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1 Introduction

A substantial body of evidence documents that high-quality early childhood education boosts

the skills of disadvantaged children.1 Much of this research focuses on early childhood

interventions with short-term followups. The few studies that analyze long-term outcomes

primarily focus on labor market and criminal outcomes.2 This paper examines the life-

cycle health outcomes of an influential pair of essentially identical early childhood programs

conducted in North Carolina that targeted disadvantaged children: the Carolina Abecedarian

Project (ABC) and the Carolina Approach to Responsive Education (CARE), henceforth

ABC/CARE. The programs were implemented using randomized trials. They begin early in

participants’ lives (at 8 weeks), and engage participants until age 5.3

Figure 1 summarizes the experimental treatment effects of ABC on the prevalence of risk

factors for cardiovascular and metabolic diseases as measured by an epidemiological survey

conducted when participants were in their mid-30s. There are pronounced differences in

health treatment effects by gender. This paper projects estimated treatment effects at that

age over the full life cycle using an adaptation of the Future Adult Model (FAM). Goldman

et al. (2016) documents FAM. We examine the risk-reducing properties of high-quality early

childhood education on six chronic conditions: cancer, lung disease, diabetes, heart disease,

1See Cunha et al. (2006), Almond and Currie (2011), and Elango et al. (2016) for surveys.
2For example, Heckman et al. (2010), Havnes and Mogstad (2011), and Campbell et al. (2014).
3Both programs were launched in the 1970s. Their original goal was to boost cognition and promote

schooling and attachment to society. Programs inspired by ABC/CARE have been (and are currently being)
launched around the world. Sparling (2010) and Ramey et al. (2014) list numerous programs based on
the ABC/CARE approach. The programs are: Infant Health and Development Program (IHDP) in eight
different cities in the U.S. (Spiker et al., 1997); Early Head Start and Head Start. (Schneider and McDonald,
2007); John’s Hopkins Cerebral Palsy Study in the U.S. (Sparling, 2010); Classroom Literacy Interventions
and Outcomes (CLIO) study. (Sparling, 2010); Massachusetts Family Child Care Study (Collins et al.,
2010); Healthy Child Manitoba Evaluation (Healthy Child Manitoba, 2015); Abecedarian Approach within
an Innovative Implementation Framework (Jensen and Nielsen, 2016); and Building a Bridge into Preschool
in Remote Northern Territory Communities in Australia (Scull et al., 2015). Current Educare programs in
the U.S. are also based on ABC/CARE (Educare, 2014; Yazejian and Bryant, 2012). ABC had a second
treatment stage from ages 5 to 8. Treatment was randomized using a second, independent randomization
protocol. We do not analyze the second stage in this paper. The second stage had very weak effects on
participants (see Campbell et al., 2013).
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hypertension, and stroke. The program generates substantial lifetime benefits as measured by

disability-adjusted life years, quality-adjusted life years, and mortality. Garćıa et al. (2020)

use these estimates as one input into a cost-benefit analysis of the ABC/CARE program

that also considers earnings, education, crime, and other outcomes. This paper examines

the lifetime health benefits in much more detail than that paper and does not conduct a

cost-benefit analysis.

Figure 1: ABC Health Effects at Mid-30s

Control Mean: 0.45 −−− Effect Size p−val: 0.45

Control Mean: 0.89 −−− Effect Size p−val: 0.11

Control Mean: 0.93 −−− Effect Size p−val: 0.03

Control Mean: 0.86 −−− Effect Size p−val: 0.10

Control Mean: 0.39 −−− Effect Size p−val: 0.93

Control Mean: 0.57 −−− Effect Size p−val: 0.03

Control Mean: −54.46 −−− Effect Size p−val: 0.20

Control Mean: −43.65 −−− Effect Size p−val: 0.02

Control Mean: 3.40 −−− Effect Size p−val: 0.22

Control Mean: 4.41 −−− Effect Size p−val: 0.08

Control Mean: 34.09 −−− Effect Size p−val: 0.46

Control Mean: 32.93 −−− Effect Size p−val: 0.22

Control Mean: 0.19 −−− Effect Size p−val: 0.04

Control Mean: 0.15 −−− Effect Size p−val: 0.06

Smoked Last Year

Prehypertension

Hypertension

HDL Cholesterol (reversed)

Total Cholesterol/HDL

BMI

Metabolic Syndrome

 

 −1 −.5 0 .5
Effect Size

Men Women

Note: This figure describes the impact of ABC/CARE on mid-30s health. The effect size is calculated
by dividing the treatment effect by the control-group standard deviation. The p-values are bootstrapped,
nonparametric, and stratified by cohort, sex, and number of siblings at the baseline as in the original random-
ization protocol. We draw 1,000 bootstrap repetitions. Smoked Last Year: an indicator of having smoked
tobacco during the year previous to the interview. Prehypertension: an indicator of systolic pressure > 120
or diastolic pressure > 80. Hypertension: an indicator of systolic pressure > 140 or diastolic pressure > 90.
HDL Cholesterol (reversed): HDL or “good” cholesterol (mg/dl) multiplied by -1. Total Cholesterol/HDL:
Total cholesterol to HDL cholesterol ratio. BMI: body-mass index. Metabolic Syndrome: an indicator of
having metabolic syndrome.

FAM is a life cycle economic demographic microsimulation model for a nationally repre-
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sentative sample: Panel Survey of Income Dynamics (PSID). We extract a subsample of

ABC/CARE eligibles. We combine the FAM subsample with the ABC/CARE experimental

sample and use the methodology of Garćıa et al. (2020) to project lifetime health benefits. 4

We find substantial life-cycle effects on cancer, heart disease, stroke, and mortality for both

males and females. Across the life-cycle, treatment group females are less likely to have

a stroke than their treatment group counterparts. By age 70, treatment group males are

half as likely to have a stroke than control group counterparts. Similar results hold for

heart disease, lung disease, and cancer. By age 50, a significant difference between the

likelihood of dying due to any of these diseases emerges between treatment and control

group participants, both male and female. For males after age 60, this difference grows

substantially. At age 70, control group males are almost four times as likely to die as their

treatment group counterparts. Results for women are less stark. For males, we calculate a

statistically significant average reduction of 3.8 disability-adjusted years, while for females the

gain is small and imprecise. For males, the increase in quality-adjusted life years more than

offsets all program costs (i.e., if the only benefit of the program had been the improvement

in QALYs, the program would have almost paid for itself). For females, the increase in

quality-adjusted life years offsets nearly half of the program costs.

