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1 Introduction

The Global Financial Crisis triggered strong renewed interest in understanding the

causes, consequences, and remedies of financial crises. In this context, dynamic

stochastic general equilibrium (DSGE) models with occasionally binding frictions

proved successful as laboratories to study the anatomy of both business cycles and

crises, and to explore optimal policy responses to these dynamics. This success is

because occasionally binding financial frictions are mechanisms that create ampli-

fication of regular business cycle dynamics. For example, even in the case of the

COVID-19 crisis, which did not originate in the financial sector, suddenly binding

financial frictions powerfully amplified the initial impulse. Structural estimation of

these models is challenging, yet important for inference on key parameters governing

financial frictions, counterfactual policy analysis, and structural real-time forecasts.

In this paper, we structurally estimate a model with an occasionally binding bor-

rowing constraint. We make three main contributions. First, we propose a new

specification of the occasionally binding collateral constraint. Second, we develop

a perturbation solution method suitable for solving models like ours in a way that

permits likelihood-based estimation. Third, we focus on one particular type of cri-

sis, the so-called sudden stop in international capital flows, and apply the proposed

approach to the estimation of a medium-scale workhorse DSGE model of such crises,

investigating sources and frictions of business cycles and crises in Mexico since 1981.

As a first step, we propose a new formulation of occasionally binding constraint

models. As in models with constraints written as inequalities, our set up has two

states or regimes: in the first, limited leverage amplifies regular shocks and gives

rise to financial crises episodes; in the second, access to financing is unconstrained

and the economy displays regular business cycles. In our specification, however, the

transitions between the two regimes depend on a range rather than a unique level of

leverage, with endogenous probabilities that depend on the borrowing capacity and

the multiplier associated with the leverage constraint. This formulation maps the

model with an occasionally binding leverage constraint into an endogenous regime-

switching model. The paper focuses on a particular friction and type of crisis, the

so called sudden stop in capital flows, but the proposed specification has broader

applicability to other types of occasionally binding constraints.

Next, we develop a perturbation-based solution method for solving the endoge-
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nous regime-switching model. The perturbation method is fast enough to permit

likelihood-based estimation, is readily scalable to models larger than the one we es-

timate in this paper, and displays typical levels of accuracy. We also show analyti-

cally that to capture the effects of endogenous transition probabilities on the policy

functions characterizing optimal behavior, and hence precautionary behavior, it is

necessary to approximate the model solution at least to second-order, and that these

effects would be missed by linear approximations. As with our first contribution,

the solution method that we develop can be used with a wide range of endogenous

regime-switching models.

Finally, we apply our borrowing constraint specification and solution method, and

perform Bayesian estimation of a workhorse small open-economy model to character-

ize both financial crises and business cycles in Mexico. While our application focuses

on an emerging market economy, our specification can be applied to the formulation

and estimation of other model settings with occasionally binding constraints. For

example, the approach that we propose could be applied to the formulation and esti-

mation of models of occasionally binding credit frictions, housing constraints, banking

with asymmetric information, downward wage rigidity, the zero lower bound, or a SIR-

macro model in which the probability of being infected depends on agents’ decisions

as in Eichenbaum et al. (2020).

Figure 1 plots two critical variables in our application to Mexico: the current

account balance as a share of GDP and the quarterly real GDP growth in deviation

from sample mean. The figure illustrates the regular fluctuations in the data as well

as multiple episodes of large current account reversals and persistent output growth

declines. Large current account reversals and output drops of heterogeneous size and

persistence are the two main empirical features commonly associated with sudden

stops in capital flows, not only in Mexico but also in many other emerging markets

exposed to volatile capital flows. In this paper, we focus on the challenge of fitting a

structural model to Mexico’s business cycle and sudden stop history.

Despite the econometric challenges in characterizing data like those displayed in

Figure 1, our estimated model fits Mexico’s business cycles and sudden stop episodes

well, and does not rely on large shocks to explain crises but instead lets the structure

of the model explain those events. It produces business cycle statistics that match

the second moments of the data and provides evidence on the relative importance of

different shocks. Most importantly, our new specification of the collateral constraint
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Figure 1: Current Account and Output in Mexico, 1981-2016

(a) Current Account to Output Ratio

(b) Quarterly Output Growth Rate

Note: Panel (a) plots Mexico’s current account balance as a share of GDP. Panel (b) shows

Mexico’s quarterly log-change of real GDP. See the Appendix for data sources. Sample

period 1981:Q1-2016:Q4.

identifies crisis episodes and dynamics of varying duration and intensity, consistent

with evidence not only of large economic dislocation during financial crises but also

sluggish build-up and recovery phases surrounding them (Cerra and Saxena, 2008;

Reinhart and Rogoff, 2009; Boissay et al., 2016).

In particular, the estimated model identifies three financial crises: the Debt Cri-

sis from 1981:Q3 to 1983:Q2, the Mexican peso crisis commonly referred to as the

“Tequila crisis” from 1994:Q1 to 1996:Q1, and the spillover effect from the Global Fi-

nancial Crisis from 2008:Q4 to 2009:Q3. The identified crisis episodes align well with

a purely empirical notion of financial crisis in Mexico (Reinhart and Rogoff, 2009)

and display duration about twice as long as the crisis peaks previously identified

as sudden stops (Cerra and Saxena, 2008). The model-simulated dynamics of crisis

episodes indicate that they are preceded by slowly unfolding booms and followed by

economic stagnation, and are not only driven by a favorable external environment

that suddenly reverses, but also domestic factors such as technology and demand

shocks. We also show that different shocks matter more for different historical crisis
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episodes, as well as different phases of a given episode.

Related Literature A few papers have already estimated models with occasionally

binding constraints. Bocola (2016), in particular, builds and estimates a model of

occasionally occurring debt and banking crises. Notably, estimation is accomplished

while solving the model with global methods, which avoids the use of approximations.

However, this estimation is accomplished by first estimating the model outside the

crisis, and then appending an estimate of the crisis in a second step. While this

procedure does not matter for the specific application in Bocola (2016), it is not

necessarily applicable more generally. Our approach permits joint estimation of the

model inside and outside the crises and is potentially scalable to larger and more

complex models, while maintaining a satisfactory level of accuracy relative to global

solution methods.

Our paper relates also to Guerrieri and Iacoviello (2015), who develop OccBin,

a set of procedures for the solution of models with occasionally binding constraints.

OccBin is a certainty equivalent solution method that captures non-linearities but not

precautionary effects, which are a critical feature of models with occasionally binding

collateral constraints.1 A key feature of our approach is to preserve precautionary

saving effects, as agents in the model adjust their behavior due to the presence of the

constraint even when the constraint does not bind, and vice versa.

In the literature on Markov-switching DSGE models, our paper builds upon the

method developed by Foerster et al. (2016), who developed perturbation methods for

the solution of exogenous regime-switching models. The perturbation approach that

we propose allows for second- and higher-order approximations that go beyond the

linear models studied by Davig and Leeper (2007) and Farmer et al. (2011). In fact,

we show that at least a second-order approximation is necessary in order to capture

the effects of the endogenous switching.

The paper is also related to the literature that focuses on solving endogenous

regime-switching models. Davig and Leeper (2008), Davig et al. (2010), and Alpanda

and Ueberfeldt (2016) all consider endogenous regime-switching, but employ com-

putationally costly global solution methods that hinder likelihood-based estimation.

Lind (2014) develops a regime-switching perturbation approach for approximating

1Cuba-Borda et al. (2019) study how the solution method and likelihood misspecification interact
and possibly compound each other.
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non-linear models, but it requires repeatedly refining the points of approximation

and hence it is not suitable for estimation purposes. Maih (2015) and Barthlemy and

Marx (2017) also propose perturbation methods for endogenous switching models,

but employ a technique that approximates around regime-dependent steady states,

which may not be a suitable choice given the relatively rare frequency of crises. In

contrast, our perturbation method uses a single approximation point in the area of

the state-space where the economy spends most of the time.

Importantly, we also contribute to the literature on likelihood-based estimation

of Markov-switching DSGE models initiated by the seminal contributions of Bianchi

(2013), and applied in Bianchi and Ilut (2017) and Bianchi et al. (2018). Our al-

gorithm differs in two key respects. First, our regime-switching transition matrix

reflects the endogenous nature of the switching. Second, conditional on the regime,

we have a second order solution, so we employ the Sigma Point Filter to evaluate the

likelihood function in place the modified Kalman filter in Bianchi (2013).

The specification of the constraint that we propose and the accompanying pertur-

bation solution method could be easily applied to models with occasionally binding

zero-lower bound on interest rates (for example, Adam and Billi, 2007; Aruoba et al.,

2018; Atkinson et al., 2018). Existing methods for the estimation of such models

may limit scalability due computational costs (Gust et al., 2017). Moreover, the

occasionally binding zero lower bound is not comparable to the kind of constraints

with endogenous collateral value that we estimate in this paper and is used in the

normative literature on macroprudential policies (Benigno et al., 2013, 2016). Indeed,

endogenous collateral valuation features different amplification mechanisms and en-

tails additional computational complexities (Bianchi and Mendoza, 2018; Devereux

et al., 2019).

The application of the methodology that we propose relates to the literature

on emerging market business cycles, which includes Aguiar and Gopinath (2007),

Mendoza (2010), Garcia-Cicco et al. (2010), Fernandez-Villaverde et al. (2011), and

Fernandez and Gulan (2015), among others. Encompassing most shocks previously

considered, we include in our analysis technology, preference, expenditure, interest

rate, and terms of trade shocks. Relative to Mendoza (2010), we provide a Bayesian

estimation of the model and consider a wider set of structural shocks, finding that

some of the estimated values of the parameters that are not easily calibrated to the

stylized facts of the data differ substantially. Relative to Garcia-Cicco et al. (2010),

6



we evaluate empirically the relative importance of interest rate shocks in an fully

non-linear framework, with a more articulated specification of the financial frictions

driving amplification. Consistent with Fernandez and Gulan (2015) and Ates and

Saffie (2016), we can fit ergodic second moments of the data well with uncorrelated

shocks, but specific combinations of shocks are associated with crisis dynamics.

Finally, our paper relates to the now large literature on the Bayesian estimation

of DSGE models (for example, Schorfheide, 2000; Otrok, 2001; Smets and Wouters,

2007; Liu et al., 2013). Our paper extends that successful approach to models with

occasionally binding collateral constraints, which have become the benchmark for

normative analysis of macro-prudential optimal policy (Bianchi and Mendoza, 2018;

Benigno et al., 2013, 2016). Welfare-base analysis of optimal macroprudential policies

with occasionally binding constraints depends critically on calibrations assumptions

and collateral constraint formulations. Structural estimation of these parameters and

likelihood based model validation can discipline model formulation, which in turn is

critical for normative policy recommendations.

The rest of the paper is organized as follows. Section 2 describes the model and

discusses the proposed formulation of the collateral constraint. Section 3 presents

our perturbation solution method for endogenous regime-switching models. Section 4

describes the Bayesian estimation procedure. Section 5 reports the estimation results

on parameters, model fit, and business cycle properties. Section 6 presents results

on financial crises. Section 7 concludes. The Appendices include additional technical

details and empirical results.

2 The Model

The model is a medium scale, workhorse framework for the analysis of business cycles

and sudden stop crises in emerging market economies. The core of the model is as

in Mendoza (2010), although we consider a larger set of shocks as in Garcia-Cicco

et al. (2010). It features a small, open, production economy with an occasionally

binding collateral constraint, that is subject to temporary productivity, intertempo-

ral preference, expenditure, interest rate, and terms of trade shocks.2 The collateral

2We omit permanent technology shocks that could of the type analyzed by Aguiar and Gopinath
(2007) because these long-run components cannot be estimated precisely over samples periods of
length comparable to ours. Moreover, Garcia-Cicco et al. (2010) and Miyamoto and Nguyen (2017)
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constraint that we specify depends on the endogenous variables of the model, includ-

ing borrowing, capital and its relative price, and hence leverage. Capital and debt

choices respond to exogenous shocks, affecting borrowing, which in turn affects the

probability of a binding collateral constraint.

Due to the occasionally binding nature of the constraint, this framework can ac-

count not only for normal business cycles, but also key aspects of financial crises in

both emerging markets and advanced economies (Bianchi and Mendoza, 2018). While

our application focuses on one particular type of crisis, the so called sudden stop in

capital flows, our framework is generally applicable to other macroeconomic mod-

els with occasionally binding frictions and crises (for example, Kiyotaki and Moore,

1997; Iacoviello, 2005; Gertler and Karadi, 2011; Jermann and Quadrini, 2012; Liu

et al., 2013; Gertler and Kiyotaki, 2015; Bocola, 2016; Schmitt-Grohe and Uribe,

2016; Boissay et al., 2016; Eichenbaum et al., 2020).

In the rest of this section, we discuss the representative household-firm and the

borrowing constraint specification. The formal definition of the equilibrium and the

full set of equilibrium conditions is reported in Appendix A.

2.1 Preferences, Constraints, and Shock Processes

There is a representative household-firm that maximizes the following utility function

U ≡ E0

∞∑
t=0

{
dtβ

t 1

1− ρ

(
Ct −

Hω
t

ω

)1−ρ
}
, (1)

where Ct denotes consumption, Ht the supply of labor, and dt an exogenous and

stochastic preference shock specified below. Households choose consumption, labor,

capital Kt, imported intermediate inputs Vt given an exogenous stochastic relative

price Pt also specified below, and holdings of real one-period international bonds, Bt.

