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1 Introduction

The response to the Covid-19 crisis highlights the tension between health and economic

outcomes. We propose a simple extension of the neoclassical model to quantify the tradeoffs

and guide policy. When will the private sector engineer the right response, and when is

there a need for policy intervention? We are particularly interested in understanding the

nature and timing of policy responses. Which measures should be front-loaded and which

ones should ramp up as the contagion progresses?

Our model has two building blocks: one for the dynamics of contagion, and one for

consumption and production, including mitigation strategies (such as working from home).

Our starting point is the classic SIR model of contagion used by public health specialists.

Atkeson (2020b) provides a good summary of this framework. In a population of initial size

N , the epidemiological state is given by the numbers of Susceptible (S), Infected (I), and

Recovered (R) people. By definition, the cumulative number of deaths is D = N−S−I−R.

Infected people transmit the virus to susceptible people at a rate that depends on the

nature of the virus and on the frequency of social interactions. Containment, testing,

and social distancing reduce this later factor. The rates of recovery (transitions from I

to R), morbidity (I becoming severely or critically sick) and mortality (transition form

I to D) depend on the nature of the virus and on the quality of health care services.

The quality of health services depends on the capacity of health care providers (ICU beds,

ventilators) and the number of sick people. The economic side of the model focuses on three

key decisions: consumption, labor supply, and working from home. We use a canonical

representative-agent framework where members of a large household jointly make these

decisions. Both consumption and work increase th risk of contagion, which is the key link

between the economic and epidemiological blocks of the model. We endow agents with the

option of working from home, which reduces contagion risk but comes at a cost in the form

of productivity losses. These losses decline as agents accumulate experience in working from

home.

We use a calibrated version of the model to study the reaction of private agents in

equilibrium to the announcement of an outbreak as well as that of a social planner. Upon
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learning of the risks posed by the virus, households cut spending and labor supply and

increase time spent working from home. Broadly, their mitigation efforts are proportionate

to the risk of infection, which – all else equal – is proportional to the fraction of infected

agents I/N . Private responses differ from those of the planner because of two externalities.

The first is the usual infection externality: households only take into account the risk that

they become infected, not the risk that they infect others. The other is is a congestion

externality: agents do not internalize the fact that their actions can increase the fatality

risk for others, through an overwhelmed healthcare system. Both these factors make private

mitigation lower than the socially optimal level. We show that this wedge between private

and social incentives can be particularly severe early on in the outbreak. When private

agents become aware of the disease, the possibility of future infection reduces the value of

being careful today. We call this effect the fatalism effect. The planner, on the other hand,

internalizes the possibility of re-infection and a congested healthcare system and as a result,

her incentives to avoid infection increase sharply when she learns of the disease.

Our quantitative results show that this leads to significant differences in the evolution of

both macro and health outcomes. In equilibrium, the representative household’s response

closely tracks the path of the infection rate. At the peak, labor supply drops by about 10%

and as many as 60% of work happening from home. The result is a time path for infections

that peaks at the same time as the zero-mitigation timepath albeit at a lower level. At the

peak, the fataility rate is triple the baseline level. The planner, on the other hand, acts more

quickly and aggressively to flatten the curve, cutting labor supply by 20% and prescribing a

work-from-home ratio of 80% at the height of the disease. The infection rate peaks occurs

a few weeks later and at a much lower level – almost half – that of the equilibrium level.

The peak fatality rate and the cumulative fatalities are also significantly reduced. The

ability to work from home plays a significant role in ameliorating the economic impact of

the mitigation strategies. While this is true both in the case of private agents as well as

the planner, the latter uses this optiom much more intensively. If we were to abstract from

this option, the planner’s optimal strategy has a peak drop in consumption of almost 45%

(compared to 30% in the baseline model).

We then examine the robustness of our main results to assumptions about parameters
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(notably the fatality rate) and the arrival of news about the disease. We also consider

a version with altruistic households and find that the time path of mitigation remains

relatively unchanged for modest degrees of altruism.

Literature. There are by now a number of papers studying the tradeoff between economic

and health outcomes in the context of the Covid-19 pandemic. It is impossible to cite every

paper from this body of work, so we restrict ourselves to closely related early ones – Barro

et al. (2020), Eichenbaum et al. (2020) and Alvarez et al. (2020). Barro et al. (2020) and

Correia et al. (2020) draw lessons from the 1918 flu epidemic. Barro et al. (2020) find a

high death rate (about 40 million people, 2% of the population at the time) and a large

but not extreme impact on the economy (cumulative loss in GDP per capita of 6% over 3

years). The impact on the stock market was small. Correia et al. (2020) find that early

interventions help protect health and economic outcomes. Our paper relates to an older

literature on contagion dynamics, e.g. (Diekmann and Heesterbeek, 2000). We refer to the

reader to Atkeson (2020b) for a recent discussion. Berger et al. (2020) show that testing can

reduce the economic cost of mitigation policies as well as reduce the congestion in the health

care system. Baker et al. (2020) document the early consumption response of households

in the US.

Our model shares with Eichenbaum et al. (2020) the idea of embedding SIR dynamics in

a simple DSGE model. The SIR model is the same, but there are some notable differences in

the economic model. Eichenbaum et al. (2020) consider hand-to-mouth households while we

use a representative household framework in the tradition of Lucas and Stokey (1987), where

both consumption and health risks are pooled. Apart from this difference, we emphasize the

role of learning-by-doing in working from home which adds an important dynamic choice.

The planner invests in the new technology to mitigate future disruptions. We also highlight

the dynamic tension (the so-calledfatalism bias) between the planner and the private sector’s

incentives.
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2 Benchmark Model

2.1 Households

There is a continuum of mass N of households. Each household is of size 1 and the utility

of the household is

U =
∞∑
t=0

βtu (ct, lt; it, dt)

where ct and lt are per-capita consumption and labor supply. The household starts with

a continuum of mass 1 of family members, all of them susceptible to the disease. At any

time t > 0 we denote by st, it and dt the numbers of susceptible, infected and dead people.

