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1 Introduction

Up until a decade ago, most commonly used frameworks in macroeconomics were either

explicitly linearized, or almost linear when solved exactly (Parker, 2011). A limitation of

such frameworks is that they can lead to imprecise conclusions on aspects of the economy

that are fundamentally nonlinear. While recent research has emphasized the role of such

nonlinearities, there is limited direct empirical evidence on their importance.1 When the

evidence exists, it is frequently controversial. For instance, there is a lack of consensus as to

whether the fiscal multiplier varies with the state of the business cycle.2

In this paper we document robust evidence for one particular nonlinearity—we show that

industries’ supply curves are convex. At the industry level, our estimates suggest that the

curvature of supply curves is economically sizable. Industries that produce close to capacity

respond to a positive demand shock by raising their prices by six times as much as industries

that produce far below their capacity. At the same time, their production response is cut in

half. In the aggregate, convex supply curves have sizable and policy relevant implications,

including a countercyclical fiscal multiplier, a convex Phillips curve, and greater welfare costs

of business cycles than standard models.

We argue that convex supply curves at the industry level arise from capacity constraints

at the plant level. Micro data from the Quarterly Survey of Plant Capacity (QSPC) suggests

that capacity constraints indeed limit plants’ production. As Figure 1 illustrates, a significant

fraction of U.S. manufacturing establishments produces at “full capacity” as defined in the

QSPC or, equivalently, at a capacity utilization rate of one. These plants presumably have

limited room for increasing production in the short run and are likely to raise their price

when confronted with an increase in demand.

We formalize this logic by developing a model in which capacity constraints at the plant

level generate supply curves that are convex at the industry level. In the model, firms invest

into a set of factors that are fixed in the short run and, once chosen, determine the firm’s

maximum production capacity. When the demand for a firm’s good materializes sufficiently

high, production becomes constrained by capacity. Constrained firms’ production is locally

unresponsive to shocks because any changes in demand are absorbed in the markup. The

framework permits simple aggregation to the industry level, where it generates a supply curve

1Baqaee and Farhi (2019) highlight that disregarding nonlinearities in models with input-output linkages can
have large quantitative implications.

2While Auerbach and Gorodnichenko (2012; 2013a; 2013b) argue that the multiplier is likely large during down-
turns, Ramey and Zubairy (2018) find that such state dependence is small or nonexistent.

1



Figure 1: Densities of plant capacity utilization

Notes: The data are from the QSPC of the U.S. Census Bureau. The figure shows kernel density
estimates which are truncated below the 5th and above the 95th percentile due to Census disclosure
requirements. We describe the data and discuss additional results in Appendix A.

that is convex in logarithms.3 Its key implication is that an industry’s capacity utilization

rate is a sufficient statistic for its supply elasticity. The model builds on prior work by

Fagnart, Licandro, and Portier (1999), is qualitatively consistent with plant-level facts on

capacity utilization, and serves as a starting point for our empirical analysis.

Our main contribution is to provide empirical evidence that industry’s supply curves

are convex. The intuition of our empirical strategy is as follows. As Figure 1 shows, the

fraction of capacity constrained plants varies over time. In 2007 many plants produced at full

capacity. Subsequently, the Great Recession induced a leftward shift of the distribution of

utilization rates and fewer plants were constrained by capacity. By 2011, the distribution of

utilization rates had partially recovered. If constrained plants respond differently to demand

3The model’s supply curve is convex in logarithms, implying that the inverse supply elasticity is increasing in
output. This contrasts with commonly used production functions such as constant elasticity of substitution (CES).
When parameterized with decreasing returns to scale, these production functions generate cost functions that are
linearly increasing in logs and thus have a constant (inverse) supply elasticity. Throughout this paper, we refer to
supply curves as convex when they are convex in logs.
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shocks than unconstrained plants, the fraction of constrained plants will affect an industry’s

pricing and production responses to such shocks. Our estimation exploits this variation

across time and industries by allowing industries’ price responses to depend on their initial

capacity utilization rate. We show formally that in a regression of prices on quantities an

interaction term with the utilization rate identifies the curvature of the supply curve.

We estimate the supply curve using three alternative instruments to trace out its slope

and curvature. First, we use a version of the World Import Demand instrument (Hummels

et al., 2014). This instrument assumes that appropriately purified changes in foreign im-

ports are uncorrelated with the industry’s unobserved supply shocks. Second, and building

on Shea (1993a,b), we construct an instrument from changes in downstream demand. The

idea of this instrument is to alleviate simultaneity concerns in production networks by iso-

lating variation from large downstream industries. Third, we consider changes in industries’

effective exchange rates. Conditional on holding industries’ costs constant, depreciations in

the exchange rate stimulate demand from abroad.

The estimates suggest that supply curves are highly elastic at low levels of capacity uti-

lization. At low capacity utilization rates, we cannot reject the null hypothesis that indus-

tries’ supply curves are horizontal. This contrasts to an estimated inverse supply elasticity

of approximately 0.3 at the median and between 0.45 and 0.61 at high levels of capacity

utilization. We also directly estimate production responses to demand shifts (the reduced

form). We find that production responds twice as much to the same sized demand shock for

industries below the 15th percentile when compared to industries above the 85th percentile.

Our estimation uses the measures of capacity utilization from the Federal Reserve Board

(FRB), which are close empirical analogues to the corresponding object in the model. The

estimates are similar for all three instruments.

To study the aggregate implications of convex supply curves, we develop a nonlinear

network model of 71 industries and calibrate it to match the estimated supply curves. In

our benchmark calibration the fiscal multiplier is countercyclical and varies between 0.55

and 0.68 over the business cycle. This degree of state-dependence is not trivial, but smaller

than the estimates in Auerbach and Gorodnichenko (2012, 2013a,b). The partial elasticity

of real marginal costs with respect to output—which plays a critical role for determining

the slope of the Phillips curve in models with price rigidities—is procyclical and drops by

approximately 20 percent during the Great Recession. This finding may partially explain

the “missing disinflation” observed at the time and is relevant for stabilization policy that

relies on generating inflation (e.g. Christiano, Eichenbaum, and Rebelo, 2011). Finally, the
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welfare costs of business cycles are approximately twice as high as in Lucas (1987).

Related literature Early work on capacity goes back to Chamberlin (1933) and Robinson

(1933). Cassels (1937) noted that definitions of capacity require an assumption on which

factors of production are held fixed. In line with this argument, today’s measures of capacity

from the QSPC assume that a plant’s capital stock is fixed, while all other factors can be

freely varied. In the 1950s and 1960s, Smithies (1957), Klein (1960), and others began

to introduce capacity and utilization into business cycle theories, and studied theoretical

questions on measurement of capacity. A recurring topic highlighted by this literature is that

engineering-based concepts of capacity are unsatisfactory from the point of view of economic

decision making, since they disregard firms’ economic incentives. Current measures from the

QSPC and its predecessor, the Survey of Plant Capacity (SPC), explicitly address this issue

by defining capacity as the technically and economically sustainable level of production.4

In part due to measurement difficulties, early series on capacity utilization were discontin-

ued or the underlying methodology changed. Shapiro (1989) provided a negative assessment

of the Federal Reserve Board’s (FRB) measures of capacity and utilization at the time, since

the evidence appeared to be inconsistent with the intuition that “Capacity is best thought

of as the level of output where the marginal cost curve becomes steep” (Shapiro, 1989, p.

204). Our evidence is consistent with this intuition, although we note that it is neither the-

oretically nor empirically clear whether the steepness of the supply curve close to capacity

arises from increases in marginal costs or markups. Corrado and Mattey (1997) and Morin

and Stevens (2004) discuss the FRB’s current measures of capacity utilization. We provide a

brief summary in Section 3. Of course, the FRB’s primary objective is to use its measures of

capacity utilization to gauge inflationary pressures. Among many others, Stock and Watson

(1999) find capacity utilization to be a useful predictor of inflation.

The concept of capacity utilization is distinct from—although related to—capital utiliza-

tion, which measures the fraction of time the capital stock operates. A large literature in

macroeconomics has studied models in which capital services vary at high frequencies due

to a utilization choice. These include Greenwood, Hercowitz, and Huffman, 1988, Bils and

Cho, 1994, Cooley, Hansen, and Prescott, 1995, Burnside and Eichenbaum, 1996, Gilchrist

and Williams, 2000, Hansen and Prescott, 2005, among others. Our model builds on Fag-

nart, Licandro, and Portier (1999), who explicitly model capacity utilization. The nonlinear

4For instance, the QSPC asks respondents about their “full production capability” under the assumption that
“the number of shifts, hours of operation and overtime pay that can be sustained under normal conditions and a
realistic work schedule in the long run.”

4



implications of capacity utilization and related notions of slack have received relatively lit-

tle attention. Two important exceptions are Michaillat (2014), who develops the idea that

slack in the labor market (or a convex labor supply curve) leads to state-dependent fiscal

multipliers, and Kuhn and George (2017) who study the quantitative implications of convex

supply curves in a single sector general equilibrium model.

Lastly, our paper is related to prior work that estimates production functions and the

degree of returns to scale. Standard estimation techniques of production functions typically

assume that the production function is Cobb-Douglas (Olley and Pakes, 1996; Levinsohn and

Petrin, 2003; Ackerberg, Caves, and Frazer, 2015). This assumption rules out that production

functions are convex in logs. Many other papers estimate the degree of returns to scale. A

recent example is Almunia et al. (2018), who find that firms’ production technologies have

decreasing returns to scale. Since they assume that the production function is CES, they also

rule out that production functions are convex in logs. Perhaps the most closely related paper

is Shea (1993a), who found that supply curves in many industries slope up. His benchmark

estimate of the inverse supply elasticity on a pooled sample is 0.18. When we disregard

second order terms and estimate a linear specification, we obtain a very similar value of

0.23.

Roadmap We begin in Section 2 with presenting a simple model that features utilization

of capacity and motivates our empirical strategy. After discussing the data and identification

we present our empirical results in Section 3. We discuss the aggregate general equilibrium

implications of our findings in Section 4. Section 5 concludes.

2 Theoretical framework

This section lays out the theoretical framework for this paper. We begin with developing a

simple putty-clay model, which features a concept of capacity that aligns well with measured

capacity in the data. When aggregated to the industry level, the model generates a supply

curve that is typically increasing and convex in logs. We subsequently specify our estimating

equations. All proofs are in Appendix B.

For maximum clarity, the model in this section assumes that prices are flexible. In

Appendix C we relax this assumption and derive our estimating equations in a version of

the model with sticky prices.
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2.1 A simple theory of capacity constraints and convex supply curves

Our framework features a competitive aggregating firm and monopolistically competitive

intermediate goods firms. In order to generate a notion of capacity and utilization, we

assume a putty-clay-type production function (as in Fagnart, Licandro, and Portier, 1999),

which requires firms to choose their maximum scale prior to making the production decision.

If demand materializes sufficiently high, production will be constrained by capacity.

2.1.1 Aggregating firm

A competitive aggregating firm uses a unit continuum of varieties, indexed j, as inputs into

a constant elasticity of substitution (CES) aggregator to produce the industry’s composite

good,

Yt =

(∫ 1

0

ωt (j)
1
θ yt (j)

θ−1
θ dj

) θ
θ−1

. (1)

Parameter θ > 1 is the elasticity of substitution and the weights ω represent firm-specific and

time-varying demand shocks for intermediate goods producers. For simplicity, we assume

that these shocks are drawn independently and identically from distribution G with E [ω] = 1

and E [ω2] <∞.

Taking prices as given, the final goods firm maximizes profits subject to the production

function (1). The resulting input demand curves are

yt (j) = ωt (j)Yt

(
pyt (j)

P Y
t

)−θ
(2)

for all j, where the industry’s price index is given by

P Y
t =

(∫ 1

0

ωt (j) pyt (j)1−θ dj

) 1
1−θ

. (3)

2.1.2 Intermediate goods producers

Consistent with Figure 1, we assume that a firm’s capacity can limit production in the

short run. Following Fagnart, Licandro, and Portier (1999), the firm has to decide ex-ante

on the maximum of variable inputs, v̄t, that it can employ (or process) in the short run.

Since short-run variable inputs vt include primarily production workers and intermediates,

v̄t has a natural interpretation as the number of workstations or the capacity to process

intermediates. To preserve clarity we drop the index j throughout this section.
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Production and capacity Let qt denote the firm’s idiosyncratic production capacity, which

is predetermined within the period. The firm’s production function is

yt = qt
vt
v̄t
, where vt ≤ v̄t. (4)

That is, production yt is linear in variable inputs vt, but subject to an upper bound in the

short run, because the variable inputs vt cannot exceed the predetermined value v̄t.

Letting zt denote productivity and kt capital, firm’s production capacity takes the form

qt = ztF (kt, v̄t) . (5)

The function F is increasing in kt and v̄t, and exhibits constant returns to scale in its two

arguments. The latter assumption implies that firm’s actual production can be written as

yt = ztF (κt, 1) vt where κt = kt/v̄t. That is, the marginal product of vt is ztF (κt, 1), which is

increasing in zt and κt. Letting pvt denote the price of the variable input bundle vt, short-run

marginal costs are

mct =
pvt

ztF (κt, 1)
. (6)

Dynamic problem Firms own their capital stock k, discount future profits at rate r, and

maximize the present value of profits. We allow firm’s investment to be subject to possibly

non-convex adjustment costs φ (x, k). The firm’s Bellman equation is then

V (k, v̄, z, ω) = max
py ,x,v̄′

{
pyy − pvv − pxx− φ (x, k) +

1

1 + r
E [V (k′, v̄′, z′, ω′)]

}
,

where the maximization is subject to

y ≤ q, (7)

k′ = (1− δ) k + x, (8)

as well as equations (2), (4), and (5). Equation (7) is the capacity constraint and (8)

is the standard capital accumulation equation. We assume that productivity z only has

an industry-specific and an aggregate (i.e. economy wide), but no firm-specific component.

This assumption limits the degree of heterogeneity in the model and allows us to analytically

aggregate output and prices to the industry level.

Our estimation strategy does not require us to take a stance on the functional form of

adjustment costs φ. Nor are the precise features of the firm’s investment decision or the
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choice of v̄′ important for the estimation. What matters for our estimation is the evolution

of capacity, or more precisely the industry’s capacity—which we directly observe in the data.

We discuss the role of changes in capacity for the estimation below.

Price setting If the firm operates below its capacity limit, it sets prices at a constant

markup over marginal costs. Once production is constrained by capacity, however, the firm

raises its markup so as to equate the quantity demanded to its production capacity. Formally,

py =
θ

θ − 1
(mc+ ρ) , ρ = 0 whenever y < q,

where ρ is the multiplier on the capacity constraint (7). In this baseline version of the model

rising markups are the key mechanism generating a convex supply curve at the industry

level.

Since the idiosyncratic demand shock ω is the only source of heterogeneity, there exists a

threshold variety ω̄ above which firms’ production is constrained by their capacity. A lower

value of ω̄ implies that more firms are capacity constrained. We next show that ω̄ plays a

critical role for characterizing the degree to which the industry uses its productive capacity.

2.1.3 Industry capacity and utilization

Using equation (1) the industry’s output can be written as

Y (qt, ω̄t) = qt

(
(ω̄t)

− θ−1
θ

∫ ω̄t

0

ωdG (ω) +

∫ ∞
ω̄t

(ω)
1
θ dG (ω)

) θ
θ−1

. (9)

In particular, the industry’s output is only a function of the common idiosyncratic plant

capacity qt, and the threshold variety ω̄t.

An industry’s capacity is defined as the level of output that would be attainable if every

intermediate firm produced at full capacity, that is

Q (qt) := lim
ω̄t→0

Y (qt, ω̄t) .

Further, an industry’s capacity utilization rate is defined as the ratio of actual production

to full capacity production,

ut :=
Y (qt, ω̄t)

Q (qt)
. (10)

Note that this definition aligns well with its empirical counterpart. The Federal Reserve mea-
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sures capacity utilization at the industry level by dividing an index of industrial production,

i.e. a measure of gross output, by an estimate of capacity.5

Lemma 1. The utilization rate as defined in (10) has the following properties:

1. ut ∈ [0, 1] is only a function of ω̄t: ut = u (ω̄t)

2. limω̄→0 u (ω̄) = 1, limω̄→∞ u (ω̄) = 0

3. u′ < 0

Proof. See Appendix B.

The lemma highlights that the industry’s utilization rate is only a function of the threshold

value ω̄t above which firms produce at full capacity. The utilization rate approaches zero if

no firm produces at full capacity and it tends to one if all firms become capacity constrained.

Further, u is decreasing everywhere, and thus u is invertible and we can write ω̄t = ω̄ (ut).

We will make extensive use of this property, both for the remainder of the theoretical analysis

and when taking the model to the data. For the empirical analysis, this property is crucial

because ut is observable, while the threshold variety ω̄ is not.

2.1.4 The supply curve

One immediate application of the invertibility of u is that the industry’s price index (3) can

be written as

lnP Y
t =M (lnut) + ln (mct) . (11)

This (inverse) supply curve depends on the industry’s marginal costs mct, and the industry’s

log average markup M. This markup is only a function of the industry’s utilization rate.

Since variation in ut is observable, this equation is the starting point for our empirical

analysis. Note that it is convenient to define the markup as a function of the logarithm of

the utilization rate.
5There is a subtle difference between the model’s definition of utilization and the FRB’s definition, which we will

use for the estimation in Section 3. In the model, an industry’s utilization rate captures the fraction of constrained
firms. In the data, the utilization rate is constructed by dividing the industry’s total market value of production
by its total capacity and does not directly use information on the fraction of constrained plants. Statistically, this
difference is unimportant, because the fraction of constrained plants and the utilization rate as constructed by the
FRB are highly correlated (see Figure 1). In fact, we prefer to use the FRB’s measure for two reasons. First, it is
plausible that firms begin raising their markup when approaching capacity and not only when hitting the constraint.
Second, and as discussed in Morin and Stevens (2004), the uncorrected survey data exhibit a “cyclical bias”, which
the Federal Reserve removes when constructing their estimates.
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Proposition 1. M has the following properties:

1. M′ ≥ 0

2. limu→0M (lnu) = ln θ
θ−1

, limu→1M (lnu) =∞

3. limu→0M′ (lnu) = 0, limu→1M′ (lnu) =∞

4. Without further restrictions on G, the sign of M′′ is generally ambiguous.

Proof. See Appendix B.

BecauseM is increasing in utilization everywhere, the industry’s supply curve (11) is upward-

sloping. In contrast to standard models, the industry’s markup rises when production Yt

increases relative to capacity Qt. As utilization rises, more suppliers become capacity con-

strained and those that are constrained respond by raising their markups. As the utilization

rate approaches one, all suppliers become constrained andM and its derivative tend to infin-

ity. Conversely, when the utilization rate tends to zero, fewer and fewer suppliers are capacity

constrained. As a result M tends to ln θ
θ−1

and its derivative to zero. While M (lnu) is

convex everywhere for many choices of G, it is possible to construct examples in which it is

locally concave. Thus, whether M is convex in the relevant range of utilization remains an

empirical question, which we will address below. Figure 2 shows parameterized examples of

supply curve (11). In these examples, a lower demand elasticity θ and a lower variance of

the demand shock increase the curvature of the supply curve.

