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1 Introduction

It is illegal to use information on race, sex, or age to make employment decisions in the United

States.1 The voluminous empirical literature on labor market discrimination has focused primar-

ily on establishing whether markets discriminate against particular groups of workers on average

(Altonji and Blank, 1999; Guryan and Charles, 2013). However, a finding of market-level discrim-

ination provides little guidance to regulators tasked with enforcing anti-discrimination law, who

must decide which specific employers to investigate (US Equal Employment Opportunity Commis-

sion, 2016). Indeed, classic models of discrimination emphasize that market-level outcomes provide

limited guidance regarding the underlying distribution of discrimination across employers (Becker,

1957). This paper extends the frontier by developing new tools to characterize discriminatory

behavior in markets and detect discrimination by individual employers.

Our approach adapts insights from the literature on empirical Bayes (EB) analysis of large scale

testing problems (Efron, 2012) to the study of correspondence experiments that submit fictitious

applications with randomly generated characteristics to actual job vacancies (Bertrand and Duflo,

2017 provide a review). Since the influential work of Bertrand and Mullainathan (2004), corre-

spondence experiments typically sample thousands of jobs and send each a few applications with

distinctive names that signify race or sex. Our basic insight is that such studies are best viewed

as ensembles of exchangeable micro-experiments. From the ensemble, one can infer properties of

the distribution of discriminatory behavior which can, in turn, be used to form empirical posteriors

about the probability that any given job is discriminating.

As in classic EB analyses of count data (Efron and Morris, 1975; Brown, 2008), we treat call-

back outcomes as independent Bernoulli trials governed by job- and race (or sex)-specific callback

probabilities, a modeling choice we show closely approximates callback behavior in correspondence

experiments. Because few applications are sent to each job, the distribution of job-specific callback

probabilities is under-identified, invalidating standard non-parametric EB approaches (e.g., Efron,

2016). However, we establish identification of a set of moments of the joint distribution of white

and black callback probabilities determined by the number of applications sent to each job. To esti-

mate these moments, we propose a Shape-Constrained Generalized Method of Moments (SCGMM)

estimator that requires the estimated moments to be consistent with a proper bivariate probability

distribution. Applying this estimator to three experimental datasets reveals tremendous hetero-

geneity across jobs in the extent to which callback probabilities differ by race or sex, along with

substantial discriminatory skew: while most jobs barely discriminate, a few discriminate heavily.

Extending classic results on the identification of False Discovery Rates (Benjamini and Hochberg,

1995; Efron et al., 2001; Storey, 2002), we compute sharp lower bounds on the fraction of jobs

engaged in discrimination given the identified moments. In the Bertrand and Mullanaithan experi-

ment, we estimate that at least 13% of jobs discriminate against black applicants. The correspond-

ing estimate in a more recent study by Nunley et al. (2015) is 17%. In a study by Arceo-Gomez

1Title VII of the Civil Rights Act of 1964 prohibits employment discrimination on the basis of race and sex, while
the Age Discrimination Act of 1975 prohibits certain forms of discrimination on the basis of age.
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and Campos-Vasquez (2014), we find that at least 9% of jobs discriminate against women, while at

least 19% discriminate against men. These population shares are then used to compute bounds on

posterior probabilities that particular jobs are discriminating given their callback patterns. In the

Nunley et al. (2015) experiment, we estimate that at least 85% of jobs calling both of two white

applicants and neither of two black applicants are engaged in discrimination.

To explore the potential policy implications of our findings, we assess the prospects for system-

atically detecting discriminators based on callback evidence generated by alternative hypothetical

correspondence study designs. This investigation is based on detection/error tradeoffs that arise

under a parametric two-type model fit to the Nunley et al. (2015) data. With only two white and

two black applications per job, it is difficult to reliably identify discriminating employers. But with

only 10 applications per job, we find that a regulator who knows the joint distribution of callback

probabilities can correctly identify 7% of discriminating jobs while incurring Type I error rates of

less than 0.2%.

Finally, to probe the sensitivity of these conclusions to our modeling assumptions, we consider

the problem of a hypothetical regulator who knows only the identified moments of the distribution

of callback probabilities. This regulator decides which jobs to investigate using a minimax decision

rule that minimizes the maximum risk consistent with the known moments. We develop a tractable

approach to estimating the maximum risk function and find that a minimax regulator investigates

only slightly fewer jobs than would a Bayesian regulator who knows the joint distribution of callback

probabilities. This robustness emerges because the risk function is nearly identified at realistic

posterior thresholds that might be used to trigger investigations.

Our results illustrate the potential of experimental methods to assist with regulatory enforce-

ment of anti-discrimination laws. Because employers vary tremendously in their propensity to

discriminate against protected groups, regulators face a difficult inferential task. Our findings

suggest correspondence experiments can be paired with simple decision rules to reliably identify

discriminators. More generally, the methods developed here are applicable to other settings in

which analysts seek to make inferences regarding behavioral responses of individual units. Candi-

date applications include workplace safety audits and laboratory studies of departures from rational

choice theory (e.g., Levine et al., 2012 and Halevy et al., 2018).

2 Defining Discrimination

We now develop a formal notion of discrimination tailored to the analysis of correspondence ex-

periments. To simplify exposition we focus on race, which we code as binary (“white” / “black”).

Suppose that we have a sample of J jobs with active vacancies. To each of these jobs, we send Lw

applications with distinctively white names and Lb applications with distinctively black names as

in Bertrand and Mullainathan (2004), for a total of L = Lw + Lb applications. Denote the race

associated with the name used in application ` ∈ {1, ..., L} to job j ∈ {1, ..., J} as Rj` ∈ {w, b}.
The function Yj` (r) : {w, b} → {0, 1} indicates whether job j would call back application ` as a
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function of that applicant’s assigned race. Observed callbacks are then given by Yj` = Yj` (Rj`).

When Yj` (w) 6= Yj` (b) job j has engaged in racial discrimination with application `. Notably,

even if racially distinctive names influence employer behavior only through their role as a proxy for

parental background (Fryer and Levitt, 2004), using the names at any point in the hiring process is

likely to be viewed by courts as a pretext for discrimination.2 While courts are typically interested

in establishing whether a particular plaintiff experienced discrimination in precisely this sense, we

will take the perspective of a regulator tasked with assessing prospectively whether an employer

systematically treats applicants differently based upon race. For example, the mission of the US

Equal Employment Opportunity Commission (EEOC) is to “prevent and remedy unlawful em-

ployment discrimination and advance equal opportunity for all in the workplace” (emphasis added).

The following assumption formalizes this prospective notion of discrimination at the employer level.

Assumption 1. Callbacks are race- and job-specific Bernoulli trials:

Yj` (r) |Rj1...RjL
iid∼ Bernoulli(pjr) for r ∈ {w, b} .

Note that random assignment of racially distinctive names to applications guarantees independence

of Yj` (r) from {Rjk}Lk=1. The key behavioral restriction in Assumption 1 is that the {Yj` (r)}L`=1

are iid, which rules out, for example, scenarios in which a job calls back the first qualified applicant

and disregards all subsequent applications.3 We discuss below how to test for such violations.

The probability pjr may be interpreted as the callback rate that would emerge in a hypothetical

experiment in which a large number of applications of race r are sent to job j.4

Letting Cjr =
∑L

`=1 1 {Rj` = r}Yj` denote the number of applications of race r to job j that were

called back, Assumption 1 implies the probability Pr (Cjw = cw, Cjb = cb|pjw, pjb) that employer j

calls back cw white applications and cb black applications is:

f (cw, cb|pjw, pjb) =

(
Lw

cw

)(
Lb

cb

)
pcwjw (1− pjw)Lw−cw pcbjb (1− pjb)Lb−cb . (1)

We are now ready to offer a job-level definition of discrimination, which we will henceforth refer

to simply as discrimination.

Definition. Job j engages in discrimination when pjb 6= pjw.

Discriminatory jobs are labeled with the indicator function Dj = 1{pjb 6= pjw}. This definition is

prospective in that an employer with Dj = 1 will eventually discriminate against an applicant even

if it has not done so yet.

2See, e.g., the discussion in U.S. Equal Employment Opportunity Commission v. Target Corporation, 460 F.3d
946, 7th Cir. Wis. 2006 and footnote 27 of Fryer and Levitt (2004).

3One could equivalently view such behavior as a violation of our specification of potential outcomes, which builds
in the Stable Unit Treatment Value Assumption of Rubin (1980).

4If hundreds of applications were sent to a single job the employer would likely be overwhelmed and Assumption 1
would fail. We show below, however, that this assumption provides a suitable approximation to an experiment with
8 applications, which is an unusually large choice of L.
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3 Ensembles and Posteriors

The above framework treats each job’s callback decisions as a set of race-specific Bernoulli trials.

We next consider what can be learned from a collection of experiments conducted at many jobs.

This idea is formalized in the following exchangeability assumption on the jobs.

Assumption 2. Race-specific callback probabilities are independent and identically distributed:

pjw, pjb
iid∼ G (·, ·) .

The distribution function G (pw, pb) : [0, 1]2 → [0, 1] describes the population of jobs from which

a study samples. In practice, audit studies usually draw small random samples of jobs from online

job boards. The iid assumption abstracts from the fact that there are a finite number of jobs on

these boards. Note that by virtue of random assignment pjw and pjb are independent of the racial

mix of applications to job j as well as any other resume characteristics that are randomized.

Assumption 2 implies that the unconditional distribution of callbacks can be expressed as a

mixture of binomial trials. We denote the unconditional probability of observing the callback

vector (cw, cb) by

f̄ (cw, cb) =

∫
f (cw, cb|pw, pb) dG (pw, pb) . (2)

The distribution G (·, ·) will serve as a key object of interest in our analysis. One reason for

interest in G (·, ·) is that it characterizes both the prevalence and extent of discrimination in a

population. For instance, the proportion of jobs that are engaged in discrimination can be written:

π̄ = Pr (Dj = 1) =

∫
pw 6=pb

dG (pw, pb) .

A second reason for interest in G (·, ·) lies in its potential forensic value as a tool for identifying

which jobs are discriminating. The quantity π (cw, cb) = Pr (Dj = 1|Cjw = cw, Cjb = cb) gives the

proportion of jobs with callback vector (cw, cb) that are discriminating. Though this quantity has a

clear frequentist interpretation as the fraction of discriminators that would be found under repeated

sampling, we can also think of it as giving a posterior probability that a job is discriminating given

the “evidence” (Cjw, Cjb). Invoking Bayes’ rule, we can write this posterior as a functional of the

“prior” G (·, ·):

π (cw, cb) =
Pr (Cjw = cw, Cjb = cb|Dj = 1) π̄

f̄ (cw, cb)

=
π̄

f̄ (cw, cb)

∫
pw 6=pb

f (cw, cb|pw, pb) dG (pw, pb)

= P

cw, cb︸ ︷︷ ︸
direct

, G (·, ·)︸ ︷︷ ︸
indirect

 .
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The dependence of π (cw, cb) on G (·, ·) is an example of what Efron (2010) refers to as “indirect

evidence.” To understand the logic of incorporating indirect evidence, suppose π̄ = 0 so that no

jobs discriminate. Then π (Cjw, Cjb) = 0 with probability one – any seemingly suspicious callback

decisions are due to chance. Likewise, if π̄ = 1, all jobs are discriminators and there is no need for

direct evidence on the behavior of particular jobs. But in intermediate cases, where some fraction

of jobs are discriminators, and some are not, it is rational to blend the direct evidence from a

particular job with contextual information on the population from which that job was drawn.