The size of the household at time t is therefore 1− dt and total household consumption is

(1− dt) ct. Among the it infected members, κit are too sick to work. The labor force at

time t is therefore 1− dt − κit, and household labor supply is (1− dt − κit) lt. The number

of household members who have recovered from the disease is rt = 1− st − it − dt. In our

quantitative analysis, we use the functional form

u (ct, lt; it, dt) = (1− dt − κit)

(
log (ct)−

l1+η
t

1 + η

)
+ κit (log (ct)− uκ)− uddt,

where uκ is the disutility from being sick and ud the disutility from death which includes lost

consumption and the psychological cost on surviving members.1 For simplicity, we assume

that sickness does not change the marginal utility from consumption. This implies that

the household will equate consumption for all alive members (i.e. independent of health

status). The variables st, it and dt evolve according to a standard SIR model described

below.

At the beginning of time t, each household decides how much to consume ct (per capita)

and how much each able-bodied member should work lt. We have normalized the disutility of

labor so that l = c = 1 before the epidemic starts. Households become infected by shopping

and by going to work. We compute infection in two steps. First, we define exposure levels

for shoppers and for workers. Then, we aggregate these into a composite infection rate

1Formally ud = PsyCost − log (cd) where cd is the consumption equivalent in death. Technically we
cannot set cd = 0 with log preferences but ud is a large number.
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at the household level. We assume throughout the paper that asymptomatic individuals

are unaware of their infection. Formally, {dead} and {sick} are the only observable states

at the individual level. In particular, households cannot tell the difference between the st

members who are susceptible and the (1− κ) it members who are infected but not sick. This

modeling choice is the main difference between our model and the model of Eichenbaum

et al. (2020) who make the polar assumption. They assume that individuals know their

types, do not share risks within a family, and behave in a hand-to-mouth fashion. We

follow instead a Lucas and Stokey (1987) approach to model households’ decisions and risk

sharing, so our model stays close to a standard representative agent model.

We take into account the possibility of a cure/vaccine by adjusting the discount factor.

Formally, this is equivalent to assuming that a cure/vaccine arrives stochastically at an

exogenous arrival rate. Note that this combines both a treatment – which instantly cures

sick individuals – and a vaccine - which eliminates the risk of future infections. Under this

assumption, the economy jumps back to lt = ct = 1 when the cure/vaccine arrives. We

can therefore focus on the path along which a cure has not yet been found, along with a

suitable adjustment to the discount factor. Let β̃ be the pure time discount rate and ν

the likelihood of a vaccine. We define the effective discount factor β = β̃ (1− ν) along the

no-cure path.

2.2 Shopping

We define consumption exposure as

ecctCt,

where ec measures the sensitivity of exposure to consumption and Ct is aggregate con-

sumption.2 The idea behind this specification is that household members engage in various

activities related to consumption – such as shopping in a crowded mall, eating inside a

restaurant, going to a hospital – which exposes them to infection risk. These are assumed

to proportional to consumption expenditure ct and for a given level of aggregate consump-

tion, exposure is proportional to such activities. We study heterogeneity across sectors later

2We use lower-case letters to denote household level variables and upper-case for aggregates.
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in the paper.

2.3 Production and Working from Home

Production uses only labor, but a key feature of our model is the distinction between hours

supplied by able bodied workers lt and effective labor supply l̂t per household. Effective

labor supply is

l̂t = (1− dt − κit)
(
lt −

χt
2
m2
t

)
The first term captures the fact that the number of valid household member is decreased

by death and sickness. The second term captures the cost of implementing mitigation

strategies, denoted mt (e.g., working from home at least some of the time). These strategies

come at a cost – lost productivity, denoted by the term χt
2 m

2
t . The loss process χt is a

decreasing function of the accumulated experience working from home and is given by:

χt = χ (mt)

where mt is the stock of accumulated mitigation (with a depreciation rate of 1− ρm)

mt+1 = ρmmt +mt.

The function χ is positive, decreasing, and convex. In the quantitative analysis, we assume

the following functional form

χt = χ̄ (1−∆χ (1− exp (−mt)))

The cost shifter initially (i.e. when mt=0) is equal χ̄ > 0 and then falls over time as people

figure out how to work from home. The parameter ∆χindexes the maximum potential for

learning by doing, since as mtbecomes large, the cost approaches χ̄ (1−∆χ).

The benefit of mitigation strategies is a reduction in the risk of infection. Specifically,
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exposure from work is given by

el (1−mt) lt (1−Mt)Lt

where, as before, upper-case letters denote aggregates.

The aggregate resource constraint is

Yt = Ct = L̂t = Nl̂t

In our basic model, we ignore the issue of firm heterogeneity and market power. Therefore,

price is equal to marginal cost

Pt = Wt = 1

where Wt is the wage per unit of effective labor, which we normalize to one.

2.4 Income and Contagion

At the end of each period, household members regroup and share income and consumption.

Household labor income is Wt l̂t = l̂t and the budget constraint is

(1− dt) ct +
bt+1

1 + rt
≤ bt + l̂t

Household exposure is

et = ē+ (1− dt) ecctCt + (1− dt − κit) el (1−mt) lt (1−Mt)Lt,
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where ē is baseline exposure, independent of market activities. Contagion dynamics follow

a modified SIR model (the benchmark model is explained in the appendix):

st+1 = st − γet
It
N
st

it+1 = γet
It
N
st + (1− ρ) it − δtκit

dt+1 = dt + δtκit

rt+1 = rt + ρit

where γ is the infection rate per unit of exposure, ρ the recovery rate, κ the probability of

being sick conditional on infection, and δt the mortality rate of sick patients. In the standard

SIR model, exposure is assumed to be constant, whereas here it depends on consumption,

labor supply and mitigation strategies. Note that the number of new infected, γet
It
N st, is a

function of the aggregate infection rate, taken as given by households.

Finally, the mortality rate δt is described by an increasing function of the measure of

sick agents:

δt = δ (κIt)

which captures the idea that an overloaded healthcare system can contribute to higher

fatalities.

