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1 Introduction

Short term fluctuations in a typical economic model are presumed to be driven by random

shocks to preferences, factor inputs, productivity, or policies that directly impact the supply

or demand of goods and services. While there is some scope for considering fluctuations at-

tributable to shocks driven by natural disasters such as earthquakes and tsunamis, these types

of “conventional”disaster shocks are typically assumed to be short-lived, with an initial im-

pact that is local in nature. It is only when these shocks propagate across sectors, states, and

countries that the aggregate effects are realized.

Figure 1 shows the responses of US flight departures, initial claims for unemployment insur-

ance, and macro uncertainty from Jurado, Ludvigson, and Ng (2015) to Hurricane Katrina in

2005:08. The number of flight departures dropped immediately in response to Katrina’s landfall

and both initial claims and macro uncertainty rose sharply. But the impact on initial claims

was highly transitory, while the peak effects on macro uncertainty and flight departures slowly

build.

A global pandemic is likewise a natural disaster that functions as an exogenous shock with

potentially grave economic consequences. But unlike a conventional natural disaster shock,

the Coronavirus (COVID19) shock is a multi-period event that simultaneously disrupts supply,

demand, and productivity channels, that is almost perfectly synchronized within and across

countries, and that has cataclysmic health, social, and economic implications not just for the

foreseeable few weeks after the crisis, but for a long time period.

The ability to design policies to mitigate the economic impact of COVID19 requires reference

estimates of the effects of the shock. This paper provides some preliminary estimates of these

effects. Our analysis has two ingredients. The first is the construction of a costly disaster

(CD) time series from historical data to measure the pecuniary costs of previous disasters. The

second is an analysis of the dynamic impact of a costly disaster shock on different measures of

economic activity and on a measure of uncertainty. We then design different profiles for the

shock to engineer the dynamic effects of a natural disaster interpreted as a large, multi-period,

constraint on the ability to produce and consume, as would be characteristic of a pandemic.

We find that the macroeconomic impact of COVID19 is larger than any catastrophic event

that has occurred in the past four decades. Although the CD series has short memory, the

effects on economic activity are more persistent. Even under a fairly favorable scenario where

the shock persists for only five months and where the initial magnitude is calibrated by the

cost of Coronavirus relief packages passed in March of 2020, the estimates suggest that there
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Figure 1: Responses to Hurricane Katrina
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Note: The figure plots number of flight departures in the US, initial claims and JLN macro uncertainty during

2005:01 to 2006:12. The vertical red line indicates the month of Katrina landfall in 2005:08.

will be a peak loss in industrial production of 11.80% and in service sector employment of

5.17% respectively. This translates into a cumulative ten-month loss in industrial production

of 20.17%, an employment loss of nearly 45% (or 64 million jobs), and six months of elevated

macroeconomic uncertainty. Estimates that allow for nonlinear effects give more pessimistic

predictions entailing steeper and longer losses. To the best of our knowledge, this paper is one

of the very few time-series analyses of natural disasters on aggregate economic activity, and the

first such study of COVID19.

2 Data and Methodology

Our analysis uses monthly data on disasters affecting the U.S. over the last forty years taken

from two sources. The first is NOAA, which identifies 258 costly natural events ranging from
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wildfires, hurricanes, flooding, to earthquakes, droughts, tornadoes, freezes, and winter storms

spanning the period 1980:1-2020:04 for T = 482 data points, of which 198 months have non-zero

cost values.1 These data, which can be downloaded from ncdc.noaa.gov/billions/events,

record both the financial cost of each disaster as well as the number of lives lost over the span

of each disaster. As explained in Smith and Katz (2013), the total costs reported in NOAA are

in billions of 2019 dollars and are based on insurance data from national programs such as flood

insurance, property claims, crop insurance, as well as from risk management agencies such as

FEMA, USDA, and Army Corps. We take the CPI-adjusted financial cost series as provided

by NOAA, and mark the event date using its start date. To obtain the monthly estimate, we

sum the costs of all events that occurred in the same month.

Figure 2: Time Series of Disaster Series: 1980:1-2020:04
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Note: The figure plots the Costly and Deadly Disaster series. The sample spans 1980:01 to 2020:04.

The second source of data is the Insurance Information Institute (III), which reports the

ten costliest catastrophes in the US reported in 2018 dollars. The data, available for download

1The number of months with nonzero cost values is less than the number of events because there were many
events that occurred in the same month, and we sum them up.