Empirical Bayes approaches seek to form empirical posteriors P
(
cw, cb, Ĝ (·, ·)

)
that substitute

the unknown G (·, ·) with an estimator Ĝ (·, ·). Important applications of this idea arise in the lit-

erature on multiple hypothesis testing, where a key concept is the False Discovery Rate (Benjamini

and Hochberg, 1995), which can be thought of as a posterior estimate of the probability that a

given null hypothesis is true (Efron et al., 2001; Storey, 2002). In our setting, the False Discovery

Rate corresponds to the fraction 1 − π (cw, cb) of jobs with evidence vector (cw, cb) that are not

discriminating.

4 Identification of G

Each job’s realized callback rates (Cjw/Lw, Cjb/Lb) provide noisy estimates of the latent callback

probabilities (pjw, pjb). The binomial structure of this noise is not classical which leads point iden-

tification of G (·, ·) to fail when the number of applications per job is small.5 In this section we

establish that certain moments of G (·, ·) are nonetheless identified by simple linear transforma-

tions of unconditional callback probabilities. We then proceed to derive bounds on the posterior

probability function π (cw, cb) consistent with those moments.

Moments

From (2) we can write f̄(cw, cb) =

(
Lw

cw

)(
Lb

cb

)
E
[
pcwjw (1− pjw)Lw−cw pcbjb (1− pjb)Lb−cb

]

=

(
Lw

cw

)(
Lb

cb

)
Lw−cw∑
m=0

Lb−cw∑
n=0

(−1)m+n

(
Lw − cw

m

)(
Lb − cb
n

)
E
[
pcw+m
jw pcb+njb

]
, (3)

where E [·] denotes the expectation with respect to G (·, ·). Hence, the reduced form callback

rates can be written as linear functions of uncentered moments µ (m,n) = E
[
pmjwp

n
jb

]
of the latent

callback probabilities.

5If L were to grow large, one could invoke a normal approximation on each job’s sample callback rates and then
apply a variance stabilizing transform to make the noise approximately homoscedastic, as in classic EB studies of
batting averages (Efron and Morris, 1975; Brown, 2008). With homoscedastic normal estimation error, G (·, ·) could
then be estimated via deconvolution (e.g., as in Efron, 2016). However, Brown (2008) cautions against using such
approximations with 10 or fewer observations per group.
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Letting f̄ =
(
f̄ (1, 0) , ..., f̄ (Lw, 0) , ..., f̄ (Lw, Lb)

)′
denote the vector of frequencies for all pos-

sible callback outcomes excluding (0, 0) and µ = (µ (1, 0) , ..., µ (Lw, 0) , ..., µ (Lw, Lb))
′ the corre-

sponding list of moments, we can write the equations in (3) as a linear system f̄ = Bµ, where B is

a known non-singular square matrix of binomial coefficients. Inverting the linear system yields

µ = B−1f̄ , (4)

which immediately implies the following Lemma.

Lemma 1 (Identification of Moments). Under Assumptions 1 and 2 and for a given application

design (Lw, Lb), all moments µ(m,n) for 0 ≤ m ≤ Lw and 0 ≤ n ≤ Lb are identified.

From µ we can compute centered moments of the callback distribution, which are typically

easier to interpret. For example, a rudimentary measure of job-level heterogeneity in discriminatory

behavior is:

V [pjb − pjw] = µ (0, 2) + µ (2, 0)− 2µ (1, 1)− µ (0, 1)2 − µ (1, 0)2 + 2µ (0, 1)µ (1, 0) .

Lemma 1 implies this variance is identified for any application design that sends at least two

resumes per racial group (min {Lw, Lb} ≥ 2). In experiments where the application design (Lw, Lb)

varies randomly across jobs, some moments of G(·, ·) will be over-identified. We later exploit these

over-identifying restrictions in estimation to improve precision and test our modeling assumptions.

Analytic Bound on Posterior Probabilities

Though the study of moments of the callback distribution G(·, ·) can shed light on underlying

heterogeneity in callback behavior, the posterior probability π (cw, cb) need not admit a repre-

sentation in terms of a finite number of moments. However, a simple analytic bound on the

posterior can be derived from an application of Bayes’ rule that conditions on the total number

of callbacks Cjb + Cjw to job j. Let f̄t (cw) = Pr (Cjw = cw, Cjb = t− cw|Cjb + Cjw = t) denote

the probability mass function for white callbacks in the stratum of jobs that call back t appli-

cants in total, and let f̄0
t (cw) =

(
Lw

cw

)(
Lb

t− cw

)
/

(
L

t

)
denote the corresponding proba-

bility that would arise under Assumptions 1 and 2 if no discrimination were present. Finally, let

π̄t = Pr (Dj = 1|Cjb + Cjw = t) denote the share of discriminators among jobs calling back t total

applicants.

The following Lemma, which is proved in Appendix A, provides a tractable bound on both the

stratum prior π̄t and posterior π (cw, t− cw).
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Lemma 2 (Bounds on Stratum Prior and Posterior).

i) π̄t ≥ max
cw∈{0,...,t}

max

{
f̄0
t (cw)− f̄t (cw)

f̄0
t (cw)

,
f̄t (cw)− f̄0

t (cw)

1− f̄0
t (cw)

}
, t ∈ {1, ..., L− 1},

ii) π (cw, t− cw) ≥ 1− f̄0
t (cw)

f̄t (cw)
min

c′w∈{0,...,t}
min

{
f̄t (c′w)

f̄0
t (c′w)

,
1− f̄t(c′w)

1− f̄0
t (c′w)

}
, t ∈ {cw, ..., L− 1}.

Part i) of this Lemma shows that the experiment places a lower bound on the fraction of jobs

engaged in discrimination in each callback stratum that is increasing in the discrepancy between

the distribution of callback outcomes and the distribution predicted by the non-discrimination

null. Part ii) establishes via standard Bayesian updating arguments that the bound on the prior

translates into a corresponding lower bound on the posterior.

Sharp Bounds

While the bounds in Lemma 2 are easy to compute, they need not be sharp, as restrictions across

callback strata have been ignored. A lower bound on the prior π̄t that exploits all of the logical re-

strictions in our framework can be written as the solution to the following constrained optimization

problem:

min
G(·,·)∈G

1−

(
L

t

)
∑t

c′w=0 f̄ (c′w, t− c′w)

∫
pt (1− p)L−t dG (p, p) , (5)

s.t. f̄ (cw, cb) =

(
Lw

cw

)(
Lb

cb

)∫
pcww (1− pw)Lw−cw pcbb (1− pb)Lb−cb dG (pw, pb) , (6)

for (cw = 0, .., Lw; cb = 0, .., Lb) .

To make this problem computationally tractable, we consider a space G of discretized approxi-

mations to the unknown distribution function G (·, ·).6 Because both the objective and constraints

are linear in the probability mass function associated with G (·, ·), we can apply linear programming

(LP) routines to compute bounds given an estimate of the callback probabilities
{
f̄ (cw, cb)

}
cw,cb

.7

Details of our computational procedure are given in Appendix B.

Note that because the distribution G (·, ·) is not indexed by t, the solution to (5) enforces

constraints across callback strata. As a result, we may obtain informative bounds on the fraction

of discriminatory jobs even among those jobs that call no (or all) applications back.8

6See Noubiap et al. (2001) for a closely related approach and an asymptotic analysis of the effects of discretization.
7Analogous LP formulations can be used to bound any linear functional of G(·, ·), including other measures of

discrimination. For example, we can bound from below the fraction of employers discriminating against whites by
replacing the objective in (5) with minG(·,·)∈G

∫
pw<pb

dG (pw, pb). We leverage this insight to bound a variety of

features of G(·, ·) in the empirical work to follow.
8Suppose, for instance, that G (·, ·) is a two type mixture with Pr (pjw = 1, pjb = 1) = 1/2 and

Pr (pjw = 1/2, pjb = 0) = 1/2. Then all jobs with zero callbacks are discriminators.
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5 Data

We apply our methods to data from three correspondence experiments summarized in Table I.

Bertrand and Mullainathan (BM, 2004) applied to 1,112 job openings in Boston and Chicago, sub-

mitting four applications to each job. Of the four applications, two were assigned black-sounding

names while the remaining two were assigned white-sounding names. The callback rate to applica-

tions with black sounding names was 3.1 percentage points lower than to applications with white

sounding names.

Bertrand & Arceo-Gomez &
Mullainathan Nunley et al. Campos-Vasquez

(1) (2) (3)
Number of jobs 1,112 2,305 802

Applications per job 4 4 8

Treatment/control Black/white Black/white Male/female

Callback rates:    Total 0.079 0.167 0.123

Treatment 0.063 0.154 0.108

Control 0.094 0.180 0.138

Difference -0.031 -0.026 -0.030
(0.007) (0.007) (0.008)

Notes: This table reports sample characteristics based on data from three resume 
correspondence experiments. Columns (1) and (2) show statistics from Bertrand 
and Mullainathan's (2004) and Nunley et al.'s (2015) studies of racial 
discrimination in the United States. Column (3) reports statistics from Arceo-
Gomez & Campos-Vasquez's (2014) study of gender discrimination in Mexico. 
Standard errors for treatment/control differences, clustered at the job level, are 
in parentheses.

Table I: Descriptive statistics for resume correspondance studies

Nunley et al. (NPRS, 2015) studied racial discrimination in the market for new college graduates

by applying to 2,305 listings on an online job board, again sending four resumes per job opening.

Unlike BM, the names assigned to the four resumes were sampled without replacement from a pool

of eight names, four of which were distinctively black and four of which were distinctively white.

This led the fraction of black names sent to each job to vary randomly in increments of 25% from

0% to 100%. The overall callback rate in the NPRS study was more than twice as high as in the

BM study, perhaps because the fictitious applicants were more highly educated. On average, black

names had a 2.6 percentage point lower callback rate than white names.

Arceo-Gomez and Campos-Vasquez (AGCV, 2014) applied to 802 job openings through an

online job portal in a study of race and gender discrimination in Mexico City, Mexico. AGCV sent

eight fictitious applications to each job, and the applicants were all recent college graduates. While

9



the AGCV experiment looks at a different context than BM or NPRS, this data set allows us to

demonstrate the gains from doubling the number of applications per job opening. To illustrate the

identifying power of sending four applications to each protected group, we focus on gender in this

experiment, as AGCV used a three-category definition of race.9 In the AGCV experiment, women

were 3.4 percentage points more likely to receive callbacks than men.

6 Are Callbacks Independent Trials?

We begin by considering tests of the Bernoulli trials assumption that undergirds our econometric

framework. This assumption would be violated if the likelihood of a callback depends not just on

an application’s own characteristics but also on the characteristics of other applications sent to the

same job. To assess this possibility, we fit linear probability models of the form:

Yj` = λ0 +X ′j`λ1 + X̄ ′j`λ2 + εj`, (7)

where Xj` is a vector of application characteristics and X̄j` = (L− 1)−1∑
k 6=`Xjk gives the “leave

out” mean of those characteristics among the applications sent to job j excluding application `.