2.5 Market Clearing and Aggregate Dynamics

Infection dynamics for the the entire population are simply given by the SIR system above

with aggregate variable It = Nit, and so on. The aggregate labor force is N (1− κit − dt) lt

and total consumption is N (1− dt) ct. The market clearing conditions are

(1− dt) ct = l̂t,

and for the bond market

bt = 0.
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3 Decentralized equilibrium

3.1 Equilibrium Conditions

Since our model reduces to a representative household model and since b = 0 in equilibrium,

we simply omit b from the value function. The household’s optimal choices are the solution

to the following recursive problem:

V (it, st, dt,mt) = max
ct,lt,mt

u (ct, lt; it, dt) + βV (it+1, dt+1, st+1,mt+1)

where m̄t+1 = m̄t +mt and

u (ct, lt; it, dt) = (1− dt) log (ct)− (1− dt − κit)
l1+η
t

1 + η
− uκκit − uddt ,

with effective labor given by

l̂t = (1− dt − κit)
(
lt −

χt
2
m2
t

)
χt = χ̄ (1−∆χ (1− exp (−mt)))

The Lagrangian is then:

Vt = u (ct, lt; it, dt) + βVt+1 + λt

(
l̂t + bt − (1− dt) ct −

bt+1

1 + rt

)
+ λe,t

(
et − ē− (1− dt) ecctCt − (1− dt − κit) el (1−mt) lt (1−Mt)Lt

)
+ λi,t

(
it+1 − γet

It
N
st − (1− ρ) it + δtκit

)
+ λs,t

(
st+1 − st + γet

It
N
st

)
+ λd,t (dt+1 − dt − δtκit)

The first order conditions for consumption and labor are then

10



ct : c−1
t = λt + λe,te

cCt

lt : lηt = λt − λe,tel (1−mt) (1−Mt)Lt

mt : λtχtmt =
βVm̄,t+1

1− dt − κit
+ λe,te

llt (1−Mt)Lt

The remaining first order conditions are

et : λe,t = (λi,t − λs,t) γ
It
N
st

it+1 : λi,t = −βVi,t+1

st+1 : λs,t = −βVs,t+1

dt+1 : λd,t = −βVd,t+1

The envelope conditions are

Vi,t = κ
l1+η
t

1 + η
− κuκ − κλt

(
lt −

χtm
2
t

2

)
+ λe,tκe

l (1−mt) lt (1−Mt)Lt − (1− ρ)λi,t + δtκ (λi,t − λd,t)

Vs,t = (λs,t − λi,t) γet
It
N
− λs,t

Vd,t =
l1+η
t

1 + η
− log (ct)− ud − λt

(
lt − χtm2

t − ct
)

+ λe,t

(
ecctCt + el (1−mt) lt (1−Mt)Lt

)
− λd,t

Vm,t = βVm,t+1 + λt (1− dt − κit)
χ̄

2
m2
t∆χ exp (−mt)

3.2 Equilibrium with Exogenous Infections

To simplify the notation, we normalize N = 1, so we should think of our values as being

per-capita pre-infection. When there is no risk of contagion, i.e. it = 0, λe,t = 0 and

Vm̄,t+1 = 0, we have mt = 0 and from the optimal consumption and labor supply

c−1
t = lηt
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Since m = 0 we have l̂t = lt so market clearing is simply

ct = lt.

Combining these two conditions we get

ct = lt = 1

The pre-infection economy is always in steady state.

Consider now an economy with exogenous SIR dynamics: ec = el = 0. This implies

mt = 0 and

c−1
t = lηt .

Market clearing requires

(1− dt) ct = (1− dt − κit) lt

therefore

l1+η
t = 1 +

κit
1− dt − κit

The labor supply of valid workers increases to compensate for the reduced productivity of

the sick. Per capita consumption is

ct =

(
1− dt

1− dt − κit

)− η
1+η

As long as η > 0 consumption per capita decreases. Aggregate GDP decreases because of

lost labor productivity and deaths.

The SIR system is independent from the economic equilibrium. As described in the

Appendix, the share of infected agents It increases, reaches a maximum and converges to 0

in the long run. Assuming a constant δ, the long run solution solves

log

(
S∞

1− I0

)
= − γē

ρ+ δκ

(
1− S∞
N

)
,
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and

D∞ =
δκ

δκ+ ρ
(1− S∞) .

When the congestion externality arises and δt increases, then we cannot obtain a closed-

form solution for the long run death rate but the qualitative results are unchanged. The

following proposition summarizes our results.

Proposition 1. When contagion does not depend on economic activity
(
ec = el = 0

)
, the

share of infected agents It increases, reaches a maximum and converges to 0 in the long

run. The long run death rate is given by D∞ = δκ
δκ+ρ (1− S∞) where the long run share

of uninfected agents solves log
(
S∞

1−I0

)
= − γē

ρ+δκ

(
1−S∞
N

)
. Along the transition path, labor

supply of able-bodied workers follows the infection rate while per-capita consumption moves

in the opposite direction as ct =
(

1− κit
1−dt

) η
1+η

.

3.3 Private Incentives for Mitigation

In this subsection, we characterize incentives of households to undertake mitigation. The

incentives to mitigate depend on the shadow value of exposure λe,t = (λi,t − λs,t) γ ItN st

which is increasing in new infections, γ ItN st . So, for a given λi,t−λs,t, the private incentives

to mitigate are proportional to the number of new cases. Now,

λi,t − λs,t = β (Vs,t+1 − Vi,t+1)

with

Vs,t − Vi,t = uκκ+ κlt

(
λt −

lηt
1 + η

)
− ρλi,t +

(
1− γet

It
N

)
(λi,t − λs,t) + δtκ (λd,t − λi,t)

= uκκ+ κlt

(
λt −

lηt
1 + η

)
− ρλi,t +

(
1− γet

It
N

)
β (Vs,t+1 − Vi,t+1) + δtκβ (Vi,t+1 − Vd,t+1)

Fatalism Effect We now use an approximation to obtain a sharper characterization and

gain more intuition. Specifically, we make the following assumptions (i) the non-monetary

cost of death ud is sufficiently large that it dominates the other terms in the expression for

Vd,t and Vi,t (ii) there are no congestion effects on fatality, i.e. δt = δ. Then, the value of
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death and infection are approximately constant, i.e.

