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ABSTRACT

Experimental studies rarely consider the shape and nature of the education production function, 
which is useful for deriving optimal levels of input substitution in increasingly resource 
constrained environments. Because of the rapid expansion of EdTech as a substitute for 
traditional learning around the world and against the backdrop of full-scale temporary 
substitution due to the coronavirus pandemic, we explore the educational production function by 
using a large randomized controlled trial that varies dosage of computer-assisted learning (CAL) 
as a substitute for traditional learning. Results show production is concave in CAL. Moving from 
zero to a low level of CAL, the marginal rate of technical substitution (MRTS) of CAL for 
traditional learning is greater than one. Moving from a lower to a higher level of CAL, production 
remains on the same or a lower isoquant and the MRTS is equal to or less than one. The estimates 
are consistent with the general form of a Cobb-Douglas production function and imply that a 
blended approach of CAL and traditional learning is optimal. The findings have direct 
implications for the rapidly expanding use of educational technology worldwide and its continued 
substitution for traditional learning.

Eric Bettinger
Stanford School of Education
CERAS 522, 520 Galvez Mall
Stanford, CA 94305
and NBER
ebettinger@stanford.edu

Robert W. Fairlie
Department of Economics
Engineering 2 Building
University of California at Santa Cruz
Santa Cruz, CA 95064
and NBER
rfairlie@ucsc.edu

Anastasia Kapuza
National Research University 
Higher School of Economics
Moscow
Russia
nas669@yandex.ru

Elena Kardanova
National Research University 
Higher School of Economics
Moscow
Russia
e_kardanova@mail.ru

Prashant Loyalka
E413 Encina Hall
Stanford University
Stanford, CA 94305
loyalka@stanford.edu

Andrey Zakharov
National Research University 
Higher School of Economics
Moscow
Russia

A randomized controlled trials registry entry is available at 
https://www.socialscienceregistry.org/trials/4126



2 
 

1   Introduction 

Numerous educational interventions have been used to improve academic achievement and 

increase human capital among schoolchildren in developing countries. Among these interventions, 

technology-based interventions have shown promise relative to other popular interventions such 

as teacher training, smaller classes, and performance incentives (McEwan 2014). It has been 

argued that EdTech, such as computer-assisted learning (CAL), can offset deficiencies that 

commonly plague schools, such as low teacher quality, high rates of teacher and student 

absenteeism, low levels of student motivation, and many students being below grade level, among 

others (World Bank 2018; Economist 2018; Brookings 2019). These arguments are consistent with 

the rapid substitution of EdTech for traditional teaching methods and explosion of expenditures 

on EdTech throughout the world. More recently, a whole-scale temporary substitution from 

traditional learning to EdTech has resulted in response to the coronavirus outbreak (COVID-19).   

A review of the literature reveals, however, that there is substantial heterogeneity in 

findings on the effectiveness of CAL ranging from null effects to extremely large positive effects.2 

To gain insight into this heterogeneity and place some structure on estimates, we design and 

implement a randomized controlled trial (RCT) involving approximately 6,000 grade 3 students in 

343 classes (one per school) from two regions in Russia.3 The RCT includes three treatment arms: 

i) CAL for 45 minutes per week, ii) a “double dosage” CAL for 90 minutes per week, and iii) a 

control that receives no CAL. Estimates of the two treatment effects allow us to trace out the 

general shape of the educational production function in CAL. Importantly, CAL use was directly 

substituted for traditional learning, avoiding problems associated with identifying separate 

technology versus increased learning time effects (Yue et al. 2019). 

Although extant evidence is from field experiments, heterogeneity in results may stem from 

curvature in the production function, variation in input substitution, and the educational setting. 

The focus in the previous literature on estimating the average productivity of CAL for a fixed 

                                                           
2 Studies of the effects of computer assisted learning (CAL) on educational outcomes include Banerjee et al. 2007; 
Linden 2008; Carillo et al. 2011; Lai et al. 2013, 2015; Mo et al. 2014; Muralidharan et al. 2019; Rouse and Krueger 
2004; Dynarski et al. 2007; Barrow et al. 2009; Campuzano et al. 2009;  Rockoff 2015; Falck, Mang, and Woessmann 
2018. See Glewwe et al. (2013), Bulman and Fairlie (2016), andEscueta (2017) for recent reviews of the literature. 
3 With a GDP per capita of 10,743 current US dollars in 2017, Russia is classified as a developing country (World 
Bank Database 2019). Russia’s  GDP per capita in current US dollars is just below Costa Rica (11,677 US dollars), 
and Maldives (11,151 US dollars) and just above Brazil (9,821 US dollars), China (8,827 US dollars), and Mexico 
(8,910 US dollars). The two regions where the experiment is conducted, Altai Krai (93 schools) and Novosibirsk (250 
schools), have GDP per capita below the national average (OECD 2019 Database).    
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amount of time on CAL provides only limited evidence on the shape of the educational production 

function. It does not provide information relevant to important questions regarding concavity in 

the production function, input substitutability, and whether the marginal rate of technical 

substitution (MRTS) changes with CAL levels, which are essential for advancing the discussion 

from program evaluation to underlying fundamentals. In fact, surprisingly, there is a dearth of 

evidence in the previous literature on the productivity and substitutability of any input in the 

educational production function.4 Another problem is that evaluating only one level of treatment 

intensity could be misleading if the level chosen for the experiment is too low or too high relative 

to other substitutable inputs. In either case, production might be constrained to a relatively low 

isoquant and thus be suboptimal (see Figure 1). Unfortunately, similar to many other inputs in 

educational production, theory provides only limited guidance on optimal levels. 

This study is the first to discern how the effects of CAL change exogenously with respect 

to usage levels within the same educational setting.5 It is the first to estimate the general shape of 

the educational production function in CAL and shed light on broad classifications of functional 

forms (i.e. Leontief, Cobb-Douglas, or linear). Our study is also one of the only studies that 

evaluates the CAL input in educational production as a direct substitute for traditional learning 

instead of being provided as a supplemental after-school program, which likely influences impact 

estimates. 6  Examining the role of CAL as a direct substitute for traditional learning is also 

important as countries increasingly mandate limitations on time children spend in after-school 

programs and on homework.7 Finally, and perhaps most importantly, direct substitution between 

                                                           
4 For example, the one-to-one laptop or home computer programs that have been previously studied do not structure 
or exogenously determine time use, which is needed to study marginal productivity or input substitutability (e.g. 
Fairlie and Robinson 2013; Beuermann et al. 2015; Cristia et al. 2017; Hull 2019). On the other hand, the extensive 
literature on class size effects implicitly estimates an approximate marginal productivity of teacher effort in 
educational production (e.g. Hanushek 1986; Hoxby 2000). 
5 Hypothetically, a meta-analysis using estimates from previous studies could be used to trace out a production 
function, but the CAL programs used in these studies differ by more than usage time (e.g. substitution vs. supplemental 
program, country, student preparation, grade level, and the presence of additional instructional support). Thus, we 
cannot assume that estimates from various studies lie on the same production function. 
6 For the less common use of CAL as a direct substitute for regular teacher instruction in the classroom, the evidence 
tends to show null effects (Dynarski et al. 2007, Campuzano et al. 2009; Linden 2008; Barrow et al. 2009; Carillo et 
al. 2011). However, this might depend on how computers are used (Falck, Mang, and Woessmann 2018). Yue et al. 
(2019) further show that supplemental time on CAL does not significantly improve student achievement over 
supplemental time on a content-equivalent workbook intervention, and Muralidharan et al. (2019) find evidence of 
large positive effects of their after-school program that included computer instruction compared to the null effects 
found in a similar after-school program in India without computer instruction (Berry and Mukherjee 2016). 
7 Policies to reduce time on homework exist, for example, in China (MOE, 2018), France (MNE, 2019), and Russia 
(SanPiN, 2010). 