The paper proceeds as follows. Section 2 describes the ABC/CARE program and the data

collected on its participants. Section 3 discusses our adaption of the FAM model to forecast

life-cycle chronic diseases for ABC/CARE participants. Section 4 reports and discusses our

findings. Section 5 concludes.

4Garćıa et al. (2020), show that, under the null hypothesis of input exogeneity, it is possible to formulate
additional tests for this methodology. It is also possible to test for input exogeneity. Unfortunately, we can
only perform those tests for outcomes for which there are two observation periods during adulthood, which
is not the case of health. Garćıa et al. (2020) test for and do not reject exogeneity using labor income as an
outcome. Given the prior tests, we assume that, conditioning on regressors, inputs are exogenous.
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2 ABC/CARE Program and Data Description

ABC/CARE is a randomized early childhood intervention with longitudinal follow-up data

from birth until adulthood. Data on cognitive skills, socio-emotional skills, family environ-

ment, and self-reported health of control and treatment group children were collected an-

nually during the duration of the program and then periodically until participants reached

their mid-30s. ABC/CARE is a widely emulated early childhood program. Despite larger

sample sizes and multi-site designs in other randomized programs, few have compiled longi-

tudinal data on health outcomes until adulthood (Elango et al., 2016). Long-term outcomes

are especially important for health since many chronic conditions manifest later in life after

years of sustained behavior.

The goal of the Carolina Abecedarian Project (ABC) and Carolina Approach to Responsive

Education (CARE), ABC/CARE, was to prepare children for school socially, cognitively,

and academically by promoting language and cognitive development through center-based

care. There was no focus on adult health, yet we find substantial health impacts. The

interactive curriculum provided an educational environment with small student-staff ratios

and small-group learning. The program also provided nutritious meals and medical checkups

for participants.

ABC and CARE recruited four and two cohorts, respectively, of disadvantaged children born

in Chapel Hill, North Carolina between 1972 and 1980. Potential participants were referred

to researchers by local social service agencies and hospitals at the beginning of the mother’s

last trimester of pregnancy. Eligibility was based on a High Risk Index5 developed by the

Frank Porter Graham Center (FPG) at the University of North Carolina at Chapel Hill.

5The index weighted the following variables: maternal and paternal education, family income, father’s
presence at home, lack of maternal relatives in the area, siblings behind appropriate grade in school, family
on welfare, father in unstable job, low maternal IQ, low siblings’ IQ, social agency indicates that the family
is disadvantaged, one or more family members has sought a form of professional help in the last three years,
and any other special circumstance detected by program staff.
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Eligible mothers were 20 years old on average, 74% of fathers were absent, and 94% of the

sample was African-American.

The final ABC sample consisted of 114 subjects. 58 were in the treatment group. 56 were in

the control group. CARE consisted of 65 families, with 25 in a family education treatment

group, 23 in the control group, and 17 in a center-based childcare treatment group. Six and

five subjects withdrew from the ABC and CARE samples, respectively.

Children were randomized into treatment and control groups using child pairs matched based

on family background. All subjects received diapers and formula for the first six months,

and treatment group subjects received additional daily health screenings. From the ages of

0 to 5, treatment group subjects received cognitive and social stimulation for eight hours a

day in center-based care.6 Even though CARE subjects also received home visits from the

ages of 0 to 5, this component was shown to have very weak estimated effects using a second

treatment arm that received home visits only (Campbell et al., 2013). Previous analyses

justify merging the treatment groups of ABC and the main treatment arm of CARE.7

Follow-up data collection of ABC/CARE subjects occurred at ages 12, 15, 21, and 30.

Various education, employment, health, crime, and family structure measures were collected

through both administrative and self-reported channels. Additionally, data from a full-

medical sweep of participants in their mid-30s is also available. Our analysis leverages this

data. We exclude five outlier subjects with mid-30s BMI greater than 50 in the final analysis,

6ABC/CARE also included school-age intervention from the ages of 5 to 8 focused on reading and math,
which was found to have no effect (Campbell et al., 2013).

7We acknowledge that dropping one of the treatment arms is a possible concern, as pointed out by
Muralidharan et al. (2019), although people were randomly assigned to treatment arms. We are faced with a
trade-off. We could analyze the ABC sample only as previous studies have done and not recognize that CARE
was a continuation of the ABC/CARE program or we could include CARE. When including CARE, however,
it is not sensible to include the treatment arm that only received home visits. Home visits were a very minor
element of the program and comparisons to the control group would be imprecise given all of the estimation
steps in our procedure and the small-sample size of the home-visits treatment arm. A fully-interacted model
would be imprecisely estimated in our complex setting. Not analyzing the school-stage randomization is not
a concern. School-stage treatment was assigned through a completely new randomization so critiques like
those in Muralidharan et al. (2019) do not apply.
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leaving a final sample of 83 individuals. Outliers that are this extreme are problematic

because they generate imprecise predicted treatment effects because of our small sample size

used to initialize the forecasts.8

3 Forecasting Chronic Diseases for ABC/CARE

We first formally state the Future Adult Model (FAM), the model that we use for predicting

life-cycle treatment effects. We then apply it.

3.1 Notation and Model Development

Let M denote a set of possible health states, some of which can be absorbing. Let A :=

[0, . . . , Ā] index ages, where Ā is the last age for which we construct forecasts. We define

ha,m,m′ as the probability of transitioning from state m to state m′ at age a ∈ A, where

m,m′ ∈M. We drop individual subscripts to avoid notational clutter.

We denote a transition from m to m′ at age a by Da,m,m′ = 1. If this transition does not

occur, Da,m,m′ = 0. We let D̃a,m be the indicator of occupancy of state m at age a. D̃a,m

is a generic entry in the the vector of age-a state occupancy indicators denoted by D̃a. D̃0

denotes the vector of initial state-occupancy conditions.

