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ABSTRACT

We develop new quasi-experimental tools to measure racial discrimination in the context of bail decisions.
Observational comparisons of white and black pretrial release rates suffer from omitted variables bias
when there are unobserved racial differences in pretrial misconduct potential. We show that the bias
in these observational comparisons is a function of average white and black misconduct risk, which
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show that less than one-third of the release rate disparity between white and black defendants is explained
by unobserved differences in misconduct potential, with more than two-thirds explained by racial discrimination.
We then develop a hierarchical marginal treatment effects model that imposes additional structure
on the quasi-experimental variation to investigate the drivers of this discrimination. Model estimates
show that discrimination in bail decisions is driven by both racial bias and statistical discrimination,
with the latter coming from a higher level of average risk and less precise risk signals for black defendants.
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1 Introduction

Racial disparities are pervasive throughout much of the U.S. criminal justice system. Compared to
observably similar white individuals, black individuals are more likely to be searched by the police,
charged with a serious crime, detained before trial, convicted of an offense, and ultimately incarcer-
ated.1 These racial disparities are often taken as prima facie evidence of racial discrimination, driven
by some form of racial bias. But there are two alternative explanations. The first is that observed
disparities reflect legally relevant differences in criminal behavior that are partially observed by po-
lice officers, prosecutors, and judges but unobserved by the econometrician. The second is that these
disparities do reflect racial discrimination, but that they are driven by some form of statistical discrim-
ination and not racial bias. Empirically distinguishing between these various explanations remains
difficult, hampering efforts to formulate the appropriate policy response.

This paper develops new tools to measure racial discrimination when decision-makers are as-good-
as-randomly assigned. We study bail decisions, where the sole legal objective of judges is to allow
most defendants to be released before trial while minimizing the risk of pretrial misconduct (such
as failing to appear in court or being arrested for a new crime). Bail judges therefore risk violating
U.S. law if they release white and black defendants with the same objective misconduct potential
at different rates. Correspondingly, we measure discrimination by a judge’s release rate disparity
between white and black individuals with identical misconduct potential. This measure is consistent
with mainstream legal views on what constitutes discrimination in the criminal justice system (Yang
and Dobbie, 2019), as well as economic notions of discrimination that compare the treatment of white
and black individuals with the same productivity (Aigner and Cain, 1977). Our measure can be
understood as isolating each judge’s legally unwarranted release rate disparity, leading us to use the
terms racial discrimination and unwarranted disparity interchangeably throughout this paper.

Estimating discrimination by isolating unwarranted disparities among individuals with identical
misconduct potential is difficult, even when bail judges are as-good-as-randomly assigned. Observa-
tional comparisons of white and black release rates cannot control for unobserved misconduct potential
and therefore suffer from omitted variables bias (OVB) when there are unobserved racial differences
in misconduct risk. Randomized audit studies can purge such OVB by experimentally manipulating
the observed race of fictitious individuals while holding all other observable characteristics constant
(e.g., Bertrand and Mullainathan, 2004; Ewens et al., 2014), but here the high-stakes and face-to-face
nature of bail decisions make such randomization infeasible. Standard instrumental variables (IV)
methods can test for discrimination driven by racial bias (e.g., Arnold et al., 2018; Marx, 2018), but
do not speak to the presence of statistical discrimination. Standard IV methods also require an as-
sumption of first-stage monotonicity (Imbens and Angrist, 1994; Heckman and Vytlacil, 2005), which
here imposes a strong restriction on how judges choose which defendants to release before trial.

Our primary methodological contribution is to show that racial discrimination in bail decisions,
regardless of its source, can be measured with observational release rate comparisons that are rescaled
using quasi-experimental estimates of average white and black misconduct risk. The bias in obser-
vational release rate comparisons for individual judges comes from the correlation between race and
unobserved misconduct potential in a given judge’s pool of defendants. Under quasi-random assign-

1There is a large literature documenting racial disparities in the criminal justice system. See, for example, work by
Gelman et al. (2007), Antonovics and Knight (2009), Anwar et al. (2012), Abrams et al. (2012), McIntyre and Baradaran
(2013), and Rehavi and Starr (2014), among many others.
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ment, this correlation is a common function of average misconduct risk by race. We can therefore
use quasi-experimental estimates of average misconduct risk by race to rescale observational release
rate comparisons for individual judges in such a way that released white and black defendants are
directly comparable in terms of their unobserved misconduct potential. The rescaled observational
comparisons reveal the extent to which each judge releases white and black defendants with the same
objective misconduct potential at different rates, even though misconduct potential is unobserved and
cannot be directly conditioned on. The key econometric challenge is thus to estimate the required
average misconduct risk parameters, which is difficult since misconduct outcomes are only observed
for defendants who are endogenously released before trial.

We show how the average misconduct risk inputs required for our discrimination measure can
be estimated by extending recent approaches to estimating average treatment effects (ATEs) with
multiple discrete instruments (Brinch et al., 2017; Hull, 2020). To build intuition for our approach,
consider a setting with a supremely lenient bail judge who releases nearly all defendants regardless
of their race or misconduct potential. The supremely lenient judge’s release rates among white and
black defendants are close to one, meaning that the misconduct rates among white and black released
defendants are close to the average misconduct risk parameters needed for our discrimination measure
(by quasi-random assignment). In the absence of such a supremely lenient judge, the required aver-
age misconduct risk inputs can be estimated using model-based or non-parametric extrapolations of
pretrial release and misconduct rates across quasi-randomly assigned judges. Importantly, this quasi-
experimental approach to estimating discrimination does not require a model of judge behavior or a
first-stage monotonicity assumption, only that the extrapolations of pretrial release and misconduct
rates and the judges’ legal objective are well-specified by the econometrician.

We use our new quasi-experimental approach to measure racial discrimination in bail decisions
made in New York City (NYC), one of the largest pretrial systems in the country. We find that
more than two-thirds of the average release rate disparity between observationally similar white and
black defendants is explained by racial discrimination (68 percent, or 3.6 percentage points out of 5.3
percentage points), with less than one-third explained by unobserved racial differences in misconduct
risk. This estimate of system-wide discrimination is robust to different extrapolation methods, defini-
tions of a defendant’s race, and definitions of a judge’s legal objective. Judge-specific estimates show
that the vast majority of bail judges discriminate against black defendants (88 percent), with higher
levels of discrimination among more stringent judges, judges assigned to a lower share of cases with
black defendants, and judges who are newly appointed in our sample period.2 The judge-specific esti-
mates are also highly correlated over time, raising the possibility that discrimination can be effectively
targeted across individual bail judges.

Our second methodological contribution is to develop a hierarchical marginal treatment effects
(MTE) model that imposes additional structure on the quasi-experimental variation to investigate
whether unwarranted disparities in bail decisions are driven by racial bias or statistical discrimination.
The model allows for judge- and race-specific risk preferences and signal quality, with the latter
allowing for heterogenous race-specific predictive skill across judges (in violation of the conventional
first-stage monotonicity assumption). This variation implies a distribution of judge- and race-specific
MTE curves that can be used to test for racial bias at the margin of release, as well as to measure

2We define a judge as newly appointed if he or she enters the data after our sample period begins and works three
consecutive months of regular caseloads.
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racial differences in average risk or signal quality that can generate statistical discrimination. The
distribution of MTE curves is identified by the quasi-experimental variation in pretrial release and
misconduct rates across as-good-as-randomly assigned judges, and can be estimated by a tractable
simulated minimum distance (SMD) procedure that matches moments of this quasi-experimental
variation. We find evidence of both racial bias and statistical discrimination, with the latter coming
from a higher level of average risk (that exacerbates discrimination) and less precise risk signals (that
alleviates discrimination) for black defendants. Estimates of racial bias alone (e.g., Arnold et al., 2018;
Marx, 2018) would therefore omit an important source of racial discrimination in our setting.

We conclude by using the MTE model to investigate whether discrimination can be effectively
targeted (and potentially reduced) with existing data. We suppose that judges can be subjected to
race-specific release rate quotas that eliminate racial disparities as estimated by a policymaker. We
find that targeting the most discriminatory judges with a quota based on our quasi-experimental
estimates can reduce the average level of discrimination by 35 percent and targeting all judges with
such a quota can essentially eliminate discrimination, despite the noise in our estimation procedure.
By comparison, targeting judges with a quota based on observational release rate disparities can lead
to a reduced but non-zero level of discrimination against white defendants, due to OVB.

Our analysis builds on recent work using quasi-experimental variation to test for different forms of
discrimination in the criminal justice system, bridging the gap between internally valid (but narrowly
applicable) randomized audit studies and widely applicable (but potentially biased) observational
analyses. Arnold et al. (2018) use the release tendencies of quasi-randomly assigned bail judges to
test for racial bias at the margin of release under the strong first-stage monotonicity assumption, while
Marx (2018) uses a similar approach to test for racial bias at the margin of police stops. We show how
quasi-experimental variation can be used to measure all forms of racial discrimination, not just racial
bias, without any such behavioral assumptions. We further show how the drivers of discrimination
can be investigated by imposing more structure on the quasi-experimental variation.3

This paper also extends recent methodological advances in ATE and MTE estimation with multi-
ple discrete instruments (Kowalski, 2016; Brinch et al., 2017; Mogstad et al., 2018; Hull, 2020). An
important feature of our approach is that we do not impose the usual first-stage monotonicity assump-
tion, which has received recent increased scrutiny both in general (Mogstad et al., 2019) and in the
specific context of judge IV designs (Mueller-Smith, 2015; Frandsen et al., 2019; Norris, 2019).4 Our
extrapolation-based solution to estimating ATEs without monotonicity is most closely related to Hull
(2020), who considers non-parametric extrapolations of quasi-experimental data in a similar setting.
Our hierarchical solution to estimating a distribution of MTE curves without monotonicity is related
to the contemporaneous approach of Chan et al. (2020), who estimate a structural model of doctor
preferences and skill in making pneumonia diagnoses.5

3In related work, Rose (2020) shows that a policy reform reducing imprisonment punishments for technical probation
violations nearly eliminated a racial disparity in incarceration without significantly increasing differences in reoffending
rates. These results suggest technical rule violations convey less precise risk signals for black individuals on probation.

4Skepticism of conventional monotonicity in judge-IV designs is as old as the assumption itself. In their initial
paper on the identification of local average treatment effects, Imbens and Angrist (1994) note that in the context of
administrative screening “[monotonicity] requires that if official A accepts applicants with probability P (0), and official
B accepts people with probability P (1) > P (0), official B must accept any applicant who would have been accepted by
official A. This is unlikely to hold if admission is based on a number of criteria” (Example 2; p. 472).

5Chan et al. (2020) model doctor decisions as following a hierarchical bivariate probit with variation in the latent
index correlation across doctors. By comparison, we model judges as acting on posteriors from noisy risk signals with
variation in signal quality across judges. We also show how this model can be used to form posterior MTE frontiers for
each judge and race, and link these MTE frontiers to the different drivers of racial discrimination.
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The remainder of the paper is organized as follows. Section 2 provides an overview of the NYC pre-
trial system. Section 3 outlines the conceptual framework underlying our analysis. Section 4 describes
our data and documents release rate differences for observationally similar black and white defendants.
Section 5 develops and implements our quasi-experimental approach to measuring racial discrimina-
tion in bail decisions. Section 6 develops and estimates our hierarchical MTE model to explore the
drivers of this discrimination. Section 7 conducts policy counterfactuals. Section 8 concludes.

2 Setting

We study racial discrimination in the New York City pretrial system, one of the largest in the country.
The U.S. pretrial system is meant to allow most criminal defendants to be released from legal custody
while minimizing the risk of pretrial misconduct. Bail judges in both New York and the country as a
whole are granted considerable discretion in determining which defendants should be released before
trial, but they cannot discriminate against minorities and other protected classes even when member-
ship in a protected class contains information about the underlying risk of criminal misconduct (Yang
and Dobbie, 2019). Judges are also not meant to assess guilt or punishment when determining which
individuals should be released from custody, nor are they meant to consider the political consequences
of their bail decisions. Bail judges therefore risk violating U.S. law if they release white and black
individuals with the same objective pretrial misconduct potential at different rates.6

In NYC, bail conditions are set by a judge at an arraignment hearing held shortly after an arrest.
These hearings usually last just a few minutes and are held through a videoconference to the detention
center. The judge typically receives detailed information on the defendant’s current offense and prior
criminal record, as well as a release recommendation based on a six-item checklist developed by a local
nonprofit (New York City Criminal Justice Agency Inc., 2016). The judge has several options when
setting bail conditions given this information. First, she can release defendants who show minimal risk
on a promise to return for all court appearances, known broadly as release on recognizance (ROR) or
release without conditions. Second, she can require defendants to post some sort of bail to be released.
The judge can also send higher-risk defendants to a supervised release program as an alternative to
cash bail. Finally, the judge can detain defendants pending trial by denying bail altogether.7

We exploit three features of the pretrial system in our analysis. First, the legal objective of
bail judges is both narrow and measurable among the set of released defendants where pretrial mis-
conduct outcomes are observed (although not among detained defendants, where such outcomes are
unobserved). Second, bail judges can be effectively viewed as making binary “treatment” decisions,
releasing low-risk defendants (generally by releasing without conditions or setting a low cash bail

6Legally unwarranted racial disparities are not sufficient to establish unconstitutional behavior, but are a critical
condition for such a determination. The Equal Protection Clause of the U.S. Constitution guarantees that all citizens
have the right to equal justice under the law, including bail decisions. However, the Supreme Court has clarified that
“official action will not be held unconstitutional [under the Equal Protection Clause] solely because it results in a
racially disproportionate impact... Proof of racially discriminatory intent or purpose is required.” (Arlington Heights
v. Metropolitan Housing Development Corp., 429 U.S. 252, 264-65, 1977). In McCleskey v. Kemp, for example, the
Supreme Court rejected a challenge to Georgia’s capital punishment system despite statistical evidence of large racial
disparities in death penalty decisions because the evidence was “clearly insufficient to support an inference that any of
the decisionmakers in [the defendant’s] case acted with discriminatory purpose.” 481 U.S. 279, 281-82 (1987).

7Cases such as murder, kidnapping, arson, and high-level drug possession and sale almost always result in a denial of
bail, though these cases make up only about 0.8 percent of our sample. By comparison, about 70 percent of defendants
in NYC are released ROR each year, nearly 30 percent are assigned cash bail or one less commonly used bail options
such as insurance company bail bonds, and about 1.5 percent are sent to a supervised release program.
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amount) and detaining high-risk defendants (generally by setting a high cash bail amount). We also
explore different definitions of bail decisions in our analysis, such as viewing judges as deciding be-
tween release without conditions and any cash bail amount. Third, the case assignment procedures
used in most jurisdictions, including NYC, generate quasi-random variation in judge assignment for
defendants arrested at the same time and place. The quasi-random variation in judge assignment, in
turn, generates exogenous variation in the probability of a defendant being released before trial.

There are also two differences between the NYC pretrial system and other pretrial systems around
the country that are potentially relevant for our analysis. First, New York state instructs judges to
only consider the risk that defendants will not appear for a required court appearance when setting
bail conditions (a so-called failure to appear, or FTA), not the risk of new criminal activity as in
most states. We explore robustness to this New York specific definition of pretrial misconduct in
our analysis. Second, many defendants in NYC will never have bail set, either because the police
gave them a desk appearance ticket that does not require an arraignment hearing or because the case
was dismissed or otherwise disposed at the arraignment hearing before bail was set. The decision of
whether or not to issue a desk appearance ticket is made before the bail judge is assigned, however,
and cases should only be dismissed or otherwise disposed at arraignment if there is a clear legal
defect in the case (Leslie and Pope, 2017). We show below that there is no relationship between the
assigned bail judge and the probability that a case exits our sample due to case disposal or dismissal
at arraignment, and exclude these cases from our analysis.

3 Conceptual Framework

3.1 Defining Racial Discrimination

We study racial discrimination in a setting where a set of decision-makers j make binary decisions
Dij ∈ {0, 1} for an iid set of individuals i. Each decision-maker’s goal is to align Dij with an
unobserved binary state Y ∗i ∈ {0, 1}. In the context of bail decisions, Dij = 1 indicates the decision
of judge j to release defendant i (with Dij = 0 otherwise) while Y ∗i = 1 indicates that the defendant
would subsequently fail to appear in court or be rearrested for a new crime if released (with Y ∗i = 0
otherwise). Each judge’s objective is to release individuals without misconduct potential (Y ∗i = 0)
and detain individuals with misconduct potential (Y ∗i = 1).8

We measure racial discrimination, both overall and for each judge, by the release rate disparity
between white and black individuals with identical misconduct potential Y ∗i .9 Letting Ri ∈ {w, b}
index the race of white and black individuals, the level of discrimination for each judge j is given by:

∆j = E[E[Dij | Y ∗i , Ri = w]− E[Dij | Y ∗i , Ri = b]] (1)

The system-wide level of discrimination is given by the case-weighted average ∆j across all judges.
8Appendix B.1 discusses how our approach can be extended to multi-valued or continuous Y ∗i .
9Our measure is consistent with economic notions of discrimination that compare the treatment of white and black

individuals with the same productivity such as Aigner and Cain (1977). By comparison, Phelps (1972) suggests measur-
ing discrimination by comparing the treatment of white and black individuals with the same subjective signal of labor
market productivity. Discrimination measures based on objective potential outcomes (as in both our paper and Aigner
and Cain (1977)) and subjective signals of potential outcomes (as in Phelps (1972)) are generally identical when the
quality of the subjective signals is identical by race, but can differ when individuals of different races tend to generate
more or less informative subjective signals. We return this issue in Section 6, where we estimate a structural model
that allows for more or less informative risk signals defendants of different races.
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The inner difference of Equation (1) compares the potential release rates of white (Ri = w) and
black (Ri = b) defendants assigned to judge j with the same misconduct potential Y ∗i . The outer
expectation averages this conditional release rate comparison over the distribution of Y ∗i . We say that
judge j discriminates against black defendants when ∆j > 0, that she discriminates against white
defendants when ∆j < 0, and that she does not discriminate against either black or white defendants
when ∆j = 0. By holding the potential defendant population fixed, estimates of ∆j can be used to
calculate both the average level of racial discrimination in a bail system, as well as any variation in
the level of discrimination across judges. As mentioned above, we interchangeably refer to ∆j as the
level of racial discrimination for judge j and her unwarranted disparity.

With binary Dij and Y ∗i , the ∆j parameters can also be understood as capturing racial differences
in the tendency to correctly and incorrectly classify individuals with the same misconduct potential.
Let δTjr = Pr(Dij = 1 | Y ∗i = 0, Ri = r) denote the probability that judge j correctly releases
defendants of race r without misconduct potential (her “true negative rate” for this race) and δFjr =
Pr(Dij = 1 | Y ∗i = 1, Ri = r) denote the probability that judge j incorrectly releases defendants of
race r with misconduct potential (her “false negative rate”). Equation (1) can then be written:

∆j =
(
δTjw − δTjb

)
(1− µ̄) +

(
δFjw − δFjb

)
µ̄ (2)

where µ̄ = E[Y ∗i ] denotes the overall risk of pretrial misconduct in the population of white and black
defendants. Equation (2) shows that ∆j is a weighted average of racial differences in true and false
negative rates for judge j. Since 1− δTjr = Pr(Dij = 0 | Y ∗i = 0, Ri = r) denotes the probability that
judge j incorrectly detains defendants of race r without misconduct potential (her “false positive rate”
for this race), Equation (2) also shows that ∆j captures racial differences in type-I and type-II error
rates. The system-wide level of discrimination similarly captures the case-weighted average racial
difference in these error rates across all judges.