While the coefficient vector λ1 gives the direct effect of application characteristics on callbacks, the

coefficient vector λ2 captures the “peer effect” of other applications to the same job on application

`’s callback propensity. Assumption 1 restricts these peer effects to be zero (λ2 = 0).

For OLS estimates of (7) to identify a causal effect of X̄j`, we need X̄j` to be uncorrelated

with any omitted application characteristics Zj` that influence callbacks. We therefore focus on

the NPRS study which assigned both race and a large number of other application characteristics

independently of each other and across applications.10

Columns 1 and 2 of Table II report estimates of the parameters in (7) for the NPRS study, with

each row showing the coefficients from a separate regression. While applications with distinctively

black names are significantly less likely to be called back, we find no significant effect on callback

probabilities of changing the racial mix of the other 3 applications to the same job. Across the 12

covariates we consider only one (an indicator for 3+ months of unemployment) finds a significant

peer effect at conventional levels, and a joint test fails to reject that all of the leave out mean

coefficients are zero (p = 0.45). As another composite test, we report the results of a model in

which the peer effects are restricted to be proportional to the main effects of the application’s own

characteristics Xj`. The row titled “predicted callback rate” pools all the application characteristics

into an indexX ′j`λ̂1(j) where λ̂1(j) is the leave out OLS coefficient vector obtained from regressing the

9In principle the methods developed here could be extended to a multivariate distribution of callback probabilities
for three or more groups. Section 9 explores this possibility by allowing callback rates to differ by resume quality in
addition to race or gender.

10In contrast, BM assigned application characteristics according to their joint distribution in a training sample,
making it likely that the characteristics we study Xj` are correlated with other omitted characteristics Zj` that
predict callbacks. The application characteristics were also chosen to yield a good match with the job (see BM p.
996), leading Zj` to be correlated with its leave out mean Z̄j` and hence with X̄j`. The AGCV study includes only
a small number of randomized resume characteristics that are not predictive of callback outcomes.
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callback indicator on application covariates after leaving out all applications to job j. A unit increase

in X ′j`λ̂1(j) is associated with roughly half of a callback on average. Though X ′j`λ̂1(j) strongly

predicts callbacks, its average value among competing applications (L− 1)−1∑
k 6=`X

′
jkλ̂1(j) has no

statistically discernible impact on callbacks.

Main effect Leave-out mean Observations 𝜒2 statistic d.f. P -value Exact p- value
Variable (1) (2) Callbacks (3) (4) (5) (6) (7)
Black -0.028 -0.019

(0.010) (0.027) 1 149 2.68 3 0.444 0.592
Female 0.010 0.009

(0.010) (0.027) 2 64 8.27 5 0.142 0.249
High SES -0.233 -0.674

(0.174) (0.522) 3 64 3.17 3 0.367 0.513
GPA -0.043 -0.153

(0.066) (0.198) 1 60 10.06 7 0.185 0.319
Business major 0.008 0.010

(0.008) (0.021) 2 39 27.31 27 0.447 0.516
Employment gap 0.011 0.034

(0.009) (0.023) 3 39 61.17 55 0.264 0.287
Current unemp.: 3+ 0.013 0.005

(0.012) (0.032) 4 39 67.87 69 0.516 0.595
6+ -0.008 -0.038

(0.012) (0.029) 5 16 40.73 55 0.924 1.000
12+ 0.001 0.021

(0.012) (0.032) 6 21 29.38 27 0.343 0.390
Past unemp.:    3+ 0.029 0.065

(0.012) (0.031) 7 6 8.38 7 0.300 0.539
6+ -0.011 -0.016

(0.012) (0.033)
12+ -0.004 0.019

(0.012) (0.031)
Predicted callback rate 0.476 -0.041

(0.248) (0.626)
Joint p -value
Sample size

Notes: This table reports results from tests of the assumption that applications at each job are independent Bernoulli trials with race-specific success probabilities. 
Columns (1) and (2) show tests based on resume characteristics using data from Nunley et al. (2015). Estimates come from regressions of a callback indicator on a 
resume characteristic and the mean of this characteristic across other resumes at the same job. The predicted callback rate is the fitted value from a regression of a 
callback indicator on all resume characteristics, leaving out the reference job. The joint p-value comes from a test of the hypothesis that coefficients on the 
leave-out mean are zero for all individual characteristics. Standard errors, clustered at the job level, appear in parentheses. Columns (3)-(7) show tests based on 
resume order in the Arceo-Gomez and Campos-Vasquez (2014) data.  These results come from Wald tests of the hypothesis that all callback sequences leading to a 
particular total number of callbacks are equally likely. Column (3) shows the number of observed sequences in each callback stratum, column (4) shows the Pearson 
𝜒2 goodness of fit statistic, column (5) shows the degrees of freedom for the test, column (6) shows the corresponding p-value, and column (7) shows an 
exact multinomial goodness of fit p-value obtained by summing probabilities of all sequence configurations that occur with probability less than or equal to 
the observed configuration under the null. Panel A constructs sequences separately for the first four and last four applications at each job, and panel B uses 
the full eight application sequence. Panel C shows the results of a joint test of independence across all callback strata, a test that mean callback rates are equal 
across the eight resume order positions, and a test that the difference in callback rates between the first four and last four resumes equals zero.

0.452
9,220

No order effects: 𝜒2 (7) = 8.3, p = 0.310

First four minus last four: Difference = 0.011,  s.e. =  0.007, p = 0.117 

Panel A. Four-application sequences

Panel B. Eight-application sequences

Panel C. Joint tests
Independence in all callback strata: 𝜒2 (247) = 244.9, p = 0.526

Table II: Tests for dependence
Nunley et al. data: resume characteristics Arceo-Gomez & Campos-Vasquez: resume order

A second set of tests for independence exploits data on the specific order in which resumes were

sent to jobs in the AGCV experiment (corresponding data were unavailable for BM and NPRS).

With independent trials, all callback sequences leading to a particular total number of callbacks t

should be equally likely, so each such sequence should constitute a share

(
L

t

)−1

of the sample

calling t applications in total. Many plausible forms of dependence would manifest as violations of

this condition. If employers stop calling after seeing enough high quality applicants, for example,

we should expect to see sequences with runs of callbacks followed by non-callbacks. Likewise, if
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some employers detect the experiment after receiving several applications, we should see sequences

with early callbacks overrepresented and fewer callbacks at later positions in the order.

Columns 3-7 of Table II provide tests of the independence assumption in each callback stratum

t of the AGCV data. We form Pearson (1900) χ2 test statistics equal to quadratic forms in the

difference between observed and expected callback sequence frequencies, scaled by the covariance

matrix of these differences under the null. Panel A splits the sample of eight applications into two

sequences of four at each job in order to increase the expected frequency of each sequence, which

may improve the power of the test against certain alternatives. Panel B displays results using the

full eight-application sequence. These tests fail to reject the null hypothesis of independence in

any callback stratum (p ≥ 0.14) or across all strata jointly (p = 0.53). To focus on alternative

hypotheses of particular interest, we also conduct simpler tests for equal callback rates across the

eight order positions as well as between the first four and last four positions. These tests again

fail to reject independence (p = 0.31 and 0.12, respectively). These results indicate that the model

of independent Bernoulli trials provides a good approximation to correspondence studies sending

eight or fewer applications. We suspect, however, that the quality of this approximation would

deteriorate in experiments sending many more applications to each job.

7 Moment and Posterior Estimates

To estimate the identified moments in each experiment we compute shape-constrained GMM

(SCGMM) estimates that require the callback frequencies to be rationalizable by a proper dis-

cretized probability distribution defined on a 150 × 150 grid of support points. Imposing shape

constraints serves two goals. First, we need the moment estimates to be rationalizable by some

G(·, ·) ∈ G in order to subsequently use them as constraints when estimating bounds via our linear

programming method. Second, when the constraints bind, the resulting estimates are typically

closer to the truth and more precise (see Chetverikov et al., 2018 for a review). Details of the

SCGMM estimation procedure, which involves solving a Quadratic Programming (QP) problem,

appear in Appendix C.

Table III uses the shape constrained estimates to summarize key features of the distribution

of callback probabilities in each experiment, and reports minimized SCGMM criterion functions

(J -statistics) and p-values from bootstrap tests of the shape constraints based on the methods of

Chernozhukov et al. (2015). The full set of unconstrained moment estimates appear in Appendix

Tables A.I-A.III. Because the shape constraints may make the criterion non-differentiable, we rely

on the “numerical bootstrap” procedure of Hong and Li (forthcoming) to construct pointwise valid

estimates of standard errors.11

Table IV reports LP estimates of the lower bound probability that a given employer is discrimi-

nating. In computing both the analytic bounds of Lemma 2 and the sharp bounds of (5), we replace

the unknown callback probabilities f̄ with estimates ˆ̄f = Bµ̂, where µ̂ is the relevant vector of

11Because the asymptotic distribution of the shape constrained estimator will tend to be non-normal (Fang and
Santos, 2018), standard errors provide only a heuristic guide to the uncertainty associated with each moment estimate.
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p b p w p b  - p w p b p w p b  - p w p m p f p m  - p f

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Mean 0.063 0.094 -0.031 0.153 0.177 -0.023 0.114 0.140 -0.025

(0.006) (0.007) (0.006) (0.007) (0.007) (0.005) (0.009) (0.009) (0.008)

Standard deviation 0.152 0.199 0.082 0.290 0.308 0.102 0.231 0.257 0.179
(0.011) (0.011) (0.012) (0.008) (0.007) (0.009) (0.011) (0.010) (0.011)

Correlation with p w or p f 0.927 1.000 -0.717 0.944 1.000 -0.336 0.735 1.000 -0.483
(0.055) - (0.089) (0.018) - (0.048) (0.035) - (0.051)

Skewness - - - 3.757 3.648 -4.450 4.067 3.748 -1.403
(0.074) (0.087) (0.405) (0.140) (1.161) (0.385)

Excess kurtosis - - - - - - 8.452 5.756 12.227
(1.458) (8.790) (2.291)

J -statistic: 0.00 23.09 3.33
P -value: 1.000 0.190 0.790

Table III: Non-parametric estimates of treatment effect variation in resume correspondence studies
Bertrand & Mullainathan Nunley et al. Arceo-Gomez & Campos-Vasquez

Note: This table reports shape-constrained generalized method of moments (SCGMM) estimates of key features of the joint distribution of treatment and 
control callback rates in three resume correspondence studies. Columns (1)-(3) show estimates for black and white callback rates in Bertrand and Mullainathan 
(2004), columns (4)-(6) display estimates for black and white callback rates in Nunley et al. (2015), and columns (7)-(9) show estimates for male and female 
callback rates in Arceo-Gomez and Campos-Vasquez (2014). Standard errors are computed using the numerical bootstrap procedure described by Hong and 
Li (forthcoming). J -statistics are minimized SCGMM criterion functions. P -values come from bootstrap tests of the hypothesis that the model restrictions are 
satisfied. 



shape-constrained moment estimates produced by our SCGMM procedure. Because the LP algo-

rithm used to solve (5) scales efficiently to large problems, we use a finer discretization with 36

times as many points as the grid used in our earlier SCGMM step.12

Bertrand and Mullainathan (2004)

The first rows of columns 1 and 2 of Table III show the mean callback probabilities of white and

black applications across jobs. The J -statistic of zero reported in column 2 of Table III indicates

that the shape constraints do not bind in the BM data, i.e. that the sample frequencies can be

rationalized to numerical precision by a discretized probability distribution. Because the shape

constraints do not bind and the BM application design is balanced, the mean callback probabilities

match the callback rates reported in Table I perfectly. More interesting are the second moments:

there is substantial over-dispersion in callback probabilities, with standard deviations across jobs

for each race-specific probability more than double the mean probability. As expected, there is also

a strong positive correlation between white and black callback rates, reflecting that some employers

simply call back more applications of all types.