Negative values of Bt indicate borrowing from abroad. The household-firm faces the

budget constraint:

Ct + It + Et = Yt − φrt (WtHt + PtVt)−
1

(1 + rt)
Bt +Bt−1, (2)

also find that the permanent technology shock is not quantitatively important in frameworks with
financial frictions like ours in the case of Mexico.
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where Yt is gross domestic product and is given by

Yt = AtK
η
t−1H

α
t V

1−α−η
t − PtVt. (3)

Here, At denotes the exogenous and stochastic level of technology. Et is an exogenous

and stochastic expenditure process possibly interpreted as a fiscal or net export shock

as in Garcia-Cicco et al. (2010). The term φrt (WtHt + PtVt) describes a working

capital constraint, stating that a fraction of the wage and intermediate good bill

must be paid in advance of production with borrowed funds. The relative price of

labor and capital are given by Wt and qt, respectively, both of which are endogenous

market prices, but taken as given by the individual household-firm. Gross investment,

It, is subject to adjustment costs as a function of net investment:

It = δKt−1 + (Kt −Kt−1)

(
1 +

ι

2

(
Kt −Kt−1

Kt−1

))
. (4)

Household-firms can borrow in international markets issuing one-period bonds

that pay a market or country net interest rate rt. The country interest rate between

period t and t + 1, rt, has three components: an exogenous persistent component,

an exogenous transitory component, an endogenous component that depends on the

level of debt. Thus, the country interest rate is given by

rt = r∗t + σrεr,t + ψr

(
eB̄−Bt − 1

)
, (5)

where the persistent exogenous component, r∗t , follows the process

r∗t = (1− ρr∗)r̄∗ + ρr∗r
∗
t−1 + σr∗εr∗,t, (6)

with εr∗,t and εr,t i.i.d. N(0, 1) and σr∗ and σr denoting parameters that control the

variance of the two components.3

As Mendoza (2010) notes, in our model, the household-firm also faces a endoge-

nous external financing premium on debt (EFPD), measured by the difference between

the effective real interest rate, which corresponds to the intertemporal marginal rate

3While contemporaneous movements in εr∗,t and εr,t are not identified separately in equations
(5) and (6), εr,t will be identified in the data because of differences in persistence. Including both
types of shocks helps fitting the observable counterpart variable in estimation.
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of substitution in consumption, rht = µt/Et[µt+1], and the market interest rate, rt. In

fact, the Euler equation for bt, µt = λt + β (1 + rt)Etµt+1, can be rearranged to show

that EFPD = Et[rht − rt] = λt/βEt[µt+1], where µt is the Lagrange multiplier on

the budget constraint and λt is the multiplier on the collateral constraint to be intro-

duced shortly. Because of this feature, the endogenous interest rate component of rt,

ψr
(
eB̄−Bt − 1

)
in equation (5) will be calibrated to serve the sole purpose of inducing

independence of the model steady state from initial conditions, as in Schmitt-Grohe

and Uribe (2003), by setting ψr to a very small value.4 In addition, we do not im-

pose any correlation between the innovations to the interest rate process and the

productivity process specified below.

The remaining exogenous processes for the preference shock dt, the temporary

technology shock At, the shock to the relative price of intermediate goods Pt, and the

domestic expenditure shock Et, are specified as follows:

log dt = ρd log dt−1 + σdεd,t, (7)

logAt = (1− ρA)A∗ + ρA logAt−1 + σAεA,t, (8)

logPt = (1− ρP )P ∗ + ρP logPt−1 + σP εP,t, (9)

logEt = (1− ρE)E∗ + ρE logEt−1 + σEεE,t, (10)

where the starred variables and the ρ. coefficients denote the unconditional mean

value and the persistence parameter of the processes, ε.,t are assumed i.i.d. N(0, 1)

innovations, and the σ.,t parameters control the size of the process variances.5

2.2 The Occasionally Binding Borrowing Constraint: An En-

dogenous Regime-Switching Specification

The central idea of this paper is to model the occasionally binding nature of a tra-

ditional inequality borrowing constraint as an endogenous regime-switching process.

4Mendoza (2010) uses an endogenous rate of time preference for this purpose.
5While possible in principle, we do not allow for regime-switching in the shocks processes, either

in the intercepts or in the volatilities. This assumption is because we want the collateral constraint to
drive regime-switching, rather than changes in the stochastic processes. Allowing for regime change
in the shock processes might improve overall fit, but we want the economic features of the model and
not changes in the exogenous shock processes to drive fluctuations and crisis episodes. Nonetheless,
stochastic volatility may be an important feature of emerging markets (Fernandez-Villaverde et al.,
2011; Arellano et al., 2019)
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In one regime, denoted st = 1, the constraint binds strictly; in the second regime,

denoted st = 0 the constraint does not bind. In the binding regime, total borrowing

equals a fraction κ of the value of collateral qtKt:

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κqtKt. (11)

Thus, in this regime total debt, which is borrowing for consumption smoothing plus

working capital for the purchase of intermediate inputs and labor for production,

is limited by the value of collateral. Limited working capital, as in Neumeyer and

Perri (2005), Mendoza (2010), Fernandez and Gulan (2015), and Ates and Saffie

(2016), amplifies the supply response of the economy to shocks in the constrained

regime. In the unconstrained regime, lenders finance all desired borrowing, and the

only constraint on borrowing is the natural debt limit.6

Given these two regimes representing the occasionally binding nature of the bor-

rowing constraint, we assume a stochastic characterization of the transition between

them, which eliminates the non-differentiability of the traditional inequality specifi-

cation and has appealing empirical properties. The typical inequality specification

of the borrowing constraint implies that, for given values of the endogenous and ex-

ogenous states, there is one specific level of leverage at which the constraint binds,

and at that level of leverage the constraint always binds. In contrast, we assume

that, for given values of the endogenous and exogenous states, there is a probability

of switching to the constrained regime, but no specific level of leverage that triggers

a switch to the constrained regime.

We assume that the probabilities of switching from one regime to the other depend

on critical endogenous variables of the model. The probability of switching from the

non-binding to the binding regime is a logistic function of the distance between actual

borrowing and the borrowing limit equal to a fraction of the value of collateral. The

probability of switching from the binding regime back to the nonbinding one is a

logistic function of the collateral constraint multiplier. Therefore the transitions are

affected by all endogenous variables in the model and agents have full information

with rational expectations about these transitions probabilities.

This regime switching specification of the occasionally binding nature of the the

6An alternative interpretation for our setup is that κ switches between a finite value in the binding
regime that produces equation (11), and infinity in the non-binding regime.
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collateral constraint captures the salient macroeconomic empirical finding that the

likelihood of a financial crisis increases with leverage, but high leverage does not

necessarily lead to a financial crisis. For example, Jorda et al. (2013) proxy finan-

cial leverage by the rate of change of private bank credit relative to GDP. In their

database of 14 advanced countries from 1870 to 2008 there are 35 recessions associ-

ated with financial crises. Across these episodes, the change in leverage before a crisis

is highly heterogeneous, with the standard deviation of financial leverage twice the

mean. This evidence suggests that the exact level of leverage at which a crisis occurs

varies considerably across crisis episodes.7

In addition, a growing body of microeconomic evidence indicates that a determin-

istic specification of occasionally binding collateral constraints does not accurately

capture lending and borrowing behaviors at the household and firm or bank level.

For example, Chodorow-Reich and Falato (2017) and Greenwald (2019) among oth-

ers, show that loan covenants are used to renegotiate credit lines as borrowers ap-

proach their limits, rather than simply being cut off from funding as soon as they face

financial stress. Campello et al. (2010) provide survey information on the behavior of

financially constrained firms, and Ivashina and Scharfstein (2010) examine loan level

data, showing that firms drew down pre-existing credit lines in order to satisfy their

liquidity needs. Bank lending standards fluctuating over the cycle could also be con-

sistent with a stochastic specification of the collateral constraint. Thus, in practice,

collateral constraints do not seem to bind at any particular leverage ratio.8

In the rest of this section, we discuss a modified slackness condition associated

with our specification of the occasionally binding borrowing constraint and how it

permits casting a occasionally binding constraint model in the form of an endogenous

regime-switching framework. We then spell out the assumptions that we make to

model the transition between regimes. We conclude the section with some remarks

about the implications of our formulation for model dynamics.

7The notion of “debt intolerance” discussed by Reinhart and Rogoff (2009) and credit surface of
Fostel and Geanakoplos (2015) also are consistent with our stochastic specification.

8Exploring whether the our specification of the borrowing constraint may result from the solution
of a limited enforcement problem with renegotiation, hidden liquidity, or random monitoring shocks
is beyond the scope of this paper.
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2.2.1 The Regime-Switching Slackness Condition

Denote the Lagrange multiplier associated with equation (11) as λt and define the

“borrowing cushion,” B∗t as the distance of actual borrowing from the debt limit:

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κtqtKt. (12)

When the borrowing cushion is small, total borrowing is high relative to the value of

collateral, meaning that the leverage ratio is high.

The critical step is to implement the slackness condition B∗t λt = 0 so that the

two variables, B∗t and λt, are zero if the economy is in the relevant regime: λt =

0 in the non-binding regime, and B∗t = 0 in the binding regime. To implement

this restriction and be consistent with regime-switching DSGE models in which the

parameters are the model objects that change state, we define two auxiliary regime-

dependent parameters, ϕ (st) and ν (st), such that ϕ (0) = ν (0) = 0, and ϕ (1) =

ν (1) = 1.9 Next, we introduce the following regime-switching slackness condition:

ϕ (st)B
∗
ss + ν (st) (B∗t −B∗ss) = (1− ϕ (st))λss + (1− ν (st)) (λt − λss) , (13)

where B∗ss and λss are the steady state borrowing cushion and collateral constraint

multiplier, respectively, defined more precisely in Section 3 below. It is now easy to

see that equation (13) implies that, as desired, when st = 0 then λt = 0, and when

st = 1 then B∗t = 0. Thus, our formulation satisfies the slackness condition B∗t λt = 0

characterizing the representative household-firm’s optimization problem. Yet, given

a regime st, equation (13) remains continuously differentiable for any value of B∗t or

λt, as no inequality constraint is imposed.

Technically, equation (13) “preserves” information in the perturbation approxima-

tion that we introduce in Section 3, since, at first order, both variables are constant

in the respective regimes. The use of the regime-dependent switching parameters,

ϕ (st) and ν (st), follows from the Partition Principle of Foerster et al. (2016), which

separates parameters based upon whether they affect the steady state or not. Intu-

9In our model these parameters coincide with the regime-switching indicator variable st, but in
more general settings they may not. The notation provides a general formulation of the modified
slackness condition that is applicable to other setups possibly different than the one associated with
our specific application. See, for example, the discussion of our stochastic specification in the context
of other model settings in Binning and Maih (2017).
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itively, ϕ(st) captures the level of the economy changing across regimes (e.g., capital

is lower when the constraint binds), while ν(st) captures the dynamic responses dif-

fering across regimes (e.g., the response of investment to shocks changes when the

constraint binds).

2.2.2 Modelling Endogenous Regime-Switching

To model the transition from one regime to the other, we rely on logistic functions

of endogenous variables determined in equilibrium.10 Specifically, we assume that

the transition from the non-binding to the binding regime depends on the borrowing

cushion, B∗t :

Pr (st+1 = 1|st = 0, B∗t ) =
exp (−γ0B

∗
t )

1 + exp (−γ0B∗t )
. (14)

Thus, the likelihood that the constraint binds in the following period depends on the

size of the borrowing cushion in the current period. The parameter γ0 controls the

steepness of the logistic function, determining the sensitivity of the probability of

switching regime to the size of the borrowing cushion. When γ0 is positive, as the

cushion declines the probability of switching to the binding regime increases. Note

here that, for certain draws from the logistic function, the borrowing cushion could

be negative and the economy could temporarily remain in the non-binding regime.

Similarly, when the constraint binds, the transition probability to the non-binding

regime is a logistic function of the Lagrange multiplier, λt, according to

Pr (st+1 = 0|st = 1, λt) =
exp (−γ1λt)

1 + exp (−γ1λt)
. (15)

The probability of switching back from the constrained to the unconstrained regime,

therefore, depends on the shadow value of the economy’s desired borrowing relative

to the limit set by the collateral constraint. As in the case of a switch from the

constrained to constrained regime, the parameter γ1 affects the sensitivity of this

probability to the value of the multiplier. For positive γ1, a large positive multiplier

implies that the constraint binds tightly, and the probability of exiting the binding

regime is lower. As the multiplier declines, this probability increases. Again, as

10Logistic functions have the advantage that they are tractable and parsimoniously parameterized.
Bocola (2016) and Kumhof et al. (2015) use a logistic function to model the transition to a default
regime, and Davig et al. (2010) and Bi and Traum (2014) use it to study hitting a fiscal limit.
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before, in the binding regime, it is possible that the desired level of borrowing is less

than the level forced upon it by the binding regime, which would manifest itself with

a negative collateral constraint multiplier.11

Putting equations (14) and (15) together, the regime-switching model has an

endogenous transition matrix

Pt =

[
1− exp(−γ0B∗t )

1+exp(−γ0B∗t )

exp(−γ0B∗t )

1+exp(−γ0B∗t )
exp(−γ1λt)

1+exp(−γ1λt) 1− exp(−γ1λt)
1+exp(−γ1λt)

]
. (16)

2.2.3 Remarks on the Endogenous Regime-Switching Formulation

A few remarks are useful on how our stochastic formulation of the borrowing con-

straint works and differs relative to the typical inequality formulation.

First, the regime draw from the logistic functions in a given period is determined

before exogenous shocks are realized and economic decisions are made during that

period. Figure 2 summarizes the model timing and shows that, at the start of a given

period t, the regime outcome st is drawn from the logistic distributions as a function

of previous period borrowing cushion and collateral constraint multiplier, B∗t−1 and

λt−1. Next, exogenous shocks, which are orthogonal to the realization of the regime,

are realized, and agents take decisions during period t based on the regime outcome,

st, as well as a probability distribution over the next regime realization, st+1, as in

equation (14) or (15). These decisions pin down all endogenous variables, including

the borrowing cushion B∗t or the multiplier λt. Finally, the regime realization for

period t+ 1 is drawn based on B∗t and λt, and so on.

Second, as we have already noted, an implication of our setup is that entry and

exit of the economy from the binding regime occurs stochastically and hence may

happen earlier or later than a deterministic formulation might imply. The fact that

the borrowing cushion and multiplier can take negative values implies that the build

up to, or duration of financial crises might persist. Likewise, the fact that a regime-

switch can occur despite positive values of the cushion and multiplier implies the

entry into or exit from crises might occur relatively sooner than it might otherwise.

As a result, the framework can potentially capture both rapid movements and slow

11By construction, the transition probabilities equal 0.5 when their arguments are zero. In prin-
ciple, one could relax this assumption by introducing a constant into the arguments of equations
(14-15). However, preliminary estimates that allowed for this degree of freedom indicated these
additional parameters were effectively zero, so for simplicity we omit them from the beginning.
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Figure 2: Model Timing

 

t t+1 

The regime 𝑠𝑠𝑡𝑡 is 
realized as a function 
of the previous period 
shocks and decisions, 
summarized by 𝐵𝐵𝑡𝑡−1∗  
and λt-1. 