3.2 Theoretical Drivers of Discrimination

Racial discrimination in the sense of ∆j 6= 0 can be driven by two distinct theoretical channels.
The first is racial bias, in which judges discriminate against black defendants at the margin of pre-
trial release due to either taste-based discrimination (Becker, 1957) or inaccurate racial stereotyping
(Bordalo et al., 2016). The second is statistical discrimination, in which judges act on accurate risk
predictions but discriminate due to racial differences in average risk or the precision of received risk
signals (Phelps, 1972; Arrow, 1973; Aigner and Cain, 1977). Racial discrimination can be defined and
measured without a model for judicial decision-making, but understanding these theoretical channels
requires more structure to be imposed on the binary release decisions Dij .

We formalize the relationship between racial discrimination, racial bias, and statistical discrimina-
tion by considering a population of white and black defendants assigned to a single risk-neutral bail
judge. Following the classic analysis of Aigner and Cain (1977), we suppose the judge observes each
defendant’s race Ri and a noisy signal of pretrial misconduct νi = Y ∗i + ηi with normally distributed
noise: ηi | Y ∗i , (Ri = r) ∼ N(0, σ2

r). We allow both average misconduct risk µr = E[Y ∗i | Ri = r]
and the quality of risk signals τr = 1/σr to vary by defendant race r ∈ {w, b}. We first assume the
judge forms accurate posterior beliefs p(νi, Ri) = Pr(Y ∗i = 1 | νi, Ri) given the defendant’s signal and
race. We also assume the judge has a subjective benefit of releasing individuals of race r, given by
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πr ∈ (0, 1). The risk-neutral judge then releases all defendants whose benefit exceeds the posterior
risk cost, yielding the decision rule:

Di = 1[πRi
≥ p(νi, Ri)] (3)

Appendix B.2 derives the specific form of the posterior function p(·), completing the model.10

Racial bias in the sense of Becker (1957) arises when the judge perceives a lower benefit from
releasing black defendants relative to white defendants with the same posterior risk, so that πb < πw.
All else equal, such bias will lead to racial discrimination. By applying different thresholds to posterior
misconduct risk, the judge generally makes different decisions for white and black defendants with
the same misconduct potential Y ∗i . If, for example, πb < πw but both mean risk µr and signal quality
τr are the same across race (implying a common distribution of p(νi, Ri) given Y ∗i ), the judge will
release fewer black defendants conditional on Y ∗i , implying ∆j > 0. Inaccurate racial stereotyping in
the sense of Bordalo et al. (2016) can similarly result in discrimination and tends to be observationally
equivalent to such racial animus (Arnold et al., 2018). In this case, even though judges believe they
are applying the same threshold (πb = πw), inaccurate posterior beliefs will lead judges to effectively
set different release standards by race. Since inaccurate stereotyping and racial animus tend to be
observationally equivalent, we use the term racial bias for both drivers of discrimination.

Statistical discrimination in the sense of Aigner and Cain (1977) arises when judges act on accurate
race-specific predictions of defendant risk but discriminate because these predictions are affected by
racial differences in either the average misconduct risk µr or signal quality τr. Differences in average
misconduct risk µr will tend to lead to lower release rates for defendants in the group with higher
average misconduct risk, thereby resulting in discrimination against that group. Suppose, for example,
that signal quality and release benefits are the same across race (τb = τw and πb = πw) but the average
level of risk is higher for black defendants (µb > µw). The judge uses both the risk signal νi and
the defendant’s race to accurately predict misconduct, so the judge’s posterior p(νi, Ri) will be higher
among black defendants for every νi. Black defendants will thus be less likely to be released conditional
on Y ∗i , such that ∆j > 0, even though the judge’s posterior threshold πr and the distribution of risk
signals νi do not depend on race given Y ∗i . Statistical discrimination due to differences in signal
quality τr will instead have an ambiguous effect on release rates disparities. If, for example, a judge’s
release threshold πr is higher than the average level of misconduct risk in the population µr, then
noisier risk signals will lead to fewer defendants of that race being detained given true misconduct
potential, as judges place more weight on the mean risk µr which falls below the threshold.11

Racial bias and statistical discrimination can both generate discrimination in the sense of ∆j > 0
but yield different predictions for misconduct outcomes at the margin of release. When risk posteriors
are accurate, misconduct outcomes at the margin of release capture the race-specific benefits of release:

E[Y ∗i | p(νi;Ri) = πRi , Ri] = E[Y ∗i | E[Y ∗i | νi, Ri] = πRi , Ri] = πRi (4)

10An alternative model of judicial decision-making specifies race-specific costs of misconduct classification errors.
Appendix B.3 shows how such a model also leads to a threshold decision rule, with πr denoting the relative cost of
releasing defendants with misconduct potential.

11The theoretical literature typically considers racial bias and statistical discrimination in isolation, while our empirical
analysis allows racial differences in risk thresholds πr, signal quality τr, and mean risk µr to each affect unwarranted
disparity ∆j . We continue to refer to the case of πw 6= πb as racial bias in the model, while referring to τw 6= τb or
µw 6= µb as statistical discrimination.
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The model therefore predicts that marginal white and marginal black defendants should have the same
misconduct rate at the margin of release if the judge is racially unbiased (πw = πb), but that marginal
white defendants should have a higher probability of misconduct if the judge is racially biased against
black defendants (πw > πb). Finding πw 6= πb thus rejects accurate statistical discrimination as the
sole reason for finding ∆j 6= 0.

3.3 Empirical Challenges

Estimating racial discrimination is difficult because observational comparisons of white and black
release rates cannot control for unobserved misconduct potential and are therefore likely to suffer
from omitted variables bias (OVB). Testing for drivers of discrimination such as racial bias is also
difficult unless judges have a common ordering of defendants by their appropriateness for release,
satisfying a conventional but strong first-stage monotonicity assumption.

To formalize these empirical challenges, we introduce new notation for the data observed by an
econometrician. Let Zij = 1 if defendant i is assigned to judge j, let Di =

∑
j ZijDij indicate the

defendant’s release status, and let Yi = DiY
∗
i indicate the observed pretrial misconduct outcome. The

expression for observed pretrial misconduct reflects the fact that an individual who is detained (Di = 0)
cannot fail to appear in court or be rearrested for a new crime, such that Yi = 0 when Di = 0 despite
individual i’s pretrial misconduct potential Y ∗i . The econometrician observes

(
Ri, (Zij)Jj=1, Di, Yi

)
for

each defendant, and records whether the defendant is white in an indicator, Wi = 1[Ri = w].
Rotational assignment of arraignment shifts can generate quasi-random assignment of individuals

to different bail judges. To show how such quasi-experimental variation can and cannot help with
measuring racial discrimination and testing its drivers, we assume here that judges are simply ran-
domly assigned such that Zij is independent of (Ri, Dij , Y

∗
i ) for each j. In practice, we relax this

assumption to allow for the conditional quasi-random assignment often found in the bail system.

Omitted Variables Bias in Observational Comparisons

Observational comparisons of white and black release rates generally yield biased measures of racial
discrimination. Such observational comparisons, whether in bail decisions or another area of the
criminal justice system, usually come from “benchmarking” regressions of outcomes such as pretrial
release on an indicator for an individual’s race and controls for the observed characteristics of those
individuals (e.g., Gelman et al., 2007; Abrams et al., 2012). Since pretrial misconduct potential Y ∗i
is both unobserved and likely to affect release decisions, these benchmarking regressions are likely to
produce biased estimates of the parameters of interest, ∆j .

To illustrate the OVB challenge, consider a simple judge-specific benchmarking regression:

Di =
∑
j

αjWiZij +
∑
j

φjZij + εi (5)

where Di is again an indicator for pretrial release, WiZij is the interaction of the indicator for the
defendant being white and a fixed effect of each judge, and Zij are non-interacted judge fixed effects.
We omit the constant term so that all judge fixed effects are included, and abstract away from other
defendant observables for simplicity. The interaction coefficients thus measure the difference in judge
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j’s release rates for white defendants relative to black defendants:

αj = E[Di | Ri = w,Zij = 1]− E[Di | Ri = b, Zij = 1] (6)

While we focus here on a judge-specific benchmarking regression, the same conclusions emerge from
an analysis of a simpler system-wide benchmarking regression of Di = φ+ αWi + εi.

Even with random judge assignment, the release rate disparities αj will tend to differ from the
legally unwarranted disparities ∆j . When Zij is independent of (Ri, Dij , Y

∗
i ):

αj =E[Dij | Ri = w]− E[Dij | Ri = b] (7)

Defining, as above, µr = E[Y ∗i | Ri = r] as the average misconduct risk among individuals of race r
and (δTjr, δFjr) as the judge’s true and false negative rates for individuals of race r, these release rate
disparities can be written:

αj =
(
δTjw(1− µw) + δFjwµw

)
−
(
δTjb(1− µb) + δFjbµb

)
(8)

In contrast, judge j’s unwarranted release rate disparity given by Equation (2) can be written:

∆j =
(
δTjw(1− µ̄) + δFjwµ̄

)
−
(
δTjb(1− µ̄) + δFjbµ̄

)
(9)

where µ̄ = E[Y ∗i ] = pwµw + pbµb is the average misconduct risk in the population of defendants, with
pr = Pr(Ri = r) denoting racial shares.

The difference between the benchmarking regression coefficient αj in Equation (8) and the judge
discrimination measure ∆j in Equation (9) measures OVB in the simple benchmarking regression
given by Equation (5). This difference is:

ξj ≡ αj −∆j =
(
δTjw(µ̄− µw) + δFjw(µw − µ̄)

)
−
(
δTjb(µ̄− µb) + δFjb(µb − µ̄)

)
= (µb − µw)×

[(
δTjw − δFjw

)
pb +

(
δTjb − δFjb

)
pw
]

(10)

where the second line follows by definition of the population risk µ̄. The regression coefficient αj will
be biased upward for ∆j when ξj > 0 and biased downward when ξj < 0.

Three insights follow from the OVB formula (10). First, conventional benchmarking regressions
will generally yield biased estimates of the absolute level of discrimination ∆j , even with quasi-random
judge assignment, unless either judge release decisions are independent of potential misconduct for
each race (i.e., E[Dij | Y ∗i , Ri] does not depend on Y ∗i , so δTjr = δFjr for each r) or mean misconduct
risk is identical across race (i.e., µw = µb). Randomized audit studies recover unbiased measures of
discrimination by ensuring that race is itself as-good-as-randomly assigned across fictitious individuals,
thereby ensuring that µr does not depend on r within this population. But such randomization is
infeasible in settings with high-stakes and face-to-face interactions like bail decisions.

Second, conventional benchmarking regressions will also yield biased estimates of the differences in
the extent of racial discrimination across judges, even when judges are as-good-as-randomly assigned.
The extent of OVB can also vary across judges in Equation (10), such that difference in benchmarking
coefficients between judge j and k identifies αj − αk = ∆j − ∆k + ξj − ξk and not ∆j − ∆k. In
general, OVB will vary across judges whenever there are differential responses to misconduct potential
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differences, such that δTjr − δFjr varies across j for either race r.12

Third, Equation (10) suggests a potential avenue for estimating racial discrimination when bail
judges are as-good-as-randomly assigned, using familiar econometric objects. One of the terms driving
the OVB of each αj is the difference in race-specific misconduct risk in the population: µb−µw, which
is common to all judges. With Y ∗i capturing defendant i’s potential for pretrial misconduct when
released and Yi = 0 for all detained individuals, the µr = E[Y ∗i | Ri = r] can be understood as
average treatment effects (ATEs) of pretrial release on pretrial misconduct among individuals of race
r. We show in Section 5 how such ATEs can be estimated from quasi-experimental judge assignment
and used to purge OVB from conventional benchmarking estimates, recovering valid estimates of ∆j .

Monotonicity Violations in Standard IV Estimates

Testing between the drivers of racial discrimination is also difficult unless judges have a common
ordering of defendants by their appropriateness for release, satisfying a conventional first-stage mono-
tonicity assumption. For example, standard IV methods can be used to test for racial bias (whether
due to taste-based discrimination or inaccurate stereotyping) given the quasi-random assignment of
judges and such first-stage monotonicity (Arnold et al., 2018; Marx, 2018). Monotonicity is, however,
an especially strong assumption in this setting: it implies that judges are equally skilled in predicting
an individual’s propensity for pretrial misconduct and only differ in terms of the thresholds they set
on a common posterior risk ordering.

To illustrate this potential limitation of the standard IV-based test for racial bias, we consider a
multiple-judge generalization of the decision model in Section 3.2. The release rule for each judge
j is given by Dij = 1[πjRi ≥ pj(νij , Ri)], where πjr is the race-specific release benefit of judge j,
and pj(v, r) is the judge’s posterior for the misconduct risk of a defendant of race r who sends a
signal of v. The most general version of this model allows risk posteriors to differ across judges
because of heterogeneous beliefs and risk signal qualities. Correspondingly, we index the signals νij
of heterogenous quality τjr by j as well as by r. Judges with higher τjr can be thought of as being
more skilled, in that they base release decisions on more predictive signals of misconduct potential.

Conventional first-stage monotonicity identifies marginal misconduct outcomes for white and black
defendants, which can be used to test for racial bias, by assuming judges form common risk posteriors.
Per Imbens and Angrist (1994), when pj(νij , Ri) = p(νi, Ri) does not vary by j a linear IV regression of
misconduct outcomes Yi on release Di instrumented by two quasi-randomly assigned judge indicators
Zij , in a sample of either white or black individuals, identifies a local average treatment effect:

E[Yi | Zij = 1, Ri]− E[Yi | Zik = 1, Ri]
E[Di | Zij = 1, Ri]− E[Di | Zik = 1, Ri]

= E[Y ∗i | πjRi
≥ p(νi, Ri) > πkRi

] (11)

where here the effect of “treating” individual i with release is simply her misconduct potential Y ∗i .
Equation (11) thus gives the average misconduct risk for “compliers” of race Ri, whose posterior risk
p(νi, Ri) lies between the two judge benefit thresholds πjRi and πkRi (where πjRi ≥ πkRi without loss).

12To see this simply, suppose all judges are non-discriminatory: δT
jr = δT

j and δF
jr = δF

j for each j and r, such that
∆j = 0 for each j. Suppose further that judges release all defendants without misconduct potential, such that δT

j = 1.
Differences in judge leniency are then solely due to differences in their rate of releasing defendants with misconduct
potential, δF

j . Equation (10) shows that these differences drive differences in OVB, since ξj = (µb−µw)(1− δF
j ) in this

case. Consequently, a benchmarking analysis would tend to incorrectly suggest not only racial discrimination (ξj > 0)
but also differential discrimination across judges (ξj 6= ξk) when the average risk differs by race.
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As these two thresholds become closer, the IV estimand in Equation (11) approaches the marginal
released outcomes of each judge in Equation (4) and can therefore be used to test whether πjw = πjb.
Arnold et al. (2018) show how standard linear and local IV procedures yield such tests in settings
with many quasi-randomly assigned bail judges.

When judge skill varies, however, first-stage monotonicity is violated and standard IV procedures
no longer capture average misconduct risk for marginal defendants. If τjr 6= τkr, then pj(νij , Ri) 6=
pk(νik, Ri) and the same linear IV regression instead identifies a non-convex linear combination of
treatment effects for “complier” and “defier” populations:

E[Yi | Zij = 1, Ri]− E[Yi | Zik = 1, Ri]
E[Di | Zij = 1, Ri]− E[Di | Zik = 1, Ri]

= pcRi
E[Y ∗i | πjRi

≥ pj(νij , Ri), pk(νik, Ri) > πkRi
] (12)

− pdRi
E[Y ∗i | πkRi

≥ pk(νik, Ri), pj(νij , Ri) > πjRi
]

where pcr is proportional to the complier share of the population of race r who is newly released when
switching assignment from judge k to judge j, and pdr is proportional to the defier share who is newly
detained (with pcr−pdr = 1). Unlike Equation (11), Equation (12) generally cannot be used to isolate
marginal released outcomes and test whether πjw = πjb. Consequently, the IV-based tests for racial
bias proposed by Arnold et al. (2018) are generally invalid when judge skill varies. In Section 6, we
develop an alternative approach to test for racial bias in a model that allows for variation in judge
skill. We also show how statistical discrimination due to racial differences in average risk or signal
quality across race can be measured in this more realistic model with heterogeneous judge skill.

4 Data and Observational Comparisons

4.1 Sample and Summary Statistics

We observe the universe of 1,458,056 arraignments made in NYC between November 1, 2008 and
November 1, 2013. Our data contain information on a defendant’s gender, race, date of birth, and
county of arrest, as well as the (anonymized) identity of the assigned bail judge. In our primary
analysis, we categorize defendants as white (including both non-Hispanic and Hispanic white indi-
viduals), black (including both non-Hispanic and Hispanic black individuals), or neither. We explore
alternative categorizations of race in robustness checks below.

In addition to detailed demographics, our data contain information on each defendant’s current
offense, history of prior criminal convictions, and history of past pretrial misconduct (both rearrests
and FTA). We also observe whether the defendant was released at the time of arraignment and
whether this release was due to release without conditions or some form of money bail. We categorize
defendants as either released (including both release without conditions and with paid cash bail) or
detained (including cash bail that is not paid) at the first arraignment, though we again explore
robustness to other categorizations of the initial pretrial release decision below. Finally, we observe
whether a defendant subsequently failed to appear for a required court appearance or was subsequently
arrested for a new crime before case disposition. We take either form of pretrial misconduct as the
primary outcome of our analysis, but again explore robustness to other measures below.

We make four key restrictions to arrive at our estimation sample. First, we drop cases where the
defendant is not charged with a felony or misdemeanor (N=26,057). Second, we drop cases that were
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disposed at arraignment (N=364,051) or adjourned in contemplation of dismissal (N=230,517). This
set of restrictions drops cases that are likely to be dismissed by virtually every judge: Appendix Table
A1 confirms that judge assignment is not systematically related to case disposal or case dismissal.
Third, we drop cases in which the defendant is assigned a cash bail of $1 (N=1,284). This assignment
occurs in cases in which the defendant is already serving time in jail on an unrelated charge; the $1
cash bail is set so that the defendant receives credit for jail time served, and does not reflect a new
judge decision. Fourth, we drop defendants who are non-white and non-black (N=45,529). Finally,
we drop defendants assigned to judges with fewer than 100 cases (N=3,785) and court-by-time cells
with fewer than 100 total cases or only one unique judge (N=191,647), where a court-by-time cell is
defined using the assigned courtroom, shift, day-of-week, month and year (e.g., the Wednesday night
shift in Courtroom A of the Kings County courthouse in January 2012). The final sample contains
595,186 cases from 367,434 defendants assigned to 268 bail judges.13

Table 1 summarizes our estimation sample, both overall and by race. Panel A shows that 73.0
percent of defendants are released before trial. A defendant is defined as released before trial if either
the defendant is released without conditions (ROR) or the defendant posts the required bail amount
before disposition. The vast majority of these releases are without conditions, with only 14.4 percent
of defendants being released after being assigned money bail. White defendants are more likely to be
released before trial than black defendants, with a 76.7 percent release rate relative to a 69.5 percent
release rate, respectively. Among released defendants, however, the distribution of release conditions
is virtually identical across race.

Judges may release white defendants at a higher rate than black defendants because of relevant
differences in observed defendant or charge characteristics. Consistent with this idea, Panel B of Table
1 shows that black defendants are 4.9 percentage points more likely to have been arrested for a new
crime before trial in the past year compared to white defendants, as well as 3.0 percentage points
more likely to have a prior FTA in the past year. Panel C further shows that black defendants are 1.3
percentage points more likely to have been charged with a felony compared to white defendants, as
well as 3.6 percentage points more likely to have been charged with a violent crime. Finally, Panel D
shows that black defendants who are released are 6.6 percentage points more likely to be rearrested
or have an FTA than white defendants who are released (though the composition of such misconduct
is similar). Importantly, and in contrast to the other statistics in Table 1, the risk statistics in Panel
D are only measured among released defendants. An individual’s potential for pretrial misconduct if
released is, by definition, unobserved among detained individuals despite being the key legal objective
for bail judges.