Column 3 of Table III reveals substantial heterogeneity in the difference in race specific callback

rates pjb−pjw across jobs, with a standard deviation more than twice as large as the mean. The third

row shows a strong negative correlation between the discriminatory gap in callback rates pjb − pjw
and the white callback probability pjw, suggesting that discrimination tends to be stronger when

jobs have higher chances of calling back more white workers. This reflects, in part, a mechanical

boundary effect, as an employer with very low callback rates has little opportunity to discriminate.

Since the white callback rate in this study is only around 10%, boundary effects are likely to be a

quantitatively important phenomenon.

Column 1 of Table IV reports lower bounds on the fraction of jobs engaged in discrimination by

the number of total callbacks in the BM experiment. The analytic bounds in Lemma 2 (presented

in brackets) imply that at least 38% of the jobs that call back 2 applications are engaged in

discrimination, while at least 44% of jobs that call back 3 applications are discriminating. The

sharp LP bounds are somewhat tighter than their analytical counterparts, revealing that at least

44% of the jobs calling back two applicants are discriminating. Among jobs that call back three

applications, at least half are discriminating on the basis of race. Hence, in this callback stratum,

our estimates suggest jobs should not logically be presumed “innocent” of discrimination.

The LP approach also generates informative bounds in callback strata for which analytical

bounds are not available. Overall, at least 13% of jobs discriminate on the basis of race. Notably,

at least 4% of jobs that call back no applications are engaged in discrimination, while at least 21%

of jobs that call back all four applications discriminate on the basis of race. Since neither of

12Appendix Table A.IV assesses the sensitivity of our estimates to alternative discretization schemes. The results
show that the moment estimates are not sensitive to the number of grid points used in the SCGMM step (as evidenced
by the goodness of fit statistic) and that the bounds stabilize with a sufficiently large number of grid points in the
linear programming step.
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Pr(p w  ≠ p b ) Pr(p w  < p b ) Pr(p b  < p w ) Pr(p w  ≠ p b ) Pr(p w  < p b ) Pr(p b  < p w ) Pr(p f  ≠ p m ) Pr(p f  < p m ) Pr(p m  < p f )
Callbacks (1) (2) (3) (4) (5) (6) (7) (8) (9)

All 0.130 0.000 0.130 0.358 0.154 0.173 0.277 0.089 0.188
0 0.038 0.000 0.038 0.152 0.093 0.048 0.136 0.040 0.095

1 0.424 0.000 0.424 0.672 0.185 0.433 0.895 0.414 0.480
{0.363} {0.176} {0.032}

2 0.442 0.000 0.442 0.691 0.016 0.675 0.716 0.260 0.456
{0.379} {0.282} {0.540}

3 0.508 0.000 0.508 0.821 0.067 0.736 0.576 0.047 0.528
{0.440} {0.126} {0.505}

4 0.212 0.000 0.212 0.421 0.257 0.128 0.503 0.055 0.447
{0.478}

5 0.346 0.171 0.175
{0.313}

6 0.409 0.212 0.197
{0.338}

7 0.486 0.157 0.329
{0.125}

8 0.076 0.011 0.065
J -statistic: 29.26 0.00 29.26 62.64 23.46 62.64 369.66 33.88 359.95
P -value: 0.000 1.000 0.000 0.000 0.120 0.000 0.000 0.005 0.000

Bertrand & Mullainathan Nunley et al. Arceo-Gomez & Campos-Vasquez
Table IV: Lower bounds on probabilities of discrimination

Notes: This table reports lower bounds on the probability that jobs discriminate based upon race or sex. Bounds are computed via linear 
programming. Where possible, corresponding analytic bounds based on the formula in Lemma 2 appear in brackets. The first row shows bounds in 
the population of all jobs, and the remaining rows display bounds conditional on the total number of callbacks. Columns (1)-(3) show results for 
racial discrimination in the Bertrand and Mullainathan (2004) data, while columns (4)-(6) show results for racial discrimination in the Nunley et al. 
(2015) data. Columns (1) and (4) display lower bounds on the fraction of jobs with equal callback rates for white and black applicants, columns (2) 
and (5) report lower bounds on the fraction discriminating against white applicants, and columns (3) and (6) report lower bounds on the fraction 
discriminating against black applicants. Results for the Nunley et al. (2015) data that condition on the number of callbacks refer to jobs receiving two 
white and two black applications. Columns (7)-(9) show results for sex discrimination in the Arceo-Gomez and Campos-Vasquez (2014) data. 
Column (7) reports a lower bound on the fraction of jobs with equal callbacks for men and women, column (8) shows a lower bound on the fraction 
discriminating against women, and column (9) reports a lower bound on the fraction discriminating against men. J -statistics and p -values come 
from bootstrap tests of the hypothesis that the lower bound equals zero for all jobs.



these strata exhibit any difference in black-white callback rates, all of the relevant information on

discrimination in these strata comes from the total number of callbacks blended with the indirect

evidence from the population distribution G (·, ·).
Column 2 of Table IV reports LP-based lower bounds on the proportion of jobs with white call-

back probabilities less than their black callback probabilities. We find a lower bound of exactly zero

in each callback stratum, indicating that the callback probabilities can be rationalized without any

employers engaging in “reverse discrimination” against whites. Column 3 reports lower bounds on

the proportion of jobs with white callback probabilities greater than their black callback probabil-

ities. These lower bound estimates coincide exactly with those reported in column 1. Accordingly,

we easily reject the null hypothesis of no discrimination against blacks.

Figure I: Lower bounds on posterior probabilities of discrimination, BM data

Notes: This figure displays lower bounds on the probability that jobs in the Bertrand and Mullainathan (2004) 
data discriminate based upon race given their callback configurations. Each bar reports a lower bound on the 
posterior probability of discrimination conditional on (Cw ,C b ), where Cw  is the number of white callbacks 
and C b  is the number of black callbacks.

Figure I converts the lower bound estimates in column 3 of Table IV to lower bound posterior

probabilities of discrimination. Overall, at least 13% of jobs engage in discrimination. However, at

least 72% of jobs that call back two white and no black applications are discriminating, while a job

that calls back one white and no black applications has at least a 58% chance of discriminating.

Nunley et al. (2015)

Moment estimates from the NPRS study are reported in columns 4-6 of Table III. Recall that NPRS

employed five distinct application designs with (Ljw, Ljb) ∈ {(4, 0) , (3, 1) , (2, 2) , (1, 3) , (0, 4)}. Ap-

pendix Table A.II reports design-specific method of moments estimates of all identified moments
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for the three designs with the largest sample sizes.13 As expected, the design-specific estimates are

generally close to one another and we cannot reject that they are identical. To pool the designs

efficiently, we again use an SCGMM estimator that requires the moments be rationalizable by a

proper probability distribution G ∈ G . The minimized SCGMM criterion function provides a mea-

sure of the goodness of fit of our model. Applying the bootstrap method of Chernozhukov et al.

(2015) yields a p-value of 0.19 for the null hypothesis that the results for all experimental designs

are jointly rationalized by a common distribution G (·, ·).
Consistent with our findings for the BM data, columns 4-6 of Table III reveal substantial het-

erogeneity in race-specific callback rates in the NPRS experiment, with standard deviations roughly

twice their mean. The imbalanced designs used by NPRS allow us to identify higher moments than

the earlier BM study even though the two studies sent the same number of applications per job.

While race-specific callback rates are right skewed, racial gaps in callback probabilities pjb − pjw
are left-skewed, indicating a long tail of heavy discriminators.

Figure II: Lower bounds on posterior probabilities of discrimination, NPRS data

Notes: This figure displays lower bounds on the probability that jobs in the Nunley et al. (2015) data 
discriminate against black applicants for the 10 callback configurations with highest posterior bounds. Each 
bar reports a lower bound on the posterior probability that p w  > p b  conditional on (C w ,C b ), where C w  is the 
number of white callbacks and C b  is the number of black callbacks. Orange bars correspond to an 
experimental design with 3 white and 1 black application, green bars correspond to a design with 2 white and 
2 black applications, and red bars correspond to a design with 1 white and 3 black applications. The blue bar 
reports the lower bound on the prior probability of discrimination.

Columns 4-6 of Table IV report estimated lower bounds on the probability of discrimination

from the NPRS study for the full population of jobs as well as bounds conditional on total callbacks

13The remaining designs were omitted from this analysis due to small sample sizes. Only 22 jobs were in the
(Ljw = 0, Ljb = 4) design while 43 jobs fell in the (Ljw = 4, Ljb = 0) design.
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in a balanced design with Ljw = Ljb = 2. In column 1, our analytic bound formula suggests at

least 28% of the jobs calling back two applicants in this design are discriminating – slightly lower

than the corresponding estimate in BM. Applying the LP approach tightens the analytic bounds

dramatically and provides additional bounds on the prevalence of discrimination among jobs that

make no callbacks or that call every application. We estimate that at least 36% of all jobs have

different white and black callback probabilities, with that share rising to 69% among employers

who call back two applicants in a balanced (2, 2) design.

Some of this discrimination is estimated to be against whites. Column 5 shows that the shape

constrained callback probabilities ˆ̄f imply that at least 15% of employers have white callback

probabilities less than their black probabilities. These moments are estimated with error, however,

and a bootstrap test of the null hypothesis that all employers have white callback probabilities

weakly exceeding their black callback probabilities yields a p-value of 0.12. If we attribute the

evidence of reverse discrimination to sampling error, we can take the estimates in column 6 as the

relevant lower bounds on discrimination. These results imply that at least 17% of jobs discriminate

against black applicants. We decisively reject the null hypothesis that this lower bound is zero.

Figure II converts these lower bound priors into posterior estimates of the share of employ-

ers with selected callback configurations engaged in discrimination against black applicants. We

estimate that at least 85% of the employers calling back two white and no black applicants in a

balanced (2, 2) design are discriminating against blacks. Interestingly, calling back three whites

and no blacks in a (3, 1) design is estimated to be even more suspicious, with at least 90% of the

employers generating this callback evidence engaged in discrimination against black applicants.

Arceo-Gomez and Campos-Vasquez (2014)

The full set of moment estimates for the AGCV experiment (reported in Appendix Table A.III)

reveal that the shape constraints bind strongly in this case, presumably because the design of

the AGCV experiment involves many small cells. Despite substantial movement in the moment

estimates, the bootstrap p-value from a test of the null hypothesis that the callback frequencies are

generated by the model is 0.79, indicating that the raw callback frequencies are rationalizable by a

well-behaved underlying joint distribution of callback probabilities.

Columns 7-9 of Table III report key moment estimates from the AGCV data. The behavior

of the first two moments is similar to that reported in the prior two experiments, with gender-

specific standard deviations roughly twice their mean callback probabilities. However, the greater

number of applications used in this design helps enormously with the precision of higher moment

estimates.14 We find strong evidence of left-skew in the distribution of gender gaps in callback

probabilities as well as evidence of excess kurtosis in the distribution of gaps. While many jobs

discriminate little, there is a thick tail of heavy discriminators.

