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1 Introduction

As COVID-19 spreads throughout the world, governments are struggling with how to under-

stand and manage the epidemic. Epidemiology models have been widely used to predict the

course of the epidemic (e.g., Ferguson et al. 2020). While these models are very useful, they

do have a signi�cant shortcoming: they do not allow for the interaction between economic

decisions and rates of infection.

Policy makers certainly appreciate this interaction. For example, in an op-ed piece,

Ben Bernanke and Janet Yellen (2020) write: �In the near term, public health objectives

necessitate people staying home from shopping and work, especially if they are sick or at

risk. So production and spending must inevitably decline for a time.�

In this paper, we extend the canonical SIR model proposed by Kermack and McKendrick

(1927) to study the equilibrium interaction between economic decisions and epidemic dy-

namics.1 Our model features a two-way interaction between the epidemic and the economy.

People�s decisions to cut back on consumption and work reduce the severity of the epidemic,

as measured by total deaths. These same decisions exacerbate the size of the recession caused

by the epidemic.

In our model, an epidemic has both aggregate demand and aggregate supply e¤ects. The

supply e¤ect arises because the epidemic exposes workers to the virus. Workers react to that

risk by reducing their labor supply. The demand e¤ect arises because the epidemic exposes

consumers to the virus. Consumers react to that risk by reducing consumption. The supply

and demand e¤ects work together to generate a large, persistent recession.

The competitive equilibrium is not Pareto optimal because people infected with the virus

do not fully internalize the e¤ect of their consumption and work decisions on the spread of

the virus. To be clear, this market failure does not re�ect a lack of good intentions or

irrationality on the part of infected people. It simply re�ects the fact that each infected

person takes economywide infection rates as given. But collectively, their behavior does

change infection rates, thereby imposing unpriced costs on susceptible people.2

A natural question is: what policies should the government pursue to deal with the

infection externality? We focus on simple containment policies that reduce consumption and

1SIR is an acronym for susceptible, infected, recovered, and removed.
2The behavior of susceptible people is also di¤erent in the competitive equilibrium and the Pareto op-

timum. This di¤erence can also be interpreted as an externality because it in�uences the dynamics of the
epidemic and thus a¤ects the number of people killed by the virus. See Rachel (2020) and Garibaldi, Moen,
and Pissarides (2020) for a discussion of this e¤ect.
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hours worked. By reducing economic interactions among people, these policies exacerbate the

recession but raise welfare by reducing the death toll caused by the epidemic. We �nd that

it is optimal to introduce large-scale containment measures that result in a sharp, sustained

drop in aggregate output. In our benchmark model, when health care capacity is limited and

vaccines and treatments don�t arrive before the epidemic is over, containment policy saves

roughly half a million lives in the United States.

To make the intuition for our results as transparent as possible, we use a relatively simple

model. A cost of that simplicity is that we cannot study many important policy issues

related to the epidemic. For example, we do not consider policies that mitigate the economic

hardships su¤ered by households and businesses. Such policies include �scal transfers to

households and loans to keep �rms from going bankrupt. We also do not study policies

aimed at maintaining the liquidity and health of �nancial markets.

Finally, we abstract from nominal rigidities that could play an important role in deter-

mining the short-run response of the economy to an epidemic. For example, if prices are

sticky, a given fall in the demand for consumption would generate a larger recession. Other

things equal, a larger recession would mitigate the spread of the infection.3 But we are con�-

dent that the central message from our current analysis will be robust: there is an inevitable

trade-o¤ between the severity of the recession and the health consequences of the epidemic.4

Our point of departure is the canonical SIR model proposed by Kermack and McKendrick

(1927). In this model, the transition probabilities between health states are exogenous

parameters. We modify the model by assuming that purchasing consumption goods and

working brings people in contact with each other. These activities raise the probability that

the infection spreads. We refer to the resultant framework as the SIR-macro model.

We choose parameters so that the Kermack-McKendrick SIR model is consistent with the

scenario outlined by Chancellor Angela Merkel in her speech on March 11, 2020 (Bennhold

and Eddy 2020). According to this scenario, �60% to 70% of the population will be infected as

long as this remains the situation.�Using 60% as our benchmark value, the SIR model implies

that the share of the initial population infected peaks at 6:8%. Applying this scenario to the

United States implies that roughly 200 million Americans will eventually become infected

and 1 million people will die. An obvious shortcoming of the SIR model is that people do

not take any actions to reduce the chances of becoming infected and infection dynamics are

3In a follow-up to this paper, Eichenbaum, Rebelo, and Trabandt (2020b) incorporate nominal rigidities
and physical investment into the model.

4In an interesting essay, Gourinchas (2020) makes a similar point.
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not in�uenced by the level of economic activity.

The interaction between economic activity and transition probabilities in the SIR-macro

model substantially changes the dynamics of the epidemic and its economic impact. One

way to assess this impact is to focus on the simplest version of the SIR-macro model that

abstracts from the possibility of vaccinations, medical treatments, and limited health care

capacity. Relative to the SIR model, this simple SIR-macro model implies a sharper recession

and fewer deaths. The average fall in aggregate consumption in the �rst year of the epidemic

is roughly seven times larger than in the SIR model (4:7% vs. 0:7%). This larger decline in

economic activity reduces the infection peak (5:2% vs. 6:8%) as well as the percentage of

the population who becomes infected (54% vs. 60%). Critically, the total number of U.S.

deaths caused by the epidemic falls from 1 million to 890; 000.

To design optimal policy, one must understand how epidemics end. In both the SIR

and SIR-macro models, epidemics end when a su¢ ciently high fraction of the population

acquires immunity so that the number of infections no longer rises (i.e., the population

achieves �herd immunity�). Absent vaccines, the only way to acquire immunity is to become

infected and recover. Sadly, without e¤ective medical treatments, this process involves the

death of many people. In all versions of our model, it is optimal for policy makers to avoid

recurrent epidemics. So a key question for policy is: what is the optimal way to reach herd

immunity?

In the SIR-macro model, it is possible to prevent the infection from spreading by adopt-

ing large, permanent containment measures. This approach has two problems. First, the

permanent containment measures create a persistent economic depression. Second, the pop-

ulation never reaches herd immunity. So, infections would recur if containment was ever

relaxed.

The best policy in this world is to curtail consumption when externalities are large, that

is, when the number of infected people is high. Such a policy involves gradually ramping

up containment measures as infections rise and slowly relaxing them as new infections wane

and the population approaches herd immunity.

An important concern in many countries is that the health care system can be over-

whelmed by a large number of infected people. To analyze this scenario, we extend the

simple SIR-macro model so that the case fatality rate (the probability of dying conditional

on being infected) is an increasing function of the number of people infected. We �nd that

the competitive equilibrium involves a much larger recession as people internalize the higher
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case fatality rates. People cut back more aggressively on consumption and work to reduce

the probability of being infected. As a result, fewer people are infected in the competitive

equilibrium, but more people die. The optimal policy involves a much more aggressive re-

sponse than in the simple SIR-macro economy. The reason is that the cost of the externality

is much larger since a larger fraction of the infected population dies.

How does the possibility of an e¤ective treatment being discovered change our results?

The qualitative implications are clear: people become more willing to engage in market

activities because the expected cost of being infected is smaller. So, along a path in which

treatment is not actually discovered, the recession induced by the epidemic is less severe.

Sadly, along such a path, the total number of infected people and the death toll rise relative

to the baseline SIR-macro model. That said, the quantitative di¤erence between this model

and the baseline SIR-macro model is quite small, with respect to both the competitive

equilibrium and the best containment policy.

How does the possibility of a vaccine being discovered change our results? Vaccines don�t

cure infected people, but they do prevent susceptible people from becoming infected. In

contrast, treatments cure infected people but do not prevent future infections. Given our

benchmark calibration, these di¤erences are not very important for the competitive equilib-

rium. But they are very important for the design of optimal policy. With vaccination as a

possibility, it is optimal to immediately introduce severe containment measures to minimize

deaths. Those measures cause a large recession. But this recession is worth incurring in the

hope that a vaccine arrives before many people get infected.

The most general version of our model, discussed in Section 6, incorporates the proba-

bilistic development of vaccines and treatments, as well as a case fatality rate that rises with

the number of infected people. The latter feature re�ects capacity constraints in the health

care system. We refer to this version of the model as the benchmark SIR-macro model.

In this model, it is optimal to immediately introduce severe containment measures and

increase those measures as more of the population is infected. The best containment pol-

icy dramatically increases the magnitude of the recession. Absent containment measures,

average consumption falls by about 7% in the �rst year of the epidemic. With optimal con-

tainment, average consumption falls by 22%. Notably, the size of the recession is smaller

than in the medical preparedness model. The reason is that the prospect of vaccinations and

treatments reduces the magnitude of the externality associated with the medical prepared-

ness problem.
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The bene�t of the large recession associated with optimal containment in the benchmark

model is a less severe epidemic. Compared to the competitive equilibrium, the peak infection

rate drops from 4:7% to 2:5% of the initial population. The optimal policy reduces the death

toll as a percentage of the initial population from 0:40% to 0:26%. For the United States,

this reduction amounts to about half a million lives.