4 
 

the two inputs in the field experiment ensures that any changes in educational production (i.e. 

movement to higher isoquants) is due to input substitution and not higher inputs. Isolating these 

effects provides more guidance on the shape of isoquants and thus whether and how the MRTS 

changes with the level of CAL. 

We find positive effects of CAL on math test scores at the base dosage level. Doubling the 

amount of CAL input, we find similar effect sizes relative to the control. We find evidence that 

the educational production function is concave in CAL. Moving from zero to the base level of 

CAL, the marginal rate of technical substitution (MRTS) of CAL for traditional learning is greater 

than one. But, moving from the base level of CAL to the higher level of CAL, production remains 

on the same isoquant and MRTS is equal to one. We can rule out several general functional forms 

of the educational production function in CAL, but we find some support for a Cobb-Douglas 

production function with a higher factor return on CAL than traditional learning. CAL and 

traditional learning do not appear to be perfect substitutes. 

For impacts on less-studied language achievement, we find positive effects of CAL at the 

base level, but much stronger concavity in the production function. We find an MRTS that is 

greater than one when moving from zero to the base level of CAL, but a shift to a lower isoquant 

moving from the base level of CAL to the higher level and thus an MRTS that is less than one. For 

language, we find some support for a Cobb-Douglas production with equal factor returns. These 

general characteristics and shape of the production function for math and language in CAL do not 

differ when we shift the focus from mean impacts to impacts throughout the distribution (i.e. 

quantile treatment effects).  

The findings from this analysis are important for understanding the optimal investment in 

CAL relative to traditional learning. Identifying optimal levels of investment in CAL is especially 

important as governments, schools and families are currently investing heavily in EdTech and 

likely to increase expenditures in the future. The global EdTech industry is projected to grow to 

more than $250 billion by 2020 and $340 billion by 2025 (Escueta et al. 2017). This is especially 

true for the rapidly growing use of new technologies and their substitution for traditional learning 

methods in educating schoolchildren in developing countries. Our findings suggest that CAL 

improves academic achievement, but that substituting too heavily into EdTech might be a mistake 

because production appears to have a strong diminishing marginal rate of technical substitution. 
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2   Research Design 
2.1   Field Experiment 
To explore the shape and nature of the educational production function in CAL, we design and 

implement an RCT involving approximately 6,000 third grade schoolchildren in 343 

classes/schools in two provinces of Russia. The RCT includes three treatment arms: an “X” dosage 

CAL arm where students receive 10 items per subject using the software, which (as communicated 

to the treatment group) is approximately 20-25 minutes per week of math CAL and 20-25 minutes 

of (Russian) language CAL; a “2X” dosage CAL arm in which (as communicated to the treatment 

group) students receive 20 items per subject which is approximately 40-50 minutes of math CAL 

and 40-50 minutes of language CAL; and a control arm.8 With this design, we can trace out three 

points along the educational production function in CAL.  

The field experiment is conducted among primary schools in Russia. Specifically, 343 

schools from 2 regions were sampled to participate in the experiment. In each school, one third 

grade class was sampled, and each class has an average of 18.3 students per class. For each third 

grade class there is one teacher that teaches both math and language. Altogether, 6,253 students 

and their 343 teachers were sampled and surveyed. 

In the second half of October 2018 (near the start of the school year), we conducted a 

baseline survey of the sampled students, their teachers and principals. After the baseline survey, 

we randomized classes to treatment conditions. Students participated in the treatment from 

December 2018 until mid-May 2019.  In mid May 2019, the end of the Russian school year, we 

administered a follow-up survey with students, teachers, and principals.  

 

2.2   Baseline Survey 
We administered three baseline surveys to students and teachers. The student survey collected 

basic background information such as student gender and time spent on math and language 

homework. As part of the baseline survey, we administered exams in four areas: math, language, 

reading, vocabulary (math and language achievement were our pre-determined main academic 

                                                           
8 Unfortunately, the company was unable to provide complete data on CAL usage across the Dosage 1X and Dosage 
2X groups (which was a goal for data collection stated in our pre-analysis plan). Interviews with Russian teachers 
revealed that they generally complied with instructions, which is consistent with bi-weekly follow-ups by the 
provider on usage of the software. 
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outcomes).9 As noted in Appendix A, the exams have good psychometric properties. The teacher 

survey further collected information on the degree to which teachers use information and 

computing technology (ICT) at home and their self-efficacy with ICT. 

 

2.3   Randomized Design and Statistical Power 
To maximize statistical power, we created the sample strata or blocks by placing the six classes 

with the closest mean grade three math scores in a region in a strata.10 Adjusting for strata, the 

resulting intraclass correlation coefficients were extremely low for our two main outcomes: 0.000 

in math achievement and 0.053 in language achievement. Classes were then randomly allocated 

within strata to one of three different treatment conditions (T1 = CAL Dosage 1X, T2 = CAL 

Dosage 2X, or C = Control or No CAL):  

 

A. CAL Dosage 1X (T1) 115 classes (in 115 schools) 

B. CAL Dosage 2X (T2) 113 classes (in 113 schools) 

C. Control (C) 115 classes (in 115 schools) 

  

The large number of schools per treatment arm, extremely low ICCs, and rich set of baseline 

controls provide substantial statistical power with which to measure effects. 11  Even without 

controlling for baseline test scores, minimum detectable effect sizes (MDESs) are approximately 

0.09 SDs (for math) and 0.12 SDs (for language) for pairwise treatment comparisons.  

 

2.4   Balance Checks 

                                                           
9 Details of the baseline data collection (and proposed analyses) were described in a pre-analysis plan written and filed 
with the American Economic Association registry before endline data were available for analysis 
(https://www.socialscienceregistry.org/trials). Due to minor technical difficulties in the baseline survey (before 
randomization), not all 6,253 students took all four tests. Rather, 6,052 students in the baseline took math and 
vocabulary tests, while 5,839 students took language and reading tests. We deal with missing values for these and 
other baseline controls by including missing value dummies (as detailed in the pre-analysis plan). 
10 Because the number of schools in each region was not divisible by 6, we placed 9 schools (with the closest mean 
grade 3 math scores) in the first region in one stratum and 10 schools (with the closest mean grade 3 math scores) in 
the second region in one stratum.  
11 Based on a previous longitudinal study in primary schools in Russia using the same test instruments, the estimated 
R-squared between the baseline and follow-up scores is approximately 0.50. Other parameters for the power 
calculation include: 18 students per class/school, an alpha of 0.05 and power = 0.8. 

https://www.socialscienceregistry.org/trials
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Table A1 (in Appendix A of this document) presents tests for balance on baseline observables 

across the treatment arms. The table presents the results from a total of 24 tests comparing average 

variable values among the treatment and control arms. These tests were conducted by regressing 

each baseline variable on a treatment group indicator and controlling for strata. For tests of student-

level variables, standard errors are clustered at the school/class level. 