Vd,t ≈ −
ud

1− β

Vi,t ≈
∞∑
s=0

βs (1− ρ− δκ)s κ

(
−uκ + δ

βud
1− β

)
=

κuκ + δκ β
1−βud

1− β (1− ρ− δκ)
≡ Vi

The value of avoiding an infection at time t is the discounted value of the disutility from

sickness and death. The value of remaining susceptible is then

Vs,t ≈ Vi
∞∑
s=1

βs
(

1− γet+s−1
It+s−1

N

)s−1

γet+s−1
It+s−1

N

Importantly, Vs,t falls with the risk of infection in the near future. Formally,

∂Vs,t

∂ It+s−1

N

= Viβ
s

[(
1− γet+s−1

It+s−1

N

)s−1

γet+s−1 − (s− 1)

(
1− γet+s−1

It+s−1

N

)s−2

(γet+s−1)2 It+s−1

N

]

= Viβ
s

(
1− γet+s−1

It+s−1

N

)s−1

γet+s−1

[
1− (s− 1)

γet+s−1
It+s−1

N

1− γet+s−1
It+s−1

N

]

The term inside the square bracket is positive (or eq.,
∂Vs,t

∂
It+s−1
N

is negative) for low s. Since

Vi,t is approximately constant, this means that the difference Vs,t−Vi,t shrinks when agents

become aware of the disease, i.e. there is a perverse effect on incentives to mitigate. We

term this channel the fatalism effect: early on, agents (correctly) anticipate that they are

likely to become infected and so have weak incentives to avoid infection today. As we will

see, the planner’s solution considers other forces that offset this channel.

When δ is constant the fatalism effect rationally reduces privates incentives to mitigate

the disease, i.e., Vs,t − Vi,t is small, but it does not switch the sign, i.e., Vs,t − Vi,t remains

positive. This can change when δ is time varying as we discuss later.

4 Planner’s Problem

Again, we normalize N = 1 for simplicity. The planner solves
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maxU =
∞∑
t=0

βtu (Ct, Lt; It, Dt)

subject to

u (Ct, Lt; It, Dt) = (1−Dt) log (Ct)− (1−Dt − κIt)
L1+η
t

1 + η
− uκκIt − udDt

and

(1−Dt)Ct = (1−Dt − κIt)
(
Lt −

χt
2

(Mt)
2
)
.

The first order conditions for consumption and labor are then (highlighted in red are the

differences with the decentralized equilibrium)

Ct : C−1
t = λt + 2λe,te

cCt

Lt : Lηt = λt − 2λe,te
l (1−Mt)

2 Lt

Mt : λtχtMt =
βVM̄,t+1

1−Dt − κIt
+ 2λe,te

l (1−Mt)L
2
t

The marginal utilities of the planner with respect to exposure are twice as high as those of

the private sector because of the contagion externalities: private agents only care about how

their behavior affect their own infection risk. They do not care about how their behavior

affects the infection risk of others.

The envelope condition that changes (relative to the equilibrium) is the one with respect

to the number of infected people:

VI,t = κ
L1+η
t

1 + η
− κuκ − κλt

(
Lt − χtM2

t

)
+ λe,tκe

l (1−Mt)
2 L2

t − (1− ρ)λI,t

−γetSt (λI,t − λS,t)−
(
δtκ+ δ′tκ

2It
)

(λD,t − λI,t)

where δ′t denotes the derivative of the fatality rate with respect to the sick population. Let

us now consider the planner’s incentives to reduce consumption today in response to .
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4.1 Incentives to Mitigate

Next, we characterize the planner’s mitigation incentives and contrast them with the private

incentives studied in section 3.3. The planner’s incentives to avoid infection today depend

on VS,t+1−VI,t+1. Under the same simplifying assumptions as before, VD,t is approximately

constant (and the same as that of private agents):

VD ≈ −
ud

1− β
,

while the values of being infected and remaining susceptible are

VI,t ≈
∞∑
s=0

βs

(
s−1∏
τ=0

(1− ρ+ γet+τSt+τ − δκ)

)(
κuκ + δκ

β

1− β
ud

)

VS,t =
∞∑
s=1

βs
(

1− γet+s−1
It+s−1

N

)s−1

VI,t+sγet+s−1
It+s−1

N

The expression for VS,t shows that the planner also suffers from the fatalism effect: risk of

future infection reduces the value of remaining safe today. But there is an additional effect

which arises because of the γetStterm in the first equation. This implies that the value

of infectionVI,t is amplified (i.e. becomes even more negative) when the planner becomes

aware of the disease. Intuitively, the possibility of spreading makes the effective recovery

rate from the planner’s point of view equal to ρ− γetSt is instead of ρ.

Thus, from the planner’s point of view, both VI,tand VS,t become more negative when

the disease arrives. The net effect, which drives her incentives to mitigate, depend on the

relative strength of the two forces. Early on, the risk of an infected agent spreading the

disease to others is quite high (since St is high) while the fatalism effect (which depends on

It+τ
N ) is relatively muted, and therefore the incentives to mitigate are particularly powerful.

Finally, while we abstracted from congestion effects in this discussion for simplicity, re-

introducing them creates additional incentives for the the planner to mitigate. To see why,

note that with congestion effects, the planner’s value of infection is given by (the terms that
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change relative to the case without congestion are highlighted in red):

VI,t =

∞∑
s=0

βs

(
s−1∏
τ=0

(1− ρ+ γet+τSt+τ − δt+τκ)

)(
κuκ + δt+sκ

β

1− β
ud + δ′t+sκ

2It+s
β

1− β
ud

)

Thus, the planner hates infection even more in the presence of congestion effects. This

externality introduces another wedge between the private and social incentives to mitigate.

This tension helps explain episodes like the Florida spring break controversy. In March

2020, as the arrival of the pandemic became broadly known in the US, many people chose

to enjoy their spring break, arguing that if they were going to catch the virus, now would

be as good a time as later, while public officials worried about the spread of the disease and

hospitals being overwhelmed.

5 Calibration

Before detailing our calibration strategy, we note that considerable uncertainty about key

parameters remains even now. For an early discussion of the challenges, see Atkeson (2020a).

