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1 Introduction

Pharmaceutical companies are granted market-power through patents and exclusivity

periods. The resulting profits increase their incentives to innovate but can strain the ability of

patients, payers, and governments to afford these medicines. Rising list prices are often used to

illustrate the economic burden of prescription drug prices, but payers, including government payers,

routinely negotiate rebates (discounts) from manufacturers that generate differences between list

prices and net prices. The confidentiality of rebate data results in researchers and policy-makers

relying on list prices or assuming that rebates are fixed or unchanging. For example, several policy

and academic reports have have ignored net prices, or assumed that the average rebate is fixed at

5-20% (Health Care Cost Institute, 2017; Gellad et al., 2008). These assumptions are made for

convenience but may be incorrect. For example, economic forces such as changes in the relative

market power of pharmaceutical firms and purchasers or competition among drugs– via entry and

exit– may change rebating over time.

Understanding the level and growth of list prices and prices net of rebates is important

for several reasons. First, because pharmaceutical companies receive net prices their incentives to

innovate are keyed to these profits using these prices. If list prices are larger than net prices or grow

faster, an analyses based on list prices would overstate the dead-weight loss from manufacturers

market power and the profits required to induce new innovation. Constructing price indices using

list prices would also overstate net price inflation, and thus exaggerate what policy responses like

indexing payment to inflation will accomplish. Similarly, analysis of list prices will overstate the

contribution of price increases on revenues. Second, pricing dynamics with list prices may be

different than those with net prices and relying on the former may cause commentators to believe

that more complicated models of imperfect competition– like ’shadow pricing,’ where tacit collusion

enables an entrant to pick a price higher than an incumbent’s– are more central for understanding

pharmaceutical pricing dynamics than simpler insights from price-theory (Hartung et al., 2015;

Bhattacharya and Vogt, 2003). Third, a divergence between list and net prices can reduce risk-

protection for patients because out-of-pocket costs such as coinsurance are often tied to list prices in

order to preserve the confidentiality of net prices.1 Finally, rebates are of interest in their own right

for they reflect the relative market power and business models of intermediaries such as pharmacy

1For example, in a standard 2020 Medicare Part D prescription drug plan, patients’ pay 25% of list prices out-
of-pocket after exhausting their deductible and until total spending exceeds the $9719 threshold for catastrophic
coverage. Similarly, uninsured patients are typically be responsible for the full list price.
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benefit managers (PBMs), which may be changing over time. PBMs are often compensated on the

basis of list prices and negotiated rebates, meaning that PBMs may prefer drugs with higher list

prices and higher rebates. Unfortunately, little is known about rebate levels and how they have

changed over time.

We use data from SSR Health, LLC, a private data aggregator, to shed light on the level

and growth of list prices and net prices in the US. SSR Health, LLC aggregates data on U.S. revenue

from SEC filings, list prices and US unit sales from Symphony Health, and dosing information from

FDA labels. Our sample is composed of branded drugs distributed in traditional retail pharmacies

and excludes drugs sold in hospitals or clinics. With data on revenues and quantities, we estimate

a net price for each product-formulation and rebates as the difference between list prices and these

average net prices (where the average is taken over all US payers). The focus on average net prices

received by manufacturers is key for interpreting our results; net prices can vary by market segment

(e.g., Medicaid, Medicare, Commercial) and specific payer but we cannot isolate this variation with

our data.

Our primary analysis reports changes in average rebates, measured as the ratio between

list and net revenues. This ratio has a straightforward interpretation as the percentage reduction in

pharmaceutical revenue owed to rebates alone. Overall, we find that pharmaceutical rebates have

grown over time, calling into question the practice of assuming fixed rebates over time. We estimate

that the average rebate across products increased from 32% to 48% between 2012 and 2017, or 3.2

percentage points per year. We further document that this pattern is relatively consistent across

major drug classes. We find that rebates increased for 18 of the 20 largest drug classes by 2017

revenue, ranging from 1.8 to 7.6 p.p. per year.

Next, we note that rebates may grow for two different reasons: substitution towards

relatively products with high rebates, through formulary design, or increasing rebate levels within

a product. We decompose the change in rebates over time into these drivers using methods have

been used to study the firm-level drivers of aggregate productivity growth in traditional sectors

such as manufacturing (Foster, Haltiwanger and Krizan, 2001; Foster, Haltiwanger and Syverson,

2008; Baily et al., 1991), and the hospital-level drivers of quality improvement (Chandra et al.,

2016). We find that annual growth in rebates is almost fully explained by within-product increases

in rebates rather than shifts towards products with larger rebates. If anything, there were shifts

into products with lower rebate levels including entry of drugs with lower rebate levels. This would

be consistent with drugs in high demand being able to maintain high net prices.
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This finding leads us to observing that growing rebates could result either from rising

list prices and stagnant net prices or stagnant list prices and falling net prices. We calculate that

annual inflation for the medicines in our analysis is 12% when estimated using nominal list prices

and 3% when estimated by nominal net prices. This compares to a 1.4% average annual inflation in

consumer goods from 2012-2017, as measured by the consumer price index (CPI), and 3.8% annual

increase in commercial medical prices across 112 metropolitan areas from 2012 to 2016 (Health

Care Cost Institute, 2018).

We use these insights to perform a case study of four drug classes that have routinely at-

tracted considerable policy attention: insulins, GLP-1 agonists for diabetes, direct-acting antivirals

for hepatitis C, and combination anti-virals for H.I.V. Much of the public reporting on insulins has

focused on rising list prices. We find, however, that rebates for insulins also increased from 39% to

68% from 2012 to 2017. This is due to 16% annual increases in list prices but 2% annual increases

in net prices. On the other hand, rebates for hepatitis C anti-virals increased from 4% to 47% from

2014 to 2017 driven by a decline in list and net prices by 1% and 19% per annum respectively.

For GLP-1 agonists for diabetes, both list and net prices rose by 22% and 13% per annum from

2012-2017 respectively. Finally, for combination anti-virals for H.I.V, list and net prices grew by

9% and 13% per annum from 2012-2017 respectively, resulting in lower rebate shares.

Finally, we estimate the contribution of rising prices to growth in pharmaceutical rev-

enues. Pharmaceutical revenues are different than drug spending– the former is what is received

by manufacturers while the latter includes payments to intermediaries such as wholesalers, PBMs,

and retailers. We use net and list prices to impute net and list pharmaceutical revenue and decom-

position methods to understand the sources of growth in pharmaceutical revenue. Using net prices,

we find that 31% of annual net revenue growth is explained by within-product price growth with

the remainder explained primarily by new product entry. The entry of new products is responsible

for the overwhelming balance of revenue increases, whereas volume decreases for existing products,

holding prices fixed, reduce revenues a lot more than the actual exit of a product. In contrast to

these facts, list price increases explain 76% average annual growth in pharmaceutical revenues and

would lead commentators to see a tight connection between revenues and list price increases and

perhaps infer that list price increases translate into directly into profits because marginal costs are

low.