Out of the 24 tests, only one was statistically significant (different from zero) at the 10% 

level and none were significant at the 5% or 1% levels. The results from Table A1 indicate that 

balance was achieved across the three arms, especially as a small number of significant differences 

are to be expected (by random chance). A joint test of all baseline covariates simultaneously shows 

no significant difference between T1 and C (p-value: 0.445), T2 and C (p-value: 0. 417) or T1 and 

T2 (p-value = 0.700). Key baseline covariates (baseline math and language test scores, not to 

mention reading and vocabulary scores) were not statistically different between any of the three 

treatment arms (even at the 10% level). 

 

2.5   Program (Treatment) Administration 
The provider of the CAL software is one of the largest online technology companies in Russia 

(hereafter “the provider”). The provider’s platform has more than 10,000 items across various 

math and language sub-content areas for grades 2 to 4. The items and associated content areas 

align with national educational standards and curricula for primary schools.   

The CAL software is similar to that used in previous studies. It has a graphics-based and 

attractive user-interface and dynamic, engaging tasks. It allows multiple tries per question and 

provides scaffolded feedback after each student response. The software also allows teachers to 

track and compare the performance of individual students both overall and at a granular level in 

subject-specific content and sub-content areas Appendix B presents example screenshots of these 

different aspects of the CAL software. 

In both the CAL Dosage 1X and CAL Dosage 2X treatment arms, the provider asked 

teachers to assign CAL items through their registered accounts.12 Teachers were given instructions 

to use assigned CAL items during homework, but were also allowed to use them in class.13 One 

                                                           
12 The dosages were chosen based on numerous pilot interviews that the provider conducted with teachers outside of 
the study sample and prior to the experiment. In the experimental intervention, the provider introduced the online 
educational platform and dosages through separate training webinars with the Dosage X and Dosage 2X teachers.  
13 Interviews with teachers revealed that class use was minimal relative to use for homework. 
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reason that increasing the dosage of CAL could result in increased effectiveness is that it might 

have increased total time on homework. Conversely, if there was crowd-out (i.e. the substitution 

between CAL and traditional learning was less than one) then we could find a decrease or no 

increase in effectiveness. To explore this question, we examine total hours spent on homework by 

students by treatment condition. Table 1 reports estimates of total homework hours on math and 

language from regressions with and without covariate controls. Although reported hours might be 

somewhat underreported the comparisons are informative. We find precise zero estimates, 

indicating that, compared to the control condition (mean=43 for math and mean=43 for language), 

neither CAL treatment condition (Dosage 1X or Dosage 2X) resulted in greater or lower total time 

on homework in either subject (as reported by students).14 Qualitative interviews further indicate 

that teachers almost always substituted (instead of supplemented) traditional learning activities 

with CAL.15 Teachers in the treatment conditions also did not change the amount of time they 

prepared for their math and language lessons relative to the control group (Table 2). We thus treat 

CAL and traditional learning as being substituted one-to-one in our discussion of how estimates 

shed light on the shape of educational production. 

The dosages of CAL are in line with those used in recent studies. For example, Lai et al. 

(2013; 2015) and Mo et al. (2014) find large positive effects of supplemental CAL programs for 

Chinese schoolchildren (0.12 to 0.18σ in math) from 40 minutes of instruction, 2 times a week. 

Thus, the 80 minutes per week used in these programs is roughly in the middle of our dosages. 

Some studies use larger dosages. Bohmer, Burns, and Crowley (2014) find large positive effects 

from an after-school program providing CAL and student coaches in South Africa (0.25σ in math) 

from 90 minutes twice a week, but part of the program includes student coaches. Banerjee, Cole, 

Duflo and Linden (2007) find that 120 minutes per week of CAL improves grade 4 math test scores 

by 0.35 SDs after one year. Muralidharan et al. (2019) find large positive effects of after-school 

Mindspark Center programs in India which include software use and instructional support (0.59σ 

in math and 0.36σ in Hindi) from 90 minutes per session, six sessions a week. However, requiring 

schoolchildren to use CAL in addition to pre-existing homework at these much higher levels is 

                                                           
14 Distributions of total homework time align almost perfectly for the control, Dosage 1X and Dosage 2X groups.  
15 When asked directly about whether they assigned more homework as a result of the intervention, the vast majority 
of interviewed teachers said no. It was also clear from pilot interviews that teachers were highly sensitive to assigning 
additional homework to students because the law sets limits on the total amount of homework time that can be assigned 
to students (1.5 hours per day in all subjects—SanPiN 2010). 
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just not possible in most countries. As noted above, many countries mandate limitations on time 

children spend in after-school programs and on homework (e.g. China (MOE, 2018); France 

(MNE, 2019); and Russia SanPiN, 2010); in the United States many school districts have already 

or are considering implementing homework restrictions (Tawnell, 2018).  

 

2.6   Endline Survey and Primary Outcomes 
We conducted the follow-up survey with students and teachers in mid May 2019 at the end of the 

school year. As in the baseline, we administered a 2-hour exam that covers math, language, 

reading, and vocabulary to students. We also asked students about their homework time on 

different subjects, and we asked teachers about their preparation time for teaching different 

subjects.  

The primary outcome variables for the trial are student math and language achievement at 

the end of the school year (as measured by the exam). In the analyses, we convert the math and 

language endline exam scores into z-scores (subtracting each students’ endline subject-specific 

score by the average endline subject-specific score of the control sample and dividing the standard 

deviation of the endline subject-specific score of the control sample). Other outcome variables 

include the degree to which students are interested in studying math and language subjects (using 

a standard subjective scale, converted into z-scores), student reports of time spent on subject-

specific homework (average minutes per week), and teacher reports of time spent preparing for 

teaching different subjects (average minutes per week).16  

 

3   Empirical Methods and Hypothesis Tests 
Our general approach for estimating treatment effects is to regress math and language outcomes 

on indicator variables for treatment assignment, baseline controls and strata (county-grade) fixed 

effects using the following model:  

 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾1𝐷𝐷1𝑗𝑗 + 𝛾𝛾2𝐷𝐷2𝑗𝑗 + Xij𝛽𝛽 + 𝜏𝜏𝑠𝑠 + 𝜀𝜀𝑖𝑖𝑖𝑖 (1) 

                                                           
16 The rate of attrition from the baseline to endline survey was extremely low (2.9 percent). Balance in baseline 
covariates across pairwise treatment comparisons was maintained among the non-attriting students. Out of 24 tests, 
only two were statistically significant (different from zero) at the 10% level and none were significant at the 5% or 
1% levels (Appendix Table 2), as would be expected by chance. 
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where 𝑌𝑌𝑖𝑖𝑖𝑖 is the outcome of interest measured at endline for student i in school j; 𝐷𝐷1𝑗𝑗 and 𝐷𝐷2𝑗𝑗 are 

dummy variables indicating the treatment assignments of Dosage 1X and Dosage 2X; Xij is a 

vector of baseline control variables, and 𝜏𝜏𝑠𝑠 is a set of strata fixed effects.17 In all specifications, Xij 

includes the baseline value of the dependent variable (when available). We also estimate treatment 

effects using an expanded set of baseline controls. For student-level outcomes, this expanded set 

of baseline controls includes all baseline test scores (math, language, reading, and vocabulary), 

student gender, an indicator for whether the teacher uses ICT at home, teacher ICT self-efficacy, 

and class size.18 Standard errors are clustered at the school/class level. 