The probability of occupying state m ∈ M at age a ∈ A is assumed to be generated by an

index threshold-crossing model:

Ia,m = 1
(
D̃0 ≥ 0

)
Ωm + 1

(
D̃a−1 ≥ 0

)
Λm +Waβm +Bαm + τa,m + εa,m, (1)

8Note that we only drop them in the forecast exercises. Individuals with BMI over fifty are still included
in Figure 1. Despite the inclusion of five relatively unhealthy individuals, as measured by their BMI, in the
treatment group (four females and one male; two in the ABC sample and three in the CARE sample), the
mid-30s treatment effects on health outcomes are economically and statistically significant.
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where D̃a,m = 1 (Ia,m ≥ 0), 1
(
D̃0

)
is a vector of indicators of mutually exclusive initial

conditions with associated coefficients Ωm, 1
(
D̃a−1 ≥ 0

)
is a vector of mutually exclusive

previous-period outcomes associated coefficients Λm. Both D̃0 and D̃a−1 can be affected by

treatment. Wa denotes contemporaneous variables that can be affected by treatment with

associated coefficients βm. B is the vector of eligibility conditions with associated coefficients

αm. τa,m is age.9 εa,m is a serially uncorrelated shock which is assumed to be uncorrelated

with all of the right-hand side observables. In practice, when analyzing discrete outcomes,

we assume that it is a unit normal random variable.

Instead of modeling initial conditions, we directly condition on them in Equation (1). The

assumption of uncorrelatedess of εa,m across ages, health states, and subjects together with

normality allows us to conduct separate estimation of the coefficients characterizing Equa-

tion (1) for each m ∈ M using maximum likelihood. We estimate [Ωm,Λm,βm,αm, τa,m]

for each m ∈M.

The probability of occupying various discrete states is generated in FAM using Equation (1).

When simulating the model to forecast the health outcomes for the ABC/CARE subjects, we

use their observed age-30 conditions as initial conditions D̃0. Most of these initial conditions

relate to health, but we also include initial conditions related to economic status.

This model easily accommodates absorbing states. Thus, m ∈ M is an absorbing state

if D̃a,m = 1 implies that D̃a′,m = 1 ∀a′ ∈ A with a′ ≥ a. Once an individual reaches

an absorbing stage, their model in Equation (1) is no longer used to generate transitions.

Death is clearly an absorbing state.

Ordered and unordered outcomes are also easily accommodated using standard methods in

discrete choice. An example of the former is the level of psychological distress (e.g., low,

medium, high). An example of the latter is labor force status (e.g., labor force status is

9In our empirical analysis, we approximate the coefficients on τa,m using splines with knots at ages 35,
45, 55, 65, and 75.
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categorized as out of labor force, unemployed, working part time, or working full time). We

also model continuous outcomes so that Ia,m is observed and the variables in D̃a are replaced

by observed counterparts. An example of a continuous outcome is body-mass index (BMI).

We consider other inputs that are related to health but are not health outcomes per se.

These include labor force participation, relationship status, and childbearing models. They

are estimated within FAM to account for the socioeconomic disadvantage of participants. We

take the labor income forecast of Garćıa et al. (2020) as an input for the heath predictions.

Tables 1 to 3 list the variables determining each of the states and health and economic

outcomes that we analyze. For each of the outcomes we list: (1) the outcome itself; (2)

the variable type—e.g., absorbing state, binary outcome, continuous outcome; (3) initial

health state occupancies and other outcomes— D̃0 in Equation (1); (4) lagged health-state

occupancies—D̃a−1 in Equation (1); (5) and (6) other health and economic outcomes used to

determine the outcome of interest—Wa in Equation (1); and (7) background variables—B

in Equation (1).

FAM belongs to one of the two general classes of forecasting models employed in health

economics: state-based models and potential impact fractions models.10 In particular, FAM

operationalizes state-dependency through a first-order Markov stochastic structure as in

Briggs et al. (2006). More complete models allow for complete history dependency like

time elapsed after first diagnosis. However, this history is scarce and difficult to include in

scenarios like ours, which is a general problem in the literature (Richardson et al., 2011).

Goldman et al. (2016) justify the modeling choices by appealing to research and the advice

of clinicians and other medical professionals. They also document that the FAM performs

well in fitting full population means of the forecasted outcomes. The first-order Markov

stochastic nature of the model is a main assumption and we test it below.

10See van Baal and Boshuizen (2019) for a review of health forecasting models.
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Table 1: Determinants of Equation (1) for Different Outcomes

(1) (2) (3) (4) (5) (6) (7)

D̃0 D̃a−1 Wa Wa B
Outcome Variable Type Initial Conditions Past Outcomes Health Behaviors Economic Outcomes Demographics

Heart Disease Absorbing
Childhood Economic

Environment
Hypertension Smoking Race

Education Diabetes BMI Ethnicity
Asthma Physical Activity Age

Gender

Hypertension Absorbing
Childhood Economic

Environment
Diabetes Smoking Race

Education BMI Ethnicity
Physical Activity Age

Gender

Stroke Absorbing
Childhood Economic

Environment
Heart Disease Smoking Race

Education Hypertension BMI Ethnicity
Diabetes Physical Activity Age
Cancer Gender

Lung Disease Absorbing
Childhood Economic

Environment
Smoking Race

Education BMI Ethnicity
Asthma Physical Activity Age

Gender

Diabetes Absorbing
Childhood Economic

Environment
Smoking Race

Education BMI Ethnicity
Physical Activity Age

Gender

Cancer Absorbing
Childhood Economic

Environment
Smoking Race

Education BMI Ethnicity
Physical Activity Age

Gender

Mortality Absorbing Education Heart Disease Smoking Race
Hypertension Binge Drinking Ethnicity

Stroke Age
Lung Disease Gender

Diabetes
Cancer

Functional Status

Functional Status Ordered
Childhood Economic

Environment
Heart Disease Smoking Race

Education Hypertension BMI Ethnicity
Stroke Physical Activity Age

Lung Disease Functional Status Gender
Diabetes
Cancer

Smoking Binary
Childhood Economic

Environment
Heart Disease BMI Race

Education Lung Disease Binge Drinking Ethnicity
Diabetes Physical Activity Age

Psychological Distress Gender

Note: This table provides details on the empirical specification of Equation (1) for the different outcomes that we consider.
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Table 2: Determinants of Equation (1) for Different Outcomes, Continued

