal Regulation of E-cigarettes: Theory and Evidence

Weights. For simplicity, we refer to our estimates as being weighted by sales, but we do

not weight by raw sales because sales are endogenous to the tax rate. We construct e-cigarette

weights as follows. We construct the total sales for a given UPC-year that occur in states without

e-cigarette taxes. We then divide this number by the total e-cigarette sales that occur in untaxed

states in that year. Cigarette sales are nearly always subject to some tax. To construct weights for

cigarette analyses, we construct the total sales in a given UPC-year (excluding that observation’s

own UPC-year-cluster sales), as a fraction of the total sales in that year across UPCs (excluding

sales in the given UPC-year-cluster). We exclude the observation’s own UPC-cluster-year sales

from the numerator and denominator to account for the fact that sales are endogenous to the tax

environment.

E-cigarette dataset. We construct unit-weighted prices at the UPC-cluster-month level. The

cigarette prices in this dataset are cluster-month unit-weighted cigarette post-tax prices, including

the monthly cigarette sales tax per pack. The cigarette tax rate is the state and national cigarette

tax in a given state-month, divided by the unit-weighted cigarette post-tax price less the state-

month cigarette tax.

Cigarette dataset. We convert Nielsen units and prices per unit to packs. We construct unit-

weighted prices at the UPC-cluster-month level. The cigarette tax rate is the state and national

cigarette tax as a fraction of the observation’s unit-weighted UPC-month cigarette post-tax price

less the state cigarette tax, excluding the UPC’s own cluster. We drop observations where the

official cigarette tax is more than the scanner post-tax price. We construct unit-weighted cluster-

month e-cigarette prices, and we obtain the e-cigarette tax by using the algorithm in the following

subsection. Since we are working with cluster-month data, we use the sales-weighted e-cigarette

size across all clusters and the unit-weighted price across untreated clusters.

B.1.2 Constructing the E-cigarette Tax Variable

There are two types of e-cigarette taxes: ad-valorem taxes (where the tax is a percentage of the

UPC price) and specific taxes (where the tax is a constant per milliliter of e-liquid). In all clusters,

taxes collected are included in the UPC price recorded in RMS. Let τ ′st represent the ad-valorem

tax rate in cluster s. With full pass-through, τkst = τ ′st in ad-valorem cluster-months, for all UPCs

k. To construct a consistent instrument that appropriately scales the magnitude of the tax across

different regimes, we convert specific taxes to ad-valorem taxes. For each UPC-month, we generate

the unit-weighted price p′k, across all months, using only clusters with no e-cigarette taxes. Let

sizek denote the mililiters of e-liquid contained in UPC k. The ad-valorem tax for UPC k in a

cluster s with a specific tax αst per mililiter of e-liquid in month t is given by τkst = αst·sizek
p′k

. In

the final analysis, we drop the 0.12% of the total observations have τkst > 1 or for which we do not

observe any sales in states with no e-cigarette taxes (to construct p′k). Summarizing,
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τkst =


0, s has no e-cigarette tax

τ ′st, s has an ad-valorem e-cigarette tax
αst·sizek

p′k
, s has a specific e-cigarette tax

 .

The RMS data do not consistently record the size, in milliliters of liquid, of vaping products.

We begin with the list of UPC sizes generously shared by the authors of Cotti et al. (2020). We

augment their list with hand-collected information on the mililiters of liquid for the largest UPCs.

For UPCs where we could accurately record size, we convert the per-ml taxes to taxes that are a

fraction of the UPC price. In the final dataset, we observe 79 percent of the observations’ sizes.

For other UPCs, we convert prices to the average sales-weighted size for UPCs whose size we did

record.

The city of Chicago enacted a separate tax several months before Cook County. Because we

only observe the county in which sales take place, we assume that: (i) taxes that occur in Chicago

apply throughout Cook County, Illinois, and: (ii) the Cook County tax was additive on top of the

Chicago tax. Moreover, Chicago enacted a tax of $0.80 per unit or $0.55 per ml of e-liquid. Because

of the difficulty in converting RMS units to the units taxed, we assume Chicago’s tax is per ml of

e-liquid.