14Though the standard errors reported in Table IV suggest imprecision in our estimates of the higher moments
of the female callback rate distribution, this appears to be a consequence of the asymptotic non-normality of the
shape-constrained estimator. For example, the numerical bootstrap gives a 90-percent confidence interval of [5.37,
7.49] for the excess kurtosis of pjf while the corresponding standard error equals 8.79.
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Columns 7-9 of Table IV report estimated lower bounds on the probability of discrimination

in the AGCV experiment. Focusing on the sharp bounds reported in column 7, we find that at

least 28% of jobs are engaged in discrimination. Remarkably, this share rises to 90% among jobs

calling back one applicant and 72% among jobs calling two. These shares are much higher than

the corresponding analytic bounds, showing that cross-stratum restrictions in a design with eight

applications are useful for tightening bounds in strata with few callbacks. Evidently, jobs that call

back few applicants in the AGCV experiment are very likely to engage in discrimination.

Figure III: Lower bounds on posterior probabilities of discrimination, AGCV data

Notes: This figure displays lower bounds on the probability that jobs in the Arceo-Gomez and Campos-
Vasquez (2014) data discriminate based upon sex for the 10 callback configurations with highest posterior 
bounds. Each bar reports a lower bound on the posterior probability of discrimination conditional on (C f ,C m ), 
where C f  is the number of female callbacks and C m  is the number of male callbacks. Blue bars report lower 
bounds on the probability of discriminating against men, and red bars report lower bounds on the probability 
of discriminating against women. 
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Some of this discrimination appears to be “reverse” discrimination against women. Column

8 shows that at least 9% of jobs discriminate against women and a bootstrap test of the null

hypothesis that this bound equals zero is decisively rejected. An employer that calls back a single

application has at least a 41% chance of discriminating against women. Column 9 shows that

at least 19% of jobs discriminate against men, and the bootstrap p-value indicates this bound is

also statistically distinguishable from zero. The mean difference in callback rates in the ACGV

experiment therefore masks gender discrimination operating in both directions. An employer that

calls back a single application has at least a 48% chance of discriminating against men.

Figure III plots lower bound posterior probabilities of discrimination against men and women,

respectively, for selected callback configurations. At least 97% of the jobs that call back four women

and no men are estimated to discriminate against men. But even an employer that calls back a
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single woman and no men has at least a 90% chance of discriminating against men. Likewise, at

least 85% of jobs that call back a single man and no women are estimated to be discriminating

against women. That we obtain such strikingly informative posteriors in settings with a single

callback demonstrates the tremendous value of indirect evidence in this setting.

8 Experimental Design and Detection Error Tradeoffs

The above analysis demonstrated that it is possible to achieve high posterior certainty that individ-

ual jobs are engaged in discrimination when callback rates at those jobs differ dramatically across

protected groups. Can such evidence be used to reliably detect a non-trivial share of discriminating

jobs? We address this question by studying the tradeoff between Type I and II errors that arises

under a simple two-type mixture specification calibrated to match callback rates in the NPRS data

given race and other resume characteristics. We then consider how the resulting detection error

tradeoffs change as the experimental design is altered to send more applications to each job.

A Mixed Logit Model

We work with a mixed logit model for callbacks of the form:

Pr (Yj` = 1|Rj`, Xj`, αj , βj) = Λ
(
αj − βj1 {Rj` = b}+X ′j`ψ

)
,

where Λ (·) = exp(·)
1+exp(·) is the standard logistic CDF, Xj` is a vector of de-meaned application covari-

ates, and (αj , βj) are random coefficients governing the odds of a white callback and discrimination

against blacks, respectively. To allow for heterogeneity in white callback rates we assume that

αj
iid∼ N

(
α0, σ

2
α

)
. Discrimination is modeled as a two-type (conditional) mixture:

βj |αj =

β0 w/ prob. Λ (τ0 + τααj),

0 w/ prob. 1− Λ (τ0 + τααj).

This specification allows for some fraction of jobs to not discriminate at all, while the remaining

jobs depress the odds of calling back blacks relative to whites by roughly β0%. When τα 6= 0,

the probability of discrimination depends on αj , which governs the white callback rate. Note that

random assignment of the covariates Xj` implies they are independent of (αj , βj) and therefore

excludable from the type probability equation.

Model Estimates

Table V shows the results of fitting the above model to the NPRS experiment by simulated max-

imum likelihood. Column 1 provides a standard “random effects” logit model with heterogeneity

confined to the intercept as in Farber et al. (2016). We find substantial variability across jobs in

the overall odds of a callback: a 0.1 standard deviation increase in the intercept αj is estimated
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to raise the odds of a callback by 47%. We also find clear evidence of market-wide discrimination:

black applications have roughly 46% lower odds of being called back than their white counterparts.

Column 2 allows the race effect βj to vary across employers, which yields a significant improve-

ment in model fit. The types specification finds that only about 17% of jobs discriminate against

blacks – very near the non-parametric lower bound estimate produced earlier by our LP routine

Constant No selection Selection
(1) (2) (3)

      Distribution of logit(pw):   𝛼0 -4.708 -4.931 -4.927
(0.223) (0.242) (0.280)

𝜎𝛼 4.745 4.988 4.983
(0.223) (0.249) (0.294)

  Discrimination intensity:  𝛽0 0.456 4.046 4.053
(0.108) (1.563) (1.576)

   Discrimination logit:      𝜏0 - -1.586 -1.556
(0.416) (1.098)

𝜏𝛼 - - -0.005
(0.180)

Fraction with p w  ≠ p b  : 1.000 0.168 0.170

Log-likelihood -2,792.1 -2,788.2 -2,788.2
Parameters 15 16 17
Sample size 2,305 2,305 2,305

Table V: Mixed logit parameter estimates, NPRS data

Notes: This table reports simulated maximum likelihood estimates of mixed logit 
models for callback probabilities in the Nunley et al. (2015) data. Columns (2)-(3) 
allow for two discrete types of firms, one of which does not discriminate based 
upon race. All models include resume covariates. Covariates are de-meaned in the 
estimation sample. Robust standard errors in parentheses.

Types

(see column 6 of Table IV). The degree of discrimination among such jobs is estimated to be severe:

the odds of receiving a callback are roughly exp (4) − 1 ≈ 53 times higher for white applications

than for blacks. Column 3 allows the probability of discrimination to vary with the white callback

rate, which yields a negligible improvement in model fit. Surprisingly, αj and βj are found to

be nearly independent, which implies that the negative correlation between pjb − pjw and pjw

reported in Table III is attributable to boundary effects. Again, this model finds roughly 17% of

jobs discriminate against blacks. Because we cannot reject the null hypothesis that τα = 0, we

work with the more parsimonious model in column 2 in the exercises that follow.15

15Appendix Figure A.I provides a goodness of fit diagnostic for this model, plotting the empirical callback rates in
each black / white callback by application design cell against the logit model’s predicted callback probability in that
cell. The empirical frequencies track the model predictions closely and a naive Pearson χ2 test fails to reject the null
hypothesis that the model rationalizes the cell frequencies up to sampling error.
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Figure IV: Mixed logit estimates of posterior discrimination probabilities, NPRS data

Notes: This figure displays mixed logit estimates of the posterior probability that jobs in the Nunley et al. 
(2015) data discriminate against black workers conditional on (Cw ,C b ), where Cw  is the number of white 
callbacks and C b  is the number of black callbacks. Blue bars show posteriors for a design sending two low 
quality (LQ) white applications and two high quality (HQ) black applications, where low and high quality are 
defined based on a logit covariate index 1 standard deviation below or above the mean. Red bars show 
posteriors for a design sending two HQ white and two HQ black applications. Green bars show posteriors for a 
design sending two LQ white and two LQ black applications. Orange bars show posteriors for a design sending 
two HQ white and two LQ black applications.

Posteriors

Figure IV reports the distribution of posterior probabilities Pr(Dj = 1|{Yj`, Rj`, X ′j`ψ}L`=1) implied

by the parameter estimates reported in column 2 of Table V. To summarize the influence of the

covariates, we evaluate the posteriors at two points within each race group, corresponding to the

estimated index X ′j`ψ̂ being a standard deviation above or below its empirical mean, which we refer

to as “high” and “low” quality applications. By construction, the mean posterior coincides with

the estimated fraction of jobs that discriminate. The types model finds that only 17% of jobs are

discriminating, yielding a strong prior that the typical job is not violating employment law. Yet

calling back only white applicants still justifies a substantial degree of suspicion: 62% of the jobs

that call back two whites and no blacks are discriminating.

Imbalances in the covariate mix of applicants can substantially intensify this suspicion. For

example, 79% of the jobs that call back two low quality white applications and neither of two high

quality black applications are discriminating. Evidently, even in models with a strong presumption

of innocence, four applications can provide enough information to cast substantial doubt on whether

individual employers are in compliance with employment law. However, it is only under the most
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extreme callback configurations that we can detect discriminators with reasonable certainty.

Detection Error Tradeoffs

Consider now a hypothetical regulator who forms posteriors taking as prior knowledge the two-type

estimates reported in Table V. One may think of the regulator as first learning the parameters of

the two-type model from a large experiment and then sending applications to additional vacancies

drawn from the same population from which the original study sampled.

Notes: This figure displays detection/error tradeoff curves based on models fit to the Nunley et al. (2015) data. 
Estimates come from decision rules applied to experiments generated from the logit model in column (2) of Table 
V. The horizontal axis measures the share of discriminating jobs investigated by each decision rule, while the 
vertical axis measures the share of non-discriminating jobs not investigated. The curves are generated by varying 
the posterior threshold at which jobs are investigated. The green curve corresponds to an experiment that sends two 
white and two black applications to each job, and the red curve corresponds to sending five applications of each 
race. These two curves randomly assign a 2-valued covariate index of resume quality (high or low), defined as +/-1 
the empirical standard deviation of this index. The blue curve shows results from sending five low-quality white 
and five high-quality black applications. Bold points correspond to 80% posterior thresholds.

Figure V: Detection/error tradeoffs, NPRS data

.9
88

.9
9

.9
92

.9
94

.9
96

.9
98

1
Sh

ar
e 

of
 n

on
-d

isc
rim

in
at

or
s 

no
t i

nv
es

tig
at

ed

0 .05 .1 .15
Share of discriminators investigated

2 pairs 5 pairs
5 pairs (HQ black, LQ white)

Figure V displays a rescaling of the Type I and II error rates that arise from investigating all

jobs exceeding various posterior thresholds. The horizontal axis gives the share of jobs engaged in

discriminating that are investigated. The vertical axis plots the share of non-discriminators that

are not investigated. Each point gives the values of these shares corresponding to a particular

posterior decision threshold. The bold point corresponds to a posterior threshold of 80%.

In the canonical design with only 4 applications (2 white and 2 black), the 80% posterior

threshold yields almost no false accusations. This control over Type I errors comes at the cost of

a high Type II error rate – few accusations of any sort are made, leading to a negligible fraction of

discriminators detected. Note that conducting a classical hypothesis test (e.g., Fisher’s exact test) at
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the 1% level is equivalent to controlling the fraction of non-discriminators that are not investigated,

which is depicted by the horizontal line at 0.99. This rule would yield more investigations but most

of these would be erroneous: the equivalent posterior threshold in the 2 pair design is only 33%.