The key parameters of interest in Equation (1) are 𝛾𝛾1 and 𝛾𝛾2. They allow one to trace out 

the production function in CAL and determine its general shape and other characteristics. For 

example, they allow for a test of whether the production function is concave in CAL. The finding 

of a positive estimate of 𝛾𝛾1  and an estimate of 𝛾𝛾2  that is less than 2𝛾𝛾1  indicates a concave 

relationship. Estimates of 𝛾𝛾1 and 𝛾𝛾2 also allow one to determine if substitution between the CAL 

and traditional learning inputs result in shifts to higher isoquants. Shifts in isoquants then reveal 

information about whether the rate of technical substitution changes in the level of CAL. We can 

specifically examine whether there is diminishing MRTS with higher levels of CAL. Using this 

information we can rule out some general functional forms of the production function and provide 

suggestive evidence supporting others. Having three treatment arms of different dosage (including 

the control arm where dosage is zero) in the RCT allows us to explore these questions for the first 

time in the literature. 

Although estimates of the production function are local, we chose the Dosage 1X and 

Dosage 2X levels of CAL use because, as noted above, they fall within the range of what teachers 

believe are reasonable amounts, are within policy regulations, and line up well with levels 

implemented in the previous literature. Another important point of the experimental design is that 

we are increasing CAL by substituting away from traditional learning which is different than 

adding a supplemental CAL program. This allows us to isolate productivity changes resulting from 

                                                           
17 Our primary outcome is student achievement as measured by standardized test scores (in math or language). 
Course grades for students were not available from all schools. 
18 We address missing values for the baseline controls by creating a missing value dummy variable and including it in 
the regression. We also check that the results are not sensitive to this treatment of missing values by comparing them 
with results that exclude those observations. We find that the results are not substantively sensitive to the inclusion of 
missing dummy variables and observations with missing values for controls. 
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input substitution instead of productivity changes due to changing inputs (i.e. returns to scale). 

This is an important distinction because schools and students face restrictions on in-school and 

after-school time commitments. 

 

4   Results 
4.1    Math Scores 
Table 3 reports estimates of math test scores on treatment arms. Both specifications with and 

without covariate controls are reported. For Dosage 1X we find positive and statistically significant 

effects on math test scores (0.11 to 0.12σ). Using CAL increased test scores and the increase at the 

base level of time resulted in effect sizes that are roughly comparable to estimates reported in 

previous studies at similar dosage levels. For example, Lai et al. (2013; 2015) and Mo et al. (2014) 

find 0.12 to 0.18σ effects in math from CAL programs for Chinese schoolchildren from 80 minutes 

per week. 

After doubling the dosage level, we also find positive and statistically significant treatment 

effects on math test scores. More importantly, however, we find point estimates that are roughly 

similar to the first dosage level. Increasing the dosage level thus resulted in no additional increase 

in effects on math test scores. To our knowledge, these estimates are the first showing no additional 

effect of a higher dosage of CAL beyond the base level.  

One question of interest is whether the production function in CAL is concave. If there is 

a Cobb-Douglas production function with equal factor returns then concavity is implied because 

of the curvature in isoquants. In this case, production is assumed to have a diminishing MRTS of 

CAL for traditional learning as one input is expanded beyond roughly equal levels. Figure 1 

displays a typical isoquant map for a Cobb-Douglas production function with equal factor returns. 

As educational production relies more on the CAL input, one possibility is that each additional 

unit becomes less productive because students become less interested or engaged in the video-

based and gamified learning with more use. Another possibility is that higher levels of CAL use 

increase the likelihood that students become distracted with other software, apps and entertainment 

on the computer. On the other hand, production might not be Cobb-Douglas, and the production 

function in CAL might not be concave (i.e. constant or increasing MRTS). The case of a linear 

production function in which both inputs have similar returns (i.e. linear isoquants with slope -1) 
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provides an example (Figure 2). In this case, CAL and traditional learning are perfect substitutes 

for each other across all levels. 

Having three treatment arms of different dosage (including the control arm where dosage 

is zero) in the RCT allows us to explore this question empirically for the first time. We first 

examine concavity by comparing the impact of the 2X dosage to 2 times the impact of the 1X 

dosage (where both impacts are relative to the control). Table 3 reports the results of the test. We 

find statistically significant evidence of a concave educational production function in CAL. 

Turning to the implications for factor substitutability in the production function, the 

estimates of the two treatment effects indicate different marginal rates of technical substitution 

(MRTS) depending on the base level of CAL. We find that moving from zero to the lower level of 

CAL, the MRTS of CAL for traditional learning is greater than one (i.e. traditional learning can 

be reduced by more than one unit when CAL is increased by one unit), but moving from the lower 

level of CAL to the higher level of CAL the MRTS is equal to one (i.e. CAL and traditional 

learning are perfectly substitutable across this range). Production is essentially moving from the 

lowest isoquant when there is no CAL input to a higher isoquant either when using the lower level 

of CAL or the higher level of CAL. If we assume that isoquants are smooth and traditionally shaped 

then production might be maximized at a level between the lower and higher levels of CAL input. 

We return to this question later. 

Finally, the test of two different levels of CAL is useful beyond testing for concavity or 

examining input substitutability in the educational production function. For example, testing for 

the positive effect of each CAL dosage is of immediate interest to the CAL provider (one of the 

largest technology companies in Russia) as well as to local and national policymakers in Russia 

(since, to the best of our knowledge, this is the first randomized evaluation of EdTech in Russia). 

Evaluating only one level of treatment intensity could be misleading for identifying whether CAL 

is effective if the level chosen for the experiment is too low or too high. We find positive and 

statistically significant effects for both treatment levels suggesting that different choices of levels 

of CAL can improve math test scores. 

 

4.2   The Shape of the Production Function 
The pattern of treatment effects indicates that we can rule out several general shapes of the 

educational production function in CAL. We can rule out, for example, a perfect-substitute 
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production function which implies linear isoquants. If Dosage 1X increases production over 

Dosage 0 (the control) then linear isoquants would imply that Dosage 2X should increase 

production over Dosage 1X (as shown in Figure 2). But, our estimates do not show this pattern. 

Our estimates of similar effects for Dosage 1X and Dosage 2X are consistent with the assumption 

that the slope of the isoquants is a one-to-one ratio (which is dissimilar to Figure 2), but are 

inconsistent with the lower control group isoquant. Thus, educational production does not appear 

to fit a situation in which teachers and students can simply substitute between CAL and traditional 

learning with the same effect on test scores (even at a different ratio than one-to-one). 