Period t shocks (orthogonal 
to regime realization 𝑠𝑠𝑡𝑡)  
are realized, and agent 
decisions are made with a 
probability distribution over 
future regime realization  
𝑠𝑠𝑡𝑡+1, pinning down 𝐵𝐵𝑡𝑡∗ and λt. 

The regime 𝑠𝑠𝑡𝑡+1 is 
realized as a function 
of the previous period 
shocks and decisions, 
summarized by 𝐵𝐵𝑡𝑡∗ 
and λt, etc. 

descents into crises and their recoveries. For instance, negative values of the borrowing

cushion in the non-binding regime are possible if the probability of a binding regime is

elevated but such outcome is not realized; such an outcome will tend to postpone crisis

episodes. Conversely, in the non-binding regime, the logistic function can switch the

economy into the binding regime in the following period even if the borrowing cushion

in the current period is still positive; such an outcome accelerates the occurrence

of crises. How likely these outcomes are depend on the parameter of the relevant

logistic function, γ0. The same logic applies to a probabilistic exit from the binding

regime that depends on the multiplier λt and the parameter γ1. The economy might

be stuck in the constrained regime past the time when the collateral constrained

multiplier turned negative, extending the duration of the crisis. In fact, in this case,

the economy may be “forced” to borrow the amount set by the constraint, which

might be more than desired, until a non-binding realization of the regime is drawn.

Conversely, despite positive values of the multiplier, the economy may end up coming

out of the binding regime early.

The third implication of our setup is that, as the the transition probability are

endogenous, they are time-varying. In contrast, the exogenous Markov-switching

setup (Davig and Leeper, 2007; Farmer et al., 2011; Bianchi, 2013; Foerster et al.,

2016) has a constant probability of transitioning between regimes that is independent

of the structural shock realizations and the agent decisions. For this reason, our

endogenous-switching framework is capable of generating long- or short-lived-binding-

regime episodes depending on the realization of shocks and agents’ decisions.

Last but not least, in our set up, agents in the non-binding regime know that
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higher leverage increases the probability of switching to the binding regime, and vice-

versa. This knowledge preserves the interaction in agents’ behavior between the two

regimes and gives rise to precautionary behavior, distinguishing this class of models

from those in which financial frictions are always binding or are approximated with

solution methods that eliminate the interactions across regimes.

3 Solving the Endogenous Switching Model

This Section describes our solution method for endogenous regime-switching models.

The model proposed in the previous section can in principle be solved using global

methods, as for example in Davig et al. (2010). In the case of our application, with

two endogenous and five exogenous state variables, the regime indicator, plus six

exogenous shocks, using a global solution method would be extremely time consuming,

and it would quickly become prohibitive with larger modes, precluding likelihood-

based estimation. Instead, we solve the model using a perturbation approach, which

allows for an accurate approximation that is fast enough to permit estimation and

potentially applicable to larger frameworks beyond our medium-scale model. We now

describe the approximation point and how to define a steady state in this setup, the

Taylor-series expansions, and discuss the importance of approximating at least to

a second-order in our framework. The competitive equilibrium of the endogenous

regime-switching model is defined formally in Appendix A. The derivations of the

Taylor-series expansions and other details of the solution method are reported in

Appendix B.

3.1 Defining the Steady State

Given the regime-switching slackness condition (13), defining a non-stochastic steady

state of an endogenous regime-switching model is challenging. A steady state in this

setting can be defined as a state in which all shocks have ceased and the regime-

switching variables that affect the level of the economy (ϕ(st)) take the ergodic mean

associated with the steady state transition matrix:

Pss =

[
1− exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ1λss)

1+exp(−γ1λss) 1− exp(−γ1λss)
1+exp(−γ1λss)

]
. (17)

17



Since this matrix depends on the steady state level of the borrowing cushion and the

multiplier, B∗ss and λss, which in turn depend upon the ergodic mean of the regime-

switching parameter ϕ(st), such a steady state is the solution of a fixed point problem

that is described in more detail in Appendix B.

More specifically, consider the model regime-specific parameters defined above and

distinguish between ϕ(st), which affect the level behavior of the economy, and ν(st),

which affect only its dynamics with no effects on the steady state. Then denote with

ξ = [ξ0, ξ1] the ergodic vector of Pss. Next, apply the Partition Principle of Foerster

et al. (2016), to focus only on parameters that affect the level of the economy, and

write their ergodic mean of ϕ(st), denoted ϕ̄, as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1) . (18)

Defining the steady state as the state in which the auxiliary parameter ϕ (st) is

at its ergodic mean value ϕ̄ implies that the approximation point constructed is a

weighted average of the steady states of two separate models: a model in which only

the non-binding regime occurs, and one in which only the binding regime occurs. How

close our approximation point is to each of these two other steady states, therefore,

depends on the frequency of being in each of the two regimes. As in our application

episodes of binding regime have limited duration, the ergodic mean is a natural can-

didate as perturbation point. Given the nature of our application with slow-moving

capital and debt state variables, this perturbation point will be in the area of the

state space in which the economy operates most frequently. In fact, since the bind-

ing regime tends to be self-limiting–that is, being in the binding regime causes the

economy to reduce leverage and hence switch back to the non-binding regime–the

economy will rarely reach the area around the steady state of the “binding regime

only.”12

12Alternative methods for finding solutions to endogenous regime-switching models, such as Maih
(2015) and Barthlemy and Marx (2017), propose using regime-dependent steady states as multiple
approximation points. Such a strategy would not be suitable for our purposes because the binding
regime steady state is a poor approximation point given that the regime is infrequent and usually
of shorter duration than normal cycles of expansions and contractions.
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3.2 The Solution and Its Properties

Equipped with the steady state of the endogenous regime-switching economy, we

construct a second-order approximation to the policy functions by taking derivatives

of the equilibrium conditions. We relegate details of these derivations to the Appendix

B, but here we provide a summary.

For each regime st, the policy functions of our model take the form

xt = hst (xt−1, εt, χ) , yt = gst (xt−1, εt, χ) , (19)

where xt denotes predetermined variables, yt non-predetermined variables, εt the set

of shocks, and χ a perturbation parameter such that when χ = 1 the fully stochas-

tic model results and when χ = 0 the model reduces to the non-stochastic steady

state defined above. Using these functional forms, we can express the equilibrium

conditions conditional on regime st as

Fst (xt−1, εt, χ) = 0. (20)

We then stack the regime-dependent conditions for st = 0 and st = 1, denoting the

resulting system of equations with F (xt−1, εt, χ), and successively differentiate with

respect to (xt−1, εt, χ), evaluating them at the steady state. The systems

Fx (xss,0, 0) = 0, Fε (xss,0, 0) = 0, Fχ (xss,0, 0) = 0 (21)

can then be solved for the unknown coefficients of the first-order Taylor expansion of

the policy functions in equation (19).

A second-order approximation can be found by taking the second derivatives of

F (xt−1, εt, χ). In the end, we have matricesH
(1)
st andG

(1)
st characterizing the first-order

coefficients, and H
(2)
st and G

(2)
st characterizing the second-order coefficients. Therefore,

the approximated policy functions are

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (22)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (23)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
.
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Our perturbation method produces a single approximated set of policy functions,

but cannot be used to guarantee that the solution is unique. This limitation is

common to models of occasionally binding constraints that are solved globally with

converging numerical algorithms without guaranteeing uniqueness. With endogenous

regime-switching, we also lack conditions for ensuring stability of the full solution;

instead, we check the mean-squared stability of the first-order approximation paired

with the steady state transition matrix Pss (Farmer et al., 2011; Foerster et al., 2016),

and additionally check for explosive simulations.

Our solution method is fast, and can readily be scaled to handle larger models. In

all, we have 23 equations that characterize the equilibrium, two endogenous and five

exogenous state variables, one regime indicator, and six shocks. Our computational

approach is similar to that in Fernandez-Villaverde et al. (2015): we use Mathematica

to take symbolic derivatives and export these derivatives so that we can use Matlab

to solve the model repeatedly for different parameterizations. The model solves in

about a second on a standard laptop.13

The proposed solution method is also accurate. We tested for accuracy of the

proposed solution method applied to our model, as well as in the smaller model of

Jermann and Quadrini (2012) in which we can more easily compare our perturbation

method to with global solution methods. We find Euler equation errors for the model

we use in this paper on the order of $1 per $1,000 of consumption, a figure in line with

the accuracy of perturbation methods applied to exogenous regime-switching models

(Foerster et al., 2016) and standard models without regime-switching (Aruoba et al.,

2006). When we compare the perturbation method we propose with a standard

global method applied to the endogenous regime-switching version of the model in

Jermann and Quadrini (2012), or the same model with the inequality constraint, we

find that our solution methods produce similar second moments and model dynamics

for key variables of interest. Moreover, the global and perturbation solutions of

the endogenous regime-switching version of this model produce very similar Euler

equation errors–see Appendix C for more details.

13A core code that demonstrates the solution algorithm is available on request from the authors.
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3.3 Approximation Order, Endogenous Switching and Pre-

cautionary Saving

Our endogenous regime-switching framework must be solved at least to the second

order to capture the effects of endogenous probabilities on the policy rules, which in-

clude state-varying precautionary effects. If we were to use only a first-order approx-

imation, our estimation would not capture precautionary behavior associated with

rational expectations about the dependency of the probability of a regime change on

the borrowing cushion and the multiplier. The following Proposition states this result

formally.

Proposition 1 (Irrelevance of Endogenous Switching in a First-Order Ap-

proximation). The first-order solution to the endogenous regime-switching model is

identical to the first-order solution to an exogenous regime-switching model in which

the transition probabilities are given by the steady-state value of the time-varying tran-

sition matrix.

Proof. See Appendix C.

The Proposition illustrates that using a second-order approximation to the solu-

tion is necessary to characterize the model properties associated with the endogenous

nature of the regime-switching, including particularly precautionary behavior. This

result is similar to the one stating that, in models with only one regime, first-order

solutions are invariant to the size of shocks, second-order solutions captures pre-

cautionary behavior, and third-order solutions are needed to capture the effects of

stochastic volatility (Fernandez-Villaverde et al., 2015).

Unfortunately, the need to use a second-order approximation along with regime-

switching creates additional challenges for estimation purposes. We now turn to our

strategy to address them.

4 Estimating the Endogenous Switching Model

We estimate the model with a full information Bayesian procedure. The posterior dis-

tribution has no analytical solution and we use Markov-Chain Monte Carlo (MCMC)

methods to sample from it. Since the Metroplis-Hastings algorithm that we use for

sampling is a standard tool used in the literature, we omit a discussion of this step in
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our procedure. The details of the construction of the state space representation and

the filtering steps for the evaluation of the likelihood are reported in Appendix D.

A key obstacle in sampling from the posterior is the evaluation of the likelihood

function. We face three difficulties here relative to linear DSGE models. The first is

the non-linearity due to the presence of multiple regimes. The second is the need to

approximate to the second-order the model solution that governs the decision rules

in each regime. The third is the fact that the transition probabilities are endoge-

nous. Bianchi (2013) develops an algorithm to address the first difficulty. Here we

must use an alternative filter to deal with the second order solution and endogenous

probabilities in a tractable manner. We use the Unscented Kalman Filter (UKF)

to compute approximations to the evaluation of the likelihood function using Sigma

Points. An alternative would be to use the Particle Filter (Fernandez-Villaverde and

Rubio-Ramirez, 2007). However, the Particle Filter is not well-suited to our applica-

tion, because the regime switching can lead to discarding a large number of simulated

particles, lowering accuracy for a given number of particles and greatly increasing

the computational cost of obtaining a given level of accuracy. Further, even with a

deterministic filter, the filtering step in estimation is relatively costly at about 10 sec-

onds per likelihood evaluation using Matlab; incorporating the Particle Filter would

increase computing time significantly.14

The model’s posterior distribution is highly non-linear, with many local modes

due to the complexity of the model. To deal with this issue, we took the following

steps: first, we estimated a version of the model without working capital and the

occasionally binding constraint, this step yield an initial estimate of the exogenous

processes and the non-financial parameters; second, conditional on these initial esti-

mates, we performed a grid search over the remaining parameters (κ, φ, γ0, and γ1) to

find high posterior regions; third, from the high posterior regions of the grid search,

we used a mode-finding routine to identify the posterior mode, which forms the basis

for our empirical results; lastly, we sampled 500, 000 times from the posterior with a

random-walk Metropolis-Hastings algorithm to explore the parameter space around

the mode and characterize credible sets for the parameter estimates.15

14See Binning and Maih (2015) for a comparison between the Sigma Point filter and the Particle
Filter in a regime-switching context, which includes degeneracy issues.

15For the last MCMC step, we adjusted the scale of the proposal density until we achieved an
acceptance rate of 0.25. The entire MCMC algorithm takes 58 days to complete.
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4.1 Observables, Data, and Measurement Errors

The model is estimated with quarterly data for GDP growth (gross output less inter-

mediate input payments), consumption growth, investment growth, and intermediate

import price growth, as well as the current account-to-output ratio, and a measure of

the country real interest rate. GDP, consumption, and investment are in quarterly,

demeaned log differences.16

As there are six shocks with six observables, we do not need measurement errors.

However, measurement errors in the observation equation improves performance of

the non-linear filter and accounts for any actual measurement error in the data. To

limit their impact on the inference, we limit their variance to 5% of the variance of

the observable variables. This means that our model will fit the data relatively closely

on average; thus, how it performs across cycles and crises and whether it relies on

large shocks to fit the data will be important in assessing model performance.

4.2 Calibrated Parameters and Prior Distributions

Our objective is to estimate critical parameters governing the model’s dynamics in

both the binding and non-binding regime, as well as the parameters that govern the

transitions between regimes on which we do not have any prior information. To

make inference on the parameters of interest while using relatively diffuse priors, we

calibrate a subset of parameters on which we have reliable prior information. We now

discuss our calibrated parameters, and then our use of priors in estimation.

Table 1 lists the parameters that we calibrate.17 We set these parameters largely

following Mendoza (2010), who calibrated them based upon stylized facts from Mex-

ico’s National Accounts, but adapted to our model specification. One parameter that

does not come from Mendoza (2010) is β, which we set to match the capital-to-output

ratio. Another important parameter that we calibrate is ψr, which is estimated in

Garcia-Cicco et al. (2010). We set it to a very small value for the sole purpose of elim-

inating the dependency of the steady state on initial conditions, while not allowing

the parameter to affect the model dynamics (see Schmitt-Grohe and Uribe, 2003).18

16See Appendix F for details on variable definitions and data sources. The country interest rate is
constructed, following Uribe and Yue (2006), and it is the US 3-Month Treasury Bill minus ex post
US CPI inflation rate plus Mexico’s EMBI Spread.