In the event study analysis, we construct a variable τ ′kstq that varies by UPC, cluster, calendar

month, and event quarter. In months prior to treatment in specific tax states, where τksq varies by

kand q, we construct αs0, the size of the specific tax in cluster s in event-month 0, and generate

τkstq = αs0·sizek
p
′
k

.24

Table A1: E-cigarette Tax Changes Through 2017

Area (state, county, or city) Date Tax rate

California 4/2017, 7/2017 27.3%, 65% of wholesale price

Chicago, IL 1/2016 $0.80 per unit / $0.55 per ml

Cook County, IL 5/2016 $0.20 per ml

Kansas 7/2016, 7/2017 $0.20, $0.05 per ml

Louisiana 7/2015 $0.05 per ml

Minnesota 8/2010, 7/2013 35%, 95% of wholesale price

Montgomery County, MD 8/2015 30% of wholesale price

North Carolina 6/2015 $0.05 per ml

Pennsylvania 7/2016 40% of retail price

Washington, DC 10/2015, 10/2016 67%, 65% of wholesale price

West Virginia 7/2016 $0.075 per ml

Notes: Data are from Pesko, Courtemanche and Maclean (2019, Appendix Table 2) and Tax Foundation
(2019). The table excludes changes in Alaska, which does not appear in the RMS data.

24For consistency with other sample restrictions, we drop the pre-treatment observations where the implied τksq >
1.
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B.2 Sample Surveys

This section details our construction of harmonized samples across the BRFSS, MTF, NHIS, NS-

DUH, and NYTS.

B.2.1 Sample Weights

All surveys excluding MTF come with nationally representative sample weights; MTF provides

relative sampling odds, which we transform to sample weights. We use the survey-provided sample

weights for adults. For youth, we rescale the sampling weights by the sum of weights within dataset-

grade-year grade. Hence, within dataset, each observation retains its sampling weight relative to

other observations within the dataset. Once we append the datasets, the sampling weights are

appropriately scaled with respect to one another.

B.2.2 Income quintile construction

We construct income quintile within dataset-year, including sampling weights. Income is often

recorded in bins, and occasionally the bins cut across quintile cut points. We assign to the lower

quintile except in the case of the NHIS’s first quintile, because doing so would only four quintiles

in some years. To ensure there are five income quintiles in every year, we re-assign incomes that

cut across the first and second quintiles to income quintile 1 in the NHIS prior to 2006 and income

quintile 2 for 2007–2018. In the 2018 NSDUH, there are only four income groups recorded, which

we code as quintiles 1, 2, 4, and 5.

B.2.3 Adult Smoking (NHIS, NSDUH, BRFSS)

NHIS. We use the smknow, cigsda1, and cigsda2 variables to identify people who report smoking

“every day,” “some days,” or “not at all.” Among people who smoke every day, we use cigsda1

to construct the average number of cigarettes smoked per day. If someone reports smoking “not

at all,” we impose that these people smoke 0 cigarettes per day on all days. Among people who

report smoking “some days,” we use cigdamo to generate the average number of days smoked in

the past 30 days and the cigsda2 variable to generate the average number of cigarettes smoked

on days when the person smokes; we extract the average number of cigarettes smoked per day as

cigsda2 × cigdamo/30.

NSDUH. We use the cig30av variable to compute the average number of cigarettes smoked

per day on days smoked. Because the variable is interval censored, we use the midpoint of the

reported ranges. We code the final interval (“35 cigarettes or more, about two packs”) as 50

cigarettes (2.5 packs), for consistency with other top-coded datasets. We use the cig30use variable

to compute the average number of days in the past 30 days when the respondent smoked. Among

the small proportion of people who do not remember the precise number of days smoked, we use
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the midpoint of ranges reported in the cg30est variable to compute an estimate of the number of

days smoked. We extract the number of cigarettes smoked per day in the past 30 as (number of

days smoked in the past 30 / 30 ) × (number of cigarettes smoked on days smoked).

BRFSS. We use the smokeday and smokday2 variables to construct a variable encoding

whether someone smokes “every day,” “some days,” or “not at all.” We rescale these variables

for comparability by using the following algorithm.

For each year in 2004-2018, append the NHIS and NSDUH datasets. Keep only those people

with non-missing values of demographic variables used in the main analysis. Extract smoking

intensity among “every day” smokers: compute the average number of cigarettes smoked per day

among people who report smoking 30 days in the past 30 in the NSDUH, or who smoke “every

day” in the NHIS. Extract smoking intensity among “sometimes” smokers: compute the average

number of cigarettes smoked per day among people who report smoking between 1 and 29 days

in the past 30 in the NSDUH or who smoke “some days” in the NHIS. Construct a “predicted”

smoking intensity for that year and smoking status by regressing the number of cigarettes smoked

on survey year (i.e, compute a linear fit). Weight regression by sampling weights in each dataset.

Divide the number of cigarettes smoked by 20 to obtain number of packs consumed per day.

Among people who report smoking “every day” in BRFSS, we impose that the person smokes

the average number of packs in that year among every day smokers. Among people who report

smoking “some days” in BRFSS, we impose that the person smokes the average number of packs

in that year among “sometimes” smokers.

B.2.4 Adult Vaping (NHIS, BRFSS)

NHIS. We use the ecig30d2, ecigcur2, and ecigev2 variables to construct a variable that is 1 if

the person vaped “every day” (in ecigcur2 ), 0 if the person vaped “not at all” (in ecigcur2 ) and is

ecig30d2 /30 if the person reports vaping “some days” (in ecigcur2 ).