Expanding the design to 5 pairs of applications yields a substantial outward shift in the detection

error tradeoff curve. Using a posterior threshold of 80% keeps the fraction of employers erroneously

investigated for discrimination below 0.2% while allowing detection of roughly 7.5% of jobs that

discriminate. Lowering the posterior threshold further boosts the detection rate above 10% while

modestly increasing the Type I error rate. Evidently, ten applications enables accurate detection

of a non-trivial fraction of discriminators.

The third line shows the results of an experiment where each job is sent 5 high quality black

applications and 5 low quality white applications.16 Modifying the experimental design in this way

yields additional improvements in Type I and II error rates. Using an 80% posterior threshold,

the share of non-discriminators investigated remains below 0.2%, while the share of discriminators

investigated rises to roughly 10%.

9 Indirect Evidence and Policy

The findings of the previous section indicate that correspondence experiments with as few as 10

applications can reliably detect a substantial share of discriminating employers when the population

distribution of callback probabilities is known. We now consider how a Bayesian regulator might go

about deciding which jobs to investigate and then assess how partial identification of the callback

rate distribution affects this decision rule.17

The Regulator’s Problem

Suppose the regulator must decide which jobs to investigate based on a vector of direct evidence

Ej = {Yj`, Rj`, Xj`}L`=1 revealed by a correspondence study. The regulator uses a deterministic

decision rule δ (Ej) that maps this evidence vector to a binary inquiry decision.18 Each job has a

pair of race specific callback probabilities {pjw (x) , pjb (x)} that may vary with applicant quality

x. We use H (·) to denote the iid randomization distribution of Xj`. Consistent with our earlier

analysis of the NPRS experiment, we rule out the possibility of discrimination against whites by

assuming Pr (pjw (x) ≥ pjb (x)) = 1 for all quality levels x ∈ X .

16Of course, the results of such an experiment would be difficult to interpret without an earlier experiment revealing
the model parameters, as one would not be able to parse the effects of race from those of quality.

17Our analysis is based loosely on the experience of the EEOC, which has the authority to conduct systematic
investigations into the discriminatory behavior of particular organizations. Because investigations are costly, the
EEOC uses a priority system based on human judgement to decide which complaints to investigate (US Equal
Employment Opportunity Commission, 2016). The results below illustrate how direct callback evidence from a
correspondence experiment can be blended with indirect evidence to assist or replace informal human judgements.

18We confine ourselves to deterministic rules because randomized decision rules violate commonly held horizontal
equity principles.

24



The regulator’s loss from applying decision rule δ (Ej) = δj ∈ {0, 1} to job j is modeled as:

Lj (δj) = δj

(
κ− Λ

(∫ [
Λ−1 (pjw (x))− Λ−1 (pjb (x))

]
dH (x)

))
. (8)

One can think of the parameter κ ∈ (1/2, 1] as capturing the cost of conducting an investigation.

The term Λ
(∫ [

Λ−1 (pjw (x))− Λ−1 (pjb (x))
]
dH (x)

)
∈ [1/2, 1] gives the benefit to the investiga-

tion, which is increasing in the average log callback odds advantage of whites over blacks at job j

across quality levels. The racial difference in log odds is then mapped back to the unit interval by

the logistic CDF to produce the payoff to an investigation. The regulator would like to investigate

whenever this payoff exceeds the investigation cost, in which case Lj (1) is negative.

Because the {pjw (x) , pjb (x)}x∈X are not known, the regulator minimizes expected loss (i.e.

risk). When the regulator knows the joint distribution of callback probabilities in the population,

the risk function can be written:

Rj (G, δ (·)) = E [Lj (δj)] = E
[
δj (Ej)

(
κ− Λ

(∫ [
Λ−1 (pjw (x))− Λ−1 (pjb (x))

]
dH (x)

))]
,

where G : [0, 1]2|X | → [0, 1] is the joint distribution of quality-specific callback rates. Because

{Ej , pjw (x) , pjb (x)}Jj=1 are iid across jobs, we can drop the j subscripts and refer to the risk

function as R (G, δ (·)). Choosing δ(Ej) to minimize the risk function pointwise yields the following

Lemma, which characterizes the regulator’s optimal decision rule in the case where G is known.

Lemma 3 (Optimal Decision Rule). .

δ (Ej) = 1

{
E
[
Λ

(∫ [
Λ−1 (pjw (x))− Λ−1 (pjb (x))

]
dH (x)

)
|Ej
]
> κ

}
minimizes R (G, δ).

One can think of Lemma 3 as offering an economically motivated standard of reasonable doubt :

when the posterior expected benefit of an investigation exceeds the investigation cost κ, it is rational

to conduct an investigation. Note that in the two-type logit model the difference in log odds at job

j equals β0Dj for all quality levels, so the optimal decision rule amounts to investigating when the

posterior probability of discrimination exceeds a cost-based threshold.19

Ambiguity

When G is only known to lie in some identified set Θ of distributions, many possible decision rules

are consistent with rationality. Among those rules, an important benchmark is the minimax decision

rule (Wald, 1945; Savage, 1951; Manski, 2000), which minimizes the maximum risk that may

arise from the regulator’s decisions. We can define the maximum risk function and the associated

19Specifically, in the logit model we have δ (Ej) = 1 {P(Ej , Glogit) > (κ− 1/2)/(Λ(β0)− 1/2)} .
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minimax decision rule respectively as:

Rm (Θ, δ) = sup
G∈Θ
R (G, δ) and δmm = arg inf

δ∈D
Rm(Θ, δ), (9)

where D is the set of deterministic decision rules. Unlike in the case where G is known, a regulator

that only knows G ∈ Θ cannot consult a single posterior expectation to make the decision of

whether to investigate. Rather, the maximum risk of each decision rule must be computed to

obtain the minimax decision rule.

Relying on a discretized function space for G simplifies computation of the maximum risk

function Rm consistent with a set of experimental callback probabilities. As explained in Appendix

D, when Θ consists of a family of discrete distributions, Rm (Θ, δ) can be computed numerically

as the solution to a linear programming problem. The minimax decision rule δmm (·) is found by

computingRm(Θ, δ) for each candidate rule δ ∈ D and choosing the rule that yields lowest maximal

risk.

Bayes vs. Minimax Decisions

We now compare the decisions made by a Bayesian regulator with a minimax regulator in the

hypothetical 5-pair generalization of the NPRS experiment considered in Section 8. As in Figure

IV, we assume applications take on only two quality levels (high or low) with equal probability.

We consider a restricted family D† ⊂ D of decision rules of the form δ (Ej) = 1 {P (Ej , Glogit) ≥ q} ,
where q ∈ (0, 1) is a posterior cutoff and Glogit is the logit model reported in column 2 of Table V.

Computing the maximal risk for this family of decision rules can be thought of as a way of “second

guessing” the risk associated with each logit posterior threshold without debating the logit model’s

ordering of the underlying evidence configurations.20 In computing Rm(Θ, δ), we use the logit

model predictions of callback probabilities within each of the two quality bins as constraints (see

the Appendix for details) and calibrate κ so that, under the logit DGP, an 80% posterior threshold

minimizes risk.

Figure VI plots logit (i.e., Bayes) risk andRm(Θ, δ) against the nominal logit posterior threshold

q. As q approaches one, both the maximal and Bayes risks approach zero, as no jobs are investigated

in the limit. Conversely as the posterior threshold approaches zero – at which point all jobs are

investigated – the maximum risk diverges from the Bayes risk because the least favorable G is

one where nearly all jobs are engaged in trivial levels of discrimination that fail to justify the

investigation cost. Recall from Table IV, however, that some jobs in the NPRS experiment must

be discriminating, which limits the magnitude of this divergence.

20With Lw white and Lb black applications there are 2(1+Lw)(1+Lb) logically possible decision rules which, in
practice, prohibits brute force enumeration when Lw+Lb > 4. Restricting attention to logit posterior threshold rules
allows us to circumvent this obstacle. In cases where multiple evidence configurations yield the same logit posterior,
we consider separate rules that investigate each of these configurations individually.
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Figure VI: Bayes and minimax risk, NPRS data

Notes: This figure displays risk functions generated by a hypothetical experiment sending five white 
and five black applications to jobs in the population studied by Nunley et al. (2015). Resumes are 
randomly assigned to high or low quality with equal probability, where quality is defined as +/-1 the 
empirical standard deviation of the logit covariate index. The horizontal axis plots the posterior 
threshold at which jobs are accused of discrimination. The grey curve displays risk based on the logit 
data generating process in column (2) of Table V. The cost of an investigation is calibrated so that a 
Bayesian regulator sets the posterior cutoff at 0.8. The blue curve plots minimax risk calculated by 
choosing the joint distribution of callback probabilities to maximize risk for each decision rule subject 
to the moments identified by the Nunley et al. (2015) experiment, restricted to decision rules that order 
jobs by the logit posterior threshold. Vertical lines indicate risk-minimizing thresholds. The window 
displays logit and minimax risk at threesholds of 0.75 and above, with risk-minimizing points indicated 
in red.

While the Bayes risk function is minimized by the decision rule with a posterior threshold of

80%, Rm (Θ, δ) is minimized by a rule with a logit-based threshold of 83%. This higher threshold

implies a minimax regulator would investigate fewer jobs than a Bayesian regulator with the same

preferences who believes G to be logit. The change in behavior is minimal, however, suggesting

that, at least for this specification of preferences, the Bayes decision rule is relatively robust to

ambiguity over the nature of the true DGP.21

10 Conclusion

Correspondence studies are powerful tools that have been extensively used to detect market-level

averages of discriminatory behavior. Revisiting three such studies, we find tremendous heterogene-

ity across jobs in the degree of discrimination. This heterogeneity presents authorities charged

with enforcing anti-discrimination laws with a difficult inferential task. Our analysis suggests that

when ensemble evidence is used, sending 10 applications per job enables accurate detection of a

21As shown in Appendix Figure A.II, however, had we considered a more aggressive Bayesian benchmark (e.g.,
a 40% threshold), the minimax and Bayes rules would have departed more substantially, as the maximum risk can
greatly exceed the Bayes risk.
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non-trivial share of discriminatory employers. This finding opens the possibility that discrimination

can be monitored – perhaps in real time – at the employer level.

Our results also provide a number of methodological lessons regarding the design and analysis of

correspondence studies, and of experimental ensembles more generally. First, we demonstrate that

indirect evidence can serve as a valuable supplement to direct evidence even when heterogeneity

distributions are not point identified. Using a few moments of the callback rate distribution in

conjunction with only four applications per job, we derived informative lower bounds on the fraction

of jobs engaging in illegal discrimination. In the AGCV study, which sent eight applications to each

job, we deduced informative lower bound rates of discrimination against men and women separately.