3



from www.iii.org/table-archive/2142, covers property losses only. Thus the cost for the

same event reported in the III dataset is lower than that reported in the NOAA dataset. But in

agreement with the NOAA data, the III dataset also identifies Hurricane Katrina as the most

costly disaster in US history. The III dataset is of interest because it records 9/11 as the fourth

most costly catastrophic event, arguably the most relevant historical event for the purpose of

this analysis given the large loss of lives involved. But as 9/11 is not a natural disaster, it is

absent from the NOAA data. We therefore use the III data to incorporate the event into the

NOAA data. To deal with the fact the two data sources define cost differently, we impute the

cost of September 11 as follows. We first compute the ratio of cost (in 2018 dollars) of Katrina

relative to 9/11 from the III data, which is 1.99. We then divide the cost of Katrina in NOAA

data by this ratio to get the insurance-based estimate of 9/11 cost in the same units as those

reported in NOAA.

It is more challenging to measure the dollar cost of the COVID19 shock. Ideally, one would

measure the total dollar cost of mandatory stay-at-home orders across the United States. Al-

though firm-level insurance against losses attributable to business closures exists, these policies

cover only short-term closures due to idiosyncratic incidents such as fire and flooding—they do

not cover losses due to pandemics or legally mandatory shut-downs. We therefore instead use

the dollar value of the Coronavirus relief packages that were passed by U.S. Congress and signed

into law in March 2020 as a crude estimate of the dollar cost of COVID19. These packages

total 3.01 trillion dollars, authorized in four separate measures.2 Because this dollar cost dwarfs

any of those associated with previous U.S. natural disasters in our dataset, we forgo including

it directly in the CD series due to concerns about the reliability of estimators in the presence

of extreme outliers in the data. Instead, we use it as a means of calibrating the size of the

COVID19 shock using estimates based on pre-COVID19 data. The nonlinearities implied by

outlier shocks are partially addressed in the penultimate section of the paper.

An important limitation of the data needs to be made clear at the outset. With the exception

of Hurricane Sandy, the natural disasters in our data have been concentrated in the southern

states with FL, GA, or LA having experienced disasters most frequently. However, industrial

production is concentrated in the New England area, the Great Lakes area, the mid-West, and

the Mid-Atlantic States which have been much less impacted by natural disasters. The data

may not be able to establish a clear relation between industrial production and disasters.

2Source: https://www.npr.org/2020/05/15/854774681/congress-has-approved-3-trillion-for-coronavirus-
relief-so-far-heres-a-breakdown
The packages include 26 billion for testing, 217 billion for state and local governments, 312 billion for public

health, 513 billion for all businesses in the form of tax breaks meant to help all businesses, 532 billion for large
corporations in the form of loans, 784 billion for individuals, and 871 billions for small businesses in the form
of forgivable loans under certain conditions.
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The cost measures are based on monetary damages but do not include the value of lives

lost, which is another measure of the severity of the disaster. Separately reported in NOAA is

the number of deaths associated with each event. Since the number of deaths directly linked

to 9/11 is known to be 2,996, we are able to construct a deadly disaster series that tallies the

number lives lost for all 259 events considered in the analysis.3

Figure 2 plots the resulting costly disaster (CD) series, in units of billions of 2019 dollars,

and the deadly disaster (DD) series, in units of lives lost. There are four prior events in the

CD series that stand out: Hurricanes Katrina in 2005, Harvey/Irma/Maria in 2017, Sandy in

2012, and 9/11 in 2001. As a point of reference, the value of CD at these four events are at

least four standard deviations away from the mean of the series. In terms of the number of

deaths, the sum of the DD series over the sample is 14,221, but three events, namely, Hurricane

Harvey/Irma/Maria, 9/11, and Katrina, accounted for nearly two-thirds of the total deaths.

Both disaster series are evidently heavy-tailed, and we will return to this point below.4 Because

the size of the increases in both our calibrated COVID19 CD shock and COVID19 deaths dwarfs

the previous disasters, the latter are shown in inset on the figure, where the COVID19 values

appear on the far right.

We will also make use of two additional pieces of information from these two data files. The

first is the number of states being affected as reported in III. For example, Katrina directly

impacted six states: AL, FL, GA, LA, MS, TN, while the direct impact of 9/11 was local to the

city of New York and the D.C. region. The second is the duration of the event. As reported in

NOAA, Katrina was a five-day event, Superstorm Sandy was a two-day event, while the 9/11

attack was a one-day event. From 1980 to 2019, the average duration of an event is 40 days

and ranges from one day (e.g., 9/11 and 2005 Hurricane Wilma) to one year (e.g., the 2015

Western Drought). These statistics will be helpful in thinking about the size of the COVID19

shock subsequently.