BRFSS. We use the ecignow and ecigaret variables to construct a variable that encodes

whether the person vapes “every day,” “some days,” or “not at all.” We use a similar algorithm

as for vaping to rescale the variable for comparability: Among people who report vaping “not at

all” in BRFSS, impose that the person has a vaping equivalent of 0. Among people who report

vaping “every day” in BRFSS, impose that the person has a vaping equivalent of 1. For each

year in 2016–2018, append the NHIS datasets. Keep only those people with non-missing values of

demographic variables used in the main analysis. Extract smoking intensity among “sometimes”

vapers: compute the average number of days vaped in the past 30 among people who report vaping

“some days” in the NHIS. Among people who report smoking “some days” in BRFSS, impose that

the person has a vaping equivalent of the average value extracted among vapers who report vaping

“some days.” Unlike in the exercise for smoking, do not generate separate values for each year.

8



Online Appendix Optimal Regulation of E-cigarettes: Theory and Evidence

B.2.5 Youth Smoking (MTF, NYTS, NSDUH)

MTF. We define packs per day as the number of cigarettes smoked per day on average, divided by

20. We recode the top-coded observations that report smoking 2 or more packs per day as smoking

50 cigarettes per day.

NYTS. We use the midpoint of the interval containing the number of cigarettes per day

smoked and the midpoint of the number of days smoked to obtain the number of packs smoked per

day. We code “20 or more” cigarettes per day as 30 cigarettes per day.

NSDUH. Same as adults.

B.2.6 Youth Vaping (MTF, NYTS)

Both datasets. We extract the midpoint of the interval containing the number of times the

respondent reports vaping electronic cigarettes last month. We define vaping equivalents as the

midpoint of this interval, divided by 30.

Additional details about the MTF vaping data. The MTF has several different variables

from 2014–2018 that record the number of days the respondent reports vaping. By year, they are

as follows (emphasis from MTF codebooks).

2014:

• During the LAST 30 DAYS, on how many occasions (if any) have you used electronic cigarettes

(e-cigarettes)?

2015:

• During the LAST 30 DAYS, on how many occasions (if any) have you used electronic cigarettes

(e-cigarettes)?

• During the LAST 30 DAYS, on how many days (if any) have you used an electronic vaporizer

such as an e-cigarette?

2016:

• During the LAST 30 DAYS, on how many days (if any) have you used electronic cigarettes

(e-cigarettes)?

• During the LAST 30 DAYS, on how many days (if any) have you used an electronic vaporizer

such as an e-cigarette?

2017:

• On how many occasions (if any) have you vaped NICOTINE during the last 30 days?
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• During the LAST 30 DAYS, on how many occasions (if any) have you used electronic cigarettes

(e-cigarettes)?

2018:

• On how many occasions (if any) have you vaped NICOTINE during the last 30 days?

• During the LAST 30 DAYS, on how many occasions (if any) have you used electronic cigarettes

(e-cigarettes)?

We combine these reports as follows. If a respondent is ever recorded asked multiple vaping ques-

tions, we take the average. If the respondent records vaping more than 30 times in the past month,

we recode this as 30 (such that the maximum number of days in the last month is 30). Figure A1

illustrates that mean vaping rates align well across these reports.

Figure A1: MTF Vaping Rates by Question

0 .01 .02 .03 .04

2014

0 .01 .02 .03 .04

2015

0 .01 .02 .03

2016

0 .01 .02 .03

2017

0 .02 .04 .06 .08

2018

Average across vaping reports

Number days smoked e−cigarettes last month

Days used e−vaporizer last month

Days vaped nicotine

Notes: This figure presents vaping rates by year and question from the Monitoring the Future survey.

B.2.7 Additional Issues in Sample Surveys

NSDUH. The NSDUH is the sole youth survey that does not have a clean way of identifying

students’ current grade to provide comparability with MTF and NYTS. We therefore count people

in grades 6–12, or people who are age 18, as youth. Because we include 18–24 year olds in the

adult estimations, this means the 18 year-olds in the NSDUH appear in both the youth and adult

surveys. The public-use NSDUH data also provide ages in bins that are not comparable to the
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BRFSS and NHIS for some adults. For demographic controls, we code NSDUH 18–23 year olds as

18–24 year olds and NSDUH 24–29 year olds as 25–29 year olds.

BRFSS. Because of inconsistent data collection, we drop survey respondents from Guam,

Puerto Rico, and other territories from the BRFSS sample.

MTF. The MTF samples only the 48 contiguous states. The MTF does not sample dropouts.