We return to this issue later in the paper. We calibrate our model at the weekly frequency.

Contagion The SIR block of the model is parameterized as follows. The recovery pa-

rameter is set to ρ = 0.35 following Atkeson (2020b). This value implies that the average

duration for which an infected agent is contagious is about 20 days. The fraction of infected

people who fall sick is κ = 0.15. For the exposure function, we normalize ē + ec + el = 1

and set ec = el = 1
3 , consistent with the estimates in Ferguson (2020). These parameters

imply that total exposure e = 1 at the pre-pandemic levels of consumption and labor (the

calibration of production and utility parameters will be described later). The parameter γ

is then chosen to target the basic reproduction number (i.e. the average number of people

infected by a single infected individual) of R = 3.3 consistent with the estimate of Salje et

al. (2020), yielding an estimated value of γ = 1.2. Finally, to parameterize the fatality rate

and the congestion effects, we adopt the following functional form for the case fatality rate

δt :

δt = δ̄ + exp (φIt)− 1
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where the parameter φ indexes the strength of the congestion externality. We set δ̄ and φ

to match two targets for the case fatality rate: a baseline value (i.e. the fraction of infected

people who die even in the absence of congestion) of 0.5% and an ‘extreme’ value of 1.5%

when 3% of the population requires medical attention (i.e. the fraction of people who die

when κI = 0.15 × 0.2). This procedure yields δ̄ = 0.012 and φ = 0.8. We examine the

robustness of our results to these choices later in the paper.

Preferences and technology The utility parameter ud is set to a baseline value of 10,

implying a flow disutility from death that is 10 times per capita income. Such large non-

monetary costs associated with loss of life are consistent with estimates in the literature and

with values used by government entities like the EPA. For example, Greenstone and Nigam

(2020) use an estimated value of a statistical life of $11.5 million (in 2020 dollars) to the

household from death. Assuming a rate of return of 5%, this translates into an annual flow

value of $575,000, or roughly 10 times per capita GDP. The flow disutility from sickness uκ

is set to a value of 0.5.

As we discussed earlier, our discount factor β is meant to captures both time discounting

and the possibility of a cure/vaccine arriving at an constant, exogenous rate. The pure

time discounting component corresponds to an annual discount factor of 0.95. For the

cure/vaccine, we take a relatively pessimistic case as our baseline, with the annualized

probability of 15%. The composite annual discount factor thus becomes 0.8, or equivalently,

a weekly β = (0.8)
1
52 = 0.9957.

Next, we calibrate the working-from-home technology, which involves picking values

for two parameters – χ̄ and ∆χ. For the former, we use estimates of the effect of the

restrictions imposed by many countries in February and March 2020. A back-of-the-envelope

calculation suggests that a policy which requires almost the entire labor force to work from

home (i.e. m ≈ 1) with no prior experience (m ≈ 0) causes GDP to fall by 25% below

its normal level. Since this initial productivity loss is exactly equal to χ̄
2 , we set χ̄ = 0.5.

Finally, for the long-run parameter, ∆χ, we rely on Dingel and Neiman (2020), who estimate

that roughly one-third of the jobs in the US can be done from home. Guided by this

estimate, we set ∆χ = 0.34. We also assume that the cumulation of learning depreciates
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very slowly, i.e. ρm = 0.99, which implies that the stock of knowledge evolves according to

m̄t+1 = 0.99m̄t +mt.

6 Quantitative Results

Our benchmark exercise uses a large initial infection rate of i0 = 1% for expositional pur-

poses (it makes the figures easier to read in the early periods), but it is important to keep

in mind that this is a large shock. It seems likely that agents and policy makers become

aware of the epidemic much earlier, so in our robustness analysis, we also report simulations

starting at i0 = 0.1%.

Private Response We start with the decentralized solution. Figure 1 and Figure 2 show

the behavior of the contagion and macro variables in the decentralized equilibrium, under

three different assumptions about exposure and mitigation strategies. The blue line solid

shows a situation where infection rates are exogenous, i.e. do not vary with the level of

economic activity. Since infection is assumed to be exogenous, agents do not engage in

mitigation, i.e., they ignore the pandemic. In fact, labor input rises (the solid line, top left

panel in Figure 2), while per-capita consumption falls by about 2.5% (the dashed line), as

able-bodied workers work harder to compensate for the workers who are sick. This is clear

not a realistic assumption, but it serves as a useful benchmark for the worst case scenario. In

this scenario, eventually almost the entire population is infected and 1.75% of the population

succumbs to the virus (bottom, left panel in Figure 1). The case mortality rate peaks at

2.5% roughly 15 weeks after the initial infection when about 6% (15% of the peak infection

rate of 40%) of the population is sick and the healthcare system is overwhelmed.

The red line describes the case where exposure is endogenous (i.e. varies with consump-

tion and labor) but there is no work-from-home (WFH) technology, i.e, the only ways for

the household to reduce exposure are to cut back on its consumption and labor supply. As

we would expect, this leads to a sharp reduction in economic activity (top, left panel in

Figure 2) by almost 30%. Importantly, the reduction is gradual, tracking the overall infec-

tion rate (consumption and labor hit their trough at 17 weeks for ). Intuitively, when the
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Figure 1: Decentralized Equilibrium: Contagion Dynamics

fraction of infected people is low (as is the case in the early stages), a reduction in exposure

has a small effect on future infection risk, relative to the resulting fall in consumption. And

since each household does not internalize the effect it has on the future infection rate, it

has little incentive to indulge in costly mitigation early on. This dynamic is reflected in

the hump-shaped pattern in λe (the bottom, middle panel in Figure 2). As we will see, the

planner’s incentives change much more strongly at the beginning. The mitigation behavior

does lower the cumulative infection and death rates (relative to the exogenous infection

case), by about 5% and 0.5% respectively.