17See Appendix E for more details on the calibration and the targeted data moments.
18Even though we have a borrowing constraint and precautionary savings, the presence of ψr >
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Table 1: Calibrated Parameters

Parameter Description Value
β Discount Factor 0.9798
ρ Risk Aversion 2.0000
ω Labor Supply 1.8460
η Capital Share 0.3053
α Labor Share 0.5927
δ Depreciation Rate 0.0228
P ∗ Mean Import Price 1.0280
E∗ Mean Expenditure 0.2002
ψr Interest Rate Debt Elasticity 0.0010
B̄ Neutral Debt Level −6.1170

Setting ψr to a very small value allows us to evaluate the model’s ability to match

the behavior of the trade balance and the other key stylized facts of the data without

introducing an additional financial friction, in the form of a quantitatively important

endogenous component of the market interest rate in equations (5)-(6).

Table 2 below summarizes our assumptions on the prior distributions. We set two

types of priors on the parameters to be estimated. The first type is priors directly on

the parameters. They impose sign restrictions and put lower prior probability on pa-

rameter values that generate implausible moments in model simulations. The second

type of prior is on a model-implied object: the steady state transition probability of

switching from the binding to to the non-binding regime, given by the steady state

value of equation (14), Pr(st+1 = 1|st = 0, B∗ss). We set this prior to be a Beta distri-

bution with mean 0.25 and variance of 0.25. This prior puts lower probability mass

on combinations of parameters that either generate extremely infrequent transitions

to the binding regime, or that imply the economy exits the binding regime almost

immediately.19

0 serves the same purpose as endogenous discounting in Mendoza (2010). Recall here that our
perturbation solution is constructed around a point between the steady state of the “non-binding
regime”, which depends on ψr, and the “binding regime”.

19Priors on model-implied objects have been used by, for example, Otrok (2001) and Del Negro
and Schorfheide (2008).
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Table 2: Estimated Parameters

Par. Description Prior Posterior
Mode 5% 50% 95%

ι Capital Adj. N(10,5) 12.703 12.649 12.701 12.724
φ Working Cap. U(0,1) 0.7113 0.7102 0.7153 0.7207
r∗ Mean Int. Rate N(0.0177,0.01) 0.0172 0.0115 0.0165 0.0216
κ Leverage U(0,1) 0.1727 0.1592 0.1756 0.1989

ρa Autocor. TFP B(0.6,0.2) 0.9796 0.9653 0.9793 0.9881
ρe Autocor. Exp B(0.6,0.2) 0.9111 0.9066 0.9132 0.9237
ρp Autocor. Imp Price B(0.6,0.2) 0.9711 0.9609 0.9754 0.9549
ρd Autocor. Pref. B(0.6,0.2) 0.9810 0.9753 0.9810 0.9843
ρr∗ Autocor. Persist. Int. Rate B(0.6,0.2) 0.8929 0.8782 0.8896 0.8995

σa SD TFP IG(0.01,0.01) 0.0083 0.0066 0.0081 0.0098
σe SD Exp. IG(0.1,0.1) 0.1806 0.1672 0.1816 0.1892
σp SD Imp. Price IG(0.1,0.1) 0.0471 0.0382 0.0452 0.0524
σd SD Pref. IG(0.1,0.1) 0.1123 0.0998 0.1123 0.1194
σr SD Trans. Int. Rate IG(0.01,0.01) 0.0028 0.0013 0.0025 0.0044
σr∗ SD, Persist Int. Rate IG(0.01,0.01) 0.0047 0.0037 0.0047 0.0059

γ0 Logistic, Enter Binding U(0,150) 13.552 10.903 13.712 18.014
γ1 Logistic, Exit Binding U(0,150) 17.798 15.784 17.800 19.806

Notes: Estimated parameters, with prior distribution and posterior moments. Priors are Normal,

Uniform, Beta, or Inverse Gamma; prior distributions show mean and variance, except for uniform

where lower and upper bounds are shown. Posterior distribution shows mode, along with 5-th, 50-th,

and 95-th percentiles from MCMC posterior draws.

5 Empirical Results

Our empirical findings comprise four sets of results. First, we present the estimated

parameters, which helps us to characterize the tightness of the working capital and

borrowing constraints, and the endogenous transition probabilities. Second, we exam-

ine the estimated model’s fit to the data. Third, we examine the model’s performance

from a business cycle perspective, comparing moments in the model and the data and

assessing the relative importance of different shocks for regular business cycles. Our

fourth set of results focuses on financial crises. We report and discuss the first three

sets of results in this section, and present the fourth set in Section 6.
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5.1 Estimated Parameters

For our first set of results focuses on the estimated parameters. Table 2 reports the

mode, the median, the 5th, and the 95th percentile of the posterior distribution of the

estimated parameters. The estimated mean interest rate, slightly below 1.75% per

quarter, is close to the value estimated by Mendoza (2010). Note that the posterior

coverage interval for this variable is fairly diffuse, indicating some uncertainty in its

true value. The remaining parameters have tightly estimated posteriors, so we will

focus the discussion on posterior modes for the remaining parameters.

Importantly, the model provides precise estimates of critical parameters, namely

the investment adjustment cost, working capital, and leverage parameters, and the

parameters of the logistic function that help match the time series of the observable

variables during both business cycles and financial crises. These parameters cannot be

easily measured directly from stylized facts of the data–unlike, for example, capital or

labor shares–but are nonetheless important for explaining the behavior of the economy

and the amplification of shocks.

The estimate of the investment adjustment cost parameter, ι, which controls in-

vestment volatility, is 12.7. This parameter is model dependent and has no real

interpretation outside of a particular model; for example, considering an annual fre-

quency, Mendoza (2010) calibrated this parameter to 2.75. The estimate for the

working capital constraint parameter indicates that 71% of the wage and interme-

diate good bill needs to be paid in advance with borrowed funds; this estimate is

substantially higher than the 25.79% value set by Mendoza (2010), but much lower

than the 100% used by Neumeyer and Perri (2005) or the 125% used by Uribe and

Yue (2006). The estimate is close to the 60% calculated by Ates and Saffie (2016),

who use interest payments and production costs from Chilean microeconomic data.

The estimated value of the leverage parameter in the borrowing constraint (κ) is 0.17,

indicating less than a fifth of the value of capital serves as collateral. The estimate is

slightly tighter than the benchmark value of 0.20 chosen by Mendoza (2010), which

is is right inside the confidence set, and on the low end of the 0.15 to 0.30 range of

alternative values considered in that calibration.

The posterior modes of the logistic parameters in equations (14) and (15) are

13.6 and 17.8, respectively, estimated in a tight range relative to the very loose prior.

These estimates are significantly different from zero, thus suggesting that the data
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Figure 3: Logistic Functions and Distributions of Their Arguments

(a) Borrowing Cushion and Transition Probability in Non-Binding Regime

(b) Multiplier and Transition Probability in Binding Regime

Note: The top panel shows the model-implied distribution of the borrowing cushion B∗

in the non-binding regime, and the logistic transition function to the binding regime as

in equation (14) implied by our estimates. The bottom panel shows the model-implied

distribution of the multiplier λ in the binding regime, and the transition function to the

non-binding regime as in equation (15) implied by our estimates.

reject a model specification in which the transition probabilities are exogenous, which

is in principle allowed for under the prior distribution.

Figure 3 plots the implied probabilities from equation (14) and (15), evaluated at

the posterior mode value of γ0 and γ1, together with the estimated ergodic distribu-

tions of their arguments, the borrowing cushion, B∗ and the the constraint multiplier,

λ. The figure shows that the ergodic distribution of the borrowing cushion is cen-

tered on a positive value, as the economy spends most of its time in the non-binding

regime, above the borrowing limit. As the borrowing cushion falls, the probability

of switching to the binding regime increases, and gradually reaches 1 for small neg-

ative values, with very little probability mass on large negative realizations of the

borrowing cushion.
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On the other hand, once the economy is in the binding regime, the ergodic distri-

bution of the multiplier is centered on small negative values, with more probability

mass on the right tail than the left tail. As λ approaches 0, the probability of switch-

ing to the non-binding regime increases and quickly reaches 1, with a mode on a small

negative value. Nonetheless, the there is a significant probability mass for larger neg-

ative values. As we explained earlier, negative values of λ reflect instances in which,

had the economy been in the non-binding regime, the borrowing cushion would be

positive (as a result of the shock realizations and agent decisions as illustrated in

Figure 2), but a switch to the non-binding regime at has not been drawn yet.20

5.2 Model Fit

Our second set of results provides evidence on how the estimated model fits the

observable variables. The model fit is summarized by Figure 4, which plots observable

variables used in the estimation together with the fitted values. The Figure also

includes the peaks of the model-identifed crises (red bars), which we define and discuss

in more detail in Section 6 and are the trough quarters of the model-identified crisis

episodes. The fitted series tracks the actual data very closely. Importantly, the model

estimates track the data consistently throughout the sample, during both regular

business cycle and crisis periods. For example, around the 1995 “Tequila Crisis,” the

data show large drops and rebounds in output, consumption, and investment growth,

and a very sharp reversal in the current account to output ratio. If, by contrast, one

were to observe a loss of fit during crisis episodes, it would suggest that our estimated

model finds it difficult to match the data dynamics during these episodes of critical

interest in the empirical analysis. As additional results reported in Appendix G on

the estimated structural shocks illustrate, the estimated model fits the data without

relying on large shocks. Instead, it explains crisis dynamics using the model’s internal

propagation mechanisms that amplify the effects of usual sized shocks.

20Sufficiently negative values of λ, approximately below −0.2, produce a nearly deterministic
switch back to the binding regime. The ergodic distribution of λ in the binding regime (Figure 3b)
implies that the probability of exiting that regime exceeds 99% about 1/4-th of the time.
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Figure 4: Data and Model Estimates

(a) Output Growth

(b) Consumption Growth

(c) Investment Growth

(d) Interest Rate

(e) Current Account to Output Ratio

(f) Import Price Growth

Note: The figure plots observable variables used in estimation (dashed blue lines) and fitted values

(i.e., model implied smoothed estimated series based upon the full sample, solid black lines). Red

bars indicate model-identified periods of crisis, see text for definition.
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Table 3: Simulated Second Moments: Data and Model

Relative Std. Dev. Correlations
Data Series Data Model Data Model
Output Growth 1.00 1.00 1.00 1.00
Consumption Growth 1.25 1.92 0.73 0.98
Investment Growth 5.37 5.75 0.53 0.90
Trade Balance to Output Ratio 1.24 0.80 -0.20 -0.21
Country Interest Rate 1.36 0.15 -0.11 -0.03

Notes: The table compares second moments of the data, relative to the same mo-

ments simulated from the model.

5.3 The Anatomy of Business Cycles

In our third set of results, we discuss second moments to characterize the estimated

model dynamics and variance decompositions to identify key drivers of the business

cycle.21 All statistics reported are unconditional, rather than conditional on a par-

ticular regime.

Table 3 compares data and simulated model second moments, reporting results for

three variables used in estimation (output, consumption, investment and the country

interest rate), and one critical variable, the trade balance ratio, not used in estimation.

The model matches the business cycle moments quite well, fitting both the relative

volatilities and the correlations with output. The volatility ranking is correct, with

consumption significantly more volatile than output, which is a robust stylized fact of

emerging market business cycles. The model underestimates the relative volatility or

the trade balance ratio and, particularly, the country interest rate. The model implied

comovements of all variables match the data counterparts remarkably well, again

with the exception of the country interest rate, whose correlation is not estimated

precisely in the model. The trade balance, in particular, which is not an observable

variable used in estimation, is counter-cyclical as in the data, with a model-implied

autocorrelation coefficient (not reported) well below one.

Table 4 reports variance decompositions. The table illustrates that all shocks play

a quantitatively sizable role in the model, even though different shocks matter more

21All business cycle and crisis statistics in this and the following section relying on simulated data.
For these simulations, based on the posterior mode estimates, we generate 10,000 samples of 144
quarters length (the same as our data sample), after a burn-in period of 1,000 quarters. We then
compute and report median values across these 10,000 runs. We use a pruning method (Andreasen
et al., 2018) to avoid explosive simulation paths.
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Table 4: Estimated Unconditional Variance Decomposition

Import Temp. Pers.
Variables / Shocks TFP Expend. Prices Pref. Int. Rate Int. Rate
Output 33.2 17.2 15.7 25.4 2.5 6.0
Consumption 30.3 23.4 14.3 20.6 3.8 7.6
Investment 19.2 29.8 10.3 25.6 4.6 10.5
Trade Bal/Output 9.5 35.2 8.8 17.2 9.2 20.1
Interest Rate 0.0 0.0 0.0 0.0 21.1 78.9
Borrowing Cush. 10.6 32.3 9.9 21.3 9.9 16.0
Debt/Output 15.2 25.5 7.6 40.9 1.4 9.5
Multiplier 9.5 40.5 9.5 18.1 9.6 12.8

Note: The variance decomposition is normalized to sums to 100 by row; estimates may not add up to

100 exactly due to rounding. The decomposition is computed by setting each shock to zero to com-

pute its marginal impact on each variable. The computation abstracts from non-linear interactions

across shocks for ease of comparison with linear models.

for different variables. Output and consumption are mostly driven by productivity,

preference, expenditure, and terms of trade shocks, respectively. Investment is signifi-

cantly affected by expenditure, preference, productivity, terms of trade, and persistent

interest rate shocks. Expenditure and persistent interest rate shocks are the most im-

portant drivers of the trade balance, while the country interest rate is clearly driven

by persistent interest rate shocks, and to a lesser extent by the temporary component

of the cost of borrowing. Demand shocks (expenditure and preference) and interest

rate shocks (permanent and temporary components) play a more important role than

productivity and terms of trade shocks for financial variables and the multiplier.