We are limited to four race/ethnicity groups in the youth dataset because Asian is not a separate

category from other race in the public-use MTF.

NYTS. The NYTS does not sample dropouts.

B.2.8 Total Quantities in Sample Surveys versus Sales Data

The total cigarette and e-cigarette sales implied by our sample survey data and unit conversion

parameters line up reasonably closely with national sales data. Multiplying 2018 average smoking

for adults and youths from Figure 2 by the total population sizes gives (0.082 packs/day × 254

million adults + 0.006 packs/day × 25 million youth) × 365 days/year ≈ 7.7 billion packs. This

is 64 percent of the 12 billion packs sold in 2018 as reported in Figure 1. This 64 percent ratio

is consistent with the public health literature on under-reported smoking prevalence in sample

surveys: for example, Liber and Warner (2018) find 61 percent ratio in the NHIS and about 70

percent in the NSDUH.

For e-cigarettes, multiplying 2018 average vaping for adults and youths from Figure 2 by total

population sizes gives (0.03 × 254 million adults + 0.06 × 25 million youth) × 0.58 ml/day ×
$3.90/ml ≈ $7.54 billion. This is nine percent larger than the $6.9 billion in vapor products sold

in 2018 as reported in Figure 1.

B.3 Other Data

E-cigarette User Survey:

• Weight construction. We construct weights using Entropy Weight Rebalancing (Hainmueller

2012), targeting the distribution of gender, income, and e-cigarette use from adults in the

sample of BRFSS and the NHIS who report non-zero vaping.

• E-liquid use per day. Several participants record more than 3 ml per day of e-liquid use. We

drop their reports from the data, since these are unrealistically large, and winsorize other

reports at 2 ml per day.

• Price per day. We construct the weighted mean among participants who report using 3 ml

or less e-liquid per day.

E-cigarette Expert Survey:
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• Internalities. One expert reports an “infinite” internality of e-cigarettes. We recode this

observation as the maximum among experts who report less than an infinite internality.

E-cigarette Tax Rates:

• We use January 1, 2018 tax rates from Tax Foundation (2018). We convert specific taxes to

ad valorem taxes using the mean e-cigarette size from RMS and price from the E-cigarette

User Survey.
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C Price Elasticity Appendix

Table A2: Own- and Cross-Price Elasticity of Demand for Cigarettes (UPC-level esti-
mates)

(a) First Stage and Reduced Form

(1) (2) (3)
Dependent variable: ln(cig price) ln(e-cig price) ln(cig units)

ln(cig % tax rate + 1) 1.073 -0.130 -1.037
(0.024) (0.150) (0.242)

ln(e-cig % tax rate + 1) -0.002 0.570 -0.030
(0.018) (0.109) (0.173)

Observations 1,949,823 1,949,823 1,949,823

(b) Instrumental Variables Estimates

(1) (2) (3) (4) (5) (6)
Dependent variable: ln(cig units) ln(cig units) ln(cig units) ln(cig units) ln(cig units) ln(cig units)
ln(cig price) -0.974 -6.060 -0.558 -1.321 -1.333 -0.993

(0.194) (2.762) (0.758) (0.280) (0.282) (0.224)
ln(e-cig price) -0.056 2.090 0.678 0.843 0.771 -0.193

(0.296) (0.985) (0.437) (0.322) (0.260) (0.319)
UPC-cluster FE Yes No Yes Yes Yes Yes
UPC-month FE Yes No No Yes Yes Yes
Division-month FE Yes No No No Yes Yes
Cluster × month trend Yes No No No No Yes
Time-varying state controls Yes Yes Yes Yes Yes No
Observations 1,949,823 1,952,925 1,949,875 1,949,823 1,949,823 1,949,823

Notes: This table presents estimates of the own- and cross-price elasticity of demand for cigarettes from
an analogue to Equation (16), using UPC-cluster-month data. There are 51 geographic clusters: the two
counties that have e-cigarette taxes, each of the contiguous 48 states (excluding those two counties), and
Washington, D.C. Standard errors are clustered by geographic cluster. Observations are weighted by the
UPC’s sales in other clusters in that calendar year, divided by total sales in other clusters across all UPCs
in that year. Panel (a) presents the first stage and reduced form, using the same set of controls as in our
primary estimate in column 1 of Panel (b). Panel (b) presents the instrumental variables estimates. Time-
varying state controls are the state unemployment rate and beer tax rate as well as indicators for whether
the state has an indoor vaping ban, has a medical marijuana law, has passed or implemented a prescription
drug program, and implemented the Medicaid expansion.
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Table A3: Own- and Cross-Price Elasticity of Demand for E-cigarettes, Robustness