Second, we can rule out the possibility of a Leontief production function in which CAL 

and traditional learning are perfect one-to-one complements (Figure 3A). In this case we should 

find that deviating from a one-to-one ratio of CAL to traditional learning should result in a lower 

isoquant. Instead we find similar levels of educational production when we move to a much higher 

ratio of CAL to traditional learning. If we change the fixed proportions in the Leontief production 

function then we can fit the treatment estimates. In particular, we need to assume higher returns to 

CAL in production so that a smaller amount of CAL is located on the same isoquant as a higher 

level of traditional learning. In this case we can nail down a situation in which the Dosage 1X and 

Dosage 2X treatments are on the same isoquant and the control is on a lower isoquant (see Figure 

3B). But, a complication arises because the only way in which this is possible is that there has to 

be a very flat gradient in educational production from traditional learning and a very steep gradient 

in production from CAL, which might be unreasonable given that both are covering the same 

material. There should be some substitutability between traditional learning and CAL. 

The third general shape is a Cobb-Douglas production function. Within this general 

classification we can rule out equal factor returns. Dosage 1X, where CAL and traditional learning 

are the most balanced, should result in the highest level of production, but we do not find evidence 

in support (see Figure 1 for example). Instead the estimates from our field experiment are 

consistent with a Cobb-Douglas production function with unequal, higher factor returns on the 

CAL input than on the traditional learning input. Figure 4 displays a Cobb-Douglas production 

function with this property and the added shift away from production necessitating non-zero 
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investments in both inputs.19 In this case the isoquants generally line up with our estimates. We 

should note the caveat, however, that we are not directly estimating the form of the production 

function and that estimates from the experiment only provide suggestive evidence on these general 

forms. 

The findings from the experiment are important because they provide evidence on two 

characteristics of educational production in CAL. First, CAL is found to be more productive than 

traditional learning for our chosen levels of inputs. Students might benefit from the video-based 

and partly gamified method of learning more than traditional ways of doing homework. Second, 

at the same time there is an advantage to providing both types of homework. In the isoquant map 

displayed in Figure 4, for example, the optimal level of CAL is likely somewhere between the two 

treatment dosages. This combination of both CAL and traditional learning results in higher levels 

of educational production than using only traditional learning or only CAL. The graphic and 

engaging nature of CAL might enhance learning when used at reasonable levels, but at very high 

levels then this engagement force may diminish because of waning interest, increased fatigue, or 

distractions from using the computer for entertainment. 

 

4.3    Language Scores 
We also examine treatment effects on language test scores. The previous literature focuses 

primarily on math test scores and less on language test scores. In addition to drawing less attention 

in the CAL literature, languages differ in each country making it difficult to choose base levels 

and compare estimates across studies. Additionally, we might expect that educational production 

in CAL differs between math and language. Although math learning is mostly through school and 

homework, language learning is broader because reading for pleasure and family interactions also 

play key roles in learning.  

Table 3 reports estimates for language test scores. Both specifications with and without 

covariate controls are reported. For Dosage 1X we find positive and statistically significant effects 

(at 0.10 level) on language test scores. After doubling the dosage level, the treatment effect 

estimates become close to zero. 

                                                           
19 The isoquants displayed in Figure 4 are from the Cobb-Douglas production function, Q=A(C+a)3/4 (T+a)1/4, where 
a is an arbitrary shift parameter so that production does not equal zero when either CAL or traditional learning are 
zero. 
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Table 3 also reports the results of the concavity test. For impacts on language achievement 

we find positive effects of CAL at the base level, but much stronger concavity in the production 

function. We find an MRTS of CAL for traditional learning greater than one moving from zero to 

the lower level of CAL, but an MRTS of less than one moving from the lower level of CAL to the 

higher level. If the experiment had only estimated the treatment effect at the higher dosage level 

in CAL, the positive effects at the lower level, curvature, and changing MRTS would have been 

missed. 

The treatment estimates provide evidence on the general shape of the production function 

for language. The estimates rule out that CAL and traditional learning are perfect substitutes (i.e. 

Figure 2). The highest isoquant achieved is with a balanced dosage of CAL and traditional learning 

instead of either extreme. Leontief and Cobb-Douglas production functions, however, are both 

consistent with the findings (Figures 3A and 1, respectively).20 In this case, Dosage 1X might be 

optimal and result in the highest possible isoquant (although we cannot rule out that moving 

slightly in either direction might result in an even higher isoquant). Regardless, the findings clearly 

indicate that there is an optimal amount of CAL use for language that represents a relatively 

balanced approach instead of one with very high levels of usage (or no usage). Additionally, if the 

experiment only provided the higher dosage of CAL then it would have concluded with a null 

effect on language test scores. 

 

4.4   Interest in Studying Math and Language 
A common argument for how CAL, or EdTech more generally, works is that it increases interest 

to engage with subject material. If students enjoy learning math, for example, through CAL that 

enjoyment could spill over to learning math more generally. Thus, one reason that substituting 

CAL for traditional learning at the base level might increase math achievement is because CAL 

engages kids and encourages them to study math through its graphics and gamified nature. 

Additionally, the curvature in Cobb-Douglas isoquants could be partly due to diminishing 

engagement in math as CAL is increased relative to traditional learning. Diminishing engagement 

could be due, for example, either to limited attention spans (that benefit from a mix of traditional 

                                                           
20 Leontief production might be unlikely because it implies that students cannot improve in language given a fixed 
level of CAL input even from a large increase in traditional learning. It is unlikely that the CAL and traditional learning 
inputs need to be increased one-for-one to improve language. 
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and computer-based homework) or greater fatigue (because of the more intense, interactive nature 

of the CAL exercises).  

 Table 4 reports estimates of Equation (1) for whether students are interested in studying 

math and language. The questions underlying the measure do not refer to CAL and are more 

generally focused on interest in math or language. At the base dosage level the math interest of the 

treatment group is 0.07σ higher than the control group. Moving to the higher dosage level in CAL, 

the point estimates become smaller and lose statistical significance from the control, but are not 

statistically different from the Dosage 1X estimates. Although these results are only suggestive, 

they are consistent with the lower use of CAL increasing interest more generally in math and thus 

resulting in higher math test scores. But, when using CAL more extensively and traditional 

learning consequently less, students might have become less interested and motivated in math and 

thus experienced no resulting increase in math test scores. These patterns are consistent with the 

concave educational production function in CAL and related curvature in isoquants. 

The patterns are even stronger for interest in studying language. We find large positive 

estimates from the lower dosage of CAL. Interest to study language increases by 0.09-0.10σ 

relative to the control. Doubling the dosage of CAL results in no change in interest relative to the 

control. These estimates are consistent with the findings for language test scores and imply more 

concavity in CAL and curvature in isoquants when we focus on language relative to math. 

 

4.5   Distributional Effects 
The results from the treatment regressions provide evidence of CAL effects at the mean. Turning 

the focus to other parts of the distribution, we estimate quantile treatment effects regressions to 

test for differential treatment effects across the post-treatment outcome distribution. Appendix 

Figures 1 and 2 display estimates and 95 percent confidence intervals for each percentile for the 

Dosage 1X and Dosage 2X effects for math and language test scores, respectively. For math test 

scores we find some evidence that treatment effects are larger in the middle and top of the 

distribution than the bottom of the distribution. For most of the distribution we find positive and 

similar-sized estimates of Dosage 1X and Dosage 2X effects (except possibly at the very top of 

the distribution where there is more noise). 