We emphasize that these numbers pertain to a worst-case scenario in which vaccines and

treatments never arrive. If they do arrive, many more lives would be saved. Thankfully,

they would be saved by medicine rather than by containment policies.

Finally, we quantify the e¤ects of delaying or prematurely ending optimal containment

policies. Abandoning containment policies prematurely leads to an initial economic recovery.

But it also leads to a large rise in infection rates. That rise causes a new, persistent recession.

Tragically, the overall death toll rises because optimal policy was abandoned.

Suppose that containment policies are designed and implemented well into an infection

episode. At that point, it is optimal to adopt extreme containment measures that cause

a large recession. The reason is simple: the longer is the delay, the larger is the number

of infections and the externalities associated with economic activity. Optimal policy then

involves draconian containment to o¤set those externalities. Even so, the overall death toll

is much larger than if containment had been implemented without delay.

The simple containment strategy that we study mimics a key feature of existing policies:

containment applies equally to everyone, regardless of their health status. A natural ques-

tion is: how much better could a benevolent government do if it could directly choose the

consumption and hours worked of susceptible, infected, and recovered people?

We answer this question by solving the relevant social-planning problem. This solution,

which we call �smart containment,� requires that infected people don�t work unless they

recover. This isolation policy means that susceptible people can work without the risk of

becoming infected. The amount that susceptible and recovered people consume is the same

as in the pre-epidemic steady state. Consumption of infected people depends on whether

it is feasible to deliver goods to them without the risk of infecting other people. In any

event, the economy does not su¤er in any meaningful way from a recession. Moreover, the

overall death toll of the epidemic is very small, with the number of infected people declining

monotonically from its initial level to zero.

The previous results point to the importance of antigen and antibody tests that would

allow health care professionals to quickly ascertain people�s health status. The social returns
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to gathering this information and acting on it are enormous. These actions reduce both the

death toll and the size of the economic contraction relative to the outcomes associated with

the best simple containment policy.

2 The SIR-Macro Model

In this section, we describe the economy before the start of the epidemic. We then present

the SIR-macro model.

2.1 The preinfection economy

The economy is populated by a continuum of ex ante identical people with measure one. Prior

to the start of the epidemic, everybody is identical and maximizes the objective function

U =
1X
t=0

�tu(ct; nt).

Here, � 2 (0; 1) denotes the discount factor and ct and nt denote consumption and hours
worked, respectively. For simplicity, we assume that momentary utility takes the form

u(ct; nt) = ln ct �
�

2
n2t .

The budget constraint of the representative person is

(1 + �t)ct = wtnt + �t.

Here, wt denotes the real wage rate, �t is a Pigouvian tax rate on consumption, and �t

denotes lump-sum transfers from the government. As discussed below, we think of �t as a

proxy for containment measures aimed at reducing social interactions. For this reason, we

refer to �t as the containment rate. In Section 5, we study an alternative way to model

containment that does not involve taxation but yields very similar results.

The �rst-order condition for the representative person�s problem is

(1 + �t)�nt = c
�1
t wt.

There is a continuum of competitive representative �rms of unit measure that produce

consumption goods (Ct) using hours worked (Nt) according to the technology
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Ct = ANt.

The �rm chooses hours worked to maximize its time-t pro�ts �t

�t = ANt � wtNt.

The government�s budget constraint is given by

�tct = �t.

In equilibrium, nt = Nt and ct = Ct.

2.2 The outbreak of an epidemic

Epidemiology models generally assume that the probabilities governing the transition be-

tween di¤erent states of health are exogenous with respect to economic decisions. We modify

the canonical SIR model proposed by Kermack and McKendrick (1927) so that these tran-

sition probabilities depend on people�s economic decisions. Since purchasing consumption

goods or working brings people into contact with each other, we assume that the probability

of becoming infected depends on these activities.

The population is divided into four groups: susceptible (people who have not yet been

exposed to the disease), infected (people who contracted the disease), recovered (people

who survived the disease and acquired immunity), and deceased (people who died from the

disease). The fractions of people in these four groups are denoted by St, It, Rt, and Dt,

respectively. The number of newly infected people is denoted by Tt.5

Susceptible people can become infected in three ways. First, they can meet infected peo-

ple while purchasing consumption goods. The number of newly infected people that results

from these interactions is given by �1(StCst ) (ItC
i
t). The terms StC

s
t and ItC

i
t represent total

consumption expenditures by susceptible and infected people, respectively. The parameter

�1 re�ects both the amount of time spent shopping and the probability of becoming in-

fected as a result of that activity. In reality, di¤erent types of consumption involve di¤erent

amounts of contact with other people. For example, attending a rock concert is much more

5We assume that people know their current health status. In subsequent work, Eichenbaum, Rebelo,
and Trabandt (2020a), we develop a model in which people do not know their health status unless they are
tested.
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contact intensive than going to a grocery store. For simplicity, we abstract from this type of

heterogeneity.

Second, susceptible and infected people can meet at work. The number of newly infected

people that results from interactions at work is given by �2(StN s
t ) (ItN

i
t ). The terms StN

s
t

and ItN i
t represent total hours worked by susceptible and infected people, respectively. The

parameter �2 re�ects the probability of becoming infected as a result of work interactions. We

recognize that di¤erent jobs involve di¤erent levels of social contact. For example, working

as a dentist or a waiter is much more contact intensive than writing software. Again, for

simplicity, we abstract from this source of heterogeneity.

Third, susceptible and infected people can meet in ways not directly related to consuming

or working, for example, meeting a neighbor or riding an elevator. The number of random

meetings between infected and susceptible people is StIt. These meetings result in �3StIt

newly infected people.

The total number of newly infected people is given by6

Tt = �1 (StC
s
t )
�
ItC

i
t

�
+ �2 (StN

s
t )
�
ItN

i
t

�
+ �3StIt. (1)

Kermack and McKendrick�s (1927) SIR model is a special case of our model in which the

propagation of the disease is unrelated to economic activity (�1 = 0, �2 = 0).

The number of susceptible people at time t + 1 is equal to the number of susceptible

people at time t minus the number of susceptible people who got infected at time t:

St+1 = St � Tt. (2)

The number of infected people at time t + 1 is equal to the number of infected people

at time t plus the number of newly infected (Tt) minus the number of infected people who

recovered (�rIt) and the number of infected people who died (�dIt):

It+1 = It + Tt � (�r + �d) It. (3)

Here, �r is the rate at which infected people recover from the infection and �d is the case

fatality rate, that is, the probability that an infected person dies.

The timing convention implicit in Equation (3) is as follows. Social interactions happen

in the beginning of the period (infected and susceptible people meet). Then, changes in

6To simplify, we assume that the probability of a given person being infected through more than one form
of social interactions is zero. In addition, we do not explicitly incorporate the constraint that Tt must be
between zero and the size of population. This constraint is satis�ed in all our simulations.
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health status unrelated to social interactions (recovery or death) occur. At the end of the

period, the consequences of social interactions materialize: Tt susceptible people become

infected.

The number of recovered people at time t+ 1 is the number of recovered people at time

t plus the number of infected people who just recovered (�rIt),

Rt+1 = Rt + �rIt. (4)

Finally, the number of deceased people at time t + 1 is the number of deceased people at

time t plus the number of new deaths (�dIt),

Dt+1 = Dt + �dIt. (5)

Total population, Popt+1, evolves according to

Popt+1 = Popt � �dIt,

with Pop0 = 1.

We assume that at time zero, a fraction " of susceptible people is infected by a virus

through zoonotic exposure, that is, the virus is directly transmitted from animals to humans:

I0 = ",

S0 = 1� ".

Everybody is aware of the initial infection and understands the laws of motion governing

population health dynamics. Critically, people take as given aggregate variables, such as

ItC
i
t and ItN

i
t .

We now describe the optimization problem of di¤erent types of people in the economy.

The variable U jt denotes the time-t lifetime utility of a type-j person (j = s; i; r). The budget

constraint of a type-j person is

(1 + �t)c
j
t = wt�

jnjt + �t, (6)

where cjt and n
j
t denote the consumption and hours worked of a type-j person, respectively.

The parameter governing labor productivity, �j, is equal to one for susceptible and recovered

people (�s = �r = 1) and less than one for infected people (�i < 1).

The budget constraint (6) embodies the assumption that people cannot pool risk asso-

ciated with the infection. Going to the opposite extreme and assuming complete markets
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considerably complicates the analysis without necessarily making the model more realistic.

Susceptible people. The lifetime utility of a susceptible person, U st , is

U st = u(c
s
t ; n

s
t) + �

�
(1� � t)U st+1 + � tU it+1

�
. (7)

Here, the variable � t represents the probability that a susceptible person becomes infected

� t = �1c
s
t

�
ItC

i
t

�
+ �2n

s
t

�
ItN

i
t

�
+ �3It. (8)

Critically, susceptible people understand that consuming less and working less reduce the

probability of becoming infected.

