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1 Introduction

The 2008 world financial crisis started in what was supposed to be a relatively small, and
segmented market. At that time the outstanding value of Sub-Prime debt was a tad below a
trillion dollars, while the market value of credits in both the formal and shadow US financial
sectors was higher than 23 trillion dollars. So, a default on 4 percent of an isolated market
(the high-risk mortgages) was expected to have an equal minuscule effect. Not surprisingly,
the Obama administration only requested 800+ billion dollars for the rescue package. It is
obvious, today, that the systemic consequences of the sub-prime crisis were unexpectedly
larger. The shock propagated to other financial sectors and countries. The world total losses
reached several trillion. This has spurred research on systemic risk, and in particular on the
estimation of the underlying financial networks governing the propagation of shocks - or as
it is sometimes known as financial contagion.

The estimation of systemic risk has been closely linked to the estimation of financial
networks. Banks can be interconnected through many different channels. One type of link
is related to the exposure banks have to similar microeconomic or industry shocks. For
example, two bank’s balance sheets can be interconnected because both are lending to the
same firm or sector and it suffers a shock. The second type of channel is related to interbank
contracts. Two banks can be interrelated because one bank lends to the other, or they hold
each other’s liabilities. Therefore, a deterioration in the balance sheet of the borrowing bank
affects the quality of the assets of the lending bank. Finally, banks can be exposed to similar
macroeconomic shocks such as exchange rate, inflation rate, interest rates, economic activity,
real estate, etc. In sum, there are many possible ways in which banks are linked to each
other.1 The objective of the empirical literature has been to estimate the “average” linkage
among banks, and to determine the contribution each bank has to the overall risk in the
economy — a measure of systemic risk.

Observing and understanding the contracts underlying the links between banks is some-
times challenging, however. Direct lending from one bank to the other of course is simple
to document. The relationship across other contracts — sometimes complex and through
indirect channels — implies that the information required to estimate the financial networks
is daunting. First, some trivial aspects, such as the currency of denomination of a contract,
is unclear. For example, a financial contract can specify all its flows and payments in US
Dollars, but its return can be perfectly correlated with the Euro-Dollar rate. So, even though
this is a contract denominated in the local currency, it is actually a de-facto foreign exchange
contract. Contracts such as default swaps with tranches, or contracts that are indexed to
macroeconomic variables are complex and fully understanding the type of connection that
they generate across two financial institutions might be impossible. Second, most of the
times the contagion path is outside the regulatory or country jurisprudence. For example,
interconnections can occur through firms that might not even reside in the country of anal-

1See Allen and Gale (2000), Freixas et al. (2000) for earlier contributions, and Acemoglu et al. (2015),
Allen et al. (2012), Caballero and Simsek (2013), Elliott et al. (2014), and Cabrales et al. (2014) for recent
theoretical papers. Empirical papers that estimate financial networks include Billio et al. (2010), Merton
et al. (2013), Adrian and Brunnermeier (2016), and Girardi and Ergün (2013).
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ysis. For instance, assume a bank lends to Intel, who sells to a South Korean firm, that
manufactures a monitor sold to a California firm, who gets a loan from a different bank.
In this setting, the two banks are related through the South Korean firm. However, the
requirements on reporting to be able to uncover such relationship are impossible — i.e. the
US regulator can’t force the South Korean company to reveal its clients and suppliers. The
complexity, number, and variety of contracts that can be used among financial institutions
have several implications in the estimation of networks. In principle, if every contract is
fully disclosed and documented the relation between banks could be described precisely. In
practice, however, the granularity and detail of the required information are unfeasible, even
to regulators and central banks. For this reason, the financial network literature tends to
simplify the information demands by approximating the underlying network using aggregate
data.

In the literature, two main approaches have been taken. The first one uses information-
theoretic principles to fill in the blanks of pairwise data using aggregate data. 2 For example,
one can read the total inter-bank debt from Form 10-Ks. After that, the worst-case scenario
can be evaluated by inferring the pair-wise debt structure using a maximum entropy principle.
Those methods, while used in some stress tests, only give a rough estimate of the debt
structures and do not fully utilize the information from time-varying data.