(1) (2) (3) (4) (5) (6) (7)

D̃0 D̃a−1 Wa Wa B
Outcome Variable Type Initial Conditions Past Outcomes Health Behaviors Economic Outcomes Demographics

BMI Continuous
Childhood Economic

Environment
BMI Marital Status Race

Education Ethnicity
Age

Gender

Binge Drinking Binary
Childhood Economic

Environment
Marital Status Binge Drinking Race

Education Ethnicity
Age

Gender

Physical Activity Binary
Childhood Economic

Environment
Marital Status Physical Activity Race

Education Ethnicity
Age

Gender

Psychological Distress Ordered
Childhood Economic

Environment
Heart Disease Smoking Race

Education Hypertension BMI Ethnicity
Stroke Physical Activity Age

Lung Disease Psychological Distress Gender
Diabetes Functional Status
Cancer

Childbearing Ordered Mother’s Education Cancer Marital Status Labor Force Participation Race
Education Number of Children Ethnicity

Age
Gender

Paternity Ordered Mother’s Education Labor Force Participation Race
Education Marital Status Ethnicity

Number of Children Age

Marital Status Binary Mother’s Education Labor Force Participation Race
Education Earnings Ethnicity

Marital Status Age
Number of Children Gender

Partner Mortality Binary Education Race
Ethnicity

Age
Gender

Note: This table provides details on the empirical specification of Equation (1) for the different outcomes that we consider.
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Table 3: Determinants of Equation (1) for Different Outcomes, Continued

(1) (2) (3) (4) (5) (6) (7)

D̃0 D̃a−1 Wa Wa B
Outcome Variable Type Initial Conditions Past Outcomes Health Behaviors Economic Outcomes Demographics

Labor Force Participation
Unordered
Categorical

Childhood Economic Heart Disease Smoking Labor Force Participation Race

Environment, Education Hypertension BMI Disability Insurance Claiming Ethnicity
Stroke Functional Status Social Security Claiming Age

Lung Disease
Supplemental Security Income

Claiming
Gender

Diabetes Earnings
Cancer Marital Status

Full-time Employment Binary Childhood Economic Heart Disease Smoking Labor Force Participation Race
Environment, Education Hypertension BMI Disability Insurance Claiming Ethnicity

Stroke Functional Status Social Security Claiming Age

Lung Disease
Supplemental Security Income

Claiming
Gender

Diabetes Earnings
Marital
Status

Cancer

Disability Insurance Binary Childhood Economic Heart Disease Smoking Labor Force Participation Race
Claiming Environment, Education Hypertension Functional Status Disability Insurance Claiming Ethnicity

Stroke Earnings Age
Lung Disease Gender

Diabetes
Cancer

Social Security Absorbing Childhood Economic Heart Disease Smoking Labor Force Participation Race
Claiming Environment, Education Hypertension Functional Status Disability Insurance Claiming Ethnicity

Stroke Earnings Age
Lung Disease Marital Status Gender

Diabetes
Cancer

Supplemental Security Binary Childhood Economic Heart Disease Smoking Labor Force Participation Race
Income Claiming Environment, Education Hypertension Functional Status Disability Insurance Claiming Ethnicity

Stroke Social Security Claiming Age

Lung Disease
Supplemental Security Income

Claiming
Gender

Diabetes Earnings
Cancer Marital Status

Health Insurance Type
Unordered
Categorical

Childhood Economic Heart Disease Smoking Labor Force Participation Race

Environment, Education Hypertension Functional Status Disability Insurance Claiming Ethnicity
Stroke Social Security Claiming Age

Lung Disease Earnings Gender
Diabetes Marital Status
Cancer Health Insurance Type

Nursing Home Residency Binary Education Heart Disease Functional Status Nursing Home Residency Race
Hypertension Widowhood Ethnicity

Stroke Gender
Lung Disease Age

Diabetes
Cancer

Note: This table provides details on the empirical specification of Equation (1) for the different outcomes that we consider. Functional status
describes the ability of an individual to perform normal activities to meet basic needs, fulfill usual roles in a job, and maintain normal health.
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3.2 Simulating the Model

We estimate the parameters of the models in Equation (1) on a sample eligible for ABC/CARE.

With these estimates, we predict a future health trajectory for each ABC/CARE subject by

initializing it with the individual initial conditions. To match the biennial structure of the

Panel Study of Income Dynamics (PSID) data used to estimate the models, the simulation

for predicting proceeds in two-year increments.11

Among the ABC/CARE subjects simulated in FAM, the years of completion of the age-30

interview range from 2003 to 2009. FAM’s two-year time step only allows the simulation of

even or odd years. For this reason, we run the simulation twice—once for the ABC/CARE

subjects entering in odd years and again for the ABC/CARE subjects entering in even years.

The simulation model uses assumptions regarding the normal retirement age, future im-

provements in mortality, and real medical cost growth as inputs. The normal retirement age

is assumed to be 67 for all ABC/CARE subjects.

The FAM mortality model represents mortality rates in 2009. The estimated mortality

probabilities are reduced in simulated future years to represent improvements in mortality

from sources such as medical innovation that are not included in the model. There are

different adjustment factors for populations under and over the age of 65. The mortality

reduction factors are taken from the intermediate cost mortality projections in the 2013

Social Security Trustee’s Report.

11The end of each two-year step is designed to occur on July 1st to allow for easier matching with
population forecasts from the Social Security Administration (SSA).

13



3.3 Data Sources for Estimation and Simulation

FAM uses data from ABC/CARE surveys to set the initial conditions of the simulation

model. The state-occupancy model parameters are estimated using the 1997 to 2013 waves of

the PSID. We use the PSID because it is the longitudinal sample with the longest surveyed life

cycle measures. It has extensive information concerning demographics, economic outcomes,

health care access, health outcomes, and health behaviors (such as smoking history, alcohol

consumption, and exercise habits). We restrict the PSID to heads of households age 25

and older because these subjects respond to the most comprehensive questions. The FAM

forecasts of BMI are based on self-reported height and weight.12 In ABC/CARE, BMI is

measured as part of the mid-30s medical examination. Additionally, BMI is self-reported in

the PSID at age 30, while it is measured during the mid-30s for the ABC/CARE sample.