4.2 Quasi-Experimental Judge Assignment

Our empirical strategy exploits variation in pretrial release from the quasi-random assignment of
judges who vary in the leniency of their bail decisions. There are three features of the NYC pretrial
system that make it an appropriate setting for this research design.

First, NYC uses a rotation calendar system to assign judges to arraignment shifts in each of the
13Appendix Table A2 compares the full sample of NYC bail cases to our estimation sample. By construction, our

estimation sample has a somewhat higher release rate, although the ratio of release rates by race is similar. Our
estimation sample is also broadly representative in terms of defendant and charge characteristics, with a slightly higher
share of defendants with prior FTAs and rearrests, and a somewhat lower share of defendants charged with drug and
property crimes. Pretrial misconduct rates are also elevated in our sample, though again with similar ratios by race.
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five county courthouses in the city, generating quasi-random variation in bail judge assignment for
defendants arrested at the same time and in the same place. Each county courthouse employs a
supervising judge to determine the schedule that assigns bail judges to the day (9 a.m. to 5 p.m.)
and night arraignment shift (5 p.m. to 1 a.m.) in one or more courtrooms within each courthouse.
Individual judges can request to work certain days or shifts but, in practice, there is considerable
variation in judge assignments within a given arraignment shift, day-of-week, month, and year cell.

Second, there is limited scope for influencing which bail judge will hear any given case, as most
individuals are brought for arraignment shortly after their arrest. Each defendant’s arraignment is also
scheduled by a coordinator, who seeks to evenly distribute the workload to each open courtroom at an
arraignment shift. Combined with the rotating calendar system described above and the processing
time required before the arraignment, it is unlikely that police officers, prosecutors, defense attorneys,
or defendants could accurately predict which judge is presiding over any given arraignment.

Finally, the rotation schedule used to assign bail judges to cases does not align with the schedule
of any other actors in the criminal justice system. For example, different prosecutors and public
defenders handle matters at each stage of criminal proceedings and are not assigned to particular
bail judges, while both trial and sentencing judges are assigned to cases via different processes. As a
result, we can study the effects of being assigned to a given bail judge as opposed to, for example, the
effects of being assigned to a given set of bail, trial, and sentencing judges.

Appendix Table A3 verifies the quasi-random assignment of judges to bail cases in the estimation
sample. Each column reports coefficient estimates from an ordinary least squares (OLS) regression
of judge leniency on various defendant and case characteristics, with court-by-time fixed effects that
control for the level of quasi-experimental bail judge assignment. We measure leniency using the leave-
one-out average release rate among all other defendants assigned to a defendant’s judge, following the
standard approach in the literature (e.g., Arnold et al., 2018; Dobbie et al., 2018). Most coefficients
in this balance table are small and not statistically significantly different from zero, both overall and
by defendant race. A joint F -test fails to reject the null of quasi-random assignment at conventional
levels of statistical significance.14

Appendix Table A4 further verifies that the assignment of different judges meaningfully affects
the probability an individual is released before trial. Each column of this table reports coefficient
estimates from an OLS regression of an indicator for pretrial release on judge leniency, court-by-time
fixed effects, and, to boost precision, the baseline controls from Table 1. A one percentage point
increase in the predicted leniency of an individual’s judge leads to a 0.95 percentage point increase
in the probability of release, with a somewhat smaller first-stage effect for white defendants and a
somewhat larger effect for black defendants.

14Even with the quasi-random assignment of bail judges, the exclusion restriction in our framework could be violated
if judge assignment impacts the probability of pretrial misconduct through channels other than pretrial release. While
the assumption that judges only systematically affect defendant outcomes through pretrial release is fundamentally
untestable, we join Arnold et al. (2018) in viewing it as reasonable here. Bail judges only handle one decision, limiting
the potential channels through which they could affect defendants. Pretrial misconduct is also a relatively short-run
outcome, further limiting the role of alternative channels. In a similar setting, Dobbie et al. (2018) find that there are
no independent effects of the assigned money bail amount on defendant outcomes. We explore the robustness of our
findings to such effects below.
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4.3 Observational Comparisons

Table 2 investigates system-wide racial disparity in NYC pretrial release rates. We estimate OLS
regressions of the form:

Di = φ+ αWi +X ′iβ + εi (13)

where Di is an indicator equal to one if defendant i is released, Wi is an indicator for the defendant
being white, and Xi is a vector of baseline controls. Column 1 of Table 2 omits any controls in Xi,
column 2 adds the defendant and case observables from Table 1 to Xi, and column 3 further adds
court-by-time fixed effects to adjust for unobservable differences at the level of quasi-experimental bail
judge assignment to Xi. Such regressions generally follow the conventional benchmarking approach
from the literature (e.g., Gelman et al., 2007; Abrams et al., 2012).

Table 2 documents both statistically and economically significant release rate disparities between
white and black defendants in NYC. The unadjusted white-black release rate difference α is estimated
in column 1 at 7.2 percentage points, with a standard error (SE) of 0.5 percentage points. This release
rate gap is around 10 percent of the mean release rate of 73 percent. The release rate gap falls by 26
percent, to 5.3 percentage points (SE: 0.4), when we control for defendant and case observables, and
by an additional 2 percent, to 5.2 percentage points (SE: 0.4), when we include court-by-time fixed
effects. These estimates are similar in magnitude to the association, reported in column 3, between
the probability of release and having an additional drug charge (-5.7 percentage points) or pretrial
arrest (-6.8 percentage points) in the past year.

Figure 1 summarizes the distribution of judge-specific release rate disparities across the 268 bail
judges in our sample. We estimate judge-specific disparities from OLS regressions of the form:

Di =
∑
j

αjWiZij +
∑
j

φjZij +X ′iβ + εi (14)

where Di is again an indicator equal to one if defendant i is released, WiZij is the interaction between
an indicator for the defendant being white and the fixed effects for each judge, Zij are the non-
interacted fixed effects for each judge, and Xi is again a baseline control vector. We first estimate
Equation (14) with Xi demeaned, such that the αj captures regression-adjusted difference in release
rates for white and black individuals assigned to judge j. We then compute empirical Bayes posteriors
of αj using standard shrinkage procedures (Morris, 1983). Figure 1 shows the distribution of the racial
disparity posteriors that adjust only for the main judge fixed effects, following column 1 of Table 2,
as well as the distribution of posteriors when we add both baseline controls and court-by-time fixed
effects, following column 3 of Table 2. We also report in Figure 1 an estimate of the empirical Bayes
prior mean and standard deviation of αj across judges, as well as the fraction of judges with positive
αj by applying the posterior average effect approach of Bonhomme and Weidner (2020).15

The distributions of release rate disparity posteriors in Figure 1 are located well above zero,
suggesting that nearly all judges in our sample release white defendants at a higher rate. We estimate
that only 3.4 percent (SE: 1.3) of judges in our sample release a larger share of black defendants in the
unadjusted specification, while only 6.0 percent (SE: 1.5) are estimated to release a larger share when
we adjust for defendant and case observables and court-by-time fixed effects. Figure 1 nevertheless

15See Appendix B.4 for the details of the conventional empirical Bayes procedures we apply in this section.
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shows considerable variation in the magnitude of the release rate disparities across judges. The
standard deviation of αj is estimated at 3.9 percentage points (SE: 0.3) in the unadjusted specification,
and 3.3 percentage points (SE: 0.3) when we adjust for baseline controls and court-by-time fixed effects.
The average judge-specific disparities, which differ from the system-wide averages in Table 2 due to
differences in weightings, are 6.9 percentage points (SE: 0.2) for the unadjusted specification and 5.0
percentage points (SE: 0.2) in the covariate-adjusted specification. When we weight the covariate-
adjusted disparities by judge caseloads we obtain a system-wide disparity estimate of 5.3 percentage
points (SE: 0.2), similar to the regression-weighted 5.2 percentage point disparity in Table 2.

Taken together, this observational analysis confirms large and pervasive racial disparities in NYC
bail decisions, both in the raw data and after accounting for observable differences between white and
black defendants. These results are, of course, consistent with bail judges discriminating against black
defendants. But we cannot rule out the possibility that these disparities are driven by legally relevant
differences between white and black defendants that are observed by bail judges but unobserved by
the econometrician. This OVB concern is heightened by the fact that there is considerable variation
in both release rates and race after conditioning on the defendant and case observables included in
Xi. For example, by applying the method of Oster (2017), we find that defendant unobservables can
completely explain the release rate gap between white and black defendants in column 2 of Table 2 if
these unobservables are only half as predictive of race as the observables in Xi.

5 Quasi-Experimental Estimates of Racial Discrimination

5.1 Methods

We estimate racial discrimination in release decisions with observational release rate comparisons
that are rescaled using quasi-experimental estimates of average white and black misconduct risk. This
quasi-experimental approach leverages first-stage variation in judge leniency but, unlike standard
IV methods, does not require a first-stage monotonicity assumption. We only require that average
misconduct risk among white and black defendants can be extrapolated from the quasi-experimental
data and that the judges’ legal objective is well-specified by the econometrician.

The first key insight underlying our approach is that when judges are as-good-as-randomly as-
signed, the problem of measuring legally unwarranted release rate disparities for individual judges
is equivalent to the problem of estimating the average misconduct risk among the full population of
black and white defendants. The source of OVB in an observational benchmarking comparison is the
correlation between race and unobserved misconduct potential among a given judge’s pool of white
and black defendants. With quasi-random judge assignment, this correlation is common to all judges
and captured by race-specific population misconduct risk. Given estimates of these race-specific risk
parameters, observed release outcomes can be appropriately rescaled to make released white and black
defendants comparable in terms of their unobserved misconduct potential.

The rescaling that purges OVB from observational comparisons is given by expanding the true
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and false negative rates from our definition of racial discrimination in Equation (2):

δTjr = E[Dij | Y ∗i = 0, Ri = r] = E[Dij(1− Y ∗i ) | Ri = r]
E[1− Y ∗i | Ri = r] = E[Di(1− Yi) | Ri = r, Zij = 1]

1− µr
(15)

δFjr = E[Dij | Y ∗i = 1, Ri = r] = E[DijY
∗
i | Ri = r]

E[Y ∗i | Ri = r] = E[DiYi | Ri = r, Zij = 1]
µr

(16)

where the third equalities in both lines follow from quasi-random judge assignment and the definition
of mean risk µr = E[Y ∗i | Ri = r]. Substituting these expanded true and false negative rates into
Equation (2) yields:

∆j =E[Di(1− Yi) | Ri = w,Zij = 1] 1− µ̄
1− µw

+ E[DiYi | Ri = w,Zij = 1] µ̄
µw

− E[Di(1− Yi) | Ri = b, Zij = 1] 1− µ̄
1− µb

− E[DiYi | Ri = b, Zij = 1] µ̄
µb

=E[ωiDi | Ri = w,Zij = 1]− E[ωiDi | Ri = b, Zij = 1] (17)

where

ωi = (1− Yi)
1− µ̄

1− µRi

+ Yi
µ̄

µRi

(18)

The rewritten definition of discrimination in Equation (17) shows that judge j’s level of discrimination
∆j is given by the αj coefficients in a simple benchmarking regression, where the release decisions
Di of each individual are rescaled by a positive factor ωi. This ωi reweights the sample to make
released white and black defendants comparable in terms of their unobserved misconduct potential,
thereby revealing the extent to which each judge discriminates against white and black defendants
with identical misconduct potential (even though misconduct potential is unobserved and cannot be
directly conditioned on). Equation (18) further shows that ωi is a function of observed misconduct
outcomes Yi and the unobserved average race-specific misconduct risk parameters µr, where again
µ̄ = µwpw + µbpb. The key econometric challenge is therefore to estimate average misconduct risk
among the full population of white and black defendants.

Appendix Table A5 uses a simple numerical example to illustrate how our rescaling approach allows
us to measure racial discrimination in bail decisions, even though misconduct potential is unobserved
and cannot be directly conditioned on. This example supposes that there are 100 defendants of each
race and a single race-neutral judge who can perfectly predict misconduct potential, such that she
releases all defendants with Y ∗i = 0 (so δTjr = δTj = 1) and detains all defendants with Y ∗i = 1 (so
δFjr = δFj = 0). We also assume that 75 of the 100 hypothetical black defendants have misconduct
potential (Y ∗i = 1) but only 25 of the 100 hypothetical white defendants have misconduct potential,
such that µb = 0.75 and µw = 0.25. Panel A shows that the perfectly predictive judge therefore has a
white release rate of 0.75 but a black release rate of 0.25, meaning that a conventional benchmarking
regression would find that white defendants have a 50 percentage point higher release rate than black
defendants (αj = 0.5) despite the judge being race-neutral.

Panel B of Appendix Table A5 shows how discrimination can be measured in this simple numerical
example with observational release rate comparisons that are rescaled using average white and black
misconduct risk. Following Equations (17) and (18), we compute ωi = 0.50

0.75 = 2/3 for released white
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defendants with Yi = 0 and released black defendants with Yi = 1, and ωi = 0.50
0.25 = 2 for released

white defendants with Yi = 1 and released black defendants with Yi = 0. The rescaling factor thus
up-weights the release rates of individuals who are relatively less common in each race (risky white
defendants and non-risky black defendants), while down-weighting the release rates of individuals who
are relatively more common (non-risky white defendants and risky black defendants).16 In this way,
the rescaling factor equalizes the proportion of risky and non-risky defendants by race, meaning that
a rescaled benchmarking regression would correctly find that white and black defendants with the
same misconduct potential have identical release rates (∆j = 0). This would continue to hold when
the judge is not perfectly predictive, so long as she has consistent true and false negative rates across
the races. Conventional and rescaled benchmarking regressions are identical when average misconduct
risk does not vary by race; in this special case of µw = µb = µ̄, ωi = 1 for all defendants.

The second key insight underlying our approach is that the average race-specific misconduct risk
parameters that enter Equation (17) can be estimated by extending recent advances in ATE estimation
with multiple discrete instruments (Brinch et al., 2017; Hull, 2020), which build on a long literature
on sample selection models (e.g. Heckman, 1990; Andrews and Schafgans, 1998). To build intuition
for this approach, consider a setting with as-good-as-random judge assignment and a supremely le-
nient bail judge j∗ who releases nearly all defendants regardless of their race or potential for pretrial
misconduct. This supremely lenient judge’s race-specific release rate among both black and white
defendants is close to one:

E[Di | Zij∗ = 1, Ri = r] = E[Dij∗ | Ri = r] ≈ 1 (19)

and the race-specific misconduct rate among defendants she releases is close to the race-specific average
misconduct risk in the full population:

E[Yi | Di = 1, Zij = 1, Ri = r] = E[Y ∗i | Dij∗ = 1, Ri = r] ≈ E[Y ∗i | Ri = r] = µr (20)

where the first equality in both expressions follows by quasi-random assignment. Without further
assumptions, the decisions of a supremely lenient and quasi-randomly assigned judge can therefore be
used to estimate the average misconduct risk parameters needed for our discrimination measure.

In the absence of such a supremely lenient judge, the required average misconduct risk parame-
ters can be estimated using model-based or non-parametric extrapolations of release and misconduct
rate variation across quasi-randomly assigned judges. These extrapolations use local IV variation
to estimate the race-specific ATEs of pretrial release Di on misconduct Yi, which are equivalent to
the race-specific average misconduct risk parameters µr. Mean risk estimates may, for example, come
from the vertical intercept, at one, of linear, quadratic, or local linear regressions of estimated released
misconduct rates E[Y ∗i | Dij = 1, Ri = r] on estimated release rates E[Dij | Ri = r] across judges j
within each race r. This extrapolation-based approach does not require conventional monotonicity,
in contrast to the related discrete instrument methods of Kowalski (2016) and Brinch et al. (2017).17

16This pattern of up- and down-weighting generally arises when black defendants have higher misconduct risk:
i.e., when µb > µ̄ > µw. In such cases, observations of released white defendants who subsequently offend are
up-weighted (Yi − µw > 0 and µ̄ − µw > 0 so ωi > 1), as are observations of released black defendants who
do not subsequently offend (Yi − µb < 0 and µ̄ − µb < 0, so again ωi > 1). Equation (17) also shows that
∆j = αj − (E[(1− ωi)Di | Ri = w,Zij = 1]− E[(1− ωi)Di | Ri = b, Zij = 1]), so that our rescaling can be understood
as subtracting OVB from the observational comparisons with OVB given by a (1− ωi)-scaled release rate disparity.

17Formally, suppose in a population of individuals each judge’s release decisions are given by Dij = 1[κj ≥ υij ],
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Our approach is instead analogous to the standard regression discontinuity approach of extrapolat-
ing average potential outcomes to a treatment cutoff from nearby observations. Here, variation in
misconduct rates is extrapolated from quasi-randomly assigned judges with high release rates to the
maximal release rate of a hypothetical supremely lenient judge.

5.2 Results

Mean Risk by Race

Figure 2 illustrates the quasi-experimental variation in judge release rates and released misconduct
rates in NYC. The horizontal axis plots estimates of release rates E[Dij | Ri = r] for each judge j
and each race r, obtained from the earlier benchmarking regression in Equation (14) that adjusts for
baseline observables and the court-by-time fixed effects that account for the level at which bail judges
are quasi-randomly assigned to cases. The vertical axis plots corresponding estimates of released
misconduct rates E[Y ∗i | Dij = 1, Ri = r], obtained from the analogous OLS regression:

Yi =
∑
j

ρjWiZij +
∑
j

ζjZij +X ′iγ + ui (21)

estimated among released individuals (Di = 1), where again Xi contains baseline observables and
court-by-time fixed effects and is demeaned to include all judge indicators.18

Figure 2 shows significant variation in race-specific release rates across judges, with several judges
releasing a high fraction of their defendants for each race. Released misconduct rates tend to increase
with judge leniency for both races, as would be predicted by a behavioral model in which more lenient
judges release riskier defendants at the margin. This pattern is shown by the two solid lines in Figure
2, representing the race-specific lines-of-best-fit through the quasi-experimental data. The lines-of-
best-fit are obtained by OLS regressions of judge-specific released misconduct rate estimates on judge-
specific release rate estimates, with the judge-level regressions weighted inversely by the variance of
misconduct rate estimation error. We also plot curves-of-best-fit from judge-level quadratic and local
linear specifications as dotted and dashed lines, respectively, with both specifications again weighted
inversely by the variance of misconduct rate estimation error. The simple linear specification fits the
local IV variation well, with quadratic and local linear specifications yielding similar fits across most
of the leniency distribution.

The vertical intercepts of the different curves-of-best-fit, at one, provide different estimates of the
race-specific mean risk µr. These estimates are reported in Panel A of Table 3. The simplest linear
extrapolation, summarized in column 1, yields precise mean risk estimates of 0.352 (SE: 0.007) for
white defendants and 0.395 (SE: 0.006) for black defendants. This extrapolation suggests that the

where υij | κj , λj ∼ U(0, 1) without loss and E[Y ∗i | υij , κj , λj ] = µ + λj(υij − 1
2 ). This model violates monotonicity,

since judges differ both in their orderings of individuals by the appropriateness of release (υij) and their relative skill
at predicting misconduct outcomes (λj). Nevertheless, when E[λj | κj ] is constant (linear) in κj , average released
misconduct rates E[Y ∗i | Dij = 1, κj ] = E[µ + 1

2λj(κj − 1) | κj ] are linear (quadratic) in release rates E[Dij ] = κj ,
so that these extrapolations identify the ATE µ. More flexible extrapolations generally accommodate a broader range
of judge decision-making models by leveraging richer quasi-experimental variation. In the limit, local linear regressions
can yield non-parametric estimates of mean misconduct risk provided there are many lenient judges (Hull, 2020).