There are other reports suggesting that list prices have grown faster than net prices for

branded drugs (The Office of the Inspector General, 2019; IQVIA Institute, 2017; Sood et al.
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2020; ?). The Office of the Inspector General (2019) documents increases in rebates specifically

for Medicare Part D, IQVIA Institute (2018) is an industry report suggesting rebate increases over

time, and Sood et al. (2020) highlight a correlation between list and net price growth.

Our work is most similar to Hernandez et al. (2020), who also use SSR Health data

and a balanced sample of drugs, and estimate that list prices increased by 9.1% while net prices

increased by 4.5% annually (similar to our findings on within-product net price increases). We

build on Hernandez et al. (2020) in several ways. First, we connect price growth, volume growth,

entry and exit to revenue growth. Second, we do not ignore new drugs and our price indices

account for new drugs through chain-weighting. We believe that this provides a more accurate

measure of inflation than the price increases for products that always existed. Third, we report

differential trends in list and net prices of commonly used drugs. Finally, Hernandez et al. (2020)

measure average price growth by weighting products based on the number of units sold (i.e., tablets,

vials, or injections). This overweights products with small doses and more units relative to their

contribution to drug spending. In contrast, we weight products based on their revenue contribution

to drug spending, which is a more economically meaningful quantity. There are other differences

in sample construction where we believe our choices, detailed in the Appendix, is more robust.

Another related paper is Dafny, Ody and Schmidt (2017) who note that direct-to-consumer

rebating in the form of pharmaceutical coupons has increased in recent years, and increases uti-

lization. However, Dafny, Ody and Schmidt (2017) are interested in copayment relief for patients

rather than the broader suite of rebates given to wholesalers, pharmacies, and PBMs, which all

affect net prices received by manufacturers. Our estimates include both copayment relief and other

sources of pharmaceutical rebates.

The remainder of the paper proceeds as follows. Section II describes the data, Section III

characterizes the evolution of pharmaceutical rebating, Section IV illustrates differences in economic

analyses of price and revenue growth using list versus net prices, and Section V concludes.

2 Data

Our primary data is provided by SSR Health, LLC, a private data aggregation company

which provides data on list and estimated net prices for pharmaceutical products. SSR Health,

LLC sells access to this data to pharmaceutical companies and investment firms to assist in their

5



business decisions. The SSR Health, LLC dataset is restricted to branded products2, which account

for the vast share of pharmaceutical spending (Long, 2018). The data excludes unbranded generic

products and products sold by private companies. 3 Their data include 1117 branded products

encompassing 3271 product-formulations from 2007 onwards. These include data on quarterly

revenues in the US by product from SEC filings. While not legally mandated, the industry norm,

driven by investor demand, is to report US sales for economically material products. Thus, US

revenue data is available for most pharmaceutical products with meaningful sales. SSR Health also

purchases data on unit sales and list prices from Symphony Health. Symphony Health is a private

data vendor that estimates unit sales using data on prescriptions filled from pharmacies. Units are

typically defined as a price per pill / vial / pen / patch. The list price provided by SSR Health,

LLC via Symphony Health refers to the Wholesale Acquisition Cost (WAC). Wholesale Acquisition

Cost is the unit list price that the pharmacy pays when purchasing medicines from distributors

(Dabora, Turaga and Schulman, 2017). Average net prices are then estimated for each product as

manufacturer revenue per unit sold. Thus, the average net price per product-formulation refers to

the average estimated price received by the manufacturer net of rebates to all parties (e.g., insurers,

pharmacy benefit managers, distributors, or patients). The average net price is taken across payers

from all segments– Medicare, Medicaid, and commercial. Notably, the average net price is lower

than the average cost paid by society, as it is not inclusive of the costs of distribution borne by the

distributor and pharmacy or the administrative costs of benefit management borne by the payer.

The data also includes information on U.S. market launch, exit, and loss of exclusivity

dates. We classified drugs into therapeutic classes using the hierarchical Anatomical Chemical

Therapeutic (ATC) categories, defined by the World Health Organization. Further details on the

classification of drugs into ATC categories are provided in the Appendix Section 1.

These data have three noteworthy limitations that we sought to mitigate. First, the unit

sales data from Symphony Health may be measured with sampling error. This is especially likely

to occur in non-traditional distribution channels such as hospitals, clinics, or specialty pharmacies

where Symphony Health’s coverage is weaker. Second, data provided by pharmaceutical companies

or Symphony Health can be missing for certain products or product-years. This is most likely to

occur for smaller products with less commercial significance. Finally, revenue data in quarterly SEC

2The data include branded products that have lost exclusive marketing rights but are still sold under the brand
name.

3Major pharmaceutical companies are typically public, but there are notable exceptions such as Purdue Pharma-
ceuticals and Boehringer Ingelheim.
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fillings is typically recorded earlier than unit sales data from Symphony. Specifically, revenue data

is recorded when products are sold to distributors and pharmacies while unit sales data are recorded

when prescriptions are filled by patients. This can lead to excess variation in estimates of net prices

that are measured in narrow time bins or during new product launches and loss-of-exclusivity when

distributors and pharmacies may be building or depleting inventory.

We took several steps to address these limitations. First, we limited our analysis to

product formulations on the market at any point between 2012-2017 as the data are more complete

during this time period, and SSR Health reports greater accuracy of unit sales data in more recent

years. We also focused on 1962 drugs for non-rare diseases likely to be sold in retail pharmacies,

which account for $114 Billion in 2017 net US revenue. Specifically, we dropped formulations that

were either injectable, oncology products, vaccines, diagnostic compounds, implants or devices, or

products approved for an orphan indication by the FDA. 4 5. The excluded products accounted for

$155.2B in revenue, as shown in Appendix Exhibit 1.

We excluded 1016 disproportionately small product-formulations with missing data for

1 or more years between 2012-2017 despite the product being on the market at the time. These

product-formulations accounted for $10.8 Billion in 2017 net US revenue. We also excluded 118

products, accounting for $9.1 Billion in 2017 net US revenue, experiencing loss-of-exclusivity within

one year of baseline or endline. We also excluded 32 products, accounting for less than $1 Billion

in 2017 net US revenue, that were not linked to ATC categories or with outlier changes in net or

list prices during the study period. Finally, we only include a product-years in the analysis if the

product is offered for the full year. We report estimates at the annual level to smooth over timing

differences in the reporting of revenue and unit sales. Further details on the data limitations, our

approach, and our exclusions are provided in the Appendix Section 2.

