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increases odds that the skilled worker is no longer a good match to the new technology. Estimating
the parameters of the model using indirect inference, we find significant welfare losses and hedging
demand against innovation shocks. Consistent with our model, we find that these left tail effects are
more pronounced for process improvements, novel innovations, and are concentrated in movers rather
than continuing workers.
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For most households, human capital is the largest component of total wealth. Unlike financial wealth,
human capital is illiquid, poorly diversified, and shocks to its value are largely uninsurable. Thus, un-
derstanding what makes human capital risky is important. Our paper focuses on the role of innovation:
models of creative destruction generate sharp predictions regarding the rate of technological innovation
and redistribution of profits across firms. To the extent that part of a worker’s skill set is specific to a
particular technology vintage or firm or firms share profits with workers, increased rates of innovation
will also affect worker earnings. We explore these ideas in detail and show that there is a strong link
between the rate of technological innovation and risk in worker earnings—particularly for workers at the
top of the earnings distribution, who often have specialized skills and compensation tied to firm profits.

We begin by presenting a set of new stylized facts using millions of administrative worker earnings
records from the Social Security Administration (SSA) and the firm-level measure of the value of
innovation developed in Kogan, Papanikolaou, Seru, and Stoffman (2017).! We first examine industry-
level outcomes. We show there is a strong correlation between the rate of technological progress in a
given industry and the variation of future firm profits and worker earnings growth. This correlation is
significantly stronger for workers at the top of the earnings distribution. The rest of the paper focuses
on understanding the drivers of this correlation, and, to that end, for the remainder of the paper we
focus on worker-level outcomes.

Empirically, we find that the above relation between innovation and human capital risk is driven by
a combination of between- and within-firm effects. We next examine separately the role of innovation
that originates in the workers’ own firm versus other competing firms in the same industry. We find
that increases in the rate of a firm’s own innovations are associated with increased future earnings
growth for its workers. By contrast, an increased rate of innovation by competing firms is associated
with significantly lower future worker earnings. The magnitude of these effects is sizable; the own-firm
effects are consistent with most extant estimates of profit sharing elasticities. However, keeping
constant the associated change in expected firm profits from new innovations, workers’ earnings growth
is more sensitive to innovation by competing firms relative to own firm innovation. Thus, differences in

firm outcomes partly drive workers earnings risk, and workers bear more of that risk on the downside.

'Kogan et al. (2017) propose a measure of the economic importance of each innovation that combines patent data
with the stock market response to news about these patents. An advantage of this measure is that it allows us to connect
each new invention or production method to its originating firm, and therefore isolate innovation by the worker’s own
firm from innovation by its competitors. Kogan et al. (2017) show that their measure is strongly related to changes
in ex-post profitability across firms and document evidence consistent with creative destruction.



These average effects are informative regarding the link between differences in the rate of innovation
across firms and earnings risk. However, they offer an incomplete characterization of effects on income
risk: average effects mask considerable heterogeneity in worker outcomes, even for workers whose
firms innovate at similar rates. Thus, we next use quantile regressions to characterize how the entire
distribution of worker earnings growth rates shifts following innovation by the firm, or its competitors.
We uncover a significant relation between the rate of innovation and the higher moments of the
distribution of earnings growth. Subsequent to innovation by their own firm, the distribution of
earnings growth for the firm’s own workers becomes more positively skewed: the increase in average
earnings we documented above is concentrated among a small subset of workers. Conversely, innovation
by competitors is associated with more negatively skewed earnings growth for the firm’s workers: most
workers experience small declines in income, while a minority experiences a significant drop in labor
earnings. Importantly, these effects are significantly larger in magnitude for the highest paid workers
(top 5% in the distribution of prior earnings within the firm). In addition to larger magnitudes, these
top workers also experience a substantial fattening of the left tail of earnings growth when their own
firm innovates. For these workers, an increase in innovation of their own firm is a mixed blessing, since
it represents a positive shock to both the mean and the variance of their future earnings growth.

In brief, we uncover an economically significant relation between the rate of technological innovation
and the earnings risk of top workers. This relation is striking given that the existing literature has largely
emphasized the complementarity between technology and high-skill workers (Goldin and Katz, 1998).
To help interpret our facts, we develop a model of innovation and earnings risk. Our model focuses on
high-income (i.e. skilled) workers and has the following key ingredients. Firms compete in the product
market; similar to quality-ladder models, only the most efficient firm finds it profitable to produce in a
given product line. Firm profits (markups) depend on the distance between the leading producer (the
incumbent) and the next most efficient firm (the potential entrant). High rates of innovation by the
entrant result in lower profits by the incumbent firm and potentially the loss of the market for that
product line. Firms hire skilled workers to manage these product lines and these managers’ earnings
are exposed to profits to mitigate a moral hazard friction; hence, there is pass-through of firm profits
to the earnings of top workers. If the firm loses its technology lead in a product line, the incumbent
manager is displaced. Innovation by the worker’s own firm leads to higher profits, but the compatibility

of these innovations with the skills of the incumbent worker is uncertain. That is, the productivity



of the incumbent worker in utilizing the new vintage has a stochastic component and may increase or
decrease; in some cases, the firm may find it profitable to replace the incumbent worker with a new hire.

In sum, the model generates a link between innovation, firm profits, and worker earnings risk. In
the model, innovation by competing firms increases the likelihood that both worker and incumbent
producer are displaced. Thus, it is associated with lower future firm profits and a more negatively
skewed distribution for earnings growth. By contrast, higher rates of own firm innovation lead to
higher average profits but are a mixed blessing for (top) workers, since they increase the likelihood
the manager is no longer a good match to the firm’s technology. Hence, the model generates a higher
mean, but also an increase in the variance of earnings growth of top workers in response to innovation
by their own firm. Exposures are also asymmetric: managers capture only a fraction of the gains from
own firm innovation but fully share in losses from competitor innovation.

We calibrate the model to match our stylized facts above using indirect inference. The model can
quantitatively replicate the key relation between technological progress and earnings risk that we
uncover. In addition, the calibrated model allows us to quantify the impact of innovation on worker
utility. We find that innovation is associated with significant welfare losses for top workers, even in
the presence of progressive taxation and ability to self-insure by accumulating assets. In the model,
the average worker would need to receive a proportional subsidy of 1.5% in her lifetime consumption
to offset the utility loss resulting from a one-standard-deviation (one time, but persistent) increase
in industry innovation. Our estimates thus imply a substantially higher welfare cost of innovation
for (top) workers than the welfare cost of business cycles due to job displacement (Krebs, 2007).

In addition, we use the model to compute the willingness of workers to invest in assets that (partially)
hedge their earnings risk. We find significant demand for insuring changes in the rates of innovation
in the worker’s own industry, as measured by fluctuations in their marginal utility. Specifically, a one
standard deviation increase in industry innovation leads to a 0.38 log point increase (on average) in
the marginal utility of skilled workers. To a first approximation, this estimate implies that workers
would be willing to invest in an asset whose return is maximally correlated with a shock to industry
innovation as long as its Sharpe ratio (market price of risk) was higher than -0.38. That said, there
is dispersion across model workers in the magnitude of these welfare costs and their willingness to
hedge. Similar to the data, higher-income workers in the model face higher risk exposures and are

therefore willing to pay more for insurance.



Our model has testable predictions that we examine in our data. First, the model generates an
increased left tail of earnings growth through a higher likelihood of job loss. An advantage of our data
is that they allow us to track workers across firms and therefore to examine the extent to which this in-
crease in the risk of earnings declines is related to separations. We therefore explore how the magnitude
of the increase in the left tail varies between stayers (continuing workers) and movers (workers who leave
the firm). In both the model and the data, an increase in the rate of innovation by either the firm or its
competitors is associated with a significantly higher increase in the left tail among movers than stayers.
Further, and consistent with displacement of human capital, incumbent workers are more likely to expe-
rience persistent unemployment spells. As before, these effects are larger in magnitude for top workers.

Second, our model has specific predictions about what types of innovations are more likely to lead
to higher worker earnings risk. In particular, we expect the effects of own firm innovation to be
driven by process (as opposed to product) improvements, and by innovations that are significantly
different from what the firm has done in the past. We measure the former using the process/product
characterization of patents of Bena and Simintzi (2019). We measure novelty using the methodology of
Kelly, Papanikolaou, Seru, and Taddy (2020), who quantify textual similarity across patent documents.
A patent is novel if the description of the innovation is sufficiently distinct from the firm’s prior
innovations. Consistent with our model, we find that the increase in the left tail of (top) worker
earnings is driven by process improvements. By contrast, non-process (product) improvements are
primarily associated with an increase in average earnings rather than an increase in higher moments.
Further, the magnitudes are significantly stronger for innovations that are novel to the firm; the
impact of non-novel innovations for the left tail is essentially zero.

An important caveat in our analysis is that the statistical relations we document need not be causal.
For instance, workers in R&D-intensive firms may have a different earnings structure than workers
in other firms. Though we cannot exclude the possibility that omitted variables are the main drivers
of our results, several factors mitigate this concern.? First, our innovation measures are strongly
related to future firm profits, but are uncorrelated with past trends in firm profitability. Second,

the response of the distribution of worker earnings to innovation is qualitatively distinct from its

2Some of the instruments used in the literature for the granting of a patent do not apply in our setting. Specifically,
Sampat and Williams (2019) use the random assignment of a patent to examiners with different propensities to approve
a patent application to instrument for patent grants. However, our sample focuses on large, publicly traded firms, many
of which file hundreds, if not thousands, of patent applications in a given year. To the extent that assignment were indeed
random and independent of firm characteristics, we would expect these examiners fixed effects to be diversified away.



response to changes in profitability or stock returns—particularly in regards to competitor outcomes.
This difference suggests that the effects we are picking up are specific to innovation outcomes per
se, as opposed to shifts in underlying profitability trends at the industry level. Third, our point
estimates are essentially unchanged if we expand the set of covariates to include controls for past R&D
spending. In this case, we are comparing firms that spent the same resources on R&D, exploiting the
fact that some firms produce patents that generate a larger stock market reaction than other firms.
Last, the fact that we are measuring patent values based on stock market reactions—which should
be unexpected—mitigates the issue, though only on the intensive margin.