18These specifications leverage an auxiliary assumption of linear conditional expectations of Dij and Y ∗i to tractably
accommodate the conditional random assignment of bail judges given the court-by-time fixed effects in Xi. If Zi is inde-
pendent of (Y ∗i , Di1, . . . , DiJ , Ri) given Xi and E[Y ∗i | Dij = 1, Ri = r,Xi] = ψjr +X′iγ, then E[Yi | Ri, Zi, Xi, Di = 1]
is linear in (WiZi1, . . . ,WiZiJ , Zi1, . . . , ZiJ , X

′
i)
′, as in Equation (21). Analogously, if E[Dij | Ri = r,Xi] = φjr +X′iβ,

under conditional random assignment E[Di | Ri, Zi, Xi] is linear as in Equation (14).
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average misconduct risk within the population of potential black defendants is 4.3 percentage points
higher than among the population of potential white defendants in this setting. Equivalently, viewing
mean risk as an ATE, it suggests that a quasi-randomly assigned judge in NYC would, by releasing
all defendants, see a 4.3 percentage point higher rate of pretrial misconduct among black defendants
than among white defendants. Per the discussion in Section 3.3, such a difference in misconduct risk
is likely to generate OVB in observational release rate comparisons.

The quadratic and local linear extrapolations of quasi-experimental variation yield similar race-
specific mean risk estimates, as can be seen from Figure 2. The quadratic fit suggests a slight nonlin-
earity in the relationship between judge leniency and released misconduct rates, with a slightly convex
dashed line for white defendants and slightly concave dashed line for black defendants. Column 2 of
Table 3 shows that these nonlinearities translate to a somewhat lower estimate of white mean risk,
at 0.333 (SE: 0.019), and a higher estimate of black mean risk, at 0.415 (SE: 0.021). Near one, the
non-parametric fit of Figure 2 coincides with the linear fit for white defendants and the quadratic fit
for black defendants, yielding mean risk estimates in column 3 of 0.352 (SE: 0.014) and 0.424 (SE:
0.016), respectively. The implied racial gap in risk – and thus the potential for OVB – rises with these
more flexible extrapolations, to 8.2 percentage points in column 2 and 7.2 percentage points in column
3. We take the most flexible local linear extrapolation as our baseline specification for analyzing racial
discrimination in NYC, which we show below gives the most conservative estimate of average racial
discrimination. We also explore the robustness of our results to a wide range of alternative mean risk
estimates below.

The extrapolations in Figure 2 yield accurate mean risk estimates when judge release rules are
accurately parameterized or when there are many highly lenient judges. Appendix Figure A1 validates
our extrapolations by plotting race-specific extrapolations of average predicted misconduct outcomes,
among released defendants, in place of actual released misconduct averages in Figure 2. We first
construct predicted misconduct outcomes Ŷ ∗i using the fitted values from an OLS regression of actual
pretrial misconduct Y ∗i on the baseline observables in column 3 of Table 2 in the subsample of released
defendants. We then plot estimates of E[Ŷ ∗i | Dij = 1, Ri = r] and E[Dij = 1 | Ri = r], constructed as
in Figure 2, in Appendix Figure A1. Since Ŷ ∗i can be computed for the entire sample, we also include
the overall averages E[Ŷ ∗i |, Ri = r] that are analogous to the race-specific ATEs of interest. Figure
A1 shows that each of the linear, quadratic, and local linear extrapolations of predicted misconduct
rates yields similar and accurate estimates of the overall actual averages. The 95 percent confidence
intervals of the local linear extrapolations, for example, include the actual black average and only
narrowly exclude the actual white average. These results build confidence for the extrapolations of
actual pretrial misconduct outcomes in this setting.

Racial Discrimination

Panels B and C of Table 3 summarize the estimates of legally unwarranted racial disparities ∆j given
the corresponding ATE estimates in Panel A. These estimates are obtained from the sample analogue
of Equation (9), noting that a judge’s true negative rates can be written:

δTjr = E[Dij | Y ∗i = 0, Ri = r] = (1− E[Y ∗i | Dij = 1, Ri = r])E[Dij | Ri = r]
1− µr

(22)
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and similarly for her false negative rate δFjr, while µ̄ = µwpw + µbpb. We use the regression-adjusted
estimates of E[Dij | Ri = r] and E[Y ∗i | Dij = 1, Ri = r] from Figure 2 and the sample share of black
defendants to complete this formula. Case-weighted averages of the resulting ∆j estimates, reported
in Panel B, estimate system-wide discrimination. We also compute empirical Bayes posteriors for
individual ∆j again via standard shrinkage procedures (Morris, 1983). Summary statistics for the
judge-level prior distribution (estimated as in Figure 1) are reported in Panel C.

We find that more than two-thirds of the system-wide release rate disparity between observably
similar white and black defendants in NYC is explained by racial discrimination, with less than one-
third explained by unobserved differences in misconduct risk. The most conservative estimate of
system-wide discrimination in Table 3, which uses local linear extrapolations to estimate race-specific
mean risk, is 68 percent (3.6 percentage points) of the case-weighted average disparity of 5.3 percentage
points. By comparison, the least conservative estimate of the case-weighted average ∆j , which uses
the linear extrapolations to estimate race-specific mean risk, implies that 83 percent (4.4 percentage
points) of the average benchmarking disparity in Table 2 can be explained by discrimination. We thus
find that unobservable differences in defendant risk can explain 17 to 32 percent (0.9 to 1.7 percentage
points) of the average benchmarking disparity that remains after adjusting for baseline observables,
similar to the 30 percent (1.9 percentage points) of the unadjusted average disparity explained by
baseline observables in Table 2.19

Appendix Table A6 illustrates how our rescaling approach yields this finding of significant racial
discrimination in NYC bail decisions, following the simple numerical example in Appendix Table
A5. We use the benchmark local linear estimates of mean risk to estimate the number of white and
black defendants with and without misconduct potential in column 2 of Panel A. In column 3, we
combine these estimates with covariate-adjusted estimates of release and released misconduct rates
to compute the number of released defendants in each race and misconduct category, as in Equation
(22). This calculation yields the case-weighted average observational disparity of 5.3 percentage points
in column 5. In Panel B, we use the local linear estimates of mean risk to compute and apply the
appropriate rescaling factor ωi. Our baseline estimates of average misconduct risk are µw = 0.352
for white defendants and µb = 0.424 for black defendants. Combining these estimates with the share
of white and black defendants in our sample yields an overall average misconduct risk of µ̄ = 0.390.
Following Equations (17) and (18), these estimates yield a rescaling factor of ωi = 1−0.390

1−0.353 = 0.942 for
released white defendants with Yi = 0, ωi = 0.390

0.424 = 0.919 for released black defendants with Yi = 1,
ωi = 0.390

0.353 = 1.107 for released white defendants with Yi = 1, and ωi = 1−0.390
1−0.424 = 1.060 for released

black defendants with Yi = 0. Thus, the rescaling factor up-weights the release rates of risky white
defendants and non-risky black defendants (who are relatively less common) while down-weighting
the release rates of non-risky white defendants and risky black defendants (who are relatively more
common). Applying these rescaling factors to the observational release rates yields a system-wide
discrimination estimate of 3.6 percentage points in column 5, as also reported in Table 3.

Figure 3 plots the full distribution of discrimination posteriors across individual bail judges using
the most conservative local linear mean risk estimates. For comparison, we also include the distribution
of observed racial disparities from our most complete benchmarking model. The former distribution

19We can also use the decomposition (2) to compute the case-weighted disparity in true and false negative rates
generating the overall 3.6 percentage point release rate disparity. From our baseline local linear extrapolation we obtain
an average δT

jw − δ
T
jb of 0.017 (SE: 0.029) and an average δF

jw − δ
F
jb of 0.064 (SE: 0.037). While noisy, these estimates

suggest judges favor white defendants over black defendants in both the Y ∗i = 0 and Y ∗i = 1 subpopulations.
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is shifted evenly to the left of the latter distribution, consistent with nontrivial OVB across the
judge-specific estimates. Around 68 percent of the judge-weighted average benchmarking disparity
(3.4 percentage points, out of 5.0 percentage points) is found to be due to discrimination, similar to
the case-weighted decomposition from Panel B of Table 3. The standard deviation of judge-specific
unwarranted disparities remains large, at 3.1 percentage points, though it shrinks somewhat from the
3.3 percentage point standard deviation of observed release rate disparities. The clear majority of
NYC judges have positive ∆j , at 87.5 percent, though this share is also somewhat smaller than the
94.0 percent predicted by the conventional benchmarking model. Panel C of Table 3 shows that these
statistics are again precisely estimated and similar across different mean risk estimates.

Our estimates show that there are both statistically and economically significant inequalities in the
release rate decisions of black and white defendants with identical potential for pretrial misconduct.
The most conservative estimate in Table 3, for example, implies that the unwarranted release rate gap
could be closed if NYC judges released roughly 2,240 more black defendants each year (or detained
roughly 2,240 more white defendants). Using the estimate of Dobbie et al. (2018), releasing this many
defendants would lead to around $67 million in recouped earnings and government benefits annually.
We can also compare the average unwarranted disparity to other observed determinants of pretrial
release. Table 2 shows, for example, that the most conservative 3.6 percentage point unwarranted
disparity estimate corresponds to more than half of the decreased probability in release associated
with a defendant having an additional pretrial arrest in the past year (-6.8 percentage points).

Robustness

Appendix Figure A2 examines the sensitivity of our system-wide discrimination estimate to different
estimates of average white and black misconduct risk. We plot the range of unwarranted disparity
estimates that we would obtain from different values of these risk inputs, with our linear, quadratic,
and local linear estimates of average white and black risk indicated by solid, dashed, and dotted
lines, respectively. The estimated level of discrimination against black defendants generally decreases
as the assumed value of black misconduct risk increases, holding the value of white misconduct risk
constant. Racial differences in misconduct potential would have to be extremely large, however, before
we could conclude there is no discrimination against black defendants. At our baseline estimate of
white mean risk, for example, the white-black difference in misconduct risk would need to be more
than 15 percentage points (108 percent) larger than our most conservative estimates to conclude there
is no discrimination against black defendants.

Appendix Tables A7–A9 explore the robustness of our findings to alternative definitions of the
judge’s legal objective, the judge’s decision variable, and the defendant’s race. We find similar results
when using a measure of pretrial misconduct that only includes FTA (column 2 of Appendix Table
A7) or only includes new arrests (column 3 of Appendix Table A7). We also find a slightly higher case-
weighted average unwarranted disparity, at 5.5 percentage points, when using a measure of pretrial
misconduct that only includes new arrests for a violent crime (column 4 of Appendix Table A7),
though this estimate is extremely imprecise due to the rareness of the outcome. We also find similar
results when we specify the judge’s binary decision as between release without conditions and setting
any cash bail, with racial discrimination explaining at least 63 percent (2.6 percentage points) of the
covariate-adjusted white-black ROR rate difference of 4.1 percentage points (column 3 of Appendix
Table A8). Finally, we obtain similar results when categorizing defendants as non-Hispanic white or
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any racial minority (including Hispanic white individuals and both non-Hispanic and Hispanic black
individuals), with racial discrimination explaining at least 81 percent (5.9 percentage points) of the
non-Hispanic white-minority differences in release decisions of 7.3 percentage points (column 3 of
Appendix Table A9).20

Judge Heterogeneity

Table 4 explores variation in the level of discrimination across judges in our sample. Columns 1-5
report OLS estimates of the unwarranted disparity posteriors on indicators for whether a judge is
newly appointed during our sample period, has above-average leniency, and has an above-median
share of black defendants (as measured before adjusting for court-by-time fixed effects). We also in-
clude indicators for what county courtroom the judge hears most cases in. Columns 6-7 investigate the
persistence of our discrimination measure over time by computing separate unwarranted disparity pos-
teriors in the first and second half of cases that each judge sees in our sample period, recomputing the
race-specific mean risk estimates in each half, and estimating OLS regressions of current unwarranted
disparity posteriors on lagged unwarranted disparity posteriors and judge observables. In both sets of
analyses, regressions of discrimination posteriors on judge observables can be interpreted through the
posterior average effect framework of Bonhomme and Weidner (2020). We weight these regressions
by estimates of the inverse posterior variance of the unwarranted disparities, with very similar results
when weighting by judge caseload.

We find that there are significantly lower levels of discrimination among newly appointed judges,
more lenient judges, and judges with a higher share of black defendants. Judges who are newly ap-
pointed in our sample period have 1.2 percentage point lower unwarranted disparities on average, while
judges with above-average leniency have 0.8 percentage point lower unwarranted disparities. Judges
assigned an above-median share of black defendants have 0.7 percentage point lower unwarranted dis-
parities. We also find that judges who primarily see cases in the Manhattan, Queens, and Richmond
county courtrooms tend to exhibit higher levels of discrimination, while those who primarily see cases
in Brooklyn (the omitted reference category) and the Bronx have lower levels of discrimination. We
find, for example, that unwarranted disparities are 2.3 percentage points higher for Manhattan judges
compared to Brooklyn judges. Together, the observable judge characteristics available in our data
explain about 31 percent of the variation in the unwarranted disparity posteriors, with the courtroom
indicators alone explaining about 22 percent of the variation in unwarranted disparities.

We also find that the judge-specific discrimination estimates are highly correlated over time, with
an autoregression coefficient of 0.52. Lagged unwarranted disparities alone explain about 28 percent
of the variation in the current unwarranted disparities, with the lagged disparity and observable judge
characteristics explaining about 34 percent of the variation in the unwarranted disparities. We also
note that the average unwarranted disparity in the second half of judge cases is somewhat larger, at
4.7 percentage points, suggesting that discrimination may increase with judge experience.

20Another potential concern is that measurement error in the judge’s legal objective is systematically correlated with
race. This could be an issue if, for example, judges minimize all new crime, not just new crime that results in an
arrest, and the police are more likely to rearrest black defendants conditional on having committed a new crime. In
this scenario, we will tend to overestimate the misconduct risk for black defendants compared to white defendants and,
as a result, underestimate the true amount of racial discrimination in bail decisions (Knox et al., Forthcoming). It
is therefore possible that our estimates reflect a lower bound on the true amount of racial discrimination in NYC, at
least under the plausible assumption that the police are more likely to rearrest black defendants conditional on having
committed a new crime. Reassuringly, column 2 of Appendix Table A7 shows a similar level of discrimination when we
measure pretrial misconduct using just FTA, which is better measured and less subject to this concern.
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Taken together, our results show that there is substantial racial discrimination in NYC bail de-
cisions, both on average and for most judges, and that judge-specific estimates of discrimination are
predicted by observable characteristics and highly-correlated over time. But our results do not speak
to whether such discrimination is driven by racial bias or statistical discrimination, or whether we can
effectively target and potentially reduce racial discrimination using existing data. We next consider
an empirical framework to answer these questions.

6 MTE Estimates of Bias and Statistical Discrimination

6.1 Methods

We develop and estimate a novel hierarchical marginal treatment effects (MTE) model that imposes
additional structure on the quasi-experimental variation to investigate whether discrimination in bail
decisions is driven by racial bias or statistical discrimination and to conduct policy simulations. Build-
ing on the illustrative model in Section 3.2, we suppose that judges base release decisions on noisy
signals of true misconduct potential. We allow for judge- and race-specific risk preferences and signal
quality, with the latter allowing heterogeneous race-specific predictive skill across judges (in violation
of the conventional first-stage monotonicity condition). The model implies a distribution of judge- and
race-specific MTE curves that can be used to test for racial bias at the margin of release, as well as to
measure racial differences in average risk or signal quality that can generate statistical discrimination.

We model judge risk signals as νij = Y ∗i + ηij , where ηij | Y ∗i , (Ri = r) ∼ N(0, σ2
jr) denotes the

noise in judge j’s risk signals for defendants of race r. Signal quality is given by the inverse standard
deviation of noise, τjr = 1/σjr, such that higher τjr corresponds to more precise risk signals. Judges
with higher τjr can be thought to have a richer information set or being more skilled at inferring
true misconduct potential from a common information set. Judges combine these race-specific signals
τjr with potentially biased prior beliefs µ̃jr of mean misconduct risk µr for each race r and an
understanding of the signal-generating process. The judges’ risk posteriors pj(νij ;Ri) are therefore
potentially biased solutions to the binary classification problem of whether defendant i would fail to
appear or be rearrested for a new crime if released (Y ∗i = 1), given the individual’s race r and noisy
misconduct signal νij . Appendix B.2 derives these posterior functions and shows that they are strictly
increasing in the risk signal. Given release benefits πjr, the release decisions of each risk-neutral judge
therefore follow a signal-threshold rule of:

Dij = 1[πjRi
≥ pj(νij ;Ri)] = 1[κjRi

≥ Y ∗i + ηij ] (23)

where κjr = p−1
j (πjr; r) is an implicit function of judge j’s release benefit πjr, subjective risk belief

µ̃jr, and risk signal quality τjr for defendants of race r. Appendix B.5 shows that when judges respond
to misconduct risk, such that δTjr > δFjr, there exists a signal threshold κjr and signal quality τjr > 0
which rationalize the reduced-form true and false negative rates. Absent further restrictions, this
model is thus without observational loss provided judge release decisions are better-than-random.

When known for each race, a judge’s risk threshold κjr and signal quality τjr can be used
to characterize the extent of racial bias in release decisions. As discussed in Section 3.2, aver-
age misconduct outcomes at the margin of pretrial release capture the race-specific release benefits
πjr = E[Y ∗i | pj(νij ; r) = πjr] = E[Y ∗i | Y ∗i + ηij = κjr], which can be used to compute racial bias
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for judge j.21 These marginal released outcomes are known functions of κjr and τjr, and represent
marginal treatment effects (of release on pretrial misconduct) for defendants at the margin of release.
Arnold et al. (2018) use marginal released outcomes to test for racial bias among quasi-randomly
assigned bail judges under an assumption of first-stage monotonicity, which here requires τjr = τr

to be common to all judges such that judges act as though there is a common ordering of defen-
dants (of each race) with regards to their appropriateness for release. Under this restriction, the
race-specific marginal released outcomes needed to test for bias can be estimated with conventional
MTE estimation methods.

Here, our first insight is that when κjr and τjr are known, we can also measure the extent of
statistical discrimination. As discussed in Section 3.2, statistical discrimination arises when judges
act on risk predictions that are affected by racial differences in either mean misconduct risk µr or
signal quality τjr. Mean risk for each race r is given by integrating the marginal released outcome (or
MTE) curve µjr(κ) = E[Y ∗i | Y ∗i + ηij = κ] of each judge j over the distribution of her risk signals.
The slopes of these curves capture the quality of a judge’s risk signals. Relatively more precise signals
for white defendants relative to black defendants will, for example, lead to a steeper-sloping µjw(κ)
relative to µjb(κ). More generally, the judge- and race-specific MTE curves µjr(κ) can be used to
calculate the extent of racial discrimination in counterfactuals calculations where a judge’s release
rates are set to equalize marginal released outcomes and eliminate racial bias.