Our final sample includes 726 total product-formulations. Due to product entry and exit,

the sample includes 561 product-formulations in 2012 and 682 product-formulations in 2017. In

2012, the average net revenue associated with each product-formulation was $106 Million, with all

product-formulations representing $59.3 Billion in net revenue. In 2017, the mean net revenue asso-

4We did not exclude products where the only approved Orphan indication was for a pediatric condition, as this
often suggests that the product is used in a broader population in practice. For example, the Hepatitis C product
Sovaldi is approved for the Orphan indication of pediatric Hepatitis C despite being used in the broader Hepatitis C
population.

5The Centers for Medicare and Medicaid (CMS) publishes estimates of average net prices for drugs paid by
Medicare Part B, which would include many drugs offered in a hospital outpatient setting, but these numbers exclude
Medicaid rebates and so do not represent average net prices received by manufacturers. At the time of writing this
paper, Medicaid covered approximately 72 million people
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ciated with each product-formulation was $136 Million, with all product-formulations representing

$92.9 Billion in net revenue. Additional summary statistics on the final sample can be found in

Appendix Exhibits 1 and 2.

3 Evolution of pharmaceutical rebating

3.1 Total growth in rebate share

We first report the size of rebates over the 2012-17 period across the full-sample. We do

this by comparing growth in actual pharmaceutical revenue to a counterfactual in which products

were sold at list, as opposed to net, prices. The difference between the counterfactual revenue at

list prices and actual pharmaceutical revenue represents the rebate share. The rebate share in a

given year can be interpreted as the total reduction in pharmaceutical spending due to rebates in

this sample, holding quantities in that year constant.

Formally, the total rebate share in year t (rebatet) can be expressed as equation 1. Here,

pneti,t reflects the estimated net price for product-formulation i in year t, and St represents all

products on the market for the full year t.

rebatet =

∑
i∈St

qi,t(p
list
i,t − pneti,t )∑

i∈St
qi,tplisti,t

(1)

The results from these analyses are depicted in Exhibit 1 (Panel A). From 2012-2017 we

estimate that the total rebate share increased by 16 p.p. from 32% to 48% of list prices. This

corresponds to an annual growth in total rebate shares of 3.2 p.p. To demonstrate the robustness

of this result, we assess the sensitivity of these results to several alternatives adjusting our exclusion

criteria related to data completeness, loss of exclusivity, and outliers (Appendix Exhibit 3).

3.2 Drivers of of rebate share growth

The growth in rebates over time may be driven by multiple dynamics; changes in rebates

could reflect changing rebate levels within product or shifts into products with differing rebate

levels. Moreover, market share shifts could happen among products existing in both periods, due

to the entry of new products, or due to product exit. To determine the relative contribution of these

forces, we first decomposed the rebate change across each pair of adjacent years in our study period

(e.g., 2012-2013, 2013-2014, etc.) into four components per equation 2. Notably, performing the

decomposition on an annual basis rather than from 2012 to 2017 reduces the component explained

8



by entry and exit. This is analogous to a chain-weighted approach to calculate quantities such

as inflation and GDP growth, which also relies on estimation in narrower temporal categories to

reduce the impact of the changing bundle of goods offered.

rebatet − rebatet−1︸ ︷︷ ︸
Annual change in avg. rebate

=
∑

i∈Bt,t−1

θit−1(rit − rit−1)︸ ︷︷ ︸
Withint,t−1

+
∑

i∈Bt,t−1

(θit − θit−1) ∗ (rit−1 − rebatet−1)︸ ︷︷ ︸
Betweent,t−1

+
∑

i∈Bt,t−1

(θit − θit−1) ∗ (rit − rit−1)︸ ︷︷ ︸
Crosst,t−1

+
∑

i∈Nt,t−1

θi,t(rit − rebatet−1)︸ ︷︷ ︸
Entryt,t−1

+
∑

i∈Xt,t−1

θi,t−1(rebatet−1 − rit−1)︸ ︷︷ ︸
Exitt,t−1

(2)

θit =
qitp

list
it∑

i∈St
qitplistit

(3)

rit =
plistit − pnetit

plistit

(4)

The term θit is defined by equation 3 and refers to market share, measured as the share

of list revenue, in year t attributable to product i among the set St of all products offered in year

t. The term rit is defined in equation 4 and is the share of list price rebated for product i in year

t. The term Bt,t−1 refers to the set of products offered in both periods t and t − 1, Nt,t−1 refers

to the set of products offered in year t but not year t− 1, and Xt,t−1 refers to the set of products

offered in year t − 1 but not year t. Finally rebatet is defined as in equation 1 and refers to the

average rebate in year t.

Thus, in equation 2, the withint,t−1 term is the component of rebate growth from year

t − 1 to t that is fully explained by growth in the rebate for each product-formulation, assuming

market shares do not change. Meanwhile, the betweent,t−1, crosst,t−1, entryt,t−1, and exitt,t−1

terms together comprise the component of rebate growth from year t − 1 to t attributable to

market share increases among product-formulations with higher rebates. Specifically, betweent,t−1

is the component attributable to increasing market share among product-formulations that already

had relatively high rebates in period t − 1, crosst,t−1 is the component attributable to increasing
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market share among product-formulations with growing rebate shares, entryt,t−1 is the component

attributable to the entry of relatively high rebate products in period t, and exitt,t−1 is the component

attributable to the exit of relatively low rebate products in period t. These terms will be negative

if the forces that they measure move in opposite directions to overall rebate growth.

The results of this analysis are in Exhibit 1 (Panel B). Growth in average market-wide

rebate shares is entirely explained by growth in rebates within products over time. Market share

shifts have actually tended towards products with lower rebates. This is consistent with products

in high demand being able to negotiate higher net prices. If there were no shift in market share

across products, including no product entry or exit, then rebates would have increased 4.8 p.p.

per year rather than 3.2 p.p. per year on average. Conversely, shifts in market share towards

product-formulations with lower rebates reduced rebate growth by 1.6 p.p. per year on average.

3.3 Rebate trends by drug class

We investigated heterogeneity in rebate share growth in the largest 20 drug classes by

total net revenue. We focused this analysis on the narrowest grouping of drugs available (ATC-

level4 class) as these drugs could reasonably be considered imperfect substitutes.6 In 2012, this

sample of 20 drug classes accounted for 30% (169) of the product-formulations and 58% ($34.2

Billion) of net revenue in study sample. Similarly, in 2017, these drug classes accounted for 31%

(213) of the product-formulations and 59% ($54.6 Billion) of net revenue in our study sample. For

each drug class, we estimated rebate shares from 2012-2017 using equation 1. We then decomposed

rebate share growth into components related to within product rebate growth and market share

shifts towards products with differing rebate levels, per equation 2. Appendix Section 4 provides

more detail on the selection of classes for this analysis.

The results from this analysis are in Exhibit 2. There is heterogeneity across classes

in rebate growth, but almost all classes considered experienced growth in rebates. 18 of the 20

drug classes depicted saw increases in rebate shares, ranging from 1.8 p.p. to 7.6 p.p. per year.