2.1.5 Estimating equation

Letting ∆ denote the first difference operator and adding industry subscripts i, linearization

of the supply curve (11) around its t− 1 values yields

∆ lnP Y
i,t =M′ (lnui,t−1) (∆ lnYi,t −∆ lnQi,t) + ∆ lnmci,t. (12)

We then approximate M′ (lnui,t−1) linearly around the industry-specific mean ln ūi so that

M′ (lnui,t−1) =M′ (ln ūi) +
M′′ (ln ūi)

ūi
· (ui,t−1 − ūi) .
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Figure 2: Supply curves

Notes: The figure provides illustrative examples of supply curve (11). The parameterization is
chosen as follows: G is log-normal with unit mean and variance V , marginal costs mc are set to 1.

Plugging this expression back into equation (12), and adding a constant and an error term,

gives our estimating equation for the structural form,

∆ lnP Y
i,t = α + βY ∆ lnYi,t + βY u∆ lnYi,t · (ui,t−1 − ui) + βu (ui,t−1 − ui) (13)

+βQ∆ lnQi,t + βQu∆ lnQi,t · (ui,t−1 − ui) + βmc∆ lnmci,t + εi,t.

The primary object of interest is the coefficient on the interaction term ∆ lnYi,t ·(ui,t−1 − ūi).
If this coefficient is positive, the supply curve is convex. To obtain the conventional interpre-

tation of the interaction terms, we always include a main effect of the demeaned utilization

rate ui,t−1 − ūi.
Relative to the ad-hoc estimation of supply curves, our model provides two key insights.

First, in this framework, the initial utilization rate is a sufficient statistic for the supply

elasticity. This feature allows us to estimate the curvature of the supply curve with an

interaction term ∆ lnYi,t · (ui,t−1 − ūi), rather than a squared term in output (∆ lnYi,t)
2. As

we will demonstrate in below, using the interaction term has a critical econometric advantage.

While we can find strong instruments for the interaction term, our instruments are weak for
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the squared term.

Second, unlike conventional specifications of supply curves, equation (13) includes the

change in capacity as an endogenous supply shifter. All else equal, greater production

capacity implies that fewer firms in the industry are constrained. This reduces the industry’s

price index and increases the industry’s output (see Proposition 2 below). Further, it is likely

that firms occasionally adjust capacity in response to new information they receive, including

to expected changes in future demand. Since such changes in capacity shift the supply curve,

they generate downward-biased slope and curvature estimates when subsumed into the error

term. Instruments that shift the demand curve are unlikely to address this bias. If an

instrument identifies persistent changes in demand, the industry will adjust its capacity in

response, and the supply curve will shift. In the next section, we will therefore include the

change in capacity as a control variable. We will also verify that the slope and curvature

estimates fall when we drop the change in capacity from the set of controls.

2.1.6 Discussion

Why do plants produce below capacity? In the model, plants produce below capacity in

equilibrium because they cannot sell more of their product at the desired price. This feature

is consistent with the data from the QSPC. For the time period from 2013q1 to 2018q2

for which public QSPC data is available, 78.4 percent of plant managers cite “Insufficient

orders” as the main reason for producing below capacity. The second most cited option

is chosen by 11.5 percent of respondents (“Insufficient supply of local labor force/skills”).

In this sense, the model is qualitatively consistent with the micro data. Details on these

qualitative survey responses are available in Appendix A.

Markups versus marginal costs In this simple model, the positive slope and curvature

of supply curve (11) is entirely driven by increasing markups, and the marginal cost term

mct is independent of the utilization rate (see equation (6)). In reality, this may not be the

case. As firms add additional shifts, for instance, overtime premia may raise the marginal

cost of production. When taking the model to the data, we therefore prefer to interpret

the dependence of M on the utilization rate as potentially reflecting both changes in firms’

markups as well as changes in their marginal costs. For the empirical analysis, the precise

mechanism generating the slope and curvature of the supply curve is immaterial. As long

as we correctly isolate changes in output that are due to demand shocks, our estimation

will correctly trace out the slope and curvature of the supply curve, regardless of whether
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the average markup, marginal costs, or both depend on the utilization rate.6 We note that

extensions of the model can accommodate increasing marginal costs. For instance, the model

with sticky prices in Appendix C features a notion of decreasing returns at the industry level.

Sticky prices In the presence of sticky prices, an additional mechanism generates slope

and curvature in the supply curve. When prices are sticky, the capacity constraint can

prevent firms from producing enough output to satisfy their demand at a given price—thus

leading to a notion of rationing. As we show in Appendix C, this can pose a problem

for estimating the supply curve since measured prices are no longer allocative. Instead, the

analogue of equation (11) has an unmeasured shadow price on the left hand side, which—due

to rationing—is increasing and convex in the utilization rate. Since the model’s prediction

for how quantities respond to demand shocks remains unchanged in the presence of sticky

prices, and is informative about the slope and curvature of this “shadow supply curve”, we

will also estimate the reduced form of the model.7 To obtain the reduced form, we need to

specify the demand side of the model and market clearing. We will do so momentarily.

Inventories Our model does not feature inventory accumulation. In practice, firms may

build up inventories when capacity utilization is low and draw down inventories when utiliza-

tion is high. By allowing firms to decouple production from sales, inventories could reduce the

role physical capacity limits play for constraining firms’ activities. This production smooth-

ing model of inventory behavior has been extensively tested in the data—and is typically

rejected. One simple test of the model is to compare the standard deviations of production

and sales. As Blinder (1986) shows, the volatility of detrended production is actually higher

than that of detrended sales, which is starkly at odds with production smoothing. We have

verified that production continues to be more volatile than sales in our data.8 It is thus not

clear that inventory accumulation reduces the role of capacity constraints.

Survey data also indicates that inventory accumulation does not eliminate the role of

capacity constraints. As noted above, the QSPC asks plant managers to report why their

plant produces below capacity. Only 5.5 percent of respondents reports “Sufficient inventory

of finished goods” as the primary reason. An additional 3.9 percent reports “Storage limi-

6Hence, our empirical findings below should not necessarily be interpreted as evidence for procyclical markups.
7We recognize the ambiguity of the term reduced form in the context of this paper. We will use the term

throughout to refer to the equilibrium quantity (and price) as a function of all demand and supply shifters.
8The standard deviation of the growth rate of production in constant prices is 0.093 in our data and that of sales

is 0.085. The difference is statistically significant at the 1 percent level. These statistics are calculated on the sample
described in Section 3.
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tations” (see Appendix A for details). This suggests that relatively few firms use episodes

of low capacity utilization to accumulate large inventories. Further, if inventories were accu-

mulated to smooth production, they should reduce the probability that capacity constraints

bind. However, as Figure 1 showed, capacity constraints bind for a large fraction of plants.

Note lastly that our estimating equation of the reduced form below includes changes

in inventories as a control variable. This allows us to interpret the estimated production

response to a demand shock as if inventories were held constant.

2.2 Demand, market clearing, and the reduced form

Since the reduced form expresses the equilibrium quantity as a function of observed and

unobserved demand and supply shifters, the estimation benefits from a detailed specification

of the demand side. This part of the model therefore contains sufficient detail so that

industry’s sales patterns match their analogues in the data.

2.2.1 Demand and market clearing

Each industry i sells its product both domestically and abroad. For domestic sales we dis-

tinguish sales to downstream industries in the form of intermediates, and final sales of con-

sumption and investment goods as well as government purchases. We assume for simplicity

that demand takes the constant elasticity form.

Domestic final demand Depending on whether industry i produces a consumption or

investment good, private domestic final demand takes the form

Ci,t = ωCi,tCt

(
P Y
i,t

PC
t

)−σ
, Ij,i,t = ωIj,i,tIj,t

(
P Y
i,t

P I
j,t

)−σ
.

Here, Ct are real personal consumption expenditures (PCE), and PC
t is the PCE price index.

Similarly, Ij,t is real investment into goods of category j (e.g. equipment investment), and P I
j,t

is the associated price index. The elasticity σ parameterizes the substitutability of varieties

within each of these aggregates. Unlike quantities Ct, Ij,t and prices PC
t , P I

j,t, the weights

ωCi,t and ωIj,i,t are unobserved demand shifters.

Intermediate demand Industry i further sells its output to other industries downstream.

Letting Mj,t denote the aggregate of industry j’s purchases of intermediates, and PM
j,t the
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price index, its demand for industry i’s output is

Mj,i,t = ωMj,i,tMj,t

(
P Y
i,t

PM
j,t

)−σ
.

Again, ωMj,i,t is an unobserved demand shock.

Foreign demand Exports abroad constitute an additional component of industry i’s de-

mand. Demand of destination d is given by

EXd,i,t = ωEX
d,i,tEXd,t

(
P Y,∗
d,i,t

PEX,∗
d,t

)−σ
.

Here, EXd,i,t denotes industry i’s exports to destination d, EXd,t is an observed demand

shifter, and prices with asterisks are measured in foreign currency units. The dollar-denominated

price for sales abroad is P Y
i,t = Ed,tP Y,∗

d,i,t, where Ed,t is the nominal exchange rate in U.S. dollars

per unit of foreign currency.

Market clearing Letting Y inv
i,t denote the stock of inventories at time t, IMi,t imports of

industry i’s good, and Gi,t sales to the government, market clearing for industry i requires

that

Y inv
i,t−1 + Yi,t + IMi,t =

∑
j

Mj,i,t + Ci,t +
∑
j

Ij,i,t +Gi,t +
∑
d

EXd,i,t + Y inv
i,t . (14)

2.2.2 The reduced form

We next define a number of variables that capture observable shifts in demand,

∆ξi,t =
∑
j

sMj,i,t−1∆ lnMj,t + sCi,t−1∆ lnCt +
∑
j

sIj,i,t−1∆ ln Ij,t + sGi,t−1∆ lnGi,t (15)

+
∑
d

sEX
d,i,t−1∆ lnEXd,t,

∆πi,t =
∑
j

sMj,i,t−1∆ lnPM
j,t + sCi,t−1∆ lnPC

t +
∑
j

sIj,i,t−1∆ lnP I
j,t (16)

+
∑
d

sEX
d,i,t−1∆ lnPEX,∗

d,t ,

∆ei,t =
∑
d

sEX
d,i,t−1∆ ln Ed,t. (17)
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In these expressions, sMj,i,t−1 denotes the sales share of industry i to downstream industry j,

and other sales shares are defined similarly. ∆ξi,t is an observable demand shifter, which

captures changes in the industry’s customer size. For instance, if industry j increases its

demand for intermediates Mj,t by one percent, industry i’s demand rises, ceteris paribus, by

sMj,i,t−1 percent. Similarly, a change in government expenditures ∆ lnGj,t affects industry i’s

demand.

∆πi,t reflects changes in demand due to changes in industry i’s customers’ prices. Con-

tinuing with the earlier example, industry i would, all else equal, experience an increase in

demand through substitution if downstream industry j’s materials price index PM
j,t increased.

∆ei,t is the change of industry i’s effective nominal exchange rate. Notice that ∆ei,t

varies by industry because existing trade linkages, as captured by sEXd,i,t−1, differentially expose

industries to fluctuations of a common set of currencies. A positive value of ∆ei,t reflects

a depreciation of the U.S. dollar relative to the relevant basket of foreign currencies. From

the viewpoint of industry i, which sets prices in U.S. dollars, such a depreciation leads to an

increase in demand through substitution towards the industry’s product.9

Having introduced the observable demand shifters ∆ξi,t, ∆πi,t, and ∆ei,t, we next solve

for the reduced form.

Proposition 2 (Reduced form). The industry’s quantity, linearized around the equilibrium

in t− 1, is

∆ lnYi,t = βξ (lnui,t−1) ∆ξi,t + βπ (lnui,t−1) ∆πi,t + βe (lnui,t−1) ∆ei,t

+ βQ (lnui,t−1) ∆ lnQi,t + βmc (lnui,t−1) ∆ lnmci,t (18)

+ βIM (lnui,t−1)
∆IMi,t

Yi,t−1

+ βinv (lnui,t−1)
∆Y inv

i,t −∆Y inv
i,t−1

Yi,t−1

+ ωYi,t.

All coefficients are only functions of the log utilization rate lnui,t−1 and βξ > 0, βπ > 0,

βe > 0, βmc < 0, βQ > 0, βIM < 0, and βinv > 0. Supply curve (11) is convex if and only

if β′ξ < 0 and β′e < 0. The error term is a weighted average of changes in the unobserved

demand shocks ωCi,t, ω
I
j,i,t, ω

M
j,i,t, and ωEXd,i,t.

Proof. See Appendix B.

The equilibrium quantity is a function of all demand and supply shifters, which—in this

linearized version of the model—are ∆ξi,t, ∆πi,t, ∆ei,t, ∆ lnQi,t, ∆ lnmci,t, ∆IMi,t/Yi,t−1,

9Note that definition (17) takes into account that some industries sell more of their goods abroad than others. If
industry k sells more of its output abroad than industry `, then

∑
d s

EX
d,k,t−1 >

∑
d s

EX
d,`,t−1.
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Figure 3: The utilization rate as a sufficient statistic

(
∆Y inv

i,t −∆Y inv
i,t−1

)
/Yi,t−1 as well as ωYi,t. The critical fact for our empirical analysis is that

all coefficients β depend only on log utilization rates lnui,t−1. This implies, for instance,

that the supply curve is convex if and only if the elasticity βξ (lnui,t−1) is decreasing in

the utilization rate, so that the quantity response to a demand shock is larger if the initial

utilization rate is low (see Figure 3). Detailed expressions for all coefficients in Proposition

2 are listed in Appendix B.

As in Section 2.1.5 we proceed with approximating the coefficients β linearly in lnui,t.

If supply curves are convex, the coefficients on the interaction terms ∆ξi,t · (ui,t−1 − ūi)
and ∆ei,t · (ui,t−1 − ūi) will be negative, since a higher initial utilization rate leads more

firms to raise markups and fewer to increase production after positive demand shocks. This

intuition is illustrated in Figure (3). Before turning to the estimation, we briefly discuss a

measurement problem.

2.3 Measurement of marginal costs

In practice, estimation of the structural and the reduced form is complicated by the fact

that marginal costs are not observed. Further, subsuming marginal costs into the error term

has the two undesirable implications. First, it can lead to an omitted variable bias if the
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instrument is correlated with marginal costs. Second, doing so raises the variance of the

estimates. It is therefore common to proxy for marginal costs with unit variable costs, which

are observed. Unfortunately, this approach can also lead to biases.

In our framework industry’s marginal costs differ from the industry’s unit variable cost.

This feature follows from the non-linear aggregation across varieties with aggregator (1).

Further, the wedge between unit variable cost and marginal cost is a function of the uti-

lization rate, that is, lnmci,t = ln UVCi,t + Ω (lnui,t), for some function Ω, where UVCi,t =(∫ 1

0
pvt vt (j) dj

)
/Yi,t are unit variable costs. Substituting for marginal costs in equation (11)

yields

lnP Y
i,t =M (lnui,t) + Ω (lnui,t) + ln UVCi,t.

This expression makes clear that if unit variable costs are held constant instead of marginal

costs, variation in lnui,t does not identifyM′, butM′+Ω′, thus leading to a biased estimate.

An analogous argument applies to M′′. The following proposition signs these biases.

Proposition 3. Ω′ ≤ 0 and Ω′′ ≤ 0.

Proof. See Appendix B.

Hence, when marginal costs are proxied for with unit variable costs, estimates of the

slope and curvature both exhibit a downward bias. Our estimates below should therefore

be interpreted as conservative. We have verified numerically that these biases are small for

reasonable calibrations, in the order of 5 to 10 percent.

3 Empirical analysis

In this section we test empirically whether the data support the hypothesis that supply

curves are convex at the industry level.

3.1 Data

3.1.1 Industrial production, capacity and utilization

Central to the empirical analysis are the FRB’s measures of capacity and utilization. To

obtain series for utilization, the FRB first constructs indexes of industrial production and

capacity. The industrial production series are indexes of real gross output. Capacity is

defined as the sustainable maximum level of output or, “the greatest level of output a plant

[or industry] can maintain within the framework of a realistic work schedule after factoring
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Figure 4: Industry-demeaned capacity utilization rates

Notes: The figure plots the mean, minimum, maximum and interquartile range of the industry-demeaned
capacity utilization series of all 21 3-digit NAICS manufacturing industries, constructed using the FRB capacity
utilization data and industrial production. Shaded areas represent NBER recessions.

in normal downtime and assuming sufficient availability of inputs to operate the capital in

place”.10 The FRB’s measure of capacity is primarily based on the Survey of Plant Capacity

(prior to 2007) and the Quarterly Survey of Plant Capacity (from 2007 onwards), but also

uses information from the Annual Survey of Manufacturers.11 As in our model, utilization

is then calculated by dividing industrial production by capacity (see equation (10)).

Figure 4 illustrates the industry-demeaned capacity utilization rates of the 21 3-digit

NAICS manufacturing industries in our sample, which enter our estimating equation (13)

on the right hand side. As is clear from the figure, these utilization rates display significant

variation both in the cross-section and over time. Capacity utilization is strongly procyclical

and experiences a mild downward trend towards the end of the sample.

10See https://www.federalreserve.gov/releases/g17/Meth/MethCap.htm. A consequence of this definition is
that utilization can exceed unity for short periods of time. In practice, this rarely happens. In our 3-digt NAICS
sample from 1972 to 2011 only one industry (Primary Metal Manufacturing, NAICS 331) exceeded a utilization rate
of 100 and only for two months (December of 1973 and January of 1974).

11For further details on the data sources and methodology underlying of the capacity indexes, see e.g. Gilbert,
Morin, and Raddock (2000) and https://www.federalreserve.gov/releases/g17/About.htm.
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3.1.2 Additional data sources

We take data on prices, sales, input costs, and inventories from the NBER CES Manufactur-

ing Industry Database. These data are constructed mainly from sources of the U.S. Census

Bureau, the Bureau of Economic Analysis (BEA), and the Bureau of Labor Statistics (BLS)

and provide a detailed picture of the U.S. manufacturing sector. For a description of this

database, see Bartelsman and Gray (1996) and Becker, Gray, and Marvakov (2016). To ob-

tain our measure of unit variable costs, we sum production worker wages, costs of materials,

and expenditures on energy and then divide by real gross output.

Our preferred measure of prices is a “deflator” constructed by dividing the nominal value

of production (from the NBER CES) by the industrial production index (from the FRB).

Relative to the price measure from the NBER CES database, this measure is consistent with

the quantity measure (industrial production). We also show results using the price index

from the NBER CES database. The results are very similar.