To estimate the macroeconomic impact of a disaster shock, we begin as a baseline with a

six-lag, n = 3 variable vector autoregression (VAR) in

Xt =

 CDt
Yt
Ut

 =

 Costly Disaster
log (Real Activity)
Uncertainty

 ,
where CD is our costly disaster series just described, U is a measure of macroeconomic uncer-

tainty, and Y is one of four measures of real activity that will be discussed below. The long-run
3Source: https://en.wikipedia.org/wiki/Casualties_of_the_September_11_attacks
4We also considered CD scaled by real GDP (in 2019 dollars). The VAR analysis using scaled series delivers

quantitatively similar results. It’s worth noting that 1992 Hurricane Andrew and 1988 Drought costed more,
scaled by 1992 and 1988 real GDP, than 2012 Hurricane Sandy.
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trends of all three variables are removed using the methodology in Müller and Watson (2017)

before the VAR estimation.5

We estimate the VAR using monthly data from 1980:01 to 2020:02, and thus exclude the

extremely high value of CD during the COVID19. The reduced form VAR is

A(L)Xt = ηt.

The reduced form innovations ηt are related to mutually uncorrelated structural shocks et by

ηt = Bet, et ∼ (0,Σ)

where Σ is a diagonal matrix with the variance of the shocks, and diag(B) = 1. For identifica-

tion, B is assumed to be lower triangular. That is, the covariance matrix of VAR residuals is

orthogonalized using a Cholesky decomposition with the variables ordered as above. The CD

series is ordered first given that the disaster events are, by their very nature, exogenous. The

resulting structural VAR (SVAR) has a structural moving average representation taking the

form

Xt = Ψ0et + Ψ1et−1 + Ψ2et−2 + . . . , (1)

with the impact effect of shock j on variable j measured by the j-th diagonal entry of Ψ0, which

is also the standard deviation of shock j. The dynamic effects of a one time change in et on

Xt+h are summarized by the Ψh matrices which can be estimated directly from the VAR using

Bayesian methods under flat priors, or by the method of local projections due to Jorda (2005).

The goal of the exercise is to trace out the effect of COVID19 on itself, on economic activity Y

over time, and on macroeconomic uncertainty U. This amounts to estimating the first columns

of the 3 by 3 matrix Ψh at different horizons h.

We will consider four monthly measures of real activity Y: industrial production (IP), initial

claims for unemployment insurance (IC), number of employees in the service industry (ESI),

and scheduled plane departures (SFD). The first three variables are taken from FRED, and

the last from the Bureau of Transportation Statistics and is available from 2000 onwards. IP

is a common benchmark for economic activity, while unemployment claims are perhaps the

most timely measure of the impact on the labor market. In the data, initial claims one month

after Katrina (i.e., September 2005) increased by 13.3% compared to its level the previous

year. The variable ESI is studied because non-essential activities such as going to restaurants,

entertainment, repairs, and maintenance can be put on hold in the event of a disaster, and

these are all jobs in the service sector. Disasters tend to disrupt travel due to road and airport

closures. Data constraints limit attention to air traffi c disruptions, as measured by the number

of scheduled flight departures, SFD.
5Our results remain robust if we instead include a long-run trend in the VAR estimation.
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3 Responses to a One σ One Period Shock

For each measure of Y, we estimate a VAR and compute the response coeffi cient Ψh scaled

so that it corresponds to a one standard deviation increase in the innovation to CD. In what

follows, the blue line depicts the median response and the dotted lines refer to 68 percent

confidence bands. Since the dynamic responses of CD and U to a CD shock are insensitive to

the choice of Y and U, we only report these two impulse response functions using the VAR with

IP as Y.

Figure 3: Dynamic Response of CD and U to a σ Shock
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Note: The figure plots the dynamic responses to a positive one-standard deviation CD shock. The posterior

distributions of all VAR parameters are estimated using Bayesian estimation with flat priors and the 68%

confidence bands are reported in dotted lines. The sample spans 1980:01 to 2020:02.