Overall, we provide a set of novel stylized facts regarding the relation between innovation and worker
earnings risk; we interpret these facts through the lens of a structural model of firm innovation and
earnings risk and provide evidence that the model’s testable implications are supported by the data.
Our main conclusion is that innovation is associated with increased earnings risk for top workers and
that this mechanism operates through a combination of profit-sharing and skill displacement. As
such, our paper is connected to several strands of the literature.

Our focus on the earnings risk of top workers distinguishes our work from most of the existing
work studying the link between technological innovation and worker earnings. Existing work has
emphasized the complementarity between technology and certain types of worker skills (Goldin and
Katz, 1998, 2008; Autor, Levy, and Murnane, 2003; Autor, Katz, and Kearney, 2006; Goos and
Manning, 2007; Autor and Dorn, 2013; Adao, Beraja, and Pandalai-Nayar, 2020); or the substitution
between workers and new forms of capital (Hornstein, Krusell, and Violante, 2005, 2007; Acemoglu
and Restrepo, 2020). Our model combines elements of models with creative destruction (Aghion and
Howitt, 1992; Grossman and Helpman, 1991; Klette and Kortum, 2004) and vintage-specific human
capital (Chari and Hopenhayn, 1991; Jovanovic and Nyarko, 1996; Violante, 2002). Our findings are
particularly striking in light of the traditional view that technology tends to complement high-skill
labor (Goldin and Katz, 1998; Krusell, Ohanian, Rios-Rull, and Violante, 2000; Goldin and Katz,
2008; Atalay, Phongthiengtham, Sotelo, and Tannenbaum, 2020). A likely source of this difference
is our focus on patents by individual firms, which implies that we necessarily study innovation rather
than adoption of existing technologies (for instance, robots or automation in general). More broadly,
however, it is likely that process improvements are often associated with significant organizational

changes, which may lead to the replacement of mid-level executives that lack the skills, or willingness,



to adapt to new production methods (Davenport, 1993).% As such, our findings complement the
findings of Deming and Noray (2020), specifically, that individuals in occupations with greater changes
in skill requirements have lower returns to experience (possibly due to faster skill obsolescence).

A key part of our model mechanism operates through job loss. Assuch, our work connects to the litera-
ture studying earnings losses of displaced workers (Gibbons and Katz, 1991; Neal, 1995; Huckfeldt, 2018;
Jarosch, 2021; Braxton and Taska, 2020). Closest to our paper is Braxton and Taska (2020), who show
that individuals displaced from occupations undergoing greater amount of technological change experi-
ence larger earning declines following job loss. Our finding that new innovations are associated with sub-
stantial displacement risk for high income workers is consistent with the mechanism in the Jones and Kim
(2018) model of top income inequality. They also relate broadly to papers which have used spatial varia-
tion to link innovation, top income inequality, and social mobility (Aghion, Akcigit, Bergeaud, Blundell,
and Hémous, 2019; Aghion, Akcigit, Deaton, and Roulet, 2016; Akcigit, Grigsby, and Nicholas, 2017).

Our focus on the interaction between technological progress, product market competition, skill
displacement and worker earnings risk sharply differentiates our work from studies that examine the
impact of firm innovation on the earnings of its own workers (van Reenen, 1996; Aghion, Bergeaud,
Blundell, and Griffith, 2017; Kline, Petkova, Williams, and Zidar, 2019; Howell and Brown, 2020). The
central finding in this body of work is that innovative firms pay higher wages to incumbent workers,
consistent with ex-post sharing of quasi-rents.* Contributing to this literature, our quantile regressions
reveal substantial heterogeneity in worker outcomes following technological improvements by the
firm—or its competitors—that are otherwise obscured when focusing on average (i.e. conditional

mean) outcomes. This is particularly important, in light of the fact that the existing literature has

3 As an example, Davenport (1993) discusses the implementation of process innovation in the Distributed Systems
Manufacturing (DCM) Group, which was a part of Digital Equipment Corporation (DEC): “In 1985, the DSM
team developed an aggressive 5-year plan. A systems and information management-tools component called for the
implementation of computer-aided design, computer-integrated manufacturing, artificial intelligence, group technologies
and other advanced manufacturing systems, many of which had significant impacts on how people in the organization
worked. [...] DSM’s group manager, like most successful process change leaders, used a combination of hard and soft
interventions to manage anticipated resistance. [...] But the group manager also displayed the impatience for results
that is characteristic of successful change leaders, and did not hesitate to replace resisters and others whom he felt
were not adapting quickly enough.” (Davenport, 1993, pp.168-170, 194-195).

4Card, Cardoso, Heining, and Kline (2018) survey the literature on estimating rent-sharing elasticities between
workers and firms; most recent studies that employ micro data deliver estimates that lie between 0.05 to 0.15. For
our purposes, the most directly relevant estimates are those of Lamadon, Mogstad, and Setzler (2019), who estimate an
coefficient of 0.13-0.14 using recent IRS data from the US. Our OLS point estimates for stayers that compare the increase
in profitability to the increase in the earnings of the average worker following innovations by the firm are somewhat
higher than this range (0.195), but are closer to the estimates reported in van Reenen (1996) and Kline et al. (2019), who
report elasticities of 0.29 and 0.19-0.23, respectively. A related literature has considered earnings responses of inventors,
firm owners, and CEOs (Toivanen and Vddnénen, 2012; Frydman and Papanikolaou, 2018; Bell, Chetty, Jaravel, Petkova,
and Van Reenen, 2019; Akcigit et al., 2017; Aghion, Akcigit, Hyytinen, and Toivanen, 2018) to own firm innovation.



often interpreted these elasticities as a measure of the degree of insurance provided by the firm’s owners
to workers (Guiso, Pistaferri, and Schivardi, 2005; Lagakos and Ordoniez, 2011; Fagereng, Guiso, and
Pistaferri, 2018; Ellul, Pagano, and Schivardi, 2017). We view our work as complementary; rather than
focusing on estimating profit-sharing elasticities, our goal is to quantify the relation between innovation
and the uncertainty in worker earnings, understand its determinants, and explore its implications. To
that end, we view our structural model as a valuable tool. We also point to how displacement effects
linked with shifts in technology likely limit potential for risk sharing through the firm.

Our finding that innovation is associated with an increase in the left tail of earnings growth for
top earners makes it increasingly likely that it matters for asset prices, especially given the high
concentration of stock ownership (and participation) among the richest households (Poterba and
Samwick, 1995). In particular, our empirical estimates and structural model imply that top workers
experience a significant increase in marginal utility in response to high degrees of technological
innovation in their own industry. This increased demand for insurance against states with high degrees
of technological innovation contributes to a negative risk premium for (displacive) technology shocks,
reinforcing the implications of Papanikolaou (2011); Garleanu, Kogan, and Panageas (2012); Kogan,
Papanikolaou, and Stoffman (2020) for the equity premium and the value spread. In these models,
investors are willing to invest in innovative (i.e. growth) firms, despite their lower than average returns,
because their returns are positively correlated with households’ marginal utility.> We contribute to this
literature by providing direct evidence that technological innovation is correlated with worker earnings
risk. Our findings also suggest that allowing for displacement of human capital in the model of Kogan
et al. (2020) reinforces its main mechanism and would allow it to match the observed properties of
value and growth firms with only moderate levels of risk aversion. More broadly, our findings connect
to a recent literature arguing for the cyclical properties of skewness in labor income and its implications
for the equity premium (Guvenen, Ozkan, and Song, 2014; Constantinides and Ghosh, 2017; Schmidst,
2016). In terms of magnitudes, the increase in the left tail of (top) worker earnings growth following
periods of innovation by competing firms in the same industry is comparable in magnitude to the

increase in the left tail documented in recessions documented in Guvenen et al. (2014).

"Over the last decade, growth firms (as traditionally classified) have not exhibited significantly different returns
than value firms. Though estimating expected returns by looking at average returns over a relatively short period is
fraught with pitfalls—especially in the presence of positive surprises to innovation outcomes—another important factor
is related to mis-measurement of book values (the value of assets in place) as it typically omits intangible assets, which
have arguably become more important over time (Park, 2019; Eisfeldt, Kim, and Papanikolaou, 2020).



Last, our work also connects to the literature arguing for the importance of firms for understanding the
dynamics of income inequality. Abowd, Kramarz, and Margolis (1999) propose that firm heterogeneity
accounts for a substantial fraction of wage differences across workers. Song, Price, Guvenen, Bloom, and
Von Wachter (2019) document that a substantial fraction of the rise in income inequality across workers
can be attributed to increasing differences in average worker pay across firms. Card, Heining, and Kline
(2013) find similar effects in Germany. To relate our findings to this literature, in the appendix we per-
form a simulation-based decomposition exercise which quantifies implication of our empirical estimates
for the recent rise in income inequality among firms. During the 1990s, both the level as well as the dis-
persion in innovation outcomes across firms increased; most of the increase in the amount of innovation
was concentrated among a relatively small subset of firms. By simulating from our estimated quantile
regression model, we show that this increase in the dispersion in firm innovation outcomes can account
for much of the increase in between-firm inequality during the last few decades. In terms of within-firm

inequality, we find both the increase in the level as well as the dispersion in innovation play a role.

1 Data and Measurement

We begin by briefly summarizing the data on labor income and firm innovation outcomes used in our

analysis. All details are relegated to Appendix A.

1.1 Labor Income

Our data on worker earnings are based on a random sample of individual records for males, drawn
from the U.S. Social Security Administration’s (SSA) Master Earnings File (MEF). Importantly, the
data have a panel structure, which allows us to track individuals over time and across firms. Our main
sample covers the 19802013 period.® We follow Guvenen et al. (2014) and exclude self-employed
workers and individuals with earnings below a minimum threshold—equal to the amount one would

earn working 20 hours per week for 13 weeks at the federal minimum wage. See Appendix A.1 and

5The MEF includes annual earnings information for every individual that has ever been issued a Social Security
Number. The earnings data are based on box 1 of the W2 form, which includes wages and salaries; bonuses; the dollar
value of exercised stock options and restricted stock units; and severance pay. The data are based on information
that employers submit to the SSA, and are uncapped after 1978. Our sample is the same as Guvenen et al. (2014).
Specifically, a sample of 10 percent of US males are randomly selected based on their social security number (SSN)
in 1978. For each subsequent year, new individuals are added to account for the newly issued SSNs; those individuals
who are deceased are removed from that year forward. We start our analysis in 1980 to overcome potential measurement
issues in the initial years following the transition to uncapped earnings.