The second approach uses the correlation of prices of financial contracts Onnela et al.
(2004) to construct interbank financial networks. The estimates based on correlations can
be biased in the presence of heteroskedastic shocks.3 Furthermore, both of these approaches,
do not take into account the possibility that the network between banks is asymmetric,
non-linear, and that there might be more than one network at play.

First, for any given network, it is likely that the transmission of shocks between banks
is asymmetric and non-linear. In other words, the impact on the balance sheet of two
banks depends on the size of the shock — a small shock might imply a small propagation,
but a large shock might produce a large propagation. The reason is that larger shocks
might trigger clauses in the financial contracts that smaller shocks do not cause.4 More
importantly, regulation of financial institutions is inherently non-linear — bankruptcy for
instance, where the bank is allowed to operate freely within a capital requirement range,
but quite restrictively outside of it. This implies that the nature of the network might be
different depending on the size of the shock. In fact, the average correlation might severely
underestimate the transmission of shocks when a larger shock hits the system.

Second, and equally importantly, it is likely that there is more than a single network
describing the system. Each type of shock is likely to be transmitted through different
contracts and the propagation would be conditional on the shock. For example, imagine
that there are three banks, and two are negatively exposed to real estate movements while
the third one is positively exposed to real estate, but all three banks are negatively exposed

2See Upper (2011); Elsinger et al. (2013) for maximum entropy and Anand et al. (2015) for minimal
density

3See Forbes and Rigobon (2002) for the bias in assessing financial contagion when using correlations.
4As in Acemoglu et al. (2015)
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to interest rate increases. If in the economy there is an increase in interest rates, all three
banks move together, but if there is a decline in the price of real estate, only two are affected.
The correlation structure, and therefore the network, changes with the shock.

Third, both of the previous mechanisms imply that the propagation of shocks between
banks is asymmetric. For example, assume there are two banks, a large national bank (such
as CitiBank) and a small regional bank such as (Watertown Savings Bank). A shock that
decreases the value of the large bank’s assets by 10 percent might have an impact on the
small one that is very different from a shock that reduces the small bank’s assets by the same
proportion. The shock to the large bank might be more meaningful to the small one than
vice-versa. When the measurement of systemic risk uses either stock market prices, or credit
default swaps, these interactions are contemporaneous. Therefore, the estimation of even a
single network is complicated by endogenous variable biases. A correlation is incapable of
capturing these differences.

Consequently, the estimation of systemic risk in the financial system is complicated by
asymmetries, contemporaneous endogenous biases, and parameter instability. Our method-
ology makes several assumptions and simplifications to be able to solve the identification
problem. First, the underlying networks are unobservable, but the outcome of their in-
teractions is observable. In other words, the changes in bank balance sheets and financial
conditions are the outcomes that can be observed and it is the result of many interactions
acting jointly. Therefore, the estimation of the contingent financial networks is not only an
identification problem but also a computational challenge.

The second assumption is the realization that non-linearity and multi-networks are empir-
ically intertwined. In fact, the non-linearity is tantamount to the network being contingent
to the size of shock: larger shocks imply different transmission mechanisms than smaller
ones. There are a number of papers modeling financial networks demonstrating the cause
of potential shifts in the transmission mechanism. Some insist on the change of risk trans-
mission mechanism is induced by monetary policies (Altunbas et al., 2010). That is because
monetary policy has a significant effect on company financial decisions, which in turn could
change the structure of financial contracts and result in discontinuities in risk transmission
mechanisms. Others believe market volatility could result in a phase transition of non-linear
financial networks, which incurs new risk transmissions mechanism (Acemoglu et al., 2015).
Multiple networks can be a piecewise approximation of the non-linearity underlying these
papers. Therefore, we make two important assumptions about the structure of the network:
First, we estimate a collection of linear networks. In other words, in the case of non-linearity,
we approximate a non-linear network as a set of linear ones. In the case of different networks
for each type of shock, we approximate each one as a linear network. Second, we assume
that the overall outcome is a mixture of multiple underlying unobservable networks and the
shocks.

The identification problem is solved using the heteroskedasticity observed in the data.
The estimation imposes a maximum number of parameters that can be recovered from the
data; therefore, we limit the number of networks that can be estimated. This implies that
it is likely that in many circumstances we are still not capturing the full complexity in
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the financial system. In this case, however, our estimation procedure captures the most
“dissimilar” networks. Furthermore, we can evaluate and discuss the informational value
gained by allowing an additional network. Finally, we implement the estimation procedure
through an intuitive EM algorithm.