We calculate the sales shares sj,i,t from the Use Tables of the BEA’s Input-Output Ac-

counts. For the sales shares to foreign countries, we complement these data with data on

U.S. exports from the U.S. Census available from Peter Schott’s website. The construction

of ∆ξi,t and ∆πi,t, as given in equations (15) and (16), further requires data on quantity and

price indexes. We use data from the following sources. First, for domestic sales of final goods

we use data on personal consumption expenditures, equipment investment, and nonresiden-

tial fixed investment from the BEA’s National Income and Product Accounts. Second, for

intermediate sales to downstream industries, we use quantity and price indexes of industries’

material use from the BEA’s Industry Accounts. Third, for foreign quantity and price in-

dexes we use real GDP and the GDP deflator in local currency from the United Nation’s

(UN) Statistics Division. The nominal exchange rate series for the calculation of ∆ei,t (equa-

tion (17)) also come from the UN’s Statistics Division. To guarantee high data quality, we

limit ourselves to countries that joined the Organisation for Economic Co-operation and De-

velopment (OECD) prior to year 2000 when constructing ∆ξi,t, ∆πi,t, and ∆ei,t. Our sample

is annual, includes all 21 3-digit NAICS manufacturing industries, and ranges from 1972 to

2011. Details on the data are available in Appendix D.

3.2 Instruments and identification

Estimation of the slope and curvature of the supply curve requires an instrumental variable,

which shifts the demand curve and is excluded from the supply curve. When estimating
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the structural form (13), the instrument addresses the endogeneity of ∆ lnYi,t. Since we also

estimate the reduced form, we use the same instrument for the supply shifter ∆ξi,t as defined

in equation (15).

We consider three different instruments in our empirical analysis. In all cases, the identi-

fication assumption for the structural form requires that conditional on the control variables,

the instrument is uncorrelated with the unobserved supply shifters. Whether this assump-

tion is broadly satisfied depends on the instrument, the controls, and the unobserved supply

shocks. The latter should be thought of as resulting either from model misspecification or

measurement error in the data, since our estimating equation (12) does not have a structural

error. We emphasize that all instruments deliver comparable results.12

3.2.1 World import demand

The first instrument uses variation in foreign demand to estimate the supply curve (see, e.g.

Hummels et al., 2014). We define the World Import Demand instrument as a weighted sum

of changes in foreign output,

instWID
i,t =

∑
d

sEX
i,d,t−1∆ ln GDPd,t. (19)

To better understand the identifying variation, we decompose the change in foreign GDP into

a common and a destination-specific component, ∆ ln GDPd,t = ∆ ln GDPcom
t +∆ ln GDPspec

d,t .

Letting s̄EX
d,t−1 denote the average export share of all manufacturing industries to destination

d, the variation of the World Import Demand instrument can be split into three components,

instWID
i,t = ∆ ln GDPcom

t

∑
d

sEX
d,i,t−1 +

∑
d

s̄EX
d,t−1∆ ln GDPspec

d,t (20)

+
∑
d

(
sEX
d,i,t−1 − s̄EX

d,t−1

)
∆ ln GDPspec

d,t .

The first term on the right hand side captures variation common to all foreign coun-

tries. Since this variation reflects the “global” business cycle (e.g. a global supply shock)

and could be correlated with unobserved supply shocks, we control for it by interacting a

time fixed effect with the foreign sales share of industry i,
∑

d s
EX
d,i,t−1. The second term

on the right hand side weighs destination-specific changes in GDP with the average ex-

12We have also considered a fourth instrument based on defense spending. Since the first stage of this instrument
is uniformly weak and the estimates noisy, we do not report these results.
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port share. Since our specifications will include time fixed effects—in addition to the time

fixed effects interacted with the foreign sales share—this variation will be purged as well.

Hence, the identifying variation of this instrument comes entirely from the third term,∑
d

(
sEX
d,i,t−1 − s̄EX

d,t−1

)
∆ ln GDPspec

d,t , reflecting destination-specific changes in GDP, which are

weighted with the deviations of industry sales shares from the average. The identification

assumption holds that this term is uncorrelated with industries’ unobserved supply shocks.

3.2.2 Shea’s instrument

Shea (1993a; 1993b) argues that output of industry j is a good instrument for output of

industry i if (1) industry j demands a large share of i’s output and (2) materials from i

constitute a small share of j’s costs. The first criterion aims at generating a high degree of

relevance, while the second implies that supply shocks in industry i are unlikely to have large

effects on j’s output. In a simple model with input-output linkages Shea (1993b) demon-

strates that the two criteria contain the degree of endogeneity, and that supply elasticities

can be estimated with relatively small biases.

We extend Shea’s idea by considering the possibility that shocks to industry j may affect

production in industry i not only through an effect on demand. If industry i uses j’s output

in production, a supply shock in industry j will generally affect production in industry i

also through a change in costs. To prevent this cost shock from confounding our results, we

require in addition to (1) and (2) that the relationship between i and j is unidirectional.

That is, we necessitate that (3) i’s cost share from j is small.

We construct an instrument for industry i’s output based on its sales to a select group

of downstream industries, which satisfy criteria (1), (2), and (3). Recall that sMj,i,t denotes

industry i’s sales share to industry j. Our version of Shea’s instrument is then

instShea
i,t =

∑
j

sMj,i,t−11{(1), (2), (3) hold}∆ lnMj,t. (21)

The indicator function 1{(1), (2), (3) hold} selects downstream industries j which satisfy

our exogeneity criteria. We provide details on the instrument in Appendix E, but note here

that, as in Shea (1993a,b), we consider both direct and indirect linkages when measuring

sales and cost shares.

22



3.2.3 The effective exchange rate

We further use a purified change in an industry’s effective exchange rate (equation (17))

to identify the slope and curvature of the supply curve. Holding costs constant, a dollar

depreciation relative to the relevant basket of foreign currencies makes U.S.-produced goods

cheaper for foreign customers. If firms in the U.S. set prices in U.S. dollars (as 97 percent

of U.S. exporters do, see Gopinath and Rigobon, 2008), such depreciations materialize as

outward shifts in demand. A one percent depreciation of the effective exchange rate raises

demand by the value of the demand elasticity (σ in Section 2.2).

Analogous to the World Import Demand instrument, we purge changes in the effec-

tive exchange rate ∆ei,t by decomposing the nominal exchange rate into a common and

destination-specific component ∆ ln Ed,t = ∆ ln Ecomt + ∆ ln Especd,t . This decomposition can

be implemented by regressing the observed changes in exchange rates on a set of time fixed

effects. In our sample, the R2 of this regression is 28.3 percent, implying that 28.3 percent

of changes in the dollar value of foreign currencies are common to all foreign currencies.

Similar to the World Import Demand instrument in equation (20), we decompose the

effective exchange rate into three parts,

∆ei,t = ∆ ln Ecom
t

∑
d

sEX
d,i,t−1 +

∑
d

s̄EX
d,t−1∆ ln E spec

d,t +
∑
d

(
sEX
d,i,t−1 − s̄EX

d,t−1

)
∆ ln E spec

d,t . (22)

When the specification includes a time fixed effect and a time fixed effect interacted with

the foreign sales share, the identifying variation of the exchange rate instrument is limited to

destination-specific exchange rate changes, which are weighted with the deviations of sales

shares from the average (the third term on the right hand side).

As Amiti, Itskhoki, and Konings (2014) emphasize, most exporters also import and hence

dollar depreciations raise the cost of intermediate inputs. To prevent this channel from

confounding our interpretation of dollar depreciations as demand shocks, we will control for

unit variable costs as suggested by the model.

3.3 Results

We begin with presenting the estimates of the structural form and subsequently turn to the

estimates of the reduced form.
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3.3.1 Estimates of the structural form

Linear model Table 1 shows the estimates of the supply curve when we impose linearity.

Specification (1) begins with Ordinary Least Squares (OLS) estimates of the inverse supply

elasticity without controls. As expected, the slope estimate is insignificantly different from

zero since unobserved supply shocks confound the estimation. For instance, a positive supply

shock lowers prices while raising quantities, thereby biasing the slope estimate downward.

When we add the change in unit variable costs in specification (2), the R-squared rises

to 87 percent and the estimate of the slope coefficient becomes positive and significant.

Controlling for unit variable costs partially addresses the simultaneity problem by removing

a large fraction of the confounding variation from the error term. Specification (3) further

adds the change in capacity to the equation. As predicted by the model, the coefficient is

negative. All else equal, industries with greater capacity charge lower prices. That the slope

coefficient rises to 0.13 suggests that the capacity control successfully purges supply shifts

from the error term.

In specification (4) we also add industry fixed effects, time fixed effects and time fixed

effects interacted with the industry’s export share. The estimate of the inverse supply

elasticity rises to 0.17. When we simultaneously use the World Import Demand instrument,

Shea’s instrument, and the effective exchange rate instrument in specification (5), we obtain

a slope estimate of 0.23. This estimate is greater than the OLS estimate, suggesting that

despite the controls, the error term in specifications (4) and (5) might still contain supply

disturbances. The first stage F-statistic is 20.03. Hansen’s overidentification test fails to

reject the null of all instruments being valid (p = 0.441).

Baseline estimates We next relax the assumption of linearity and allow the inverse supply

elasticity to depend on last period’s utilization rate as predicted by the model. Table 2

specification (1) shows the OLS estimates. The main effect is 0.17 and the interaction term

is negative and insignificant. We next use the World Import Demand instrument, Shea’s

instrument, and the effective exchange rate to instrument for the main effect (as in specifica-

tion (5) of Table 1), and additionally use the World Import Demand instrument interacted

with the demeaned utilization rate ui,t−1 − ūi for the interaction term. As specification (2)

shows, the interaction term becomes positive and significant. That is, the slope of the supply

curve is increasing in the initial capacity utilization rate, implying that supply curves are

convex.

Little changes when we alternatively instrument for the interaction term with Shea’s
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Table 1: Estimates of the linear model

Dependent variable: ∆ lnPY
i,t

Estimator OLS OLS OLS OLS 2SLS

Instruments - - - - WID, Shea,
∆ei,t

(1) (2) (3) (4) (5)

∆ lnYi,t -0.09 0.08 0.13 0.17 0.23
(0.08) (0.02) (0.02) (0.02) (0.10)

∆ lnQi,t -0.16 -0.12 -0.16
(0.03) (0.04) (0.08)

∆ ln UVCi,t 0.91 0.90 0.89 0.90
(0.02) (0.02) (0.03) (0.03)

R-squared 0.010 0.873 0.880 0.910 0.908

Fixed Effects no no no yes yes

First stage and instrument diagnostics

F main effect 20.03

Hansen J (p-value) 0.441

Notes: The estimates are based on equation (13). Driscoll-Kraay standard errors are reported in
parentheses.

instrument interacted with ui,t−1 − ūi as shown in specification (3). The estimate of the

inverse supply elasticity also changes little when we use the effective exchange rate instead

in specification (4), although this instrument is potentially weak. When we use all three

instruments interacted with the demeaned utilization rate, the coefficient on the interaction

term is 1.13 and precisely estimated. These estimates are reported in specification (5).

We report the Sanderson and Windmeijer (2016) conditional (SW) F-statistic in addition

to the standard F-statistics and the Cragg-Donald Wald F statistic in the bottom panel of

Table 2. These diagnostics suggest that the effective exchange rate instrument is potentially

weak. When we drop it from our set of instruments for both the main effect and the interac-

tion term, the estimated coefficients both remain positive and highly significant (specification

(6)). Under the identification assumption that conditional on controls, the WID and Shea’s

instrument are orthogonal to unobserved supply shocks, supply curves at the industry level

are increasing and convex. Further, all diagnostics suggest that this set of instruments is
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Table 2: Estimates of the non-linear model

Dependent variable: ∆ lnPY
i,t

Estimator OLS 2SLS 2SLS 2SLS 2SLS 2SLS

Instrument(s):

Main effect WID, Shea, ∆ei,t WID, Shea

Interaction (· (ui,t−1 − ūi)) WID Shea ∆ei,t all WID, Shea

(1) (2) (3) (4) (5) (6)

∆ lnYi,t 0.17 0.27 0.28 0.26 0.27 0.26
(0.02) (0.09) (0.09) (0.10) (0.08) (0.09)

∆ lnYi,t · (ui,t−1 − ūi) -0.33 0.97 1.36 0.92 1.13 1.13
(0.24) (0.31) (0.72) (0.66) (0.33) (0.33)

ui,t−1 − ūi 0.01 0.03 0.03 0.03 0.03 0.03
(0.02) (0.05) (0.05) (0.05) (0.05) (0.05)

∆ lnQi,t -0.11 -0.23 -0.24 -0.21 -0.22 -0.21
(0.04) (0.11) (0.11) (0.12) (0.10) (0.11)

∆ lnQi,t · (ui,t−1 − ūi) -0.32 -1.13 -1.35 -1.09 -1.21 -1.20
(0.43) (0.42) (0.50) (0.43) (0.42) (0.42)

∆ ln UVCi,t 0.89 0.89 0.89 0.89 0.89 0.89
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

R-squared 0.910 0.902 0.897 0.903 0.901 0.901

Fixed Effects yes yes yes yes yes yes

First stage and instrument diagnostics†

F Main effect 10.84 19.23 12.05 18.00 17.27

F Interaction 16.84 6.43 3.82 65.87 28.25

Cragg-Donald Wald F 9.08 7.76 6.67 6.22 9.02

SW F Main effect 31.30 20.21 25.65 17.97 31.42

SW F Interaction 33.76 16.86 6.01 25.10 33.52

Hansen J (p-value) 0.409 0.380 0.407 0.719 0.531

Notes: The estimates are based on equation (13). Driscoll-Kraay standard errors are reported in parentheses.
†: F is the standard F-statistic. For details on the Cragg-Donald statistic, see Cragg and Donald (1993) and
Stock and Yogo (2002). SW F is the Sanderson and Windmeijer (2016) conditional F-statistic.

strong.13

In Appendix F.1 we report results from an ad-hoc estimation of the supply curve. In

particular, we regress ∆ lnP Y
i,t on a linear and a squared term in ∆ lnYi,t, using the WID and

13Stock and Yogo (2002) tabulate critical values for weak IV tests based on the Cragg-Donald statistic. In
specification (6) of Table 2, a value of 9.02 implies that the maximum bias of the 2SLS is less than 10 percent of the
bias of the OLS estimator.

26



Shea’s instrument as well as their squares to address simultaneity. As Appendix Table F1

shows, the first stage for (∆ lnYi,t)
2 is always weak (F < 3). This contrasts to the first stage

of the interaction term as reported in Table 2, and highlights the empirical usefulness of the

model: With our instruments, it is not possible to estimate the curvature of the supply curve

with a squared term. We can only estimate the curvature, when imposing the structure of

the model.

Robustness As discussed in Section 2.3, proxying marginal costs with unit variable costs

may lead to downward-biased estimates of the slope and curvature in our model. Consistent

with this prediction and as shown in Table 3 specification (1), the estimates of both increase,

when we instead subsume marginal cost changes into the error term. While these estimates

likely exhibit less bias, the error bands also increase substantially. We therefore prefer to

include unit variable costs as a control and to interpret our estimates as conservative.

In specifications (2) and (3) of Table 3 we examine the implications of dropping the change

in capacity and its interaction with the utilization rate from the regression. Consistent with

the model prediction that changes in capacity shift the supply curve, the estimates of the

slope and curvature fall (relative to specification (6) of Table 2). Hence, the change in capac-

ity is a useful control variable—even when the supply curve is estimated with instrumental

variables. Note also that estimating equation (12) suggests that the slope coefficient is the

negative of the coefficient on capacity (and similarly for the interaction term). Inspection of

the estimates in specification (6) of Table 2 suggests that these cross-coefficient restrictions

broadly hold.

We next add a number of additional controls to the equation. Specification (4) of Table

3 adds the percent change of the industry’s price from t to t+ 1. Extensions of the model to

include sticky prices (see Appendix C) suggest that this variable should capture the firm’s

expectations about changes in future marginal costs. Adding this control has virtually no

effect on the estimates of slope and curvature. Further, the coefficient on future price changes

is close to zero and tightly estimated, suggesting that producer prices are flexible over a year-

long horizon.14 In specification (5) we include an interaction term of changes in unit variable

costs with the utilization rate. This variable is positive and highly significant, suggesting

that pass-through of cost shocks into prices is stronger when capacity utilization is high.

The slope and curvature of the supply curve change little. To better control for industries’

14A second diagnostic that suggests that producer prices are quite flexible when differenced over one year is the
high pass-through of unit variable costs changes into price changes. In models with sticky prices, this pass-through
is substantially less than one. Our estimates suggest that it is close to 0.9.
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“initial position” on their supply curve, specification (6) includes the square of the lagged

utilization rate as a control. Doing so raises both the slope and the curvature estimates

somewhat. In specification (7), we include ∆πi,t as defined in equation (16) to capture

unobserved inflationary pressure downstream—with very little effect on the estimates of

interest. Specification (8) includes all controls simultaneously. In this preferred specification

the inverse supply elasticity is 0.33 and the interaction term with the utilization rate is 1.51.

One potential concern with the estimates is that there is a purely mechanical correlation

between the price change on the left hand side and the change in unit variable costs on

the right hand side. In all specifications this far, the price index has been constructed as

an implicit deflator by dividing the market value of production by the index of industrial

production, and the unit variable cost measure on the right hand side was constructed

by dividing variable costs by the index of industrial production. The common division by

industrial production could therefore induce a purely mechanical correlation. As specification

(1) in Table 3 showed, the slope and curvature estimates are not driven by this correlation

and increase when unit variable costs are dropped from the regression. As an additional

check, we use the price index from the NBER-CES manufacturing industry database instead

of our preferred implicit price measure on the left hand side. The estimates, reported in

specification (9) of Table 3, are very similar.15

15Also note that not even the large coefficient and high R-squared reported in Table 1 specification (2) is driven
by this mechanical correlation. When we use instead the price index from the NBER-CES manufacturing industry
database, a regression of the percent change in prices on the percent change in quantities and the percent change in
unit variable costs gives a coefficient of 0.80 on unit variable costs and the R-squared is 0.86.
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Table 3: Robustness of the non-linear model

Dependent variable: ∆ lnPYi,t

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆ lnYi,t 0.69 0.24 0.22 0.26 0.26 0.35 0.26 0.33 0.28
(0.28) (0.09) (0.07) (0.09) (0.08) (0.10) (0.10) (0.11) (0.06)

∆ lnYi,t · (ui,t−1 − ūi) 1.85 0.95 0.82 1.13 0.99 1.70 1.21 1.51 1.15
(0.91) (0.32) (0.27) (0.34) (0.31) (0.44) (0.34) (0.46) (0.23)

ui,t−1 − ūi 0.44 0.02 -0.02 0.03 0.00 0.09 0.03 0.06 0.00
(0.14) (0.04) (0.02) (0.05) (0.04) (0.05) (0.05) (0.05) (0.02)

∆ lnQi,t -0.80 -0.19 -0.21 -0.20 -0.31 -0.22 -0.28 -0.17
(0.32) (0.11) (0.11) (0.10) (0.11) (0.12) (0.12) (0.06)

∆ lnQi,t · (ui,t−1 − ūi) -2.29 -1.21 -1.03 -2.90 -1.38 -2.44 -1.75
(1.13) (0.43) (0.41) (0.68) (0.41) (0.85) (0.54)

∆ ln UVCi,t 0.89 0.89 0.89 0.90 0.90 0.85 0.87 0.92
(0.03) (0.03) (0.03) (0.02) (0.03) (0.03) (0.03) (0.08)

∆ lnPYi,t+1 0.00 0.01 -0.11
(0.02) (0.02) (0.06)

∆ ln UVCi,t · (ui,t−1 − ūi) 1.13 0.74 1.72
(0.29) (0.35) (0.47)

(ui,t−1 − ūi)2 1.25 0.90 0.55
(0.30) (0.33) (0.23)

∆πi,t 0.27 0.25 -0.09
(0.09) (0.10) (0.14)

R-squared 0.469 0.902 0.901 0.901 0.907 0.896 0.902 0.903 0.855

Fixed Effects yes yes yes yes yes yes yes yes yes

First stage and instrument diagnostics

F Main effect 16.42 17.14 18.10 16.12 17.51 16.20 17.51 15.76 11.14

F Interaction 27.80 28.97 31.58 27.58 23.72 10.73 23.55 8.70 15.96

Cragg-Donald Wald F 8.68 9.29 9.97 8.66 9.09 7.33 9.03 7.23 5.06

SW F Main effect 29.08 33.25 21.80 28.03 26.93 15.79 31.90 14.01 15.81

SW F Interaction 31.64 38.72 35.35 30.66 29.72 20.03 30.73 16.30 34.85

Hansen J (p-value) 0.297 0.484 0.484 0.529 0.748 0.731 0.524 0.629 0.348

Notes: The estimates are based on equation (13). Driscoll-Kraay standard errors are reported in parentheses.
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Figure 5: Non-parametric estimates

Notes: The bins of the utilization rate ui,t−1 − ūi are 1) below -0.06 (approximately the 15th percentile),
2) between -0.06 and 0, 3) between 0 and 0.06, and 4) above 0.06 (approximately the 85th percentile). The
parametric estimates are based on specification (8) of Table (3).