Guvenen et al. (2014) for further details.
Our key outcome variables of interest are growth rates of income, accumulated over various periods
and adjusted for life cycle effects. Following Autor, Dorn, Hanson, and Song (2014), we construct a
measure of a worker’s average earnings between periods ¢t and ¢t + k, that is adjusted for life-cycle effects:
Z?:o W-2 earnings, , H)
Z?:o D(agei,t+j) .

Here, W2 earnings, , is the sum of earnings across all W-2 documents for person i in year ¢. In the

wi,t+h = log ( (1)

denominator, D(agei7t) is an adjustment for the average life-cycle path in worker earnings that closely
follows Guvenen et al. (2014). In the absence of age effects, D(age; ;) = 1, hence (1) can be interpreted
as (the logarithm of) the average income from period t to t + h, scaled by the average income of a
worker of a similar age.

Equation (1) describes a worker’s age-adjusted earnings; to conserve space, we will simply refer
to it as worker earnings. When focusing on worker earnings growth, our main variable of interest will

be the cumulative growth in (1) over a horizon of h years:

i i
Gitit+h = Wyyq g4n — We—24- (2)

For the bulk of our analysis we will focus on 5 year horizons, h = 5. Examining (2), we note that
the base income level over which growth rates are computed is the average (age-adjusted) earnings
between ¢ — 2 and ¢t. Focusing on the growth of average income over multiple horizons in (2) emphasizes
persistent earnings changes, and therefore helps smooth over large changes in earnings that may be
induced by large transitory shocks or temporary unemployment spells (see Appendix A.3 for more
details). In our baseline case, we will consider the ratio of 5-year forward earnings to the last 3 years
of cumulative earnings (note that we simulated the same quantity in the model above). Altering the
forward window allows us to explore the persistence of our findings. For brevity, we restrict attention
to a backward window of 3 years. Importantly, since we can track workers across firms, their earnings

growth rate (2) may include income from more than one employer.

1.2 Innovation Outcomes

Our main independent variables of interest capture the rate of innovation at the firm level. The most

broadly available data on innovation are based on patents. An advantage of using the patent data



is that they can be linked to each worker via the firms with whom she is employed, which allows
us to separately estimate the relation between worker earnings and innovation by the firm and its
competitors. Hence, importantly, our definition of ‘innovation’ will be somewhat narrow. That is,
we will not be measuring firms’ adoption of technologies developed by other firms. Therefore, our
results will be rather distinct from the literature focusing on the complementarity between skilled
workers and new types of capital goods (for example, robots, as in Acemoglu and Restrepo (2020)).
A major challenge in measuring innovation by using patents is that patents vary greatly in their
technical and economic significance (see, e.g., Hall, Jaffe, and Trajtenberg, 2005; Kogan et al., 2017).
We will, therefore, be weighting individual patents by their estimated market value using the data by
Kogan et al. (2017), henceforth KPSS, who develop an estimate of the market value of a patent based
on the fluctuations in the stock price of innovating firms following patent grants. Thus, their measure is
only available for public firms. We, henceforth, refer to their measure as the ‘market’ value of a patent.

We follow KPSS closely and construct measures of the value of innovation by the firm

A =

(3)

and its competitors,
2 pens (Zjepf,’t fj)
> preng K
In addition, we can aggregate the above to the level of the industry
Zf’e[ (ZjePf, . 53)
AI,t = . .
Zf’GI Kf’t

Here, £; corresponds to the KPSS value of a patent, and Pr; denotes the set of all patents used to

Apge =

(5)

measure innovation by firm f during period ¢. The set of competing firms I \ f is the ‘leave-out
mean’—defined as all firms in the same SIC3 industry, excluding firm f. Large firms tend to file more
patents. As a result, both measures of innovation above are strongly increasing in firm size (Kogan
et al., 2017). To ensure that fluctuations in size are not driving the variation in innovative output,
we follow KPSS and scale the measures above by the firm’s size K. We use the firm’s capital stock
(book assets) as our baseline case, but our main results are similar if we scale by the firm’s market
capitalization instead (see, e.g., Appendix Figure A.9). Appendix A.4 provides more details on the

construction of these variables. In the context of the model in Section 3, we can interpret Ay, and
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Ap\ 1, as empirical proxies for the rates of innovation Ay; and A f’,t-7

A potential shortcoming of a patent-based measure of innovation is that the exact timing of its impact
on firm wages is somewhat ambiguous. A successful patent application helps the firm appropriate
any monopoly rents associated with that invention, hence dating patents based on their issue date
seems like a natural choice. The patent issue date is also the date at which it becomes known that the
patent application has been successful, which forms the basis for estimating the value of the patent
based on the firm’s stock market reaction in KPSS. For our purposes, however, this timing choice may
be somewhat problematic when examining how worker earnings respond to the firm’s own innovation.
For instance, the firm may decide to pay workers in advance of the patent grant date. Hence, income
changes subsequent to the patent grant date may be affected by temporary increases in worker salaries
prior to the patent grant date. To address this concern, we date the firm’s own patents based on the
year when applications for these patents are filed. Hence, when computing Ay, the set of patents Py ;
includes patents that are filed in year t.® Consistent with this timing convention, Appendix Figure
2 indicates that firm profits respond sharply in the year immediately after patents are filed, despite
the fact that most patents take several years to be approved, and are associated with substantially
larger cumulative responses of profits. Patents by competing firms, used in the construction of Ap s,
are dated as of their issue date. We also use the issue date when constructing A;;. That said, this
choice of timing is not the main driver of our findings on earnings growth rates, as most results are

qualitatively similar if we date the firm’s patents as of their grant date.

1.3 Overview of the sample

Our final matched sample includes approximately 14.6 million worker-year observations. Appendix
Table A.1 provides some summary statistics for the key variables in our analysis. To arrive at this sample,
we merge the firm-level data on public firms’ innovation outcomes with individual workers’ earnings

histories using EIN numbers. A worker is included in the sample in year ¢ if she works in a matched

"In particular, many firms have hundreds or thousands of patent applications in a given year. Many of these innovations,
however, are likely to be incremental. Weighting by the estimate of the market value of a patent helps down-weigh more
marginal patents, but the result is still a continuous measure which is likely to be a noisy estimate of the underlying level of
firm innovation. We, therefore, interpret a high value of Ay ; as indicative of a higher likelihood that the firm has improved
its efficiency in a given product—that is, as a positive shock to Ay,¢. An alternative strategy would have been to only focus
on patents on the right tail of the distribution of A ;; however, doing so would require us to impose an arbitrary threshold.

8Patent applications (and hence, filing dates) are only disclosed ex-post. Hence, the value ¢; is still computed using
the market reaction on the patent grant date. Our implicit assumption is that this value represents a known quantity
to the firm as of the application date, similar to the assumptions regarding the number of future citations a patent
receives that are common in the innovation literature (see, e.g., Hall et al., 2005).
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firm. But, since workers can transition to other firms potentially not in our sample, our calculation
of future earnings growth rates (2) includes her earnings in any new firm she (possibly) transitions to.

On average, matching rates are quite high: we can find records in the MEF for about 84% of the
public firm-years (see Appendix Tables A.2 and Figure A.1 for additional details). The industry
composition of the matched sample (to Compustat firms) and the unmatched workers is similar.
Matched firms tend to have similar levels of book assets and somewhat higher levels of employment
(as reported on 10-K forms) and innovative activity than the unmatched sample of public firms. In
terms of the workforce composition, employees at matched public firms are slightly older; earn about

$16 thousand dollars more per year; and have worked on average slightly longer in the same firm.

2 Technological Innovation and Risk

Here, we document a number of novel stylized facts regarding the relation between innovation and

earnings risk.

2.1 Industry Innovation and Risk of Firms and Workers

We begin by documenting the correlation between technological innovation in a given industry and
the variability of workers’ labor earnings and firm profits. We measure risk as the cross-sectional
dispersion in worker earnings and firm profits. We measure worker risk as the variance in worker
earnings growth g; .11, defined in (2), over a horizon of h years:

VR =N (Gigsten — i)’ (6)

ie(l,w,a)

To obtain an estimate of earnings worker risk, we condition on observable characteristics. As a result,
our measure of worker labor income risk varies by calendar year t; industry I, defined at the 3-digit
SIC level; worker age a, grouped into 10 bins; and past earnings level w, grouped into bins and based
on w!_ 4t Within each age-industry-year cell. Accordingly, we construct a measure of profit dispersion
across firms within an industry,

VE =Y (gfeen = ) (7)
fel
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Here, firm profit growth is defined as the growth in cumulative gross profits II, analogously to

equation (2),

— lOg Hf,t' (8)

h
1
gftt+h = log [|h| Z Hf,t—i—T
=1

The definition of gross profits is equal to revenue minus costs of goods sold. Similar to (2), our focus on cu-
mulative profits emphasizes persistent profit growth and helps smooth transitory shocks in profitability.

We next estimate the relation between technological innovation at the industry level Ay, defined
in equation (5), and the cross-sectional dispersion in firm profits and worker earnings growth and

innovation in the industry,

log U?H'h =B A1+ plog vf_&t + ¢t + UTguw,t (9)
and
log v}';t’; = [ Ar:+plog U§715$ +CcZ1qwt + ULawt- (10)

Our coefficient of interest is 8, which captures the association between earnings risk and industry
innovation Ay ;. In the case of worker earnings, we allow the sensitivity to vary by the level of worker
earnings. The vector of controls Z includes a battery of fixed effects and interactions: industry-age;
age-income; year-age; and year-income fixed effects. We normalize A to unit standard deviation, and
cluster the standard errors by industry, worker age and past income. Figure 1 presents the estimated
coefficients 3 for horizons of h = 3 and h = 5 years.

Overall, we note a significant association between the level of technological progress in a given
industry and dispersion in future firm profitability. A one standard deviation increase in Ay is
associated with approximately a 0.075 log point increase in the cross-sectional dispersion of profits
over the next 3 or 5 years. The fact that results are highly comparable across horizons suggests that
this is a highly persistent increase in firm-level risk.