We supplement the PSID with the the National Health and Nutrition Examination Survey

(NHANES), which has longitudinal measures and self reports of BMI, to predict BMI at

age 30 for the ABC/CARE individuals. Since the PSID does not follow individuals in

nursing homes or other long-term care facilities, we supplement the PSID with the HRS

when estimating mortality models. For the HRS, we use all cohorts in the dataset created

by RAND, version O. The NHANES includes both self-reported height and weight as well

as epidemiological measures of BMI, which is why it is employed for interpolating physical

measures from self-reported measures.

12That is how it is reported in the PSID.
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Table 4: Summary of Data Sources

ABC/CARE PSID HRS NHANES

Ages used 0-34 25+ 50+ 30-40
Years used - - 1997-2013 1998-2012 2002-2010

Longitudinal X X X

Time Intervals of Data Collection
Ages 0-8, 12,
15, 21, 30, 34

Biennial Biennial Annual

Demographic Outcomes X X X
Economic Outcomes X X X

Health Outcomes X X X X
Health Behaviors X X X

Health Expenditures X X
Family Outcomes X X

Includes Institutionalized Individuals X

Models
Initializing
all models

Health

Mortality,
widowhood,

nursing home
residency

BMI

Note: This table compares the main features of the auxiliary datasets used in simulating life-cycle health
outcomes of ABC/CARE subjects. We restrict the PSID to heads of households aged 25 and older because
these subjects respond to the largest set of questions.

3.3.1 Variable Construction and Imputations

Some of the initializing variables are not available for all ABC/CARE subjects at the required

ages for FAM and are imputed using the data sources in Table 4. The imputations made are

described in Table 5.
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Table 5: Imputation of Model Inputs

Input
Subjects

with Missing
Data

Models Requiring
Input

Variables Used to Impute Method Used to Impute

Mother’s
Education Level

CARE
subjects

Marital status and
childbearing

Race, ethnicity, education, disease
conditions, employment status, presence
of a health-related work limitation, and a
self-report of whether or not the subject

was “poor” as a child

Ordered probit model is constructed using PSID data of
subjects age 30 and 31 born between 1945 and 1981.

Socioeconomic
Status of Parents

All subjects Numerous models Assume all subjects were “poor” given program eligibility.

Race All subjects All models Assume no participants are Hispanic or Latino.1

Smoking and
Employment

Status
1 subject

Health states, marital
status, childbearing,
DI and SSI benefits,

health insurance
category

Multinomial logit model to estimate joint probability of each
comibnation of smoking and employment amongst

unemployed PSID subjects age 25 to 35.

Binge Drinking 1 subject Mortality, smoking
Binary probit model using PSID data of subjects age 25 to

35.

BMI All subjects

Health states,
functional status,
employment, and

smoking

Self-reported height and weight at age 30
(CARE) or age 34 (BMI)

Covariate values from PSID age 30-34 data in 2002-2013 are
used to impute measured BMI values for PSID respondents
using estimated models based on NHANES and the method

in Courtemanche et al. (2015). PSID is then used to
estimate a model mapping imputed measured BMI at ages
33-40 to selfreported BMI at ages 30-32. This imputation is
applied to ABC/CARE subjects with a health interview at

least one year after their age 30 interview.

Activities of Daily
Living (ADLs) and

Instrumental
Activities of Daily

Living (IADLs)

All subjects

Benefits claiming,
mortality, employment

status, insurance
category, and nursing

home residency

If the subject has a physical or nervous
condition that keeps them from working

Ordered Probit model estimated on PSID respondents aged
25 to 35.

DI and SSI
benefits

All subjects

Employment status,
insurance category,

and Medicare
enrollment

Single question asking about receipt of
any kind of benefits

Multinomial logit model to estimate the joint probability of
each combination of DI and SSI claiming using PSID

respondents age 25 to 35 on benefits.

1Census data on Hispanics in North Carolina was not available for 1970 and 1980, but Hispanic migration into this state is more recent than in other
regions, and as late as 1990, only 2% of the North Carolina poor were Hispanic (Johnson, 2003).
Note: This table summarizes the models estimated in order to impute necessary outcomes in the FAM Model. ADLs include walking, dressing, eat-
ing, bathing or showering, getting in and out of bed or a chair, and using the toilet, including getting to the toilet. IADLS include preparing meals;
shopping for toiletries and medicine; managing money; using the phone; doing heavy housework; and doing light housework or housecleaning.
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3.4 Specification Tests for the First-order Markov Assumption

The FAM model assumes that a vector first-order Markov process governs transitions with a

variable state space depending on the analyzed outcome. In Equation (1), only D̃a−1 and the

initial state value enter the model. For heart disease, hypertension, and stroke, we compare

the fit of Equation (1) with the following second-order model:

Ia,m = 1
(
D̃0 ≥ 0

)
Ωm + 1

(
D̃a−1 ≥ 0

)
Λm +

(
D̃a−2 ≥ 0

)
Λ̃m

+ Waβm +Bαm + τa,m + εa,m. (2)

We use a likelihood ratio test to test the null hypothesis H0 : Λ̃m = 0 in Equation (2). Ta-

ble 6 show the results from these tests conducted on the samples used to make the forecasts

reported in this paper. For the health states analyzed, we do not reject the null hypoth-

esis. We do not perform these tests for lung disease, cancer, and diabetes because sample

limitations do not give us D̃a−2 for these diseases.

Table 6: Tests Comparing First-Order and Second Markov Processes for Disease State-
Occupancy Specifications

Disease LR Statistic Degrees of Freedom p-value

Heart Disease 2.18 2 0.71
Hypertension 0.05 1 0.83
Stroke 3.94 4 0.14

Note: This table presents likelihood ratios contrasting the models in Equations (1) and (2) by testing the
null hypothesis H0 : Λ̃a,m = 0. The variables included in the right-hand-side of each model are in Tables 1
to 3.
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3.5 Inference

We study the life-cycle trajectories after age 30 for six chronic diseases and associated treat-

ment effects. This produces hundreds of age-wise treatment effects across diseases. Sum-

marizing these effects in an interpretable way is challenging. Following Garćıa et al. (2018)

we construct combining functions that, within disease categories, count the proportion of

treatment effects that have the same sign. We generate standard errors for these counts.