Nonparametric estimates Figure 5 Panel A shows non-parametric estimates of the inverse

supply elasticity. We allow the slope coefficient to differ depending on whether the utilization

rate of the previous period (ui,t−1− ūi) was below -0.06 (approximately the 15th percentile),

between -0.06 and 0, between 0 and 0.06, and above 0.06 (approximately the 85th percentile).

The non-parametric estimates align well with those based on the interaction term.

The figure also demonstrates that at low levels of the utilization rate, the estimated

inverse supply elasticity is statistically indistinguishable from zero. This contrasts to a value

of 0.48 at the 95th percentile (ui,t−1 − ūi = 0.10), which is highly statistically significant.

The non-parametric estimate for the highest utilization rates suggests an even larger value

of 0.61. Comparing industries with utilization rates below the 15th and above the 85th

percentile, the non-parametric estimates imply that a one percent outward shift in demand

raises prices by approximately 0.1 percent in the former and by 0.6 percent in the latter

case (a sixfold difference). Panel B of Figure 5 plots the quadratic and the partially-linear

approximation of the supply curve.

3.3.2 Estimates of the reduced form

We next turn to the estimates of the reduced form (equation 18). To conserve on space we

discuss the linear estimates of the reduced form in Appendix F.2.
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Specification (1) in Table 4 presents OLS estimates of the non-linear reduced form. This

specification is based on equation (18) and all coefficients are allowed to depend linearly on

the utilization rate. The coefficient on the interaction term ∆ξi,t · (ui,t−1 − ūi) is negative

and significant. Similarly, the interaction term associated with the exchange rate ∆ei,t ·
(ui,t−1 − ūi) is negative and significant. That demand shocks stimulate production more

when the utilization rate is initially low implies that supply curves are convex (Proposition

2).

The interaction term ∆ξi,t · (ui,t−1 − ūi) becomes more negative when we estimate the

specification by 2SLS. With the WID instrument (specification (2)), the coefficient becomes

-4.29, and with Shea’s instrument it becomes -2.74 (specification (3)). When we combine

both instrument in specification (4), the coefficient is -3.38. Hence, the initial utilization rate

robustly determines how much production responds to demand shocks. The instruments are

uniformly strong. In Appendix F.2 we discuss robustness of the reduced form estimates and

in Appendix F.3 we show that the estimates of the structural and reduced forms are broadly

consistent with one another.

Nonparametric estimates Figure 6 plots non-parametric estimates that allow for differ-

ent production responses depending on whether the initial utilization rate is below -0.06 ,

between -0.06 and 0, between 0 and 0.06, and above 0.06. These estimates align well with

those based on the interaction term. As Panel A demonstrates, production responds by

approximately twice as much when the initial utilization rate is below the fifth percentile

(-0.13) than when it is above the 95th percentile (0.10). The exchange rate response drops to

zero at high utilization rates (Panel B), although we note that the main effect is imprecisely

estimated (Table 4).

Summary of results In summary, our estimates indicate a sizable degree of curvature of

the supply curve. Price responses to increases in demand are much larger at high levels

of capacity utilization, and production responses smaller. The evidence for convex supply

curves is robust across specifications and independent of whether we estimate the structural

or the reduced form.

31



Table 4: Estimates of the non-linear reduced form

Dependent variable: ∆ lnYi,t

Estimator OLS 2SLS 2SLS 2SLS

Instrument(s):

Main effect WID, Shea

Interaction (· (ui,t−1 − ūi)) WID Shea WID, Shea

(1) (2) (3) (4)

∆ξi,t 0.80 0.82 0.82 0.82
(0.10) (0.13) (0.12) (0.12)

∆ξi,t · (ui,t−1 − ūi) -1.79 -4.29 -2.74 -3.38
(0.65) (0.96) (1.55) (0.92)

∆ei,t 1.19 1.01 1.10 1.06
(0.95) (0.88) (0.85) (0.86)

∆ei,t · (ui,t−1 − ūi) -21.29 -21.00 -21.25 -21.14
(4.72) (5.00) (4.56) (4.70)

(ui,t−1 − ūi) -0.28 -0.24 -0.26 -0.25
(0.06) (0.04) (0.05) (0.04)

R-squared 0.832 0.827 0.831 0.830

Other controls yes yes yes yes

Fixed Effects yes yes yes yes

First stage and instrument diagnostics

F Main effect 185.62 193.54 150.03

F Interaction 13.42 14.31 17.26

Cragg-Donald Wald F 29.46 42.15 38.19

SW F Main effect 269.92 304.22 208.90

SW F Interaction 20.00 22.07 23.80

Hansen J (p-value) 0.842 0.821 0.748

Notes: The estimates are based on equation (13). Driscoll-Kraay standard errors are reported in parentheses.

4 General equilibrium applications

The objective of this section is to study the aggregate implications of supply curves that

are convex at the industry level. To do so, we embed a variant of the partial equilibrium

framework from Section 2 in a general equilibrium environment with input-output linkages.

Although convex supply curves have implications in a variety of other contexts, we focus for

concreteness on the following three applications. First, we study the state-dependence of the
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Figure 6: Non-parametric estimates of the reduced form

Notes: The bins of the utilization rate ui,t−1 − ūi are 1) below -0.06 (approximately the 15th percentile),
2) between -0.06 and 0, 3) between 0 and 0.06, and 4) above 0.06 (approximately the 85th percentile). The
parametric estimates are based on specification (6) of Table F3.

aggregate government expenditure multiplier. Second, we study the mapping from output

(Y ) to real marginal costs (mc/P Y ), an integral component of the slope of the Phillips curve.

This mapping becomes convex in our framework. Third, we calculate the welfare costs of

business cycles in our model. These are larger than in standard frameworks such as Lucas

(1987).

4.1 Model setup and calibration

At the heart of the model is a set of industries, which jointly form a nonlinear production

network. Since our estimates in Section 3 are based on a sample of manufacturing industries,

it is not clear to what extent they are valid for non-manufacturing industries. We therefore

model two different types of industries. In some industries firms produce subject to a capacity

constraint. We will refer to these industries as capacity industries. The remaining non-

capacity industries have a representative firm operating a standard neoclassical production

technology with constant returns to scale. To focus our attention on the implications of

convex supply curves, the remainder of the model is standard. In contrast to Section 2.2,

the economy is closed.
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Model setup A representative household consumes and supplies labor to maximize utility

subject to her budget constraint. Labor is specific to each industry. The household purchases

a consumption bundle composed of the goods and services produced by 71 industries. Some

of these industries exhibit a notion of capacity while others do not. Capacity industries are

modelled similar to those in Section 2, but with constant productivity and a fixed capital

stock. Non-capacity industries use a technology that is linear in variable inputs. The variable

input bundle includes labor and a bundle of materials, where the relative weights on labor

and materials from other industries are calibrated to the data. The business cycle is driven

by a shock that scales the marginal utility of consumption, which we interpret as a demand

shock. We provide a detailed description of the model in Appendix G.

Calibration We briefly highlight key elements of the calibration. Of the 71 industries in

the model, our benchmark calibration assumes that 45 exhibit a concept of capacity and the

remaining 26 do not. This classification is based on whether an industry’s output is likely

to be constrained by capacity when demand increases while the capital stock is held fixed.

For instance, we classify construction as a capacity industry, but not retail or wholesale

industries. We document our choices in Appendix G.3. Elasticity θ and the distribution

of idiosyncratic demand shocks (see Section 2) are calibrated so that the supply curve of

capacity industries matches our preferred estimate in the data. As Appendix Figure G1

shows, the fit is almost exact. We further choose the weights in industries’ production

functions so that their cost shares match those in the BEA’s Use Tables. Two additional

parameters are important for our results. First, we choose a Frisch labor supply elasticity of

2. This value is greater than most micro estimates, but a common choice in DSGE models

and in line with the argument in Hall (2009). Second, based on a number of recent estimates,

we assume that the substitutability of inputs is very limited in the short run and set the

elasticities of substitution to 0.05 in the benchmark calibration. We discuss this choice

momentarily. Details on the calibration are available in Appendix G.3.

Related literature Our framework is related to prior work studying the transmission of

shocks in non-linear production networks. Baqaee and Farhi (2019) emphasize the aggregate

implications of nonlinearities in production networks for applications such as the asymmetric

distribution of GDP growth rates and the welfare costs of business cycles.16 Several other

papers study the role of sectoral shocks for the aggregate business cycle, including Bigio and

16Note that Hulten’s (1978) theorem in its original form does not hold in our framework, because labor supply is
endogenous and firms set time-varying markups.
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La’O (2016) and Huo, Levchenko, and Pandalai-Nayar (2019). Our approach differs from this

literature, because we explicitly model capacity industries and carefully estimate them in the

data. Further, we are interested in aggregate demand shocks rather than industry-specific

productivity distortions.

4.2 Mechanisms that affect aggregate curvature

Three mechanisms determine the overall curvature of the aggregate supply curve and hence

aggregate outcomes. First, it is known that markups accumulate in production networks.

If one industry sells its output to another industry before the good is sold to the final

consumer, the price that the consumer pays includes the markups from both industries. Put

differently, net markups are additive in production networks. In the context of our model,

this additivity of markups constitutes a powerful mechanism that leads the aggregate supply

curve to exhibit greater slope and curvature than industries’ supply curves.

On the other hand, substitution attenuates the aggregate slope and curvature relative to

the industry level. If the relative price of an industry rises, firms and households substitute

away from its product. While substitution is likely important for similar goods and over long

time horizons, our benchmark calibration follows a recent empirical literature that documents

that substitutability is low for broad industry categories and at business cycle frequencies

(e.g. Atalay, 2017, Boehm, Flaaen, and Pandalai-Nayar, 2019). We also consider a case with

a higher elasticity of substitution below.

Third, if aggregate shocks affect industries differentially, this heterogeneity affects the

slope and curvature of the aggregate supply curve. In the presence of nonlinearities—and

holding all else equal—a shock that lowers two otherwise identical industries’ output by 5

percent, has a different aggregate effect than a shock which reduces one industry’s output

by, say, 2 percent and the other’s by 8 percent. In the latter case, the effect of industries’

convex supply curves on aggregate curvature is larger. It turns out that this heterogeneity

channel is quantitatively unimportant in our model, because there is no mechanism (other

than substitution) that generates differential responsiveness to aggregate shocks. We discuss

details in Appendix G.5.

4.3 Applications

We next turn to three applications.
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4.3.1 The government expenditure multiplier

Convex supply curves imply that the government expenditure multiplier is countercyclical.

Estimates of the multiplier for different states of the business cycle vary and the literature

has not yet converged to a consensus (see Section 1). This is, in part, because aggregate

time series variation is too limited to deliver precise estimates. Our contribution here is to

quantify the role of convex supply curves that are precisely estimated at the industry level.

This quantification proceeds as follows. We first choose the demand shock to generate an

output gap relative to the steady state. For each value of the output gap, we then compute

the fiscal multiplier for an instantaneous and small government expenditure shock as dY/dG.

As Table 5 shows, the multiplier for the baseline calibration ranges from 0.55 to 0.68 for

output gaps between negative and positive 10 percent. Hence, the multiplier is approximately

12 cents on the dollar greater when output is 10 percent below potential, than when output is

10 percent above potential. As the table shows, this difference depends on the calibration. It

falls for greater elasticities of substitution, and rises if more industries are capacity industries

or when the Frisch labor supply elasticity is greater. While these differences in multipliers

are modest relative to the estimates in Auerbach and Gorodnichenko (2012, 2013a), we note

that our model contains no mechanisms other than convex supply curves that affect the

state-dependence of the multiplier. A similar mechanism in the labor market would amplify

this degree of state-dependence (Michaillat, 2014).

4.3.2 The mapping from output to real marginal costs

We next turn to the mapping from output to real marginal costs. We focus on this mapping

because it is well defined even in static models and plays a key role for the slope and curvature

of the Phillips curve. To be precise, we define the partial elasticity of real marginal costs

with respect to output as
∂ ln mct

PYt

∂ lnYt

∣∣∣∣∣
MU=const

.

Calculation of this elasticity requires the entire model as described in Appendix G.1, except

that 1) we do not impose output market clearing so that output can be varied independently,

2) we do not impose that intermediaries sell their output to the final goods sector at constant

markups (as in New Keynesian models), and 3) we hold the marginal utility of consumption

constant. We define this elasticity more rigorously in Appendix G.4.

As Figure 7 shows, a convex aggregate supply curve implies that the partial elasticity of
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Table 5: State-dependent multipliers

Initial output relative to steady state Difference

(in percent)

-10 -5 0 5 10 -10/+10

Calibration Government expenditure multiplier

Baseline 0.68 0.65 0.63 0.59 0.55 0.12

Elasticity of substitution 0.5 0.68 0.66 0.64 0.63 0.61 0.07

22 capacity industries 0.72 0.71 0.69 0.67 0.64 0.08

66 capacity industries 0.62 0.59 0.56 0.51 0.46 0.16

Frisch labor supply elasticity 1 0.56 0.54 0.52 0.50 0.47 0.09

Frisch labor supply elasticity 5 0.77 0.74 0.71 0.67 0.62 0.15

Notes: The baseline calibration has 45 capacity industries, an elasticity of substitution of 0.05, and a Frisch
labor supply elasticity of 2. See Appendix G.3 for details. In the BEA’s industry classification 22 industries are
in the manufacturing sector, and 66 industries are private.

real marginal costs with respect to output is procyclical. In standard sticky price models,

this leads to a flattening of the Phillips curve during downturns. If a positive demand shock

hits the economy during a downturn, this shock generates less inflationary pressure than if

the same-sized shock hits during an expansion. For instance, during the Great Recession, the

slope of the Phillips curve falls by approximately 12 to 20 percent. This finding can partially

explain the Missing Disinflation observed at the time, and has implications for stabilization

policy that relies on generating inflation. If episodes at the zero lower bound coincide with

low output, government expenditures will generate less inflation than predicted by models

in which the Phillips curve is log-linear (e.g. Christiano, Eichenbaum, and Rebelo, 2011).

Note also that when we compute the partial elasticity of real marginal costs with respect

to output using the demeaned utilization rate from the FRB—the red line in Figure 7—it

trends downwards. The reason is that the utilization rate itself trends downwards. When

taken at face value, this implies that the Phillips curve has significantly flattened since the

1970’s, although the downward trend in the utilization rate raises a number of questions

(Pierce and Wisniewski, 2018). The flattening of the Phillips curve has recently attracted

attention by policymakers (e.g. Brainard, 2019).
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Figure 7: Partial elasticity of real marginal cost with respect to output

Notes: For this figure, we choose the demand shock to generate an output gap as measured by either the
Congressional Budget Office (CBO) or the FRB’s (demeaned) utilization rate. Shaded areas represent NBER
recessions.

4.3.3 The welfare cost of business cycles

Building on Lucas’ (1987) seminal contribution, we next discuss the implications for the

welfare costs of business cycles. As Lucas famously demonstrated, the welfare benefits of

eliminating business cycle fluctuations in standard models are shockingly small—and smaller

than compatible with many researchers’ intuition. This discrepancy has prompted work

exploring the origins and the robustness of this finding. We build here on one branch of

this research agenda that generates larger welfare costs of business cycles by introducing

non-linearities on the supply side.17 With such non-linearities, Jensen’s inequality implies

that the mean of consumption in the presence of business cycle fluctuations differs from the

level of consumption that would prevail in the absence of business cycle fluctuations. In

our model the mean of consumption falls permanently, thereby raising the welfare costs of

17The welfare costs of business cycles in Lucas (1987) arise from the curvature of the utility function. Baqaee and
Farhi (2019) illustrate that the welfare costs can be very large in economies with network linkages and nonlinearities
on the production side. In Barlevy (2004) decreasing returns to investment generate a permanent increase in the
growth rate when business cycle fluctuations are eliminated, implying large welfare costs of business cycles. Lucas
(2003) and Barlevy (2005) summarize the literature.
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Table 6: Welfare costs of business cycles

E[C]−Css
Css

E[n]−nss
nss

Welfare costs

Model/calibration (in percent)

Baseline -0.097 -0.076 0.119

Elasticity of substitution 0.5 -0.077 -0.059 0.115

22 capacity industries -0.071 -0.055 0.107

66 capacity industries -0.129 -0.101 0.135

Frisch labor supply elasticity 1 -0.114 -0.090 0.139

Frisch labor supply elasticity 5 -0.088 -0.068 0.107

Lucas (1987) - - 0.068

Notes: As in Lucas (1987), the welfare costs are measured in consumption equivalents.

business cycles.

Table 6 shows the welfare costs of business cycles in our model. We calibrate the demand

shock such that the standard deviation of the log of consumption is 0.032 (as in Lucas,

1987). Relative to a calibration without business cycle fluctuations, consumption falls by

0.097 percent in the baseline calibration. At the same time, however, hours worked fall by

0.076 percent, partially offsetting the utility loss from lower consumption. The representative

household would permanently give up 0.119 percent of her steady state consumption in order

to eliminate business cycles.

Alternative calibrations affect the loss in consumption and hours relative to the economy

without business cycles as well as the welfare costs. In comparison to Lucas (1987) with

the same coefficient of relative risk aversion, the welfare losses are typically a little less than

twice as large. We note that our model does not feature endogenous capital accumulation,

idiosyncratic income risk, and a number of other mechanisms, which the literature has shown

to affect the welfare costs of business cycles.

5 Conclusion

In this paper we have shown that capacity constraints at the plant-level generate convex

supply curves at the industry level. This convexity implies that price and production re-
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sponses to demand shocks are state-dependent. Comparing industries with utilization rates

below the 15th and above the 85th percentile, our non-parametric estimates indicate that,

a one percent outward shift in demand raises prices by approximately 0.1 percent in the

former and by 0.6 percent in the latter case. When comparing the production responses

of industries below the 15th percentile to those above the 85th percentile, it approximately

doubles in size. In this sense, our estimates imply that the degree of convexity is large.