We apply our methodology to estimate the US financial network among the 10 largest
financial institutions in the country. The data collected are their credit default swaps. In
this paper, a first pass to the problem, we concentrate on estimating a small network.

The first contribution of the paper is the estimation of a mixture model of multiple
endogenous asymmetric linear networks.5 The intuition behind the estimation comes from
the fact that in a linear network the correlation structure across banks is the result of a linear
combination of the covariance implied by each network - where the weights are the relative
variances of each shock. When the variance of those shocks changes through the sample, the
weights change, leading to variation in the covariances. From that variation of the second
moment, it can be recovered the underlying structure of the networks. The identification
requires, therefore, finding periods where the shocks experience different volatilities. There
are two ways to do so: first, statistical identification where the changes in the variance in the
observed data determine the regimes. This procedure is very similar to the one developed
by Sentana and Fiorentini (2001). The advantage of this methodology is that it allows
estimating the asymmetry of large versus small shocks - where the statistical identification
truly captures the differences in the propagation mechanisms. The second alternative is to
find periods where macroeconomic shocks experience different variances and use those as
heteroskedastic sources. The advantage of this procedure is that the identification is closer
to economic events rather than statistical events. So, if the relationships are contingent
to the shocks this procedure allows us to estimate the networks that closely capture such
linkages.

We study 9 different macroeconomic variables that try to capture different aggregate
shocks that typically afflict economies: (1) commodity price shocks (WTI Oil Prices), (2)
Inflation (PriceStats daily inflation index), (3) Economic Activity (Non-farm payroll), (4)
Stock Market Prices (S&P), (5) Risk (VIX), (6) Housing Prices (Case & Shiller index), (7)
liquidity provision (short term interest rates), (8) exchange rates (nominal trade-weighted
exchange rate), and (9) the yield curve (the difference between the long and short interest
rates). Of course in a finite sample, it is not clear that all shocks occur - for instance high
inflation has not happened in a long time in the US. This implies that not all networks can
be identified.

When estimating multiple networks, the expectation-maximization (EM) algorithm, which
is commonly used for estimating mixture models, is adopted. The EM algorithm alternates
between an expectation (E) step, which updates the probability of a network dominating a
regime, and a maximization (M) step, which computes each network through heteroskedas-
ticity based on the probability updated in the E step.

The paper is organized as follows: In Section 2, a typical problem of the financial network
5The procedure follows Rigobon (2003).
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is formulated and the problem of identification is discussed. We start with a well-studied
two-bank case to provide some intuition of the identification problem, and then provide a
proof of solution uniqueness in the single network case. We discuss also the identification
problem when the data generating process is explained by multiple networks. Section 3
discusses the case when a single network is estimated. We present both the statistical and
the macroeconomic strategies of identification. Section 4 presents a test for the number of
networks. We find that in the 10 banks case we need 3 networks to be able to explain the
data. We present the results of the networks in this section. Finally, Section 5 concludes.

2 Modeling Financial Networks

The estimation of financial networks is not new. A significant proportion of papers, however,
concentrate on the estimation of symmetric single networks — non-directional, and non-
contingent graphs. Our first goal is to show the instability of the network. In this section, we
present first, some preliminary evidence based on correlations. We then introduce a linear
financial network model, and show: 1. how it can be uniquely identified with covariance
data; 2. together with heteroskedastic shocks, how it can explain the volatility in correlation
models, and 3. how the heteroskedasticity of shocks can be identified through macroeconomic
indices.

2.1 The Time-Varying Correlations

It is desired to find out how and why banks are related to each other, and which banks
are “crucial” in the risk transmission mechanisms, and which ones are less relevant. One
natural measure for those purposes is the correlation coefficients. In modern portfolio theory,
correlation coefficients also play an essential role. MPT quantitatively formalizes the concept
of diversification via the statistical notion of covariance, or correlation.