The �rst-order conditions for consumption and hours worked are

u1(c
s
t ; n

s
t)� (1 + �t)�sbt + ��t�1

�
ItC

i
t

�
= 0,

u2(c
s
t ; n

s
t) + wt�

s
bt + ��t�2

�
ItN

i
t

�
= 0.

Here, �sbt and ��t are the Lagrange multipliers associated with constraints (6) and (8), re-

spectively.

The �rst-order condition for � t is

�
�
U it+1 � U st+1

�
� ��t = 0. (9)

Infected people. The lifetime utility of an infected person, U it , is

U it = u(c
i
t; n

i
t) + �

�
(1� �r � �d)U it+1 + �rU rt+1

�
. (10)

The expression for U it embodies a common assumption in macro and health economics that

the cost of death is the forgone utility of life.

The �rst-order conditions for consumption and hours worked are given by

u1(c
i
t; n

i
t) = �

i
bt(1 + �t),

u2(c
i
t; n

i
t) = ��iwt�ibt,
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where �ibt is the Lagrange multiplier associated with constraint (6).

Recovered people. The lifetime utility of a recovered person, U rt , is

U rt = u(c
r
t ; n

r
t ) + �U

r
t+1. (11)

The �rst-order conditions for consumption and hours worked are

u1(c
r
t ; n

r
t ) = �

r
bt(1 + �t),

u2(c
r
t ; n

r
t ) = �wt�rbt,

where �rbt is the Lagrange multiplier associated with constraint (6).

Government budget constraint. The government budget constraint is

�t
�
Stc

s
t + Itc

i
t +Rtc

r
t

�
= �t (St + It +Rt) .

Equilibrium. In equilibrium, each person solves his or her maximization problem and

the government budget constraint is satis�ed. In addition, the goods and labor markets

clear:

StC
s
t + ItC

i
t +RtC

r
t = ANt,

StN
s
t + ItN

i
t�
i +RtN

r
t = Nt.

In addition, cjt = Cjt and n
j
t = N j

t for j = s, i, and r. In the appendix, we describe our

algorithm for computing the equilibrium.7

3 Medical Preparedness, Treatments, and Vaccination

In this section, we extend the SIR-macro model in three ways. First, we allow for the

possibility that the case fatality rate increases with the number of infections. Second, we
7Matlab replication codes can be downloaded from the authors� websites or directly from https://

tinyurl.com/ERTcode.

11

https://tinyurl.com/ERTcode
https://tinyurl.com/ERTcode


allow for the probabilistic development of a cure for the disease. Third, we allow for the

probabilistic development of a vaccine that inoculates susceptible people against the virus.

3.1 The medical preparedness model

In our basic SIR-macro model, we abstract from the possibility that the e¢ cacy of the

health care system deteriorates if a substantial fraction of the population becomes infected.

A simple way to model this scenario is to assume that the case fatality rate depends on the

number of infected people, It:

�dt = �d + �I
2
t ,

where � > 0. This functional form implies that the case fatality rate is a convex func-

tion of the fraction of the population who becomes infected.8 The basic SIR-macro model

corresponds to the special case of � = 0.

3.2 The treatment model

The basic SIR-macro model abstracts from the possibility that an e¤ective treatment against

the virus will be developed. Suppose instead that an e¤ective treatment that cures infected

people is discovered with probability �c each period. Once discovered, treatment is provided

to all infected people in the period of discovery and in all subsequent periods, thereby

transforming them into recovered people. As a result, the number of new deaths from the

disease goes to zero.

The lifetime utility of an infected person before the treatment becomes available is

U it = u(c
i
t; n

i
t) + (1� �c)

�
(1� �r � �d) �U it+1 + �r�U rt+1

�
+ ��cU

r
t+1. (12)

This expression re�ects the fact that with probability 1��c, a person who is infected at time
t remains so at time t+ 1. With probability �c, this person receives treatment and becomes

recovered.

We now discuss the impact of an e¤ective treatment on population dynamics. Before the

treatment is discovered, population dynamics evolve according to Equations (1), (2), (3),

(4), and (5). Suppose that the treatment is discovered at the beginning of time t�. Then, all

8We do not explicitly impose the constraint that �dt < 1, but this constraint is satis�ed in all our
simulations.
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infected people become recovered. The number of the deceased stabilizes once the treatment

arrives, so for t � t�,

Dt = Dt�.

All infected people are instantly cured. Since no one dies from the disease, we normalize

the number of susceptible people to zero for t > t�. The number of recovered people is given

by

Rt = 1�Dt.

3.3 The vaccination model

The basic SIR-macro model abstracts from the possibility that a vaccine against the virus

will be developed. Suppose instead that a vaccine is discovered with probability �v per

period. Once discovered, the vaccine is immediately provided to all susceptible people.

The lifetime utility of a susceptible person is given by

U st = u(c
s
t ; n

s
t) + (1� �v) (1� � t) �U st+1 + �v (1� � t) �U rt+1 + � t�U it+1. (13)

This expression re�ects the fact that with probability 1� �v, a person who is susceptible at
time t and did not get infected remains susceptible at time t + 1. With probability �v, this

person is vaccinated and becomes immune to the disease. So, at time t + 1, this person�s

health situation is identical to that of a recovered person. The vaccine does not a¤ect the

health status of people who are infected or recovered. The lifetime utilities of infected and

recovered people are given by (10) and (11), respectively.

We now discuss the impact of vaccinations on population dynamics. Before the vaccine is

discovered, these dynamics evolve according to Equations (1), (2), (3), (4), and (5). Suppose

that the vaccine is discovered at the beginning of time t�. Then, all susceptible people

become recovered. Since no one is susceptible, there are no new infections.

Denote the number of susceptible and recovered people right after a vaccine is introduced

at time t� by S 0t� and R
0
t�. The values of these variables are

S 0t� = 0

R0t� = Rt� + St� :
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For t � t�, we have

Rt+1 =

�
R0t + �rIt
Rt + �rIt

for t = t�;
for t > t�:

The laws of motion for It and Dt are given by (3) and (5).

4 Competitive Equilibrium

In this section, we discuss the properties of the competitive equilibrium via a series of nu-

merical exercises. In the �rst subsection, we describe our parameter values. In the second

and third subsections, we discuss how the economy responds to an epidemic in the SIR

and SIR-macro models, respectively. In the fourth subsection, we discuss the implications

of medical preparedness. In the �fth subsection, we discuss the e¤ects of treatments and

vaccines. Finally, in the sixth subsection, we discuss the robustness of our results.

4.1 Parameter values

In this subsection we report our choice of parameters. We are conscious of the considerable

uncertainty about the true values of these parameters. Below, we report the robustness of

our results to using di¤erent parameter con�gurations.

Each time period corresponds to a week. To choose the case fatality rate, �d, we use

data from the South Korean Ministry of Health and Welfare from March 16, 2020.9 These

estimates are relatively reliable because, as of late March, South Korea had the world�s

highest per capita test rates for COVID-19 (Pueyo 2020). Estimates of case fatality rates

based on data from other countries are probably biased upward because the number of

infected people is likely to be underestimated. We compute the weighted average of the case

fatality rates using the percentage of the U.S. population in di¤erent age groups as weights.

If we exclude people that are 70 and older because their labor force participation rate is

very low, we obtain an average case fatality rate of 0:4%. If we exclude people that are 75

and older, we obtain an average case fatality rate of 0:7%. Based on these estimates, we set

the case fatality rate equal to 0:5% and report robustness results below. Our baseline case

fatality rate is consistent with the estimates reported in Salje (2020).

9This estimate is roughly eight times greater than the average in�uenza case fatality rate in the United
States.
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As in Atkeson (2020), we assume that it takes 18 days on average to either recover or die

from the infection. Since our model is weekly, we set �r + �d = 7=18. A 0:5% case fatality

rate for infected people implies �d = 7� 0:005=18.
We now discuss our calibration procedure to choose the values of �1, �2, and �3. It

is common in epidemiology to assume that the relative importance of di¤erent modes of

transmission is similar across viruses that cause respiratory diseases. Ferguson et al. (2006)

argue that, in the case of in�uenza, 30% of transmissions occur in the household, 33% in the

general community, and 37% in schools and workplaces.

To map these estimates into our transmission parameters, we proceed as follows. We

use the Bureau of Labor Statistics 2018 American Time Use Survey (ATUS) to estimate the

percentage of time spent on �general community activities�that is devoted to consumption.

We compute the latter as the fraction of time spent on �purchasing goods and services�or

�eating and drinking outside the home.�To estimate the time spent �eating and drinking

outside the home,� we multiply the time spent �eating and drinking� by the fraction of

total food expenditures on �food away from home� in 2018 (54% according to the U.S.