Convex supply curves at the industry level matter for business cycles because the ag-

gregate supply curve becomes convex. The aggregation necessitates additional assumption,

which affect the curvature of the aggregate supply curve. In our model, the aggregate im-

plications of convex supply curves are of intermediate size. Depending on the calibration,

the fiscal multiplier increases by 7 to 16 cents on the dollar during times of slack relative to

boom times. The Phillips curve flattens during recessions and over time. For instance, the

elasticity of real marginal costs with respect to output falls by 18 to 30 percent during the

Volcker disinflation and by 12 to 20 percent during the Great Recession. The welfare costs

of business cycles approximately double.

We add three remarks. First, our estimates imply that changes in the utilization rate due

to demand shocks cause inflation. Without conditioning on this demand shock, however, this

relationship is delicate due to simultaneity bias. One would therefore not generally expect the

utilization rate to be useful for forecasting inflation, although a number of studies find that

it is (Corrado and Mattey, 1997; Stock and Watson, 1999). Further, a weak unconditional

relationship between capacity utilization and inflation is not an indication that the FRB’s

measures of capacity utilization are flawed.

Second, the controversy as to whether the fiscal multiplier varies with the business cycle

stems in part from disagreement on which variable should be used to measure the state of

the business cycle. Our findings suggest that capacity utilization is a good candidate—as

does prior work by Fazzari, Morley, and Panovska (2015). At the same time, it is unlikely

that capacity utilization captures all relevant notions of slack, and hence other measures

should be considered as well.

Third, a limitation of this and many other papers which use data on capacity utilization is

that these data are only collected for the manufacturing sector, mining, and utilities. Further,

and unlike earlier work by Shapiro (1989) three decades ago, we find the FRB’s current

measures of capacity and utilization to be highly informative. In our assessment, it would

therefore be fruitful to expand efforts to measure capacity utilization to non-manufacturing

industries.
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In this paper, we have shown that capacity constraints lead to economically significant

nonlinearities on the supply side of the economy, and we have discussed three instances

in which they matter for policy. However, convex supply curves give rise to many more

policy relevant implications. They imply, for instance, that responses to all shocks are state

dependent, and not only for government expenditures. They also lead to an interdependence

between domestic and foreign sales. As Almunia et al. (2018) show, firms aim to increase

exports when the domestic demand for their product falls. We expect that exploring the

role of capacity constraints and convex supply curves for the business cycle will likely yield

many more interesting insights.
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A Appendix: Capacity utilization at the plant level

This Appendix discusses background information on the Quarterly Survey of Plant Capacity Uti-
lization (QSPC) and basic facts on plants’ capacity utilization using public use microdata.

Background The survey is conducted by the U.S. Census Bureau and funded jointly by the
Federal Reserve Board and the Department of Defense. The sample is drawn from all U.S. man-
ufacturing and publishing plants with 5 or more production employees. Among other things,
establishments are asked about the market value of their actual production and the estimated
market value of their full production capacity. Respondents are asked to construct this estimate
under the following assumptions: 1) only the current functional machinery and equipment is avail-
able, 2) normal downtime, 3) labor, materials, and other non-capital inputs are fully available,
4) a realistic and sustainable shift and work schedule, and 5) that the establishment produces
the same product mix as its current production. Figure A1 shows the question on the survey
form. The full survey form of the Quarterly Survey of Plant Capacity Utilization is available
at https://bhs.econ.census.gov/bhs/pcu/watermark_form.pdf. Capacity utilization rates are
then obtained by dividing the market value of actual production by the estimate of full capacity
production.

Why do plants produce below capacity? The survey also contains questions on why estab-
lishments produce at levels below their capacity. As Figure A1 shows, respondents of the QSPC
are asked: “If this plant’s actual production in the current quarter was less than full production ca-
pacity, mark (X) the primary reasons.” Possible answers include “Insufficient supply of materials”,
“Insufficient orders”, “Insufficient supply of local labor force/skills”, and others. Multiple answers
are permitted. It turns out that the vast majority of plants produce below capacity because they
are not able to sell their products. For the time period from 2013q1 to 2018q2, 79.7 percent of plant
managers cite insufficient orders as the main reason for producing below capacity. The second most
cited option is chosen by 10.0 percent of respondents (insufficient supply of local labor force/skills).
These responses are summarized in Figure A2.
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Figure A1: Page 2 of survey form of the Quarterly Survey of Plant Capacity
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Figure A2: Qualitative responses

Notes: The data are from public use data of the QSPC of the U.S. Census Bureau and are averaged
from 2013q1 to 2018q2.
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B Appendix: Proofs

Recall that we assumed in Section 2 that θ > 1, that E [ω] = 1 and that E
[
ω2
]
< ∞. We will

make use of these conditions below. Further, for the proofs in this Appendix, the following limits
are useful. Using L’Hôspital’s rule, we have

lim
ω̄t→0

∫ ω̄t
0 ωdG (ω)

(ω̄t)
θ−1
θ

= lim
ω̄t→0

ω̄tg (ω̄t)

θ−1
θ (ω̄t)

− 1
θ

=
θ

θ − 1
lim
ω̄t→0

ω̄
1+ 1

θ
t g (ω̄t) = 0, (B1)

lim
ω̄t→∞

(ω̄t)
θ−1
θ

∫ ∞
ω̄t

ω
1
θ dG (ω) = lim

ω̄t→∞

− (ω̄t)
1
θ g (ω̄t)

− θ−1
θ (ω̄t)

− θ−1
θ
−1

=
θ

θ − 1
lim
ω̄t→∞

(ω̄t)
2 g (ω̄t) = 0, (B2)

where g is the pdf of G.

Proof of Lemma 1

Lemma 1. The utilization rate as defined in (10) has the following properties:

1. ut ∈ [0, 1] is only a function of ω̄t: ut = u (ω̄t)

2. limω̄→0 u (ω̄) = 1, limω̄→∞ u (ω̄) = 0

3. u′ < 0

Proof. Using the definition of capacity and limit (B1), we can write

Q (qt) = lim
ω̄t→0

Y (qt, ω̄t)

= qt

(
lim
ω̄t→0

1

(ω̄t)
θ−1
θ

∫ ω̄t

0
ωdG (ω) +

∫ ∞
0

ω
1
θ dG (ω)

) θ
θ−1

= qtΘ,

where

Θ =

(∫ ∞
0

(ωt)
1
θ dG (ω)

) θ
θ−1

.

Then equation (10) implies that

u (ω̄t) =
1

Θ

((
1

ω̄t

) θ−1
θ
∫ ω̄t

0
ωdG (ω) +

∫ ∞
ω̄t

ω
1
θ dG (ω)

) θ
θ−1

. (B3)

Hence, ut is only a function of ω̄t and ut ≥ 0.
Regarding part 2, limω̄t→0 u (ω̄t) = 1 follows directly from the definition of capacity and utiliza-
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tion. Further,

lim
ω̄t→∞

u (ω̄t) = lim
ω̄t→∞

1

Θ

((
1

ω̄t

) θ−1
θ
∫ ω̄t

0
ωg (ω) dω +

∫ ∞
ω̄t

ω
1
θ g (ω) dω

) θ
θ−1

=
1

Θ

(
lim
ω̄t→∞

∫ ω̄t
0 ωg (ω) dω

(ω̄t)
θ−1
θ

) θ
θ−1

= 0

For part 3, take the derivative of equation (B3) to obtain

∂ut
∂ω̄t

= −(ω̄t)
1−2θ
θ

Θ

((
1

ω̄t

) θ−1
θ
∫ ω̄t

0
ωg (ω) dω +

∫ ∞
ω̄t

ω
1
θ g (ω) dω

) 1
θ−1 ∫ ω̄t

0
ωg (ω) dω, (B4)

which is negative for 0 < ω̄t < ∞. It then follows that ut ≤ 1, completing the proof of part 1 of
the lemma.

Proof of Proposition 1

Proposition 1. M has the following properties:

1. M′ ≥ 0

2. limu→0M (lnu) = ln θ
θ−1 , limu→1M (lnu) =∞

3. limu→0M′ (lnu) = 0, limu→1M′ (lnu) =∞

4. Without further restrictions on G, the sign of M′′ is generally ambiguous.

Proof. The dynamic problem in Section 2.1.2 requires that the firms pricing decision solves

max
pyt (j)

(pyt (j)−mct) yt (j)

subject to the constraints
yt ≤ qt,

yt (j) = ωt (j)Yt

[
pyt (j)

P Yt

]−θ
.

Letting ρt (j) be the multiplier on the capacity constraint, the solution requires that firms set
prices according to the rule

pyt (j) =
θ

θ − 1
(mct + ρ (j)) , (B5)

with ρ (j) = 0 if and only if yt = qt.
The threshold value ω̄t of the demand shock is

ω̄t =
qt
Yt

(
θ

θ − 1

mct

P Yt

)θ
(B6)
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and production of firms with ωt (j) ≥ ω̄t is constrained by capacity while production of firms with
ωt (j) < ω̄t is not. For constrained firms, the Lagrange multiplier is

ρ (j) =
θ − 1

θ
P Yt

(
ωt (j)Yt

qt

) 1
θ

−mct. (B7)

Now combining the price index (3) with the price setting rule (B5) and equations (B6) and (B7)
gives

P Yt =

(∫ 1

0
ωt (j)

[
θ

θ − 1
(mct + ρ (j))

]1−θ
dj

) 1
1−θ

=
θ

θ − 1
mct

(∫ ω̄t

0
ωtdG (ω) + (ω̄t)

θ−1
θ

∫ ∞
ω̄t

ω
1
θ
t dG (ω)

) 1
1−θ

.

Taking logs gives the supply curve (11) with the log average markup given by

M̃ (ω̄t) := ln
θ

θ − 1
− 1

θ − 1
ln

(∫ ω̄t

0
ωtdG (ω) + (ω̄t)

θ−1
θ

∫ ∞
ω̄t

ω
1
θ
t dG (ω)

)
.

The log average markup as a function of lnut is then M (lnut) := M̃ (ω̄ (lnut)).
For part 1, note that

M̃′ (ω̄t) = −1

θ

(ω̄t)
− 1
θ
∫∞
ω̄t
ω

1
θ
t dG (ω)∫ ω̄t

0 ωtdG (ω) + (ω̄t)
θ−1
θ
∫∞
ω̄t
ω

1
θ
t dG (ω)

. (B8)

Further note that

M′ (lnut) = M̃′ (ω̄t) ·
∂ω̄ (ut)

∂ut
· ut

= M̃′ (ω̄t) ·
(
∂ut
∂ω̄t

)−1

· ut

Now plugging in equations (B8), (B4), and (B3) gives, after some algebra,

M′ (lnut) =
1

θ

(ω̄t)
θ−1
θ
∫∞
ω̄t
ω

1
θ
t dG (ω)∫ ω̄t

0 ωdG (ω)
, (B9)

which is greater than or equal to zero.
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For part 2 note that

lim
u→0
M (lnut) = lim

ω̄→∞
M̃ (ω̄t)

= ln
θ

θ − 1
− 1

θ − 1
ln

(∫ ∞
0

ωdG (ω) + lim
ω̄t→∞

(ω̄t)
θ−1
θ
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ω̄t

ω
1
θ dG (ω)

)
= ln

θ

θ − 1
− 1

θ − 1
ln

(
1 + lim

ω̄t→∞
(ω̄t)

θ−1
θ

∫ ∞
ω̄t

ω
1
θ dG (ω)

)
= ln

θ

θ − 1

where we used the limit (B2). Further

lim
u→1
M (lnut) = lim

ω̄→0
M̃ (ω̄t) = ln

θ

θ − 1
− 1

θ − 1
ln

(
lim
ω̄t→0

(ω̄t)
θ−1
θ

∫ ∞
ω̄t

ω
1
θ dG (ω)

)
=∞

For part 3, and using the limits (B1) and (B2), we obtain

lim
ut→0

M′ (lnut) = lim
ω̄t→∞

1

θ

(ω̄t)
θ−1
θ
∫∞
ω̄t
ω

1
θ
t dG (ω)∫ ω̄t

0 ωdG (ω)
= lim

ω̄t→∞

1

θ
(ω̄t)

θ−1
θ
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ω̄t

ω
1
θ
t dG (ω) = 0

and

lim
ut→1

M′ (lnut) = lim
ω̄t→0

1

θ

(ω̄t)
θ−1
θ
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ω̄t
ω

1
θ
t dG (ω)∫ ω̄t

0 ωdG (ω)
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1

θ

∫ ∞
0

ω
1
θ
t dG (ω)

(ω̄t)
θ−1
θ∫ ω̄t

0 ωdG (ω)
=∞.

For part 4, take the derivative of equation (B9) to obtain

M′′ (lnut) =

∂

(
1
θ

(ω̄t)
θ−1
θ

∫∞
ω̄t
ω

1
θ
t dG(ω)∫ ω̄t

0 ωdG(ω)

)
∂ω̄t

(
∂ut
∂ω̄t

)−1

ut.

Since ut > 0 and ∂ut
∂ω̄t

< 0, the sign of M′′ (lnut) is the negative of the sign of the first derivative
on the right hand side. Now

∂

(
1
θ
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θ
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ω

1
θ
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)
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=
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It is clear that this expression can be positive or negative, depending on the value of g (ω̄t). If
g (ω̄t) is sufficiently small, the derivative on the left hand side is positive and M′′ negative. For
sufficiently large g (ω̄t), the opposite is the case. Most conventional distributions result inM′′ > 0.
This completes the proof.

Proof of Proposition 2

Proposition 2 (Reduced form). The industry’s quantity, linearized around the equilibrium in t−1,
is

∆ lnYi,t = βξ (lnui,t−1) ∆ξi,t + βπ (lnui,t−1) ∆πi,t + βe (lnui,t−1) ∆ei,t

+ βQ (lnui,t−1) ∆ lnQi,t + βmc (lnui,t−1) ∆ lnmci,t

+ βIM (lnui,t−1)
∆IMi,t

Yi,t−1
+ βinv (lnui,t−1)

∆Y inv
i,t −∆Y inv

i,t−1

Yi,t−1
+ ωYi,t.

All coefficients are only functions of the log utilization rate lnui,t−1 and βξ > 0, βπ > 0, βe > 0,
βmc < 0, βQ > 0, βIM < 0, and βinv > 0. Supply curve (11) is convex if and only if β′ξ < 0 and

β′e < 0. The error term is a weighted average of changes in the unobserved demand shocks ωCi,t,

ωIj,i,t, ω
M
j,i,t, and ωEXd,i,t.

Proof. We prove a slightly more general version in which the demand elasticity is allowed to depend
on the type of customer. Setting σM = σC = σI = σF = σ gives the version in the text. In this
more general version ∆πi,t is defined as

∆πi,t =
σM

σ̄

∑
j

sMj,i,t−1∆ lnPMj,t + sCi,t−1

σC

σ̄
∆ lnPCt +

σI

σ̄

∑
j

sIj,i,t−1∆ lnP Ij,t

+
σF

σ̄

∑
d

sEXd,i,t−1∆ lnPEX,∗d,t .

Define the shares sEXd,i,t−1 =
EXd,i,t−1

Yi,t−1
, sMj,i,t−1 =

Mj,i,t−1

Yi,t−1
, sIj,i,t−1 =

Ij,i,t−1

Yi,t−1
, sCi,t−1 =

Ci,t−1

Yi,t−1
, sGi,t−1 =

Gi,t−1

Yi,t−1
, sEXi,t−1 =

∑
d s

EX
d,i,t−1, sMi,t−1 =

∑
j s

M
j,i,t−1, and sIi,t−1 =

∑
j s

I
j,i,t−1. We begin with summarizing

the linearized system of equations:
Supply

∆ lnP Yi,t =M′ (lnui,t−1) ∆ lnui,t + ∆ ln (mci,t)

Domestic final demand

∆ lnCi,t = ∆ lnωCi,t + ∆ lnCt − σC∆ lnP Yi,t + σC∆ lnPCt

∆ ln Ij,i,t = ∆ lnωIj,i,t + ∆ ln Ij,t − σI∆ lnP Yi,t + σI∆ lnP Ij,t

Intermediate demand

∆ lnMj,i,t = ∆ lnωMj,i,t + ∆ lnMj,t − σM∆ lnP Yi,t + σM∆ lnPMj,t
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Foreign demand

∆ lnEXd,i,t = ∆ lnωEXd,i,t + ∆ lnEXd,t − σF∆ lnP Y,∗d,i,t + σF∆ lnPEX,∗d,t

Utilization
∆ lnui,t = ∆ lnYi,t −∆ lnQi,t

Price in domestic and foreign currency

∆ lnP Yi,t = ∆ ln Ed,t + ∆ lnP Y,∗d,i,t

Market Clearing

∆ lnYi,t =
∑
j

sMj,i,t−1∆ lnMj,i,t + sCi,t−1∆ lnCi,t +
∑
j

sIj,i,t−1∆ ln Ij,i,t

+sGi,t−1∆ lnGi,t +
∑
d

sEXd,i,t−1∆ lnEXd,i,t +
∆Y inv

i,t −∆Y inv
i,t−1

Yi,t−1
− ∆IMi,t

Yi,t−1

After some algebra, this system can be solved for ∆ lnYi,t where

∆ lnYi,t = βξ (lnui,t−1) ∆ξi,t + βπ (lnui,t−1) ∆πi,t + βe (lnui,t−1) ∆ei,t

+βQ (lnui,t−1) ∆ lnQi,t + βmc (lnui,t−1) ∆ ln (mci,t)

+βIM (lnui,t−1)
∆IMi,t

Yi,t−1
+ βinv (lnui,t−1)

∆Y inv
i,t −∆Y inv

i,t−1

Yi,t−1
+ ωYi,t.

Letting
σ̄ = sMi,t−1σ

M + sCi,t−1σ
C + sIi,t−1σ

I + sEXi,t−1σ
F ,

the coefficients satisfy

βξ (lnui,t−1) =
1

1 + σ̄M′ (lnui,t−1)
> 0,

βπ (lnui,t−1) =
σ̄

1 + σ̄M′ (lnui,t−1)
> 0,

βe (lnui,t−1) =
σF

1 + σ̄M′ (lnui,t−1)
> 0,

βQ (lnui,t−1) =
σ̄M′ (lnui,t−1)

1 + σ̄M′ (lnui,t−1)
> 0,

βmc (lnui,t−1) =
−σ̄

1 + σ̄M′ (lnui,t−1)
< 0,

βIM (lnui,t−1) =
−1

1 + σ̄M′ (lnui,t−1)
< 0,

βinv (lnui,t−1) =
1

1 + σ̄M′ (lnui,t−1)
> 0.
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Further, the error term is

ωYi,t =
1

1 + σ̄M′ (lnui,t−1)
·∑

j

sMj,i,t−1∆ lnωMj,i,t + sCi,t−1∆ lnωCi,t +
∑
j

sIj,i,t−1∆ lnωIj,i,t +
∑
d

sEXd,i,t−1∆ lnωEXd,i,t

 .