The top left panel of Figure 3 is based on the measure of macro uncertainty in Jurado,

Ludvigson, and Ng (2015) (JLN). It shows that the impact of a one-standard deviation positive

CD shock on itself dies out after two months, suggesting that the CD is a short-memory process

that does not have the autoregressive structure typically found in SVARs for analyzing supply

and demand shocks. The top right panel of Figure 3 shows that JLN uncertainty rises following

a positive CD shock, and that the heightened uncertainty persists for three months. The bottom

panel replaces the JLN measure of macro uncertainty by the measure of financial uncertainty
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developed in Ludvigson, Ma, and Ng (2019) (LMN). A CD shock raises financial uncertainty

for one month but quickly becomes statistically insignificant. The bottom right panel uses the

measure of policy uncertainty (EPU) in Baker, Bloom, and Davis (2016). A costly disaster shock

increases policy uncertainty for about three months, similar to the duration of the impact on

JLN uncertainty. In both cases, uncertainty is highest one month after the shock. These results

suggest that short-lived disasters have statistically significant adverse effects on uncertainty that

persist even after the shock subsides.

Next, we consider the effect of a one standard deviation CD shock on four measures of Y, all

using JLN macro uncertainty in the VAR. The left top panel of Figure 4 shows that monthly IP

immediately drops by 0.05% on impact but becomes statistically insignificant after two months.

As seen from Figure 3, two months is also the duration needed for the CD series to return to

zero. There is, however, some evidence of a strong rebound in the economy but the effect is not

statistically well determined. The small estimated effect of CD on IP may be attributable to

the fact that natural disasters have not had much direct impact on regions of the U.S. where

the bulk of industrial production takes place. The top right panel shows that a CD shock

triggers a statistically significant rise in unemployment claims IC for about two months with a

statistically significant decline in claims (i.e. a rebound in employment) thereafter.

The bottom left panel of Figure 4 shows that a CD shock leads to an immediate and

statistically significant drop in the number of employed workers in the service industry, ESI.

Unlike results using IP and IC as Y, the ESI response is more persistent, with the effect

bottoming out at about 4 months. It is worth noting that ESI is a national measure of service

employment and may mask the higher impact in some regions. The bottom right panel shows

that a CD shock forces an immediate and persistent decline in the number of scheduled flights,

SFD. Of all the measures of real activity, the impact effect of a CD shock on SFD is not only

the largest, but also the most sustained. Though recovery follows right after the shock, the

process is slow, taking up to six months for the effect to become statistically insignificant.

Taken together, this baseline estimation using pre-COVID19 data suggests that a one-period,

one-standard-deviation increase in CD will have statistically significant adverse effects on real

economic activity. Though there are variations in how long the impact will last, for all four real

activity measures considered, the effects of the one period shock will die out within a year.

COVID19 differs from historical disasters in several dimensions. The initial impact of the

historical disasters had been local in terms of both the geographical area and population af-

fected. In fact, never in the 30 years of data was there a disaster that involved more than

one of the five largest states in the country simultaneously. The historical disasters were also
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Figure 4: Dynamic Response of Real Activities to a σ Shock
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Note: The figure plots the dynamic responses to a positive one-standard deviation CD shock. The posterior

distributions of all VAR parameters are estimated using Bayesian estimation with flat priors and the 68%

confidence bands are reported in dotted lines. The sample spans 1980:01 to 2020:02.

short-lived, and with the exception of a drought that lasted over a year, they have an average

duration of only one month. Even with 9/11, the North American airspace was closed for a few

days while Amtrak stopped service for two days, but activity resumed by September 14, albeit

gradually.

The same cannot be said of COVID19. COVID19 is a global pandemic and the effects

traverse across states and countries. In April 2020, 91% of the world population live in countries

with restricted travel.6 By contrast, the most disastrous events in our CD disaster series in terms

of loss of life were Katrina and 9/11, but the number of deaths due to COVID19 far exceeds

the deaths due to Katrina and 9/11 combined. Moreover, five months into the pandemic, the

crisis had yet to reach its peak, and there is a good deal of uncertainty as to whether normalcy

will return by the end of 2020. Social distancing was not imposed in past disasters, and

Gascon (2020) documents that the consequence of social distancing may be particularly harsh

for those employed in the service sector. Past disasters created destruction in physical capital,

6Source: https://www.pewresearch.org/fact-tank/2020/04/01/more-than-nine-in-ten-people-worldwide-live-
in-countries-with-travel-restrictions-amid-covid-19/
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while COVID19 creates no such damage. Instead, the labor force is constrained from working

effi ciently, and resources are diverted to unanticipated uses. Finally, as mentioned above,

industrial production was not severely impacted by past natural disasters. Taken together,

these considerations suggest that the dynamic effects of CD need to be altered to reflect shock

profiles commensurate with our understanding of COVID19, which means shocks that last

longer than one period, and much larger than one standard deviation.