Department of Agriculture).10 These considerations imply that the fraction of time spent

on general community activities related to consumption activities is 48%. Since 33% of

transmissions occur in the general community, we estimate that 16% of transmissions are

related to consumption (0:33� 0:48, which is roughly one-sixth).
Turning to work, recall that 37% of transmissions occur in schools and workplaces. To

compute the fraction of transmissions that occur in the workplace, we weight the number

of students by 10 and the number of workers by 4. These weights are the average number

of contacts per day at school and work reported by Lee et al. (2010). According to the

Bureau of Labor Statistics, the number of students and workers in the population in 2018 is

76:6 million and 162:1 million, respectively. These considerations imply that the fraction of

transmissions occurring in the workplace is 46% (162:1� 4= (162:1� 4 + 76:6� 10)). Since
37% of transmissions occur in schools and workplaces, 17% of transmissions are related to

work (0:37� 0:46, which is roughly one-sixth).
We assume that virus transmission unrelated to consumption or work activities belongs

to the exogenous category (�3StIt) emphasized in the SIR model. The values of �1, �2, and

�3 are chosen to satisfy

10We classify the following entries in the ATUS survey as general community activities: purchasing goods
and services; eating and drinking outside the home; organizational, civic, and religious activities; socializing
and communicating; sports, exercise, and recreation; and caring for and helping nonhousehold members.
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�1C
2

�1C2 + �2N2 + �3
= 1=6,

�2N
2

�1C2 + �2N2 + �3
= 1=6.

Here, C and N are consumption and hours worked in the preinfection steady state. In

addition, we assume that at the limit of the simple SIR model, 60% of the population either

recovers from the infection or dies. This assumption corresponds to the Merkel scenario

discussed in the introduction. The implied values for �1, �2, and �3 are 7:8408 � 10�8,
1:2442� 10�4, and 0:3901, respectively.
Our calibration procedure requires various judgment calls. For example, we had to choose

which categories to include in �general community activities.�11 For this reason, we report

robustness results below.

The initial population is normalized to one. The number of people who are initially

infected, ", is 0:001. We choose A = 39:835 and � = 0:001275 so that in the pre-epidemic

steady state, the representative person works 28 hours per week and earns a weekly income

of $58; 000=52. We obtain the per capita income estimate for 2019 from the U.S. Bureau

of Economic Analysis and the average number of hours worked from the Bureau of Labor

Statistics 2018 ATUS. We set � = 0:961=52 so that the value of a life is 9:3 million 2019

dollars in the pre-epidemic steady state. This value is consistent with the economic value

of life used by U.S. government agencies in their decision process.12 We understand there is

considerable uncertainty in the literature about this value. We �nd that our conclusions are

robust to reasonable perturbations of this value.

We set �i, the parameter that controls for the relative productivity of infected people, at

0:8. This value is consistent with the notion that symptomatic people don�t work and the

assumption that 80% of infected people are asymptomatic, according to the China Center

for Disease Control and Prevention. In the baseline SIR-macro model, the containment rate,

�t, is equal to zero.

In the medical preparedness model, we set � equal to 0:9, which implies a peak case

fatality rate of 1%, two times higher than that in the basic SIR-macro model. We obtain

11We chose to focus on the connection between market activities and the epidemic. This choice led us to
abstract from the response of nonmarket activities (e.g., �organizational, civic, and religious activities�) to
the outbreak of an epidemic.
12See U.S. Environmental Protection Agency (2010) and Moran (2016). See Viscusi and Aldy (2003) for

a review of the literature on the value of a statistical life.
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this higher case fatality rate by computing the weighted average of the case fatality rates

in Italy with weights equal to the percentage of di¤erent age groups in the U.S. population,

excluding people that are 70 and older. In both the treatment and vaccination models, we set

�c = �v = 1=52, which implies that it takes 52 weeks on average for these medical discoveries

to become available.

The model�s basic reproduction number A statistic widely used to diagnose the sever-

ity of an epidemic is the �basic reproduction number,�R0. This statistic is the total number

of infections caused by one infected person (with measure zero) in his or her lifetime in a

population in which everybody is susceptible (S0 = 1). The higher is the value of R0, the

faster is the spread of the virus.

The average rate of infection, which we denote by 
, is the ratio of the number of newly

infected people to the total number of infected people at the beginning of an epidemic (T0=I0).

The expected number of infections caused by a single infected person is

R0 = 
 + (1� �r � �d)
 + (1� �r � �d)2
 + ::: =



�r + �d
.

In this expression, (1��r��d)t is the probability that the infected person reaches period
t without recovering or dying.

In the epidemiology literature, the value of R0 is generally estimated using one of two

methods (see, e.g., Breban, Vardavas, and Blower 2007). The �rst method uses individual-

level data collected by contact tracing at the beginning of the epidemic to estimate the

number of secondary infections produced by an infected person. The second method involves

choosing a value of R0 so that a given model matches aggregate data on the number of

infections and deaths during an epidemic episode. The implied estimates of R0 depend on

the features of the model, including parametric assumptions. So, reported standard errors

in any given study understate the true uncertainty about R0.13

We proceed in the spirit of the second method and choose parameters that imply a value

of R0 = 1:45 because they produce plausible implications for the dynamics of the epidemic.

This value is at the low end of available estimates for R0 but consistent with the evidence

taking sampling uncertainty into account (see, e.g., Riou and Althaus 2020). In Subsection

13The di¢ culty in estimating R0 is re�ected in the broad range of estimates obtained for widely studied
diseases, such as measles. The literature on the measles epidemics often cites values of R0 from 12 to 18. In
a recent survey, Guerra et al. (2017) �nd an even wider range of R0 estimates, from 4 to 60.
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4.6, we discuss the robustness of our results to di¤erent values of R0.

4.2 The SIR model

The dashed pink lines in Figure 1 represent the equilibrium population dynamics implied by

the SIR model. The share of the initial population who is infected peaks at 6:8% in week

31. Thereafter, this share falls because fewer people are susceptible to infection. Eventually,

60% of the population becomes infected. Assuming a U.S. population of 330 million people,

this scenario implies that roughly 200 million Americans eventually become infected. A case

fatality rate of 0:5% implies that the virus kills roughly 1 million people in the United States.

Figure 1 shows that the epidemic induces a recession: aggregate consumption falls by

roughly 1:5% from peak to trough. This fall re�ects two factors. First and foremost, the

virus causes infected people to be less productive at work (�i = 0:8). The associated negative

income e¤ect lowers the consumption of those who are infected. The dynamic behavior of

aggregate consumption mimics the share of infected people in the overall population. Second,

the death toll caused by the epidemic permanently reduces the size of the workforce.

Since the production function has constant returns to scale, per capita income is the

same in the pre- and post-epidemic steady states. In the post-epidemic steady state, the

population and real gross domestic product (GDP) are both 0:3% lower than in the initial

steady state.

4.3 The SIR-macro model

In the SIR model, economic decisions about consumption and work don�t in�uence the

dynamics of the epidemic. In contrast, in the SIR-macro model, susceptible people can

lower the probability of being infected by reducing their consumption and hours worked.

The solid blue lines in Figure 1 represent how the epidemic unfolds in this model.

The share of the initial population who is infected peaks at 5:3% in week 33. This peak is

substantially smaller and occurs a little later than the corresponding peak in the SIR model.

Eventually, 54% of the population becomes infected. So, for the United States, roughly 180

million people eventually become infected and 890; 000 people die.

Figure 1 shows that the infection is less severe in the SIR-macro model than in the SIR

model. The reason is that in the SIR-macro model, susceptible people severely reduce their

consumption and hours worked to lower the probability of being infected. Figure 2 shows
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that no o¤setting e¤ects arise from the behavior of recovered and infected people because

they behave as in the SIR model.

Consistent with these observations, the recession is much more severe in the SIR-macro

model: average aggregate consumption in the �rst year of the epidemic falls by 4:7%, a fall

seven times larger than in the SIR model.

For similar reasons, the dynamics and magnitude of the drop in hours work are very

di¤erent in the two models. In the SIR model, hours worked decline smoothly, falling by

0:30% in the post-epidemic steady state. This decline entirely re�ects the impact of the

death toll on the workforce.

In the SIR-macro model, hours worked follow a U-shaped pattern. The peak decline of

9:8% occurs in week 33. Thereafter, aggregate hours rise, converging to a new steady state

from below. These dynamics are driven by the labor supply decisions of susceptible people.

Interestingly, the long-run decline in hours worked is slightly lower in the SIR-macro model

(0:27%) than in the SIR model (0:30%). The reason is that fewer people die in the epidemic,

so the population falls by less in the SIR-macro model than in the SIR model.

Figure 3 shows the competitive equilibrium and the optimal containment policy in the

SIR-macro model. We return to this �gure in the next section.