Finally, the yellow line shows the effect of access to the WFH technology. This allows

the household to reduce exposure without sacrificing consumption – now, the peak loss in

consumption is 20% (compared to 30% without the WFH option), even as the exposure

falls by more (0.55 compared to 0.65, bottom left panel in Figure 2). The fraction of time

spent working from home (top, left panel in Figure 2) is hump-shaped, peaking at 60%

at roughly the same time as the fraction of infected rate. This additional flexibility also

lowers cumulative fatalities to 1%. However, the timing of mitigation strategies is mostly
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Figure 2: Decentralized Equilibrium: Aggregates

unchanged – households in the decentralized economy do not find it optimal to front-load

their mitigation efforts.

Optimal Response We now turn to the planner’s solution, depicted in Figures 3 and 4.

As before, the blue, red and yellow lines show the cases of exogenous infection, mitigation

without WFH and mitigation with WFH respectively. As the yellow and red curves in

Figure 3 show, the planner finds it optimal to “flatten the curve” more dramatically than

agents in equilibrium. The peak infection rates are well below the decentralized equilibrium

levels (10% versus 20%), leading to a lower peak fatality rate (1% versus 1.5%) as well

as cumulative deaths (0.7%, compared to slightly over 1% in the decentralized equilibrium

with WFH). To achieve this, the planner has to cut by more than 50%. Of course, this

pushes the economy into a deeper recession with consumption falling by more than 30%

even with WFH (top left panel in Figure4). The planner’s response also displays a hump-

shaped pattern, rising with the infection rate, but she does step on the brakes sooner (almost

immediately) compared to private agents.
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Figure 3: Planner Solution: Contagion Dynamics

Figure 4: Planner Solution: Aggregates
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The availability of the WFH technology ameliorates the economic impact of the planner’s

suppression strategy, but does not significantly alter the contagion dynamics. Intuitively,

fatalities are so costly that the planner aggressively suppresses the infection even in the

absence of the WFH option: access to WFH simply allows the planner to achieve the same

exposure outcomes at a lower cost. Notice also that the planner’s incentives to use the WFH

technology are much stronger than that of private agents in a decentralized equilibrium:

partly because her shadow value of exposure is higher, but also because she attaches a

greater value to the future benefits of accumulated knowledge. As a result, m rises to as

high as 0.8 relatively quickly. In other words, as long as a vaccine is not available, the

planner has almost 80% of the population working from home at the peak of the disease.

Private versus Public Incentives Figure 5 illustrates the fatalism effect. The top

graphs assume a constant risk of death δ. On the left we see the shrinking private incentives

for safety early on, as Vs,t− Vi,t decreases. On the right, we see that Vs,t− Vi,t increases for

the planner. The lower graphs illustrate another incentive problem that arises when δ is

time-varying. If agents anticipate congestion in the future and if they think they are likely

to become infected, they might prefer to increase their risk of infection today because it

is better to be sick when δ is still relatively low. Not only does Vs,t − Vi,t shrink, its sign

can even flip, as we see in the bottom left panel. For the planner, by contrast, the risk

of a higher δ increases the incentives to mitigate. We conclude that the misalignment of

private incentives is larger during early stages of the epidemic, and is amplified by congestion

externalities.

Smaller initial shock What is the value of an early warning? Suppose the planner

becomes aware of the disease at i0 = 0.1% (in the baseline, i0 = 1%). Figures 6 and 7 show

her optimal response in this case. The changes relative to the i0 = 1% case are relatively

small – the extent of mitigation, work-from-home and the final death count are all quite

similar across these cases (of course, as we would expect, the peaks occur slightly later with

a smaller initial infection). These results suggest a modest value to detecting the disease at

an earlier stage.
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Figure 5: Fatalism and Perverse Incentives

Figure 6: Planner Solution: Contagion Dynamics with Smaller Infection Shock
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Figure 7: Planner Solution: Aggregates with Smaller Infection Shock

Lower fatality As we discussed earlier, there is little agreement in the literature on the

mortality of Covid-19, with Atkeson (2020a) suggesting that the range of plausible values

could be as wide as 0.1% to 1%. To explore the effect of this uncertainty, we repeat our

analysis of the planner’s problem with mortality rates that are a tenth of our baseline values,

i.e. probability of death (conditional on being) is now given by 1
10δ (κIt). The results are

presented in Figures 10 and 11. As expected, the overall number of fatalities are much lower,

but the overall profile of the planner’s solution is unchanged: she still finds it optimal to

front load her intervention. The economic cost, however, is much lower and the lockdown

finishes earlier to let the economy recover.

Congestion externality Next, to isolate the role of the congestion externality, we repeat

our analysis of the planner’s solution with the parameter φ set to 0. The results, shown

in Figures 10 and 11, display a similar pattern as Figures 3 and 4, but with a much less

severe contraction. Intuitively, a healthcare system with sufficient slack capacity allows the

planner to achieve similar outcomes in terms of fatalities with modestly higher infection
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Figure 8: Planner Solution: Contagion Dynamics with Reduced δt

Figure 9: Planner Solution: Aggregates with Reduced δt
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rates or equivalently, with less mitigation (top, left panel in Figure 11). Accordingly, the

recession is not as deep or persistent than in the baseline.

Altruistic households Finally, we consider the possibility that households partly in-

ternalize their effects on the aggregate outcome. Formally, we assume that households

incorporate externalities with a weight τ while making their consumption, labor and miti-

gation decisions. The laissez-faire equilibrium and the planner’s optimum are obtained as

special cases by setting τ = 0 and τ = 1 respectively. If τ = 0.33, the death rate is 0.9%

(only slightly lower than the 1.0% under τ = 0). If τ is assumed to be 0.5, i.e. households

place equal weight on private and social incentives, the cumulative death rate falls to 0.85%

(roughly a half of the gap between the laissez-faire equilibrium and the planner’s optimum).

These results show that for private decisions to be close to that of the planner requires a

very large degree of altruism.