4 Effects of Prolonged Shocks

This section addresses the problem that COVID19 is not a one-shot shock. Ideally, the duration

of the shock is the life of the virus which is not only unobservable, but potentially endogenous.

To the extent that a COVID19 shock can be thought of as an economic shock that constrains

consumers and producers from conducting economic activities, we use the expected duration of

the ‘stay-at-home’policy as the government’s expected duration of the shock.

Let Xt collect all information in X at time t and at all lags. From the moving-average

representation of the SVAR given in (1), we see that if there are two consecutive shocks of one

standard deviation, the dynamic response of Xt+h is

E
[
Xt+h

∣∣e1t = σ, e1t−1 = σ;Xt
]
− E

[
Xt+h

∣∣e1t = 0, e1t−1 = 0;Xt
]

= Ψh + Ψh+1.

If the shock in t is of size .5σ, and the one at t+ 1 is of size 2σ, the desired response matrix is

.5Ψh + 2Ψh−1. Scaling and summing the Ψh coeffi cients allows us to evaluate all the dynamic

responses to each of the shocks at a magnitude deemed appropriate. The idea is akin to the one

used in Box and Tiao (1975) to study the effect of interventions on a response variable in the

presence of different dependent noise structure, or the innovational outlier model studied in Fox

(1972). We are only interested in the effect of a disaster shock now interpreted as a constraint

on economic activity and so only need to estimate the first column of Ψh for h = 1, ...H.

Figure 5 reports the response of CD and U, similar to Figure 3, except that there are now

consecutive one-standard deviation shocks. To avoid clutter, the confidence bands are not

plotted as their significance can be inferred from Figure 3. The red line is the same as the one

period shock reported in Figure 3 and serves as a benchmark. Evidently, the CD series now

requires three months to die out after a two-period shock, and four months after a three-period

shock. The effects on all measures of uncertainty become larger and more persistent. Taking

the JLN measure as an example, U peaks after three months instead of one, and is four times

larger.

10



Figure 5: Dynamic Response of CD and U to Multi-period one σ Shock
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Note: The figure plots the dynamic responses to multi-period consecutive positive one-standard deviation CD

shocks. The sample spans 1980:01 to 2020:02.

Figure 6 reports the dynamic responses of the four measures of Y to the multi-period shock

of one standard deviation each period. The red lines are identical to the ones plotted in Figure

4 for a single period shock. For IP, the adverse effects are prolonged but are not significantly

magnified. For IC, the maximum increase is the same in the multi-period shock as it is for a

single period, presumably because initial claims can only be filed once, and the losses are front

loaded, and always occurs one month after the shock. However, multi-period shocks slow the

time to recovery from two months to four. For ESI and SPD, there is a clear amplification

effect due to consecutive shocks. At the worst of times, employment loss in the service sector

is tripled that due to a one-shot shock, and the series is not back to control for well over three

quarters. Similarly, instead of an immediate recovery, multi-period shocks reduce scheduled

flight departures by two more months before a slow recovery begins.

5 Results for Multiperiod Multi-σ Shocks

We now engineer the shock profile to better reflect our understanding of the COVID19 disaster.

For this, we consider dynamic responses to multi-period large shocks. To get a sense of the

11



Figure 6: Dynamic Response of Real Activities to Multiperiod one σ Shock
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Note: The figure plots the dynamic responses to multi-period consecutive positive one-standard deviation CD

shocks. The sample spans 1980:01 to 2020:02

magnitude of COVID19, note that by the end of March 2020, 10 million Americans had made

initial unemployment insurance claims, which is a 900% increase compared to February 2020,

comparable in magnitude to that during the Great Depression. Furthermore, as of August

2020, COVID19 has already resulted in 159,000 deaths in the US, which has more fatalities

than the Korean War (92,134) and has exceeded the number of deaths due to the Vietnam War

(153,303).7

Our baseline profile of COVID19 is based on the fact that Hurricane Katrina was a 11σ

shock and CD series in 2020:03 based on the March relief package is 17.5 times larger than the

cost of Katrina. Therefore, we take 192σ as the benchmark magnitude of COVID19. We also

consider a more conservative profile based on an estimated insurance cost of business closure

provided to us by American Property Casualty Insurance Association, which results in one-

trillion dollar insurance cost.8 This translates into a cost of COVID19 that is 5.9 times larger

7Source: https://en.wikipedia.org/wiki/United_States_military_casualties_of_war.
8These estimates were calculated by the American Property Casualty Insurance Association (APCIA), in

the framework of looking at Business Interruption type of coverages (which do not normally cover pandemics).
So they do not directly reflect assumptions about total revenue and/or total operating expenses, which would
result in larger numbers. According to APCIA, the main component driving these estimates are payroll and
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than that of Katrina, and therefore we take 65σ as the magnitude of COVID19 for this case.