4.4 Medical preparedness model

The dashed dotted red lines in Figure 4 show that the competitive equilibrium with an

endogenous case fatality rate involves a much larger recession than that in the basic SIR-

macro model (solid blue lines). The reason is that people internalize the higher case fatality

rates associated with a health care system that can become overburdened with infected

people. Since the costs of becoming infected are much higher, people cut back more on

consumption and work to reduce the probability of becoming infected. The net result is that

fewer people are infected but more people die.

4.5 The treatment and vaccination models

As discussed in the introduction, the possibility of treatments being discovered makes people

become more willing to engage in market activities. The reason is that the expected costs of

being infected are smaller. Because of this change in behavior, the recession is less severe.

In Figure 5, the solid blue and dashed dotted red lines virtually coincide. So, in practice, the

quantitative e¤ect of the possibility of treatments on the competitive equilibrium is quite
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small. As discussed in Section 5.4, the possibility of treatments does not substantively a¤ect

the design of optimal policy.

Vaccines don�t cure infected people, but they do prevent susceptible people from becoming

infected. So the possibility of future vaccination induces people to reduce their market

activities before the vaccine actually arrives. Given our calibration, this e¤ect is small in the

competitive equilibrium (see the solid blue and dashed dotted red lines in Figure 6). But,

as discussed in Section 5.4, the possibility of vaccinations substantively a¤ects the design of

optimal policy. It becomes optimal to immediately introduce severe containment measures

to minimize deaths.

4.6 Robustness

Table 1 reports results of a series of robustness exercises in which we vary key parameters of

the basic SIR-macro model. Consider �rst the parameter �i, which controls the productivity

of infected workers. The lower is �i, the smaller is the average consumption drop, the peak

infection rate, the cumulative mortality rate, and the total number of U.S. deaths. The

behavior of aggregate consumption re�ects two opposing forces. On the one hand, a lower �i

makes it more costly to become infected. So, susceptible people reduce their consumption by

more. On the other hand, cautious behavior by susceptible people reduces the total number

of people infected. Since infected people consume much less than susceptible people (see

Figure 2), this e¤ect increases average consumption in the population. In our model, the

�rst force is somewhat stronger than the second.

Table 1 also reports the results for di¤erent parameters of the infection transmission func-

tion (Equation (1)). Recall that in the benchmark model, we choose our baseline parameters

so that, at the beginning of the infection episode, economic decisions account for one-third

of the infection rate. Table 1 summarizes results for the case in which economic decisions

account for one-sixth of the initial infection rate. In this scenario, the drop in consumption is

smaller. The reason is that people understand that economic activity has less of an impact

on infection rates. The peak infection rate, the cumulative mortality rate, and the total

number of U.S. deaths is larger. Table 1 also reports the case in which economic decisions

account for two-thirds of the initial infection rate. In this scenario, the drop in consumption

is larger, and the peak infection rate and cumulative mortality rate are smaller. The reason

is that people cut back more on economic activities because they have a larger impact on

infection rates.
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Table 1: Robustness in Basic SIR-Macro Model without Containmenta

Consumption Infection rate Mortality rate U.S. deaths
%b %c %d millionse

Productivity of infected people, �i

0:7 �4:61 4:85 0:26 0:85
0:8 (baseline) �4:66 5:23 0:27 0:88

Share of initial infections due to consumption, work, and general contacts

1=12; 1=12; 5=6 �2:77 6:15 0:287 0:94
1=6; 1=6; 2=3 (baseline) �4:66 5:23 0:267 0:88
1=3; 1=3; 1=3 �7:24 3:25 0:218 0:72

Mortality rate, �d

0:005� 7=18 (baseline) �4:66 5:23 0:26 0:88
0:01� 7=18 �8:25 4:74 0:51 1:69

Limited health care capacity parameter, � (slope of endogenous mortality rate)

0 (baseline) �4:66 5:23 0:26 0:88
0:9 �6:83 4:71 0:39 1:31

Household discount factor, �

0:961=52 (baseline) �4:66 5:23 0:26 0:88
0:941=52 �3:37 5:42 0:27 0:89

a See Section 4:6 for a discussion of the results provided in this table.

b Average drop in consumption in �rst year relative to preinfection steady state.

c Peak infection rate relative to pre-epidemic population.

d Cumulative mortality rate at the end of the epidemic.

e Total number of deaths in the United States at the end of the epidemic.
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Next, we increase the case fatality rate from 0:5% to 1%. This change increases the

severity of the recession as people cut back on their consumption and work to reduce the

chances of being infected. Despite the concomitant fall in peak infection rates, the cumulative

mortality rate and the number of U.S. deaths rise.

Table 1 reports the impact of a change in the medical preparedness parameter, �. The

lower is �, the higher is the degree of medical preparedness. We consider a value of � = 0:9

such that the case fatality rate in the medical preparedness model peaks at 1%. Table 1

shows that this higher value of � is associated with a more severe recession as people curtail

their economic activity in response to higher case fatality rates. While the peak level of

infections falls, the cumulative death rate and the total number of U.S. deaths rise.

We also assess the impact of reducing the discount factor from 0:961=52 to 0:941=52. This

parameter change reduces the value of a life from 9:3 million to 6:1 million 2019 dollars.

As a result, consumption falls less during the epidemic and infection rates rise. The overall

quantitative sensitivity is small.

Overall, Table 1 indicates that the qualitative conclusions of the basic SIR-macro model

are very robust and that the quantitative conclusions are robust to the perturbations that

we consider.

We now discuss the impact of di¤erent values of R0 on the properties of our model.

Recall that in the baseline SIR-macro model, R0 is equal to 1:45. Table 2 reports results

for alternative values of R0, ranging from 1:33 to 2:95. Three key features emerge from this

table. First, high values of R0 generate implausibly large peak infection rates and mortality

rates. Second, high values of R0 imply that the epidemic runs its course very quickly. For

example, for R0 = 2:95, infections peak in the 13th week of the epidemic. Third, the peak-

to-trough drop in consumption is increasing in R0. This result re�ects people�s response to

the higher probability of becoming infected. Interestingly, the average drop in consumption

over the �rst year of the epidemic is not very sensitive to R0. This property results from two

e¤ects. The �rst e¤ect is a much larger peak-to-trough drop in consumption for high values

of R0. The second e¤ect is a shorter epidemic, and a shorter recession, for high values of

R0. For example, for R0 = 2:95, consumption initially drops precipitously but recovers after

13 weeks as infections wane.

In sum, Table 2 shows that the qualitative features of our model are very robust to dif-

ferent values of R0. But the quantitative properties of the model do depend on R0. As we

discuss above, much of the evidence on R0 in the literature is model based. Viewed through
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the lens of our model, the most plausible value of R0 is relatively low, around 1:5, a value

that is consistent with the literature taking sampling uncertainty into account. If one insists

on calibrating the model with a high value of R0, then the model must be extended to make

it consistent with the data.

Table 2: Robustness in basic SIR-macro model without containment with respect to Ra
0

Pop. Cons. Inf. Mort. U.S. Time to
infected R0 Cons. trough rate rate deaths peak infection
%b %c %d %e %f millionsg weekh

50 1:33 �3:4 �6:7 3:2 0:21 0:72 42
60 (baseline) 1:45 �4:7 �9:8 5:2 0:26 0:88 34
70 1:62 �5:2 �13:3 8:2 0:31 1:05 28
80 1:86 �5:2 �16:9 12:5 0:37 1:22 23
93 2:49 �4:1 �20:6 23:9 0:44 1:46 16
97 2:95 �3:2 �20:9 31:2 0:47 1:55 13

a See Section 4.6 for a discussion of the results provided in this table.

b Percentage of the population eventually infected in the canonical SIR model.

c Average drop in consumption in the �rst year relative to the preinfection steady state.

d Peak-to-trough drop in weekly consumption.

e Peak infection rate relative to pre-epidemic population.

f Cumulative mortality rate at the end of the epidemic.

g Total number of deaths in the United States at the end of the epidemic.

h Week at which the fraction of the infected population as a percentage of initial

population peaks.

The model can be extended in at least three ways. The �rst is to explicitly model the

impact of nonpharmaceutical interventions, such as masks and social distancing which slow

down the transmission of the virus (see, e.g. Eichenbaum, Rebelo and Trabandt 2020a).

The second is to include the possibility of substitution from high- to low-contact forms

of consumption and work, so that a given reduction in the transmission rate results in a

smaller decline in economic activity than in our benchmark model (see Jones, Philippon,

and Venkateswaran 2020 and Krueger, Uhlig, and Xie 2020 for models along these lines).
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The third is to endogenize the time that people spend on nonmarket social interactions. In

this setting, a decline in these interactions can reduce the rate of virus transmission without

producing a drop in measured output (see Farboodi, Jarosch, and Shimer 2020 for a model

along these lines). Evaluating the empirical performance of these di¤erent approaches is an

interesting topic for future research.