The only classes to see a reduction in rebates were combinations of direct-acting anti-virals for

H.I.V., where rebates decreased by 1.4 p.p. per year, and proton pump inhibitors for peptic ulcers

6We excluded from consideration any classes capturing a miscellaneous assortment of drugs within an ATC-level3
class. As an example, we exclude the ATC-level 4 class J01XX, which captures ”other antibacterials for systemic
use”. This includes all antibacterials that are not defined by another ATC-level4 class. We also exclude classes
defined by a broad mechanism of action, in which specific products are not close substitutes. As an example, we
exclude the ATC-level4 category L04AA which captures selective immunosuppressive drugs. This includes drugs
like Cellcept, which prevents organ rejection after transplant, and orencia, which is for auto-immune diseases like
rheumatoid arthritis.
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and gastroesophageal reflux disease, where rebates decreased by 1.2 p.p. per year. Consistent

with our earlier results, for all the drug classes experiencing rebate growth, the within-product

average annual rebate growth was fully or near-fully explained by increases in rebate growth within

product, rather than shifts towards products with larger rebates. However, there is heterogeneity

across classes on the role of market share shifts: in 9 out of the 18 classes in which rebates grew,

market share shifts actually pushed towards product-formulations that reduced rebate growth.

4 Contrasting economic analyses of net and list prices

The level of pharmaceutical rebates and changes in rebating over time imply that analyses

of pharmaceutical pricing will yield different results depending on whether net or list prices are

used. In this section we illustrate this point by demonstrating differences in price indices overall

and by drug class and in the contribution of price increases to estimates of total pharmaceutical

revenue growth.

4.1 Estimates of pharmaceutical price inflation

4.1.1 Laspreyres price inflation

We estimated list and net price growth per treatment course, or for an annual supply when

a standard treatment course was not defined. This exercise is richer than the simply focusing on

rebates, because increasing rebates, as illustrated in Exhibit 2, could be consistent with increasing,

flat, or decreasing net prices so long as list prices grew faster or did not decline as quickly. This

exercise also allows us to highlight the dollar value of divergence between list and net prices.

We estimate a pharmaceutical price inflation index by measuring inflation from t− 1 to

t using a Laspreyres inflation index estimated on the basis of products available in both periods

t− 1 and t. We then estimate a chain-weighted or compound annual inflation rate by multiplying

the Laspreyres inflation indexed for each year-pair from 2012-2017.

Formally, we apply equation 5 to estimate a Laspreyres inflation index between years

t− 1 and t using prices for the set of products appearing in both t− 1 and t. Here, glistt−1,t and gnett−1,t

refer to the estimated price inflation between years t− 1 and t, calculated using list price and net

price, plisti,t and pneti,t refer to prices for product-formulation i in year t, qi,t and refers to unit sales,

and Bt,t−1 is the set of product-formulations offered in both years t and t− 1.

11



gct−1,t =

∑
i ∈ Bt−1,t(p

c
i,t − pci,t−1)qi,t−1∑

i ∈ Bt−1,t(pci,t−1qi,t−1)
, c ∈ (list, net) (5)

We then calculate a compound annual inflation rate, g2012,2017 by applying equation 6.

g2012,2017 =

 ∏
t∈[2013,2017]

gt−1,t + 1

1/5

− 1 (6)

Exhibit 3 includes details on the annual Laspreyes inflation indices estimates underly-

ing the compound annual inflation rate by drug class and across all drug classes. We find that

estimation with list prices yields a compound annual inflation rate of 12% while estimation with

net prices yields a compound annual inflation rate of 3%. This illustrates that financial rewards

to pharmaceutical firms per unit sold has not grown in proportion to list price increases. This

compares to a 1.4% average annual inflation in consumer goods from 2012-2017, as measured by

the consumer price index (CPI), and 3.8% annual increase in commercial medical prices across 112

metropolitan areas from 2012 to 2016 (Health Care Cost Institute, 2018).

We also estimate annual inflation estimates separately for the 20 largest ATC-level 4

drug classes as estimated by total revenue in the study period. While there is some heterogeneity

across drug classes, list price inflation was greater than net price inflation for 19 of 20 drug classes.

To benchmark these results to the CPI, we find that 13 of the 20 largest ATC-level 4 drug classes

experienced net price inflation higher than price inflation for consumer goods, but all 20 experienced

list price inflation that exceeded CPI. We emphasize that the comparison to CPI is only for bench-

marking purposes; there is no reason to believe that prices should growth at CPI.

These estimates of price inflation have limitations that are shared by all price indices of

the type that we have constructed. Our estimates measure inflation on a fixed bundle of goods

available in both years of each year-pair and understate inflation because we do not capture higher

prices among entering products in the year they enter. We did not control for the quality of new

drugs, so if newer drugs are better then our estimates overstate inflation. Moreover, our estimates

also overstate the inflationary burden on consumers because we do not have data on generics– the

entry of generics causes substitution towards generics because of lower prices; these lower prices

are not observed.
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4.1.2 Growth in the average cost per therapeutic regimen

We also estimated an alternative price inflation measure, the average price per therapeutic

regimen, for the 20 largest ATC-level 4 drug classes. This alternative measure is informative beyond

the Laspreyres inflation index for two main reasons. First, it allows us to quantify the magnitude

of price increases on spending in dollar terms. Second, it allows us to account for product entry

and exit from year-to-year.

To illustrate our approach transparently, we first perform this analysis on a subset of the

ATC-level 4 drug classes presented in Exhibit 2 for which SSR Health, LLC collected information on

dosing for at least 5 product-formulations between 2012 and 2017. We create an index of the average

price per treatment course or annual supply within the class. We do this by weighting product-

formulations within a sub-category based the product-formulation’s market share of treatment

courses or annual supplies sold that year. This provides a simple interpretation for the average

price within a drug class in a given year; it is the average price paid by a patient that year for a

course or annual supply of a therapy within the drug class.

Exhibit 4 summarizes the trends in list and net pricing for four drug categories: insulins,

GLP-1 agonists for diabetes, direct-acting antivirals for hepatitis C, and combination anti-virals

for H.I.V. In addition to being of policy interest, these four categories highlight how classes can

differ in the evolution of net and list prices, even in cases where rebate share is increasing. In the

case of insulins, list prices grew 16% per annum while net prices remained relatively flat, growing

at 2% per annum. Among, GLP-1 analogues for diabetes saw increases in both prices, but list

prices grew faster (22% per annum) than net prices (13%). Meanwhile, list and net prices for

HCV anti-virals increased from 2012-2014 on average by 62% and 88% per annum respectively.

This is attributable to Sovaldi, a product considered much more highly effective than predecessors

and priced accordingly. However, from 2014 to 2017, net prices decreased 19% per annum while

list prices remained stable (1% per annum decrease). This coincides with the entry of additional

new-generation HCV therapies (e.g., daklinza, harvoni, epclusa, viekira / XR, zepatier). Finally,

H.I.V products saw almost equal growth in list and net prices (9% vs. 11% per annum).