Moreover, the right side of the figure shows that an increase in innovation is associated with a
significant increase in the variability of worker earnings over the same horizon—but only for the
workers at the top of the income distribution. Specifically, a one standard deviation increase in Ay
is associated with a 0.05 and 0.095 log point increase in worker earnings risk for workers in the 75 to
95" and above the 95! percentile, respectively. As before, these magnitudes do not vary materially

with the horizon over which we measure earnings, implying that these are highly persistent changes.
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In brief, we see that increased innovation at the industry level is associated with increased dispersion
in both firm profits and earnings of top workers. Schumpeterian growth models imply that technolog-
ical innovation is typically associated with substantial reallocation and creative destruction, leading
to winners and losers in the cross-section of firms. Kogan et al. (2017) provide a battery of evidence
consistent with this prediction. To the extent that firms share some of their profits with (a subset
of ) workers, we would also expect to see a similar correlation between innovation and uncertainty
in labor income for these workers. In the next two sections, we explore this idea in more detail using

firm and worker-level data.

2.2 Innovation, Firm Profits, and Worker Earnings

To understand why industry innovation is associated with increases in risk for both firms and (top)
workers, we analyze the data at a higher level of granularity by examining outcomes for firms and
individual workers. Doing so also allows us to estimate differential effects depending on where the
innovation occurs, that is, we can separate innovation by the firm versus its competitors. Kogan et al.
(2017) show that differences in innovation outcomes are associated with substantial heterogeneity
in subsequent growth in profitability.

We begin by estimating a slightly modified specification than KPSS, in which the dependent variable

is the growth rate in cumulative profits (8), in direct analogy to our worker earnings growth measure (2),
Gfptrh =aAps +0Ap gy +cZp + up (11)

The vector Z includes several controls, including one lagged value of the dependent variable and the log
of the book value of firm assets to alleviate our concern that firm size may introduce some mechanical
correlation between the dependent variable and our innovation measure. For instance, large firms tend
to innovate more, yet grow slower (see, e.g., Evans, 1987). We also control for firm idiosyncratic volatility
o r¢ because it may have a mechanical effect on our innovation measure and is likely correlated with firms’
future growth opportunities or the risk in worker earnings. Further, we include industry and time dum-
mies to account for unobservable factors at the industry and year level. We cluster standard errors by
firm and year. To evaluate economic magnitudes, we normalize Ay and Ap ; to unit standard deviation.

In addition, we estimate the response of worker earnings growth using a similar specification as above
Gitrn = 0 ATY + O AT, + ¢ Zip + €ig, (12)
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The vector of controls Z includes the same set of firm-level controls as (11); to that, we add a battery
of worker-level controls that aim to soak up ex-ante worker heterogeneity. Specifically, we include
flexible non-parametric controls for worker age and past worker earnings as well as recent earnings
growth rates.” To ensure that our point estimates are comparable to the analysis above (in which
the unit of observation is at the firm-year as opposed to the worker-year level), we weigh observations
by the inverse of the number of workers in each firm-year. We compute standard errors using a
block-resampling procedure that allows for persistence at the firm level (the analogue of clustering
by firm). See Appendix C for more details.

Our main coefficients of interest are ay, and by, which measure the response in firm profits and worker
earnings to innovation by the firm and its competitors, respectively. Panel A of Table 1 presents our
estimates for horizons h = 5 years. We see that future firm profitability is strongly related to the
firm’s own innovative output. The magnitudes are substantial; for instance, a one standard deviation
increase in firm’s innovation is associated with an increase of approximately 8% in the average level of
profits over the next 5 years. Similar to KPSS, the estimates of b suggest that innovation is associated
with a substantial degree of creative destruction. In particular, a one standard deviation increase in
innovation by firm’s competitors is associated with a decline of 4.9% in the level of profits over the
next 5 years. Figure 2 presents results across horizons; as we compare the estimates between horizons
of five to ten years, we see that these are largely permanent effects.'®

Panel B of Table 1 reports our estimates for the response of worker earnings. Focusing on all workers,
we see that a one standard deviation increase in A is associated with a cumulative increase of 1.4% to
the average worker earnings in the firm. By contrast, a one standard deviation increase in innovation

by competing firms is followed by a 1.9% decline in average worker earnings in firms that do not

9We construct controls for worker age and lagged earnings w§,47t by linearly interpolating between 3"¢ degree
Chebyshev polynomials in workers’ lagged income quantiles within an industry-age bin at 10-year age intervals. In
addition, to soak up some potential variation related to potential mean-reversion in earnings (which could be the case
following large transitory shocks), we also include 3rd degree Chebyshev polynomials in workers’ lagged income growth
rate percentiles, and we allow these coefficients to differ across five bins formed based upon a worker’s rank within
the firm (discussed in footnote 11).

1OFigure 2 plots the estimated coefficients a, and by, for values of h = —5 to h = 10. This allows us also to examine
whether innovation is related to past trends in profitability. That is, one potential concern is that firm innovation is
related to some unobservable source of heterogeneity that itself is responsible for increased firm profits. Examining
both panels of the figure, we see that the relation between innovation by the firm (Aj7) or its competitors (A7} ;)
at time ¢t and profitability prior to year ¢ is essentially zero—which lends support to our convention for dating patents.
As a further robustness check, we also estimated equation (11) using alternative choices for the timing of innovation.
Consistent with our prior, we see a somewhat larger response of firm-level outcomes to own firm innovation when we
date patents according to their filing as opposed to their grant date. Conversely, the relation with competitor innovation
is stronger when competitor patents are dated according to their issue date. See Appendix Figure A.3 for more details.

15



innovate. Appendix Table A.3 presents results for additional horizons; as we compare coefficients
horizons, we again see these are associated with essentially permanent changes in worker earnings.
One way of assessing the economic magnitudes of these coefficients is by relating them to the findings
of the literature on estimating profit-sharing elasticities. Specifically, we compare the estimated
magnitude of the responses in average worker earnings to firm innovation to the response of firm
profitability above. Focusing on the 5-year horizon, we see from Panels A and B that a one standard
deviation increase in Ay is associated with a 0.08 log point increase in profitability compared to a
0.014 log point increase in earnings for the firm’s own workers. These numbers imply a profit-sharing
elasticity approximately equal to 1.4/8 ~ 0.17 for all workers and 0.195 for stayers. To put these
numbers in context, we compare it to van Reenen (1996) and Kline et al. (2019), since their setting
is most comparable to ours. These studies report elasticities of 0.29 and 0.19, respectively.
Importantly, however, we note that the profit sharing elasticity implied by the response to competitor
innovation is much larger. Specifically, focusing now on the 5-year horizon, we see that a one standard
deviation increase in innovation by competing firms Ap  is associated with a 4.9% decline in profitability
and a 1.9% decrease in earnings for the firm’s own workers—implying a rent-sharing elasticity of
1.9/4.9~0.38. Thus, our estimates suggest that declines in profits associated with competitor innovation
are passed through at a higher rate than the benefits from own firm innovation. This finding is consistent
with the model we outline below: since firm innovation may lead to replacing a worker with a new
one, the expected earnings growth of incumbent workers is smaller than the firm’s increase in profits.
The right panel of Table 1 examines how this sensitivity varies by the worker’s earnings percentile
relative to other workers in the same firm.'! Overall, we note that the sensitivity of worker earnings
to firm or competitor innovation is generally higher for the top workers. For example, a one standard
deviation increase in Ay is associated with a cumulative increase of 1.53% to 1.85% in earnings for

workers in the top quartile, compared to 1.19% for the workers in the bottom quartile. This difference

We follow Guvenen et al. (2014) and compute worker earnings ranks based on the last 5 years of earnings—that
is, we sort workers by ws—4 ¢+, defined in equation (1) within the firm. Whenever we allow a and b to vary across groups,
we also include indicator variables for each group within the specification. Also recall that, to ensure that we are not
capturing the effects of mean-reversion in worker levels following a transitory shock (for instance, a bonus), we also
allow the coefficients on lagged income growth rates g; +—3.: to vary across firm rank bins. Here, we note that, given our
10% sampling rate and restriction to men only, some firm-years may not be associated with many worker observations,
in which case workers’ percentile ranks are not measured very precisely for small firms. To check that the potential
classification errors are not driving our results, we verified that our main results hold when we drop from the estimation
sample any firm-years with fewer than 20 matched workers. As an additional robustness check, we also repeat our
analysis by conditioning on the worker’s salary rank within the industry—defined at the SIC3 level. All of our main
results are qualitatively very similar (see Appendix Figures A.11 to A.13 for details).
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in sensitivity is much more stark when we examine responses to competitor innovation Ap . A
one-standard increase in Aj\ ; is associated with a 2.2% to 5.9% decline in earnings for workers in the
top quartile, compared to a 1.9% decline for workers in the bottom quartile.

Our findings so far do not differentiate among workers in the same firm. That is, they correspond to
the conditional mean of earnings growth faced by a particular worker employed by a given firm, where
either the firm itself or its competitors innovate. More broadly, however, innovation may affect not only
the conditional mean, but also the conditional variance—or higher moments—of earnings growth. Thus,
focusing on average responses can mask substantial heterogeneity in ex-post outcomes across workers.

We next examine how the conditional distribution of worker earnings growth rates is related to
innovation by workers’ employers or their competitors. In particular, we next estimate the response
of individual quantiles in worker growth rates g; ;.44 using a specification analogous to equation (12).
The only difference is that now, instead of the conditional mean, we are interested in how specific
percentiles of earnings growth shift in response to an innovation shock. We focus on the median,
as well as six additional quantiles ¢ describing the tails of the earnings growth distribution, ¢ €
{5,10, 25,50, 75,90,95}. We use the separability restrictions and methodology for jointly estimating
multiple conditional quantiles of Schmidt and Zhu (2016), who assume that the median and log of the
difference between each two adjacent quantiles follow a linear model. As before, we weigh observations
by the inverse of the square root of the number of workers in each firm and compute standard errors using
a block-resampling procedure that allows for persistence in the error terms at the firm level. We relegate
all further methodological details to Appendix C. Figure 3 plots the average marginal effects of a one
standard deviation change in each variable of interest on each conditional quantile of the earnings growth
distribution. The top row presents results for all workers, whereas the bottom row allows the response
coefficients to firm (a;) and competitor (by,) innovation to vary with the worker’s current earnings rank.