Second, our results highlight that the appropriate use of indirect evidence depends critically on

the objectives of the investigator, formalized in our framework by the loss function of a hypothet-

ical regulator. While in point identified settings it is straightforward to characterize the tradeoffs

presented by different decision rules, partial identification of heterogeneity distributions tends to

undermine identifiability of this tradeoff itself. In our setting acknowledging the ambiguity stem-

ming from partial identification turns out to lead to only slightly more conservative decisions with

a realistic loss function. An important topic for future research is the extent to which the policy

implications of recent econometric evaluations of teachers, schools, hospitals, and neighborhoods

(e.g., Chetty et al., 2014; Angrist et al., 2017; Hull, 2018; Chetty and Hendren, 2018; Chetty et al.,

2018) vary with alternative notions of risk.
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Appendix A: Proof of Lemma 2

By the law of total probability the fraction of jobs calling cw white and t − cw black applications

among those calling t total can be written:

f̄t(cw) = (1− π̄t)f̄0
t (cw) + π̄tf̄

1
t (cw),

where f̄dt (cw) = Pr(Cjw = cw|Cjw + Cjb = t,Dj = d) for d ∈ {0, 1}. Since f̄1
t (cw) ∈ [0, 1] we have

f̄t(cw) ≥ (1− π̄t)f̄0
t (cw), f̄t(cw) ≤ (1− π̄t)f̄0

t (cw) + π̄t,

which implies

π̄t ≥ max
{
f̄0t (cw)−f̄t(cw)

f̄0t (cw)
,
f̄t(cw)−f̄0t (cw)

1−f̄0t (cw)

}
.

Taking the maximum of these lower bounds over cw ∈ {0, ..., t} yields the bound on π̄t in part i) of

Lemma 2.

By Bayes’ rule the fraction of discriminators among jobs calling cw white and t − cw black

applications is given by:

π(cw, t− cw) = 1− f̄0
t (cw)(1− π̄t)

f̄t(cw)
.

Plugging the bound on π̄t from part i) of the Lemma into this expression gives the bound on

π(cw, t− cw) in part ii).

Appendix B: Discretization of G and Linear Programming Bounds

To compute the solution to the problem in (5), we approximate the CDF G (pw, pb) with the discrete

distribution

GK (pw, pb) =

K∑
k=1

K∑
s=1

ηks1 {pw ≤ % (k, s) , pb ≤ % (s, k)} ,

where the {ηks}K,Kk=1,s=1 are probability masses and {% (k, s) , % (s, k)}K,Kk=1,s=1 comprise a set of mass

point coordinates generated by the function

% (k, s) =
min {k, s} − 1

K︸ ︷︷ ︸
diagonal

+
max {0, k − s}2

K (1 +K − y)︸ ︷︷ ︸
off-diagonal

.

This discretization scheme can be visualized as a two-dimensional grid containing K2 elements.

The diagonal entries on the grid represent jobs where no discrimination is present. The first term

above ensures the mass points are equally spaced along the diagonal from (0, 0) to
(
K−1
K , K−1

K

)
. The

second term spaces off diagonal points quadratically according to their distance from the diagonal
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in order to accomodate jobs with very low levels of discrimination while economizing on the number

of grid points. We use a spacing scheme that places more points near the diagonal because we are

particularly interested in the mass exactly on the diagonal. Note that lim
K→∞

% (K, s) = 1, ensuring

the grid asymptotically spans the unit square.

With this notation, the constraints in (6) can be written:

f̄ (cw, cb) =

(
Lw

cw

)(
Lb

cb

)
K∑
k=1

K∑
s=1

ηks% (k, s)cw (1− % (k, s))Lw−cw % (s, k)cb (1− % (s, k))Lb−cb ,

(10)

for cw = (1, ..., Lw) and cb = (0, ..., Lb). Hence, our composite discretized optimization problem is

to

min
{ηks}

1−

(
L

t

)
∑

(c′w,c′b):c′w+c′b=t
f̄
(
c′w, c

′
b

) K∑
k=1

ηkk% (k, k)t (1− % (k, k))L−t ,

subject to (10) and
K∑
k=1

K∑
s=1

ηks = 1, ηks ≥ 0,

for k = 1, ...,K and m = 1, ...,K. We solve this problem numerically using the Gurobi software

package. Because setting K too low will tend to yield artificially tight bounds, we set K = 900 in

all bound computation steps, which yields (900)2 = 810, 000 distinct mass points.

Appendix Table A.IV reports linear programming bounds for various choices of K. As expected,

the bounds stabilize with a sufficiently large K, and the quadratic spacing described above produces

more accurate results than an equally-spaced grid: we obtain similar estimates for a quadratic grid

with 3002 grid points and a rectangular grid with 9002 points.

Appendix C: Shape Constrained GMM

To accomodate the Nunley et al. (2015) study which employs multiple application designs, we

introduce the variable Lj = (Ljw, Ljb) which gives the number of white and black applications sent

to job j. Collecting the design-specific callback probabilities {Pr (Cjw = cw, Cjb = cb|Lj = l)}cw,cb
into the vector f̄l, our model relates these probabilities to moments of the callback distribution via

the linear system f̄l = Blµ, for Bl a fixed matrix of binomial coefficients. Letting f̄ denote the

vector formed by “stacking” the
{
f̄l
}

across designs in an experiment, we write f̄ = Bµ. Let η be

a K2 × 1 vector comprised of the probability masses {ηks}K,Kk=1,s=1 (see Appendix B). For GMM

estimation we set K = 150 (larger values yield very similar results). From (3), we can write µ = Mη

where M is a dim (µ)×K2 matrix comprised of entries with typical element % (k, s)m % (s, k)n. We

then have the moment restriction f̄ = BMη.

Let f̃ denote the vector of empirical call back probabilities with typical element:
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J−1
∑J
j=1 1{Cjw=cw,Cjb=cb,Lj=l}
J−1

∑J
j=1 1{Lj=l}

.

Our shape constrained GMM estimator of η can be written as the solution to the following

quadratic programming problem:

η̂ = arg inf
η

(f̃ −BMη)′W (f̃ −BMη) (11)

s.t. η ≥ 0, 1′η = 1,

where W is a fixed weighting matrix. Note that because G (·, ·) is not identified, there are many

possible solutions η̂ to this problem, but these solutions will all yield the same values of BMη̂.

Our shape constrained estimate of the moments is µ̂ = Mη̂ while our estimator of the callback

probabilities is ˆ̄f = BMη̂. We follow a two-step procedure, solving (11) with diagonal weights

proportional to the number of jobs used in the application design and then choosing W = Σ̂−1

where Σ̂ = diag
(

ˆ̄f (1)
)
− ˆ̄f (1) ˆ̄f (1)′ is an estimate of the variance-covariance matrix of the callback

frequencies implied by the first step shape-constrained callback probability estimates ˆ̄f (1).

Hong and Li (forthcoming) standard errors

Standard errors on the moment estimates µ̂ are computed via the numerical bootstrap procedure

of Hong and Li (forthcoming) using a step size of J−1/4 (we found qualitatively similar results with

a step size of J−1/3). Our implementation of the numerical bootstrap proceeds as follows: the

bootstrap analogue µ∗ of µ̂ solves the quadratic programming problem in (11) where f̃ has been

replaced by
(
f̃ + J−1/4f∗

)
. The bootstrap probabilities f∗ have typical element:

J1/2

(∑J
j=1 ω

∗
j 1{Cjw=cw,Cjb=cb,Lj=l}∑J

j=1 ω
∗
j 1{Lj=l}

−
∑J
j=1 1{Cjw=cw,Cjb=cb,Lj=l}∑J

j=1 1{Lj=l}

)
,

where
{
ω∗j

}J
j=1

are a set of iid draws from an exponential distribution with mean and variance one.

For any function φ (µ̂) of the moment estimates µ̂ reported, we use as our standard error estimate

the standard deviation across bootstrap replications of J−1/4 [φ (µ∗)− φ (µ̂)].

Chernozhukov et al. (2015) goodness of fit test

To formally test whether there exists an η in the K2 dimensional probability simplex such that

f = BMη holds, we rely on the procedure of Chernozhukov et al. (2015). Our test statistic (the

“J -test”) can be written:

Tn = inf
η

(f̃ −BMη)′Σ̂−1(f̃ −BMη)

s.t. η ≥ 0, 1′η = 1.
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Letting F∗ = f∗− f̃ denote the (centered) bootstrap analogue of the callback frequencies f̃ and

W ∗ a corresponding bootstrap weighting matrix, our bootstrap test statistic takes the form:

T ∗n = inf
η,h

(F∗ −BMh)′W ∗(F∗ −BMh) (12)

s.t. (f̃ −BMη)′W (f̃ −BMη) = Tn, η ≥ 0, 1′η = 1, h ≥ −η, 1′h = 0.

As in the full sample problem, we conduct a two-step GMM procedure in each bootstrap replication,

setting W ∗ =
[
diag(BMη(1)∗)− (BMη(1)∗)(BMη(1)∗)′

]−1
where η(1)∗ is a first-step diagonally

weighted estimate of the probabilities in the bootstrap sample. The goodness of fit p-value reported

is the fraction of bootstrap samples for which T ∗n > Tn.

To simplify computation of (12), we re-formulate the problem in two ways. First, we define

primary and auxilliary vectors of errors for each moment condition. Letting ξh = F∗ − BMh and

ξη = f̃ −BMη, the problem can be re-posed as:

T ∗n = inf
ξh,ξη

ξ′hW
∗ξh,

s.t. ξ′ηWξη = Tn, BMh+ ξh = F∗, BMη + ξη = f̃ , 1′h = 0, 1′η = 1, h ≥ −η, η ≥ 0.

Now letting h+ = h+ η, we can further rewrite the problem as:

T ∗n = inf
ξh,ξη

ξ′hW
∗ξh,

s.t. ξ′ηWξη = Tn, BMh+ + ξh + ξη = F∗, BMη + ξη = f̃ , 1′h+ = 1, 1′η = 1, h+ ≥ 0, η ≥ 0.

Note that this final representation replaces a K2 ×K2 + 1 (inequality) constraint matrix encoding

ξh ≥ −ξη and ξη ≥ 0 with a 2K2× 1 vector encoding h+ ≥ 0 and η ≥ 0. Because this problem still

involves a quadratic constraint in ξη, we make use of Gurobi’s Second Order Cone Programming

(SOCP) solver to obtain a solution.

Appendix D: Computing Maximum Risk

We approximate G
(
pHw , p

L
w, p

H
b , p

L
b

)
with the discretized distribution

GK
(
pHw , p

L
w, p

H
b , p

L
b

)
=

K∑
k=1

K∑
s=1

K∑
k′=1

K∑
s′=1

ηksk′s′1
{
pHw ≤ % (k, s) , pLw ≤ %

(
k′, s′

)
, pHb ≤ % (s, k) , pLb ≤ %

(
s′, k′

)}
,

which has K4 mass points. In practice, we choose K = 30, which yields the same number of points

as the approximation described in Appendix B.

Generalizing the notation of Appendix C, let the vector Lj =
(
LHjw, L

L
jw, L

H
jb, L

L
jb

)
record the

number of high quality and low quality applications of each race sent to job j and let Cj =
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(
CHjw, C

L
jw, C

H
jb , C

L
jb

)
record the corresponding numbers of callbacks. The space of auditing rules

we consider is of the form δ (Cj , Lj , q) = 1 {P (Cj , Lj , Glogit) > q}.With this notation, we can write

the risk function

R(q) =
∑
l∈A1

wlE

δ(Cj , l, q)
κ− Λ

 ∑
x∈{H,L)

Λ−1(pxwj)−Λ−1(pxbj)

2

 |Lj = l

 ,
where A1 is the set of all 25 = 36 binary quality permutations possible in a design with 5 white and

5 black applications and wl =

(
5

lHw

)(
5

lHb

)(
1
2

)10
is the set of weights that arise when quality

is assigned at random within race.