For language scores, the patterns are consistent with the findings for mean treatment 

effects. Dosage 1X has positive effects throughout the distribution, whereas Dosage 2X has no 
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effects. There is some evidence of larger effects at the very top of the distribution but these 

estimates are somewhat noisy. Although the quantile treatment estimates are not as precisely 

measured they do not change the conclusion from the mean impacts reported in Table 3. Mean 

impact estimates do not appear to be concealing differential effects at different parts of the 

distribution. 

 

4.6   Heterogeneous Effects 
We next examine heterogeneous effects by two important subgroups. We focus on differences 

based on gender and baseline ability (above and below the median). Treatment effects might differ 

by gender because boys and girls use computers differently with much higher levels of video game 

use among boys (Kaiser Family Foundation 2010; U.S. Department of Education 2011; Fairlie 

2017; Algan and Fortin 2018). Exploring heterogeneity by baseline ability might be important 

because, for example, lower ability students might have more room to make gains in test scores 

than high ability students from using CAL, or lower ability students might benefit more from 

engaging video-based and gamified instruction. Differences might not reveal when focusing on 

one treatment level (i.e. average productivity at that point) and instead might manifest in degrees 

of concavity. 

Appendix Tables 3 and 4 report estimates of interactions by gender on achievement and 

interest in subject, respectively. As expected, we find evidence that girls have higher language test 

scores than boys, but similar levels of test scores in math (see OECD 2019, for example). However, 

even with the difference in language scores, we do not find evidence of differential treatment 

effects by gender at either Dosage 1X or Dosage 2X for either math or language. The estimates for 

interest in math and language also show higher interest in language among girls than boys, but no 

differences in math interest or dosage effects by gender. 

We next examine differences by baseline ability level. Appendix Tables 5 and 6 report 

estimates of interactions between the Dosage 1X and Dosage 2X treatments, and above median 

baseline ability for test scores and interest in the subject, respectively. For math, treatment effects 

are positive and significant only for students in the bottom half of the baseline ability distribution. 

Differences in Dosage 1X treatments effects between the bottom and top half of students are 

further statistically significant. For language, we find little or no statistically significant evidence 

of positive or negative effects for the bottom half of students (nor differential effects between 
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students in the bottom and top half of the baseline language ability distribution). For liking subjects 

the estimates are noisier but generally line up with the test score results. At least for math, and 

possibly for language, the positive and statistically significant treatment effects for the entire 

sample (Tables 3 and 4) appear to be largely driven by the positive and statistically significant 

treatment effects for students in the bottom half of the ability distribution. 

 

5   Conclusion 
Billions of dollars are spent on computer-based learning in schools in developing countries each 

year and even more during the recent shift to remove learning due to Covid-19, but are these 

expenditures optimal (Escueta et al. 2017)? Unfortunately, there is limited theoretical guidance on 

what optimal levels of CAL should be, and the newness of EdTech in developing countries does 

not provide a long enough track record to determine what works, what does not work, and what 

are the impacts of the continued substitution of CAL for traditional learning. The empirical 

evidence, even from RCTs, is decidedly mixed and focuses exclusively on one dosage level in 

CAL. To remedy this deficiency in the literature, we study for the first time: i) the effectiveness of 

CAL on the educational outcomes of school children at different levels of treatment intensity, and 

ii) the general shape and nature of the educational production function in CAL. Our field 

experiment involving more than six thousand Russian schoolchildren and three treatment arms 

varying dosage levels in CAL generates exogenous variation in CAL use. CAL is substituted 

directly for traditional learning in the experiment, and thus any changes in educational production 

(i.e. movement across isoquants) is due to input substitution and not higher input levels. 

Estimates from the field experiment indicate that CAL increases math test scores at both 

the base and higher dosage levels. As traditional learning is substituted for CAL from the base 

level to the higher level, however, we find similar effect sizes. Thus, the marginal rate of technical 

substitution (MRTS) of CAL for traditional learning is greater than one when moving from zero 

to the base level of CAL, but essentially equals one when moving from the base level of CAL to 

the higher level of CAL. After ruling out several general forms of the educational production 

function in CAL, we find estimates that are consistent with a Cobb-Douglas production function 

with a higher factor return on CAL than traditional learning and that optimal levels are above a 

one-to-one ratio of CAL to traditional learning. Turning to language achievement, which has been 

studied much less extensively in the previous literature, we find stronger evidence of: i) concavity 
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in educational production in CAL, ii) diminishing MRTS in CAL, and iii) curvature in isoquants. 

The experimental estimates for language are generally consistent with a Cobb-Douglas production 

function with roughly equal factor returns. 

An important finding is that educational production does not appear to fit a situation in 

which teachers and students can simply substitute between CAL and traditional learning at any 

level with the same result. For both math and language achievement we find evidence of 

diminishing MRTS of CAL for traditional learning. The marginal costs of shifting from a lower 

level to a higher level of CAL are very low because students already have computers and the 

software is online and can be replicated for essentially no cost). Although there are fixed costs of 

developing the software and keeping it up-to-date, the provider made it free of charge to all schools 

and teachers in the country. In any case, we do not expect that costs will shift the optimal levels 

much beyond what we find without detailed measures of costs. The primary constraint in this 

setting is total homework time mandated by the government. 

Why do we find evidence of diminishing MRTS? Inherently, it is much more difficult to 

identify the underlying causes of concavity in educational production (or curvature of the 

isoquants) than identifying the general shape. One possibility that is at least consistent with our 

experimental findings is based on changes in interest and engagement in the subject matter. We 

find that for both math and language, the base level of CAL resulted in the highest levels of interest. 

When the dosage level of CAL was doubled students reported lower levels of interest. The finding 

of diminishing MRTS might be due to these effects on interest and engagement in subject material. 

Another possibility is that at base level dosages of CAL students gain from being more engaged 

in learning the material through the technology, but at higher dosages they lose out on the positive 

effects of traditional learning. In the end, a blended approach might be the optimal solution for 

schools and students. The blended approach might keep students engaged, but at the same time 

expose students to more beneficial methods of learning or just keep students switching around. 

More research is needed on these important underlying questions regarding how students learn 

using technology. Findings from future research along these lines will build on the novel findings 

presented here on the shape and nature of the production function and help further identify optimal 

levels of investment in CAL, which is imperative as governments, schools and families around the 

world are rapidly increasing investments in EdTech and substituting EdTech for traditional 

learning methods without a complete understanding of its effectiveness in educational production. 
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In addition to these longer-term trends, the findings have important implications for the full-scale, 

comprehensive, global movement to EdTech at all levels of education in response to the 

coronavirus pandemic. 
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Table 1: Effects of CAL Dosage 1X and Dosage 2X on Student-Reported Minutes per Week 
of Math and Language Homework 
  (1) (2) (3) (4) 

 Time Math Homework Time Language Homework 
Dosage 1X -1.434 -1.847 -0.995 -1.122 

 (1.441) (1.489) (1.251) (1.294) 
Dosage 2X -0.254 -0.853 0.234 -0.145 

 (1.323) (1.368) (1.174) (1.186) 
Diff (Dosage 2X – Dosage 1X) 1.180 0.994 1.229 0.977 
 (1.310) (1.377) (1.167) (1.218) 
Extra Covariates NO YES NO YES 
Observations 5,315 5,315 5,305 5,305 
R-squared 0.058 0.091 0.063 0.097 