Formally, consider a block of outcomes J`, ` ∈ {1, . . . , L}, with cardinality C` and associated

treatment effects ∆1, . . . ,∆C`
. For the case of diabetes, a block is a set of indicators of

prevalence of diabetes between ages 30 and 40, 30 and 50, 30 and 60, and 30 and 70. For

each of these blocks, we observe the prevalence of diabetes for each age. We construct similar

blocks with the rest of the chronic diseases.

Treatment effects, ∆j, can be either beneficial or detrimental. The interpretation placed on

the sign of the combining function is evident from the context. The count of positive-valued

treatment effects within block J` is

D` =

C∑̀
j=1

1(∆j > 0). (3)

We use the proportion of outcomes with ∆` > 0 as our combining function: D`/C`. Under

the null hypothesis of no treatment effect for the block of outcomes indexed by J`, and

assuming the validity of asymptotic approximations, the mean of D`/C` is centered at 1
2
.13

We compute the fraction D`/C` and the corresponding bootstrapped empirical distribution

to obtain a p-value. The bootstrap procedure accounts for dependence in unobservables

across outcomes (within blocks) in a general way.

13Campbell et al. (2014) establish the validity of asymptotic approximations for the ABC sample.
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4 Empirical Results

We plot the probabilities of incidence of mortality and disease by 5-year bins from age 30

to 75 over the life-cycle for cancer, lung disease, diabetes, heart disease, hypertension, and

stroke. Disease incidence is defined as a diagnosis or death in order to account for disease-

free survival. We perform inference—at ages 40, 50, 60, and 70—on combining functions for

the various chronic diseases. The combining functions are the proportion of years starting

at age 30 which exhibit a positive treatment effect for each chronic disease. For example,

at age 40, the combining function for lung disease is the proportion of years with a positive

treatment effect on this chronic disease between ages 30 and 40. We calculate one-sided

p-values using 1,000 bootstrap samples of the FAM under the null hypothesis that D`/C`

is equal to 50%. If one were to plot the trajectories for all 1,000 bootstrap samples, the

p-value is the percentage of simulations where the majority of the control group trajectory

is above that of the treatment group. This choice of inference emphasizes the persistence

of treatment effects over the life-cycle as opposed to treatment effect magnitudes at a single

age. It detects a consistent life cycle pattern of beneficial outcomes. Life-cycle trajectories

are plotted by 5-year bins while inference is performed using blocks of annual data. This

can lead to slight discrepancies between the actual D`/C` and expected D`/C` based on the

smoothed plot. We also display bootstrapped standard errors for the 5-year bins.

The combining functions are statistically significant at standard levels for heart disease,

stroke, cancer, and mortality over most of the lifecycle for both genders. Females also

have statistically significant combining functions for diabetes up to age 50. For males,

diabetes is the only disease with adversely significant combining functions throughout the

life-cycle. An explanation for this is that prevalence of familial history suggests higher

genetic predisposition for diabetes for the male treatment group. This is the only family

history variable for which there is a difference between the treatment and control groups.
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Once we condition on family diabetes history, the adverse effect disappears. Treatment

improves the epidemiological assessments in Figure 1 that we use as the starting point for

our forecasts. Thus, the only reason the adverse effect of treatment on diabetes arises in the

longitudinal profiles is the initial difference in diabetes which continues through most of the

life cycle in the simulation.14 We discuss this further below. The program has a positive effect

on nondiabetic cardiovascular conditions that are mediated by the health improvements at

mid-30s, as shown by the epidemiological assessments in Figure 1.

We now describe the life-cycle trajectory for each chronic condition. There are statistically

significant empirical combining functions for males up to age 70 and over the entire life-

cycle for females in Figure 2. Female control and treatment incidence rates converge at

age 35, after which treatment group incidence rates remain slightly lower than those of the

control group. Near-zero p-values at all ages indicate a similar trend across all bootstraps.

Treatment-group males exhibit a lower incidence rate than control-group males until age 58.

There is a second crossover just after age 65, and both groups converge at age 75. Since age

is one of the biggest risk factors for cancer, it is unsurprising that the combining function

becomes insignificant at the end of the life-cycle.

There are no statistically significant combining functions for lung disease. See Figure 3.

However, life-cycle patterns differ noticeably by gender. Female treatment and control tra-

jectories closely mirror one another. After age 35, incidence rates for treatment-group males

are lower than those of control-group males by 15% to 20% throughout the life-cycle. Despite

the statistically insignificant combining functions for males, the trajectories in Figure 3 show

that the profiles for both the treatment and control groups are precisely estimated. A main

input (but not the sole input) that enters into our forecast of this chronic disease is smoking

behavior. In the control group, 89% of participants report they smoked during the last year

14Health experts state diabetes and other heart conditions such as heart disease, stroke, and hypertension
share common risk factors. However, few genetic risk factors that co-modulate both conditions have been
identified thus far (Sousa et al., 2011).
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Figure 2: Life-cycle Trajectories of Cancer by Gender and Treatment Group with Associated
Point-wise Confidence Intervals
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(b) Male
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Note: The figures plot the proportion of treatment and control subjects who either have the disease or die
over the life-cycle by 5-year bins. The individual-level 5-year bin takes the value 1 if an individual contracts
the disease or dies in any year during the 5-year window, and 0 otherwise. The profile in the figure plots the
treatment and control averages of the individual-level bins. We display the fraction of years from age 30 to
ages 40, 50, 60, and 70 with a positive treatment effect as well as standard errors. One-sided p-values are
calculated with a null hypothesis of 50% using 1000 bootstraps of the microsimulation, which we also use to
calculate standard errors. Combining functions are highly significant across the life-cycle for both genders.
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during the mid-30s interview. In the treatment group, the analogous figure is 72%. The

treatment-control difference is statistically significant at the 10% level (see Figure 1).

Significantly more treatment-group males have a maternal history of diabetes.15 Scott et al.

(2007) and Zeggini et al. (2008) identify a heritability component to diabetes in addition to

environmental and behavioral factors.16 This suggests that males assigned to the treatment

group have a higher genetic predisposition to diabetes. Therefore, our estimation of the

life-cycle trajectories of diabetes accounts for familiar diabetes history, by conditioning on

mother, father, and siblings diabetes history.