To further evaluate the above risk expression we can write:

E

δ(Cj , l, q)
κ− Λ

 ∑
x∈{H,L)

Λ−1(pxwj)−Λ−1(pxbj)

2

 |Lj = l

 =

aHjw∑
cHw=0

aHjb∑
cHb =0

aLjw∑
cLw=0

aLjb∑
cLb =0

K∑
k=1

K∑
s=1

K∑
k′≥k

K∑
s′≥s

δ(c, l, q)ηksk′s′

(
lHw

cHw

)(
lHb
cHb

)(
lLw

cLw

)(
lLb
cLb

)

×% (k, s)c
H
w (1− % (k, s))l

H
w−cHw % (s, k)c

H
b (1− % (s, k))l

H
b −c

H
b

×%
(
k′, s′

)cLw (1− % (k′, l = s′
))lLw−cLw % (s′, k′)cLb (1− % (s′, k′))lLb −cLb

×
{
κ− Λ

(
Λ−1(%(k,s))−Λ−1(%(s,k))

2 + Λ−1(%(k′,s′))−Λ−1(%(s′,k′))
2

)}
.

Using this expression, maximal risk can therefore be written as the solution to the following

linear programming problem:

Rm(q) = max
{ηksk′s′}

∑
l∈A1

wlE

δ(Cj , l, q)
κ− Λ

 ∑
x∈{H,L)

Λ−1(pxwj)−Λ−1(pxbj)

2

 |Lj = l


subject to the constraint that the ηklk′l′ are non-negative and sum to one and that the following

moment restrictions hold:

Pr (Cj = c|Lj = l) =

(
lHw

cHw

)(
lHb
cHb

)(
lLw

cLw

)(
lLb
cLb

)
K∑
k=1

K∑
s=1

K∑
k′=1

K∑
s′=1

ηksk′s′

× % (k, s)c
H
w (1− % (k, s))l

H
w−cHw % (s, k)c

H
b (1− % (s, k))l

H
b −c

H
b

× %
(
k′, s′

)cLw (1− % (k′, s′))lLw−cLw % (s′, k′)cLb (1− % (s′, k′))lLb −cLb .
We impose these restrictions for the following set of designs, all of which are present in the Nun-

ley et al. (2015) experiment: A2 = {(2, 0, 2, 0) , (2, 0, 0, 2) , (0, 2, 2, 0) , (0, 2, 0, 2)} .To operationalize

these constraints, we replace the unknown cell probabilities Pr (Cj = c|Lj = l) for all c and l in
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A2 with their predictions under the logit model reported in column 2 of Table V. Using the logit

predictions serves as a form of smoothing that allows us to avoid problems that arise with small

cells when considering quality variation due to covariates.
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Figure A.I: Mixed logit model fit

Notes: This figure compares mixed logit predicted frequencies for callback events in the Nunley et al. (2015) 
data with corresponding empirical frequencies. The horizontal axis plots model-predicted probabilities for 
each possible combination of white and black callback counts (excluding zero total callbacks), separately by 
experimental design. Model predictions are calculated by simulating the logit model in column (2) of Table X 
10,000 times for each job in the Nunley et al. data set. The vertical axis plots the observed frequency of each 
event. Green dots show frequencies for a design with two white and two black applications, while orange, 
blue, red, and grey points show frequencies for designs with 3 white and 1 black, 1 white and three black, 4 
white and zero black, and 0 white and 4 black applications, respectively. The dashed line is the 45-degree line. 
The chi-squared statistic and p -value come from a test that all model-predicted and empirical frequencies 
match, treating the model predictions as fixed.



Figure A.II: Bayes and minimax investigation thresholds

Notes: This figure compares Bayes and minimax decisions for various values of the investigation cost parameter 𝜅. 
The horizontal axis displays the posterior investigation threshold for a Bayes regulator for each value of 𝜅, and the 
vertical axis shows the corresponding threshold for a minimax regulator. The dashed line is the 45 degree line.

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
M

in
im

ax
 th

re
sh

ol
d

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
Bayes threshold



No Shape 
constraints constraints

Moment (1) (2)
0.094 0.094

(0.006) (0.007)

0.063 0.063
(0.006) (0.006)

0.040 0.040
(0.005) (0.004)

0.023 0.023
(0.004) (0.003)

0.028 0.028
(0.004) (0.003)

0.015 0.014
(0.003) (0.002)
0.023 0.012

(0.003) (0.002)

0.010 0.010
(0.003) (0.002)
J -statistic: 0.00
P -value: 1.000

Sample size

Table A.I: Moments of callback rate distribution, BM data

1,112
Notes: This table reports generalized method of moments (GMM) 
estimates of moments of the joint distribution of job-specific white 
and black callback rates in the Bertrand and Mullainathan (2004) 
data. Estimates in column (2) come from a shape-constrained GMM 
procedure imposing that the moments are consistent with a well-
defined probability distribution. The J -statistic is the minimized 
shape-constrained GMM criterion function. The p -value come from 
a bootstrap test of the hypothesis that the model restrictions are 
satisfied. 
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𝐸 𝑝!−𝐸[𝑝!] #
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(2,2) (3,1) (1,3) Combined
design design design P -value estimates

Moment (1) (2) (3) (4) (5)
0.174 0.199 0.142 0.027 0.177

(0.010) (0.025) (0.015) (0.007)

0.148 0.149 0.157 0.854 0.153
(0.010) (0.015) (0.013) (0.007)

0.089 0.108 - 0.097 0.095
(0.007) (0.009) (0.004)

0.085 - 0.083 0.857 0.084
(0.007) (0.008) (0.004)

0.083 0.084 0.080 0.926 0.084
(0.006) (0.009) (0.009) (0.004)

- 0.051 - 0.106
(0.008) (0.006)

- - 0.044 0.092
(0.007) (0.006)

0.044 0.043 - 0.875 0.040
(0.004) (0.007) (0.002)
0.047 - 0.045 0.819 0.042

(0.005) (0.007) (0.002)

- 0.034 - - 0.035
(0.005) (0.002)

- - 0.037 - 0.037
(0.006) (0.002)

0.036 - - - 0.038
(0.004) (0.002)0

23.09
0.190

Sample size 1,146 544 550 2,240

Table A.II: Moments of callback rate distribution, NPRS data
Design-specific estimates

Notes: This table reports generalized method of moments (GMM) estimates of moments of the joint 
distribution of job-specific white and black callback rates in the Nunley et al. (2015) data. Columns (1), 
(2), and (3)  show estimates based on jobs that received 2 white and 2 black, 3 white and 1 black, and 1 
white and 3 black  applications, respectively. Column (4) shows p -values from tests that the moments are 
the same in each design. Estimates in column (5) come from a shape-constrained GMM procedure 
imposing that the moments are consistent with a well-defined probability distribution. The J -statistic is the 
minimized shape-constrained GMM criterion function. The p -value come from a bootstrap test of the 
hypothesis that the model restrictions are satisfied. 
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No Shape No Shape 
constraints constraints constraints constraints

Moment (1) (2) Moment (3) (4)
0.138 0.140 0.023 0.025

(0.010) (0.009) (0.004) (0.003)

0.108 0.114 0.019 0.024
(0.009) (0.009) (0.004) (0.003)

0.066 0.066 0.012 0.011
(0.009) (0.005) (0.003) (0.002)

0.048 0.054 0.013 0.013
(0.005) (0.005) (0.003) (0.002)

0.043 0.044 0.012 0.011
(0.005) (0.004) (0.003) (0.002)

0.025 0.063 0.012 0.012
(0.005) (0.007) (0.003) (0.002)

0.031 0.050 0.010 0.009
(0.005) (0.007) (0.002) (0.001)

0.020 0.017 0.010 0.009
(0.004) (0.002) (0.002) (0.001)

0.022 0.020 0.009 0.009
(0.004) (0.002) (0.002) (0.001)

0.015 0.015 0.008 0.007
(0.003) (0.002) (0.002) (0.001)

0.016 0.017 0.008 0.008
(0.003) (0.002) (0.002) (0.001)

0.016 0.016 0.009 0.006
(0.003) (0.002) (0.002) (0.001)

J -statistic: 3.33
P -value: 0.790

Sample size: 802

Table A.III: Moments of callback rate distribution, AGCV data

Notes: This table reports generalized method of moments (GMM) estimates of moments of the joint distribution of job-specific white 
and black callback rates in the Arceo-Gomez and Campos-Vasques (2014) data. Estimates in columns (2) and (4) come from a shape-
constrained GMM procedure imposing that the moments are consistent with a well-defined probability distribution. The J -statistic is the 
minimized shape-constrained GMM criterion function. The p -value come from a bootstrap test of the hypothesis that the model 
restrictions are satisfied. 
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Share Share disc., Share disc., Share disc.,
J -statistic discriminating one call two calls three calls

Grid spacing (1) (2) (3) (4) (5)

K1 = 50 K2 = 200 Quadratic 23.13 0.266 0.483 0.549 0.678

K1 = 100 K2 = 200 Quadratic 23.10 0.366 0.692 0.708 0.841
K2 = 400 Quadratic 0.329 0.611 0.643 0.783
K2 = 600 Quadratic 0.319 0.588 0.627 0.765

K1 = 150 K2 = 300 Quadratic 23.09 0.401 0.765 0.770 0.880
K2 = 600 Quadratic 0.368 0.692 0.708 0.835
K2 = 900 Quadratic 0.358 0.672 0.691 0.821

Rectangular 0.410 0.780 0.785 0.887

K1 = 50 K2 = 200 Quadratic 4.21 0.277 0.882 0.724 0.574

K1 = 100 K2 = 200 Quadratic 3.54 0.288 0.902 0.726 0.595
K2 = 400 Quadratic 0.277 0.893 0.719 0.578
K2 = 600 Quadratic 0.276 0.891 0.717 0.573

K1 = 150 K2 = 300 Quadratic 3.33 0.297 0.904 0.725 0.596
K2 = 600 Quadratic 0.278 0.897 0.718 0.579
K2 = 900 Quadratic 0.277 0.895 0.716 0.576

Rectangular 0.297 0.900 0.715 0.584

Table A.IV: Sensitivity of moments and bounds to discretization grid

Notes: This table explores the sensitivity of our shape-constrained generalized method of moments (SCGMM) and 
linear programming bounds results to the number of grid points used to approximate the joint distribution of 
callback probabilities. K1 refers to the number of mass points used in the quadratic programming SCGMM step, 
while K2 refers to the number of mass points used in the linear programming bounds step. Quadratic grid spacing 
refers to the scheme described in Appendix A, and rectangular spacing refers to a grid with equally spaced points. 
Column (1) shows the minimized SCGMM criterion function for each value of K1. Column (2) displays the lower 
bound on the fraction of discriminating jobs for each combination of K1 and K2. Columns (3)-(5) show 
corresponding bounds conditional on the total number of callbacks. Panel A displays results for an application 
design with two white and two black applicants in the Nunley et al. (2015) data, and panel B displays results for the 
Arceo-Gomez and Campos-Vasquez (2014) data. Bold lines indicate the preferred specification used in the main text.

A. Nunley et al. data

B. Arceo-Gomez & Campos-Vasquez data