(1) (2) (3) (4)
Dependent variable:

ln(e-cig units)
18-month
window

Exclude
1(quarter of e-cig tax) controls

Exclude
imputed volumes

Exclude
specific-tax clusters

ln(e-cig price) -1.137 -1.154 -1.297 -1.276
(0.455) (0.544) (0.505) (0.514)

ln(cig price) 0.405 0.442 0.443 0.444
(0.574) (0.593) (0.610) (0.562)

Observations 499,664 499,664 496,070 457,997

Notes: This table presents instrumental variables estimates of the own- and cross-price elasticity of demand
for e-cigarettes from Equation (16), using UPC-cluster-month data. There are 51 geographic clusters: the
two counties that have e-cigarette taxes, each of the contiguous 48 states (excluding those two counties),
and Washington, D.C. Standard errors are clustered by geographic cluster. Observations are weighted by
the UPC’s sales in non-taxed clusters in that calendar year, divided by total sales across all UPCs in that
year in non-taxed clusters. All columns include UPC-cluster, UPC-month, and Census division-month fixed
effects and cluster-specific linear time trends, as well as time-varying state controls. Column 1 includes
additional controls so as to identify the elasticities only using an 18-month window around e-cigarette tax
changes. Column 2 excludes controls for the quarter of the e-cigarette tax treatment and interaction with
the e-cigarette tax, to identify the elasticities also off of the effects in the first three months after a tax
change. Column 3 excludes e-cigarette UPCs with imputed volumes. Column 4 excludes states that ever
have a specific (i.e. per-milliliter) e-cigarette tax.

Table A4: Own- and Cross-Price Elasticity of Demand for Cigarettes, Robustness

(1) (2) (3)
Dep. variable:
ln(cig units)

18-month
window

Exclude 1(quarter of e-cig tax)
controls

Exclude
specific-tax states

ln(cig price) -0.974 -0.969 -0.978
(0.194) (0.186) (0.187)

ln(e-cig price) -0.066 -0.072 -0.113
(0.279) (0.312) (0.192)

Observations 1,949,823 1,949,823 1,764,557

Notes: This table presents instrumental variables estimates of the own- and cross-price elasticity of demand
for cigarettes from an analogue to Equation (16), using UPC-cluster-month data. There are 51 geographic
clusters: the two counties that have e-cigarette taxes, each of the contiguous 48 states (excluding those
two counties), and Washington, D.C. Standard errors are clustered by geographic cluster. Observations are
weighted by the UPC’s sales in other clusters in that calendar year, divided by total sales in other clusters
across all UPCs in that year. All columns include UPC-cluster, UPC-month, and Census division-month
fixed effects and cluster-specific linear time trends, as well as time-varying state policy controls. Column
1 includes additional controls so as to identify the elasticities only using an 18-month window around e-
cigarette tax changes. Column 2 excludes controls for the quarter of the e-cigarette tax treatment and
interaction with the e-cigarette tax, to identify the elasticities also off of the effects in the first three months
after a tax change. Column 3 excludes states that ever have a specific (i.e. per-milliliter) e-cigarette tax.
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Figure A2: Event Study of E-cigarette Tax Changes without Linear Time Trends

(a) First Stage: Effect on ln(Price)
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(b) Reduced Form: Effect on ln(Quantity Sold + 1)
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Notes: This figure presents estimates of the ηq parameters from Equation (17), an event study of the effects
of e-cigarette tax changes. This parallels Figure 3, except it excludes cluster-specific linear time trends.
Panel (a) presents the first stage regression of ln(e-cigarette price) on the change in the log tax variable.
Panel (b) presents the reduced form regression of the ln(e-cigarette units sold) on the change in the log tax
variable.
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Figure A3: Event Study of E-cigarette Tax Changes on Cigarette Demand

(a) With Cluster-Specific Linear Time Trends
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(b) Without Cluster-Specific Linear Time Trends
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Notes: This figure presents estimates of the ηq parameters from Equation (17), an event study of the effects
of e-cigarette tax changes. This parallels Figure 3, except with combustible cigarette purchases as the
dependent variable. Panel (a) presents estimates with cluster-specific linear time trends. Panel (b) presents
estimates without cluster-specific linear time trends.
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D Substitution Patterns Appendix