While the magnitude of these variance shares are not directly comparable with

those estimated by Garcia-Cicco et al. (2010), Fernandez and Gulan (2015), and

Schmitt-Grohe and Uribe (2018), they suggest that both real and financial shocks

matter for Mexico business cycles. In particular, we find a lower share for productivity

and interest rate shocks than Fernandez and Gulan (2015), although we also consider

terms of trade and demand shocks. We also find a share of variance explained by

terms of trade shocks that is very close to the structural vector autoregression model

estimated by Schmitt-Grohe and Uribe (2018). The estimated share of the variances

explained by interest rates shocks is in general smaller than those estimated by Garcia-

Cicco et al. (2010), who use a different specification of the financial friction with

a debt elastic country premium and a risk premium shock, without amplification

31



mechanism from the financial accelerator (Fernandez and Gulan, 2015), or working

capital (Neumeyer and Perri, 2005; Mendoza, 2010; Fernandez and Gulan, 2015; Ates

and Saffie, 2016).

6 The Anatomy of Financial Crises

In this Section, we turn to our fourth and main set of empirical results, which examine

the model’s ability to describe and interpret financial crises. The defining feature of

our model is its ability to characterize dynamics and identify shocks not only over

regular business cycles, but also during periods of a particular type of crisis, the

so-called sudden stop in capital flows. We start by defining financial crises episodes

in a model consistent manner and discuss the inference that we can draw based on

the estimated model about when Mexico appeared to be experiencing them. Next,

we investigate the drivers of the three historical episodes of sudden stop that the

estimated model identifies in the data: the Debt Crisis of the 1980s, the 1995 ‘Tequila’

Crisis, and the spillover of the Global Financial Crisis (GFC) in 2008-2009. Then we

study the model-implied duration and frequency of these episodes in simulations.

Finally, we illustrate the model-based dynamics of sudden stop episodes of duration

comparable to those realized over Mexico’s recent history.

6.1 Model-based Definition and Estimates of Sudden Stop

Episodes

The estimated model allows us to make inference on whether the economy is in

the binding regime, and hence identify periods of sudden stop crisis in a model-

consistent manner. In the model, the regime is known by the household-firm, but the

estimation procedure does not observe the regime, and it must be inferred based on

the information in the data. The estimation results, therefore, can provide a time-

varying estimate of the (smoothed, i.e. based upon the full sample) probability of

being in each regime. Figure 5 plots this estimated probability (solid black line).22

Using the information in Figure 5, we can provide a model-consistent definition of

22The estimated model also provides an estimate of the time-varying transition probability based
upon equations (14-15). These are reported in Appendix G and confirm that an exogenous regime
switching specification would be rejected by the data.
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Figure 5: Mexico’s Model-identified Crisis Episodes

(a) Probability of Binding Regime and Reinhart-Rogoff Tally Index

(b) Probability of Binding and OECD Recessions

Notes: Black line shows the model implied smoothed probability of being in the binding regime. The

dark gray regions in panel (a) indicates Reinhart and Rogoff (2009) tally index of financial crisis,

normalized so that it takes values between 0 (no crisis) and 6 (most severe). Light gray regions in

panel (b) indicate OECD recession dates for Mexico. Red bars indicate model-identified crisis peaks,

vertical blacked dash lines indicate the beginning and the end of the estimated crisis episodes; see

text for details.

a crisis quarter as one in which the economy is in the binding regime with probability

higher than at least a 90% probability.23 A crisis episode can then be defined as a

sequence of such periods. For reference, we also identify the peaks of crisis episodes

(red bars) as periods in which (i) the smoothed estimate of the probability of being in

the binding regime is at least 90%, (ii) the model estimate of output growth (Figure

4, Panel a) is negative by more than one standard deviation, and (iii) the model

estimate of the current account ratio (Figure 4, Panel e) increases by more than one

standard deviation.24

Figure 5 shows that the model identifies three crisis episodes (start and end quar-

ters marked by vertical dashed lines). The first is the Debt Crisis, which the model

identifies as occurring from 1981:Q3-1983:Q2, with an associated peak in 1983:Q1.

The second episode is the Tequila Crisis, which the model identifies in 1994:Q1-

23This threshold is intuitive but somewhat arbitrary. The duration of the identified sudden stop
episode identified, however, is robust to using a wider range of values.

24As Figure 4 shows, the identified peak crises periods corresponds to the trough in output,
consumption, investment growth in the data, and the peaks in the current account adjustment and
interest rate increases. The definition of these crisis peaks in line with the one employed in the
quantitative literature modeling sudden stops with occasionally binding constraints (for example,
Mendoza, 2010; Benigno et al., 2013).
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1996:Q1, with its peak in 1995:Q1-Q2. Last, the model identifies the GFC as produc-

ing a crisis in Mexico during 2008:Q4-2009:Q3, with a peak in 2009:Q1-Q2. Figure

5 also reports a purely empirical definition of financial crisis (dark grey shaded areas

in Panel a) and the OECD dating of the business cycle of Mexico (light grey shaded

areas in Panel b). The empirical notion of financial crisis reported is a normalized

version of the crisis tally index of Reinhart and Rogoff (2009) (RR).25 Figure 5 il-

lustrates that our estimated probability of being in a binding regime, which is our

model-consistent definition of crisis, align quite well with the RR tally index. The

crises episodes that our model identifies track the RR tally index remarkably well in

the case of the Tequila and GFC episodes, and are much more persistent than the

crisis peaks typically identified in the sudden stop literature. This result is consistent

with the idea that our stochastic specification of the borrowing constraint better char-

acterize how lending limits applies to households and firms in the data. Our model’s

crisis signal is less persistent than the tally index in the aftermath of the Debt crisis.

This is to be expected, however, as our model economy is not designed to capture

debt overhang or financial intermediation disruptions that drive the classification of

RR between 1983 and 1989 and in the mid-1990s.

Importantly, our model estimates of these sudden stop episodes do not mistake

ordinary recessions, not associated with spikes in the tally index, for crisis periods.

Mexico OECD recessions are illustrated by the light dark shaded areas in Figure 5

Panel (b). The estimated probability of a binding regime is close to 0 during the

OECD recessions before the Tequila crisis, during the US recession in 2001, and the

Argentine crisis in 2000-2001. The estimated probability of a binding regime also

does not register stress during the 1998 Russian default and US Long-Term Capi-

tal Management debacle that affected only the currency and stock market, without

triggering a sudden stop in Mexico.

Overall, Figure 5 shows that our model provides an accurate signal of when the

economy is likely to have experienced a crisis, without mistaking regular recessions or

large currency and stock market movements for financial crisis episodes. In the rest

25The RR tally index ranges from 0 to 6, depending on whether a country-year observation is
deemed to be in one or more of the following 6 varieties of crisis, assigning the value of one if a
variety is present: Currency, Inflation, Stock Market, Sovereign Domestic or External Debt, and
Banking Crisis. See Chapter 1 of Reinhart and Rogoff (2009) for more details. We follow their
methodology to extend the index to cover our full sample. In Figure 5, the index is normalized to
range between 0 and 1.
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of this section, we study the model-implied properties of these crises episodes–first

examining which shocks drove the three identified episodes in Mexico’s history, and

then studying the frequency and duration and dynamics of model-implied episodes

based on simulations.

6.2 Drivers of Mexico’s Sudden Stop Episodes

Our estimated model fits Mexican data well (Figure 4), including during the crisis

episodes identified in Figure 5. We now examine the sudden stop episodes identified

by the estimated model, evaluating the relative importance of different shocks driving

the economy before, during and after the Debt Crisis of the early 1980s, the Tequila

Crisis of 1994-1995, and the spillover on Mexico from the GFC that originated in

the United States in 2008-09. This exercise is possible because we have a likelihood-

based estimation of the model that produces sequences of shocks, allowing for the

construction of such historical counterfactuals.

The multiple sources of non-linearity in our estimated model, the endogenous

regime-switching plus the second-order approximation, pose a challenge for computing

historical counterfactuals. The task is complicated by the fact that shocks not only

have non-linear effects on the endogenous variables, but also on the realization of the

regimes in subsequent periods. Therefore, rather than decomposing the change in

endogenous variables such as output, we will focus on a broader summary measure,

the importance of each shock in terms of model fit, and hence likelihood.

Specifically, we counterfactually recalculate the model likelihood, evaluated at the

posterior mode, turning one shock off at the time, while leaving all other shocks

at their estimated values, over a particular sub-sample periods. As the variance

decomposition in 4 showed, each shock plays a role in explaining fluctuations un-

conditionally, with different shocks potentially explaining different variables. Here,

we compute the loss of model fit as measured by the log-likelihood change when we

turn off one particular shock in a given quarter, and repeat the calculation for all six

structural shocks. The details of this calculation are in Appendix G.2.

Table 5 reports a likelihood-based measure of relative importance. As Appendix

G.2 documents, the measure is the importance of a shock in a given period relative

to all shocks in the model, relative to their importance over the full sample. “Impor-

tance” is assessed in terms of likelihood point loss when the shock considered is set to
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Table 5: Estimated Relative Importance of Shocks in Mexico’s Crises

Imp. Trans Persist
Time Period TFP Exp. Prices Pref Int Rt. Int Rt.
1983 Debt Crisis
Two Quarters Prior (81:Q1-Q2) 0.4 0.4 0.7 -3.2 0.9 0.8
During Crisis (81:Q3-83:Q2) 0.4 5.3 -2.0 -2.8 0.0 -0.8
Two-years After (83:Q3-85:Q2) 0.8 1.0 -0.6 0.2 -0.7 -0.7

1995 Tequila Crisis
Two-years Prior (92:Q1-93:Q4) -0.1 -1.0 0.4 0.7 0.1 -0.1
During Crisis (94:Q1-96:Q1). -2.2 -0.7 0.5 1.3 0.2 0.9
Two-years After (96:Q2-98:Q1) -0.1 -0.2 0.2 1.1 -0.6 -0.4

2009 Global Fin. Crisis
Two-years Prior (06:Q4-08:Q3) -0.7 2.1 -0.7 -0.2 -0.7 0.2
During Crisis (08:Q4-09:Q3). 0.2 -1.2 0.3 0.5 0.2 0.0
Two-years After (09:Q4-11:Q3) -0.4 -1.1 0.4 0.8 0.1 0.1

Note: The table reports a likelihood-based measure of the importance of each shocs relative to all

shocks in the model, during different subperiods, compared to their average relative importance over

the full sample, in percentage point differences. For example, a value of +1 indicates the shock has

a 1 percentage point greater relative importance in the subsample relative to its average relative

importance over the full sample, and indicates a change in the log-likelihood of about 5 points, on

average. See Appendix G.2 for details. Bold font highlight the most important shocks in each period

according to this metric. Prior period for the 1983 Debt Crisis is limited by the data sample length.

zero. For each of the three crisis episodes, we consider the crisis episodes themselves,

as well as two years before and two years after the episode. Positive (negative) num-

bers denote relatively more (less) important shocks in a given period. For example, a

value of +1 means that the shock is relatively more important in that period relative

to its average importance over the full sample. A one percentage point change implies

a change in the log-likelihood by about 5 log points, on average. By definition, the

percentages in Table 5 sum by row.

Consider first the Debt Crisis. Since this episode starts right at the beginning

of the sample period, we can only look at the two quarters before its start. The

counterfactual analysis suggests that in the immediate run up, the most important

shocks were imported intermediate input prices and both temporary and persistent

interest rate shocks, consistent with the drop in oil prices starting in 1981 and the

Volcker disinflation in the United States. The crisis episode itself and its aftermath
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appears driven by the expenditure and technology shocks, possibly reflecting the im-

port and fiscal contraction typically associated with a sudden stop and its aftermath,

and the loss of efficiency associated with sudden adjustment of expenditure plans due

to tighter financial frictions.

Next, consider the Tequila Crisis. Our estimated model identified a peak crisis

lasting for two quarters in 1995:Q1-Q2. According to our counterfactual results,

in the run up to this crisis episode, the most important drivers were the preference

shock and imported input price shocks. The importance of these two shocks increases

during the crisis episode, even though the shock to the persistent component of the

interest rate also becomes more important. The likelihood weight of preference and

interest rate shocks declines after the crisis, while the weight in the likelihood of the

technology shocks increases during this phase in relative terms. In the post-crisis

period, the preference shock continues to play a role, while the importance of shocks

to both components of the interest rate decline markedly.

Lastly, consider the GFC episode. The counterfactual likelihood analysis suggests

that, before the crisis, expenditure and to a lesser extent a shock to the persistent

component of the interest rate were the most important drivers. This is consistent

with the lax international financial conditions, strong external demand, and possibly

loose fiscal domestic policy prevailing before the GFC. However, all other shocks

become more important during the crisis episode itself. In the aftermath of the

episode, the likelihood weight of the import price shock and temporary interest rate

shock diminishes, while that of the preference and persistent interest shocks increases.

6.3 Duration and Frequency of Simulated Crisis Episodes

We now look at the duration and frequency of crisis episodes simulated from the

estimated model, shown in Figure 6.26 The estimated model generates substantial

heterogeneity in crisis duration and frequency. Panel (a) is an histogram of simulated

crisis episodes. Given that the shortest of the three estimated crisis episode, the GFC,

lasted four quarters, here we consider episodes in which the economy is in the binding

regime for at least four consecutive quarters. The average conditional duration is 4.95

26We simulate 10,000 samples of 144 quarters length, as in our data sample. Note, however, that in
these simulations the household-firm always knows in which regime the economy is without sampling
uncertainty. Therefore, there is no uncertainty about being in the binding regime, in contrast to the
econometrician’s perspective reported in Figure 5.
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Figure 6: Model-simulated Crisis Duration and Frequency

(a) Conditional Duration: Crisis Episodes of at least Four Consecutive Quarters

(b) Frequency of Crisis Episodes of Any Duration per Sample

(c) Number of Quarters in Binding Regime per Sample

Note: Histograms of the model-implied (a) conditional crisis duration, (b) frequency of

distinct episodes of any duration in 144 quarter-long samples, and (c) number of quarters

in the binding regime in 144 quarter-long samples.

consecutive quarters in the binding regime. Some of the simulated episodes last up to

22 consecutive quarters though, but they are rare events, as they make up less than

a half-percent of all crisis episodes.

Panel (b) counts of crisis episodes of at least four quarters per sample period of 144

quarters length. The most common occurrence is four distinct crisis episodes that is

close to our estimation results, which show three distinct events in Mexico’s history.

However, there is significant heterogeneity, as some samples have no episodes at all,

while others experience as many as eight-ten events of short duration per sample.