Finally, we quantified the mechanisms underlying changes in average prices per thera-

peutic regimen. As in the case of rebates and revenue, there are several reasons why average prices

may change from year-to-year including increases in the price of products available in both years

or shifts to more expensive products. Shifts towards more expensive products may be due to shifts
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towards more expensive products already on the market, the entry of higher cost products, or exit

of lower cost products. We sought to disentangle the contribution of these forces by decomposing

the change in average price per therapeutic regimen using an approach similar to the decompo-

sitions of rebate growth in section 3.2. We then compared how the results of this analysis differ

depending on whether we use list or net prices.

We do this by first defining ηikt, which refers to product i’s share of all therapeutic

regimens sold within class k in year t, per equation 7. Here xikt refers to the the number of

therapeutic regimens of product-formulation i in drug class k sold in in period t and Sk
t refers to

the set of all products available in period t. A therapeutic regimen may be defined as either the a

one-time treatment course or an annual supply, depending on the class.

ηikt =
xikt∑

i∈Sk
t
xikt

(7)

We then define the average price per therapeutic regimen within a drug class k in year

t using list and net prices per equation 8. Here, plistikt and pnetikt refer to the list and net price for

product-formulation i in drug class k in year t, Sk
t,t−1 refers to the set of all products in class k that

are offered in at least one year between t − 1 and t, and, again, ηikt refers to product i’s share of

all therapeutic regimens sold within class k in year t.

p̄ck,t−1 =
∑

i∈Sk
t,t−1

pcikt ∗ ηikt, c ∈ list, net (8)

We finally decompose the annual growth in price per therapeutic regimens into five com-

ponents by applying equation 9. Again, p̄listk,t and p̄netk,t are the average price per therapeutic regimen

in drug class k in year t as estimated by list and net prices, plistikt and pnetikt are the list and net price

per therapeutic regimen for product-formulation i in drug class k in year t, ηikt is the market share

of drug formulation i in class k in year t, Bk
t,t−1 is the set of product-formulations in drug class

k that are available in both years, Nk
t,t−1 is the set of product-formulations in drug class k that

are available in year t and not t − 1, and Xk
t,t−1 is the set of product-formulations in drug class k

available in year t− 1 but not year t.
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p̄ck,t − p̄ck,t−1︸ ︷︷ ︸
Avg. growth in price per course

=
∑

i∈Bk
t,t−1

ηik,t−1(p
c
ikt − pcik,t−1)

︸ ︷︷ ︸
Withinkt,t−1

+
∑

i∈Bk
t,t−1

(ηikt − ηik,t−1)(pcik,t−1 − p̄ck,t−1)

︸ ︷︷ ︸
Betweenkt,t−1

+
∑

i∈Bk
t,t−1

(ηikt − ηik,t−1) ∗ (pcikt − pcik,t−1)

︸ ︷︷ ︸
Crosskt,t−1

+
∑

i∈Nk
t,t−1

ηikt(p
c
ikt − p̄ck,t−1)

︸ ︷︷ ︸
Entrykt,t−1

+
∑

i∈Xk
t,t−1

ηik,t−1(p̄
c
k,t−1 − pcik,t−1)

︸ ︷︷ ︸
Exitkt,t−1

, c ∈ (list, net)

(9)

Intuitively, we decompose growth in average prices per therapeutic regimen into compo-

nents that reflect the contribution of increases in the price of existing products versus shifts towards

more expensive products. Specifically, the within terms are the component of annual increases in

the average price per therapeutic regimen increases that is fully explained by growth in the aver-

age price for each product-formulation, assuming market share does not change. Meanwhile, the

between, cross, entry, and exit terms together comprise the components of growth in average prices

per therapeutic regimen attributable to market share increases among product-formulations with

higher prices. Specifically, the between terms are the components attributable to increasing market

share among formulations that already had relatively high prices per therapeutic regimen in period

t− 1, the cross terms are the components attributable to increasing market share among product-

formulations with growing prices, the entry terms are the components attributable to the entry of

relatively high price products in period t, and the exit terms are the components attributable to

the exit of relatively low price products in period t. Again, these terms can also be negative if these

forces detract from growth in average prices per therapeutic regimen

Exhibit 5 illustrates the results of this decomposition for insulins, GLP-1 agonists for

diabetes, direct-acting antivirals for hepatitis C, and combination anti-virals for H.I.V. It shows

that within product price increases, market share shifts towards lower price product-formulations,

and entry of new products all can play an important role in explaining increases in the average

price per therapeutic regimen with considerable heterogeneity across drug classes. For example,

when estimated using list prices, within product price increases explain 98% of increase in prices

per therapeutic regimen for insulins but only 27% of increases in prices per therapeutic regimen
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for Hepatitis C anti-virals. This is because the majority of price increases for Hepatitis C anti-

virals was driven by shifts from older to newer generation medications with greater efficacy. This

heterogeneity persists both when analyzed with list and net prices. For Hepatitis C anti-virals, the

contribution of net price changes to increases in the average net price per therapeutic regimen is

actually negative. This reflects decreasing net prices among product-formulations on the market,

in most years.

4.2 Pharmaceutical revenue growth and the contribution of price growth

Given the popular concern that growth in pharmaceutical revenues is driven considerably

by price increases rather than increasing use or innovation (e.g., Hernandez et al. (2019)), we sought

to quantify the degree to which annual growth in pharmaceutical revenue can be explained by

growth in prices for products already on the market versus changes in the quantity of product

used, entry of new products, and the exit of existing products. We then compared how the results

of this analysis differ depending on whether we use list or net prices.

We used a decomposition approach similar to the decompositions of rebate and price

growth presented in sections 3.2 and 4.1.2. Here, plisti,t and pneti,t refer list and net price per unit for

product-formulation i in year t, qi,t and refers to unit sales, St,t−1 is the set of product-formulations

offered in at least one year between years t − 1 and t, Bt,t−1 is the set of product-formulations

offered in both years t and t− 1, Nt,t−1 is the set of product-formulations offered in year t but not

t− 1, and Xt,t−1 is the set of product-formulations offered in year t− 1 but not t.