As for the duration, we calibrate the shock profiles by using the fraction of states that are

listed as “not reopening”weighted by their GDP contributions. Table 1 reports the fraction of

GDP (2019:Q4) earned in states that are categorized as reopened/reopening versus those that

are not. As of July 31, 52.4% of 2019:Q4 GDP was earned in states that are not reopening.

Some of these states are pausing or reversing previous reopening plans because of the surge of

new COVID19 positive cases in late June and early July. Therefore, we first calibrate the size

of shock in July to be 52.4% of the size of shock in March (192σ) or 100σ shock. If we assume

that the shock was zero in the interim months, then the five-month shock profile from March

2020 to July 2020, is a (192,0,0,0,100) standard deviation shock profile.

Table 1. State-level Reopening Summary Statistics

Snapshot Fraction of 2019 Q4 GDP
Earned in States

Reopening Not Reopening
As of April 30 12.30% 87.70%
As of May 31 53.90% 46.10%
As of June 30 59.03% 40.97%
As of July 31 47.56% 52.44%

Table 1:
Note: This table report the fraction of 2019 real GDP earned in states that are “reopening”and “not reopening”.

The source of the data is from the New York Times (link: https://www.nytimes.com/interactive/2020/us/states-

reopen-map-coronavirus.html). “Reopening”states include all those that are either “reopening”or “reopened.”

“Not reopening” includes all states that are assigned to one of the following categories: “regional opening,”

“shutdown,” “pausing,” and “reversing.” The state-level 2019 GDP estimates are obtained from Bureau of

Economic Analysis.

A large shock shifts up the dynamic responses relative to a one-standard-deviation shock

presented in Figure 4, while a multi-period shock shifts the dynamic responses to the right as

shown in Figure 6. It is of interest to ask how the dynamic responses would change if the dis-

ruption is spread over more periods. Figure 7 plots the dynamic responses of a (192,0,0,0,100)σ

shock profile in dark blue. Plotted next in dotted blue is a five-month (192,0,88,79,100)σ shock

profile. This alternative profile is based on the fraction states that were not reopening weighted

by their GDP contributions from May to July.

The picture that emerges from Figure 7 is that cumulative losses are primarily determined

by the total magnitude of the shock rather than the magnitude in any one period. But the

benefits.
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Figure 7: Dynamic Response to Two Shock Profiles

0 1 2 3 4 5 6
Months

0

0.1

0.2

0.3
Costly Disaster Index

0 1 2 3 4 5 6
Months

-20

0

20

40

60
Macro Uncertainty

0 1 2 3 4 5 6
Months

-20

-10

0

10

20

30
Industrial Production

0 2 4 6 8 10 12
Months

-400

-200

0

200
Initial Claims

0 2 4 6 8 10 12
Months

-8

-6

-4

-2

0
Service Industry Employment

0 2 4 6 8 10 12
Months

-200

-150

-100

-50

0
Scheduled Flight Departures

(192,0,0,0,100) (192,0,88,79,100)

Note: The figure plots the dynamic responses to different disaster shock profiles. The sample spans 1980:01 to

2020:02
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longer the duration holding the shock size each period fixed, the larger are the losses and the

slower the recovery. The losses for ESI and SFD are particularly steep and persistent.

We report in Table 2 the maximum response in a 12-month period, where the location of

the maximum can be inferred from Figure 6. Table 2 also reports the cumulative loss over the

months with negative responses.9 These maximum and cumulative losses are reported for four

different shock profiles. The first two shock profiles, (192,0,0,0,100)σ and (192,0,88,79,100)σ,

have initial magnitudes that are calibrated based on the Coronavirus relief package passed

in March 2020. The next two shock profiles, (65,0,0,0,34)σ and (65,0,30,27,34)σ, have initial

magnitudes that are calibrated based on the APCIA insurance cost. Then the size of the

subsequent shocks are calibrated based on the fraction of states that are not reopening, as

defined above.