Examining Figure 3, two patterns stand out. First, the shift in average worker earnings we docu-
mented in Table 1 is distributed asymmetrically across workers. In particular, innovation is associated
with shifts in both the variance and the skewness of future worker earnings growth. Second, the
magnitudes are significantly larger for top workers. We next discuss each in more detail.

Focusing on all workers employed by innovating firms (Panel A ), we see that a one standard deviation
increase in the firm’s innovative output is associated with a 0.009 log point increase in the median

earnings growth rate, which is approximately 40% smaller in magnitude than the mean responses in
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Table 1, suggesting substantial skewness. Indeed, we see that workers that are employed in innovating
firms experience a higher likelihood of a substantial increase in their labor income: the 95" and
75" percentiles of income growth increase by 0.02-0.03 log points following a one standard deviation

increase in Ay, compared to a 0.003-0.004 log point increase in the 25" and 5t

percentiles. Hence,
the distribution of earnings growth becomes more right-skewed in innovating firms. To put these
numbers in perspective, note that the median worker in the sample experiences earnings growth of

approximately zero, while the unconditional 95"

percentile of income growth is 0.58 log points.

Panel B of Figure 3 examines the relation between earnings growth and innovation by other firms
in the same industry. We see that workers in firms that do not innovate experience a 0.011 log point
decline in their median earnings growth in response to a one standard deviation increase in innovation
by competing firms. Importantly, the distribution of earnings growth rates becomes more left-skewed
as substantial earnings drops become more likely: the 10" and 5" percentile decrease by approximately
0.033 and 0.042 log points, respectively. These magnitudes are substantial, given that the unconditional
10" and 5" percentiles of cumulative earnings growth rates are -0.53 and -0.88 log points, respectively.

The bottom row of Figure 3 shows that conditioning on the level of worker earnings reveals greater
heterogeneity in ex-post worker outcomes. Specifically, we see that the income growth rates of top-paid
workers exhibit a substantially larger increase in dispersion (and skewness) in response to innovation
than the income growth rates of lower-paid workers. We see that workers in the top 5% and bottom
95% experience qualitatively similar increases in skewness in income growth rates in response to firm
innovation, but the magnitudes are substantially different. For example, a one standard deviation
increase in Ay, is followed by a 5 percentage point increase in the 95" percentile of their earnings
growth rate for workers in the top 5% of the distribution, but only a 2.1 to 3.6 percentage point
increase for workers in the bottom 95%.

Importantly, we also see in Panel C that workers at or above the top 5"

percentile also experience a
significant increase in the left tail of income growth rates following innovation by their own firm—unlike
workers in the bottom 95%. This increase in the left tail dominates the location shift (increase in the
median), implying that the 5" and 10*" percentile of income growth rates actually decline for these
workers. Put differently, following a higher innovative output by their own firm, highly-paid workers

experience an increase in the likelihood of both large earnings gains and large income drops. As a

result, the impact of own firm innovation on the utility of top workers is theoretically ambiguous and
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depends on their risk aversion.

Last, Panel D shows that top workers are also more likely to experience large income drops following
higher innovation output by competing firms. Specifically, we see that workers at the top 25"
percent experience a dramatic increase in the left-skewness of their earnings distribution compared
to workers in the bottom 75" percentile. For instance, a one standard deviation increase in A I\f,t 18

5th

associated with a 14 percentage point decline in the percentile of earnings growth for the top 5% of

workers—compared to just a 1.1-2.7 percentage point fall for the workers in the bottom 75" percentile.

2.3 Summary and Discussion

The stylized facts in the previous section can be summarized as follows. We see that own-firm
innovation is followed by higher firm profits and (mostly) improved outcomes for the firm’s workers.
By contrast, innovation by competing firms is associated with lower profits for the focal firm and
unambiguously worse future outcomes for its workers. In addition, these mean effects mask significant
heterogeneity in outcomes: from the perspective of an individual worker, innovation is associated not
only with shifts in mean earnings growth, but also changes in both the variance and the skewness
of future worker earnings growth. These effects are larger in magnitude for top workers and are
comparable in magnitude across horizons, suggesting that they represent permanent shifts.

Our preferred interpretation of these facts is that innovation is associated with an increase in
the riskiness of labor income, particularly for the firms top workers. This interpretation does not
automatically follow from these results; it is possible that the heterogeneity in worker outcomes we
observe following the innovation shocks is perfectly predictable from the perspective of an individual
worker, who has more knowledge into her labor income process than the econometrician. That
said, it is useful to keep in mind that we are comparing workers that are similar in terms of ex-ante
observable characteristics—our specifications include a rich set of control variables—which include

flexible functions in worker age, and the level and growth rate in past earnings.

3 The Model

In this section we present a structural model that generates a link between technological progress in

a given industry and riskiness of labor income of incumbent workers. The model combines elements of
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models with creative destruction (Aghion and Howitt, 1992; Grossman and Helpman, 1991) and vintage-
specific human capital (Chari and Hopenhayn, 1991; Jovanovic and Nyarko, 1996; Violante, 2002).
Our model features two key mechanisms through which innovation increases labor income risk.
First, firms share profits with workers. As firms experience increased or decreased profits in response
to successful innovation, the earnings of top workers respond similarly—consistent with our findings
in Table 1. Second, part of a (skilled) worker’s human capital is specific to a particular vintage of
technology. As firms improve on their production process, they may discover that incumbent workers
are not as skilled in the new technology—to the point that the firm may find it optimal to replace them.
This mechanism can generate an increase in the left tail of earnings growth for a top worker when her

own firm innovates—consistent with Panel C of Figure 3. Further technical details are in Appendix B.

3.1 Setup

A number of firms compete in producing intermediate goods. Output X; is produced by a continuum

of intermediate goods according to

1
logXt:/ log x; 4di. (13)
0

Firms can produce each good using a constant returns to scale technology. Firms differ in their level

of efficiency in producing each good: good 7 is produced using the following technology,

Tit = Qitliteiszig, (14)

where g; ¢ is the quality of the leading producer and /; ; is a factor of production (unskilled labor or land)
in fixed supply (normalized to one), which can be freely reallocated across product lines, and which
firms hire at the prevailing equilibrium price. Given our constant returns to scale assumption in (14),
only the leading producer (the firm with the highest ¢;+) finds it profitable to produce each good.
Importantly, the production of an intermediate good requires a skilled worker (manager). Managers
differ in their ability: z;; denotes the ability of the current manager assigned to good ¢. There is a
moral hazard friction, in that the skilled worker can potentially divert output—here, e; ; denotes the
fraction of un-diverted output. Diversion is costly: if the manager diverts one unit of output, she
can only effectively steal a fraction §. Hence, the (static) solution to this moral hazard friction is

to provide the manager with a fraction 8 of the profits from producing good i, in which case she is
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indifferent between stealing versus not. In what follows, we assume that this is the case, which implies
that there is no output diversion in equilibrium, e; ; = 1.
Given our setup, the total flow profits from producing good i—to be shared by the skilled worker

and the firm’s owners—is equal to

I, dt = (1 - ) X, dt. (15)

Rit 2t
Markups depend on the firm’s current technology lead over its closest competitor, which has pro-
ductivity ¢+ = ¢it/kit, and the productivity of the current manager z;; relative to the next best
alternative a new entrant could hire, Z. We set z = 1. Due to the moral hazard friction, the skilled

worker j assigned to good 7 receives a fraction of the firm’s profits,

Rit Zit
The goal of the model is to illustrate the implications of firm innovation (and competitor innovation)
for the distribution of worker earnings growth. Given that our empirical specifications include time
fixed effects, we can focus our attention on top worker earnings scaled by output, w;,; = W;./X;.
Next, we need to characterize the evolution of x; ; and z; ; and introduce firms.

A firm is a collection of product lines that it finds profitable to produce—that is, goods in which the
firm is the leading producer. Given that we are interested in the workers’ earnings process, the exact
number of firms competing in each product line does not matter: what matters is the distance between
the leading producer and the closest competitor x;;, and the chance that one of the competitors
overtakes the incumbent producer. Firm innovation is exogenous and takes the form of improvements
in efficiency: over an instant dt, a firm can innovate with flow probability A ; dt.

We next map firm (Ay) and competitor (Ap ¢) innovation into the model. Both empirical measures
are continuous, and are meant to capture changes in the intensity of a firm’s innovation outcomes, as they
are aggregated over hundreds or thousands of patents in a given year. In the model, these measures corre-
spond to the innovation arrival intensity Ay ;, which is a stochastic process. To simplify the analysis, we

specify that Ay, € (Ar, Ap) is atwo-point Markov process, with Ay > Ap, and generator matrix given by

—HH HH
T = . (17)
HL ML

We further assume that there are two firms competing in the production of each good i. Hence, Ay
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corresponds to an increase in Ay and Ap y corresponds to an increase in Ay

In brief, innovation coincides with the arrival of a Poisson process with intensity Ay ; dt. Conditional
on successfully innovating on its own product line, an incumbent firm increases its current technology
lead k;¢ by a proportional amount A,. By contrast, innovation by potential entrants can take two
forms: radical or incremental. An incremental innovation by the potential entrant leads to a decrease
in the incumbent’s current technology lead «; ¢ by a proportional amount h. Radical innovation by
the potential entrant results in the firm now becoming the leading producer, drawing a new value
for ki ~ f(K;Kit—, zit—). In order for the new entrant to find it profitable to produce with a new
manager with ability z = 1, we require that the new draw satisfies x;; > kj¢— 2+~ by drawing
kit from a truncated normal distribution following radical innovation. When the competitor is in
the low innovation state Ay = Ar, all innovations are incremental and occur at rate Ap dt. In the
high innovation state, Ay = Ay, radical innovations occur with probability p Ay dt and incremental
innovations occur with probability (1 — p) Ay dt.