Notes:  
1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 

(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 
2) All columns control for baseline counterpart of dependent variable (in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home (yes/no), teacher ICT self-efficacy, and class size.  
4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 
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Table 2: Effects of CAL Dosage 1X and Dosage 2X on Teacher-Reported Hours per Week 
Spent on Math and Language Class Preparation 

  (1) (2) (3) (4) 
 Math Preparation Language Preparation 

Dosage 1X -0.378 -0.416 -0.139 -0.192 

 (0.604) (0.601) (0.631) (0.627) 
Dosage 2X -0.105 -0.176 0.240 0.154 

 (0.573) (0.569) (0.620) (0.616) 
Diff (Dosage 2X – Dosage 1X) 0.273 0.240 0.380 0.345 
 (0.566) (0.561) (0.600) (0.592) 
Extra Covariates NO YES NO YES 
Observations 334 334 334 334 
R-squared 0.179 0.203 0.254 0.274 

Notes:  
1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 

(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 
2) All columns control for baseline counterpart of dependent variable (in math or language). 
3) Even-numbered columns control for teacher uses ICT at home (yes/no), teacher ICT self-efficacy, and class 

size.  
4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 
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Table 3: Effects of CAL Dosage 1X and Dosage 2X on Math and Language Test Scores 
   (1) (2) (3) (4) 

 Math Test Score Language Test Score 
Dosage 1X 0.117*** 0.109*** 0.063* 0.068* 

 (0.042) (0.041) (0.037) (0.037) 
Dosage 2X 0.104** 0.098** -0.022 -0.005 

 (0.041) (0.038) (0.032) (0.032) 
Diff (Dosage 2X – Dosage 1X) -0.013 -0.011 -0.085 -0.073 
 (0.041) (0.040) (0.038) (0.037) 
Extra Covariates NO YES NO YES 
Observations 5,621 5,621 5,568 5,568 
R-squared 0.366 0.429 0.429 0.483 
Diff (Dosage 2X - 2*Dosage 1X) -0.129** -0.120** -0.148*** -0.141*** 
SE (0.073) (0.072) (0.067) (0.067) 

Notes:  
1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 

(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 
2) All columns control for baseline counterpart of dependent variable (baseline score in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home (yes/no), teacher ICT self-efficacy, and class size.  
4) Cluster (class-level)-robust standard errors in parentheses. 
5) For the concavity test reported in the last panel, statistical significance is based on a one-tailed test. 
6) *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4: Effects of CAL Dosage 1X and Dosage 2X on Student Interest in Math and 
Language  
  (1) (2) (3) (4) 

 Math Interest Language Interest 
Dosage 1X 0.075** 0.070* 0.097** 0.085** 

 (0.037) (0.036) (0.039) (0.039) 
Dosage 2X 0.042 0.054 0.020 0.028 

 (0.038) (0.038) (0.041) (0.041) 
Diff (Dosage 2X – Dosage 1X) -0.033 -0.016 -0.076** -0.056* 
 (0.038) (0.038) (0.039) (0.040) 
Extra Covariates NO YES NO YES 
Observations 5,173 5,173 4,887 4,887 
R-squared 0.132 0.141 0.151 0.177 
Diff (Dosage 2X - 2*Dosage 1X) -0.108** -0.086* -0.173*** -0.141** 
SE (0.064) (0.064) (0.067) (0.068) 

Notes:  
1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 

(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 
2) All columns control for baseline counterpart of dependent variable (in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home (yes/no), teacher ICT self-efficacy, and class size.  
4) Cluster (class-level)-robust standard errors in parentheses. 
5) For the concavity test reported in the last panel, statistical significance is based on a one-tailed test. 
6) *** p<0.01, ** p<0.05, * p<0.1. 

 
 
 
 
 
 

 

  



34 
 

Appendix Figure 1: Quantile Effects of Dosage 1X and Dosage 2X (each versus Control) on 
Math Test Scores 
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Appendix Figure 1A: Quantile Dosage X Estimates for Math Test Score
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Appendix Figure 1B: Quantile Dosage 2X Estimates for Math Test Score
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Appendix Figure 2: Quantile Effects of Dosage 1X and Dosage 2X (each versus Control) on 
Language Test Scores 
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Appendix Figure 2A: Quantile Dosage X Estimates for Language Test Score
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Appendix Figure 2B: Quantile Dosage 2X Estimates for Language Test Score



Appendix Table 1: Balance Check among Treatment Arms (Dosage 2X, Dosage 1X, and No Dosage) 

  (1) (2) (3) (4) (5) (6) (7) (8) 

 
Math  
score 

Reading  
score 

Language  
score 

Vocabulary  
score 

Female  
(1/0) 

Teacher ICT  
at home (1/0) 

Teacher ICT  
self-efficacy 

Class  
size 

                  
Dosage 1X -0.003 0.054 0.024 -0.053 0.014 0.011 0.085 0.398 

 (0.006) (0.040) (0.042) (0.040) (0.013) (0.060) (0.072) (0.749) 
Dosage2X 0.005 0.002 0.014 -0.027 0.023 0.096* -0.035 0.748 

 (0.005) (0.043) (0.041) (0.043) (0.014) (0.057) (0.075) (0.697) 
Dosage 2x – Dosage 1X 0.00791 -0.0522 -0.00995 0.0253 0.00880 0.0843 -0.120 0.350 
SE 0.00619 0.0388 0.0365 0.0433 0.0136 0.0608 0.0795 0.718          
 
N 6,052 5,839 5,839 6,052 5,742 5,903 5,903 6,253 
R2 0.238 0.150 0.159 0.163 0.011 0.248 0.224 0.236 
         

Notes:  
1) All regressions control for strata (block) fixed effects.  
2) Cluster (school)-adjusted robust standard errors in parentheses.  
3) *** p<0.01, ** p<0.05, * p<0.1. 
4) Joint tests of all baseline covariates simultaneously shows no significant difference between Dosage 1X and Control (p-value: 0.445), Dosage 2X and 

Control (p-value: 0.417) or Dosage 2X and Dosage 1X (p-value = 0.700). 
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Appendix Table 2: Balance Check among Treatment Arms, Non-Attriting Students 
  (1) (2) (3) (4) (5) (6) (7) (8) 

 
Math 
score 

Reading 
score 

Language 
Score 

Vocabulary 
score 

Female 
(1/0) 

Class 
size 

Teacher 
ICT at 

home (1/0) 

Teacher 
ICT self-
efficacy 

                  
Dosage 1X -0.067 0.031 -0.009 -0.052 -0.012 0.589 -0.046 -0.146 

 (0.050) (0.041) (0.048) (0.039) (0.013) (0.747) (0.142) (0.121) 
Dosage 2X -0.100* -0.013 -0.008 -0.060 -0.025* 0.807 -0.156 -0.115 

 (0.054) (0.045) (0.046) (0.044) (0.015) (0.718) (0.122) (0.111) 
 
Observations 6,071 5,950 5,950 6,071 6,242 6,242 6,172 6,172 
R-squared 0.186 0.144 0.158 0.155 0.010 0.225 0.224 0.244 
Diff (Dosage 2X - Dosage 1X) -0.033 -0.044 0.001 -0.008 -0.013 0.219 -0.11 0.030 
SE 0.057 0.040 0.047 0.043 0.013 0.738 0.145 0.116 
         
Notes:  

1) All regressions control for strata (block) fixed effects.  
2) Cluster (school)-adjusted robust standard errors in parentheses.  
3) *** p<0.01, ** p<0.05, * p<0.1. 