5 Economic Policy

The competitive equilibrium of our model economy is not Pareto optimal. A classic exter-

nality is associated with the behavior of infected people. Because each person is atomistic,

people don�t take into account the impact of their actions on the infection and death rates of

other people. But collectively, the behavior of infected people imposes an unpriced cost on

susceptible people. In this section, we consider a simple Ramsey problem designed to deal

with this externality. As it turns out, the solution to the Ramsey problem is quite similar

to the solution of a planner�s problem in which the planner chooses consumption and labor

subject to the constraint that these choices are the same for everybody regardless of health

status.

5.1 Ramsey problem

As with any Ramsey problem, we must take a stand on the policy instruments available. In

reality, governments can reduce social interactions in many ways. Examples of containment

measures include shelter-in-place laws and shutting down restaurants and bars. Analogous

to Farhi and Werning�s (2012) treatment of capital controls, we model these measures as a

tax on consumption, the proceeds of which are rebated lump sum to people in the economy.

We refer to this tax as the �containment rate.�

We compute the optimal sequence of 250 containment rates f�tg
249
t=0 that maximize social

welfare, U0, de�ned as a weighted average of the lifetime utility of di¤erent people. Since at

time zero R0 = D0 = 0, the value of U0 is

U0 = S0U
s
0 + I0U

i
0. (14)

Given the sequence of containment rates, we solve for the competitive equilibrium and

evaluate the social welfare function. We iterate on this sequence until we �nd the optimum.
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Figure 3 displays our results. First, the gradual escalation of containment measures over

time is optimal. The optimal containment rate rises from 4:5% in week 0 to a peak value

of 72% in week 37. The rise in containment rates roughly parallels the dynamics of the

infection rate itself. The basic intuition is as follows. Containment measures internalize the

externality caused by the behavior of infected people. So, as the number of infected people

rises, intensifying the containment measures is optimal. For example, at time zero, very few

people are infected, so the externality is relatively unimportant. A high containment rate at

time zero would have a high social cost relative to the bene�t. As the infection rate rises,

the externality becomes important, and the optimal containment rate rises.

The optimal containment policy greatly reduces the peak level of infections from 5:3% to

3:2%, thereby reducing the death toll from 0:27% to 0:21% of the initial population. For a

country like the United States, this reduction represents roughly 200; 000 lives saved. This

bene�cial outcome is associated with a much more severe recession. The fall in average

aggregate consumption in the �rst year of the epidemic more than triples, going from about

4:7% without containment measures to about 17% with containment measures. The mecha-

nism underlying this result is straightforward: higher containment rates make consumption

more costly, so people cut back on the amount they consume and work.

Why not choose initial containment rates that are su¢ ciently high to induce an imme-

diate, persistent decline in the number of infected people? Absent vaccines, the only way to

prevent a recurrence of the epidemic is for enough of the population to acquire immunity by

becoming infected and recovering. The optimal way to reach this critical level of immunity

is to gradually increase containment measures as infections rise and slowly relax them as

new infections wane.

5.2 Simple command containment

One possible objection to our simple containment policy is that it is modeled as a Pigouvian

consumption tax. An alternative formulation is to consider a planning problem in which the

government chooses consumption and hours worked to maximize the objective function (14)

subject to the population dynamics equations, the resource constraint, and the constraint

that people have the same allocation regardless of health status:

Cst = C
i
t = C

r
t ;
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and

N s
t = N

i
t = N

r
t :

The solution to this �simple command containment�problem is represented by the dash-

dotted red line in Figure 3. This �gure shows that the solution to this problem is very similar

to the simple containment policy discussed above. A similar conclusion holds for optimal

policy in the benchmark SIR model discussed below.14

5.3 Medical preparedness model

Comparing Figures 3 and 4, we see that the optimal containment policy is more aggressive in

the medical preparedness model than in the basic SIR-macro model. The peak containment

rate is higher in the medical preparedness model (110% vs. 72%) and occurs earlier (at week

33 vs. week 37). In addition, the containment rate comes down much more slowly in the

medical preparedness model. These di¤erences re�ect that, other things equal, the social

cost of the externality is much larger. People do not internalize the cost of consumption and

work on infection rates nor do they internalize the aggregate increase in case fatality rates.

The optimal containment policy greatly reduces the peak level of infections from 4:7%

without containment to 2:2% with containment. The death toll falls from 0:40% to 0:22%

of the initial population. For a country like the United States, this reduction represents

roughly 600; 000 lives saved.

5.4 The treatment and vaccination models

Comparing Figures 3 and 5, we see that the optimal containment policies in the treatment

and basic SIR-macro models are quite similar. In the treatment model, along a path where no

treatment is discovered, the optimal containment policy reduces the peak level of infections

from 5:3% to 3:2%, reducing the death toll from 0:27% to 0:21% of the initial population.

This reduction corresponds to roughly 200; 000 lives saved in the United States. The latter

�gure pertains to a worst-case scenario in which a treatment is never discovered.

14Both the peak in infections and the fall in aggregate consumption are slightly larger under simple
command containment than under simple containment. This result re�ects compositional e¤ects. First, the
consumption of recovered people drops by more under simple command containment because everybody
must have the same consumption. Second, the consumption of infected people is substantially lower under
simple containment than under simple command containment. This property re�ects infected people�s lower
productivity and their response to the Pigouvian tax. Third, the consumption of susceptible people is similar
under both policies. The net e¤ect is that, even though aggregate consumption drops by more under simple
command containment, infection rates are higher, re�ecting the higher consumption of infected people.
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The dashed black lines in Figure 6 show that optimal policy is very di¤erent in the basic

SIR-macro model and the vaccination model. With vaccines as a possibility, it is optimal

to immediately introduce severe containment measures to minimize the number of deaths.

Those containment measures cause a very large, persistent recession: average consumption

in the �rst year of the epidemic falls by about 17%. But this recession is worth incurring in

the hope that the vaccines arrive before many people get infected.

It is optimal to reduce and delay the peak of the infections in anticipation of a vaccine

being discovered. Figure 6 displays the behavior of the vaccination model under optimal

containment policy on a path in which a vaccine does not arrive. Compared to the competi-

tive equilibrium (dashed dotted red lines), the peak of the infection rate drops from 5:3% to

3:3% of the initial population. Moreover, the infection peak occurs in week 42 rather than

in week 33. Absent a vaccine being discovered, the optimal containment policy reduces the

death toll as a percentage of the initial population from 0:27% to 0:24%. For the United

States, this reduction amounts to about 100; 000 lives. It is important to remember that this

reduction pertains to a worst-case scenario in which vaccines do not arrive.

Above, we discuss why it is not optimal to introduce immediate containment measures

in the basic SIR-macro and treatment models. But why is the optimal policy so di¤erent

in the vaccination model? The basic reason is that, unlike curative treatments, a vaccine

does not cure infected people. In addition, the expected arrival of a vaccine also reduces the

importance of achieving herd immunity before the vaccine arrives.

6 Quantitative Predictions for the Benchmark Model

In the previous sections, we separately analyze the quantitative predictions of our model

under di¤erent simplifying assumptions. Those exercises are useful for understanding the

mechanisms at work. In our view, the most meaningful version of the model allows for both

(a) the possibility of vaccines and medical treatment and (b) the impact of the number of

infections on the e¢ cacy of the health care system. We refer to this version of the model as the

benchmark model. We describe the equations used to compute the competitive equilibrium

of this model in the Appendix.

In the �rst subsection, we discuss the impact of optimal containment policy in the bench-

mark model. The second subsection considers the consequences of prematurely ending the

containment policy. In the third subsection, we consider the implication of a delay in im-
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plementing the optimal containment policy. In the fourth subsection, we study a �rst-best

solution in which the planner chooses directly di¤erent levels of consumption and hours

worked for susceptible, infected, and recovered people.

6.1 Optimal policy in the benchmark model

The solid blue and dashed black lines in Figure 7 represent the evolution of the economy

in the competitive equilibrium and under the best simple containment policy, respectively.

Consistent with previous �gures, we display a path along which vaccines and treatments are

not discovered.

From a qualitative point of view, the benchmark model inherits key features of its un-

derlying components. Consistent with the vaccination model, it is optimal to immediately

introduce severe containment (� = 43%). Consistent with the treatment and medical pre-

paredness models, it is optimal to ramp up containment as the number of infections rises.

The maximal containment rate reaches 76% in week 32.

The optimal containment measures substantially increase the severity of the recession.

Without containment, average consumption in the �rst year of the epidemic falls by about

7%. With containment, this fall is 22%. Notably, the size of the recession is smaller than

in the medical preparedness model. The reason is that the prospect of vaccinations and

treatments reduces the magnitude of the externality associated with the medical preparedness

problem.

The bene�t of the large recession associated with optimal containment in the combined

model is a less severe epidemic. Compared to the competitive equilibrium, the peak infection

rate drops from 4:7% to 2:5% of the initial population. The optimal policy reduces the death

toll as a percentage of the initial population from 0:40% to 0:26%. For the United States,

this reduction amounts to about half a million lives.