Building on Panels (a) and (b), Panel (c) counts the total number of quarters
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in crisis episodes out of 144. The model-implied mean is 21.5 quarters, consistent

with our estimates in Figure 5, indicating that Mexico spends 21 quarters in crisis on

average. The standard deviation, however, is about 10 quarters, with a long right-tail

and a maximum of 62 quarters in the binding regime.27

6.4 Dynamics of Model-simulated Crisis Episodes

We finally turn to model-simulated crisis dynamics shown in Figure 7. As the more

severe historical episodes of sudden stop identified in Figure 5 in the early 1980s and

mid-1990s lasted about 8 quarters, we report results for episodes of such duration. The

Figure plots the model dynamics during crisis episodes of eight consecutive quarters

(starting at t = 0 and ending at t = 7, vertical dashed lines), as well as 5 years (20

quarters) before the beginning of the episode and 10 years (40 quarters) after the end

of the event. Variables are in log-levels, normalized to zero at the beginning of the

pre-crisis period that is time t = −20.

Figure 7 shows the distinctive combinations of shocks that drive the economy

before, during and after the crisis episode. Crisis episodes are preceded by a long-

lasting “boom” phase, driven by improving technology and a favorable international

environment, with improving terms of trade and a persistently lower component of

the market interest rate. These three forces drive the expansion gradually, with

increasing output, consumption and investment, in a manner consistent with empirical

characterizations of the boom phases of financial crises (Boissay et al., 2016).

The economy enters the crisis episode at t = 0, after a final acceleration, driven by

an increase in expenditures and a fall in patience. The crisis episode is precipitated

by a sudden reversal of the favorable external environment that drove the boom

phase. During the crisis episode, imported intermediate inputs and the market cost of

funding increase; the effective cost of borrowing spikes, driven by the external finance

premium on debt (EFPD). Technology stagnates and patience increases sharply. The

constraint on borrowing limits consumption smoothing and curtail the output supply

through the working capital constraint, causing output, consumption and investment

to drop sharply. The output drop from peak to through is eight percentage points,

27Also, when we compute frequency statistics for simulated crisis peaks–the analogous to the red
bars in Figure 5–we find a mean frequency of about 2.4% of the quarters in the binding regime, very
close to the typical estimates in the empirical literature on sudden stops (Calvo et al., 2006), but
with significant heterogeneity (results not reported).
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Figure 7: Dynamics of Crisis Episodes

(a) Technology (b) Import Prices (c) Expenditure

(d) Preference (e) Persist. Int. Rate (f) Temp. Int. Rate

(g) Output (h) Consumption (i) Investment

(j) CA/Y (k) TB/Y (l) EFPD

Notes: The figure plot model-simulated dynamics during crisis episodes of eight quarters, five years

(20 quarters) before the crisis, and 10 years after the crisis (40 quarters). The economy is in the

binding regime from period t = 0 to period t = 7 (vertical dashed lines). The plotted dynamics in

panels are medians across all crisis episodes identified, in log-levels setting t− 20 = 0.

in line with what observed during the Tequila crisis. The trade-balance-to-output

ratio suddenly reverts, improving persistently during the crisis phase, after a sharp

deterioration right before the beginning of the event, by about six percentage points as

a share of output from trough to peak. In line with these dynamics, the autonomous

component of expenditure continues to increase during the crisis period, which can

be interpreted in terms of the import compression typically associated with sudden

stops.

The economy rebounds quickly from these crisis episodes, but only partially, re-

covering only half of the ground lost during the crisis or about 4 percentage points.

40



After the initial rebound, a combination of persistently adverse external and internal

circumstances coalesces to produce a protracted output decline, as we can see in the

Mexican data after the Debt crisis, and also in line with empirical evidence on the

long-term consequences of financial crises in other emerging markets in (Cerra and

Saxena, 2008). The cost of borrowing and intermediate imported inputs remains ele-

vated for an extended period of time after the crisis episode. The productivity decline

is very long lasting, reaching a significantly lower level compared to before the begin-

ning of the boom phase of the crisis. Expenditure and patience also do not recover to

pre-crisis levels ten years after the end of the episode. During the post-crisis period,

investment and to a lesser extent consumption stagnate below their pre-crisis levels

(Benigno and Fornaro, 2017). As a result, the trade balance remains above its the

pre-crisis level long after the crisis has ended.

7 Conclusions

In this paper we propose a new approach to specifying and solving Dynamic Stochastic

General Equilibrium models with occasionally binding frictions that is suitable for

structural estimation. This permits estimating such models using full information

methods, obtaining estimates of critical model parameters and conducting likelihood-

based inference and counterfactual experiments. The critical step in our approach is

to specify the occasionally binding nature of the friction stochastically, so that the

formulation can be mapped into an endogenous regime-switching model.

We apply this new approach to a workhorse medium-scale model of financial crises,

the so-called sudden stops in capital flows, and estimate it with Bayesian methods

on quarterly data for Mexico since 1981. We find that the estimated model fits

Mexico’s business cycle and crisis episodes well, critical parameter estimates differ

from values previously used in the literature, and that different shocks matter for

different variables and phases of financial crisis dynamics. In particular, we show that

the model can generate heterogeneous crisis episodes of varying duration, frequency,

and intensity. Specific combinations of shocks typically drive the economy before,

during, and after crisis episodes, helping to explain why calibrated models of emerging

market business cycles perform better assuming that productivity and interest shocks

are negatively correlated. Finally, we document that our estimated model identifies

sudden stops that are longer lasting and more in line with narratives of Mexico’s
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history of financial crises than those typically simulated with traditional inequality

specifications of the collateral constraint.

We regard the estimation of larger models–including those with nominal or labor

market frictions, those with permanent and temporary productivity shocks over longer

sample periods, those with financial intermediation or equilibrium default, and those

that embed endogenous probability of infection–as important areas of future research.

Such models would be useful lenses to understand episodes like the Great Depression,

the Global Financial, and the COVID-19 Crises.
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Appendix A Model and Competitive Equilibrium

Definition

This Appendix derives the model’s equilibrium conditions and defines a competitive

equilibrium.

A.1 Derivation of Equilibrium Conditions

The household-firm maximizes the utility function

U ≡ E0

∞∑
t=0

{
dtβ

t 1

1− ρ

(
Ct −

Hω
t

ω

)1−ρ
}
, (A.1)

subject to

Ct+It = AtK
η
t−1H

α
t V

1−α−η
t −PtVt−φrt (WtHt + PtVt)−Et−

1

(1 + rt)
Bt+Bt−1 (A.2)

where gross investment follows

It = δKt−1 + (Kt −Kt−1)

(
1 +

ι

2

(
Kt −Kt−1

Kt−1

))
(A.3)
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In the binding regime, the collateral constraint is given by

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κqtKt (A.4)

with the corresponding multiplier denoted λt. In the non-binding regime, the collat-

eral constraint disappears, and the multipler is λt = 0. The first-order conditions of

this problem are the following:

dt

(
Ct −

Hω
t

ω

)−ρ
= µt (A.5)

(1− α− η)AtK
η
t−1H

α
t V
−α−η
t = Pt

(
1 + φrt +

λt
µt
φ (1 + rt)

)
(A.6)

αAtK
η
t−1H

α−1
t V 1−α−η

t = φWt

(
rt +

λt
µt

(1 + rt)

)
+Hω−1

t (A.7)

µt = λt + β (1 + rt)Etµt+1 (A.8)

Etµt+1β

 1− δ +

(
ι
2

(
Kt+1

Kt

)2

− ι
2

)
+ηAt+1K

η−1
t Hα

t+1V
1−η−α
t+1

 = µt

(
1− ι+ ι

(
Kt

Kt−1

))
− λtκqt (A.9)

Market prices for capital and labor satisfy the following two conditions:

qt = 1 + ι

(
Kt −Kt−1

Kt−1

)
(A.10)

Wt = Hω−1
t . (A.11)

Defining the borrowing cushion, B∗t , as the difference between the amount of borrow-

ing and the debt limit

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κqtKt, (A.12)

48



the regime-switching slackness condition is given by

ϕ (st)B
∗
ss + ν (st) (B∗t −B∗ss) = (1− ϕ (st))λss + (1− ν (st)) (λt − λss) (A.13)

where ϕ (st) and ν (st) are regime-switching parameters controlling the level and the

dynamics of the economy, respectively, B∗ss and λss are the regime-switching steady-

state values of B∗t and λt.

As we discussed in the text, the country interest rate and the exogenous processes

are given by

rt = r∗t + σrεr,t + ψr

(
eB̄−Bt − 1

)
(A.14)

where

r∗t = (1− ρr∗) r̄∗ + ρr∗r
∗
t−1 + σr∗εr∗,t (A.15)

logAt = ρA logAt−1 + σAεA,t (A.16)

logEt = (1− ρE) logE∗ + ρE logEt−1 + σEεE,t (A.17)

logPt = (1− ρP ) logP ∗ + ρP logPt−1 + σP εP,t (A.18)

log dt = ρd log dt−1 + σdεd,t, (A.19)

where the errors terms ε·,t are i.i.d N(0, 1).

In the paper, we also use a number of auxiliary variables defined as as

GDP: Yt = AtK
η
t−1H

α
t V

1−α−η
t − PtVt (A.20)

Debt-to-GDP Ratio: Φb
t =

Bt

Yt
(A.21)

Current Account-to-GDP Ratio: Φca
t =

Bt −Bt−1

Yt
(A.22)

Trade Balance-to-GDP Ratio: Φtb
t =

Yt − Et − Ct − It
Yt

(A.23)
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External Financing Premium on Debt: EFPDt =
λt

βEtµt+1

. (A.24)

A.2 Regime-Switching Equilibrium Definition

A competitive equilibrium of our economy is a sequence of quantities {Kt, Bt, Ct,

Ht, Vt, It, At, Et, B
∗
t } and prices {Pt, r∗t , rt, qt, wt, µt, λt} that, given the 5 exoge-

nous processes (A.16)-(A.15), satisfy the first-order conditions for the representative

household-firm (A.5)-(A.9), the market price equations (A.10)-(A.11), the market

clearing conditions (A.2)-(A.3), the debt cushion definition (A.12), regime-switching

slackness condition (A.13), and the equation for the interest rate (A.14).

Appendix B Details of the Perturbation Solution

Method

This Appendix provides details about two aspects of the solution method: (1) the

definition of, and solution for, the steady state of the endogenous regime-switching

economy; and (2) the perturbation method that generates second order Taylor ex-

pansions to the solution of the economy around the steady state.

B.1 Regime Switching Equilibrium

Write the 23 equilibrium conditions above as

Etf (yt+1,yt,xt,xt−1, χεt+1, εt, θt+1, θt) = 0. (B.1)

Here yt denotes the non-predetermined variables, xt predetermined variables, εt the

exogenous shocks, θt the regime-switching parameters, and χ the perturbation pa-

rameter.

There are 7 predetermined variables

xt−1 =
[
Kt−1, Bt−1, At−1, Pt−1, Et−1, dt−1, r

∗
t−1

]
(B.2)
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and 16 non-predetermined variables

yt =
[
Ct, Ht, Vt, It, kt, rt, qt,Wt, µt, λt, B

∗
t , Yt,Φ

b
t ,Φ

ca
t ,Φ

tb
t , EFPDt

]
, (B.3)

with 6 exogenous shocks

εt = [εA,t, εE,t, εP,t, εd,t, εr,t, εr∗,t] , (B.4)

and 2 regime-switching parameters

θt = [ϕ (st) , ν (st)] . (B.5)

In general, these variables are partitioned into those that affect the steady state, θ1,t,

and those that do not, θ2,t. In the case of our specific application, the partition is

θ1,t = [ϕ (st)] θ2,t = [ν (st)] . (B.6)

In order to solve the model, we assume the functional forms

θ1,t+1 = θ̄1 + χθ̂1 (st+1) , θ1,t = θ̄1 + χθ̂1 (st) (B.7)

θ2,t+1 = θ2 (st+1) , θ2,t = θ2 (st) (B.8)

xt = hst (xt−1, εt, χ) (B.9)

yt = gst (xt−1, εt, χ) , yt+1 = gst+1 (xt, χεt+1, χ) (B.10)

and

Pst,st+1,t = πst,st+1 (yt) . (B.11)

Now, substituting these functional forms in the 23 equilibrium conditions and

being more explicit about the expectation operator, given (xt−1, εt, χ) and st, we
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have:

Fst (xt−1, εt, χ) =

∫ 1∑
s′=0

πst,s′ (gst (xt−1, εt, χ)) f


gst+1 (hst (xt−1, εt, χ) , χε′, χ) ,

gst (xt−1, εt, χ) ,

hst (xt−1, εt, χ) ,

xt−1, χε
′, εt,

θ̄ + χθ̂ (s′) , θ̄ + χθ̂ (st)

 dµε′.

(B.12)

where dµε′ denotes the joint pdf of the shocks.

Finally, stacking all conditions by regime yields:

F (xt−1, εt, χ) =

[
Fst=0 (xt−1, εt, χ)

Fst=1 (xt−1, εt, χ)

]
= 0. (B.13)

B.2 Steady State Definition and Solution

The model has two features that make defining a steady state challenging. First, as

it is common in a regime-switching framework, some structural parameters may be

switching. In the case of our application, there is only one switching parameter that

affects the steady state, ϕ (st). Nonetheless, in principle, one could allow for regime

switching also in the parameters of the exogenous processes, a∗ (st) and p∗ (st), or

the structural parameter κ∗ (st), which would affect the level of the economy and the

steady state calculations.28 Following Foerster et al. (2016), we define the steady

state in terms of the ergodic means of these parameters across regimes. To define the

steady state, we set εt = 0 and χ = 0, which implies that the steady state is given by

f
(
yss,yss,xss,xss, 0, 0, θ̄1, θ2(s′), θ̄1, θ2(s)

)
= 0 (B.14)

for all s′, s.

In our case, the transition matrix evaluated at steady state Pss is endogenous,

since it depends on variables that in turn depend on the steady state value of the

transition matrix. To find a solution for the steady state, we proceed in two steps.

28As is well known, over finite periods of time, unit root processes and processes with structural
break or regime changes are observationally equivalent from a statistical standpoint. Allowing
for regime changes in the process for At, therefore, would be a way to accommodate permanent
productivity shocks as in Aguiar and Gopinath (2007). Similarly, stochastic volatility could be
allowed for by introducing regime switching in the some or all of the shock variances.
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First, we assume the steady state transition matrix is known and solve for all the

steady state prices and quantities. Second, we use the steady state values of the

borrowing cushion B∗ss and multiplier λss from Step 1 to update the steady state

transition matrix. We then iterate to convergence.

Step 1: Solve steady state using a given steady state transition matrix.