Table 2: Maximum Negative Response to Disaster Shock: Linear Model

Shock Profiles Industrial Production Initial Claims Service Employment Flights
Calibration based on Relief Pacakage

(192,0,0,0,100)σ −11.80% 167.56% −5.17% −113.72%
Cumulative Losses −20.17% 213.62% −45.11% −666.33%
(192,0,88,79,100)σ −11.80% 167.56% −7.98% −164.09%
Cumulative Losses −22.28% 288.80% −68.55% −1048.1%

Calibration based on APCIA insurance cost
(65,0,0,0,34)σ −3.99% 56.73% −1.75% −38.50%

Cumulative Losses −6.83% 72.32% −15.27% −225.58%
(65,0,30,27,34)σ −3.99% 56.73% −2.70% −55.55%
Cumulative Losses −7.54% 97.77% −23.21% −354.83%

Note: This table shows maximum negative dynamic response of real activity from VAR Xt = (CDt, Yt, UMt)
′

for different shock profiles. The size of the positive CD shock is indicated in the first column. The “cumulative

loss" is the sum of all negative (positive for IC) responses within 12 months. The sample spans 1980:01 to

2020:02.

Table 2 shows that our first shock profile (192,0,0,0,100)σ will lead to a maximum drop in

industrial production of 11.80% occurring after one month, a 5.17% maximum loss in service

sector employment (over 7 million jobs) occurring after four months, and a 113.72% reduction

in scheduled flights after two months. The reduction in ESI is not trivial because over 75%

of workers (or over 140 million) are employed in the service sector. The implied cumulative

reduction of 45.11%, or loss of nearly 64 million service sector jobs before the onset of recovery

is staggering. These numbers reach a cumulative reduction of 69%, or a loss of 98 million service

9The cumulative responses could be overestimated because the response can be statistically zero at lags much
earlier than the point estimate of the response crosses the zero line.
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jobs, for the (192,0,88,79,100)σ profile.

6 Nonlinearities

While there were 259 disasters in our data, most of these were small. A linear model may under-

estimate the effect of large shocks. We therefore consider a model that allows the coeffi cients to

be different for large disasters. Let St be an observable variable. We estimate a series of single

equation regressions, one for each h, to obtain the dynamic response at lag h ≥ 1:10

Yt+h = α0 + βh(L)′Xt−1(L) + St−1

(
δh0 + δh

′

1 Xt−1

)
+ et+h, (2)

where St = exp(−γDDt)
1+exp(−γDDt) is a logistic function in the number of deaths in our deadly disaster

series, DD, normalized to be mean zero and variance one.

Figure 8 plots the dynamic responses to a one-period, one standard deviation shock con-

structed from the non-linear model. For IP and IC, the responses of the non-linear model (in

red) are similar to the linear model (in blue). Both responses peak almost immediately after

the shock. For SFD, the negative responses are larger and more persistent. The ESI losses

are larger than those in the linear model, but even in the non-linear model, the effects are

statistically insignificant after one year.

Table 3 summarizes the maximum and cumulative responses based on the non-linear model.11

Compared to estimates from linear model reported in Table 2, the maximum impact of the dis-

aster shock is larger for all measures of activity, and particularly so when the shock extends more

than one period. The first profile of (192,0,0,0,100)σ shock now leads to a maximum one-month

reduction in IP of 16.38%, a 165% reduction of scheduled flights, and service employment loss in

month eight of 10.38% which is roughly 14 million jobs. The cumulative losses are much larger

than the linear scenario, generating a 27% cumulative drop in IP and a 100% drop in service

sector employment, or 142 million jobs lost. For the (192,0,88,79,100)σ profile, the numbers are

even larger: the cumulative losses for service sector employment are 153%, or 217 million jobs

lost. This more pessimistic scenario may have seemed inconceivable at the beginning of the

year, but between March to July 2020, there were already 55 million unemployment insurance

claims in the US.
10This procedure has been called the “local projection”method by Jorda (2005).
11The estimated CD shock for Katrina from the regression of CD series on the RHS variables in equation (2)

is 11.4σ above its mean. Therefore, we continue to take 192σ as the benchmark magnitude of COVID19 for the
nonlinear model.
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Figure 8: Dynamic Response of Real Activities to a σ Shock: Non-linear Model
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Note: The figure plots the dynamic responses to a positive one-standard deviation CD shock from the non-linear

model. The posterior distributions of all parameters are estimated using Bayesian estimation with flat priors

and the 68% confidence bands are reported in dotted lines. The sample spans 1980:01 to 2020:02.