Parameter uncertainty As we briefly alluded to earlier, there was (and in some respects,

and continues to be) much uncertainty about the structural parameters of the disease. Here,

we use our model to speak to the dilemma faced by policy-makers who have to make decisions

with imperfect knowledge of key primitives of the disease they are dealing with it. Atkeson

(2020a) points out that, when one does not know the initial number of active cases, it is

difficult “to distinguish whether the disease is deadly (1% fatality rate) or milder (0.1%

fatality rate).” We illustrate this in Figure 12 where we show how two diseases with very

different parameterizations can have similar implications for the number of dead, which is

the variable that, in principle, is the easiest to measure. One disease has a reproduction

number R = 3.3 and an infection fatality rate of 0.5%, while the other disease has a

lower reproduction number R = 2.0 but a higher infection fatality rate of 1.0%. With an

initial shock of i0 = 0.1%, over the first two months of the spread of these diseases, the

paths of the number of dead are almost identical, as shown in the first panel of the figure.

Without accurate measures of other epidemiological variables, such as the number of newly

infected or the fraction of cases recovered, it becomes nearly impossible to distinguish the

two diseases in the short-term. Over the longer-term, however, the two diseases have very
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Figure 10: Planner Solution: Contagion Dynamics with φ = 0

Figure 11: Planner Solution: Aggregates with φ = 0
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Figure 12: Percentage of Population Dead for Two Diseases and Time Horizons

different implications for the number of dead, as shown in the second panel.

To explore more the role of uncertainty over the initial number of infected in our model

under the baseline parameterization, we considered a deadly disease with a low initial

infection rate of i0 = 0.1%, and a milder disease with a high initial infection rate of i0 = 1%.

Interestingly, in both cases, the planner should implement immediately a strong suppression

policy. The main difference is that in the mild case it is optimal to release the lockdown

sooner. Thus, faced with large uncertainty about the fatality rate, the planner could impose

a strong suppression policy and wait for more data. Assuming data available 20 weeks after

the outbreak allows her to precisely estimate the fatality rates, this strategy would allow

the planner to implement the optimal response, despite the initial uncertainty about a key

parameter.

7 Conclusions

We propose an extension of the neoclassical model to include contagion dynamics, to study

and quantify the tradeoffs of policies that can mitigate the Covid-19 pandemic. Our model

reveals two key insights. First, that relative to the incentives of private agents, a planner

wishes to significantly front-load mitigation strategies. Second, in our calibrated model,

the prospect of mitigation together with the possibility of agents working from home gives

quantitatively meaningful reductions in the spread of a disease and the economic costs.

Extensions of our baseline setup would yield a fruitful laboratory to study other policy-
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relevant questions. For instance, the production-side of the economy could be enriched to

multiple and heterogeneous sectors, to provide additional margins to mitigate exposure and

economic hardship. A richer model will also help to give sharper quantitative estimates on

the costs of mitigation strategies.
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Appendix

A Planner’s Problem

The planner understands that the dynamics follow

St+1 = St − γetItSt

It+1 = γetItSt + (1− ρ) It − δ (κIt)κIt

Dt+1 = Dt + δ (κIt)κit

Rt+1 = Rt + ρIt

We normalize N = 1 for simplicity.

maxU =
∞∑
t=0

βtu (Ct, Lt; It, Dt)

subject to

u (Ct, Lt; It, Dt) = (1−Dt) log (Ct)− (1−Dt − κIt)
L1+η
t

1 + η
− uκκIt − udDt

and

(1−Dt)Ct = (1−Dt − κIt)

(
Lt −

χ
(
M̄t

)
2

(Mt)
2

)

The Lagrangian is

Vt
(
It, St, Dt, M̄t

)
=ut + βVt+1 + λt

(
(1−Dt − κIt)

(
Lt − χ

(
M̄t

)
(Mt)

2
)
− (1−Dt)Ct

)
+ λe,t

(
et − ē− (1−Dt) e

cC2
t − (1−Dt − κIt) el (1−Mt)

2 L2
t

)
+ λi,t (It+1 − γetItSt − (1− ρ) It + δ (κIt)κIt)

+ λs,t (St+1 − St + γetItSt)

+ λd,t (Dt+1 −Dt − δ (κIt)κIt)
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The first order conditions for consumption and labor are then (highlighted in red the dif-

ference with the decentralized equilibrium)

Ct : C−1
t = λt + 2λe,te

cCt

Lt : Lηt = λt − 2λe,te
l (1−Mt)

2 Lt

Mt : λtχtMt =
βVM̄,t+1

1−Dt − κIt
+ 2λe,te

l (1−Mt)L
2
t

The marginal utilities of the planner with respect to exposure are twice as high as those of

the private sector because of the contagion externalities: private agents only care about how

their behavior affect their own infection risk. They do not care about how their behavior

affects the infection risk of others.

The remaining first order conditions are the same as those of the private sector

et : λe,t = (λi,t − λs,t) γItst

It+1 : λi,t = −βVI,t+1

St+1 : λs,t = −βVS,t+1

Dt+1 : λd,t = −βVD,t+1

The envelope conditions are

VI,t = κ
L1+η
t

1 + η
− κuκ − κλt

(
Lt −

χt
2
M2
t

)
+ λe,tκe

l (1−Mt)
2 L2

t − (1− ρ)λi,t

−γetStλi,t −
(
δtκ+ δ′tκ

2It
)

(λd,t − λi,t)

VS,t = −λs,t − γetIt (λi,t − λs,t)

VD,t =
L1+η
t

1 + η
− log (Ct)− ud − λt

(
Lt −

χt
2

(Mt)
2 − Ct

)
+ λe,t

(
ecC2

t + el (1−Mt)
2 L2

t

)
− λD,t

VM̄,t = βVM̄,t+1 + λt (1−Dt − κIt)
χ̄

2
∆χe

M̄t (Mt)
2
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B Properties of Contagion Dynamics

B.1 Definitions

We start with the most basic concept in epidemiology, the basic reproduction number, which

we denote by R because the usual notation “R not” is terribly confusing. R is the expected

number of cases directly generated by one case when everyone else is susceptible. The most

basic model is to assume that when someone is infected there are three stages

1. a latency period T1 when the individual is not yet infectious

2. infectious period T2 − T1

3. recovered period after T2 when the individual is not infectious anymore

If the contact rate (exposure) is e and the probability of infection conditional on contact is

γ, the expected number of secondary cases per primary case in a fully susceptible population

is therefore

R = γe (T2 − T1)

In our notations, e is the number of people that one individual meets per unit of time

and γ is the probability of transmitting the disease conditional on a meeting between one

infectious and one susceptible agent.