First, assume that the steady state transition matrix at iteration i, P(i)
ss , is known.

Next, let ξ = [ξ0, ξ1] denote the ergodic vector of P(i)
ss . Then, as noted in the paper,

define the ergodic means of the switching parameters as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1) .

The steady state of the regime-switching economy depends on these ergodic means,

and we can now solve for the steady states of all variables. First, we can partially

solve for some of the steady state directly

Ass = 1, dss = 1, Ess = E∗, Pss = P ∗, qss = 1, r∗ss = r̄∗ (B.15)

Suppose now that we knew rss. Then, we can obtain:

Ωv ≡
AssK

η
ssH

α
ssV

1−α−η
ss

PssVss
=

1 + φrss + φ (1 + rss) (1− β (1 + rss))

1− α− η
(B.16)

Ωh ≡
AssK

η
ssH

α
ssV

1−α−η
ss

WssHss

=
1 + φ (rss + (1 + rss) (1− β (1 + rss)))

α
(B.17)

Ωk ≡
AssK

η
ssH

α
ssV

1−α−η
ss

Kss

=
1

η

(
1− κ (1− β (1 + rss))

β
− 1 + δ

)
(B.18)

Hss =

(
Ass

Ωη
kΩ

α
h (PssΩv)

1−α−η

) 1
α(ω−1)

(B.19)

Vss ≡
Ωh

PssΩv

Hω
ss (B.20)

Kss =
Ωh

Ωk

Hω
ss (B.21)
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Yss = ΩhH
ω
ss − PssVss (B.22)

Wss = Hω−1
ss (B.23)

Iss = δKss (B.24)

kss = Kss (B.25)

Bss = B̄ − log

(
1 +

rss − r∗

ψr

)
(B.26)

Css = Yss − φrss (WssHss + PssVss)− Ess +Bss

(
1− 1

(1 + rss)

)
− Iss (B.27)

µss =

(
Css −

Hω
ss

ω

)−ρ
(B.28)

λss = (1− β (1 + rss))µss (B.29)

B∗ss =
1

(1 + rss)
Bss − φ (1 + rss) (WssHss + PssVss) + κKss (B.30)

Φb
ss =

Bss

Yss
(B.31)

Φca
ss = 0 (B.32)

Φtb
ss =

Yss − Ess − Css − Iss
Yss

(B.33)

EFPDss =
λss
βµss

. (B.34)
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The variable rss can then be derived as the solution of

ϕ̄B∗ss = (1− ϕ̄)λss. (B.35)

Step 2: Updating the transition matrix. Step 1 yields the variables B∗ss and

λss, and hence provides a new value of the transition matrix for iteration i+ 1:

P (i+1)
ss =

[
p00,ss p01,ss

p10,ss p11,ss

]
=

[
1− exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ1λss)

1+exp(−γ1λss) 1− exp(−γ1λss)
1+exp(−γ1λss)

]
, (B.36)

which can be checked against the guess in Step 1. We then iterate to convergence

until ∥∥P (i+1)
ss − P (i)

ss

∥∥ < tolerance,

where in our application we use a tolerance of 10−10.

B.3 Generating Approximations

To compute a second order approximation to the endogenous regime-switching model

solution, we largely follow Foerster et al. (2016), adapting to the case with endogenous

probabilities.

We take the stacked equilibrium conditions F (xt−1, εt, χ), and differentiate with

respect to (xt−1, εt, χ). The first-order derivative with respect to xt−1 produces a

complicated polynomial system denoted

Fx (xss,0, 0) = 0. (B.37)

In Foerster et al. (2016), when the transition probabilities are exogenous and fixed,

this system needs to be solved via Gröbner bases, which finds all possible solutions

in order to check them for stability. In our case with endogenous probabilities, the

standard stability checks fail, so we will focus on finding a single solution and ignore

the possibility of indeterminacy, a common simplification in the regime-switching

literature with and without endogenous switching (e.g. Farmer et al., 2011; Foerster,

2015; Maih, 2015; Lind, 2014). Ignoring the possibility of multiple equilibria is also

common in models with occasionally binding constraints. Global solution methods

of models with occasionally binding constraint also do not guarantee uniqueness, and
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the focus typically is on checking robustness of the solution to initial conditions (for

example, Mendoza, 2010; Benigno et al., 2013; Bianchi and Mendoza, 2018).

To find a model solution, we guess a set of policy functions for regime st = 1, which

reduces the equilibrium conditions Fx (xss,0, 0; st = 0) to a fixed-regime eigenvalue

problem, and solve for the policy functions for st = 0. Then, using this initial solution

as a guess, we solve for regime st = 0 under the fixed-regime eigenvalue problem, and

iterate to convergence. After solving the iterative eigenvalue problem, the remaining

systems to solve are

Fε (xss,0, 0) = 0 (B.38)

Fχ (xss,0, 0) = 0, (B.39)

and the second order systems of the form

Fi,j (xss,0, 0) = 0, i, j ∈{x, ε,χ} . (B.40)

Recalling now that the decision rules have the form

xt = hst (xt−1, εt, χ) (B.41)

yt = gst (xt−1, εt, χ) , (B.42)

the second-order approximation are

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (B.43)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (B.44)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
, with xss denoting the value of the steady-state

variables.
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B.4 Proposition 1: Irrelevance of Endogenous Switching in

the First-Order Solution

To prove Proposition 1, take the first-order derivatives of (B.13) with respect to its

arguments, evaluated at the steady state. This yields:

Fx,st (xss,0, 0) =

∑
s′ πst,s′,y (yss) gx,stfss (s′, st)

+
∑

s′ πst,s′ (yss)

[
fyt+1 (s′, st) gx,s′hx,st + fyt (s′, st) gx,st

+fxt (s′, st)hx,st + fxt−1 (s′, st)

]
(B.45)

Fε,st (xss,0, 0) =

∑
s′ πst,s′,y (yss) gε,stfss (s′, st)

+
∑

s′ πst,s′ (yss)

[
fyt+1 (s′, st) gx,s′hε,st + fyt (s′, st) gε,st

+fxt (s′, st)hε,st + fεt (s′, st)

]
(B.46)

and

Fχ,st (xss,0, 0) =

∑
s′ πst,s′,y (yss) gχ,stfss (s′, st)

+
∑

s′ πst,s′ (yss)

 fyt+1 (s′, st) gx,s′hχ,st + fyt (s′, st) gχ,st

+fxt (s′, st)hχ,st

+fθt+1 (s′, st) θ̂ (st+1) + fθt (s′, st) θ̂ (st)

 .

(B.47)

Note now that, by definition of a steady state, fss (s′, st) = 0, and so the first term

of each of these expressions equals zero. Hence, we are left with the expressions for

the exogenous transition probabilities as in Foerster et al. (2016), given by Pss =

πst,s′ (yss). QED.

Appendix C Accuracy of the Solution

We assess accuracy of the solution by checking the Euler equation error (EEE), where

EEEt = 1− λt
µt
− β (1 + rt)Et

µt+1

µt
(C.1)
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and the policy functions can be denoted by

λt = λst (xt−1, εt) , µt = µst (xt−1, εt) , rt = rst (xt−1, εt) , B∗t = B∗st (xt−1, εt) .

(C.2)

So, given (xt−1, εt)

EEEst (xt−1, εt) = 1− λst (xt−1, εt)

µst (xt−1, εt)
− β (1 + rst (xt−1, εt))

µst (xt−1, εt)
(C.3)

×
1∑

st+1=0

pst,t+1 (xt−1, εt)

∫
Rε
µst+1 (xt, εt+1)µ (εt+1) dεt+1,(C.4)

where xt−1 denotes the predetermined variables and εt denotes the shocks.

We simulate the model for 10,000 periods, after a 1,000 burn-in period to get

sequences of st and (xt−1, εt). For each simulation period, we draw 10,000 values of

εt+1 to compute the integral above. We then average the absolute values, finding

errors of approximately $1 per $1,000 of consumption.

To compare our perturbation-based solution method with global methods we

solved a smaller-scale occasionally bonding constraint model, i.e., the model in Jer-

mann and Quadrini (2012), using three different methods. First, we replicate the

results in that paper solving the inequality-constraint version of the model with a

global projection method. Second, we solve the endogenous regime-switching formu-

lation of that model via the same global projection methods. Third, we solve the

endogenous regime-switching formulation with our proposed perturbation method.

Table C.1: Comparing Solution Accuracy: Global vs. Perturbation Meth-
ods

Inequality Endo Switch
Comparison Constraint Global Perturb.
Standard Deviations

GDP 2.38 2.46 2.28
Hours 1.36 1.46 1.33

Autocorrelations
GDP 0.94 0.94 0.94
Hours 0.77 0.76 0.77

Euler Eqn Errors (log10) -10.47 -3.59 -3.41

Table C.1 reports some of the results and highlights that these three approaches
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have nearly identical implications for the standard deviations and autocorrelations

of GDP and hours, which are two key variables in that model. Furthermore, the

Euler equation errors all achieve reasonable levels of accuracy. The traditional in-

equality constraint solved with global method has the smallest Euler equation errors.

However, the endogenous switching model solved globally and the perturbation so-

lution returned accuracy values of -3.6 and -3.4 in log-10 points, respectively.29 The

latter two numbers suggest an approximation error of $2.60 and $3.90 per $10,000

of consumption. The higher accuracy comes at a significant computational cost, as

the global methods solve in minutes, while the perturbation solution takes less than a

second. Moreover, we also note here that when Binning and Maih (2017) investigated

the properties of our framework with simulated data from other structural models,

they found a high degree of accuracy.

Appendix D Estimation Procedure

D.1 State Space

For likelihood estimation, the state space representation is

Xt = Hst (Xt−1, εt) (D.1)

Yt = Gst (Xt,Ut) (D.2)

where Xt denotes the state, Yt denotes the observation, εt denotes the structural

shocks, and Ut denotes the observation errors.

Recall the second-order approximation takes the form

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (D.3)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (D.4)

29Note that this value can be driven down further by optimizing the number of gridpoints in our
global solution algorithm.
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where St =
[

(xt−1 − xss)
′ ε′t 1

]′
. Therefore, we can define the state variables as

Xt =
[

x′t x′t−1 y′t y′t−1 εt

]′
. (D.5)

The nonlinear transition equations,

Xt = Hst (Xt−1, εt) (D.6)

can be represented as
xt

xt−1

yt

yt−1

εt

 =


xss +H

(1)
st St + 1

2
H

(2)
st (St ⊗ St)

xt−1

yss +G
(1)
st St + 1

2
G

(2)
st (St ⊗ St)

yt−1

εt

 . (D.7)

The observation equation

Yt = Gst (Xt,Ut) (D.8)

is given by 

∆yt

∆ct

∆it

rt

∆Bt/Yt

∆Pt


= D


xt

xt−1

yt

yt−1

εt

+ Ut (D.9)

where D denotes a selection matrix of the form

∆yt

∆ct

∆it

rt

∆Bt/Yt

∆Pt


=



0 0 1[yt] −1[yt] 0

0 0 1[ct] −1[ct] 0

0 0 1[it] −1[it] 0

0 0 1[rt] 0 0

0 0 1[Φcat ] 0 0

1[Pt] −1[Pt] 0 0 0




xt

xt−1

yt

yt−1

εt

+ Ut. (D.10)
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D.2 Filtering

To filter the likelihood, we use the Unscented Kalman Filter (UKF). The UKF calcu-

lates the state mean and covariance by propagating deterministically chosen sigma-

points through the nonlinear functions. The transformed points are then used to

calculate the mean and covariance matrix. As Julier and Uhlmann (1999) note, the

critical assumption taken to apply the UKF is that the prediction density and the

filtering density are both Gaussian.

The filtering and smoothing largely follow Binning and Maih (2015). The filter

starts by combining the state vector and exogenous disturbances into a single vector,

Xa
t−1 = [Xt−1, εt]

′, with the following mean and covariance matrix conditional on Y1:t−1

and regime st−1:

Xa
t−1(st−1) =

[
Xt−1|t−1(st−1)

0ε

]
(D.11)

P a
t−1(st−1) =

[
P x
t−1|t−1(st−1) 0

0 I

]
. (D.12)

The sigma-points Xa
i,t−1(st−1) that consist of the sigma-points for state variables

Xx
i,t−1(st−1) and the sigma-points for exogenous shocks Xε

i,t−1(st−1) are chosen as fol-

lows:

Xa
0,t−1(st−1) = Xa

t−1(st−1) (D.13)

Xa
0,t−1(st−1) = Xa

t−1(st−1) (D.14)

Xa
i,t−1(st−1) = Xa

t−1(st−1) + (h
√
P a
t−1(st−1))i for i = 1 . . . L (D.15)

Xa
i,t−1(st−1) = Xa

t−1(st−1)− (h
√
P a
t−1(st−1))i−L for i = L+ 1 . . . 2L, (D.16)

where h =
√

3 and L denotes the number of state variables and exogenous shocks.

The weights for the sigma-points are given by:

w0 =
h− L

2h
(D.17)

wi =
1

2h
for i = 1 . . . 2L (D.18)

The sigma-points and the assigned weights are used to calculate the expected

mean and covariance by propagating sigma-points through transition equations and
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taking weighted average:

Xi,t|t−1(st−1, st) = Hst(X
x
i,t−1(st−1),Xε

i,t−1(st−1)) (D.19)

Xt|t−1(st−1, st) =
2L∑
i=0

wiXi,t|t−1(st−1, st) (D.20)

P x
t|t−1(st−1, st) =

2L∑
i=0

wiX̃iX̃
T
i (D.21)

Yt|t−1(st−1, st) = DXt|t−1(st−1, st) (D.22)

where X̃i = Xi,t|t−1(st−1, st)−Xt|t−1(st−1, st). From these conditions, we get the Gaus-

sian approximation predictive density p(Xt|Y1:t−1, st−1, st) = N(Xt|t−1(st−1, st), P
x
t|t−1(st−1, st)).