There are statistically significant combining functions for females up to age 50 and perverse

and significant combining functions for males over the lifecycle in Figure 4. Treatment-group

females have lower incidence of diabetes from age 30 to 45, after which the female treatment

trajectory remains marginally higher than those of the control. Combining functions that are

statistically significant at ages 40 and 50 are insignificant at ages 60 and 70. Thus, there are

consistent early life-cycle treatment effects for females bootstrap samples. Beneficial effects

eventually emerge for males because the program improves several other health conditions,

despite the diabetes predisposition in the treatment group.

The combining functions for heart disease are highly significant up to age 60 for females and

over the entire life-cycle for males (Figure 5). Treatment-group females have consistently

lower incidence rates until age 50, after which their incidence rates are slightly higher than

that of control. Combining functions are statistically significant until age 60. Treatment-

group males have lower incidence rates than the control group over the life-cycle, and by a

wider margin than females. Though male incidence rates converge at age 65, treatment group

15This can occur by chance even in a randomized control trial. 26% and 15% of treatment and control
males have a maternal history of diabetes, respectively. There is also one treatment male with a history of
paternal diabetes and one treatment male with a diabetic sibling.

16Treatment subjects also have a high proportion of PMP-based diabetes by their midlife survey—17% of
treatment males and no control males. Sabatier et al. (2002) find that patients with type 1 diabetes, which
is genetically inherited, have elevated levels of PMP compared to type 2 diabetics.
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Figure 3: Life-cycle Trajectories of Lung Disease by Gender and Treatment Group
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(b) Male
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Note: The figures plot the proportion of treatment and control subjects who either have the disease or die
over the life-cycle by 5-year bins. The individual-level 5-year bin takes the value 1 if an individual contracts
the disease or dies in any year during the 5-year window, and 0 otherwise. The profile in the figure plots the
treatment and control averages of the individual-level bins. We display the fraction of years from age 30 to
ages 40, 50, 60, and 70 with a positive treatment effect as well as standard errors. One-sided p-values are
calculated with a null hypothesis of 50% using 1000 bootstraps of the microsimulation, which we also use to
calculate standard errors. There are no significant combining functions for lung disease.
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Figure 4: Life-cycle Trajectories of Diabetes by Gender and Treatment Group with Associ-
ated Point-wise Confidence Intervals

(a) Female
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(b) Male

Control > Treatment 54.55 38.10 29.03 21.95
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Note: The figures plot the proportion of treatment and control subjects who either have the disease or die
over the life-cycle by 5-year bins. The individual-level 5-year bin takes the value 1 if an individual contracts
the disease or dies in any year during the 5-year window, and 0 otherwise. The profile in the figure plots the
treatment and control averages of the individual-level bins. We display the fraction of years from age 30 to
ages 40, 50, 60, and 70 with a positive treatment effect as well as standard errors. One-sided p-values are
calculated with a null hypothesis of 50% using 1000 bootstraps of the microsimulation, which we also use
to calculate standard errors. There are highly significant combining functions up to age 50 for females. The
initial conditions for forecasting account for familiar diabetes history, by conditioning on mother, father, and
siblings diabetes history
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rates plateau at 50% while control group rates continue to increase. Combining functions

equal 100% for all ages and have high significance, indicating consistent trajectories across

bootstraps.

There are no statistically significant treatment effects for hypertension. The entire sample

is diagnosed by age 65 in Figure 6, which is likely a predisposition of the individuals in

the sample to contract this disease which the treatment fails to prevent. Treatment-group

females have slightly higher incidence rates until age 50, after which control-group females

have much higher incidence rates until age 65. There are perversely significant combining

functions at ages 40 and 50. They become insignificant after age 60. There is a similar

trend for males: treatment-group males have marginally higher incidence rates until age 40,

after which control-group males have much higher incidence rates before convergence at age

65. There is an adversely significant combining function at age 40, but the estimates are

statistically insignificant for the remainder of the life-cycle. Therefore, the difference in the

incidence of hypertension is insignificant in the long-run. This can be attributed to the fact

that almost the entire sample contracted hypertension by age 65. This is unsurprising given

that African-Americans have the highest rates of hypertension globally, with estimated rates

of 45.0% and 46.3% for adult African-American males and females, respectively, in 2011 to

2014 (Benjamin et al., 2017).

The combining functions for stroke are significant over the entire lifecycle for both genders

in Figure 7. Treatment-group females have slightly lower incidence rates than control-group

females throughout the entire life-cycle, in both the main simulation and all bootstrap sim-

ulations. All combining functions are at the 100% level and p-values are zero. Similarly,

treatment-group males have consistently lower incidence rates than the control group. There

are no cases of male stroke until age 40, after which treatment-group males have much lower

incidence rates until age 65. However, age 50 and 60 combining functions have large p-values,

implying larger mid-life variation in male stroke projection. The male treatment group rate
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Figure 5: Life-cycle Trajectories of Heart Disease by Gender and Treatment Group

(a) Female
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(b) Male
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Note: The figures plot the proportion of treatment and control subjects who either have the disease or die
over the life-cycle by 5-year bins. The individual-level 5-year bin takes the value 1 if an individual contracts
the disease or dies in any year during the 5-year window, and 0 otherwise. The profile in the figure plots the
treatment and control averages of the individual-level bins. We display the fraction of years from age 30 to
ages 40, 50, 60, and 70 with a positive treatment effect as well as standard errors. One-sided p-values are
calculated with a null hypothesis of 50% using 1000 bootstraps of the microsimulation, which we also use to
calculate standard errors. Combining functions are highly significant except for females at age 70.
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Figure 6: Life-cycle Trajectories of Hypertension by Gender and Treatment Group

(a) Female
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(b) Male

Control > Treatment 0.00 19.05 45.16 51.22
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Note: The figures plot the proportion of treatment and control subjects who either have the disease or die
over the life-cycle by 5-year bins. The individual-level 5-year bin takes the value 1 if an individual contracts
the disease or dies in any year during the 5-year window, and 0 otherwise. The profile in the figure plots the
treatment and control averages of the individual-level bins. We display the fraction of years from age 30 to
ages 40, 50, 60, and 70 with a positive treatment effect as well as standard errors. One-sided p-values are
calculated with a null hypothesis of 50% using 1000 bootstraps of the microsimulation, which we also use to
calculate standard errors. Even though there are adversely significant combining functions for hypertension,
they become insignifcant beyond ages 60 and and 50 for females and males, respectively.
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plateaus at 30% by age 65, while that of the male control group increases past 50%. The age-

70 combining function becomes significant. There are highly significant combining functions

for mortality across the entire life-cycle for both genders (see Figure 8).