Figure A4: Demographic Predictors of Vaping, by Dataset

(a) Adults
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(b) Youth
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Notes: These figures present coefficients from Equation (20), a regression of vaping on demographic indica-
tors, estimated separately by dataset. For adults, the omitted categories are White, female, college graduate,
the lowest income quintile, and age group 18-24. For youth, the omitted categories are White, female, and
grade 6. Panel (a) pools 2016–2018 data from BRFSS and NHIS; Panel (b) pools 2014–2018 data from MTF
and NYTS. Standard errors are clustered by demographic cell.
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Figure A5: Demographic Predictors of E-cigarette, Social Media, and Internet Use
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Notes: These figures present coefficients from regressions of vaping, social media use, or internet use on
demographic indicators. Each dependent variable is normalized into standard deviation units for compara-
bility. For adults, the omitted categories are White, female, college graduate, the lowest income quintile,
and age group 18-24. For youth, the omitted categories are White, female, and grade 6. Standard errors are
clustered by demographic cell.
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Figure A6: Smoking and Vaping Trends by Sex
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(b) Youth
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Notes: These figures present combustible cigarette and e-cigarette use by demographic group. Average
cigarette use for each group is residual of dataset controls, which address the 2011 BRFSS sampling frame
change and rescale cigarette use to levels in the NSDUH.
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Figure A7: Smoking and Vaping Trends by Race/Ethnicity

(a) Adults
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(b) Youth
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Notes: These figures present combustible cigarette and e-cigarette use by demographic group. Average
cigarette use for each group is residual of dataset controls, which address the 2011 BRFSS sampling frame
change and rescale cigarette use to levels in the NSDUH.
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Figure A8: Smoking and Vaping Trends by Age/Grade
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(b) Youth
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Notes: These figures present combustible cigarette and e-cigarette use by demographic group. Average
cigarette use for each group is residual of dataset controls, which address the 2011 BRFSS sampling frame
change and rescale cigarette use to levels in the NSDUH.
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Figure A9: Smoking and Vaping Trends by Education and Income, for Adults
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(b) Income
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Notes: These figures present combustible cigarette and e-cigarette use by demographic group. Average
cigarette use for each group is residual of dataset controls, which address the 2011 BRFSS sampling frame
change and rescale cigarette use to levels in the NSDUH.
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Figure A10: Difference in Smoking Trends by Sex

(a) Adults
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(b) Youth

−.1

−.08

−.06

−.04

−.02

0

.02

.04

.06

.08

.1

 
←

 S
u
b
s
ti
tu

te
s
 |
 C

o
m

p
le

m
e
n
ts

 →

−.1

−.08

−.06

−.04

−.02

0

.02

.04

.06

.08

.1

D
if
fe

re
n
c
e
 i
n
 c

ig
a
re

tt
e
 u

s
e
 (

p
a
c
k
s
/d

a
y
)

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

Perfect complement/substitute bounds

Differences fit on pre−2013 data

Differences fit on post−2013 data

Notes: These figures present the difference in cigarette use for men versus women. Average cigarette use for
each group is residual of dataset controls, which address the 2011 BRFSS sampling frame change and rescale
cigarette use to levels in the NSDUH. The perfect complement (substitute) bounds show the difference in
cigarette use that would be expected if daily vaping were a perfect complement (substitute) for smoking one
pack of cigarettes per day. To construct perfect complement (substitute) bounds, we predict the difference
in cigarette use using the pre-2013 time trend, then add (subtract) the difference in share of days vaped.23
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Figure A11: Difference in Smoking Trends by Race

(a) Adults
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(b) Youth
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Notes: These figures present the difference in cigarette use for Whites and other races versus non-Whites
(for adults) and Whites versus non-Whites (for youth). Average cigarette use for each group is residual of
dataset controls, which address the 2011 BRFSS sampling frame change and rescale cigarette use to levels
in the NSDUH. The perfect complement (substitute) bounds show the difference in cigarette use that would
be expected if daily vaping were a perfect complement (substitute) for smoking one pack of cigarettes per
day. To construct perfect complement (substitute) bounds, we predict the difference in cigarette use using
the pre-2013 time trend, then add (subtract) the difference in share of days vaped.
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Figure A12: Difference in Smoking Trends by Age/Grade

(a) Adults
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(b) Youth
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Notes: These figures present the difference in cigarette use by year for age ≤ 49 versus age ≥ 50 (for adults)
and for grades ≥ 11 versus grades ≤ 10 (for youth). Average cigarette use for each group is residual of
dataset controls, which address the 2011 BRFSS sampling frame change and rescale cigarette use to levels
in the NSDUH. The perfect complement (substitute) bounds show the difference in cigarette use that would
be expected if daily vaping were a perfect complement (substitute) for smoking one pack of cigarettes per
day. To construct perfect complement (substitute) bounds, we predict the difference in cigarette use using
the pre-2013 time trend, then add (subtract) the difference in share of days vaped.
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Figure A13: Difference in Smoking Trends by Education and Income, for Adults

(a) Education
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(b) Income

0

.02

.04

.06

.08

.1

.12

.14

 
←

 S
u
b
s
ti
tu

te
s
 |
 C

o
m

p
le

m
e
n
ts

 →

0

.02

.04

.06

.08

.1

.12

.14

D
if
fe

re
n
c
e
 i
n
 c

ig
a
re

tt
e
 u

s
e
 (

p
a
c
k
s
/d

a
y
)