Skilled workers vary in their productivity z;. An important assumption of our model is that a skilled
worker’s productivity z; is specific to a given technology-firm combination. As such, firm innovation
has also a direct effect on worker productivity. That is, if a firm improves on the technology in
producing one of its own goods, the skilled worker may not be as productive using the new technology.
Conditional on the firm innovating at time ¢, the incumbent worker’s productivity using the new
technology vintage is given by a new draw z; ¢, which is correlated to her productivity using the older

vintage z;;—, but also has a stochastic component ¢, ;
log zjt = po + pz log zj1— + €4, gj+ ~ N(0, O'z). (18)

Innovation can potentially displace the firms’ existing skilled workers. If the existing worker’s produc-
tivity using the new technology is sufficiently low, the firm may find it optimal to replace the worker
with an unemployed manager that has productivity level z.'2 If the incumbent firm f loses the leading
efficiency to a competitor f’, the position is eliminated and the worker previously assigned to that
good becomes unemployed; the new entrant hires a top worker with ability Zz.

Unemployment is transitory. Unemployed workers find a new job with flow probability 6 dt, in which

12Here, it is not crucial that all new hires have the same level of productivity. The decision rule would be the same
if productivity of new hires was unobservable by the firm, in which case Z would correspond to their prior belief about
the productivity of new hires.
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case they are randomly matched with a firm seeking to hire a new manager. Newly-employed managers
start with ability Z. Unemployment is costly, not only due to lost earnings but also because re-hired
managers likely start at a lower wage (they fall off the ladder).!® That said, conditional on being
unemployed, all skilled workers are identical, due to our assumption that all skills are firm-specific.
This choice reflects our preference for parsimony; allowing for general human capital, which depreciates
with the time spent out of employment as in the models of Huckfeldt (2018) and Jarosch (2021) is
a potentially interesting extension. While it is straightforward to extend the model to allow workers
to have finite working lives by assuming that workers retire with flow probability § dt per period, we
abstract away from this in the current calibration for simplicity.

Overall, we have presented a model where innovation affects the earnings risk of top workers. In
particular, we interpret the skilled workers in the model as corresponding to the workers at the top
of the earnings distribution in the data. Accordingly, when matching the model to the data, we will
focus on matching the properties of income growth for the top 5% of the workers. That said, there
are two points worth discussing. First, the model can also generate differences in labor income risk
among skilled workers; we briefly discuss this in Section 3.3. Second, the model does feature unskilled
workers, but their labor earnings are not risky: unskilled workers are always employed, supplying an
effective quantity of labor [ at the equilibrium wage. As such, we view the model as providing a useful
distinction between the riskiness of labor income for skilled versus unskilled workers, even as our goal

is not to match the earnings dynamics of unskilled workers in the data.

3.2 Calibration and Model fit

The model has a total of 10 parameters, which we calibrate using indirect inference (Ingram and Lee,
1991). Specifically, given a vector X of target statistics in the data, we obtain parameter estimates

© by minimizing the distance between the model and the data,

©= argm(gn (X — X(@))l w (X — X(@)) , (19)

where X (©) is the vector of statistics generated by the model. Our choice of weighting matrix

W = diag(X X")~! penalizes proportional deviations of the model statistics from their empirical

13We assume that top workers cannot search for a better match while employed. Under this assumption, we verify
that in equilibrium it is never optimal for the top worker to separate from the firm voluntarily in hope of later making
a better match with another firm. This justifies our treatment of all separations as initiated by the firm.
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counterparts. Since the model is aimed to understand the earnings dynamics of top earners, we target
statistics of earnings growth for top workers (top 5% rank). Specifically, our calibration targets include
the unconditional earnings growth percentiles (Appendix Figure A.4), as well as their response to
firm and competitor innovation shocks (Figure 3). Panel A of Table 2 presents the estimated model
parameters that pertain to the dynamics of worker earnings.

Figure 4 plots the model fit in terms of the statistics that we target. Panel A compares the uncon-
ditional percentiles of earnings growth between the top workers in the data versus the model. Overall,
we see that the model performs quite well, as it generates a realistic dispersion in earnings growth rates.
Panel B compares the response in the model and the data to an innovation shock, either by the own firm
(Panel B.i) or competitors (Panel B.ii). Specifically, Panel B.i compares the response of the mean and
percentiles of earnings growth to a one standard deviation increase firm innovation: Ay in the data ver-
sus an increase in the firm’s innovation rate from Ay = A, — Ap, scaled so that it corresponds to a one
standard deviation increase in A—which is equal to \ /g fir/(pg + por). Similarly, Panel B.ii compares
the response to competitor innovation between the data and the model, Ap y and Ay = A, = Ay, re-
spectively. To these figures we also add mean earnings growth in the data and in the model, even though
means were not explicitly part of the calibration targets. Examining Panel B of Figure 4, we see that
the model can qualitatively, and quantitatively, replicate the key stylized features of the data we docu-
mented in Section 2.2. Specifically, an increase in the rate of firm innovation increases both the mean and
the variance of earnings growth for top workers. By contrast, an increase in competitor innovation is asso-
ciated with a sizeable increase in the left tail of earnings growth and a decrease in mean earnings growth.

For the remainder of the paper, we focus on aspects of the data that were not explicitly targeted in our
calibration. In particular, we next examine the extent to which our model can replicate the stylized facts
of Section 2.1, that is, the correlation between earnings risk and innovation outcomes for top workers
(top 95%) at the industry level. We can think of industry in the model as referring to a single product line.
As such, the model version of an industry shock is an increase in the average A—that is, a simultaneous
increasein Ay and Ay from A7, to Ay, appropriately scaled to reflect the standard deviation of the average
A assuming the two shocks are independent. In addition to the (log) increase in the cross-sectional
variance of earnings growth, we also report the changes in the individual percentiles in both the model
and the data. To obtain the data equivalents, we re-estimate equation (10), replacing the dependent

variable with the percentiles of earnings growth, which again vary by industry and worker age.
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Figure 5 compares the model to the data. Overall, we see that the model performs reasonably well
in generating an increase in worker earnings risk in response to an increase in industry innovation.
For example, a one standard deviation increase in the level of industry innovation is followed by a
0.125 log point increase in the variance of worker earnings growth over the next 5 years, compared
to 0.095 log points in the data; the difference falls within two standard errors of the empirical esti-
mate. To appreciate this result, note that even though we did target the response of the moments
of earnings growth to own firm and competitor innovation (Panel B of Figure 4), these aggregated
results do not immediately follow—they also depend on the joint distribution of firm innovation in
each industry. Last, we also explore the ability of the model to match how the entire distribution
of worker earnings shifts in response to industry innovation. To construct the data equivalents, we
re-estimate equation (10), but now replace the dependent variable with percentiles of worker earnings
growth calculated in each industry-age-income bin. As we see, the model does quite well in generating

an increase in variance and negative skewness of earnings growth in response to industry innovation.

3.3 Model Implications

Our structural model allows us to quantify the welfare cost of the earnings risk borne by workers as
well as their willingness to purchase insurance against increases in the rate of industry innovation.
To do so, we need to impose some additional structure, namely specify household preferences and
asset markets that allow workers to (partly) self-insure against shocks to their labor earnings.

Workers have constant relative risk aversion preferences. They maximize

00 Cl—"/
max EO/ e Pt —dt. (20)
¢ 0 -y

We choose a value of v = 5 as our baseline case. For simplicity, agents are infinitely lived, though
results are essentially isomorphic to a case in which agents have a constant probability of death and
no utility over bequests, thus p can be interpreted as the sum of an agent’s rate of time preference
parameter and the instantaneous hazard rate of exit. We set p = 4%. Workers choose consumption

and savings plans subject to the following constraints:

dozj,t = (’I“ ot + y(Sjﬂg) — Cj,t) dt (21)

\Y]

aj 0. (22)
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In particular, workers can save (but not borrow) at an exogenous interest rate r. We choose r = 2%
to match the historical level of the (real) risk-free rate. Exiting households pass their asset holdings
to their children, who start life unemployed. Here, y(s;.) denotes the labor earnings that worker
J receives given her Markov state s;¢, after labor income taxes, UI, and other transfers. Following

Heathcote, Storesletten, and Violante (2017), we assume that income after tax and transfers is
_ 1-b
y(sit) = aw(s;e) ", (23)

where w(s;;) captures labor earnings including unemployment benefits. We set b = 0.181 following
Heathcote et al. (2017), and set a so that the budget is balanced. For simplicity we assume that interest
income is subject to a flat income tax, so we can interpret r as the net of tax real interest rate. To
reduce the dimensionality of the state space, we assume that UI payments are set at a fraction ¢ = 1/2
of the lowest possible wage earned by an employed skilled worker. Panel B of Table 2 summarizes
our parameter choices.

Given this structure, our problem reduces to a standard incomplete markets consumption-savings
problem with post-tax income that follows an exogenous Markov chain. Let V(«,7) denote the value
function given current wealth o and that the agent is in income state i. The value function solves
the system of Hamilton-Jacobi-Bellman equations for all statesi =1,..., K,

0 = max {u(c) — pV(a, i)+ Vi(a,d) (ozr +y(i) — c) +3 iy (V(a,j> — Ve, z‘)) } (24)
J#i
subject to

c—y(i) <0, if a=0. (25)

Here, 1; j is the Poisson rate of transitioning from state ¢ to state j. We solve for the value function
numerically and then compute the ergodic distribution of assets for each income level by solving the
Fokker-Plack equation (see, e.g., Achdou, Han, Lasry, Lions, and Moll, 2020). All details are relegated
to Appendix B.2.