The predictive density is then updated using the standard Kalman filter rule:

P y
t|t−1(st−1, st) = DP x

t|t−1(st−1, st)D
T +R (D.23)

P xy
t|t−1(st−1, st) = P x

t|t−1(st−1, st)D
T (D.24)

Kt(st−1, st) = P xy
t|t−1(st−1, st)(P

y
t|t−1(st−1, st))

−1 (D.25)

Xt|t(st−1, st) = Xt|t−1(st−1, st) +Kt(st−1, st)(Yt − Yt|t−1(st−1, st)) (D.26)

P x
t|t(st−1, st) = P x

t|t−1(st−1, st)−Kt(st−1, st)P
y
t|t−1(st−1, st)K

T
t (st−1, st) (D.27)

This updating step gives p(Xt|Y1:t, st−1, st) = N(Xt|t(st−1, st), P
x
t|t(st−1, st)). As a

by-product of the filter, we can get the density of Yt conditional on Y1:t−1, st, and

st−1

p(Yt|Y1:t−1, st−1, st; θ) = N(Yt|t−1(st−1, st), P
y
t|t−1(st−1, st)) (D.28)

Since the Unscented Kalman filter with regime switches creates a large number

of nodes at each iteration where the filtered mean and covariance matrix need to be

evaluated, we implement the following collapsing procedure suggested by Kim and
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Nelson (1999)

Xt|t(st = j) =
1

Pr(st = j|Y1:t)

{ M∑
i=1

Pr(st−1 = i, st = j|Y1:t)Xt|t(st−1 = i, st = j)
}
(D.29)

P x
t|t(st = j) =

1

Pr(st = j|Y1:t)

{ M∑
i=1

Pr(st−1 = i, st = j|Y1:t)[P
x
t|t(st−1 = i, st = j)(D.30)

+(Xt|t(st = j)− Xt|t(st−1 = i, st = j))(Xt|t(st = j)− Xt|t(st−1 = i, st = j))T ]
}

where Pr(st, st−1|Y1:t) and Pr(st|Y1:t) are obtained from the following Hamilton filter

Pr(st, st−1|Y1:t−1) = Pr(st|st−1) Pr(st−1|Y1:t−1) (D.31)

Pr(st, st−1|Y1:t) =
p(Yt|st, st−1,Y1:t−1) Pr(st, st−1|Y1:t−1)∑

st

∑
st−1

p(Yt|st, st−1,Y1:t−1) Pr(st, st−1|Y1:t−1)
(D.32)

Pr(st|Y1:t) =
∑
st−1

Pr(st, st−1|Y1:t). (D.33)

The resulting conditional marginal likelihood is

p(Yt|Y1:t−1; θ) =
∑
st

∑
st−1

p(Yt|st, st−1,Y1:t−1) Pr(st, st−1|Y1:t−1). (D.34)

D.3 Smoothing

Once we perform the filtering using the UKF for t = 1, . . . , T , we can also obtain

Pr(st, st+1|Y1:T ), Pr(st|Y1:T ), xt|T (st, sT ), and P x
t|T (st, sT ):

Pr(st, st+1|Y1:T ) =
Pr(st+1|Y1:T ) Pr(st|Y1:t) Pr(st+1|st)

Pr(st+1|Y1:t)
(D.35)

Pr(st|Y1:T ) =
∑
st+1

Pr(st, st+1|Y1:T ) (D.36)

Xt|T (st, st+1) = Xt|t(st) + K̃t(st, st+1)(Xt+1|T (st+1)− Xt+1|t(st, st+1)) (D.37)

P x
t|T (st, st+1) = P x

t|t(st)− K̃t(st, st+1)(P x
t+1|T (st+1)− P x

t+1|T (st, st+1))K̃t(st, st+1)T

Given the above smoothing algorithm, we implement a collapsing procedure sim-
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ilar to those in the filtering step:

Xt|T (st = j) =
1

Pr(st = j|Y1:T )

{ M∑
j=1

Pr(st = i, st+1 = j|Y1:T )Xt|T (st = i, st+1 = j)
}
,

(D.38)

P x
t|T (st = j) =

1

Pr(st = j|Y1:T )

{ M∑
j=1

Pr(st = i, st+1 = j|Y1:T )[P x
t|T (st = i, st+1 = j)

+(Xt|T (st = j)− Xt|T (st = i, st+1 = j))(Xt|T (st = j)− Xt|T (st = i, st+1 = j))T ]
}
.(D.39)

Appendix E Calibrated Parameters

To calibrate the parameters that we do not estimate, we largely follow Mendoza

(2010), targeting the same moments, but adapting the computations to our model

specification. We start by calibrating certain parameters based on the steady state

of the model without working capital and the borrowing constraint–i.e., with φ = 0

and ϕ̄ = 0, which implies λss = 0. In addition, we set

β (1 + rss) = 1, (E.1)

and

Ωv =
1

1− α− η
, Ωh =

1

α
, Ωk =

1

η

(
1

β
− 1 + δ

)
. (E.2)

The implied factor payment ratios are

PssVss
Yss + PssVss

=
1

Ωv

= 1− α− η (E.3)

WssHss

Yss
=

1

Ωh

(
1− 1

Ωv

) =
α

α + η
(E.4)

(
1
β
− 1 + δ

)
Kss

Yss
=

1
β
− 1 + δ

Ωk

(
1− 1

Ωv

) =
η

α + η
. (E.5)
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Using the National Accounts, we obtain[
1− α− η = 0.102

α
α+η

= 0.66

]
=⇒

[
α = 0.59268

η = 0.30532

]
. (E.6)

We then set the depreciation rate to an annual value of 8.8 percent, so that

(1− δ)4 = 1− 0.088 =⇒ δ = 0.022766. (E.7)

The capital-to-(gross annual) output ratio is 1.758, so the capital-to-(gross quarterly)

output ratio, Ω−1
k , implies

Ω−1
k =

(
1

η

(
1

β
− 1 + δ

))−1

= 4 ∗ 1.758 =⇒ β = 0.97977. (E.8)

In turn, this yields an annualized real interest rate of

(1 + rss)
4 =

(
1

β

)4

= 1.0852, (E.9)

which is very close to the value used in Mendoza (2010), but it is obtained under

different discounting assumptions. From the resource constraint,

Css
Yss

+
Iss
Yss

+
Ess
Yss

= 1 +

(
1− 1

1 + rss

)
Bss

Yss
, (E.10)

we obtain

0.65 + 0.172 + 0.11 = 1 + (1− β)
Bss

Yss
=⇒ Bss

Yss
= −3.3605. (E.11)

This implies
Bss

4Yss
= −0.840127, (E.12)

from which we have

Yss =
α + η

α

 1

P 1−α−η
ss

(
1
η

(
1
β
− 1 + δ

))η (
1
α

)α ( 1
1−α−η

)1−α−η


ω

α(ω−1)

= 1.8202,(E.13)
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and

E∗ =
Ess
Yss

Yss = 0.11 ∗ 1.8202 = 0.20022, (E.14)

as well as

Bss = −0.840127 ∗ 4 ∗ 1.8202 = −6.11685. (E.15)

Finally, conditional on r∗ and ψr, B̄ is pinned down via

B̄ = log

(
1 +

rss − r∗

ψr

)
+Bss. (E.16)

Appendix F Data Appendix

National accounts are from the National Statistic Office. The data series used in the

analysis merge two sets of official statistics by updating the level of the accounts based

on 1993 constant prices with the quarterly rate of growth of the accounts based on

2008 constant prices. The merging is necessary as the deflators to splice the accounts

in levels were not available at the time of last download of the data (May 2017). The

two sets of national accounts overlap from 1993:Q1 to 2006:Q4. Over this period, the

difference in annual rate of growth is less than 0.01 percent in absolute value for GDP,

less than 0.05 percent for consumption, less than 2 percent for investment, and less

than 1 and 3 percent for imports and exports, respectively. The correlations between

the series are more than 0.9 for all series except investment that is 0.84, pointing

to possibly larger measurement errors in this variable. The differences are smaller

the closer to the end of the sample. For this reason, we choose to update the 1993

accounts rather than backdate the 2008 ones.

The specific sources of the data are as follows:

• 1980:Q1-2006:Q4 (Labeled 1993 accounts)–Supply and demand of goods and

services. Original Series (not seasonally adjusted). Constant prices, annual

1993 = 100. We obtained these from the Central Bank of Mexico (Gabriel,

2008).

• 2006:Q1-2016:Q4 (Labeled 2008 accounts)–Supply and demand of goods and

services. Original series (not seasonally adjusted). Constant prices, annual

2008 = 100 (Oferta y demanda de bienes y servicios. Series originales. A pre-

cios constantes 2008). Available from http://www3.inegi.org.mx/sistemas/
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tabuladosbasicos/tabdirecto.aspx.

The data are not seasonally adjusted and show a strong seasonal pattern. To sea-

sonally adjust all series (assumed to be I(1) processes), we adjust the log-difference

using the X-12 procedure with the additive option in Eviews. We then use the log

of the first observation of the raw series (not seasonally adjusted) and cumulate the

seasonally adjusted log-difference. The net exports to GDP series, used to validate

the model externally but not as an observable variable in estimation, is calculated as

real exports minus real imports divided by real GDP.

The current account as a percentage of GDP is from the balance of payment statis-

tics, obtained from the OECD Economic Outlook Database (Series MEX.CBGDPR.Q,

OECD-EO-MEX-CBGDPR-Q).

As a proxy for the relative price of intermediate goods, entered as observable in

estimation, we use a measure of Mexico’s terms of trade obtained from Banco de

Mxico (PPI Producer and International Trade Price Indexes, series SP12753).

Mexico’s country interest rate is calculated following Uribe and Yue (2006) as

rt = r∗t + spreadt (F.1)

where r∗ is the US real interest rate, and spread is a proxy for Mexico’s country risk

or sovereign spread. We compute r∗ as 3-month Treasury Constant Maturity Rate

adjusted for ex post CPI (annualized) quarterly inflation, using period average data.

The source of these data is FRED. For the country spread, as customary, we use the

Mexico’s component of the JP Morgan EMBI.

Unfortunately, the EMBI spread is available only starting from 1993. In order to

estimate the country spread before 1993, we rely on empirical modeling of the rela-

tion between domestic real interest rates and country risk at the Banco de Mexico

(Aportela Rodriguez et al., 2001) that estimates a close and stable relation between a

measure of the domestic real interest rate and the EMBI spread over the period over

which both these variables are available. The only interest series available going back

to 1980 is a three-month nominal short-term rate obtained from Banco de Mexico

(Average monthly yield on 90-days Cetes, series SF3338).30 So we estimate a rela-

tionship between this nominal interest rate, it, and the EMBI during the period over

30There are three missing monthly observations in this series: August and September 1986 and
November 1988. We fill these gaps using July 1986 for 1986Q3 and the average of October and
December 1988 for 1988:Q4.
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which the EMBI is observable, adjusting for inflation, πt, which was an important

source of nominal interest rate variation in the 1980s, and then invert it. Specifically,

we posit the following simplified version of the model that (Aportela Rodriguez et al.,

2001) estimate:

it = α0 + α1πt + α2EMBIt. (F.2)

We then solve the fitted equation for the country risk component of the domestic real

interest rate, which we denote as ˆEMBIt. The estimated regression is (t-statistics in

parentheses and R2 = 0.883):

ît = −0.00346
(−0.42)

+ 0.397
(4.46)

πt + 2.770
(7.37)

ˆEMBIt. (F.3)

Appendix G Additional Results

In this appendix we report additional empirical results.

G.1 Estimated Shocks and Transition Probabilities

Figure 8 plots the estimated model implied shocks in standard deviation units, to-

gether with a two-standard deviations band. The figure shows that the model fit

is largely achieved without relying on unusually large shocks, including during crisis

times. Shocks slightly outside the two-standard divisions band are estimated right

before the 1982 debt crisis, possibly do to the limited number of observations before

the peak of that episode. TFP, expenditure, and preference shocks, however, are all

well within the band during the that event.

Figure 9 plots the pseudo-real-time (i.e. filtered) estimated transition probabili-

ties; panel (a) shows the probability of switching from the non-binding to the binding

regime, while panel (b) shows the probability of switching from the binding to the

non-binding regime. In other words, they plot the estimated counterpart of the transi-

tion probabilities together with the model identified crisis peaks. These probabilities

provide the odds of switching from one regime to the other as the model travels

through the sample. Their behavior is driven by the estimated parameters γ0 and γ1

and the estimated values of B∗ and λ. Both probabilities are time-varying and hence

suggest that a model with exogenous and constant switching probabilities would be
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Figure 8: Model Estimated Shocks

(a) TFP Shock

(b) Expenditure Shock

(c) Import Price Shock

(d) Preference Shock

(e) Transitory Interest Rate Shock

(f) Persistent Interest Rate Shock

Notes: The figure plots the estimated model implied shocks, in standard deviation units, together

with a two-standard deviations band (black dashed lines). Red bars indicate model-identified periods

of crisis peak, see text for definition.
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Figure 9: Transition Probabilities

(a) Transition Probability of Binding Given Non-Binding

(b) Transition Probability of Non-Binding Given Binding

Notes: The top panel shows the model-implied filtered probability of transitioning into the binding

regime in subsequent period, conditional on being in the non-binding regime in the current period.

The bottom panel shows the filtered probability of transitioning to the non-binding regime, condi-

tional on being in the binding regime. Red bars indicate model-identified crisis peaks defined in the

paper.

misspecified.

G.2 Assessing the Relative Importance of Shocks: A Likelihood-

based Indicator

To study the importance of shocks before, after and during financial crises episodes,

we construct an indicator of relative importance of each shock. Let LL denote the

maximized log-likelihood over the full sample, and let CLLi,t denote the counterfac-

tual full-sample log likelihood when shock i is set to zero in quarter t (i.e. εi,t = 0).

The loss of fit in likelihood points,

∆i,t = LL− CLLi,t, (G.1)

can be interpreted as an measure of importance of εi,t. Figure 10 shows how this

measure evolves. There is an obvious shortcoming to this measure: since we are

computing the difference in the likelihood over the full sample, earlier observations

tend to have larger values of ∆i,t due to the fact that they impact all subsequent

quarters.

Hence, we focus on a relative importance measure. The importance of εi,t relative
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Figure 10: Historical Importance of Shocks, Log Points

Notes: For each quarter, shows the likelihood contribution (in log points) for each shock, computed

by setting the given shock to zero in the given quarter.

to other shocks at time t can be assessed as

Λi,t =
∆i,t∑
j ∆j,t

, (G.2)

where the denominator of this expression cumulates the the losses across all shocks.

In the paper, we report this measure of relative importance in a given subsample

period of T quarters, (t + T )− (t), compared to the full sample averages, Λ̄i. Thus,

the subsample measure in the main text can be computed by
∑t1

t=t0
Λi,t − Λ̄i. Note

here that, similar to our variance decomposition results, this calculation ignores the

non-linearities captured by the second-order solution.
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