We emphasize that the latter reduction pertains to a worst-case scenario in which vaccines

and treatments never arrive. If they do arrive, many more lives would be saved. Thankfully,

they would be saved by medicine rather than by containment policies.

The dashed dotted red lines in Figure 7 represent the optimal containment policy imple-

mented as a solution to a planner�s problem in which the planner chooses consumption and

hours worked subject to the constraint that people have the same allocation regardless of

health status. We see that the solution under this �command containment�policy is very

similar to the solution under the best simple containment policy.
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6.2 The costs of ending containment too early

As a practical matter, policy makers could face intense pressure to prematurely end contain-

ment measures because of their negative impact on economic activity. In this subsection, we

discuss the costs of doing so. The solid red lines in panels A and B of Figure 8 represent

the response of the economy to an unanticipated end of the best simple containment policy

after weeks 12 and 44, respectively. Week 44 is when infections peak under the best simple

containment policy. The dashed black lines represent the behavior of the economy when the

best simple containment policy is fully implemented.

From panel A, we see that abandoning containment initially generates a large recovery,

with consumption surging by roughly 17%. Unfortunately, this surge results in a large rise

in infection rates. The latter rise plunges the economy into a second, persistent recession.

So, prematurely abandoning containment produces a temporary rise in consumption but

no long-lasting economic bene�ts. Tragically, abandonment leads to a substantial rise in the

death toll of the epidemic.

Panel B shows that the longer policy makers pursue the optimal containment policy, the

better. Both the temporary gains and the losses due to abandoning the optimal policy in

panel B are smaller than those in panel A.

The implications of our model for the cost of ending containment too early are consistent

with the evidence for the 1918 Spanish �u (Bootsma and Ferguson 2007). We conclude that

it is important for policy makers to resist the temptation to pursue transient economic gains

obtained by abandoning containment measures.

6.3 Costs of starting containment too late

Policy makers can also face pressure to delay implementing optimal containment measures.

The dashed dotted red lines in Figure 9 represent the impact of beginning containment only

in week 33, the week in which infections peak. We assume that the best simple containment

policy is calculated and implemented from that point on. The dashed black lines represent

the behavior of the economy when the best simple containment policy is implemented from

week 0 on. The solid blue line represent the competitive equilibrium with no containment

measures.

The best simple containment policy that begins in week 33 involves draconian contain-

ment measures that cause an enormous drop in economic activity. The reason is simple:
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with infections raging, the externalities associated with economic activity are very large.

Despite the draconian measures, the total number of deaths caused by the epidemic is

much larger than if the best simple containment policy is implemented without delay. Still,

as far as the death toll of the epidemic is concerned, late containment (dashed dotted red

lines) is better than no containment at all (solid blue lines).

The implications of our model for the cost of starting containment too late are con-

sistent with the evidence for the 1918 Spanish �u (Hatchett, Mecher, and Lipsitch 2007;

Bootsma and Ferguson 2007). We conclude that it is important for policy makers to resist

the temptation to delay containment measures for the sake of initially higher short-run levels

of economic activity.

6.4 Smart containment

Recall that in Section 4.1 we study simple containment policies corresponding to a Ramsey

problem in which the government chooses the same consumption containment rate for every-

body in the economy. In Section 4.2 we study the optimal simple command containment

policy in which the government chooses the same consumption and hours worked for all

health types.

In this section, we study smart containment, by which we mean the solution to a social

planning problem in which the planner directly chooses di¤erent levels of consumption and

hours worked for susceptible, infected, and recovered people.

The planner maximizes the social welfare, U0, de�ned in equation (14). The planner

chooses Cst , C
i
t , C

r
t , N

s
t , N

i
t , and N

r
t for all t to maximize U0 subject to the expressions for

the lifetime utility of the di¤erent people, the transmission function (1), and the laws of

motion for the population, (2), (3), (4), and (5).

The lifetime utilities of susceptible, infected and recovered people are given by

U st = u(C
s
t ; N

s
t ) + (1� �v) (1� Tt) �U st+1 + �v (1� Tt) �U rt+1 + Tt�U it+1,

U it = u(C
i
t ; N

i
t ) + (1� �c)

�
(1� �r � �dt) �U it+1 + �r�U rt+1

�
+ ��cU

r
t+1,

U rt = u(C
r
t ; N

r
t ) + �U

r
t+1.
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The lifetime utility of susceptible people is computed using the aggregate transition proba-

bilities because the planner internalizes the infection externality.

Figure 10 summarizes our results. Note that infected people do not work unless they

recover. As a result, all susceptible people can work without fear of becoming infected. The

planner sets the consumption of infected people to a minimum. In fact, there is no maximum

to the social planning problem, only a supremum. Given the form of momentary utility, it

is not optimal to set the consumption of infected people to zero because their utility would

be equal to �1. But the closer the consumption of those infected is to zero, the higher is
social welfare. Because infected people are completely isolated, the initial infection quickly

dies out without causing a recession.

The previous analysis assumes that infected people have to be in contact with other people

to obtain consumption goods. This assumption underlies the draconian policy implication

that the consumption of infected people should be kept at a minimum. Suppose instead

that the planner can directly deliver consumption goods to the infected so they do not need

to go shopping. The solution to this modi�ed problem continues to have the property that

infected people don�t work. But they consume the same as other people. Since there is such

a small number of infected people at time zero, aggregate consumption and hours worked

are essentially the same as in the pre-epidemic steady state.

One important limitation of smart containment is that herd immunity is never reached.

Every infection case must be detected and dealt with until the virus is extinguished. Other-

wise, the epidemic would begin anew as soon as smart containment ended.

Our simple analysis of smart containment assumes that policy makers know the health

status of di¤erent individuals. In reality, this knowledge would require antigen and antibody

tests for immunity and infection that are su¢ ciently accurate to act on. Our results suggest

enormous social returns to having these tests and the policy instruments to implement smart

containment.15 This conclusion is consistent with the importance of early detection and early

response emphasized by epidemiologists, such as Ginsberg et al. (2008). In a subsequent

paper, Eichenbaum, Rebelo, and Trabandt (2020a) study the e¢ cacy of smart containment

policies in a setting in which people do not know their health status until they are tested.

15According to de Walque, Friedman, and Mattoo (2020), the average cost per test, including equipment,
consumables, protective equipment, and labor, ranges from $2 to $5.
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7 Model Performance in Retrospect

This paper was originally drafted in March 2020. Almost a year has passed, and a natural

question now is: how do the predictions of the model compare to currently available data?

The �rst-order prediction of the model is that, in response to the epidemic, economic

activity would undergo a sharp contraction followed by a robust recovery. This qualitative

prediction is clearly supported by data for the U.S. and other developed economies. The

model also does reasonably well at capturing the broad quantitative decline in economic

activity. For example, the peak-to-trough decline in U.S. real GDP (between the last quarter

of 2019 and the second quarter of 2020) is 10:7%. In our model, the analogue decline in

output, absent containment, is 5:4%. The average decline in U.S. real GDP in 2020 relative

to 2019 is 3:6%. In the model, the analogue decline in output, absent containment, is 4:7%.

Going beyond these broad statements and providing a detailed comparison of model and

data would require taking a stand on the timing and nature of the containment measures

implemented in the United States.

Another important implication of our model is that economic activity should contract

even before the government imposes containment measures. Substantial evidence supports

this prediction. See, for example, results in Goolsbee and Syverson (2020) and Villas-Boas,

Sears, Villas-Boas, and Villas-Boas (2020), based on mobility data, as well as the evidence in

Chetty, Friedman, Hendren, and Stepner (2020) and Eichenbaum, Godinho de Matos, Lima,

Rebelo, and Trabandt (2020), based on micro data on consumption.

The implications of our model are also consistent with evidence presented by Atkeson,

Kopecky, and Zha (2020) for a large number of countries and U.S. states. These authors

show that the growth rate of daily COVID-19 deaths fell much more rapidly than predicted

by a canonical SIR model, suggesting strong behavioral changes that slowed down the trans-

mission of the virus.

Our model predicts that, absent a successful vaccination campaign, the death toll of the

epidemic would be between 500; 000 and 1:5 million people, depending on the containment

policy adopted. As of February 6, 2021, 460; 000 Americans have died of COVID-19. On

February 4, 2021, the University of Washington�s Institute for Health Metrics and Evaluation

predicted that the total death toll will reach 630; 000 by June 2021. This forecast lies within

the range of the model�s predictions although somewhat at the lower end, re�ecting in part

the expected positive impact of the ongoing vaccination campaign.
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An important failing of the model has to do with the timing of these deaths. In the

data, a signi�cant second wave of deaths took place between December 2020 and February

2021. Our model generates a second wave if we assume that containment ended prematurely

(see Figure 8). But the magnitude of that wave is much smaller than that observed in the

data. We do not think that this failing re�ects the calibration that we used. Consistent

with Atkeson (2021), we conjecture that a combination of seasonality in the transmission

rate and changes in the way people react to infection risk are likely to be important factors

in accounting for the second wave of COVID-19 deaths.