Our second insight is that we can estimate the key κjr and τjr parameters without imposing a
strong assumption of first-stage monotonicity. By requiring τjr = τr, monotonicity can be understood
to restrict the MTE curves µjr(·) to be common across judges for each race r, such that variation in
judge release rates only reflects differences in risk thresholds κjr. An implication of this monotonicity
restriction is that, absent estimation error, the race-specific release rates E[Dij | Ri = r] and released
misconduct rates E[Y ∗i | Dij = 1, Ri = r] plotted in Figure 2 will lie on a single curve determined
by the common signal quality τr and mean risk µr. Tests of monotonicity based on this and similar
implications have been developed in the context of quasi-randomly assigned judges (Mueller-Smith,
2015; Frandsen et al., 2019; Norris, 2019) and elsewhere (Kitagawa, 2015). These tests reject in our
setting (see Appendix Table A10), suggesting that conventional monotonicity is unlikely to hold.22

We therefore substitute the conventional monotonicity restriction with an alternative parameter-
ization of heterogeneity in judge skill, permitting a distribution of MTE curves µjr(·) across judges
rather than restricting µjr(·) = µr(·) for each judge j. We specify the signal quality parameters τjr
as being log-normally distributed (imposing the domain restriction of τjr > 0), jointly with the signal
thresholds κjr: ln τjr ∼ N(αr, ψ2

r) and κjr ∼ N(γr, δ2
r) with nonzero correlations allowed across j and

r. Appendix B.5 shows how this hierarchical approach can be viewed as parameterizing differences in
how judges weigh different defendant characteristics, such as demeanor or prior arrest record.

The hyperparameters governing the distributions of judge-specific MTE curves are identified by
quasi-experimental variation in pretrial release and misconduct rates, and can be estimated by a
simulated minimum distance (SMD) procedure that matches moments of such quasi-experimental

21Appendix B.2 shows how differences in release benefits and prior risk beliefs are observationally equivalent in this
model: both enter the κjr multiplicatively, such that for any κ ∈ R and τjr > 0 there exists a set of πjr and µ̃jr (each
ranging from 0 to 1) with κjr = κ. This equivalence reflects the general difficulty of disentangling racial bias due to
biased beliefs (as in Bordalo et al., 2016) from racial bias due to taste-based discrimination (as in Becker, 1957).

22Appendix Table A10 applies the generalized Sargan test of Frandsen et al. (2019) to samples of white and black
defendants with increasingly flexible b-spline approximations to the function linking outcomes to judge release propen-
sities. The chi-squared test statistics are consistently larger than the corresponding test degrees of freedom, suggesting
violations of conventional first-stage monotonicity.

24



variation. This procedure, described in full detail in Appendix B.6, first estimates race-specific curves-
of-best-fit through race-specific release and released misconduct rates (as in Section 5.2). We then
match the estimated intercept, slope, and curvature of these curves-of-best-fit, as well as the residual
variation in first-step estimates, to the corresponding moments of simulated quasi-experimental data
drawn from different parameterizations of the hierarchical MTE model. Finally, we use the SMD
estimates to compute empirical Bayes posteriors of the marginal released outcomes and signal quality
of each judge and race given the hyperparameter estimates and observed quasi-experimental data.

Figure 4 builds intuition for the model’s identification and SMD estimation by showing how differ-
ences in key hyperparameters manifest in the quasi-experimental variation. We construct this figure
by first simulating draws of κjr and τjr for a given race r across a large population of judges j with ar-
bitrarily varying leniency. We then plot the implied distribution of judge release rates E[Dij | Ri = r]
and released misconduct rates E[Y ∗i | Dij = 1, Ri = r], abstracting away from first-step estimation
error. Panels A and B set the variance of signal quality across judges to zero, satisfying the usual
first-stage monotonicity restriction and ensuring that the judge moments fall on a common frontier.
Panel A shows how differences in mean misconduct risk µr lead to differences in the vertical inter-
cept of these curves at one, or (per the discussion in Section 5.1) the release rate of a hypothetical
supremely lenient judge. Panel B shows how differences in mean signal quality instead lead to different
slopes of the curves, with higher τr resulting in a steeper relationship between the share of defendants
that a judge releases and the extent of pretrial misconduct among the released. Panels C and D of
Figure 4 then relax first-stage monotonicity by allowing signal quality to vary across judges. In this
case, the quasi-experimental variation no longer falls on a common frontier even without estimation
error. Panel C shows that a higher variance in signal quality manifests as more dispersion in released
misconduct rates among judges with similar release rates. Panel D shows that the trend in this dis-
tribution of points becomes more nonlinear when judge signal quality is more highly correlated with
judge leniency.

6.2 Results

Racial Bias and Statistical Discrimination

Table 5 reports SMD estimates of mean misconduct risk µr, the average of misconduct outcomes
for marginally released defendants µjr(κjr), and the average of judge signal quality τjr, with the
underlying hierarchical MTE model hyperparameter estimates reported in Appendix Table A11. The
average difference in marginal misconduct outcomes between white and black defendants captures the
overall extent of racial bias, while differences in either mean risk or signal quality by race capture
statistical discrimination. Columns 1-3 of Table 5 report estimates under the conventional first-
stage monotonicity restriction that signal quality for defendants of a given race is constant across
judges. Columns 4-6 relax this restriction, allowing judges to have different rankings of defendant
appropriateness for pretrial release.23

23The estimates in columns 1-3 of Table 5 are derived from the hyperparameter estimates in columns 1 and 4 of
Appendix Table A11, while columns 4-6 of Table 5 come from columns 2 and 5 of Appendix Table A11. The latter
assumes log signal quality and release thresholds are uncorrelated. A richer model that allows for such correlation is
estimated in columns 3 and 6 of Appendix Table A11. This richer model produces estimates that are very similar
to columns 2 and 5 but also considerably less precise. We therefore take the uncorrelated model as our baseline in
Table 5. We note that our baseline model still allows for correlation between judge signal quality and marginal released
outcomes, which we find to be large in Table 5. Appendix Figure A4 shows how these model hyperparameters fit the
quasi-experimental variation by plotting the model-implied average released misconduct rate across races and judges of
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In both sets of model estimates, we find evidence of both racial bias and statistical discrimination,
with the latter coming from a higher level of average risk (that exacerbates discrimination) and less
precise risk signals (that alleviates discrimination) for black defendants. Columns 4-6 of Table 5 show,
for example, that the expected misconduct rate of typical white defendants at the margin of pretrial
release is 0.609 (SE: 0.026), compared to 0.543 (SE: 0.018) for black defendants. The difference in
these mean marginally released outcomes is a statistically significant 6.6 percentage points (SE: 0.030),
indicating the existence of racial bias at the margin of release. Table 5 further shows considerable
scope for statistical discrimination. First, the model estimates confirm the finding in Section 5.2 that
mean risk is lower among white defendants than black defendants. In columns 4 and 5, this difference
in mean misconduct risk is 2.9 percentage points, less than half the size of the 7.2 percentage point
difference from our most conservative local linear extrapolation in Table 3 but similar to the 4.2
percentage point gap from our simple linear extrapolation. Second, we find that the typical judge
acts on higher-quality risk signals for white defendants than for black defendants. Columns 4 and 5
report an average signal quality of 1.18 (SE: 0.08) for white defendants and 0.83 (SE: 0.07) for black
defendants, implying that the typical noise in black risk signals is roughly 40 percent more dispersed.
Per the discussion of Figure 4, this result is consistent with the white line-of-best-fit in Figure 2 being
somewhat steeper than the black line-of-best-fit.24 With a majority of white and black defendants
released, higher white signal quality is likely to offset racial discrimination against black defendants
arising from other channels (see Section 3.2). Together, the racial differences in mean risk and signal
quality imply that analyses of racial bias alone (as in Arnold et al. (2018) and Marx (2018)) would
omit an important source of discrimination in this setting.

Table 5 further suggests that the conventional first-stage monotonicity restriction is inconsistent
with judge behavior in this setting. We find significant variation in judge signal quality when we relax
this restriction and allow judges to have different rankings of defendant appropriateness for pretrial
release in columns 4-6, with standard deviations of 0.14 (SE: 0.02) for white defendant signal quality
and 0.12 (SE: 0.01) for black defendant signal quality. This variation in judge skill is highly correlated
with variation in judge release preferences (which we also find to be sizable), with covariances between
judge signal quality and marginal released outcomes of 0.006 for white defendants and 0.004 for black
defendants (implying respective correlation coefficients of 0.72 and 0.68). While point estimates of the
mean parameters with and without conventional monotonicity are qualitatively similar, the precision
is higher without. The standard error on average racial bias, for example, falls by 29 percent, from
0.042 to 0.030, from column 3 to column 6. These precision gains also suggest that the model without
monotonicity provides a better fit to quasi-experimental data, consistent with a visual analysis of
Figure 2 and the formal tests in Appendix Table A10.

Appendix Table A14 uses the unrestricted model to quantify the joint role of racial bias and
statistical discrimination in driving racial discrimination in NYC bail decisions. Column 1 summarizes
the baseline degree of discrimination, racial bias, and differences in signal quality. The model-based

different leniencies, along with the estimates of release rates and released misconduct rates from Figure 2. Both model-
implied curves-of-best-fit are approximately linear, with slight upward curvature and a more steeply sloping curve for
white defendants.

24The mean signal quality estimates in Table 5 suggest that the typical NYC judge predicts misconduct risk with
considerable accuracy for both races. In terms of the model, a τjr of 1.18 (0.83) yields a receiver operating characteristics
curve with an Area Under the Curve (AUC) statistic of 0.801 (0.724) for white (black) defendants. By comparison,
Kleinberg et al. (2017b) obtain an AUC of 0.707 with a machine learning algorithm trained on FTA outcomes among
released NYC defendants. Simpler logit models which use the observables in column 3 of Table 2 to predict Y ∗i among
released defendants in our sample have AUCs of around 0.65 for both white and black individuals.

26



estimate of average unwarranted disparity, at 4.0 percentage points, is somewhat higher than our
most conservative estimate in Table 3 but similar to the estimate we obtain from the simple linear
extrapolation.25 Column 2 shows that average racial discrimination significantly declines when judge
leniency is counterfactually raised or lowered to equalize marginal released outcomes across white and
black defendants (with Panel A generally raising black release rates and Panel B generally lowering
white release rates). The average unwarranted disparity falls from 4.0 percentage points to -5.1
percentage points in Panel A and -2.0 percentage points in Panel B. This result shows that absent
racial bias the average unwarranted disparity is reversed, with white defendants becoming less likely
to be released than black defendants of identical misconduct potential. As expected, columns 3 and 4
show that this reversal is driven by the relatively higher signal quality for white defendants. Equalizing
signal quality across races for each judge, with and without racial bias, again results in average racial
discrimination against black defendants. The remaining statistical discrimination solely due to mean
risk differences in column 4 yields a mean unwarranted disparity of 2.8 percentage points when black
leniency and signal quality are counterfactually set, and an average unwarranted disparity of 4.3
percentage points when adjusting the corresponding white parameters.

Judge Heterogeneity

Appendix Tables A15–A16 explore variation in empirical Bayes posteriors of racial bias and signal
quality differences, following our analysis of the unwarranted disparity posteriors in Section 5.2. We
again report OLS estimates of the indicated posteriors on indicators for whether a judge is newly
appointed during our sample period, has above-average leniency, has an above-median share of black
defendants, and for what county courtroom the judge hears most cases in. We again weight these
regressions by estimates of the inverse posterior variance of the outcome variables, with very similar
results again obtained when weighting by judge caseload.

In Table A15, we find significantly higher levels of racial bias among newly appointed judges, more
lenient judges, and judges with a below-median share of black defendants. Courtroom indicators are
also highly predictive: together, the observable judge characteristics explain about 91 percent of the
variation in racial bias across judges, with the courtroom indicators alone explaining 73 percent. We
also find a moderately strong relationship between racial bias and overall discrimination, with our
discrimination measure explaining 12 percent of the variation in the judge-specific bias.

In Table A16, we find a relatively smaller racial gap in signal quality among newly appointed
judges and judges with an above-median share of black defendants. Here, judge leniency is not a
significant predictor of judge-specific signal quality by race. Courtroom indicators and other observable
characteristics of the judges again explain much of the variation in signal quality differences, with 79
percent of the variation explained when we include all judge observables. We find an even stronger
relationship between signal quality differences and overall discrimination than between racial bias
and discrimination, with our discrimination measure explaining 71 percent of the variation in the
judge-specific signal quality.

25All conclusions in Section 5.2, including the fraction of discriminatory NYC judges and heterogeneity results,
continue to hold with the MTE model estimates of µr (see Appendix Figure A3 and Appendix Table A12).
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7 Policy Simulations

Lastly, we use our hierarchical MTE model estimates to investigate whether racial discrimination
can be effectively targeted and potentially reduced with existing data. The reduced-form analysis in
Section 5 shows that judge-specific unwarranted disparities are relatively stable over time, suggesting
that identifying and targeting highly discriminatory judges for an appropriate intervention could help
reduce future discrimination. This analysis also shows that no more than one-third of the observed
release rate disparity between white and black defendants is explained by unobserved differences in
misconduct risk, suggesting that observational regressions may also be useful for targeting judge-
specific discrimination even in the absence of our quasi-experimental analysis. By linking unobserved
differences in misconduct risk, racial bias, and statistical discrimination in the release decisions of
each judge, the hierarchical MTE model provides the necessary structure to simulate the effects of
reducing racial discrimination using existing observational and quasi-experimental data.

Table 6 summarizes simulations that target both unwarranted disparity posteriors (columns 2 and
3) and observational disparities (columns 4 and 5). The simulations suppose that individual bail judges
can be subjected to race-specific release rate quotas that eliminate racial disparities, as estimated by
a policymaker using either an observational or quasi-experimental analysis. The simulation based on
the unwarranted disparity posteriors gauges the reliability of the individual predictions given the noise
in our estimation procedure. The simulation based on observational disparities further tests whether
conventional benchmarking regressions may be useful for targeting discrimination despite OVB. To
simulate both sets of policies, we redraw all judge-specific parameters for each race from the estimated
hierarchical MTE model 250 times, along with draws of appropriate estimation error. We use these to
simulate 250 draws of the quasi-experimental variation plotted in Figure 2. We then re-estimate the
MTE model in each draw and compute empirical Bayes posteriors, as in our analysis of the true data.
Finally, we force all or a subset of simulated judges to adjust their race-specific leniencies to the point
where their racial disparities are expected to be eliminated given the simulated model estimates and
posteriors. Panel A simulates closing the targeted disparities for all judges, while Panel B simulates
closing the targeted disparities only for judges in the top quintile of the estimated disparities.26

The simulations suggest that racial discrimination can be reliably targeted using our estimated
unwarranted disparity posteriors, despite estimation error. Targeting the disparities of all judges
using the unwarranted disparity posteriors results in the virtual elimination of racial discrimination
(columns 2 and 3 of Panel A), while targeting only judges in the top quintile results in a 35 percent
reduction in the average level discrimination (columns 2 and 3 of Panel B). These simulated reductions
are essentially unchanged when the targeted judges are forced to increase their leniency (typically for
black defendants) in column 2 or decrease their leniency (typically for white defendants) in column 3.
The average standard deviation of unwarranted disparity across judges, reported in brackets, is also
reduced from around 3 percentage points to around 2 percentage points in all cases. Observational
release rate disparities still remain when eliminating discrimination, however, as the higher level of
mean risk for black defendants leads to OVB in the policy target.

26Column 1 of Table 6 displays the baseline simulated average of the unwarranted disparities, observational disparities,
and racial bias. Column 1 reports an average unwarranted disparity of 4.0 percentage points, which is a bit larger than
the 3.6 percentage point average unwarranted disparity found with our most conservative local linear extrapolation in
Section 5 due to the difference in model mean risk estimates. The estimated gap in mean risk implies a larger average
observational disparity of 4.9 percentage points, which roughly matches the benchmarking regression estimate of 5.0
percentage points in Section 4.
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Targeting judges with observational comparisons can also reduce discrimination, as the observed
release rate disparities are highly correlated with the unwarranted disparity posteriors. Appendix
Figure A5 shows, for example, that we obtain a high “forecast” coefficient of 0.874 (SE: 0.01) from
regressing estimated judge-specific unwarranted disparity posteriors on observational disparity poste-
riors, along with a very high R-squared of 0.963. Consequently, we find in Table 6 that targeting all
judges with simulated observational disparity posteriors reduces average unwarranted disparity by 5.0
percentage points (columns 4 and 5 of Panel A). The resulting average unwarranted disparity of -1.0
percentage point reflects the fact that the level of observed disparities is too high because of OVB.
When targeting just the observational disparity posteriors in the top quintile of judges, the average
unwarranted disparity is reduced by 43 percent but not reversed (columns 4 and 5 of Panel B). This
finding, that observational benchmarking regressions can be useful for monitoring and targeting racial
discrimination despite OVB, mirrors a result in the education setting on the utility of biased observa-
tional value-added measures (e.g., Angrist et al., 2017). There, as here, observational rankings prove
to be highly predictive of policy-relevant parameters.27

8 Conclusion

There are large racial disparities at every stage of the criminal justice system, but it is unclear
whether these disparities reflect racial discrimination or omitted variables bias. This paper shows
that racial discrimination in bail decisions can be measured using observational comparisons of white
and black release rates that are rescaled with quasi-experimental estimates of average white and
black misconduct risk. Estimates from NYC show that more than two-thirds of the observed racial
disparity in release decisions is due to racial discrimination, with less than one-third due to unobserved
racial differences in misconduct risk. Leveraging a novel hierarchical MTE model, we show that this
discrimination is driven by both racial bias and statistical discrimination, with the latter due to a
higher level of average risk (that exacerbates discrimination) and less precise risk signals (that offsets
discrimination) for black defendants. Policy simulations suggest that discrimination for individual
judges can be reliably monitored and targeted with existing data.

The methods we use to study racial discrimination in bail decisions may prove useful for measuring
discrimination in several other high-stakes settings, both within and outside the criminal justice sys-
tem. One key requirement is the quasi-random assignment of decision-makers, such as judges, police
officers, employers, government benefits examiners, or medical providers. A second requirement is that
the objective of these decision-makers is both known and well-measured among the subset of individ-
uals that the decision-maker endogenously selects. Mapping these settings to the quasi-experimental
approach of this paper can help bridge the gap between internally valid (but narrowly applicable)
experimental audit studies and often-deployed (but potentially biased) observational measures.