∑
i∈St,t−1

pci,tqi,t −
∑

i∈St,t−1

pci,t−1qi,t−1︸ ︷︷ ︸
Growth in revenue

=
∑

i∈Bt,t−1

qi,t−1(p
c
i,t − pci,t−1)︸ ︷︷ ︸

Withint,t−1

+
∑

i∈Bt,t−1

(qi,t − qi,t−1)pi,t−1︸ ︷︷ ︸
Betweent,t−1

+
∑

i∈Bt,t−1

(qi,t − qi,t−1) ∗ (pci,t − pci,t)︸ ︷︷ ︸
Crosst,t−1

+
∑

i∈Nt,t−1

qi,tp
c
i,t︸ ︷︷ ︸

Entryt,t−1

+
∑

i∈Xt,t−1

−qi,t−1pci,t−1︸ ︷︷ ︸
Exitt,t−1

, c ∈ (list, net)

(10)

Equation 10 decomposes growth in drug revenues across all drugs into several components

using an approach that is analagous to the approaches used in sections 3.2 and 4.1.2. The within
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term captures the annual growth in drug revenue explained exclusively by price increases in products

available in both years, assuming quantities consumed do not change. The between, cross, entry,

and exit terms therefore collectively capture the degree to which revenue growth is explained by

changes in quantities. Specifically the between term captures the component of drug spending

growth due to increases in quantity (volume) among products available in both periods (while

prices are fixed). The cross term captures the component of revenue growth due to increases in

the quantity for the product-formulations for which prices also increased. Finally, the entry term

reflects gained revenue from new products and exit term reflects lost revenue from exiting products.

Assuming entering and exiting products have non-zero sales in the years they are available, the

entry term will be positive and the exit term will be negative. The within, between, and cross

terms may be positive or negative depending on whether they contribute or detract from growth

in revenues.

Finally, we determined the average annual contribution of each component in equation

10 to annual drug revenue growth over the full study period using an approach resembling our

analysis of rebate share growth in section 3.2. For each term, this was computed by simply adding

the annual components from each year-pair from 2012-2013 to 2016-2017 and dividing by the total

change in rebates from 2012-2017. For example, to estimate the average share of annual revenue

growth accounted for by within-product rebate growth (Within share2012,2017), we apply equation

11.

Within share2012,2017 =

∑
t∈[2013,2017]withint,t−1∑

i∈St−1,t
pci,tqi,t −

∑
i∈St−1,t

pci,t−1qi,t−1
(11)

Our results, depicted in Exhibit 6, show that within product price increases (within term)

play a smaller role in explaining revenues increases when estimated using net rather than list prices.

Using net prices, 31% of average annual pharmaceutical revenue growth is explained by growth in

prices for products available in both years (within term). As a benchmark, if this price growth

had mirrored CPI inflation then this percentage would be 18% . The remaining 69% of revenue

growth that is not explained by price growth is explained primarily by new product entry (entry

term), while volume decreases of existing products, holding prices fixed contribute negatively to

revenue growth (between term). The negative association between price effects and volume effects

should not be interpreted to mean that we have estimated a demand curve, but that equilibrium

price increases and volume decreases are happening at the same time. The exit term is small in
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magnitude meaning that product exit per se is not a meaningful driver of manufacturers revenues,

relative to the direct effect of losing volume on an existing product.

In contrast, using list prices, we would estimate that that 76% of average annual pharma-

ceutical revenue growth is explained by growth in prices for products available in both years (within

term). These differences have large implications for how we view the sources of revenue growth

for manufacturers: using net prices instead of list prices for the calculation of revenues halves the

contribution of price increases to revenue growth; new product entry is the most important source

of revenue growth, and volume decreases of existing products reduce pharmaceutical revenue.

5 Conclusion

We used data on pharmaceutical products sold via retail pharmacy for non-rare diseases

to illustrate how our understanding of pharmaceutical price inflation is meaningfully impacted by

one’s use of list versus net prices. Over the 2012-17 period, pharmaceutical price inflation was 12%

per year using list prices but only 3% per year using net prices. We also show that average rebate for

increased from 32% to 48% over the same period. We also document heterogeneity in these rebate

trends by drug class. Our results also challenge the conventional narrative around the magnitude of

price increases for the same drug. We find that price growth for already marketed products explains

76% of annual drug spending growth when measured by list prices but explains a third 31% of annual

drug spending growth when measured by net prices. Meanwhile, analyzing net prices reveals that

new product entry explains the bulk of revenue growth. Taken together, these results suggest

that new product entry is the most important factor driving growth in pharmaceutical revenue.

Furthermore, analysts and economists working in public policy should be extremely cautious in

drawing policy conclusions based on list prices alone. If nothing else, the focus on net prices would

reduce the reliance on more complicated models of imperfect competition– like ’shadow pricing’–

over simpler insights from price-theory (Hartung et al., 2015; Bhattacharya and Vogt, 2003).

The divergence between list and net prices has uncertain welfare effects. On the one

hand, this trend implies that the total cost of medicines to payers has not increased as dramatically

as trends in list prices would suggest. These savings are partially passed to consumers or taxpayers

in the form of lower plan premiums. However, if there is imperfect competition among PBMs or

insurers, part of these savings are likely to be retained by PBMs or insurers (Dafny, Duggan and

Ramanarayanan, 2012; Ho and Lee, 2017). To the extent that savings are being retained as profit
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by intermediaries who are not responsible for innovation, they reduce incentives for innovation

without improving affordability. For all these reasons, our analysis does not reveal whether net

prices are higher or lower than the social optimum.

On the other hand, because patients’ out-of-pocket costs are often pegged to list prices,

growing list prices mean that patients are paying for an increasing share of pharmaceutical spending

through out-of-pocket payments. We can perform a simple calculation to benchmark this phenom-

ena. For example, our results suggest that, for fast-acting insulins from 2012-2017, revenue based

on list prices grew from $5.3 to $13.2 Billion while net revenue only grew from $2.9 to $3.5 Billion.

This implies that if a diabetic patient in a standard Medicare Part D plan and between his or

her deductible and the catastrophic coverage threshold is purchasing a fast-acting insulin, then his

or her out-of-pocket payment (25% of list price) would have accounted for 37% of pharmaceutical

revenue under 2012 list prices and rebate shares and 75% of pharmaceutical revenue under 2017

list prices and rebate shares. Thus, while insured patients with fewer health needs may benefit

from lower premiums associated with rebates, sicker or uninsured patients may be worse off and

may forgo valuable drugs (Herkert et al., 2019). As a result, growing rebates may be regressive

and may have reduced the financial protection from insurance. We underscore that this is just an

illustrative calculation, and heterogeneity in prescription drug plans and the non-linearity of in-

surance contracts makes it difficult to precisely estimate the share of total pharmaceutical revenue

accounted for by out-of-pocket payments.

There are noteworthy caveats to our analysis. Our results may not generalize to a broader

set of products including biologic drugs those provided in hospitals, clinics, or for rare-diseases; it is

possible that market structure for these drugs is different. Second, because of using chain-weighted

indices, our estimates of price inflation does not consider the price of new products in their year

of entry, which understates inflation. Pushing in the other direction, our estimates will overstate

inflation experienced by patients because products go generic and we lack data on the prices of

generics. Third, we are unable to adjust for the quality of new drugs and this will cause us to

overstate inflation if newer drugs are better. Finally, we cannot segment trends by payer markets,

which differ substantially in rebating behavior. As a result our analysis does not translate easily

to policy simulations involving specific payer-segments such as Part D, Medicaid, or commercial

insurance.