However, most of those applications of linear correlation models make an oversimplified
assumption, that the correlation coefficients of any two given financial instruments are time-
invariant, or at least time-invariant in the period of analysis.6 In practice, there are numerous
examples where that assumption does not apply. In this paper, we are concerned with the
systemic financial risks which primarily propagate through large banks, so we use the Credit
Default Swap (CDS) data of the top 10 US banks as an example.7

6Although most of the literature estimates the strength of the network transmission by using simple
correlations, there are notable exceptions that are worth highlighting. Adrian and Brunnermeier (2016)
proposes a new measure of comovement called CoVar — which is defined as the value at risk conditional on
the bank being in distress. Girardi and Ergün (2013) extend that measurement to expand the definition of
distress. These types of measures are consistent with networks being contingent.

7It is important to highlight that CDS might exhibit excessive comovement due to the presence of a
government guarantee. (Merton et al., 2013) uses a different approach to measure the credit risk of the banks.
They use contingent claims analysis instead of CDS. The CDS are partially guaranteed by government policy
— for instance, deposit insurance. Future research should evaluate the robustness of the results presented
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Figure 1: The 45 pairwise correlation coefficients of CDS of the top 10 US banks. The stock
exchange id numbers of the 10 banks are JPM, BAC, WFC, C, GS, MS, COF, HSBC, AXP,
and CSGN.

The change of volatility could due to either time-varying linear regression coefficients
(a.k.a. linear financial networks, as we will define later in the paper), or heteroskedestistic
shocks. Figure 1 shows the 45 pairwise correlation coefficients of CDS of the top 10 US
banks. It is immediately notable that the correlation cannot be considered time-invariant.
At an extreme, the correlation coefficient rises from -0.1 to 0.8 within 100 days. Up to this
point, it is unclear whether the time-varying correlation is a result of heteroskedasticity of
shocks, or a result of the structural change of risk propagation mechanisms, or both. The
two-banks illustrative example we give in Section 2.3.1 shows that all three cases are possible.
To distinguish the three cases, we need to develop a linear network model.

in this paper when different measures of financial performance are used.
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2.2 A Linear Network Model

Suppose there are N financial institutions (indexed by n = 1, 2, · · · , N) in a contingent
financial network, which denoted by the directed graph G = {V , E}. V is the set of nodes in
the graph and each node vn ∈ V corresponds to a financial institution n. Furthermore, each
edge eijm ∈ E denotes the mth risk spillover channel between node i and node j. Note that
m ∈ {1, 2, · · · ,M} and i, j ∈ {1, 2, · · · , N}.

There are two possible — simple — assumptions on how to implement the contingent
networks. One in which the shocks are idiosyncratic and hit each bank individually and
then they are propagated in the network, or the second one where the shocks are hitting the
system as a whole. The first assumption is one in which the systemic risk of an individual
shock affects is determined by the propagation between one bank and the other, while in
the second assumption the relative importance of the aggregate shocks is what makes them
systemic.

A simple framework where the shocks are idiosyncratic is as follows: Assume that at each
time instance t, each node in the contingent financial network receives a shock. When a shock
ϵm,t hits the market represented by channel m, it has an impact on financial institutions in
the network, both directly and indirectly. The direct impact is due to the fact that institution
i has some direct exposure in this market or shock, and it is denoted by θm,i,tϵm,t. Here we
assume that two time series θm,i,t and θm,j,t for any two institutions i and j are independent.
As a result, the variance-covariance matrix of direct shock is a diagonal matrix. In other
words, the exposure to the shock is orthogonal to each financial institution, although the
shock is common.

The second possible way to describe the network is one in which the impact of the
macroeconomic shocks is directly affecting all financial institutions. In this case, θm,i,t are
actually constant in t. In this case, the variance-covariance matrix of the shocks is non-zero
on the off-diagonals.

For both of these settings, the indirect impact introduced by a shock ϵm,t comes from the
fact that financial institutions have exposure through the balance sheet of the other financial
institutions. We define Γm, m ∈ {1, 2, · · · ,M} as the weighted-directed adjacency matrix of
channel m. We assume there cannot be self-loops in the network hence all diagonal entries
of Γm are zero.