27Our simulations also highlight the impossibility of simultaneously eliminating racial discrimination (on average)
and racial bias (at the margin) when either mean misconduct risk or the risk signal quality differ for white and black
defendants (Kleinberg et al., 2017a). The simulation based on the unwarranted disparity posteriors, for example, results
in nonzero racial bias against black defendants of between 2.3 and 3.9 percentage points at the margin of release.
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Figure 1: Observational Release Rate Disparities
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Notes. This figure plots the distribution of observational release rate disparity posteriors for the 268 judges in our
sample. Estimates are from the coefficients of an OLS regression of an indicator for pretrial release on white×judge
fixed effects, controlling for judge main effects. Empirical Bayes posteriors are computed using a standard shrinkage
procedure, as described in Appendix B.4. The unadjusted line shows the distribution of posteriors when controlling only
for the main judge fixed effects. The covariate-adjusted posterior distribution adds the baseline controls from Table 2
and court-by-time fixed effects. Means and standard deviations refer to the estimated prior distribution. The fractions
of positive disparities are computed as posterior average effects, as described in Appendix B.4.
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Figure 2: Judge-Specific Release Rates and Conditional Misconduct Rates
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of pretrial misconduct
among the set of released defendants. All estimates adjust for the baseline controls in Table 2 and court-by-time fixed
effects. The figure also plots race-specific linear, quadratic, and local linear curves of best fit, obtained from judge-level
regressions that inverse-weight by the variance of the estimated misconduct rate among released defendants. The local
linear regressions use a Gaussian kernel with a race-specific rule-of-thumb bandwidth.
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Figure 3: Observational and Unwarranted Release Rate Disparities
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Notes. This figure plots the distribution of observational and unwarranted release rate disparity posteriors for the
268 judges in our sample. Covariate-adjusted disparities are estimated by the coefficients of an OLS regression of an
indicator for pretrial release on white×judge fixed effects, controling for judge main effects, the baseline controls from
Table 2, and court-by-time fixed effects. Unwarranted disparities are estimated as described in Section 5, using the local
linear extrapolations from Figure 2 to estimate the mean risk of each race. Empirical Bayes posteriors are computed
using a standard shrinkage procedure, as described in Appendix B.4. Means and standard deviations refer to the
estimated prior distribution. The fractions of positive disparities are computed as posterior average effects, as described
in Appendix B.4.
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Figure 4: Identification of Hierarchical MTE Model Parameters

A. Mean Misconduct Risk, With Monotonicity B. Mean Signal Quality, With Monotonicity
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Notes. This figure plots simulated race- and judge-specific release rates against rates of pretrial misconduct among
the set of released defendants under different parameterizations of the hierarchical MTE model described in the text.
Panel A plots differences in mean misconduct risk (µ = 0.4 vs. µ = 0.3) when conventional MTE monotonicity holds
(ψ = 0). Panel B plots differences in mean signal quality (α = 1 vs. α = 0) when conventional MTE monotonicity
holds (ψ = 0). Panel C plots differences in signal quality variance (ψ = 0.4 vs. ψ = 0.1). Panel D plots differences in
the covariance between judge signal quality and judge leniency (β = 2 vs. β = 0.1). The default parameterization is
µ = 0.4, α = 0.2, ψ = 0.1, β = 0, γ = 1.3, and δ = 1.
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Table 1: Descriptive Statistics

All White Black
Defendants Defendants Defendants

Panel A: Pretrial Release (1) (2) (3)
Released Before Trial 0.730 0.767 0.695

Share ROR 0.852 0.852 0.851
Share Money Bail 0.144 0.144 0.145
Share Other Bail Type 0.004 0.004 0.004
Share Remanded 0.000 0.000 0.000

Panel B: Defendant Characteristics
White 0.478 1.000 0.000
Male 0.821 0.839 0.804
Age at Arrest 31.97 32.06 31.89
Prior Rearrest 0.229 0.204 0.253
Prior FTA 0.103 0.087 0.117

Panel C: Charge Characteristics
Number of Charges 1.150 1.184 1.118
Felony Charge 0.362 0.355 0.368
Misdemeanor Charge 0.638 0.645 0.632
Any Drug Charge 0.256 0.257 0.256
Any DUI Charge 0.046 0.067 0.027
Any Violent Charge 0.143 0.124 0.160
Any Property Charge 0.136 0.127 0.144

Panel D: Pretrial Misconduct, When Released
Pretrial Misconduct 0.299 0.266 0.332

Share Rearrest Only 0.499 0.498 0.499
Share FTA Only 0.281 0.296 0.269
Share Rearrest and FTA 0.220 0.205 0.232

Total Cases 595,186 284,598 310,588
Cases with Defendant Released 434,201 218,256 215,945

Notes. This table summarizes the NYC analysis sample. The sample consists of bail hearings that were quasi-
randomly assigned judges between November 1, 2008 and November 1, 2013, as described in the text. Information on
demographics and criminal outcomes is derived from court records as described in the text. Pretrial release is defined
as meeting the bail conditions set by the first assigned bail judge. ROR (released on recognizance) is defined as being
released without any conditions. FTA (failure to appear) is defined as failing to appear at a mandated court date.
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Table 2: Regression Estimates of System-Wide Release Rate Disparity

(1) (2) (3)
White 0.072 0.053 0.052

(0.005) (0.004) (0.004)
Male -0.097 -0.092

(0.005) (0.004)
Age at Arrest -0.005 -0.005

(0.000) (0.000)
Prior Rearrest -0.066 -0.068

(0.004) (0.004)
Prior FTA -0.209 -0.208

(0.005) (0.005)
Felony Charge -0.192 -0.171

(0.006) (0.005)
Any Drug Charge -0.055 -0.057

(0.007) (0.007)
Any DUI Charge 0.116 0.119

(0.004) (0.004)
Any Violent Charge -0.137 -0.146

(0.007) (0.007)
Any Property Charge -0.070 -0.072

(0.005) (0.005)
Baseline Controls No Yes Yes
Court x Time FE No No Yes
Mean Release Rate 0.730 0.730 0.730
Cases 595,186 595,186 595,186

Notes. This table reports OLS estimates of regressions of an indicator for pretrial release on defendant characteristics.
The regressions are estimated on the sample described in Table 1. Robust standard errors, two-way clustered at the
individual and the judge level, are reported in parentheses.
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Table 3: Mean Risk and Unwarranted Disparity Estimates

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.352 0.333 0.352

(0.007) (0.019) (0.014)
Black Defendants 0.395 0.415 0.424

(0.006) (0.021) (0.016)

Panel B: System-Wide Discrimination
Mean Across Cases 0.044 0.037 0.036

(0.002) (0.006) (0.005)

Panel C: Judge-Level Discrimination
Mean Across Judges 0.043 0.035 0.034

(0.002) (0.006) (0.005)
Std. Dev. Across Judges 0.031 0.030 0.031

(0.003) (0.003) (0.003)
Fraction Positive 0.922 0.884 0.875

(0.017) (0.041) (0.035)
Judges 268 268 268

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from different extrapolations
of the variation in Figure 2. Panel A reports estimates of race-specific average misconduct risk, Panel B reports
estimates of system-wide (case-weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of
summary statistics for the judge-level unwarranted disparity prior distribution. To estimate mean risk, column 1 uses
a linear extrapolation of the variation in Figure 2, while column 2 uses a quadratic extrapolation and column 3 uses
a local linear extrapolation with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way
clustered at the individual and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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Table 4: Unwarranted Disparities and Judge Characteristics
Split-Sample

Full-Sample Disparities Disparities
(1) (2) (3) (4) (5) (6) (7)

New Judge -0.012 -0.011 -0.004
(0.004) (0.003) (0.004)

Lenient Judge -0.008 -0.010 -0.005
(0.003) (0.003) (0.002)

Above-Median Black Share -0.007 -0.006 0.002
(0.003) (0.004) (0.003)

Manhattan Courtroom 0.023 0.021 0.014
(0.004) (0.004) (0.003)

Bronx Courtroom -0.003 -0.006 0.007
(0.003) (0.004) (0.004)

Queens Courtroom 0.014 0.008 0.009
(0.004) (0.005) (0.004)

Richmond Courtroom 0.010 0.005 0.016
(0.004) (0.006) (0.004)

Lagged Disparity 0.518 0.416
(0.062) (0.071)

Mean Disparity 0.034 0.034 0.034 0.034 0.034 0.047 0.047
R2 0.043 0.035 0.027 0.223 0.312 0.280 0.342
Judges 268 268 268 268 268 252 252
Notes. This table reports OLS estimates of regressions of unwarranted disparity posteriors on judge characteristics.

Unwarranted disparities are estimated as described in Section 5, using the benchmark local linear estimate of mean
risk. New judges are defined as judges appointed during our estimation period. Lenient judges are defined as judges
with above-average leniency, controlling for court-by-time fixed effects. Courtroom locations are defined using the
location of the modal case heard by each judge. Split-sample disparities are computed by splitting each judge’s sample
of cases at the median case and constructing two samples, a before-median case sample and an after-median case
sample. Unwarranted disparities are then re-estimated within each subsample. The estimation procedure conditions on
court-by-time effects, which causes a small number of judge effects to become collinear with the court-by-time effects
and dropped. All specifications are weighted by the inverse variance of the unwarranted disparity posteriors. Robust
standard errors are reported in parentheses.
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Table 5: Hierarchical MTE Model Estimates

With Monotonicity Without Monotonicity
White Black Diff. White Black Diff.
(1) (2) (3) (4) (5) (6)

Mean Misconduct Risk 0.374 0.429 -0.055 0.400 0.429 -0.029
(0.014) (0.012) (0.019) (0.007) (0.007) (0.009)

Mean Marginal Released Outcome 0.585 0.526 0.059 0.609 0.543 0.066
(0.026) (0.042) (0.042) (0.026) (0.018) (0.030)

Mean Signal Quality 1.866 1.321 0.546 1.184 0.828 0.356
(0.074) (0.211) (0.223) (0.084) (0.065) (0.101)

Marginal Outcome Std. Dev. 0.192 0.105 0.087 0.060 0.050 0.010
(0.020) (0.028) (0.030) (0.006) (0.004) (0.007)

Signal Quality Std. Dev. 0.138 0.118 0.020
(0.020) (0.013) (0.023)

Covariance of Signal Quality and 0.006 0.004 0.003
Marginal Released Outcomes (0.002) (0.001) (0.002)

Judges 268 268 268 268 268 268
Notes. This table reports simulated minimum distance estimates of moments of the MTE model described in Section

6. See Table A11 for the underlying hyperparameter estimates. Columns 4-6 estimate the baseline model, while columns
1-3 impose conventional monotonicity. Robust standard errors, two-way clustered at the individual and judge level, are
obtained by a bootstrapping procedure and appear in parentheses.
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Table 6: Policy Simulations

Baseline

Target Unwarranted Target Observational
Disparity Posteriors Disparity Posteriors
Increase Decrease Increase Decrease
Leniency Leniency Leniency Leniency

Panel A: Close All Disparities (1) (2) (3) (4) (5)
Mean Unwarranted Disparity 0.040 0.001 0.001 -0.009 -0.010

[0.032] [0.020] [0.025] [0.019] [0.025]
Mean Observational Disparity 0.049 0.010 0.010 0.000 -0.001

[0.032] [0.020] [0.025] [0.019] [0.025]
Racial Bias 0.065 0.039 0.023 0.032 0.012

[0.049] [0.045] [0.038] [0.045] [0.037]

Panel B: Close Top-Quintile Disparities
Mean Unwarranted Disparity 0.026 0.026 0.023 0.023

[0.030] [0.032] [0.032] [0.034]
Mean Observational Disparity 0.035 0.035 0.032 0.032

[0.031] [0.032] [0.033] [0.034]
Racial Bias 0.056 0.050 0.054 0.047

[0.049] [0.051] [0.050] [0.053]
Judges 268 268 268 268 268

Notes. This table reports the results from a series of policy simulations. Column 1 reports the mean unwarranted
disparity, observational disparity, and racial bias across judges and 250 simulations of the hierarchical MTE model.
Average standard deviations across judges are included in brackets. Simulations are based on the estimates from
columns 2 and 4 of Appendix Table A11. Column 2 of Panel A recomputes the statistics for a counterfactual in which
the lower of the black or white release rate of each judge is raised to equalize unwarranted disparity posteriors, while
column 3 of Panel A does the same by lowering one of the two release rates. Columns 4 and 5 of Panel A instead
adjust release rates to equalize observational disparity posteriors. Panel B conducts the counterfactual exercises only
on judges ranked in the top quintile of unwarranted (columns 2 and 3) or observational (columns 4 and 5) disparity
posteriors. Estimates of the model hyperparameters and empirical Bayes posteriors of all judge-specific parameters are
recomputed in each simulation draw via the SMD procedure outlined in the text, using moments simulated according
to the estimated distribution of reduced-form estimates in Figure 2.
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A Appendix Figures and Tables

Appendix Figure A1: Placebo Mean Risk Extrapolation
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of predicted pretrial
misconduct among the set of released defendants. Predicted misconduct is given by the fitted values of an OLS regression
of misconduct on the regressors in column 3 of Table 2, estimated in the set of released defendants. Average predicted
misconduct rates in the full sample of white and black defendants are indicated with solid markers at the maximal
release rate of one. All estimates adjust for the baseline controls in Table 2 and court-by-time fixed effects. The figure
also plots race-specific linear, quadratic, and local linear curves of best fit, obtained from judge-level regressions that
inverse-weight by the variance of the estimated predicted misconduct rate among released defendants. The local linear
regression uses a Gaussian kernel with a race-specific rule-of-thumb bandwidth. 95 percent confidence intervals for the
local linear extrapolations’ intercept estimates at one, obtained from robust standard errors two-way clustered at the
individual and judge level, are indicated with brackets.
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Appendix Figure A2: Sensitivity Analysis
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Notes. This figure shows how our estimate of system-wide discrimination changes under different estimates of white
and black mean risk. The mean risk estimates obtained from the linear, quadratic, and local linear extrapolations in
Figure 2 are indicated by solid, dashed, and dotted lines.
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Appendix Figure A3: Unwarranted Release Rate Disparities, Model-Based Mean Risk Estimates

Covariate-Adjusted Disparity_______________________
 Mean = 0.050
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 Mean = 0.042
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Notes. This figure plots the distribution of observational and unwarranted release rate disparity posteriors for the 268
judges in our sample. Covariate-adjusted disparities are estimated by the coefficients of an OLS regression of an indicator
for pretrial release on white×judge fixed effects, controling for judge main effects, the baseline controls from Table 2,
and court-by-time fixed effects. Unwarranted disparities are estimated as described in Section 5, using the hierarchical
MTE model estimates of mean risk for each race. Empirical Bayes posteriors are computed using a standard shrinkage
procedure, as described in Appendix B.4. Means and standard deviations refer to the estimated prior distribution. The
fractions of positive disparities are computed as posterior average effects, as described in Appendix B.4
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Appendix Figure A4: Hierarchical MTE Model Fit
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of pretrial misconduct
among the set of released defendants. All estimates adjust for the baseline controls in Table 2 and court-by-time
fixed effects. The figure also plots race-specific curves of best fit implied by our baseline hierarchical MTE model
hyperparameter estimates.
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Appendix Figure A5: Predictiveness of Observational Release Rate Disparities
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Notes. This figure plots unwarranted white-black release rate disparity posteriors against the corresponding covariate
adjusted release rate disparity posteriors for the 268 judges in our sample. Observational disparities are estimated by
the coefficients of an OLS regression of an indicator for pretrial release on white×judge fixed effects, controling for judge
main effects, the baseline controls from Table 2, and court-by-time fixed effects. Unwarranted disparities are estimated
as described in Section 5, using the local linear extrapolation from Figure 2 to estimate the mean risk of each race.
Empirical Bayes posteriors are computed using a standard shrinkage procedure, as described in Appendix B.4. The
slope of the solid line indicates the forecast coefficient.
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Appendix Table A1: Judge Leniency and Sample Attrition

All White Black
Defendants Defendants Defendants

(1) (2) (3)
Dropped from Sample 0.00015 0.00010 0.00020

(0.00014) (0.00014) (0.00017)
Baseline Controls Yes Yes Yes
Court x Time FE Yes Yes Yes
Mean Sample Attrition 0.416 0.409 0.424
Cases 1,425,652 726,284 697,597

Notes. This table reports OLS estimates of regressions of judge leniency on an indicator for leaving the sample due
to case adjournment or case disposal, the baseline controls in Table 2, and court-by-time fixed effects. The regressions
are estimated on the sample described in Table 1. Judge leniency is estimated using data from other cases assigned to
a given bail judge, following the procedure described in Section 4.1. Robust standard errors, two-way clustered at the
individual and the judge level, are reported in parentheses.
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Appendix Table A2: Descriptive Statistics by Sample

All Defendants White Defendants Black Defendants
Full Estimation Full Estimation Full Estimation

Sample Sample Sample Sample Sample Sample
Panel A: Pretrial Release (1) (2) (3) (4) (5) (6)
Released Before Trial 0.856 0.730 0.879 0.767 0.832 0.695

Share ROR 0.603 0.852 0.620 0.852 0.586 0.851
Share Disposed 0.295 0.000 0.266 0.000 0.327 0.000
Share Adjourned 0.192 0.000 0.201 0.000 0.183 0.000
Share Money Bail 0.068 0.144 0.069 0.144 0.066 0.145
Share Other Bail Type 0.329 0.004 0.311 0.004 0.348 0.004
Share Remanded 0.000 0.000 0.000 0.000 0.000 0.000

Panel B: Defendant Characteristics
Black 0.495 0.522 0.000 0.000 1.000 1.000
Male 0.820 0.821 0.826 0.839 0.813 0.804
Age at Arrest 31.871 31.969 31.667 32.055 32.080 31.890
Prior Rearrest 0.189 0.229 0.164 0.204 0.214 0.253
Prior FTA 0.083 0.103 0.068 0.087 0.099 0.117

Panel C: Charge Characteristics
Number of Charges 1.100 1.150 1.122 1.184 1.078 1.118
Felony Charge 0.183 0.362 0.177 0.355 0.188 0.368
Misdemeanor Charge 0.817 0.638 0.823 0.645 0.812 0.632
Any Drug Charge 0.340 0.256 0.327 0.257 0.352 0.256
Any DUI Charge 0.033 0.046 0.048 0.067 0.017 0.027
Any Violent Charge 0.071 0.143 0.062 0.124 0.081 0.160
Any Property Charge 0.217 0.136 0.209 0.127 0.226 0.144

Cases 1,417,434 595,186 715,867 284,598 701,567 310,588
Notes. This table summarizes the difference between the NYC analysis sample and the full sample of NYC arraign-

ments. The full sample consists of all bail hearings between November 1, 2008 and November 1, 2013. The analysis
sample consists of bail hearings that were quasi-randomly assigned to judges between November 1, 2008 and November
1, 2013, as described in the text. Information on demographics and criminal outcomes is derived from court records as
described in the text. Pretrial release is defined as meeting the bail conditions set by the first assigned bail judge. ROR
(released on Recognizance) is defined as being released without any conditions. FTA (failure to appear) is defined as
failing to appear at a mandated court date.
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Appendix Table A3: Tests of Quasi-Random Judge Assignment

All White Black
Defendants Defendants Defendants

(1) (2) (3)
White 0.00013

(0.00009)
Male 0.00003 0.00003 0.00004

(0.00014) (0.00019) (0.00018)
Age at Arrest -0.00011 -0.00015 -0.00008

(0.00004) (0.00006) (0.00005)
Prior Rearrest -0.00021 0.00007 -0.00044

(0.00011) (0.00018) (0.00015)
Prior FTA 0.00016 -0.00014 0.00039

(0.00016) (0.00024) (0.00023)
Number of Charges -0.00001 -0.00001 -0.00001

(0.00001) (0.00001) (0.00003)
Felony Charge 0.00025 0.00011 0.00039

(0.00020) (0.00023) (0.00025)
Any Drug Charge -0.00022 -0.00017 -0.00027

(0.00016) (0.00021) (0.00018)
Any DUI Charge 0.00045 0.00051 0.00008

(0.00027) (0.00032) (0.00045)
Any Violent Charge -0.00008 -0.00023 0.00001

(0.00023) (0.00033) (0.00025)
Any Property Charge -0.00033 -0.00028 -0.00036

(0.00018) (0.00019) (0.00027)
Joint p-value [0.10521] [0.30945] [0.07931]
Court x Time FE Yes Yes Yes
Cases 595,186 284,598 310,588

Notes. This table reports OLS estimates of regressions of judge leniency on defendant characteristics. The regressions
are estimated on the sample described in Table 1. Judge leniency is estimated using data from other cases assigned to a
given bail judge, following the procedure described in Section 4.1. All regressions control for court-by-time fixed effects.
The p-values reported at the bottom of each column are from F-tests of the joint significance of the variables listed in
the rows. Robust standard errors, two-way clustered at the individual and the judge level, are reported in parentheses.
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Appendix Table A4: First Stage Effects of Judge Leniency

All White Black
Defendants Defendants Defendants

(1) (2) (3)
Judge Leniency 0.953 0.774 1.112

(0.024) (0.029) (0.031)
Baseline Controls Yes Yes Yes
Court x Time FE Yes Yes Yes
Mean Release Rate 0.730 0.767 0.695
R2 0.178 0.172 0.187
Cases 595,186 284,598 310,588