B.2 SIR Model

The SIR model builds on this idea. We define the length of one period so that T1 = 1. If

someone is infected in period t, then she will start spreading the disease in period t + 1.

Let It be the number of infected individuals and St the number of susceptible individuals

at the beginning of time t in a population of size N . Each infected agent meets e people.

We assume that the meetings are random and that the population is always evenly mixed,

therefore the probability of meeting a susceptible person is S/N . The number of meetings

between infected and susceptible agents is therefore eIS/N and the total number of new

infections is γeIt
St
N . In our macro model e is an endogenous variable but we take it as a

constant for now. We assume that recovery follows a Poisson process with intensity ρ. The
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infection equation is then

It+1 = γeIt
St
N

+ (1− ρ) It (1)

Consider a population of size N (large) of initially susceptible individuals (S0 = N). If one

individual is infected, the total number of secondary infections from that individual is

R =
∞∑
τ=0

γe (1− ρ)τ =
γe

ρ
(2)

Note that R is a number, not a rate per unit of time. The model has a steady state at I = 0

and S = 1 but it is unstable in the sense that if one individual gets infected the system

converges to a different steady state. In general we can write

It+1

It
= 1 + γe

St
N
− ρ

When S/N ≈ 1, the number infected people evolves exponentially as It+1

It
≈ 1 + γe− ρ. If

R0 < 1 then a small infection disappears exponentially. If R0 > 1 then there is an epidemic

where I initially grows over time. The growth continues as long as γeStN > ρ. Eventually

the number of susceptible people decreases and growth slows down or reverses, depending

on how we close the model.

There are two ways to close the model. The simpler one, called the SIS model, assumes

that recovered agents ρI go back to the pool of susceptible agents. This is the model used

to study the common cold. In that case N = St + It and the equation becomes

It+1 = γeIt
N − It
N

+ (1− ρ) It

and the steady state infection rate is I
N = max

(
0; 1− ρ

γe

)
.

The other way is to introduce a population of recovered agents R who are not susceptible

anymore. This model – called SIR – is used for flu epidemics, among others. In the simple
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model, R is an absorbing state. The system becomes

St+1 − St = −γeIt
St
N

(3)

Rt+1 −Rt = ρIt (4)

and of course N = St + It + Rt. Note that S is (weakly) decreasing and R is (weakly)

increasing, therefore their limits exist. Since N = St + It + Rt so does the limit of I. For

R and S to be constant it must be that I tends to zero. Therefore

lim
t→∞

It = 0

That is the first simple property of the solution. Second, since S is decreasing, I must be (at

most) single-peaked. If I0 is small and Ro > 1 then It must grow, reach a maximum, and

then decrease towards zero. This is the typical shape of the curves found in the literature.

Harko et al. (2014) provide an analytical solution to the differential equations (in continuous

time).

Let us now study the long run behavior of S and R. Combining equations (3) and (4)

we get

Rt+1 −Rt = −N ρ

γe

St+1 − St
St

This equation is simpler to write in continuous time

Ṡ

S
= −γe

ρ

Ṙ

N

and to integrate the solution:

log

(
St
S0

)
= −γe

ρ

(
Rt −R0

N

)

This equation holds along any transition path without exogenous shocks. In the limit, since
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S∞ +R∞ = 1 we have the transcendental equation

log

(
S∞
S0

)
= −γe

ρ

(
1− S∞ −R0

N

)

The long run steady state (S∞, R∞) depends on the initial conditions as well at the basic

reproduction number R. We can summarize our discussion in the following Lemma.

Lemma. The SIR model is fully characterized by R = γe
ρ and the initial conditions

(S0, R0). If R < 1, infections die out without epidemic. If R > 1, a small infection I0

creates an epidemic: It rises, reaches a maximum in finite time before declining towards

zero: I∞ = 0. The long run limits S∞ and R∞ exist and satisfy S∞ + R∞ = 1 and

log
(
S∞
S0

)
= −R

(
1−S∞−R0

N

)
.

The complete model takes into account that some individuals will die from the disease.

We assume that a fraction κ of infected agents become (severely) sick and a fraction δ of

the sick patients die. Hence we have another absorbing state, D. The system of equation

of the SIRD model becomes

It+1 = γIt
St
N

+ (1− ρ− δκ) It

St+1 = St − γIt
St
N

Rt+1 = Rt + ρIt

Dt+1 = Dt + δκIt

The number of sick people is κIt and determines the pressure on the health care system.

From the perspective of the epidemic we could aggregate D and R into one absorbing state:

R̃ = D +R such that R̃t+1 = R̃t + (ρ+ δκ) It. The long run solution is

log

(
S∞
S0

)
= − γe

ρ+ δκ

(
1− S∞ − R̃0

N

)

and R̃∞ = 1 − S∞ while D∞ = D0 + δκ
δκ+ρ

(
R̃∞ − R̃0

)
. From an economic and social

perspective we need to keep track of D and R separately in any case.
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B.3 SIR model with exogenous birth and death

The path dependence of the long run steady state is a somewhat artificial consequence of

the lack of entry and exit. Suppose that εN people are both in state S each period, and

also that there is a constant exogenous death rate ε. The system is

It+1 = γeIt
St
N

+ (1− ρ− ε) It

St+1 = (1− ε)St − γeIt
St
N

+ εN

Rt+1 = (1− ε)Rt + ρIt

Note that population is constant: St+1 + It+1 +Rt+1 = N . Now the steady state requires

γe
S

N
I = I (ε+ ρ)

γeI
S

N
= ε (N − S)

ρI = εR

Since I > 0 we can easily solve for the unique steady state

S

N
=
ε+ ρ

γe

I

N
= ε

1− ε+ρ
γe

ε+ ρ

R

N
= ρ

1− ε+ρ
γe

ε+ ρ

And now we can take the limit as ε → 0 to get I
N = 0, S

N = ρ
γe = R−1 and R

N = 1 − ρ
γe =

1−R−1. Adding a small amount of exogenous birth and death renders the long run steady

state independent of initial conditions.
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