 
 



Appendix Table 3: Heterogeneous Effects of CAL Dosage 1X and Dosage 2X on Math and 
Language Test Scores, by Student Gender 
   (1) (2) (3) (4) 

 Math Test Score Language Test Score 
Dosage 1X 0.104** 0.100** 0.060 0.074 

 (0.049) (0.046) (0.046) (0.045) 
Dosage 2X 0.083* 0.074 0.007 0.018 

 (0.048) (0.045) (0.041) (0.041) 
Female 0.032 -0.028 0.110*** 0.103*** 
 (0.038) (0.036) (0.038) (0.036) 
Female * Dosage 1X 0.024 0.016 0.008 -0.012 

 (0.055) (0.052) (0.054) (0.051) 
Female * Dosage 2X 0.042 0.045 -0.052 -0.043 

 (0.055) (0.053) (0.051) (0.048) 
Extra Covariates NO YES NO YES 
Observations 5,621 5,621 5,568 5,568 
R-squared 0.367 0.429 0.431 0.483 

Notes:  
1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 

(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 
2) All columns control for baseline counterpart of dependent variable (baseline score in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home (yes/no), teacher ICT self-efficacy, and class size.  
4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Table 4: Effects of CAL Dosage 1X and Dosage 2X on Interest in Math and 
Language, by Gender 
  (1) (2) (3) (4) 

 Math Interest Language Interest 
Dosage 1X 0.079 0.071 0.093 0.082 

 (0.051) (0.049) (0.057) (0.056) 
Dosage 2X 0.063 0.075 0.027 0.026 

 (0.054) (0.053) (0.061) (0.061) 
Female 0.011 0.021 0.245*** 0.229*** 
 (0.052) (0.051) (0.052) (0.053) 
Female * Dosage 1X -0.007 -0.016 0.007 0.006 

 (0.068) (0.067) (0.068) (0.068) 
Female * Dosage 2X -0.041 -0.039 0.003 0.005 

 (0.071) (0.070) (0.073) (0.074) 
Extra Covariates NO YES NO YES 
Observations 5,173 5,173 4,887 4,887 
R-squared 0.132 0.141 0.167 0.177 

Notes:  
1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 

(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 
2) All columns control for baseline counterpart of dependent variable (in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home (yes/no), teacher ICT self-efficacy, and class size.  
4) Cluster (class-level)-robust standard errors in parentheses. 
5) For the concavity test is last panel, statistical significance is based on a one-tailed test. 
6) *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Table 5: Heterogeneous Effects of CAL Dosage 1X and Dosage 2X on Math and 
Language Test Scores, by Student Ability (Above and Below Median Baseline Score) 
  (1) (2) (3) (4) 

 Math Test Score Language Test Score 
Dosage 1X 0.162*** 0.167*** 0.070 0.083 

 (0.054) (0.51) (0.051) (0.049) 
Dosage 2X 0.142*** 0.140*** -0.060 -0.039 

 (0.054) (0.051) (0.045) (0.044) 
High Ability (>50%) 0.216*** 0.176*** 0.035 -0.026 
 (0.053) (0.050) (0.049) (0.045) 
High Ability * Dosage 1X -0.119* -0.142** -0.043 -0.061 

 (0.067) (0.065) (0.058) (0.056) 
High Ability * Dosage 2X -0.097 -0.103* 0.067 0.058 

 (0.060) (0.059) (0.052) (0.051) 
Extra Covariates NO YES NO YES 
Observations 5,482 5,482 5,317 5,317 
R-squared 0.373 0.433 0.447 0.497 

Notes:  
1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 

(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 
2) All columns control for baseline counterpart of dependent variable (baseline score in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home (yes/no), teacher ICT self-efficacy, and class size.  
4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Table 6: Effects of CAL Dosage 1X and Dosage 2X on Interest in Math and 
Language, by Student Ability (Above and Below Baseline Median Score) 
  (1) (2) (3) (4) 

 Math Interest Language Interest 
Dosage 1X 0.123** 0.120** 0.086* 0.081 

 (0.053) (0.52) (0.052) (0.052) 
Dosage 2X 0.078 0.089* -0.040 -0.031 

 (0.049) (0.048) (0.056) (0.056) 
High Ability (>50%) 0.178** 0.089 0.087* -0.011 
 (0.052) (0.059) (0.049) (0.058) 
High Ability * Dosage 1X -0.094 -0.105 -0.007 -0.021 

 (0.073) (0.073) (0.064) (0.065) 
High Ability * Dosage 2X -0.069 -0.071 0.083 0.081 

 (0.066) (0.066) (0.069) (0.068) 
Extra Covariates NO YES NO YES 
Observations 5,053 5,053 4,696 4,696 
R-squared 0.134 0.140 0.154 0.177 

Notes:  
1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 

(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 
2) All columns control for baseline counterpart of dependent variable (in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home (yes/no), teacher ICT self-efficacy, and class size.  
4) Cluster (class-level)-robust standard errors in parentheses. 
5) For the concavity test is last panel, statistical significance is based on a one-tailed test. 
6) *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix A: Psychometric Properties of the Exams 
 
The exams (collectively known as the PROGRESS toolkit) were specifically developed to assess 
student achievement in grade 3 in Russian schools. The exams are typically (as in our study) 
administrated twice: once at the beginning of the school year and once at the end of the school 
year. 

The exams cover four areas: math, language, reading and vocabulary. Exam items for these 
areas were chosen based on the Russian Federal Standards for primary education. The math and 
language areas include 5 thematic blocks each with respectively 30 and 66 items in total. The 
reading and vocabulary areas include two blocks of items each with 42 and 39 items in total. The 
items are of different formats such as multiple choice, short answer, and matching. All items are 
scored dichotomously. 

Testing is conducted during two 40-minute sessions. One session tests language and 
reading, while another session tests math and vocabulary. Testing is computer-based and adaptive. 
Students are assessed in schools’ computer rooms under the supervision of one trained adult per 
classroom. 

The dichotomous Rasch model (Wright & Stone, 1979; Bond and Fox 2015) is used in the 
psychometric analysis of the exams. In this model, each item is characterized by one parameter 
(difficulty), and each student is also characterized by one parameter (ability). Rasch analysis places 
students and items on the same log-odds measurement scale (Linacre J. M., 2011). 

In our study, the exams exhibited good psychometric properties. The constructs underlying 
the four exam areas (math, language, reading, and vocabulary) were essentially unidimensional. 
All items demonstrated good model fit. Exam reliability (Cronbach’s alpha and Person reliability) 
varied from 0.82 to 0.96. No items demonstrated floor or ceiling effects (during the baseline or the 
endline). There was no evidence of differential item functioning (DIF) by gender or local region.  
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Appendix B: Computer-Assisted Learning Software – Example Screenshots 
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