Notes. This table reports OLS estimates of regressions of an indicator for pretrial release on judge leniency. The
regressions are estimated on the sample described in Table 1. Judge leniency is estimated using data from other cases
assigned to a bail judge, following the procedure described in Section 4.1. All regressions control for the baseline controls
in Table 2 and court-by-time fixed effects. Robust standard errors, two-way clustered at the individual and the judge
level, are reported in parentheses.
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Appendix Table A5: Simple Numerical Example of Unwarranted Disparity Estimation

Scaling Number of Number Release Release
Factor Defendants Released Rate Disparity

Panel A: Observational Estimates (1) (2) (3) (4) (5)

White Defendants Y ∗i = 0 1 75 75 0.75
Y ∗i = 1 1 25 0 0.50

Black Defendants Y ∗i = 0 1 25 25 0.25
Y ∗i = 1 1 75 0

Panel B: Rescaled Estimates

White Defendants Y ∗i = 0 2/3 50 50 0.50
Y ∗i = 1 2 50 0 0.00

Black Defendants Y ∗i = 0 2 50 50 0.50
Y ∗i = 1 2/3 50 0

Notes: This table uses a simple numerical example to illustrate how unwarranted disparities can be measured with
observational release rate comparisons that are rescaled using average white and black misconduct risk. We assume
there is one race-neutral judge who can perfectly predict potential misconduct Y ∗i , 100 black defendants where 75 have
Y ∗i = 1, and 100 white defendants where 25 have Y ∗i = 1. Panel A shows that the perfectly predictive judge has a white
release rate of 0.75 but a black release rate of 0.25, meaning that an observational comparison would find that white
defendants have a 50 percentage point higher release rate than black defendants despite the judge being race-neutral.
Panel B shows that the true unwarranted disparity of zero can be measured by rescaling this observational release rate
comparison with the scaling factor described in the text. Column 1 of Panel B shows the scaling factor (ωi) in this
example, and column 5 shows the resulting unwarranted disparity estimate.
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Appendix Table A6: Unwarranted Disparity Estimation for NYC Release Decisions

Scaling Number of Number Release Release
Factor Defendants Released Rate Disparity

Panel A: Observational Estimates (1) (2) (3) (4) (5)

White Defendants Y ∗i = 0 1.000 189,551 157,550 0.756
Y ∗i = 1 1.000 102,963 63,543 0.053

Black Defendants Y ∗i = 0 1.000 184,403 150,232 0.702
Y ∗i = 1 1.000 135,756 74,633

Panel B: Rescaled Estimates

White Defendants Y ∗i = 0 0.942 178,540 148,398 0.748
Y ∗i = 1 1.107 113,974 70,338 0.036

Black Defendants Y ∗i = 0 1.060 195,413 159,202 0.711
Y ∗i = 1 0.919 124,746 68,580

Notes: This table calculates system-wide unwarranted disparity in NYC by rescaling observational release rate
comparisons using estimates of average white and black misconduct risk. In Panel A we use the local linear estimates of
mean risk in Table 3 to estimate the number of defendants with and without misconduct potential (column 2) as well as
the number of such defendants that are released (column 3). These estimates imply that an observational comparison
would find that white defendants have a 5.3 percentage point higher release rate than black defendants. In Panel B we
use the same mean risk estimates to rescale this observational release rate comparison with the scaling factor described
in the text. Column 1 of Panel B shows the scaling factor (ωi) given by these estimates, and column 5 shows the
resulting unwarranted disparity estimate.
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Appendix Table A7: Robustness to Pretrial Misconduct Outcome

Any Case Any Violent
Misconduct FTA Rearrest Rearrest

Panel A: Mean Risk by Race (1) (2) (3) (4)
White Defendants 0.352 0.181 0.247 0.009

(0.014) (0.013) (0.017) (0.004)
Black Defendants 0.424 0.231 0.307 0.012

(0.016) (0.012) (0.017) (0.005)

Panel B: System-Wide Discrimination
Mean Across Cases 0.036 0.042 0.041 0.055

(0.005) (0.004) (0.004) (1.351)

Panel C: Judge-Level Discrimination
Mean Across Judges 0.034 0.041 0.040 0.054

(0.005) (0.004) (0.004) (1.202)
Std. Dev. Across Judges 0.031 0.033 0.032 0.038

(0.003) (0.003) (0.003) (1.012)
Fraction Positive 0.875 0.903 0.902 0.935

(0.035) (0.026) (0.027) (0.089)
Judges 268 268 268 268

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities for different outcome variables.
Panel A reports estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide (case-
weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of summary statistics for the judge-level
unwarranted disparity prior distribution. Column 1 adjusts for differences by race in the mean risk of any misconduct
(either rearrest or FTA). Column 2 adjusts for differences by race in the mean risk of FTA. Column 3 adjusts for
differences by race in the mean risk of rearrest. Column 4 adjusts for differences by race in the mean risk of rearrest
for a violent crime. Robust standard errors, two-way clustered at the individual and judge level, are obtained by a
bootstrapping procedure and appear in parentheses.
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Appendix Table A8: Robustness to Judge Decision Variable

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.359 0.351 0.354

(0.007) (0.024) (0.030)
Black Defendants 0.401 0.434 0.430

(0.006) (0.023) (0.037)

Panel B: System-Wide Discrimination
Mean Across Cases 0.035 0.025 0.026

(0.002) (0.007) (0.011)

Panel C: Judge-Level Discrimination
Mean Across Judges 0.033 0.023 0.025

(0.002) (0.007) (0.011)
Std. Dev. Across Judges 0.034 0.034 0.034

(0.003) (0.003) (0.003)
Fraction Positive 0.839 0.756 0.770

(0.019) (0.055) (0.084)
Judges 268 268 268

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from different extrapolations
of the variation in Figure 2. The judge’s decision variable in this table is release on recognizance (ROR) versus
the assignment of any monetary bail, where there is a 4.1 percentage point release rate disparity after adjusting for
covariates. Panel A reports estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide
(case-weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of summary statistics for the
judge-level unwarranted disparity prior distribution. To estimate mean risk, column 1 uses a linear extrapolation of
the variation in Figure 2, while column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation
with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual
and judge level, are obtained by a bootstrapping procedure and appear in parentheses.

55



Appendix Table A9: Robustness to Definition of Defendant Race

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.283 0.206 0.273

(0.010) (0.028) (0.018)
Black or Hispanic Defendants 0.386 0.401 0.401

(0.005) (0.018) (0.012)

Panel B: System-Wide Discrimination
Mean Across Cases 0.058 0.108 0.059

(0.003) (0.027) (0.008)

Panel C: Judge-Level Discrimination
Mean Across Judges 0.058 0.108 0.059

(0.004) (0.025) (0.008)
Std. Dev. Across Judges 0.021 0.000 0.018

(0.004) (0.015) (0.005)
Fraction Positive 0.997 1.000 1.000

(0.022) (0.008) (0.025)
Judges 250 250 250

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from different extrapolations
of the variation in Figure 2. The racial comparison in this table is between black or Hispanic defendants to non-
Hispanic white defendants, where there is a 7.3 percentage point release rate disparity after adjusting for covariates.
Panel A reports estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide (case-
weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of summary statistics for the judge-level
unwarranted disparity prior distribution. To estimate mean risk, column 1 uses a linear extrapolation of the variation in
Figure 2, while column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation with a Gaussian
kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual and judge level, are
obtained by a bootstrapping procedure and appear in parentheses.

56



Appendix Table A10: Tests of Conventional Monotonicity

Number of Spline Knots
5 10 15 20

Panel A: White Defendants (1) (2) (3) (4)
Test Statistic 303.5 293.9 279.8 272.1
Deg. of Freedom 260 255 250 245
p-value 0.033 0.047 0.094 0.113

Cases 284,598 284,598 284,598 284,598

Panel B: Black Defendants
Test Statistic 392.7 389.0 379.7 348.9
Deg. of Freedom 260 255 250 245
p-value [<0.001] [<0.001] [<0.001] [<0.001]

Cases 310,588 310,588 310,588 310,588
Notes. This table reports the results of the tests of conventional MTE monotonicity proposed by Frandsen et

al. (2019), computed separately by defendant race. Test statistics are based on quadratic b-spline estimates of the
relationship between misconduct outcomes and judge leniency, with the number of knots specified in each column,
controlling for court-by-time fixed effects. The regressions are estimated on the sample described in Table 1.
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Appendix Table A11: Hierarchical MTE Model Hyperparameter Estimates

White Defendants Black Defendants
(1) (2) (3) (4) (5) (6)

Mean Misconduct Risk (µ) 0.374 0.400 0.380 0.429 0.429 0.447
(0.014) (0.007) (0.018) (0.012) (0.007) (0.014)

Mean ln(Signal Quality) (α) 0.624 0.163 0.271 0.278 -0.198 -0.249
(0.039) (0.071) (0.102) (0.160) (0.079) (0.140)

Mean Release Threshold (γ) 0.761 1.101 1.211 0.731 1.164 1.072
(0.035) (0.029) (0.123) (0.028) (0.045) (0.059)

Release Threshold Std. Dev. (δ) 0.266 0.115 0.159 0.253 0.214 0.168
(0.031) (0.012) (0.052) (0.028) (0.024) (0.033)

ln(Signal Quality) Std. Dev. (ψ) 0.115 0.112 0.141 0.146
(0.012) (0.011) (0.014) (0.013)

Regression of ln(Signal Quality) -0.273 0.227
on Release Threshold (β) (0.173) (0.249)

Judges 268 268 268 268 268 268
Notes. This table reports simulated minimum distance estimates of the MTE model described in the text. 500

simulation draws are used. Columns 3 and 6 estimate the full model with all hyperparameters. Columns 2 and 5
restrict β = 0 (omitting the quadratic regression coefficient moment), while columns 1 and 4 also restrict ψ = 0
(omitting the residual variance moment). The baseline model used in the text and summarized in Table 5 comes
from columns 2 and 5 of this table. Robust standard errors, two-way clustered at the individual and the judge level,
are reported in parentheses.
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Appendix Table A12: Unwarranted Disparities and Judge Characteristics, Model-Based Mean Risk
Split-Sample

Full-Sample Disparities Disparities
(1) (2) (3) (4) (5) (6) (7)

New Judge -0.013 -0.011 -0.004
(0.004) (0.003) (0.004)

Lenient Judge -0.009 -0.011 -0.009
(0.003) (0.003) (0.003)

Above-Median Black Share -0.007 -0.006 -0.000
(0.003) (0.004) (0.004)

Manhattan Courtroom 0.022 0.020 0.016
(0.004) (0.004) (0.004)

Bronx Courtroom -0.004 -0.007 -0.001
(0.003) (0.004) (0.005)

Queens Courtroom 0.013 0.008 0.009
(0.004) (0.005) (0.005)

Richmond Courtroom 0.010 0.005 0.011
(0.004) (0.006) (0.006)

Lagged Disparities 0.305 0.201
(0.050) (0.053)

Mean Disparity 0.042 0.042 0.042 0.042 0.042 0.042 0.042
R2 0.044 0.043 0.022 0.212 0.309 0.235 0.332
Judges 268 268 268 268 268 252 252
Notes. This table reports OLS estimates of regressions of unwarranted disparity posteriors on judge characteristics.

Unwarranted disparities are estimated as described in Section 5, using the hierarchical MTE model estimate of mean
risk. New judges are defined as judges appointed during our estimation period. Lenient judges are defined as judges
with above-average leniency, controlling for court-by-time fixed effects. Courtroom locations are defined using the
location of the modal case heard by each judge. Split-sample disparities are computed by splitting each judge’s sample
of cases at the median case and constructing two samples, a before-median case sample and an after-median case
sample. Unwarranted disparities are then re-estimated within each subsample. The estimation procedure conditions on
court-by-time effects, which causes a small number of judge effects to become collinear with the court-by-time effects
and dropped. All specifications are weighted by the inverse variance of the unwarranted disparity posteriors. Robust
standard errors are reported in parentheses.
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Appendix Table A13: MTE Estimates of Racial Bias

White Defendants Black Defendants Diff.
Panel A: MTE Estimates (1) (2) (3)
Marginal Released Outcome 0.484 0.483 0.002

(0.026) (0.022) (0.029)
Panel B: IV Estimates
Marginal Released Outcome 0.385 0.396 -0.011

(0.067) (0.047) (0.054)
Baseline Controls Yes Yes –
Court x Time FE Yes Yes –
Mean Misconduct 0.266 0.332 –
Cases 284,598 310,588 –

Notes. This table reports conventional MTE estimates and IV estimates of marginal released outcomes and racial
bias. The IV estimate of mean marginal released outcomes instrument for pretrial release in a regression of pretrial
misconduct using a leave-one-out judge leniency measure while controlling for the baseline controls in Table 2 and court-
by-time fixed effects. To estimate the MTE results, we first compute judge-specific release and misconduct rates that
control for the baseline controls in Table 2 and court-by-time fixed effects. We then fit a quadratic relationship between
misconduct rates and release rates. The MTE estimate of mean marginal released outcomes is the average derivative of
this quadratic function. Both estimation procedures require a conventional first-stage monotonicity assumption. The
difference in mean marginal released outcomes across the races estimates mean racial bias. The regressions are estimated
on the sample described in Table 1. Robust standard errors, two-way clustered at the individual and judge level, are
obtained by a bootstrapping procedure and appear in parentheses.
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Appendix Table A14: Unwarranted Disparity Decompositions

Baseline No Racial Equal Signal BothBias Quality
Panel A: Change Black Parameters (1) (2) (3) (4)
Unwarranted Disparity 0.040 -0.051 0.090 0.028
Release Rates (W/B) 0.758 / 0.709 0.758 / 0.801 0.758 / 0.657 0.758 / 0.720

Racial Bias 0.065 0.000 0.065 0.000
Marginal Outcomes (W/B) 0.609 / 0.544 0.609 / 0.609 0.609 / 0.544 0.609 / 0.609

Signal Quality (W/B) 1.184 / 0.828 1.184 / 0.828 1.184 / 1.184 1.184 / 1.184

Panel B: Change White Parameters
Unwarranted Disparity -0.020 0.124 0.043
Release Rates (W/B) 0.699 / 0.709 0.840 / 0.709 0.760 / 0.709

Racial Bias 0.000 0.065 0.000
Marginal Outcomes (W/B) 0.544 / 0.544 0.609 / 0.544 0.544 / 0.544

Signal Quality (W/B) 1.184 / 0.828 0.828 / 0.828 0.828 / 0.828
Judges 268 268 268 268

Notes. Column 1 of this table reports average unwarranted disparity and racial bias across judges and 250 simulations
of the hierarchical MTE model, along with average release rates, marginal released outcomes, and signal quality of black
and white defendants. Simulations are based on the estimates from columns 2 and 4 of Appendix Table A11. Column
2 recomputes the statistics for a counterfactual in which black (Panel A) or white (Panel B) release rates are set to
eliminate racial bias, while column 3 adjusts black (Panel A) or white (Panel B) signal quality to equalize signal quality
across race. Column 4 applies both counterfactuals simultaneously.
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Appendix Table A15: Racial Bias and Judge Characteristics
(1) (2) (3) (4) (5) (6) (7)

New Judge 0.051 -0.010 -0.002
(0.004) (0.004) (0.004)

Lenient Judge 0.066 0.016 0.025
(0.003) (0.003) (0.002)

Above-Median Black Share -0.060 -0.038 -0.028
(0.003) (0.005) (0.003)

Manhattan Courtroom 0.025 0.008 -0.015
(0.004) (0.004) (0.003)

Bronx Courtroom -0.007 -0.039 -0.029
(0.004) (0.006) (0.004)

Queens Courtroom -0.052 -0.048 -0.052
(0.003) (0.003) (0.002)

Richmond Courtroom 0.018 -0.014 -0.029
(0.007) (0.005) (0.008)

Unwarranted Disparities 1.001 1.016
(0.160) (0.088)

Mean Bias 0.065 0.065 0.065 0.065 0.065 0.065 0.065
R2 0.087 0.384 0.425 0.725 0.832 0.119 0.907
Judges 268 268 268 268 268 268 268

Notes. This table reports OLS estimates of regressions of racial bias posteriors on judge characteristics. Posteriors
are obtained from the heirarchical MTE model as described in Section 6. New judges are defined as judges appointed
during our estimation period. Lenient judges are defined as judges with above-average leniency, controlling for court-
by-time fixed effects. Courtroom locations are defined using the location of the modal case heard by each judge. All
specifications are weighted by the inverse variance of the racial bias posteriors. Robust standard errors are reported in
parentheses.
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Appendix Table A16: Signal Quality Differences and Judge Characteristics
(1) (2) (3) (4) (5) (6) (7)

New Judge -0.038 -0.033 -0.001
(0.016) (0.013) (0.007)

Lenient Judge 0.014 0.011 0.045
(0.010) (0.009) (0.006)

Above-Median Black Share -0.017 -0.025 -0.007
(0.010) (0.014) (0.008)

Manhattan Courtroom 0.085 0.071 0.002
(0.013) (0.013) (0.009)

Bronx Courtroom -0.016 -0.035 -0.018
(0.012) (0.016) (0.009)

Queens Courtroom 0.043 0.020 -0.010
(0.016) (0.020) (0.013)

Richmond Courtroom 0.064 0.044 -0.027
(0.027) (0.019) (0.011)

Unwarranted Disparities 3.203 3.324
(0.150) (0.160)

Mean Difference 0.379 0.379 0.379 0.379 0.379 0.379 0.379
R2 0.028 0.008 0.010 0.240 0.276 0.708 0.790
Judges 268 268 268 268 268 268 268

Notes. This table reports OLS estimates of regressions of differences in signal quality on judge characteristics.
Posteriors are obtained from the heirarchical MTE model as described in Section 6. New judges are defined as judges
appointed during our estimation period. Lenient judges are defined as judges with above-average leniency, controlling
for court-by-time fixed effects. Courtroom locations are defined using the location of the modal case heard by each
judge. All specifications are weighted by the inverse variance of the signal quality difference posteriors. Robust standard
errors are reported in parentheses.
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B Econometric Appendix

B.1 Defining and Measuring Discrimination with Multi-Valued Y ∗i

This appendix first generalizes our definition of racial discrimination and derivation of OVB in obser-
vational comparisons to settings where the decision-maker’s objective is non-binary. We then discuss
how our quasi-experimental framework for measuring racial discrimination extends to this case.

Our initial definition of racial discrimination, ∆j = E[E[Dij | Y ∗i , Ri = w]− E[Dij | Y ∗i , Ri = b]],
remains sensible in the case of non-binary Y ∗i , provided the support of Y ∗i is the same in the white
(Ri = w) and black (Ri = b) subpopulations. Natural generalizations of Equation (2) are given by:

∆j =
∑

y∈Supp(Y ∗
i

)

(
δyjw − δ

y
jb

)
py (B1)

in the multi-valued Y ∗i case, where py = Pr(Y ∗i = y), and:

∆j =
∫
Supp(Y ∗

i
)

(
δyjw − δ

y
jb

)
dF (y) (B2)

in the case of continuous Y ∗i , where F (·) is the cumulative distribution function of Y ∗i . In both cases,
δyjr = E[Dij | Y ∗i = y,Ri = r] gives conditional release rates for each race r and each y ∈ Supp(Y ∗i ).