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

Perfect complement/substitute bounds

Differences fit on pre−2013 data

Differences fit on post−2013 data

Notes: These figures present the difference in cigarette use by year for adults without versus with college
degrees (Panel (a)) and adults in the bottom three versus top two income quintiles (Panel (b)). Average
cigarette use for each group is residual of dataset controls, which address the 2011 BRFSS sampling frame
change and rescale cigarette use to levels in the NSDUH. The perfect complement (substitute) bounds show
the difference in cigarette use that would be expected if daily vaping were a perfect complement (substitute)
for smoking one pack of cigarettes per day. To construct perfect complement (substitute) bounds, we predict
the difference in cigarette use using the pre-2013 time trend, then add (subtract) the difference in share of
days vaped.
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D.1 Combined Substitution Estimates

In this appendix, we describe how we form combined estimates of the substitution parameter σ

using both the RMS estimates from Section 4 and the sample surveys from Section 5. σ is in units

of packs of cigarettes per day vaped. Define

σ1 :=
χe

η

p̃eΓ

p̃c
, (36)

where Γ (ml/average day vaped) converts p̃e to units of dollars per day vaped. Further define

σθ2 :=
χc

η

qcθ
qeθ

(37)

and note that σ̂θ2 is already in units of packs per day. The empirical estimates are the respective

plug-in estimators using χ̂e, χ̂c, and η̂ from Table 2 and A2, and q̂jθ,
ˆ̃pj and Γ̂ from Table 4 for

j ∈ {c, e}. We form one estimate of σ̂1 using the primary estimate from Table (2) (Panel B, Column

1), and a second estimate of σ̂1 using the estimates of χ̂e and η̂ estimated without cluster-specific

linear trends (Column 5). We form standard errors on σ̂1 and σ̂2 using the delta method; the

variance-covariance matrix is diagonal except for the covariance term between η̂ and χe.

We combine σ̂1 and σ̂2 using Classical Minimum Distance (CMD) using:[
1

1

]
σθ −

[
σ1

σθ2

]
= 0 , (38)

noting that [
σ1

σθ2

]
∼ N

(
0,

[
s2

1 s12

s12 s2
1

])
. (39)

We use ŝ2
1 and ŝ2

2 from the initial delta method estimation. We estimate s12 as follows:

s12 := Cov

(
χc

η

qcθ
qeθ
,
χe

η

p̃e

p̃c
Γ

)
(40)

= χc
qcθ
qeθ

p̃e

p̃c
ΓCov

(
1

η
,
χe

η

)
(41)

≈ χeχc
qcθ
qeθ

p̃e

p̃c
ΓV

(
1

η

)
(42)

where the second line follows since the parameters taken outside the covariance are all estimated

from separate datasets, and we assume that the covariance between χe and 1/η is small. We

estimate V
(

1
η

)
from the delta method, and form ŝ12 using a plug-in estimator.

We also combine σ̂1 and σ̂2 with our estimates from Section 5 using CMD. Table A5 presents

our results.
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Table A5: Estimates of Substitution Parameter σ

(1) (2) (3) (4) (5) (6)
E-cig cross-price

elasticity
E-cig cross-price

elasticity (no trends)
Cig cross-price

elasticity
Combined

RMS
Demo.

analysis
Combined

RMS and demo.
Adult σ -0.059 -0.191 0.144 -0.056 0.035 -0.020

(0.091) (0.113) (0.766) (0.090) (0.112) (0.070)
Youth σ -0.059 -0.191 0.005 -0.000 0.013 0.007

(0.091) (0.113) (0.027) (0.026) (0.022) (0.017)

Notes: This table presents estimates of the substitution parameter σ for youth and adults. Column 1 presents
σ̂ from Equation (36) using our primary η̂ and χ̂e from Table 2 (Panel (b), column 1). Column 2 presents
σ̂ from Equation (36) using η̂ and χ̂e estimated without cluster-specific linear trends (Table 2, panel (b),
column 5). Column 3 presents σ̂ from Equation (37) using χ̂c from Appendix Table A2 (Panel (b), column
1). Column 4 combines the estimates in columns 1 and 3 using Equation (38). Column 5 re-states estimates
from the demographic shift-share analysis in Section 5. Column 6 combined estimates from columns 4 and
5 using Classical Minimum Distance.

D.2 Marijuana Use

We study the time series of teen marijuana use during the period that e-cigarettes use became

common among teens using the MTF. A concern about our welfare analysis is that we do not account

for substitution from e-cigarettes into possibly harmful drugs like marijuana; there is a particular

concern that vaping technologies make it easier to vape marijuana. In this section, we provide

evidence against this concern by documenting no change in aggregate marijuana consumption over

this time period; while vaping marijuana becomes more popular, total marijuana use exhibits a

small decline.