Table 3: Maximum Negative Response to Disaster Shock: Non-linear Model

Shock Profiles Industrial Production Initial Claims Service Employment Flights
Calibration based on Relief Pacakage

(192,0,0,0,100)σ −16.38% 190.12% −10.38% −165.10%
Cumulative Losses −26.69% 291.15% −99.56% −1365.70%
(192,0,88,79,100)σ −16.38% 190.12% −16.21% −254.33%
Cumulative Losses −43.02% 483.61% −152.91% −2213.70%

Calibration based on APCIA insurance cost
(65,0,0,0,34)σ −5.54% 64.36% −3.51% −55.89%

Cumulative Losses −9.04% 98.57% −33.70% −462.33%
(65,0,30,27,34)σ −5.54% 64.36% −5.49% −86.10%
Cumulative Losses −14.57% 163.72% −51.77% −740.42%

Note: This table shows maximum negative dynamic response of real activity from the nonlinear local projection

of Xt = (CDt, Yt, UMt)
′ for different shock profiles. The size of the positive CD shock is indicated in the first

column. The “cumulative loss" is the sum of all negative (positive for IC) responses within 12 months. The

sample spans 1980:01 to 2020:02.
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7 Conclusion

Based on the monthly data on costly disasters affecting the U.S. over the last forty years, we

provide some preliminary estimates of the macroeconomic impact of COVID19 over the next

12 months. We find that even in a fairly conservative scenario without nonlinearities, large

multiple-period shocks like COVID19 can create a 11.80% monthly drop in IP, a cumulative

losses of more than 60 millions jobs in service industry, sustained reductions in air traffi c, while

macroeconomic uncertainty lingers for up to six months. The non-linear model suggests even

more pessimistic outcomes.

There are, of course, caveats to the analysis. First, COVID19 is different from past disasters

in many ways, and the historical data may well over- or under-estimate the effects. As mentioned

above, the disasters in history have not led to serious disruptions in industrial production.

The relatively small loses found for IP must be interpreted in this light. Second, we have

focused the dynamic responses under one year because the longer horizon results are not very

well determined. This could be a consequence of the short-memory nature of disaster shocks.

Furthermore, to the extent that the CD series is heavy-tailed, it is fair to question whether

standard Bayesian sampling procedures or frequentist asymptotic inference based on normal

errors are appropriate. Nonetheless, the different profiles all suggest steep declines in economic

activities, and the longer the duration of the shock, the larger the cumulative losses.
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Appendix

Table A1. List of States that are reopened or reopening

Snapshot
As of April 30 (10 States) AK, CO, GA, MN, MS, MT, OK, SC, SD, TN
As of May 31 (38 States) AL, AK,AZ,AR,CO,CT,DC,FL,GA,HI,ID,IN

IA,KS,KY,LA,MD,MA,MN,MS,MO,MT,NV
NH,NC,ND,OH,OK,RI,SC,SD,TX,UT,VT,VA
WV,WI,WY

As of June 30 (37 States) AL, AK, CO,CT,DC,FL,GA,HI,IN, IA,KS, KY
ME,MD,MA,MN,MS,MO,MT,NE,NH,NJ,NY
ND,OH,OK,PA,RI,SC,SD,TN,UT,VT,VA,WV
WI,WY

As of July 31 (29 States) AK,DC,GA,HI,IL,IA,KS,KY,ME,MD,MA,MN
MO,MT,NE,NH,NY, ND,OH,OK,PA,RI,SD,TN
UT,VT,VA,WV,WI

Table 4:
Note: This table lists the states that were reopened or reopening. The source of the data is from the New York

Times (link: https://www.nytimes.com/interactive/2020/us/states-reopen-map-coronavirus.html). "Reopening

states" include all states that are either "reopening" or "reopened" as of the date specified in the first column.

19



Table A2. Glossary

Reopened/Reopening
Reopened States have reopened every major sector, though businesses are almost

universally under restrictions, such as allowing fewer customers, requiring
workers and customers to wear masks, and enforcing social distancing.

Reopening States are reopening in stages, allowing some sectors to open ahead of others.
Not Reopened/Reopening

Regional Reopening Governors are allowing regions that meet criteria for slowing the outbreak
to open ahead of others. The hardest-hit areas remain under stricter lockdowns

Pausing Sates have reopened some sectors, but paused or delayed plans to reopen
further after seeing a rise in coronavirus cases.

Reversing Some states have moved to close certain sectors statewide or in certain counties
after seeing a surge in cases.

Shutdown States remain on lockdown, with shutdown orders firmly in place.
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