As in Section 3.3, the bias of observational benchmarking regressions relative to these parameters,
when judges are as-good-as-randomly assigned, is given by:

ξj =
∑

y∈Supp(Y ∗
i

)

δyjwpyw −
∑

y∈Supp(Y ∗
i

)

δyjbpyb −
∑

y∈Supp(Y ∗
i

)

(
δyjw − δ

y
jb

)
(pywpw + pybpb)

=
∑

y∈Supp(Y ∗
i

)

(
δyjwpb + δyjbpw

)
(pyw − pyb) (B3)

in the multi-valued Y ∗i case, where pyr = Pr(Y ∗i = y | Ri = r) and again pr = Pr(Ri = r), and:

ξj =
∫
Supp(Y ∗

i
)
δyjwdFw(y)−

∫
Supp(Y ∗

i
)
δyjbdFb(y)−

∫
Supp(Y ∗

i
)

(
δyjw − δ

y
jb

)
d(Fw(y)pw + Fb(y)pb)

=
∫
Supp(Y ∗

i
)

(
δyjwpb + δyjbpw

)
d(Fw(y)− Fb(y)) (B4)

in the case of continuous Y ∗i , where Fr(·) is the cumulative distribution function of Y ∗i given Ri = r.
As in Section 5, discrimination is identified by the distribution of misconduct outcomes Y ∗i within

each race when judges are quasi-randomly assigned. By Bayes’ law:

δyjr = Pr(Y ∗i = y | Dij = 1, Ri = r) E[Dij | Ri = r]
Pr(Y ∗i = y | Ri = r) (B5)

for multi-valued Y ∗i and similarly for continuous Y ∗i . The first two terms, Pr(Y ∗i = y | Dij = 1, Ri = r)
and E[Dij | Ri = r], are identified by Pr(Yi = y | Di = 1, Zij = 1, Ri = r) and E[Di | Zij = 1, Ri = r]
under quasi-random judge assignment as before. In the continuous Y ∗i case, the first term is given
by the conditional density of Y ∗i given Di = 1, Zij = 1, and Ri = r. Estimates of the race-specific
misconduct distribution corresponding to the third Pr(Y ∗i = y | Ri = r) term (which might be
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obtained from similar extrapolations of quasi-experimental data as in the binary Y ∗i case) thus yield a
plug-in estimator of each δyjr, which can be combined to estimate ∆j according to the initial definitions.

B.2 Discrimination and Bias with Normally Distributed Signal Noise

This appendix derives the decision-making model discussed in Section 2. A judge observes noisy risk
signals νi = Y ∗i + ηi with normally distributed noise: ηi | Y ∗i , Ri ∼ N(0, 1/τ2

Ri
). The judge has

potentially incorrect beliefs µ̃r on race-specific average misconduct risk µr = E[Y ∗i | Ri = r] and
knows the potentially race-specific quality of risk signals τr.

The judge’s subjective posterior of misconduct risk, given a signal of νi = v for a defendant of race
Ri = r, is derived from Bayes’ rule:

p(ν; r) = P̃ r(νi = v | Y ∗i = 1, Ri = r)P̃ r(Y ∗i = 1, Ri = r)
P̃ r(νi = v,Ri = r)

= φ(τr(v − 1))τrµ̃r
φ(τr(v − 1))τrµ̃r + φ(τrv)τr(1− µ̃r)

(B6)

where P̃ r(·) denotes subjective probabilities and φ(x) ∝ exp(−x2/2) is the standard normal density.
Simplifying, we have:

p(ν; r) =
(

1 + exp(τ2
r (1− 2v)/2)1− µ̃r

µ̃r

)−1
(B7)

This specifies a risk-neutral judge’s release rule, Di = 1[πRi ≥ p(νi;Ri)].
Equation (B7) shows that risk posteriors are strictly increasing in v, such that they can be inverted

to write the judge’s release decision as a cutoff rule for her observed signals νi:

Di = 1
[

1
2 − ln

(
µ̃Ri(1− πRi)
πRi

(1− µ̃Ri
)

)
/τ2
Ri
≥ νi

]
(B8)

Equation (B8) shows that variation in risk beliefs µ̃r and risk tolerances πr are observationally equiv-
alent in this model, in the sense that as one of these parameters varies in (0, 1) the other can be set
to keep the index Ir = µ̃r(1−πr)

πr(1−µ̃r) , and thus the decision rule, constant.
A consequence of Equation (B8) is that the average misconduct rate of white and black defendants

at the margin of release, E[Y ∗i | p(νi;Ri) = πr, Ri = r], is a function of the judges risk tolerance πr
and prior risk belief µ̃r. By Equation (4), the marginal outcomes under correct beliefs µr equals the
judge’s risk tolerance. More generally:

E[Y ∗i | p(νi;Ri) = πr, Ri = r] =
(

1 + Ir

(
1− µr
µr

))−1
(B9)

by the observational equivalence of Equation (B8). Racial bias is found when this expression varies
by race r, which could be due to racial animus (πw 6= πb) or inaccurate beliefs (µ̃r 6= µr).

To characterize discrimination in this model, note that Equation (B8) and the conditional normal-
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ity of νi implies that the judge’s true and false negative rates can be written, respectively:

δTr = Pr(Di = 1 | Y ∗i = 0, Ri = r) = Φ
(

1
2τr −

1
τr

ln Ir
)

(B10)

δFr = Pr(Di = 1 | Y ∗i = 1, Ri = r) = 1− Φ
(

1
2τr + 1

τr
ln Ir

)
(B11)

and the extent of racial discrimination is given by the extent to which ∆ = (δTw−δTb )(1−µ̄)+(δFw−δFb )µ̄
varies by race, for µ̄ = E[Y ∗i ]. With common signal quality, τw = τb, a lack of racial discrimination
requires Iw = Ib. By comparison with Equation (B9), this scenario will generally lead to racial bias
unless white and black average misconduct risk are also equal (µw = µb). More generally, the fact
that ∆ is strictly decreasing (to zero) in the white index Iw and strictly increasing (to one) in the
black index Ib implies that there exist a set of thresholds (Iw, Ib) resulting in no racial discrimination
on average, even when signal quality differs. Again, this will typically yield racial bias, per Equation
(B9), to the extent either mean risk or signal quality differs by race.

B.3 Bail Release and Classification Error

This appendix shows how a judge minimizing the cost of type-I and type-II error in the bail setting
implicitly uses a posterior risk threshold-crossing rule, as in Section 2. Suppose the cost of a type-I
“false positive” decision (detaining an individual with no pretrial misconduct risk) is given by cI > 0
and the cost of a type-II “false negative” decision (releasing an individual with pretrial misconduct
risk) is given by cII > 0. A judge’s utility given a release decision Di ∈ {0, 1} is then:

Ui = −cIIDiY
∗
i − cI(1−Di)(1− Y ∗i ) (B12)

Let D(v) be a decision rule mapping risk signals νi to binary release decisions Di. Suppose D(v) is
set to maximize the judge’s expected utility (or minimize her expected disutility):

D(v) = arg min
d(v)

cIId(v)p(v) + cI(1− d(v))(1− p(v)) (B13)

where p(ν) denotes the judge’s subjective expectation of pretrial misconduct given a signal of νi = ν.
It is clear that this solution is a cutoff rule:

D(v) = 1[π ≥ p(νij)] (B14)

where π = cII

cI+cII ∈ (0, 1) gives the judge’s relative cost of type-II error. Per Equation (4), this also
shows that when judge beliefs are accurate, the expected outcome of a marginally released defendant
identifies this relative cost parameter.

B.4 Conventional Empirical Bayes Methods

This appendix summarizes the two conventional empirical Bayes approaches used in this paper: the
posterior mean calculation of Morris (1983) and the posterior average effect calculation of Bonhomme
and Weidner (2020). We use the former to plot the distribution of disparity posteriors in Figures 1, 3,
and A3, and also to compute the prior means and standard deviations in these exhibits. We use the
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latter to compute the fraction of judges with positive disparities in these figures, and also to interpret
the coefficient estimates in Tables 4, A12, A15, and A16.

Let θ̂j be an estimate of an unknown judge-specific parameter θj , such as an observational bench-
marking coefficient or our rescaled unwarranted disparity measure. Applying to the usual asymptotic
approximation, we write θ̂j = θj + εj where εj ∼ N(0,Σj) for known Σj . Conventional empirical
Bayes methods further assume θj ∼ N(µ,Ω), where µ and Ω are unknown hyperparameters. Given
this prior distribution, the posterior mean of θj after observing the estimate θ̂j is given by:

E[θj | θ̂j ] = Σj
Ω + Σj

µ+ Ω
Ω + Σj

θ̂j (B15)

More generally, Equation (B15) gives the minimum mean-squared error prediction of θj given θ̂j when
the normality of θj is relaxed, provided µ and Ω continue to parameterize the mean and variance of
the prior distribution.

Empirical Bayes posteriors estimate µ and Ω and plug these hyperparameter estimates into Equa-
tion (B15). We estimate µ and Ω by the weighted iterative procedure studied by (Morris, 1983), which
is equivalent to a maximum likelihood procedure. At iteration k the hyperparameter estimates are:

µ̂k =
∑
j

ωjk∑
j′ ωj′k

θ̂j (B16)

Ω̂k =
∑
j

ωjk∑
j′ ωj′k

(
(θ̂j − µ̂k)2 − Σj

)
(B17)

with inverse-variance weights that are proportional to ωjk = (Ω̂k−1 + Σj)−1 and where ωj0 = 1. We
iterate this procedure to convergence.

Bonhomme and Weidner (2020) discuss posterior average effect estimators of the cumulative dis-
tribution function for θj , given by:

F̂θ(t) = 1
J

∑
j

E[1[θj ≤ t] | θ̂j ] (B18)

for each t in the support of θj . Note that 1− F̂θ(0) is a posterior average effect estimate of the fraction
of θj in the population that is positive. Under the normality assumption:

E[1[θj ≤ t] | θ̂j ] = Φ

−E[θ̂j | θ̂j ]√
ΩΣj

Ω+Σj

 (B19)

which can, as with Equation (B15), be estimated by plugging in the estimates of the mean and
variance hyperparameters. Just as with the empirical Bayes posterior estimator, Bonhomme and
Weidner (2020) show that this posterior average effect estimator has certain robustness properties: it
is optimal in terms of local worst-case bias, and its global bias is bounded by the minimum worst-case
bias within a large class of estimators. They further show how regressions of the empirical Bayes
posterior means on judge characteristics also have a posterior average effect interpretation and thus
the same robustness properties for estimating conditional mean functions.
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B.5 Conventional Monotonicity Violations and Judge Signal Quality

This appendix shows how differences in the way judges consider defendant and case characteristics,
which lead to violations of conventional MTE monotonicity, can be viewed as differences in judge
signal quality within models like the one we develop in Section 3.2. In doing so we show that such
models are without observational loss, provided judge release decisions are better-than-random.

Consider a setting with a binary potential misconduct outcome Y ∗i and a set of binary judge release
decisions Dij . The distribution of these random variables is fully specified by the mean risk µ = E[Y ∗i ]
and the true and false negative rates δTj = E[Dij | Y ∗i = 0] and δFj = E[Dij | Y ∗i = 0]. With mean
risk fixed, any restriction on judicial decision-making – such as conventional MTE monotonicity or
alternative parameterizations – can thus be understood as restricting the set of (δTj , δFj ).

We first show that when judges are making better-than-random release decisions, in the sense of
0 < δTj < δFj < 1 for each j, it is without observational loss to assume a decision-making model of
Dij = 1[κj ≥ Y ∗i + ηi/τj ], with ηi | Y ∗i following a known continuous distribution and τj > 0. This
follows since then τj = G−1

η (δTj )−G−1
η (δF1j) > 0 and κj = G−1

η (δTj )/τj rationalize each (δTj , δFj ), where
Gη(·) specifies the cumulative distribution of ηi | Y ∗i :

E[Dij | Y ∗i = y] = Pr(κj ≥ y + ηi/τj)

= Gη((κj − y)τj)

= Gη(G−1
η (δTj )) + y(G−1

η (δFj )−G−1
η (δTj ))

= δTj + y(δFj − δTj ) (B20)

In particular, Equation (B20) shows that our risk signal threshold decision rule (23), in which ηi |
Y ∗i ∼ N(0, 1), is without loss in this case. In general, we may think of τj as capturing judge j’s signal
quality: how less likely she is to release defendants with Y ∗i = 1 than those with Y ∗i = 0.

We next relate differences in such signal quality to conventional monotonicity violations in a simple
behavioral model of judicial decision-making. Suppose judges observe a vector of defendant and case
characteristics X∗i which are, without loss, mean zero and positively correlated with misconduct
potential: µX(1) ≡ E[X∗i | Y ∗i = 1] > E[X∗i | Y ∗i = 0] ≡ µX(0). Judges place different weights βj on
the elements of this vector and also vary in their overall leniency πj , such that:

Dij = 1[πj ≥ X∗′i βj + Ui] (B21)

where we assume Ui | X∗i , Y ∗i is uniformly distributed. In this model E[Dij | Y ∗i = y] = πj−µX(y)′βj ,
assuming the parameters are such that these are all between zero and one.

Conventional monotonicity in this model requires Pr(Dij ≥ Dik = 1) or Pr(Dik ≥ Dij = 1) for
each (j, k), which generally restricts the weights βj to be the same across judges. If some elements ofX∗i
were observed to the econometrician, one could relax this assumption by a conditional analysis within
sets of defendants with identical observables (e.g., Mueller-Smith, 2015). Conditional monotonicity
would then generally constrain the weights corresponding to unobserved characteristics to be constant.

Judicial decision-making is here better-than-random when δTj − δFj = (µX(1) − µX(0))′βj > 0 or
when the weights in each βj are non-negative with at least one element strictly positive. In this case
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we have from the above result an equivalent representation of:

Dij = 1[κj ≥ Y ∗i + Vi/τj ] (B22)

where Vi | Y ∗i ∼ U(0, 1). Here judge signal quality is given by τj = (µX(1) − µX(0))′βj and has
an straightforward interpretation: with only one element in X∗i , for example, differences in τj are
proportional to differences in the behavioral weights βj . More generally, this discussion shows how
parameterizations of the distribution of signal quality across judges can be thought to structure
differences in how judges weigh defendant and case characteristics when making release decisions.

B.6 SMD Estimation of the Hierarchical MTE Model

We estimate the hierarchical model described in Section 6.1 and Appendix B.2 by a simulated minimum
distance (SMD) procedure that targets moments of the distribution of race-specific judge release rates
ρjr = E[Dij | Ri = r] and released misconduct rates λjr = E[Y ∗i | Dij = 1, Ri = r], estimated from
quasi-experimental judge assignments. This appendix formally specifies this procedure.

We first obtain estimates of ρjr and λjr from OLS regressions of pretrial release Di and pretrial
misconduct Yi on judge-by-race interactions, adjusting for the quasi-experimental strata (courtroom-
by-time effects) and baseline controls as discussed in Section 5.2. Subject to the usual asymptotic
approximation, the resulting estimates ρ̂jr and λ̂jr can be modeled as noisy measures of the true
parameters, with a known distribution of sampling error. Specifically:

ρ̂jr = ρjr + ερjr (B23)

λ̂jr = λjr + ελjr (B24)

where ε | ρ, λ ∼ N(0,Σ) for a variance-covariance matrix Σ that is given by conventional asymptotics.
Let X = ((ρ̂jr, λ̂jr)j=1,...,268,r∈{w,b}) collect these estimates across the 268 judges in our sample and
both races w and b.

The model in Appendix B.2 specifies ρjr and λjr as functions of mean misconduct risk µr, judge
signal quality τjr, and risk thresholds πjr:

ρjr = Φ((f(πjr, µr, τjr)− 1)τjr))µr + Φ(f(πjr, µr, τjr)τjr))(1− µr) (B25)

λjr = Φ((f(πjr, µr, τjr)− 1)τjr))µr/ρjr (B26)

where Φ(·) denotes the standard normal cumulative distribution function and f(·) is as defined in
Section B.2. We further model signal thresholds κjr = f(πjr, µr, τjr) and log signal quality ln τjr
as being joint-normally distributed across judges, with reisdual correlation across races. That is, we
specify:

ln τjr = αr + βrκjr + εjr (B27)

for each race r, with (κjw, κjb)′ ∼ N(µκ,Ωκ) and (εjw, εjb)′ | κ ∼ N(0,Ωτ ).
Equations (B23)–(B27) specify a complete distribution for the observed quasi-experimental esti-

mates X in terms of a hyperparameter vector Θ = (µw, µb, αw, αb, βw, βb, µ′κ, vec(Ω
1/2
κ )′, vec(Ω1/2

τ̃ )′)′.
In practice, there is no simple closed form expression for this likelihood, complicating maximum like-
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lihood estimation. Instead, we estimate Θ by SMD, targeting moments of X as motivated by the
discussion in Section 6.1. Specifically, let M̂ be a vector with the first two race-specific elements of:

M̂1r =
268∑
j=1

ωρjrρ̂jr (B28)

M̂2r =
268∑
j=1

ωρjr(ρ̂jr − M̂1r)2 (B29)

the next three race-specific elements corresponding to coefficient estimates from the ωλjr-weighted
quadratic OLS regression of:

λ̂jr = M̂3r + M̂4rρ̂jr + M̂5rρ̂
2
jr + υ̂jr (B30)

and the sixth race-specific element corresponding to the ωλjr-weighted residual variance estimate:

M̂6r =
268∑
j=1

ωλjrυ̂
2
jr (B31)

The weights are derived from the estimation error matrix Σ: ωρjr is proportional to the inverse variance
of ρ̂jr − ρjr while ωλjr is proportional to the inverse variance of λ̂jr − λjr, with both weights rescaled
to sum to one in the population of judges. We further include in M̂ the

√
ωρjwω

ρ
jb-weighted covariance

of ρ̂jw and ρ̂jw as well as the
√
ωλjwω

λ
jb-weighted covariance of λ̂jw and λ̂jw. Together this gives 14

elements in M̂ , the same number of hyperparameters in Θ.
To estimate Θ we use a just-identified SMD procedure that matches the empirical moments in

M̂ with the corresponding model-implied moments averaged across 500 simulated draws of the above
data-generating process. That is, we estimate:

Θ̂ = arg min
Θ

14∑
m=1

(
M̂m −

1
500

500∑
s=1

Mms(Θ)
)2

(B32)

where the functions Mms(·) of candidate hyperparameters Θ are given by applying the previous
moment calculations to data generated from 500 fixed simulation draws s. Conventional asymptotic
theory for Θ̂ applies under appropriate regularity conditions (e.g., Pakes and Pollard, 1989).

Columns 3 and 6 of Appendix Table A11 report SMD estimates and standard errors for the full
model. As discussed in the main text, our baseline model estimates set βr = 0. Per the intuition in
Section 6.1 and to keep the model just-identified, we correspondingly drop the quadratic term from
the moment regression in Equation (B30). The resulting estimates are reported in columns 2 and 5
of Appendix Table A11. To impose conventional MTE monotonicity, we further set the variance of
τjr to zero (again, per the intuition in Section 6.1), and drop the residual variance moment given in
Equation (B31). The resulting estimates are reported in columns 1 and 4 of Appendix Table A11.

Lastly, given Θ̂, we compute maximum a posteriori probability estimates (also known as posterior
modes) of the judge-specific parameters θj = (κjw, ln τjw, κjb, ln τjb)′, following an approach similar
to that which Angrist et al. (2017) apply for a similar hierarchical model. Note that the log-likelihood
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of θ = (θ′1 . . . , θ′268)′ and quasi-experimental estimates X can be written:

L(θ,X ) = lnφm
(
X − X̄(θ); Σ

)
+ lnφm (θ − µθ; Ωθ) (B33)

where φm(·;V ) gives the density of a mean-zero multivariate normal vector with variance-covariance
matrix V ; X̄(·) collects the formulas from Equations (B25) and (B26), for ρjr and λjr in terms of µw,
µb, and θ; and both µθ and Ωθ are derived from the αr and βr, µκ, Ωκ, and Ωτ . Our estimates of θ
are given by maximizing this likelihood, plugging in our baseline hyperparameter estimates Θ̂.
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