Since

β′ξ (lnui,t−1) = − σ̄M′′ (lnui,t−1)

(1 + σ̄M′ (lnui,t−1))2 ,

β′e (lnui,t−1) = − σF σ̄M′′ (lnui,t−1)

(1 + σ̄M′ (lnui,t−1))2 ,

the supply curve is convex (M′′ (lnui,t−1) > 0) if and only if β′ξ (lnui,t−1) < 0 and βe (lnui,t−1) < 0.

Proof of Proposition 3

Proposition 3. Ω′ ≤ 0 and Ω′′ ≤ 0.

Proof. Since marginal costs are not directly observable, we are interested in using average unit
costs as a proxy. Unit variable costs are∫ 1

0 p
v
t vt (j) dj

Yt
=

pvt
ztF (κt, 1)

∫ 1
0 yt (j) dj

Yt
= mct

∫ 1
0 yt (j) dj

Yt
,

where we used relationship yt (j) = ztF (κt, 1) vt (j) and equation (6). Now, using equation (B6),
we obtain ∫ 1

0
yt (j) dj =

∫ ω̄t

0
ωtYt

[
pyt (ω)

P Yt

]−θ
dG (ω) +

∫ ∞
ω̄t

qtdG (ω)

= Yt

[
θ
θ−1mct

P Yt

]−θ ∫ ω̄t

0
ωdG (ω) +

∫ ∞
ω̄t

qtdG (ω)

= qt

(
1

ω̄t

∫ ω̄t

0
ωtdG (ω) +

∫ ∞
ω̄t

dG (ω)

)
.

Next, using equation (9), we can write

∫ 1
0 p

v
t vt (j) dj

Yt
= mct

(
1
ω̄t

∫ ω̄t
0 ωtdG (ω) +

∫∞
ω̄t
dG (ω)

)
(

1

(ω̄t)
θ−1
θ

∫ ω̄t
0 ωtdG (ω) +

∫∞
ω̄t

(ωt)
1
θ dG (ω)

) θ
θ−1

.
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Defining Ω (lnut) = Ω̃ (ω̄ (ut)), where

Ω̃ (ω̄ (ut)) = − ln


(

1
ω̄t

∫ ω̄t
0 ωtdG (ω) +

∫∞
ω̄t
dG (ω)

)
(

1

(ω̄t)
θ−1
θ

∫ ω̄t
0 ωtdG (ω) +

∫∞
ω̄t

(ωt)
1
θ dG (ω)

) θ
θ−1

 , (B10)

it follows that

lnmct = ln

∫ 1
0 p

v
t vt (j) dj

Yt
+ Ω̃ (ω̄t)

and hence
lnP Yt =M (lnut) + Ω (lnut) + lnUV Ci,t,

where UV Ci,t =
(∫ 1

0 p
v
t vt (j) dj

)
/Yt.

We are interested in estimating M′ (lnut) and M′′ (lnut), but lnut traces out the composite
term Ξ (lnut) = M (lnut) + Ω (lnut). We will next show that Ω′ (lnut) < 0 and Ω′′ (lnut) < 0 in
the model. This implies that we estimate a lower bound for both the slope and the curvature

M′ (lnui) = Ξ′ (lnui)− Ω′ (lnui) ≥ Ξ′ (lnui) ,

M′′ (lnui)
ui

=
Ξ′′ (lnui)

ui
− Ω′′ (lnui)

ui
≥ Ξ′′ (lnui)

ui
.

Start with Ω (lnut) = Ω̃ (ω̄ (ut)) and differentiate both sides with respect to lnut. This gives

Ω′ (lnut) = Ω̃′ (ω̄ (ut)) ·
∂ω̄t
∂ut
· ut

= Ω̃′ (ω̄t) ·
(
∂ut
∂ω̄t

)−1

· ut (B11)

Now taking the derivative of equation (B10) gives

Ω̃′ (ω̄t) =
(ω̄t)

− 1
θ

[∫∞
ω̄t

(
(ωt)

1
θ − (ω̄t)

1
θ

)
dG (ω)

] ∫ ω̄t
0 ωtdG (ω)(∫ ω̄t

0 ωtdG (ω) + (ω̄t)
θ−1
θ
∫∞
ω̄t

(ωt)
1
θ dG (ω)

)(∫ ω̄t
0 ωtdG (ω) + ω̄t

∫∞
ω̄t
dG (ω)

) ,
which is positive.
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Plugging this derivative together with equation (B4) and (B3) into equation (B11) gives

Ω′ (lnut) = −
(ω̄t)

− 1
θ

[∫∞
ω̄t

(
(ωt)

1
θ − (ω̄t)

1
θ

)
dG (ω)

] ∫ ω̄t
0 ωtdG (ω)(∫ ω̄t

0 ωtdG (ω) + (ω̄t)
θ−1
θ
∫∞
ω̄t

(ωt)
1
θ dG (ω)

)(∫ ω̄t
0 ωtdG (ω) + ω̄t

∫∞
ω̄t
dG (ω)

)

·

((
1
ω̄t

) θ−1
θ ∫ ω̄t

0 ωg (ω) dω +
∫∞
ω̄t
ω

1
θ g (ω) dω

)
(ω̄t)

1−2θ
θ
∫ ω̄t

0 ωg (ω) dω

= −
(ω̄t)

− 1
θ
−1
[∫∞
ω̄t

(
(ωt)

1
θ − (ω̄t)

1
θ

)
dG (ω)

]
∫ ω̄t

0 ωtdG (ω) + ω̄t
∫∞
ω̄t
dG (ω)

< 0.

This completes the first part of the proof.
Next define the auxiliary function

ϑ (ω̄t) = −
(ω̄t)

− 1
θ
−1
[∫∞
ω̄t

(
(ωt)

1
θ − (ω̄t)

1
θ

)
dG (ω)

]
∫ ω̄t

0 ωtdG (ω) + ω̄t
∫∞
ω̄t
dG (ω)

(B12)

and note that Ω′ (lnut) = ϑ (ω̄t (ut)). Then

Ω′′ (lnut) = ϑ′ (ω̄t) ·
∂ω̄t
∂ut
· ut

= ϑ′ (ω̄t) ·
(
∂ut
∂ω̄t

)−1

· ut

Since u′ (ω̄t) < 0 and ut > 0, the sign of Ω′′ (lnut) is fully determined by the sign of ϑ′ (ω̄t). Taking
the derivative of equation (B12) gives

ϑ′ (ω̄t) =

1
θ (ω̄t)

− 1
θ
−1 ∫∞

ω̄t
(ωt)

1
θ dG (ω)

(
ω̄t
∫ ω̄t

0 ωtdG (ω) + (ω̄t)
2 ∫∞

ω̄t
dG (ω)

)
(
ω̄t
∫ ω̄t

0 ωtdG (ω) + (ω̄t)
2 ∫∞

ω̄t
dG (ω)

)2

+

(∫∞
ω̄t

[
(ωt)

1
θ − (ω̄t)

1
θ

]
dG (ω)

)(∫ ω̄t
0 ωtdG (ω) + 2 (ω̄t)

∫∞
ω̄t
dG (ω)

)
(ω̄t)

1
θ

(
ω̄t
∫ ω̄t

0 ωtdG (ω) + (ω̄t)
2 ∫∞

ω̄t
dG (ω)

)2 ,

which is greater than zero. Hence, Ω′′ (lnut) < 0. This completes the proof.
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C Appendix: Model with sticky prices

In this appendix, we extend the baseline model in Section 2 by introducing sticky prices as in
Rotemberg (1982). Alvarez-Lois (2004, 2006) also studies extensions of Fagnart, Licandro, and
Portier (1999) to include sticky prices.

C.1 Aggregating firm

As before, a competitive aggregating firm uses a unit continuum of varieties, indexed j, as inputs
into CES aggregator (1) to produce the industry’s composite good. We continue to assume that
these shocks are drawn independently and identically from distribution G with E [ω] = 1 and
E
[
ω2
]
<∞.

Since the production of individual varieties is constrained by capacity, the aggregating firm
cannot purchase unlimited amounts of a particular variety at a predetermined (or sticky) price.
Taking prices as given, the final goods firm therefore maximizes profits subject to the production
function (1) and the constraints

yt (j) ≤ qt (j) for all j, (C1)

where qt (j) denotes the production capacity of variety j.
The resulting input demand curves are

yt (j) = ωt (j)Yt

[
pyt (j) + ρt (j)

P Y,at

]−θ
for all j, (C2)

where ρt (j) is the multiplier on the capacity constraint, and the industry’s price index is given by

P Y,at =

(∫ 1

0
ωt (j) (pyt (j) + ρt (j))

1−θ
dj

) 1
1−θ

. (C3)

We refer to this price index as the allocative price index to distinguish it from the measured price
index, which we will introduce below. The allocative price index is relevant for agents’ decisions,
but it cannot easily be constructed from the data, since the Lagrange multipliers ρt (j) are not
observed. The aggregating firm’s demand is rationed whenever ρt (j) > 0.

C.2 Intermediate goods producers

The production function (4), firms’ idiosyncratic production capacity (5), and marginal costs (6)
are as in Section 2.1.2.

Dynamic problem As before, firms own their capital stock k, discount future profits at rate r,
and maximize the present value of profits. In contrast to Section 2.1.2, however, we assume now
that firms compete monopolistically and prices are sticky as in Rotemberg (1982). To keep the
problem analytically tractable, we additionally assume that the demand shocks ω materialize after
prices have been set. We allow investment to be subject to possibly non-convex adjustment costs
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φk (x, k). The firm’s Bellman equation is then

V
(
k, v̄, z, py−1

)
= max

py ,k′,v̄′

{
Eω
[
pyy − pvv − pxx− φp

(
py, py−1

)
− φk (x, k)

]
+

1

1 + r
E
[
V
(
k′, v̄′, z′, py

)]}
,

where the maximization is subject to equations (4), (5), (7), (8), and (C2) as well as the price
adjustment cost function

φp
(
py, py−1

)
=
φp
2

(
py

py−1

− 1

)2

Ω. (C4)

The term Ω is a generic scaling factor that determines the units of adjustment costs (typically
nominal GDP). In the problem above, we treat Ω as fixed.

Again, we assume that productivity z only has an industry-specific and an aggregate, but
no firm-specific component. Since demand shocks ω materialize after prices have been set, this
assumption still contains the degree of heterogeneity in the model and allows us to analytically
aggregate output and prices to the industry level.

Price setting When firms set prices, they take into account that their production can be con-
strained by capacity. Whether a firm becomes constrained depends on how the demand shock
ω materializes relative to a threshold level ω̄. If ω exceeds ω̄, firms produce at capacity, y = q.
Otherwise they produce below capacity, y < q, and the demand curve (C2) holds with ρ = 0.
A key implication of capacity constraints is that in the former case the quantity sold is locally
unresponsive to price changes: Conditional on being constrained by capacity, the quantity sold is
no longer decreasing in prices. This implies that the elasticity of the firms’ expected output with
respect to its price,

θ̃ (ω̄) := −∂ lnEω [y]

∂ ln py
= θ

∫ ω̄
0 ωdG (ω)∫ ω̄

0 ωdG (ω) + ω̄
∫∞
ω̄ dG (ω)

, (C5)

is lower than parameter θ in absolute terms. We call θ̃ (ω̄) the effective demand elasticity.
The threshold value ω̄ takes the form

ω̄ =
q

Y

[
py

P Y,a

]θ
. (C6)

It is therefore inversely related to the industry’s output Y . Holding all else equal, greater in-
dustry output Y reduces the threshold variety ω̄. This increases firms’ probability of becoming
constrained by capacity, and reduces the effective demand elasticity θ̃ (ω̄). We shall see below that
this mechanism is key for generating convex supply curves in this model with sticky prices.

Firms’ optimal price setting requires that

py =
θ̃ (ω̄)

θ̃ (ω̄)− 1

(
mc+ φpΨ̃ (ω̄, ln a)

)
, (C7)

where mc denote marginal costs as defined in equation (6). The term Ψ̃ is a function of current
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and future price changes,

Ψ̃ (ω̄, ln a) =
1

θ qω̄
∫ ω̄

0 ωdG (ω)

[
1

1 + r
E
[(

(py)′

py
− 1

)
(py)′

py
Ω′
]
−
(
py

py−1

− 1

)
py

py−1

Ω

]
,

where ln a =
(
ln q, ln (1 + r) , ln (py)′ , ln py, ln py−1, ln Ω, ln Ω′

)′
is a column vector. Note that price

py is common for all firms and that Ψ̃ drops out when prices are flexible, φp = 0.
Again, the firm’s choices of k′ and v̄′ are unimportant for the estimating equation as long as we

observe changes in the industry’s capacity.

C.3 Industry capacity and utilization

The definition of industry capacity Qt and the utilization rate ut are as in Section 2.1.3. It is easy
to see that Lemma 1 continues to hold, since the proof only depends on the definitions of Qt and
ut.

Lemma C1. The utilization rate as defined in (10) has the following properties:

1. ut ∈ [0, 1] is only a function of ω̄t: ut = u (ω̄t)

2. limω̄→0 u (ω̄) = 1, limω̄→∞ u (ω̄) = 0

3. u′ < 0

Proof. See Appendix B.

Hence, in this model with sticky prices, we can still invert the utilization rate in the threshold
variety ω̄t and express industry-level aggregates in terms of the utilization rate.

C.4 The supply curve

After plugging in equations (C2) and (C6), the allocative price (C3) can be written as

P Y,at = pyt

(∫ ω̄t

0
ωdG (ω) + (ω̄t)

1− 1
θ

∫ ∞
ω̄t

ω
1
θ dG (ω)

) 1
1−θ

. (C8)

Next, use equation (C7), take logs, and invoke Lemma (C1), to obtain

lnP Y,at =MS (lnut) + % (lnut) + ln (mct + φpΨ (lnut, ln at)) , (C9)

where

M̃S (ω̄t) = ln
θ̃ (ω̄t)

θ̃ (ω̄t)− 1
,

%̃ (ω̄t) =
1

1− θ
ln

(∫ ω̄t

0
ωdG (ω) + (ω̄t)

1− 1
θ

∫ ∞
ω̄t

ω
1
θ dG (ω)

)
,
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and MS (lnut) = M̃S (ω̄ (ut)), % (lnut) = %̃ (ω̄ (ut)), and Ψ (lnut, ln at) = Ψ̃ (ω̄ (ut) , ln at). In the
sticky price model equation (C9) is the relevant supply curve. Relative to the flexible price model
in Section 2, there are three differences that we discuss next.

First, the log markup MS (lnut) is different from the baseline model. In this version of the
model with sticky prices, the markup still depends on the utilization rate and only the utilization
rate, but it arises because firms anticipate to be capacity constrained ex-post. Since the quantity
demanded is inelastic conditionally on being capacity constrained, the relevant demand elasticity
is θ̃ (ω̄), which depends on the utilization rate or, equivalently ω̄t, see equation (C5). Note that
we require that θ̃ (ω̄t) > 1 at all times. It can be verified numerically that MS is increasing and
convex for conventional parameterizations, such as those used in Figure 2.

Second, the term % (lnut) appears on the right hand side of equation (C9), which also depends
on the utilization rate (and only the utilization rate). This term is absent in the flexible price
version of the model. For fixed nominal prices, % (lnut) captures rationing of the aggregating firm
as mediated by the equilibrium shadow prices, see equation (C8). % (lnut) can be interpreted as
reflecting decreasing returns at the industry level. Up to a constant, % (lnut) is identical toM (lnut)
as defined in Section 2, and hence a modified version of Proposition 1 applies.

Proposition C1. % has the following properties:

1. %′ ≥ 0

2. limu→0 % (lnu) = 0, limu→1 % (lnu) =∞

3. limu→0 %
′ (lnu) = 0, limu→1 %

′ (lnu) =∞

4. Without further restrictions on G, the sign of %′′ is generally ambiguous.

Proof. See proof of Proposition 1 in Appendix B.

Importantly, % is typically convex.
Third, the term Ψ (lnut, ln at), capturing sluggish price adjustment, appears on the right hand

side of equation (C9). It depends on the general equilibrium environment and its slope and curvature
are difficult to characterize without additional assumptions.

When linearizing equation (C9) around t− 1 values, we obtain

∆ lnP Y,at =

(
M′S (lnut−1) + %′ (lnut−1) +

φp
∂Ψ
∂ lnu (lnut−1, ln at−1)

mct−1 + φpΨ (lnut−1, ln at−1)

)
(∆ lnYt −∆ lnQt)

+
mct−1

mct−1 + φpΨ (lnut−1, ln at−1)
∆ lnmct +

φp
(
∂Ψ
∂ lna (lnut−1, ln at−1)

)′
mct−1 + φpΨ (lnut−1, ln at−1)

∆ ln at. (C10)

Mirroring the previous discussion, this expression makes clear that, the slope and curvature have
three distinct components, the markup M′S , the rationing term %′, and the term related to sticky
prices ∂Ψ

∂ lnu (lnut−1, ln at−1). There are also indirect effects that arise from changes in ∆ ln at in the
last term on the right hand side, which depend on the utilization rate. Since we will argue below
that the degree of price stickiness is small in our data, we will not provide a detailed discussion of
these effects.

Although equation (C10) is insightful to understand the forces affecting the slope and curvature
of the supply curve, it is infeasible for estimation, since the price P Y,at is not observable. It is
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however, the relevant object to understand the model’s prediction for the evolution of quantities.
In Section 3, we therefore estimate the reduced form, which does not require us to measure ∆ lnP Y,at .
The industry’s production response to demand shocks is then indirectly informative about the slope
and curvature of this supply curve. We continue with a discussion of how to interpret estimates of
the structural form.

C.5 Estimating equation

The allocative price index P Y,at is the relevant price for goods that are purchased from this industry.

It is constructed, taking into account all economic costs,
(∫ 1

0 (pyt (j) + ρt (j)) yt (j) dj
)
/Yt, including

the shadow prices. However, P Y,at cannot be constructed from the data, because the Lagrange
multipliers ρt (j) are not observed by the statistical authorities. In the presence of rationing, it
is unlikely that one can recover the relevant slope and curvature of the supply curve from the
data. The details of this mis-measurement problem depend, of course, on how the price index is
constructed from the underlying microdata.

We next discuss the implications of this measurement problem in the model. To do so, we
construct the price index without the shadow prices and only sum the total dollar cost per unit of

output,
(∫ 1

0 p
y
t (j) yt (j) dj

)
/Yt. This price index can be written as

P Y,mt = (pyt )
1−θ

(
P Y,at

)θ (∫ ω̄t

0
ωdG (ω) + ω̄t

∫ ∞
ω̄t

dG (ω)

)
.

Note that it differs from P Y,at , see equation (C8).
As discussed in Section 2.3 of the paper, a second issue is that marginal costs are not observed,

and that the unit variable cost proxy differs from marginal costs,

UV Ct = mct

1
ω̄t

∫ ω̄t
0 ωtdG (ω) +

∫∞
ω̄t
dG (ω)(

1

(ω̄t)
θ−1
θ

∫ ω̄t
0 ωtdG (ω) +

∫∞
ω̄t

(ωt)
1
θ dG (ω)

) θ
θ−1

.