Our analysis rules out simple substitution towards higher rebate products, but cannot un-

cover the mechanism underlying faster growth in list than net prices, or the sources of heterogeneity
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across drug classes. This limitation reflects our design– we do not observe exogenous changes to

competition. This should be an active area for other work and there are several hypotheses worth

exploring. First, it is possible that because PBMs are compensated based on a combination of

list prices and negotiated rebates, PBMs prefer products with higher list prices and higher rebates

thus increasing rebating behavior over time. Second, it is possible that increasing competition

within drug class reduces net prices over time. One example of this may be HCV anti-virals, where

net price decreases coincided with the release of multiple new treatments were released from 2013

onwards. Competition from new branded products may be partially responsible for decreases in

net prices for HCV products from 2014-2017, where new product entry may have allowed payers to

demand larger rebates by creating more options for formulary design. While prior work has found

limited impact of competition on list prices (see Sarpatwari et al. (2019)), our findings highlight

the importance of studying the effect of competition on net prices. Third, it is possible that, in-

creasing market power by purchasers (e.g., PBMs, insurers, distributors) may increase negotiated

rebates. Finally, it is possible that rebate increases are due to increases in the share of pharmaceu-

tical spending done via government programs mandating rebates such as Medicaid and the 340B

Program. For example, rebates for H.I.V. declined modestly from 2012-2017. One hypothesis is

that this may reflect Medicaid coverage for a disproportionate share (42%) of all H.I.V. patients,

so it is possible that Medicaid rules concerning mandatory rebates may prevent a large divergence

between list and net prices for this drug class. Disentangling these explanations for rebate growth

is worthy grounds for future research.
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Appendix

1. Assignment of drugs to Anatomical Therapeutic Classication (ATC) classes

ATC categories provide a 4-tiered classification system for each drugs, where each tier

offers a different level of granularity; level-1 codes are the broadest while level-4 codes are the

narrowest. We performed this mapping using a two-step process. First, we linked the National

Drug Number (NDCs) associated with each product-formulation to ATC categories using RxNorm,

an NIH provided tool that provides linkages between various drug identifiers. This procedure linked

64% to a single ATC-level 4 category, the narrowest level of classification. The remaining 36% of

drug formulations where either linked to multiple ATC-level 4 codes (26%)7 or were not linked to

any ATC-level4 codes (10%) 8 by RxNorm.

In cases where RxNorm linked product-formulations to multiple or no ATC-level4 codes,

we manually assigned the product-formulation to the most appropriate ATC-level 4 code based on

the mechanism of action, FDA approved indication, and documentation from other government

agencies such as the European Medicines Agency (EMA) and drug manufacturers where possible.

We were unable to link only 20 (0.6%) of product-formulations.9

In cases where RxNorm linked to a single ATC code, we still manually reviewed each ATC

code to assure an appropriate match. For 20 (0.6%) product-formulations, we manually modified

the ATC code as it appeared RxNorm had an error. This typically occurred when the product was

a combination product but RxNorm assigned it to the ATC-4 code for only one active ingredient.

7Drugs can erroneously link to multiple ATC-level4 codes for two main reasons. First, if the active ingredient in
the drug appears in products for other indications, then the RxNorm may link the drug to each of the indications
even if the brand was only approved for one. As an example, Protopic (tacrolimus) is approved for eczema whereas
Prograf (tacrolimus) is approved for preventing rejection of organ transplants. However, because they both have
tacrolimus as the active ingredient, they both were linked to ATC-level4 code D11AH (agents for dermatitis excluding
corticosteroids) and L04AD (calcineurin immunosuppressants). Second, there are cases where a drug includes multiple
ingredients. In many of these cases, there is an ATC code for the combination drug but RxNorm will return each ATC
code individually. For example, Janumet (sitagliptin phosphate / metformin hcl) is a diabetes medication. There is
an ATC4 code containing combination metformin HCL + sitagliptin phosphate (A10BD). However RxNorm will also
return the code for metformin HCL (A10BD) and sitagliptin phosphate (A10BH) individually.

8Product-formulations can also erroneously fail to link to any ATC-level 4 code for multiple reasons. First,
some drugs do not have an ATC code. In these cases we used the ATC-level 4 code of competitors with the same
mechanism of action, when available. For example, Calquence (acalabrutinib) is a bruton tyrosine kinase (BTK)
inhibitor for adults with mantle cell lymphoma. It does not have an ATC-level4 code but its main competitor
Imbruvica (ibrutinib), also a BTK inhibitor, is assigned to the ATC4 code L01XE. Thus we manually assigned
Calquence into L01XE. Second, some drugs actually do have an ATC code but the generic name associated with the
NDC is listed in a slightly different way than in the ATC codebook, resulting in a failure to match. For example,
the generic name for Seebri Neohaler is listed as glycopyrrolate in RxNorm and SSR. While there is no ATC code
for glycopyrrolate per se, there is an ATC-level4 code for glycopyrronium bromide (R03BB). Glycopyrrolate is the
active moiety of glycopyrronium bromide. Thus we manually linked Seebri Neohaler to R03BB.

9These included aurstat (2 formulations), biafine, hylatopic / plus (5 formulations), lacrisert, lodosyn, mugard,
neutrasal, skelaxin (2 formulations), tetrix, theracys, tropazone (2 formulations), and zyflo / cr (2 formulations).
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This approach to assigning drugs to ATC codes using a multitude of sources is similar to

approaches used previously (Kesselheim et al., 2015).

2. Limitations of SSR data and Exclusions

We use data from SSR Health, LLC on list prices, net prices, revenue and unit sales. While

these data provide the best available evidence on net prices to manufacturers by drug classes, the

data do have important limitations. Most notably:

1. Symphony Health data on unit sales are measured with error - IQVIA and Symphony

estimate unit sales from the subset of channels reporting to them. While data are relatively complete

for drugs sold via traditional retail pharmacies, the coverage is less likely to be complete for products

typically sold in non-traditional channels such as clinics, hospitals, and some specialty pharmacies.

Underestimating sales for products sold in these channels can lead to overestimated net prices.

2. Discrepancies between when revenue and units sold are recorded – Manufacturers record

revenue based on drug sales to wholesalers whereas IQVIA and Symphony record unit sales based

on units dispensed at the pharmacy. Thus the transactions between wholesalers and pharmacies

are mediated by inventories, and this can cause errors in net price estimates. This is most likely to

be problematic for estimating net prices over narrow time bins. Moreover, at the time of product

launch, product exit, or loss of exclusivity the lag between inventory and sales may be larger, exac-

erbating this type of error. This is because pharmacies are more likely to be building or depleting

their inventory at this time.