Finally, our model predicts that, absent instant mass vaccination, the epidemic episode

would last between 18 months and two years. This prediction seems reasonable in light of

the fact that the episode is not yet over but deaths are now declining. But, of course, now

that vaccines are available, the end of the epidemic depends on the pace of the vaccination

campaign and the e¢ cacy of vaccines in the face of ongoing mutations of the COVID-19

virus.

8 Related Literature

Our work is related to a pre-Covid literature that combines economics and epidemiology (for

a review, see Perrings et al. 2014). Examples include analyses of how private vaccination

incentives a¤ect epidemic dynamics and optimal public health policy (e.g., Philipson 2000,

Manski 2010, and Adda 2016) and studies of the interaction between behavioral choice and

the dynamics of the HIV/AIDS epidemic (e.g., Kremer 1996 and Greenwood, Kircher, Santos,

and Tertilt 2019).

The COVID-19 crisis has stimulated a rapidly growing body of work on the economics

of the epidemic. Below, we brie�y summarize the �rst wave of this research program.

Atkeson (2020) provides an overview of SIR models and explores their implications for

the COVID-19 epidemic. Alvarez, Argente, and Lippi (2020) study the optimal lockdown

policy in a version of the canonical SIR model in which the case fatality rate increases with

the number of infected people. Toxvaerd (2020) analyses the equilibrium amount of social

distancing in a SIR model and argues that it is not socially optimal.

Jones, Philippon, and Venkateswaran (2020) study optimal mitigation policies in a model

in which economic activity and epidemic dynamics interact. These authors emphasize

learning-by-doing in working from home and assume that people have a fatalism bias about
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the probability of being infected in the future. Other di¤erences between our paper and

theirs are as follows. First, we explicitly allow for the probabilistic arrival of vaccines and

treatments. Second, we consider the social cost of starting containment too late or ending

it too early. Third, we study �smart containment�policies that make allocations a function

of whether people are infected, susceptible, or recovered.

Guerrieri, Lorenzoni, Straub, and Werning (2020) develop a theory of Keynesian supply

shocks that trigger changes in aggregate demand that are larger than the shocks themselves.

These authors argue that the economic shocks associated with the COVID-19 epidemic may

have this feature. Guerrieri et al. (2020) analyze the e¢ cacy of various �scal and monetary

policies at dealing with these shocks. In contrast with Guerrieri et al. (2020), we incorporate

an extended version of SIR dynamics into our model.

Berger, Herkenho¤, Huang, and Mongey (2020) and Stock (2020) study the importance

of randomized testing in estimating the health status of the population and designing op-

timal mitigation policies. In contrast with these authors, we explicitly model the two-way

interaction between infection rates and economic activity.

A growing body of work studies the e¤ects of the COVID-19 epidemic in models in which

people di¤er in their health status as well as along other dimensions. For example, Glover,

Heathcote, Krueger, and Rios-Rull (2020) study optimal mitigation policies in a model that

takes into account the age distribution of the population. Kaplan, Moll, and Violante (2020)

do so in a heterogeneous agent new-Keynesian model.

Faria-e-Castro (2021) studies the e¤ect of an epidemic, modeled as a large negative shock

to the utility of consumption of contact-intensive services, in a model with borrowers and

savers. Buera, Fattal-Jaef, Neumeyer, and Shin (2020) study the impact of an unanticipated

lockdown shock in a heterogeneous-agent model.

9 Conclusion

We extend the canonical epidemiology model to study the interaction between economic

decisions and epidemics. In our model, the epidemic generates both supply and demand

e¤ects on economic activity. These e¤ects work in tandem to generate a large, persistent

recession.

We abstract from many important real-world complications to highlight the basic eco-

nomic forces at work during an epidemic. The central message of our analysis should be

34



robust to allowing for those complications: there is an inevitable trade-o¤ between the

severity of the short-run recession caused by the epidemic and the health consequences of

that epidemic. Dealing with this trade-o¤ is a key challenge confronting policy makers.

Our model also abstracts from various forces that might a¤ect the long-run performance

of the economy. These forces include bankruptcy costs, unemployment hysteresis e¤ects, and

the destruction of supply chains. It is important to embody these forces in macroeconomic

models of epidemics and study their positive and normative implications.
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Appendix. Computing the Equilibrium

This appendix summarizes the equations used to compute the competitive equilibrium of

the benchmark SIR-macro model. The basic SIR-macro corresponds to a particular case in

which �c = �v = � = 0.

For a given sequence of containment rates, f�tg
H�1
t=0 ; for some large horizon, H, guess se-

quences for fnst ; nit; nrtg
H�1
t=0 : In practice, we solve the model for H = 250 weeks. Compute the

sequence of the remaining unknown variables in each of the following equilibrium equations:

�nrt = A�
r
bt,

(crt )
�1 = (1 + �t)�

r
bt,

urt = ln c
r
t �

�

2
(nrt )

2 .

Iterate backward from the post-epidemic steady-state values of U rt :

U rt = u(c
r
t ; n

r
t ) + �U

r
t+1.

Calculate the sequence for remaining unknowns in the following equations:

(1 + �t)c
r
t = An

r
t + �t (�rbt),

�nit = �
iA�ibt,�

cit
��1

= �ibt,

uit = ln c
i
t �

�

2

�
nit
�2
,

(1 + �t)c
s
t = An

s
t + �t (�sbt),

ust = ln c
s
t �

�

2
(nst)

2 .

Given initial values for Pop0, S0, I0, R0, and D0, iterate forward using the following seven

equations for t = 0; ::; H � 1:

Tt = �1(Stc
s
t)
�
Itc

i
t

�
+ �2(Stn

s
t)
�
Itn

i
t

�
+ �3StIt,

Popt+1 = Popt � �dtIt,

St+1 = St � Tt,

It+1 = It + Tt � (�r + �dt) It,
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Rt+1 = Rt + �rIt,

�dt = �d + �I
2
t ,

Dt+1 = Dt + �dtIt.

Iterate backward from the post-epidemic steady-state values of U st and U
i
t :

U it = u(c
i
t; n

i
t) + (1� �c)

�
(1� �r � �dt) �U it+1 + �r�U rt+1

�
+ ��cU

r
t+1.

� t =
Tt
St
,

U st = u(c
s
t ; n

s
t) + (1� �v) (1� � t) �U st+1 + �v (1� � t) �U rt+1 + � t�U it+1.

Calculate the sequence of the remaining unknowns in the following equations:

�
�
U it+1 � U st+1

�
� ��t = 0,

(cst)
�1 � �sbt(1 + �t) + ��t�1

�
ItC

i
t

�
= 0.

Finally, use a gradient-based method to adjust the guesses fnst ; nit; nrtg
H�1
t=0 so that the fol-

lowing three equations hold with arbitrary precision:

(1 + �t)c
i
t = �

iAnit + �t (�ibt),

�t
�
Stc

s
t + Itc

i
t +Rtc

r
t

�
= �t (St + It +Rt) ,

��nst + A�sbt + ��t�2
�
Itn

i
t

�
= 0.

To solve the Ramsey problem, we compute the sequence of optimal containment rates,

�t, by maximizing the social welfare function, (14), using the Matlab routine fmincon.m.

We explored the robustness of the numerical results by using Matlab�s global optimization

toolbox, including fminunc.m, patternsearch.m, ga.m, particleswarm.m, surrogateopt.m, and

globalsearch.m. None of these routines �nds an optimum that is superior to the one based

on fmincon.m.
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Figure 1: Basic SIR-Macro Model vs. SIR Model

0 50 100 150
0

2

4

6

8
%

 o
f I

ni
tia

l P
op

ul
at

io
n

Infected, I

Basic SIR-Macro Model SIR Model ( 1= 2=0, model recalibrated)



0 50 100
Weeks

-20

-15

-10

-5

0

%
 D

ev
. f

ro
m

 In
iti

al
 S

te
ad

y 
St

at
e

Consumption by Type

Consumption Susceptibles
Consumption Infected
Consumption Recovered

Figure 2: Consumption and Hours by Type in Basic SIR-Macro Model
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Figure 3: Basic SIR-Macro Model with and without Containment
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Figure 4: Medical Preparedness
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Figure 5: SIR-Macro Model with Treatments
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Figure 6: SIR-Macro Model with Vaccines
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Figure 7: Benchmark SIR-Macro Model (Vaccines, Treatment, Med. Preparedness)
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Figure 8: Benchmark SIR-Macro Model (Vaccines, Treatment, Med. Preparedness)

0 50 100
0

1

2

3

4

5
Infected, I

Pa
ne

l B
: E

xi
t a

fte
r 4

4 
W

ee
ks
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Figure 9: Benchmark SIR-Macro Model (Vaccines, Treatment, Med. Preparedness)
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Figure 10: Smart Containment in the Benchmark SIR-Macro Model
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