Marijuana use in the MTF. We focus on youth vaping, for whom the concerns about

substitution into marijuana products are most salient. The MTF provides several measures of

marijuana use. First, beginning in 2014, the MTF asks respondents the number of times they

consumed marijuana last year in any form. Second, beginning in 2017, the MTF asks respondents

the number of times that they consumed marijuana last month in any form. Third, beginning

in 2017, the MTF asks respondents the number of times that they vaped marijuana last month.

We standardize these variables to construct the number of times the respondent consumed vaped

marijuana each day. Due to interval censoring and top coding, the marijuana consumption measures

do not align perfectly. In particular, both the monthly and annual marijuana measures are subject

to significant top coding; the participant cannot report consuming marijuana more than 40 times in

the past month or year. As a result, the annual measure naturally lies below the monthly estimate.

However, we are concerned with trends in marijuana use as e-cigarette use becomes popular and

simply discuss changes in marijuana use, comparing each measure over time.

Results. In Appendix Figure A14, panel (a), we present the time series of e-cigarette use

against the time series of our three measures of marijuana use; panel (b) focuses on grades 11–12,
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which has higher rates of both e-cigarette use and marijuana consumption. This figure illustates

that while vaping marijuana does become more popular in 2018 (as e-cigarette use grew), the

time series of aggregate marijuana use exhibits no change over this period. In fact, the monthly

measure of marijuana consumption shows a small decline from 2017–2018 in both the full sample

and grades 11–12. While we do not conduct a full substitution analysis, these figures suggest that

the aggregate data are inconsistent with the concern that our welfare analysis neglects important

distortions induced by e-cigarette use.
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Figure A14: Trends in Youth Marijuana Use
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(b) Grades 11–12
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Notes: This figure presents trends in marijuana and e-cigarette use in the Monitoring the Future (MTF)
survey. Panel (a) presents the full sample, while panel (b) focuses on grades 11 and 12. The black lines
present our daily vaping measure. The gray lines present the average daily vaping marijuana use, constructed
from an MTF question that asks about the number of times the respondent vaped in the past month. The
blue line presents the average daily marijuana consumption of any form, constructed from an MTF question
that asks about the number of times the respondent consumed marijuana in the past month. The green line
presents the same measure, but from an MTF question that asks about the number of times the respondent
consumed marijuana in the past year . The green line lies below the blue line due to top-coding.
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E Expert Survey Appendix

Figure A15: Expert Survey: Responses from Public Health Researchers and Economists
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Notes: In our expert survey, we elicited the ratios of internalities and externalities from vaping relative to
smoking and the ratio of uninternalized harms from vaping for youth relative to adults. This figure presents
the averages of those ratios separately for public health researchers cited in National Academy of Science
(2018) and economists.
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Figure A16: Expert Survey: Uninternalized Harms from Vaping for Youth Relative to
Adults
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Notes: In our expert survey, we elicited the ratio of uninternalized harms from vaping for youth relative to
adults. This figure presents the distributions of that ratio across experts.

F Welfare Analysis Appendix

The version of Equation (14) for empirical implementation is

τ e∗ =

∑
Θ

sθq
e
θΓ [ϕeθ + (σθ/Γ) (ϕcθ − τ c)]∑

Θ

sθq
e
θΓ

, (43)

where ϕea = αγ Ωa
Γ · γ

c +αφΩa
Γ · φ

c and ϕey = ρϕea. Vaping quantity qeθ is in units of share of days, σθ

is in units of packs of cigarettes per day vaped, and Γ is in units of ml fluid/day vaped. τ e∗ and

ϕeθ are in units of $/ml.

The version of Equation (15) for empirical implementation is
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∆W = 365×
∑

θ∈{a,y}

sθ

 qeθΓ
p̃e

−2η︸ ︷︷ ︸
perceived CS change

− (−qeθΓ) (ϕeθ − τ e)︸ ︷︷ ︸
e-cigarette distortion change

− qeθΓ · (−σθ/Γ) (ϕc − τ c)︸ ︷︷ ︸
cigarette distortion change

 ,
(44)

where ∆W is in units of dollars per person-year.

Figure A17: Parameter Regions where Youth E-cigarette Ban Increases Welfare
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Expert Survey estimate

0

.5

1

1.5

2

2.5

3

3.5

ρ 
(y

ou
th

 e
-c

ig
 d

is
to

rt
io

n 
/ a

du
lt 

e-
ci

g 
di

st
or

tio
n)

.4 .6 .8 1 1.2 1.4 1.6 1.8 2
α (e-cig distortion / cig distortion)

Notes: This figure presents parameter regions where a youth e-cigarette ban increases welfare, using Equation
(15). All parameters other than αadult and ρ are set at their means presented in Table 4.
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