3. Data on units per therapeutic course / annual supply– SSR Health, LLC provides es-

timates for units therapeutic course / annual supply only for select product-formulation combina-

tions. These data are particularly likely to be incomplete for product-formulations with limited

sales in recent years. This can make comparing prices and determining market share across drugs

in certain categories more challenging.

4. Data do not capture generic sales – This feature limits the comprehensiveness of drug

sales data for categories with high generic penetration.

5. Missing data – Companies do not always report drug sales in SEC filings and IQVIA

and Symphony may also stop reporting drug sales. This may result in years where data on drugs

is missing despite it being on the market.

Given these limitations, we limited our analysis to years and drug classes where the data

were relatively reliable. For analyses requiring units per treatment course or annual supply, we
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limited our analysis to classes where this data was available for several products.

Specifically, for our main analysis, we applied several exclusions. First, we restricted

our analyses to products likely to be sold predominantly in retail pharmacies and for non-rare

diseases, for which Symphony Health data are more complete. To do this, we applied several

exclusions to exclude products likely distributed via clinics and hospitals. We first excluded all

product-formulations where one or more formulations of the product-formulation had an injectable

form according to SSR Health, LLC, with the exception of product-formulations that are typically

self-administered (e.g., insulins). We excluded these product-formulations because a wide-array of

injectable product-formulations are generally provided in clinics or hospitals, where IQVIA and

Symphony are more likely to be inaccurate (e.g., botox, contrast material, etc.). We identified

self-administered injectables exempt from this exclusion using published lists of self-administered

product-formulations by the Centers for Medicare and Medicare Services (CMS). CMS maintains

these lists to identify product-formulations excluded from coverage in physician offices or hospitals

via Medicare Part B. The lists do not include all self-administered product-formulations, but in-

cludes products where CMS feels it necessary to clarify coverage. Thus it includes most injectable

product-formulations that are self-administered.10.

We excluded all other product-formulations for oncology, as these may be provided at a

provider’s office or hospital and thus have non-traditional distribution patterns. Indeed in Medicare,

oral oncology product-formulations for which there is an infused version are typically covered by the

physician (Part B) or hospital benefit (Part A) rather than Part D. We identified oncology products

manually.11 We also excluded inhaled vaccines, diagnostic products, and implantable product-

formulations (e.g., Intra-uterine devices) as these would typically be provided at a provider’s office.

We similarly excluded iron chelating product-formulations, used to treat iron poisoning usually in

an acute setting.12

We then excluded product-formulations for rare diseases as these are more likely to have

specialty distribution channels and potentially be more subject to sampling error. To do this,

we first excluded product-formulations classified for expanded exclusivity by the FDA as Orphan

10The lists can be found here: https://www.cms.gov/medicare-coverage-database/reports/sad-exclusion-list-
report.aspx?bc=AQAAAAAAAAAA&

11The ATC-level2 code ”L01” does include anti-tumor preparations. However other codes also include oncology
treatments. For example, Provenge is a personalized immunotherapy for prostate cancer. It appears under the
ATC-level2 code ”L03” for immunostimulants. However this category also includes non-cancer treatments, such as
old-generation treatments for hepatitus C.

12Vaccines were identified using the ATC-level2 code ”J07”. Diagnostic products were identified using the ATC-
level2 codes ”V09”, ”V08”, ”V04”, and the ATC-level4 code ”B05XA”. Implantable drug formulations were identified
using SSR Health¡ LLC data. Iron chelating product-formulations were identified using the ATC-level4 code ”V03AC”
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product-formulations. However, we did not exclude products that were only approved for an or-

phan indication via approval for a pediatric indication, as is suggestive that the product is actually

more widely used. We also excluded product-formulations that were approved for diseases classi-

fying as orphan indications, but did not receive orphan status presumably because they did not

demonstrate clinical superiority. Specifically we excluded product-formulations approved for cystic

fibrosis, pulmonary arterial hypertension, acromegaly, and multiple sclerosis. These were identified

manually.

We then excluded several product-formulations due to missing or unreliable data. Specif-

ically we excluded product-formulations that had missing data between 2012-2017 despite being

on the market. We also excluded products facing loss of exclusivity within one year of baseline or

endline as Symphony Health data are more likely to be inaccurate around this time. We excluded

products that we could not assign to ATC codes. Finally, we excluded product-formulations that

had an increase or decrease in list or net prices of over 5 standard deviations in one year between

2012-2017.

Our final sample included 726 branded product-formulations on the market in at least

one year between 2012 and 2017. The number of product-formulations excluded at each step are

provided in Appendix Exhibit 1. Summary statistics on the final sample can be found in Appendix

Exhibit 2.

3. Sensitivity of rebate share analyses to alternative exclusions

We assessed the sensitivity of our main analysis of rebate share growth to alternative

exclusions, with results illustrated in Appendix Exhibit 3. Overall, we find our results robust to

alternative exclusion criteria.
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4. Rebate share analysis by class

We performed the analysis of rebate share growth and price inflation by drug class on

the 20 ATC-level 4 categories with the highest total sales revenue from 2012-2017 (Exhibit w).

However, we excluded ATC-level 4 categories with 2 or fewer product-formulations offered across

the study period. We also excluded poorly defined ATC-level 4 categories or ATC-level 4 categories,

which include drugs that are not substitutes.13

13We excluded the following ATC-level 4 categories for being poorly defined or including poor substitutes: N03AX
(other antiepileptics), N06AX (other anti-depressants), L04AX (other immunosupressants), J05AX (other antivirals),
C10AX (other lipid modifying agents), C10BX (HMG CoA reductase inhibitors, other combinations), S01XA(other
opthalmologics), N06DX (other anti-dementia drugs), A06AX (other drugs for constipation), A02BX (other drugs for
peptic ulcer and gastrooesophageal reflux disease (GORD)), C09DX (angiotensin II receptor blockers (ARBs), C01EB
(other cardiac preparations), N05AX (other antipsychotics), N02AX (other opioids),N07XX (other nervous system
drugs), R03DX (Other systemic drugs for obstructive airway diseases), D10AX (Other anti-acne preparations for
topical use), S01GX (Other antiallergics), D05AX (Other antipsoriatics for topical use), N05CM (Other hypnotics and
sedatives), D11AX (Other dermatologicals), D01AE (Other antifungals for topical use),A10BX (Other blood glucose
lowering drugs, excl. insulins), J01XX (Other antibacterials), D06AX (Other antibiotics for topical use), D06BX
(Other chemotherapeutics for topical use), M03BX (Other centrally acting agents), J02AX (Other antimycotics for
systemic use), N05BX (Other anxiolytics), G02CX (Other gynecologicals), A07XA (Other antidiarrheals), A11EX
(Vitamin B-complex, other combinations), B03AE (Iron in other combinations), D07XA (Corticosteroids, weak,
other combinations), R06AX (Other antihistamines for systemic use), J05AE (Protease inhibitors), L04AA (Selective
immunosuppressants)
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