We first examine the welfare cost of technological innovation borne by skilled workers. A relatively
standard way of expressing welfare cost is in terms of a permanent subsidy/tax on consumption which
would make the person indifferent if she were to experience a one standard deviation increase in own
firm (Af), competitor (A), or industry innovation (average of Ay and Ag). Suppose the household is

currently in state ¢. Using the fact that the utility function is homogenous of degree 1 —y, if we multiply
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consumption by a factor of 1 + A per period, her new value in state j (post-shock) would be equal to

Ve, j; A) = exp[(1 =) AV (@, 7). (26)

Thus, the proportional tax or subsidy A which leaves the household indifferent (V(a, j; A) = V(a, 7))

is equal to
1

A=y ls <¥<(z;)>> &

Innovation is associated with significant utility losses for top workers, even in the presence of

progressive taxation and ability to self-insure by accumulating assets. The average worker in the
model would need to receive a proportional subsidy of A = 1.5% in her lifetime consumption to offset
the utility loss resulting from a one standard deviation increase in industry innovation (average of
A and Ap). Decomposing this estimate into the welfare cost of own firm (A7) and competitor (As),
we find that these utility losses are primarily, though not exclusively, driven by competitor innovation.
Specifically, the worker would need to receive a perpetual subsidy of A = 1.8% to offset her utility losses
resulting from a one standard deviation increase in A . Importantly, even though own-firm innovation
Ay is associated in an increase in average earnings (recall Panel B.i in figure 4), the increase in the left
tail is still significant enough to generate a modest utility loss: the required consumption subsidy to
offset a one-standard-deviation increase in s is equal to A = 0.3%. In appreciating the magnitude of
these estimates, it is important to keep in mind that they correspond to utility losses following a single
shock to A (scaled to unit standard deviation, annualized) rather than shutting down all fluctuations
in A. As such, these estimates imply a substantially higher welfare cost of innovation for (top) workers
than the welfare cost of business cycles due to job displacement computed by Krebs (2007).

A natural question to ask in this setting is what would be the willingness of workers to invest in assets
that (partially) hedge their earnings risk. A recent literature in asset pricing has argued that ‘value’
(low Tobin’s ) and ‘growth’ (high Tobin’s Q) firms have differential exposure to technology innovations
Papanikolaou (2011); Garleanu et al. (2012); Kogan et al. (2020). For instance, in Papanikolaou (2011)
and Kogan et al. (2020), technological progress is partially embodied in new types of capital. As new
vintages of capital improve in productivity, growth firms appreciate (as their growth prospects improve)
whereas value firms decline (as the price of the capital they own declines). Though our setting here
is quite different, one can envision constructing the equivalent of value and growth firms in our model

based on their future prospects (\) and their assets in place (the products they currently produce).
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A sufficient statistic that describes a worker’s willingness to hedge her earnings risk is the elasticity
of her marginal utility to a one-standard-deviation increase in A\.'* To a first approximation, this
elasticity is equal to (minus) the Sharpe ratio (market price of risk) of an investment strategy whose
return is maximally correlated with a shock to A (see, e.g., Cochrane, 2001, for a textbook reference).
‘We can use this idea to compute the Sharpe ratio of such a hypothetical asset if it were introduced,
while holding consumption allocations fixed.

Focusing on the average worker, we find that a one standard deviation increase in industry innovation
leads to a 0.38 log point increase (on average) in the marginal utility of skilled workers. As before, this is
mainly driven by the desire to insure against innovation by competitors (0.426) more than innovation by
their own firm (0.057). To put this number into perspective, the model of Kogan et al. (2020) needs to
generate approximately a 0.5 log point increase in households’ stochastic discount factor (the equivalent
of marginal utility in our setting) in order to match the properties of value and growth firms in the data.
Kogan et al. (2020) generate this increase in marginal utility assuming an incomplete market for ideas,
preferences for relative consumption, and a relatively high degree of risk aversion (57). By contrast,
we show that once we allow for displacement of human capital, one can generate similar implications
about the price of risk of technology shocks with a much more moderate level of risk aversion (5).

Figure 6 illustrates how these costs vary in the cross-section of workers. Panels A and B illustrate
that there is significant heterogeneity among the workers in the model in the degree through which
they are affected. The next set of panels illustrate that a significant part of the heterogeneity is
determined by the worker’s current income level. In particular, as we see in Panels C and D of Figure 6,
these costs are significantly larger for more highly paid workers. Workers that are more highly paid
in the model have the most to lose, and hence they are willing to pay more to insure against these
risks. By contrast, Panels E and F illustrate that there is no significant gradient across asset holdings.
Since asset holdings are endogenous, workers that are most affected aim to accumulate a higher level
of liquid assets in order to self-insure against these shocks.

In sum, even though the model refers to skilled (top) workers as a group, the model still generates
heterogenous responses as a function of income within that group. To illustrate this point, Figure 7

revisits the model response of workers’ income risk to own firm and competitor innovation shocks

141 the model equilibrium computed at the estimated parameters, the stationary distribution of assets does not
include any probability mass near the borrowing constraint. As such, the marginal utility of consumption equals the
marginal value of wealth essentially with probability one. Hence, we use these terms interchangeably in our discussions.
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(Panel B of Figure 4) but now conditions on the worker’s (pre-shock) level of income. Examining the
figure, we note the higher sensitivity of the left tail of earnings growth (to either innovation shock)
for the workers that are above versus below the median income. This pattern is qualitatively similar

to Panels C and D of Figure 3.

4 Additional Model Implications

The model in Section 3 generates a relation between the degree of technological innovation and labor
income risk. Depending on whether the innovations originate in the same firm as the worker is
employed or in other firms in the industry, the model generates shifts in the distribution of earnings
growth for top workers that is consistent with the data.

Here, we dig deeper into the model mechanism along two dimensions. First, the increase in the
left-tail of earnings growth in the model primarily operates through worker separations. Section 4.1
explores the extent to which this model prediction aligns with the data. Second, the model emphasizes
innovations that are likely to displace worker skills; this mechanism generates increases in the left
tail of workers earnings growth for top workers. Section 4.3 accordingly focuses on measures of firm

innovation that are more likely to be novel or represent process improvements.

4.1 Worker Mobility and Earnings Risk

A key mechanism through which the model generates increases in the left tail of earnings growth
is worker separations. To illustrate this point, we next decompose the model results in Panel B of
Figure 4 into stayers and movers; movers are defined as workers who leave the firm within the first
year following the shock. We then trace out the implied marginal effect of a one standard deviation
change in A¢ separately for stayers and movers. We plot the results in Figure 8 (red bars).
Examining the red bars of Figure 8 we see that the increased risk in worker earnings, in response to
either innovation by their own firm or its competitors, is primarily borne by workers who leave the firm.
In the model, worker separations are costly because, while unemployed, workers miss out on earnings
increases, and when re-employed, start at the lowest level of worker productivity zZ. That is, workers
that leave the firm are falling off the job ladder. Innovation affects the likelihood of job loss through
two key mechanisms. First, own firm innovations can displace the worker’s human capital—workers

draw a new productivity level according to (18). Workers whose productivity falls below Z are replaced.
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Second, innovation by the firm’s competitors can result in the loss of the firms’ position as a leading
producer and hence to worker separations. An increase in the rate of innovation by the firm, or
its competitor, A increases the likelihood of these events occurring and therefore expands the set of
workers potentially affected.

We next examine whether these patterns also obtain in the data. To do so, we estimate equation (12)
separately for workers that move (movers) versus those that do not (stayers). As before, we focus
on cumulative growth rates between ¢ and ¢ + 5 using (2). In contrast to the model, separations in
the data are likely not instantaneous. As such, we want to allow for delayed effects on mobility, but
at the same time capture worker earnings changes in the new job. We define movers as those workers
who do not work in the same firm at ¢t + 3 as they did in year t. Consequently, the earnings growth of
a mover will include the change in her salary from moving out of the current firm. Stayers are defined
as workers who did not move between ¢ and t + 3. We plot the results in the data in Figure 8 (blue
bars) for the top workers; Figure 9 presents our findings across all income groups.

Comparing the red (model) and blue (data) bars in Figure 8, we note that the model’s implications re-
garding the link between innovation and the left tail of earnings growth of top workers are consistent with
the data. In particular, we note that higher innovation by the firm Ay is associated with an increased
likelihood of substantial income declines only for exiting workers. Continuing workers experience no
such increase in the left tail. Similarly, we see that innovation by competing firms Ap, y is associated
with an increased likelihood of large income declines for both continuing and exiting workers. However,
in both the model and the data, the magnitude of the increase in the left tail is considerably larger for ex-
iting workers. Examining Figure 9, we note that even though the increase in the left tail among exiting
workers is present across all income groups, it is significantly larger in magnitude for top workers.'®
Last, focusing on the differences in the right tail of earnings growth between movers and stayers in

Figure 8, we note that the model generates a somewhat larger increase in the right tail for movers than for

15 An alternative interpretation of these results is that they reflect adverse selection (Gibbons and Katz, 1991).
Specifically workers that are terminated following good shocks to the firm are more likely to be adversely selected, and
therefore face worse future labor market outcomes. If that is the case, we would expect to see this pattern more generally
subsequent to positive firm profitability shocks. However, that does not seem to be the case. Appendix Figure A.10
shows that workers that left the firm following periods of high firm/industry stock returns do not experience more
negatively-skewed income growth than workers that left the firm during periods of low stock returns. For adverse
selection to explain the contrast between Figure 3 and Figure 11, it has to be the case that innovation is somehow
different than other shocks which affect the firm. Our model mechanism can be interpreted in this light: when a firm
innovates, it somehow reveals information about its current workers (e.g., about some new dimension of skill that was
previously unused) that leads to permanent differences in earnings ex-post. If other firms in the same industry use
the same technology, terminating a worker will signal to the other firms the lack of skills that have become relevant.
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stayers relative to the data. Conditional on staying with the firm, an increased rate of new innovations
by potential entrants lowers incumbent firms’ profits (markups), which has an unambiguously negative
impact on incumbent workers’ earnings. Hence, the whole distribution of earnings growth rates shifts
to the left for stayers. By way of contrast, some workers who switch jobs after being displaced by
competitors’ innovations end up being matched with more productive, better paying firms in unrelated

product lines with positive probability. This force leads to an expansion of the right tail for movers.

4.2 Innovation and unemployment risk

Our model links innovation to workers earnings risk through the (potential) displacement of workers’
human capital. In both the data and the model, exiting workers experience a substantially more
negatively-skewed distribution of earnings growth in response to innovation outcomes than continuing
workers. In the model, this pattern occurs through an increased likelihood of job separation; the
length of an unemployment spell is largely independent of the worker’s characteristics. In the data,
however, this pattern can be driven by both an increased likelihood of separation and an increased
length of the unemployment spell. Since both of these factors will determine the increase in the left
tail in the data, we next examine them jointly.