Note that the wedge between UV Ct and mct is identical in this model with sticky prices and the
model without sticky prices, see proof of Proposition 3 in Appendix B. After some algebra, it is
then possible to write

lnP Y,mt =MS (lnut) + ln (UV Ct + φpΨ
m (lnut, ln at)) ,

where

Ψm (lnut, ln at) =

(∫ ω̄(ut)

0
ωdG (ω) + (ω̄ (ut))

1− 1
θ

∫ ∞
ω̄(ut)

ω
1
θ dG (ω)

) θ
1−θ

·

(∫ ω̄(ut)

0
ωdG (ω) + ω̄ (ut)

∫ ∞
ω̄(ut)

dG (ω)

)
Ψ̃ (ω̄ (ut) , ln at) .
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Now linearizing around t− 1 values gives

∆ lnP Y,mt =

(
M′S (lnut−1) +

φp
∂Ψm

∂ lnu (lnut−1, ln at−1)

UV Ct−1 + φpΨm (lnut−1, ln at−1)

)
(∆ lnYt −∆ lnQt) (C11)

+
UV Ct−1

UV Ct−1 + φpΨm (lnut−1, ln at−1)
∆ lnUV Ct +

φp
(
∂Ψm

∂ lna (lnut−1, ln at−1)
)′

UV Ct−1 + φpΨm (lnut−1, ln at−1)
∆ ln at.

Conclusions for the empirical analysis We next discuss the implications of estimating this
specification under the assumptions that 1) this sticky price model as specified above is the true
data generating process and the econometrician uses 2) measured prices and 3) the unit variable
cost proxy instead of true marginal costs.

First, since passthrough of unit variable costs into prices is close to 1 in all our specifications,
the data indicate that prices are not particularly sticky at the industry level in yearly differences.
We therefore view the approximation φp ≈ 0 as reasonable. This finding is corroborated by the
fact that future prices are not significant in Specification (4) of Table 3. With φp = 0, equation
(C11) becomes

∆ lnP Y,mt =M′S (lnut−1) (∆ lnYt −∆ lnQt) + ∆ lnUV Ct.

Note that even if prices are flexible, φp = 0, this model does not nest the baseline model in Section
2, because we assumed that prices are set prior to the materialization of demand shocks.

Second, relative to equation (C10), the term %′ (lnut−1) is absent. This implies that in this
model, in which prices are set prior to the materialization of demand shocks, an econometrician
using 1) measured prices and 2) the unit variable cost proxy underestimates both the slope and
the curvature of the model. This suggests that even if prices are flexible across periods, but are set
before the materialization of demand shocks, we should still estimate the reduced form to check
whether the implications are consistent with our estimates of the structural form.

Implications for the general equilibrium model Note also that in Section 4, we base the
general equilibrium model on this version of the model, in which prices are set prior to the mate-
rialization of demand shocks. The advantage of doing so is that our estimates directly inform the
markup MS , which we match in the calibration, see Figure G1.

64



D Data Appendix

Sample Our baseline sample is annual and includes all 21 3-digit NAICS manufacturing indus-
tries. It ranges from 1972 to 2011.

Industrial production, capacity, and capacity utilization The series for industrial produc-
tion, capacity, and capacity utilization are obtained from the Federal Reserve Board and available at
https://www.federalreserve.gov/releases/g17/ipdisk/alltables.txt. Table D1 provides
summary statistics of the utilization rate by NAICS 3-digit industry.

NBER-CES manufacturing industry database Data on prices, sales, production worker
wages, material costs, energy costs, and inventories are from the NBER CES Manufacturing Indus-
try Database. For a description of these data, see Bartelsman and Gray (1996) and Becker, Gray,
and Marvakov (2016). The database is available at http://www.nber.org/nberces/.

BEA Input-Output Accounts Cost shares, sales shares, changes in government purchases,
and changes in imports are constructed from the BEA’s Input-Output accounts. Data from
1997 to today is available at https://apps.bea.gov/iTable/iTable.cfm?reqid=52&step=102&

isuri=1&table_list=4&aggregation=sum. Historical data is available at https://www.bea.gov/
industry/input-output-accounts-data.

BEA National Income and Product Accounts We use quantity and price indexes on personal
consumption expenditures, equipment investment, and nonresidential fixed investment from the
BEA’s National Income and Product Accounts. These data are available at https://www.bea.

gov/national/nipaweb/DownSS2.asp

BEA Industry Accounts Data on quantity and price indexes of downstream industries’ mate-
rial use from the BEA’s Industry Accounts. Data from 1997 to today is available at https://apps.
bea.gov/iTable/iTable.cfm?reqid=56&step=2&isuri=1#reqid=56&step=2&isuri=1. Histori-
cal data is available at https://www.bea.gov/industry/historical-industry-accounts-data.
Note that since these downstream industries are not necessarily in the manufacturing sector, they
are not necessarily covered by the NBER-CES manufacturing industry database.

UN Statistics Division Real GDP, the GDP deflator, both in local currency, and the nominal
exchange rate are from the United Nation’s Statistics Division. These data are available at https:
//unstats.un.org/unsd/snaama/Downloads.

U.S. export data The data on exports are from the U.S. Census and are available from Peter
Schott’s website http://faculty.som.yale.edu/peterschott/sub_international.htm. The data
are available with SIC industry codes between 1972 and 1997, and with NAICS industry codes there-
after. We use the NBER CES SIC4 to NAICS6 concordance based on sales weights to convert the
SIC codes into NAICS equivalents and then aggregate to the 3-digit NAICS level. The sales shares
to foreign countries sEX

d,i,t are constructed based on sales to all countries that joined the OECD prior
to year 2000. These are Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland,
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France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, the Republic of Korea, Luxem-
bourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Spain, Sweden, Switzerland,
Turkey, the United Kingdom, and the United States.
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Table D1: Summary Statistics of Utilization Rates by 3-digit NAICS Manufacturing Industries

Industry NAICS p10 Median p90 Mean S.D. Skewness Kurtosis Durable

Food 311 79.6 82.3 85.2 82.4 2.4 0.3 2.5 no
Beverage and Tobacco Products 312 68.3 79.2 83.0 77.3 5.3 -0.5 2.1 no
Textile Mills 313 68.3 82.0 89.5 79.8 8.6 -0.8 3.2 no
Textile Product Mills 314 69.8 82.3 90.4 80.9 8.3 -0.8 3.2 no
Apparel 315 71.0 80.2 84.2 79.0 4.9 -0.9 3.4 no
Leather and Allied Products 316 59.3 74.9 82.1 72.8 8.8 -1.2 3.7 no
Wood Products 321 63.8 79.2 85.2 77.1 8.4 -1.2 4.6 yes
Paper 322 81.4 87.6 91.4 86.9 4.2 -0.2 2.4 no
Printing and Related Support Activities 323 72.2 82.7 89.3 81.3 7.6 -1.0 3.8 no
Petroleum and Coal Products 324 77.3 87.1 92.6 85.7 5.8 -0.7 2.8 no
Chemicals 325 72.1 77.8 83.1 77.7 4.3 -0.4 2.3 no
Plastics and Rubber Products 326 71.4 83.7 89.6 82.4 7.2 -0.9 3.3 no
Nonmetallic Mineral Products 327 62.3 77.2 84.0 75.3 9.2 -1.6 5.3 yes
Primary Metals 331 68.2 79.6 89.5 79.3 9.3 -0.7 3.4 yes
Fabricated Metal Products 332 71.7 77.7 84.4 77.4 5.7 -0.2 3.1 yes
Machinery 333 67.6 78.9 87.0 77.8 7.8 -0.2 2.5 yes
Computer and Electronic Product 334 70.1 79.0 84.2 78.2 5.7 -1.0 4.0 yes
Electrical Equipment, Appliances, and Components 335 73.2 82.8 90.6 82.6 6.7 -0.2 2.6 yes
Transportation Equipment 336 66.4 75.6 81.5 74.4 6.1 -1.0 4.1 yes
Furniture and Related Products 337 68.0 77.8 84.1 76.8 7.4 -0.2 3.9 yes
Miscellaneous 339 72.8 76.9 79.7 76.3 3.1 -0.5 3.1 yes

All 70.0 79.8 88.6 79.1 7.6 -0.8 4.4

Source: Federal Reserve Board
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E Appendix: Notes on Shea’s instrument

In this Appendix we provide additional notes on our version of John Shea’s instrument as described
in Section 3.2. In particular, we next specify a condition that guarantees that criteria (1), (2), and
(3) as described in the text hold. Our starting point is equation (21).

As noted in Shea (1993b), measuring direct linkages between two industries is generally not
sufficient for satisfy criteria (1), (2), and (3). Nor are ultimate cost or sales shares sufficient.
Following Shea, we therefore use information from both direct and ultimate cost and sales shares.
We next describe our definitions of these shares.

E.1 Demand shares

Let pi denote the price and yi the quantity produced by industry i. Let further xj,i denote industry
j′s usage of i’s output. Lastly, let di denote the value of final demand for the good produced by
industry i.

E.1.1 Direct demand share

We define the direct demand share of industry j for industry i as

ddsj,i =
pixj,i∑
j pixj,i

.

While alternative definitions are sensible, we choose the denominator such that
∑

j ddsj,i = 1.

E.1.2 Ultimate demand share

Market clearing implies that

piyi =
∑
j

pixji + di =
∑
j

µcj,ipjyj + di,

where µcj,i =
pixj,i
pjyj

is the cost share of i in j’s output. We can then stack the system in matrix form.

Using the notation

py =

 p1y1
...

pIyI

 , d =

 d1
...
dI

 , Γc =

 µc1,1 · · · µc1,I
...

. . .
...

µcI,1 · · · µcI,I

 ,

we can write
py = d+ (Γc)′ py,

or
py =

(
I − (Γc)′

)−1
d.

Based on this relationship, we define the ultimate demand share of industry j for the output of
industry i as

udsj,i =
1

piyi
·
(
I − Γc′

)−1

i,j
· dj ,
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where (I − Γc′)−1
i,j is the (i, j)th element of matrix (I − Γc′)−1. By construction,

∑
j udsj,i = 1.

E.2 Cost shares

E.2.1 Direct cost share

We define industry j’s direct cost share for industry i as

dcsi,j =
pjxi,j∑
j pjxi,j

.

Notice that
∑

j dcsi,j = 1.

E.2.2 Indirect cost share

Let vai denote industry i’s value added, then

piyi = vai +
∑
j

pjxi,j = vai +
∑
j

µsi,jpjyj ,

where µsi,j =
pjxi,j
pjyj

is industry j’s sales share to industry i. Using the notation

py =

 p1y1
...

pIyI

 , va =

 va1
...
vaI

 , Γs =

 µs1,1 · · · µsI,i
...

. . .
...

µsI,1 · · · µsI,I

 ,

we can then stack the system in matrix form and write

py = va+ Γspy,

or
py = (I − Γs)−1 va.

The ultimate cost share of industry j for industry i is then defined as

ucsi,j =
1

piyi
· (I − Γs)−1

i,j · vaj ,

where (I − Γs)−1
i,j denotes the (i, j)th element of matrix (I − Γs)−1. Notice that

∑
j ucsi,j = 1.

E.3 Our version of Shea’s instrument

We define our version of Shea’s instrument as

instShea
i,t =

∑
j

sMj,i,t−11

{
min {ddsj,i,t−1,udsj,i,t−1}

max {dcsj,i,t−1, ucsj,i,t−1, dcsi,j,t−1,ucsi,j,t−1}
> 3

}
∆ lnMj,t. (E1)

Conditions (1), (2), and (3) as defined in Section 3.2 are satisfied because (1) j’s the demand
share from i is large relative to j’s cost share from i (2) and i’s cost share from j (3).
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F Appendix: Additional Results

F.1 Ad-hoc estimation of the supply curve

In this Appendix, we show the results from an ad-hoc estimation of the supply curve, which does
not use the guidance of the model in Section 2. To do so, we estimate the specification

∆ lnP Yi,t = β0 + β1∆ lnYi,t + β2 (∆ lnYi,t)
2 + controls + εi,t,

using the WID and Shea’s instrument as well as their squares to address simultaneity.
The results are shown in Table F1. The key problem with using this ad-hoc specification is

that the first stage for the squared term is uniformly weak across all three specifications (F < 3).
Based on our instruments, it is therefore not possible to estimate the curvature of the supply curve
without the structure of the model.

F.2 Estimates of the reduced form

Linear model Specifications (1) and (2) of Table F2 show estimates of the linear reduced form
without and with controlling for changes imports and inventory accumulation. All coefficients have
the expected sign, and those on ∆ξi,t and ∆ei,t are highly significant. Since imports and inventory
accumulation are potentially correlated with the error, it is not clear as to whether to include them
in the regression. Since doing so has little effect on the other coefficients, we proceed with including
them.

In specification (3) we add industry fixed effects, time fixed effects, and time fixed effects
interacted with the foreign sales share. While the coefficients on ∆ξi,t and ∆ei,t change little, the
standard error on the coefficient of ∆ei,t more than doubles. The reason is that, taken together,
these fixed effects explain approximately 94 percent of the variation in the exchange rate variable
(the time fixed effects interacted with the foreign sales share alone explain 92.6 percent). An
implication of this is that the main effect of the effective exchange rate will be imprecisely estimated
in all specifications. When we instrument for ∆ξi,t with the WID instrument, Shea’s instrument,
or both (specifications 4 to 6), the estimates remain very stable around 0.9.

Robustness We next consider a number of robustness checks. In specifications (1) of Table F3,
we drop unit variable costs and its interaction with the utilization rate from the regression. The
estimates change very little. The estimates are also robust to alternatively dropping the change
in capacity and its interaction from the regression (specification (2)). In specifications (3) and (4)
we add the change in future prices and a lagged dependent variable. Both of these variables are
significant, but including them in the regression barely affects the estimates. We further estimate
a specification with all second order terms. Specification (5) includes squares and interactions of
all control variables. The interaction term ∆ξi,t · (ui,t−1 − ūi) falls slightly in absolute magnitude
(to -2.55), but it remains significant at the one percent level. Finally, specification (6) presents
estimates when we include all second order terms in addition to the change in future prices and a
lagged dependent variable. In this preferred specification coefficient on ∆ξi,t · (ui,t−1 − ūi) is -2.56
and that on ∆ei,t · (ui,t−1 − ūi) is −17.53. Hence, that the production response depends on the
initial utilization rate is robust to including or dropping a large number controls.
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Table F1: Ad-hoc estimation

Dependent variable: ∆ lnPY
i,t

Estimator 2SLS 2SLS 2SLS

Instrument(s):

Main effect WID, Shea

Squared term WID, Shea

(1) (2) (3)

∆ lnYi,t 0.50 0.18 0.20
(0.37) (0.12) (0.12)

(∆ lnYi,t)
2

-2.90 -0.88 -0.92
(1.41) (0.60) (0.67)

∆ lnQi,t -0.14
(0.11)

∆ ln UVCi,t 0.89 0.90
(0.03) (0.04)

R-squared 0.343 0.900 0.901

Fixed Effects yes yes yes

First stage and instrument diagnostics†

F Main effect 9.81 12.57 17.44

F Squared term 2.47 2.44 2.45

Cragg-Donald Wald F 5.61 5.87 3.94

SW F Main effect 13.27 19.80 23.77

SW F Squared term 3.30 3.32 3.29

Hansen J (p-value) 0.918 0.960 0.948

Notes: Driscoll-Kraay standard errors are reported in parentheses.
†: F is the standard F-statistic. For details on the Cragg-Donald statistic, see Cragg and Donald (1993) and
Stock and Yogo (2002). SW F is the Sanderson and Windmeijer (2016) conditional F-statistic.

F.3 Consistency of estimates of structural and reduced form

We finally ask the question whether the estimates of the structural form and the reduced form
are consistent with one another. How much production responds to an outward shift in demand
depends both on the supply elasticity and the elasticity of demand. In Figure F1 we plot this
elasticity of production with respect to the demand shock ∆ξi,t. The figure shows both the direct
estimate based on the reduced form and the response implied by the estimated supply elasticity. We
plot this latter response for three alternative demand elasticities, σ = 1, 2, and 3. As is clear from
the figure, both estimates are broadly consistent with one another if one believes that the demand
elasticity is in this range. On the other hand, and as discussed in Appendix C, measurement
problems can imply that the estimates of structural and reduced form deliver different conclusions
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Table F2: Estimates of the linear reduced form

Dependent variable: ∆ lnXi,t

Estimator OLS OLS OLS 2SLS 2SLS 2SLS

Instrument(s) WID Shea WID, Shea

(1) (2) (3) (4) (5) (6)

∆ξi,t 0.89 0.91 0.83 0.93 0.89 0.90
(0.08) (0.09) (0.12) (0.43) (0.14) (0.13)

∆πi,t -0.03 -0.03 -0.05 -0.07 -0.06 -0.06
(0.11) (0.11) (0.12) (0.12) (0.12) (0.11)

∆ei,t 1.94 2.07 1.69 1.53 1.59 1.58
(0.60) (0.45) (1.02) (1.31) (0.97) (0.98)

∆ lnQi,t 0.69 0.79 0.65 0.63 0.64 0.64
(0.07) (0.07) (0.08) (0.11) (0.08) (0.09)

∆ ln UVCi,t -0.08 -0.05 -0.12 -0.12 -0.12 -0.12
(0.05) (0.05) (0.04) (0.04) (0.04) (0.04)(

∆Y inv
i,t −∆Y inv

i,t−1
)
/Yi,t−1 0.10 0.03 0.03 0.03 0.03

(0.03) (0.02) (0.02) (0.02) (0.02)

∆IMi,t/Yi,t−1 -0.07 0.15 0.11 0.12 0.12
(0.08) (0.08) (0.18) (0.09) (0.08)

R-squared 0.691 0.705 0.808 0.807 0.807 0.807

Fixed Effects no no yes yes yes yes

First stage and instrument diagnostics

F Main effect 8.20 398.33 216.07

Hansen J (p-value) 0.937

Notes: The estimates are based on equation (18). Driscoll-Kraay standard errors are reported in parentheses.

even if the true data generating process is as specified by the model. Our preferred interpretation
is therefore that the estimates of structural and reduced form are qualitatively consistent with one
another, without taking a stand on whether they are quantitatively consistent.
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Table F3: Robustness of the reduced form

Dependent variable: ∆ lnXi,t

Estimator 2SLS

Instruments

Main effect WID, Shea

Interaction (· (ui,t−1 − ūi)) WID, Shea

(1) (2) (3) (4) (5) (6)

∆ξi,t 0.79 0.88 0.80 0.81 0.85 0.82
(0.12) (0.13) (0.13) (0.13) (0.13) (0.14)

∆ξi,t · (ui,t−1 − ūi) -3.29 -3.35 -3.38 -3.34 -2.55 -2.56
(0.89) (0.82) (0.96) (0.96) (1.03) (1.08)

∆ei,t 1.04 1.43 0.96 1.31 1.73 1.73
(0.81) (1.21) (0.86) (0.84) (0.98) (1.01)

∆ei,t · (ui,t−1 − ūi) -20.82 -22.58 -20.65 -19.60 -19.47 -17.53
(4.77) (5.69) (4.55) (4.35) (5.26) (4.88)

(ui,t−1 − ūi) -0.27 -0.06 -0.26 -0.26 -0.21 -0.22
(0.04) (0.06) (0.04) (0.05) (0.06) (0.07)

∆ lnPY
i,t+1 0.07 0.07

(0.02) (0.02)

∆ lnYi,t−1 0.12 0.14
(0.04) (0.05)

R-squared 0.829 0.785 0.831 0.833 0.844 0.848

Fixed Effects yes yes yes yes yes yes

Drop ∆UVCi,t and interaction yes no no no no no

Drop ∆Qi,t and interaction no yes no no no no

All second order terms no no no no yes yes

Other controls yes yes yes yes yes yes

First stage and instrument diagnostics†

F Main effect 161.68 162.23 151.81 127.33 92.20 82.60

F Interaction 22.97 17.48 17.21 17.28 16.73 16.32

Cragg-Donald Wald F 38.43 36.92 38.26 36.62 35.11 34.00

SW F Main effect 227.11 231.78 210.66 176.37 131.46 116.12

SW F Interaction 30.94 24.63 23.67 23.99 23.27 23.19

Hansen J (p-value) 0.866 0.664 0.720 0.792 0.923 0.817

Notes: The estimates are based on equation (18). Driscoll-Kraay standard errors are reported in parentheses.
†: F is the standard F-statistic. For details on the Cragg-Donald statistic, see Cragg and Donald (1993) and
Stock and Yogo (2002). SW F is the Sanderson and Windmeijer (2016) conditional F-statistic.
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Figure F1: The production response to demand shocks
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G General equilibrium model

G.1 Model setup

G.1.1 Households

Letting σ denote the intertemporal elasticity of substitution, and η the Frisch labor supply elasticity,
households maximize

E0

∞∑
t=0

βt

[
(Ct)

1− 1
σ

1− 1
σ

− χ
∑I

i=1 (ni,t)
1+ 1

η

1 + 1
η

]
subject to the budget constraint

P Yt Ct = bt
∑
i

wi,tni,t + Πt − τ lt .