There are no deaths until age 50 and 45 for females and males, respectively. The female

treatment group has a slightly lower mortality rate than the control group over the remainder

of the life-cycle. On the other hand, male mortality rates diverge over time between treatment

and control. Control males are nearly four times more likely to die than treatment males

by age 75. All combining functions are at the 100% level and have high levels of statistical

significance, indicating similar mortality trajectories across bootstrap simulations. Mortality

is an informative indicator of the aggregate effect on all of the health conditions. The

prevalence of each chronic disease increases the risk of mortality. The strength and precision

of the treatment-control difference across the life cycle, as well as the gender difference in

the treatment effects, summarize the results in this section.

We summarize the impact of ABC/CARE on life-cycle health using quality-adjusted life

years (QALYs). A QALY reweights a year of life to adjust it for disease burden. We assign

a value of $150,000 (2014 USD) to each year of life. A QALY of $150,000 denotes the

value of a year of life in the absence of disease (perfect health). The value of a QALY for

an individual in a given year is smaller than $150,000 when there is disease: worse health

conditions imply a lower quality of life. A QALY is zero at death. Table 7 presents the net

present value of treatment gains in QALYs based on predicted life-cycle health trajectories.

The program cost per child is $92,570 (2014 USD). Health benefits alone for treatment-

group males, which total $106,218 (2014 USD), exceed the cost of the entire program and

generate positive returns. By this measure alone, female health gains pay for nearly half of

the program cost.
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Figure 7: Life-cycle Trajectories of Stroke by Gender and Treatment Group

(a) Female
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(b) Male
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(p−value) (0.00) (0.23) (0.14) (0.00)

Accumulated, %

0

.2

.4

.6

 

P
ro

b
a

b
ili

ty
 o

f 
H

a
v
in

g
 a

 S
tr

o
k
e

 30 35 40 45 50 55 60 65 70 75
Age

Control Treatment

Note: The figures plot the proportion of treatment and control subjects who either have the disease or die
over the life-cycle by 5-year bins. The individual-level 5-year bin takes the value 1 if an individual contracts
the disease or dies in any year during the 5-year window, and 0 otherwise. The profile in the figure plots the
treatment and control averages of the individual-level bins. We display the fraction of years from age 30 to
ages 40, 50, 60, and 70 with a positive treatment effect as well as standard errors. One-sided p-values are
calculated with a null hypothesis of 50% using 1000 bootstraps of the microsimulation, which we also use to
calculate standard errors. Combining functions are highly significant throughout the life-cycle for females,
and at the beginning and end of the life-cycle for males.
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Figure 8: Life-cycle Trajectories of Mortality by Gender and Treatment Group

(a) Female
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(b) Male
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Note: The figures plot the proportion of treatment and control subjects who die over the life-cycle by 5-
year bins. The individual-level 5-year bin takes the value 1 if an individual dies in any year during the 5-
year window, and 0 otherwise. The profile in the figure plots the treatment and control averages of the
individual-level bins. We display the fraction of years from age 30 to ages 40, 50, 60, and 70 with a positive
treatment effect. One-sided p-values are calculated with a null hypothesis of 50% using 1000 bootstraps of
the microsimulation. All combining functions are highly significant regardless of gender.
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Table 7: ABC/CARE Impact on Life-cycle Health QALYs and DALYs

QALYs (2014 USD) DALYs

Females 42,102 -0.050
Males 106,218 -3.824

Note: This table presents two summaries of the life-cycle health impacts of ABC/CARE. The net present
value of the average gain in quality-adjusted life years (QALYs) and the average gain in years lost due to
disease burden, disability-adjusted life years (DALYs). For reference, the per-child average total cost of the
program is $92,570 (2014 USD).

An alternative measure that does not depend on arbitrary monetary values for life is disability-

adjusted life years (DALYs). QALYs are weighted monetary values, adjusted for disease

burden. DALYs are weighted years of life, adjusted for disease burden The fraction of the

year lost is summed across the life cycle to calculate the number of years lost due to disease

burden. A QALY is zero at death. A DALY is one at death. We calculate the average

gain in DALYs using a horizon of one hundred years of life. For men, almost four years of

life is lost due to disease burden. For females, the decrease in lifespan is more moderate.

Table 7 is consistent with our life-cycle predictions. We find a persistent life-cycle treatment

effect for the majority of chronic conditions in both genders. The magnitude of treatment

effects is larger for males in multiple disease outcomes across the life-cycle and, therefore,

the life-cycle gains in QALYs and DALYs are consistent with this finding.

5 Conclusion

A well-established literature documents that high-quality early education programs benefit

children in terms of test scores, schooling, crime, and adult earnings, especially those who

are disadvantaged (Cunha et al., 2006; Currie and Almond, 2011; Elango et al., 2016). This

evidence relies primarily on short-term gains on test scores or on adult outcomes such as

crime or labor income. This paper breaks new ground by looking at the lifetime post-

program benefits on health. There are substantial lifetime effects on many components of
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health: cancer, heart disease, stroke, and mortality. Treatment effects are larger for males

consistent with previous findings in the literature (Elango et al., 2016).

The estimated treatment effects reported here are surprisingly large, especially because the

program did not target participant health, although it did subsidize visits to the doctors (but

not medications) for participants for the first year of the program. Besides providing early

health care, the program boosted cognitive and social skills which are known contributors to

lifetime health (see Borghans et al., 2008; Campbell et al., 2014). Elsewhere (Garćıa et al.,

2020) we use these estimates as part of a comprehensive cost-benefit analysis of the full range

of outcomes studied in the ABC experiment.
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Elango, S., , J. L. Garćıa, J. J. Heckman, and A. Hojman (2016). Early childhood education.
In R. A. Moffitt (Ed.), Economics of Means-Tested Transfer Programs in the United States,
Volume 2, Chapter 4, pp. 235–297. Chicago: University of Chicago Press.
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