We construct a measure of long-term unemployment based on the number of years with zero W-2
earnings.'® Specifically, Ui t:t+5 counts the number of years between ¢ + 1 and ¢ + 5 that worker 7 has
reported zero total earnings in her W-2 form. Appendix Table A.1 shows the distribution of U; 4.;45. We
see that most exiting workers experience no years with zero W-2 earnings. However, there is considerable
variation in the tails. Approximately 10% of exiting workers experience unemployment spells of at
17

least a year; at least 5% of exiting workers experience unemployment spells of at least 3 years.

We estimate the following linear specification for our long-term unemployment measure,
Uitts = ap Afe +bp Appo + ch Zit + €ig. (28)

The vector of controls Z contains the same worker- and firm-level controls as equation (12).
Panel A of Table 3 presents the results. We see a modest but statistically significant link between

innovation and unemployment risk. As before, magnitudes are larger for top workers. A one standard

16Measuring directly the length of unemployment spells is not possible in our data, since we do not. observe any
information on unemployment benefits.

17Since we exclude workers that have self-employment income in our analysis (following Guvenen et al., 2014), workers
with zero W-2 earnings are not workers who switch to self employment.
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deviation increase in Ay ; is associated with a 0.011 increase in number of years with zero W-2 earnings
(a sizable effect given a mean of 0.142). Similarly, a one standard deviation increase in competitor
innovation is associated with up to a 0.022 increase in the number of years without employment for
the firm’s top workers. 3

A potential concern is that the measure of long-term unemployment is indirect and could simply reflect
the choice to take time off work. As a more direct measure of structural unemployment, we examine
worker applications for Social Security Disability Insurance (DI) benefits. One view of disability
insurance is that it represents a long-term exit from the workforce, since benefits are guaranteed
until medical recovery, death, or retirement at age 65. Autor and Duggan (2003) discuss the secular
increase in the number of these ‘conditional applicants’ since 1984, partly as a response to changes in
determination standards, but also more importantly, as a response to changes in labor market conditions.
In the context of our setting, workers may choose to exit the labor market if their skills have depreciated
sufficiently. Further, risk may play an important role: the decision to accept transfer payments involves
exchanging a claim on a stream of (comparatively) risky future labor earnings for a known, safe stream of
transfers. An increase in the riskiness of labor earnings decreases the attractiveness of the labor market.

We therefore re-estimate (28), but now the dependent variable Uj ;.15 takes the value of one if the
worker ¢ has filed for disability insurance sometime between year t + 1 and t 4+ 5. Panel B of Table 3
shows that there is a small but statistically significant link between innovation and the likelihood
of applying for DI benefits. As before, these effects are stronger in magnitude for skilled workers. A
one standard deviation increase in the rate of innovation by the firm (its competitors) is associated
with a 0.08 (0.19) percentage point increase in the likelihood of applying for DI. To evaluate these
magnitudes, it is useful to compare to the unconditional mean of the dependent variable. As we
see in Panel A of Table A.1, applying for disability insurance is not an altogether rare phenomenon.

Approximately 2.6% of workers apply for disability insurance over a 5-year period.

8 These results shed some light on the patterns in Figure 9. Specifically, they suggest that part of the large increase
in the left tail for movers following innovation outcomes we document in Figure 9 are the result of longer unemployment
spells. To explore this possibility, we re-estimate the model but now excluding workers that experience any years with
zero W-2 income between ¢ + 1 and ¢ + 5. Figure A.14 in the Appendix shows the results. Indeed, we find that extended
periods of unemployment account for a significant fraction of the increase in the left tail following innovation outcomes.
Once workers experiencing years with zero W-2 income are excluded, there is no increase in the left tail of earnings
growth for top workers in response to innovation by their own firm. The increase in left tail in response to competitor
innovation is still present, though significantly smaller in magnitude.
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4.3 Heterogenous Innovations

In the model developed in Section 3, innovation consists of new production methods or procedures
that help the firm lower production costs. A key part of the model mechanism is that incumbent
worker’s productivity may be specific to a technology vintage. As such, the model’s implications
regarding the response of worker earnings to own firm innovation are more likely to apply to specific
types of improvements: innovations that are more novel, or distinct, relative to what the firm has
done in the past; and, innovations that represent process, rather than product, improvements. To
test these model predictions more directly, we next decompose the own-firm innovation measure Ay
into these different types of improvements. Since the implications of the model regarding how workers’
earnings respond to innovation by competing firms could apply to any type of innovations—they are

driven by changes in market share—we focus on the response to own innovation.

4.3.1 Novel vs less novel innovations

We begin by identifying novel patents, that is patents that are distinct from the firm’s prior innovations.
To do so, we need a distance measure between patents. We use the text-based methodology of Kelly
et al. (2020), which we briefly describe next.

A key consideration in constructing a similarity metric for a pair of text documents is to appropriately
weigh words by their importance. It is more informative if terms such as ‘electricity’ and ‘petroleum’
enter more prominently into the similarity calculation than common words like ‘process’ or ‘inventor.’
Further, as technology evolves, some words may become more common (for instance, ‘electricity’ in
the 1900s vs 2000s) and hence it is important to have a dynamic characterization of novelty.

Thus, for a patent pair (7, j) we construct a vector of weights
TFBIDF, ;; = TF,; x BIDF,,, t=min(i,j) (29)

which weighs words according to their relative importance in the patent document, as captured by

the first term,
c
TE,, = <2—, 30
pw Zk; Cpk ( )

as well as their frequency in the corpus of all prior documents, which is captured by the second term,

BIDF,,, = log ( # patents prior to p )

31
1 + # documents prior to p that include term w (31)
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This last component (31) evolves over time as a term becomes more or less widely used, reflecting
the history of invention up to, but not beyond, the new patent’s arrival.

Next, we compute the pairwise cosine similarity between each patent ¢ and all the patents j € J
that are filed by the same firm over the last five years. We measure the distance between two patents
i and j using cosine similarity,

TFBIDF;, TFBIDF;;
|TFBIDF; ;|| |[TFBIDF},||

Pij = (32)

Here, TFBIDF; ; and TF BIDF}; are vectors of length W, which is the size of the set union for words
in pair (7, 7). Last, we classify a patent i as novel N; = 1, if it is sufficiently distinct to the firm’s
previous patents,

N;, =1« ma < 0.5. 33
’ jebin = (33)

Here, P(f) refers to the set of patents filed by the same firm over the last 5 years. Approximately
35% of all patents are classified as novel under this criterion.

Given our patent-level measure of novelty, we compute

A}Lovel . Zjepf',t Sj Nj (34)
W = =

) B 1t

We term the residual level of innovation as not novel, A}“f—"m’d = Ay — A;}g”el. The correlation

between A?‘"’el and A}wt_"m’ez is approximately 22%.

We then estimate a modified version of equation (12) as
gi,t:t+h = Qg + CLZ A?zvel + CL?_ A?§t7n0V61 + bT Al\f,t +c Zi,t + €i7t- (35)

For ease of comparison, marginal effects are scaled by the cross-sectional standard deviation of own
firm innovation.

Panels A and B of Figure 10 show that, consistent with the spirit of our model, novel innovations
are associated with significantly higher earnings risk for the firm’s top workers. Comparing Panels
A and B, there are two points worth noting. First, the magnitudes of the estimated worker earnings
responses are significantly larger for novel, rather than less novel, innovations. Second, the increase

in the left tail of earnings growth is only present in response to novel innovations.
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4.3.2 Process vs non-process

We next distinguish between process and non-process innovations. To do so, we use the data and
classification procedure of Bena and Simintzi (2019), who identify the fraction 6; of claims of patent
j that can be identified with a process using textual analysis.'? The mean value of f; in our sample is
32%, but there is considerable dispersion as its standard deviation is approximately 38%. The residual
claims 1 — 6; can refer to other types of innovations, such as new products. We use these fractions

to decompose the private value measure Ay into process and non-process innovations,

Zjepf,t & 0

By (36)

AProcess _
f7t

We term the residual level of innovation as other, A;’f?e’" =Asy — A?Ttocess. The correlation between
Az}mc and A?ther is approximately 60%.

We next estimate a modified version of equation (12),
Gigsth = ao + al APV a2 APP 4 by Ap g+ ¢ Zig + eie. (37)

As before, we scale the marginal effects by the cross-sectional standard deviation of own firm innovation.

Panels C and D of Figure 10 show that our findings are broadly consistent with the model mechanism.
Comparing Panels C (process) and D (non-process), we see that the two types of innovation have a
qualitatively different effect on the distribution of earnings growth for the firm’s own workers. Product
innovation is associated with earnings gains that are symmetric across workers, though higher paid
workers experience a greater increase. By contrast, process innovation is associated with a substantial
increase in the dispersion of earnings growth, in particular for the highest-paid workers. For these work-

ers, an increase in A?Ttoc is associated with a 4.5 percentage point decrease in the 5
I

percentile of income
growth. These findings are qualitatively consistent with the model predictions—Panel B.i in Figure 4.
Naturally, not all process innovations may be truly novel. Our model would imply that novel process

improvements are more likely to be associated with the displacement of top workers. As such, we

further decompose process innovations into novel vs not novel,

pnovel-process ZjEPf,t & 9]- Nj

= , 38
fit Bft ( )

Bena and Simintzi (2019) identify patent claims that refer to process innovation as those which begin with “A
method for” or “A process for” (or minor variations of these two strings) followed by a verb (typically in gerund form),
which directs to actions that are to take place as part of the process.
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where N; = 1 defines a novel innovation following the discussion immediately above. Accord-

novel-process
A A and non-novel

ingly, we re-estimate (37) above, now decomposing A%OC into novel
A%OC - A;}?tvelfprocess process innovation. Panels E and F of Figure 10 show that, consistent with our
model, novel process innovations, in particular, are more likely to be associated with an increase of
the left tail of earnings growth for the firm’s top workers.

Last, we revisit the analysis in Section 4.1 using this distinction between process and non-process
improvements. In Appendix Figure A.6, we show that, consistent with our model, these left tail effects
for process innovation are considerably larger for workers who subsequently leave the firm. By contrast,
estimates for non-process innovations are fairly similar between movers and stayers. Further, Appendix
Figure A.22 repeats this exercise allowing for coefficients to vary with worker tenure as well as mobility.
Though worker tenure has no independent role in the model, we may expect that workers that have
worked longer at the firm are more likel