In our model the aggregate shock bt is the source of business cycle fluctuations. Since this shock
scales the marginal utility of consumption, it can be interpreted as a demand shock. Relative to a
shock that enters the utility function, bt does not impact welfare calculations through a direct effect.
Of course, it is related to the labor wedge (see e.g. Karabarbounis, 2014). In the budget constraint,
P Yt is the price of output, Πt are profits and τ lt lump-sum taxes. Sector i’s wage is denoted by wi,t
and labor by ni,t. Households could trade an uncontingent bond to price the interest rate, but we
omit this part for simplicity. Optimal behavior implies that

φ (ni,t)
1
η = bt (Ct)

− 1
σ
wi,t

P Yt
. (G1)

G.1.2 Final aggregating firm

The final aggregating firm produces output Yt, which is sold to the final consumer and to the
government.It uses a constant elasticity of substitution (CES) aggregator with elasticity ϑ to as-
semble the final good from intermediates,

Yt =

(∫
Xt (`)

ϑ−1
ϑ d`

) ϑ
ϑ−1

.

Demand for output from intermediary ` is

Xt (`) = Yt

(
PXt (`)

P Yt

)−ϑ
,

and the price index

P Yt =

(∫ (
PXt (`)

)1−ϑ
d`

) 1
1−ϑ

.

We next introduce a unit mass of intermediaries, indexed `, which buy goods from all industries,
differentiate them, and sell them to the final aggregating firm. In our model, their only role is to
add a markup over marginal costs. In a more general model, these intermediaries could have sticky
prices. We will need these intermediaries to discuss the mapping from output to real marginal costs
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(see Section 4.3.2), in which we will not impose that these intermediates set a constant markup.
Each intermediary ` uses the a CES aggregator

Xt (`) =

(∑
i

ψ
1
ε
i (Xi,t (`))

ε−1
ε

) ε
ε−1

where the sum is over all the different industries. Cost minimization implies that

Xi,t (`) = ψiXt (`)

(
P Y,ai,t

mct (`)

)−ε
where mct (`) denotes the marginal cost of intermediary `,

mct (`) =

(∑
i

ψi,t

(
P Y,ai,t

)1−ε
) 1

1−ε

.

In the baseline model prices are flexible, and each intermediary ` charges a constant markup over
marginal costs,

PXt (`) =
ϑ

ϑ− 1
mct (`) .

Note next that all intermediaries have the same technology. It follows that mct (`) = mct and hence
PXt (`) = PXt = P Yt . Then

mct

P Yt
=

∑
i

ψi

(
P Y,ai,t

P Yt

)1−ε 1
1−ε

(G2)

and

Xi,t = ψiYt

(
P Y,ai,t

P Yt

P Yt
mct

)−ε
. (G3)

Further, in the baseline model mct
PYt

= ϑ−1
ϑ .

G.1.3 Capacity industries

The capacity industries in this general equilibrium extension are a simplified version of those mod-
elled in Appendix C. The main difference, is that capacity qi,t and κi,t are treated as fixed here,
while they are endogenously chosen Appendix C. Each capacity industry is populated by a unit
continuum of monopolistic competitors. An aggregating firm maximizes

P Yi,tYi,t −
∫ 1

0
pyi,t (j) yi,t (j) dj

subject to the production function

Yi,t =

(∫ 1

0
ωi,t (j)

1
θ (yi,t (j))

θ−1
θ dj

) θ
θ−1
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and the capacity constraint
yi,t (j) ≤ qi,t (j) .

Optimal behavior implies that

yi,t (j) = ωi,t (j)Yt

[
pyi,t (j) + ρi,t (j)

P Y,ai,t

]−θ
,

and

P Y,ai,t =

(∫ 1

0
ωi,t (j)

(
pyi,t (j) + ρi,t (j)

)1−θ
dj

) 1
1−θ

,

where ρi,t (j) is the multiplier on the capacity constraint.
Once monopolistic competitors are aggregated to the industry level (see Section 2), we obtain

the following set of equations at the industry level. First, price setting implies that

P Y,ai,t

P Yt
=

θ̃i,t

θ̃i,t − 1

1
pyi,t

PY,ai,t

1

zi,tκαi,t−1

pvi,t

P Yt
(G4)

where the effective demand elasticity is

θ̃i,t = θ

∫ ω̄i,t
0 ωi,tdG (ωi,t)∫ ω̄i,t

0 ωi,tdG (ωi,t) + ω̄i,t
∫∞
ω̄i,t

dG (ωi,t)
(G5)

and the relative price is

pyi,t

P Y,ai,t

=

(∫ ω̄i,t

0
ωi,tdG (ωi,t) + ω̄

1− 1
θ

i,t

∫ ∞
ω̄i,t

ω
1
θ
i,tdG (ωi,t)

) 1
θ−1

. (G6)

Second, the threshold variety ω̄i,t is determined by the condition

Yi,t =
qi,t
ω̄i,t

[
pyi,t

P Y,ai,t

]θ
(G7)

Third, demand for the variable input bundle vi,t is

zi,t (κi)
α vi,t = Eω [yi,t] (G8)

where

Eω [yi,t] =
qi,t
ω̄i,t

∫ ω̄s,t

0
ωi,tdG (ωi,t) + qi,t

∫ ∞
ω̄i,t

dG (ωi,t) (G9)
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G.1.4 Neoclassical (non-capacity) industries

Monopolistic competitors have the linear production function

yi,t = zi,tvi,t, (G10)

where vi,t is a bundle of variable inputs as discussed above. Non-capacity industries charge the
markup θnc

θnc−1 so that

pYi,t

P Yt
=

θnc
θnc − 1

1

zi,t

pvi,t

P Yt
. (G11)

G.1.5 The variable input bundle

Both capacity and non-capacity industries produce output from a variable input bundle that is
composed of labor and materials

vi,t =
[
ωvn,i (ni,t)

λ−1
λ + ωvM,i (Mi,t)

λ−1
λ

] λ
λ−1

.

The materials bundle Mi,t is itself a CES aggregate of the form

Mi,t =

∑
j

(
ωMi,j
) 1
µ (mi,j,t)

µ−1
µ


µ
µ−1

.

We use the notation that mi,j,t denotes material shipments from industry j to industry i. The
parameters λ and µ are elasticities of substitution and ωvn, ωvM , and ωMi,j weights. The demand
curves for inputs are

ni,t = ωvn,ivi,t

(
wi,t
pvi,t

)−λ
, (G12)

Mi,t = ωvM,ivi,t

(
PMi,t
pvi,t

)−λ
, (G13)

mj,i,t = ωMj,iMi,t

(
P Y,aj,t

PMi,t

)−µ
, (G14)

and the price indexes are

pvi,t =
(
ωvn (wi,t)

1−λ + ωvM
(
PMi,t

)1−λ) 1
1−λ

, (G15)

PMi,t =

∑
j

ωMj,i

(
P Y,aj,t

)1−µ
 1

1−µ

. (G16)
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G.1.6 Market clearing and government

The market for aggregate output clears,

Yt = Ct +Gt, (G17)

where Gt is government expenditures on output. These expenditures are financed with a contem-
poraneous lump-sum tax, Gt = τ lt . Further, industries’ output is sold for final use (Xi,t) and as
intermediates downstream,

Yi,t = Xi,t +
∑
j

mj,i,t. (G18)

G.2 Equilibrium

Let Ic and Inc denote the number of capacity and non-capacity industries, respectively. The total
number of industries is I = Ic + Inc.

An equilibrium in this economy is a set of prices{
P Y,ai,t

P Yt

}I
i=1

,

{
pvi,t

P Yt

}I
i=1

,

{
wi,t

P Yt

}I
i=1

,

{
PMi,t

P Yt

}I
i=1

,

{
pyi,t

P Y,ai,t

}Ic
i=1

,

quantities

Yt, ct, {Yi,t}Ii=1 , {vi,t}
I
i=1 , {ni,t}

I
i=1 , {Mi,t}Ii=1 , {Eω [yi,t]}I

c

i=1 , {Xi,t}Ii=1 , {mj,i,t}I,Ji=1,j=1 ,

threshold varieties {ω̄i,t}I
c

i=1, effective demand elasticities
{
θ̃i,t

}Ic
i=1

such that households and firms

optimize and markets clear. This requires that equations (G1), (G2), (G3), (G4), (G5), (G6), (G7),
(G8), (G9), (G10), (G11), (G12), (G13), (G14), (G15), (G16), (G17), and (G18) hold and that
mct
PYt

= ϑ−1
ϑ .

G.3 Calibration

We calibrate our model in two steps. First, we set a number of parameters to (external) conventional
values in the literature. Second, we choose a other parameters to match the estimated industry-
level supply curve in the data. We also discuss below which of the 71 industries in the data we
calibrate as capacity and which we calibrate as non-capacity industries.

Table G1 summarizes the benchmark calibration. We highlight the role of two parameters. First,
we choose a Frisch labor supply elasticity of 2. This value is greater than most micro estimates,
but in line with the argument in Hall (2009). Second, we assume that the substitutability of inputs
is very limited in the short run and set the elasticities of substitution to 0.05. This choice is based
on recent estimates by Atalay (2017), Boehm, Flaaen, and Pandalai-Nayar (2019), and others who
document very limited substitutability between inputs at business cycle frequencies.

Weights in various CES aggregators are calibrated to expenditure and cost shares, which we
take from the 2007 Use Tables of the Bureau of Economic Analysis. In particular, we use (1) the
final expenditure shares in output to calibrate {ψi}. We use (2) the share of labor in total variable
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Table G1: Baseline calibration

Parameter Description Value Notes

σ Intertemporal elasticity of substitution 0.75 standard

η Frisch labor supply elasticity 2 Hall (2009)

θnc Parameterizes markup in nc-industries 10 standard

θ Parameterizes markup in c-industries 14.84 internally calibrated, see text

ϑ Parameterizes markup in final goods sector 10 standard

sGY Share of government expenditure in GDP 0.2 National Accounts

ε, µ, λ Elasticities of substitution 0.05 see text

{zi, κi} Productivity parameters 1 normalization

V Variance of distribution G 1.75 internally calibrated, see text

{kci } Capital stock in c-industries internally calibrated, see text

{ψi} Weight in final output bundle match expenditure share in industry i

{ωvn,i} Labor weight in variable input aggregator match industry i’s labor cost share

{ωMj,i} Weights in materials aggregator match industry j’s material cost share from i

costs to calibrate {ωvn,i}, and then set ωvM,i = 1− ωvn,i. Lastly, we (3) calibrate {ωMj,i} such that j’s
material cost share from i equals the measured share in the data.

In a second step, we choose the elasticity θ and the variance of the log-normal distribution
G of idiosyncratic demand shocks ω for monopolistic competitors in capacity industries such that
the supply curve matches the estimate in the data. The mean of distribution G is normalized
to 1. When doing so, we also choose industries’ capital stocks kci to center their utilization rate
(equivalently ω̄i,t) at the portion of the supply curve that has the curvature as estimated in the
data. As Figure G1 shows, the fit between model and data is almost exact.

We next discuss which industries we calibrate as capacity industries. Since the Survey of Plant
Capacity is limited to manufacturing industries, we have to decide whether our estimates apply to
industries not covered by the survey. The Survey of Plant Capacity aims at measuring a capital-
based notion of capacity utilization (see Section 3.1.1 and Appendix A). We then classify an industry
as a capacity industries if this notion of capital-based capacity utilization appears to exist in the
industry. Table G2 shows our classification.
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Figure G1: Calibration of the industry level supply curve

81



Table G2: Calibration of industry types

IO code Industry name Calibration Analogy to capital-based capacity utilization

Sample Baseline All private

111CA Farms 0 1 1 Major land use, U.S. Department of Agriculture, World Bank

113FF Forestry, fishing, and related activities 0 1 1 Major land use, U.S. Department of Agriculture, World Bank

211 Oil and gas extraction 1 1 1 in sample

212 Mining, except oil and gas 1 1 1 in sample

213 Support activities for mining 1 1 1 in sample

22 Utilities 0 1 1 Capacity Utilization: Electric and gas utilities, FRB

23 Construction 0 1 1 Capital-based capacity utilization

321 Wood products 1 1 1 in sample

327 Nonmetallic mineral products 1 1 1 in sample

331 Primary metals 1 1 1 in sample

332 Fabricated metal products 1 1 1 in sample

333 Machinery 1 1 1 in sample

334 Computer and electronic products 1 1 1 in sample

335 Electrical equipment, appliances, and components 1 1 1 in sample

3361MV Motor vehicles, bodies and trailers, and parts 1 1 1 in sample

3364OT Other transportation equipment 1 1 1 in sample

337 Furniture and related products 1 1 1 in sample

339 Miscellaneous manufacturing 1 1 1 in sample

311FT Food and beverage and tobacco products 1 1 1 in sample

313TT Textile mills and textile product mills 1 1 1 in sample

315AL Apparel and leather and allied products 1 1 1 in sample

322 Paper products 1 1 1 in sample

323 Printing and related support activities 1 1 1 in sample

324 Petroleum and coal products 1 1 1 in sample

325 Chemical products 1 1 1 in sample

326 Plastics and rubber products 1 1 1 in sample

42 Wholesale trade 0 0 1

441 Motor vehicle and parts dealers 0 0 1

445 Food and beverage stores 0 0 1

452 General merchandise stores 0 0 1

4A0 Other retail 0 0 1

481 Air transportation 0 1 1 Transportation capacity

482 Rail transportation 0 1 1 Transportation capacity

483 Water transportation 0 1 1 Transportation capacity

484 Truck transportation 0 1 1 Freight capacity, JOC Truckload capacity index, JOC.com

485 Transit and ground passenger transportation 0 1 1 Transportation capacity

486 Pipeline transportation 0 1 1 Transportation capacity

487OS Other transportation and support activities 0 1 1 Transportation capacity

493 Warehousing and storage 0 1 1 Transportation capacity

511 Publishing industries, except internet (includes software) 0 0 1

512 Motion picture and sound recording industries 0 0 1

513 Broadcasting and telecommunications 0 0 1

514 Data processing, internet publishing, and other information services 0 0 1

521CI Federal Reserve banks, credit intermediation, and related activities 0 0 1

523 Securities, commodity contracts, and investments 0 0 1

524 Insurance carriers and related activities 0 0 1

525 Funds, trusts, and other financial vehicles 0 0 1

HS Housing 0 1 1 Capital-based capacity utilization

ORE Other real estate 0 1 1 Capital-based capacity utilization

532RL Rental and leasing services and lessors of intangible assets 0 1 1 Capital-based capacity utilization

Continued on next page
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Table G2 – continued from previous page

IO code Industry name Calibration Analogy to capital-based capacity utilization

Sample Baseline All private

5411 Legal services 0 0 1

5415 Computer systems design and related services 0 0 1

5412OP Miscellaneous professional, scientific, and technical services 0 0 1

55 Management of companies and enterprises 0 0 1

561 Administrative and support services 0 0 1

562 Waste management and remediation services 0 1 1 Capital-based capacity utilization

61 Educational services 0 0 1

621 Ambulatory health care services 0 1 1 Capital-based capacity utilization

622 Hospitals 0 1 1 Occupancy rates

623 Nursing and residential care facilities 0 1 1 Occupancy rates

624 Social assistance 0 0 1

711AS Performing arts, spectator sports, museums, and related activities 0 1 1 Occupancy rates

713 Amusements, gambling, and recreation industries 0 1 1 Occupancy rates

721 Accommodation 0 1 1 Occupancy rates

722 Food services and drinking places 0 1 1 Occupancy rates

81 Other services, except government 0 0 1

GFGD Federal general government (defense) 0 0 0

GFGN Federal general government (nondefense) 0 0 0

GFE Federal government enterprises 0 0 0

GSLG State and local general government 0 0 0

GSLE State and local government enterprises 0 0 0
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G.4 Mapping from output to real marginal costs

Real marginal cost as a function of aggregate output mct
PYt

(Yt) is defined by equations (G1), (G2),

(G3), (G4), (G5), (G6), (G7), (G8), (G9), (G10), (G11), (G12), (G13), (G14), (G15), (G16), and
(G18), while holding the marginal utility of consumption (or consumption Ct) constant.

The partial elasticity is then defined as in Section 4.3.2. In special cases, this mapping can be
calculated analytically. For the full model, we compute it numerically.

G.5 Additional results

Heterogeneity in industries’ responses to aggregate shocks As discussed in Section 4.2,
industries’ differential responses to aggregate shocks affect the curvature of the aggregate supply
curve in the presence of non-linearities. The reason is that curvature has more bite when an
industry’s response to a shock is large. We demonstrate here that this channel is quantitatively
unimportant in our model and calibration.

Figure G2 shows a histogram of industries’ responses to a shock, which reduces aggregate output
by 5 percent. As the figure shows, all industries’ output falls by slightly more than 5 percent, thereby
limiting this heterogeneity channel in shaping the aggregate supply curve. Capacity industries’
output falls by slightly less. The reason is as follows. Since the supply curves of capacity industries
are upward-sloping, a drop in demand reduces their price. Further, non-capacity industries operate
constant returns to scale technologies, so their prices are not directly impacted by the fall in output.
Substitution towards capacity industries explains why their output falls slightly less.
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Figure G2: Heterogeneity

Notes: This figure is based on the benchmark calibration as described in Appendix G.3
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