Suppose Fmt is a time series of risk measure (or risk factor) specific to channel m, which
satisfies

Fmt = fm(Fmt) + θm,tϵm,t. (1)
where fm : RN → RN is a vector valued function capturing the risk propagation mechanism.
A first order Taylor expansion gives

Fmt = αm + ΓmFmt + θm,tϵm,t. (2)

For the rest of this paper, we assume that our data is demeaned, hence
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Fmt = ΓmFmt + θm,tϵm,t. (3)

This is a decomposition of any shock to the system between the shock part (θm,tϵm,t) and
the network part (Γm). In this model, the time subscript is the same on both sides of the
equation. This is a recursive assumption that was first posed by Christiano et al. (1999).
Further assume that the risk measure specific to channel m is not observable but the total
risk measure, defined as the mixture of risk measures from different channels

Xt =
M∑

m=1

wmtFmt

is observable. Here wmt is an indicator random variable. wmt = 1 if network m dominates
at time t, and wmt = 0 otherwise. Let h indicate different heteroskydastic regimes. Now, for
each network m and each regime h, the indicator random variable wmh is 1 with probability
pmh. is observable. Here wmt is an indicator r

Note that rearranging (3) we obtain

Fmt = [I − Γm]
−1 θm,tϵm,t.

Hence we observe

Xt =
M∑

m=1

wmt [I − Γm]
−1 θm,tϵm,t, (4)

For convenience we define Am = [I − Γm]
−1.

This describes the observed variable (Xt) as a linear combination of different unobservable
networks (Γm) and different common shocks (θm,tϵm,t), M of them. The estimation problem
is to uncover the unobserved networks from the moments of the observed variables.

There are two representations of the linear networks we are interested in estimating.
Suppose there are N banks and shock propagated through a constant network Γ. We assume
that the shocks are independent. So, E[ϵiϵj] = 0 for all i and j.

The first representation assumes that the each shock, ϵm, affects each financial institutions
through θj,m, where j is the index for the financial institutions. We however, assume that this
effect is independent of the impact another institution receives, even though the aggregate
shock is the same one. In other words, the overall model can be described as follows:

Fmt = Amθ
h
m,tϵm,t (5)

E[ϵi,tϵj,t] = 0 (6)
E[(θhi,a,tϵi,t)× (θhi,b,tϵi,t)] = 0 (7)
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where i and j represent different networks, a and b represent two different financial institu-
tions, and h indicates the different heteroskedastic regimes. We allow the parameters θhm,t to
change across regimes. Those shifts are the ones that produce the heteroskedasticity. The
shocks, ϵ, are mean zero and unitary variance.

The second representation assumes that the shocks continue to be independent, but that
they affect all financial institutions through a constant propagation. The representation is
similar to the previous one

Fmt =
K∑
k=1

Amθkmϵ
h
m,t (8)

E[ϵi,tϵj,t] = 0 (9)

Define
Bm =

[
Amθ1m Amθ2m · · · AmθKm

]
Then

Fmt = Bmϵ
h
m,t (10)

E[ϵi,tϵj,t] = 0 (11)

Here, if we assume that K = N , i.e., there are N common shocks affecting N financial
institutes, then the second interpretation is equivalent with the first one.

In the identification process, we cannot differentiate between these two models. Klein
and Vella (2009) used the second interpretation, while ours uses the first interpretation. For
details of the two above interpretations, see the summary in (Lewbel, 2012).

As will become clear in the next section, the model as currently specified cannot be
estimated using standard methods. We rely on an method called identification through
heteroskedasticity to solve the problem of estimation.8 Next subsection discusses the solution
to the identification problem. A crucial ingredient is the presence of heteroskedasticity.
Therefore, we assume that there are regimes of economic environments, denoted by h ∈
{1, 2, · · · , H}. With some unknown probability, each time instance t belongs to a regime
Rh. If time t ∈ Rh, then the shock at that time instance is distributed θm,tϵm,t ∼ N(0,Σmh).
We assume the different regimes imply different exposures.

2.3 The identification problem

The identification procedure we use in this paper is related to the identification through
heteroskedasticity developed in Rigobon (2003). The intuition of the identification can be
developed in a two by two endogenous system of equations.

8See Rigobon (2003), Sentana and Fiorentini (2001). For the description of the original procedure see
Wright (1928). For further developments see Lewbel (2012), Lewbel (2018a), and Lewbel (2018b). For
applications on crises see Caporin et al. (2018) and for applications on monetary policy see Nakamura and
Steinsson (2018), Rigobon and Sack (2003), Rigobon and Sack (2004), and Rigobon and Sack (2008).
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2.3.1 A Single Network Endogenous Model

Assume two banks are related according to the following system of equations and shocks

xt = βyt + ϵt (12)
yt = αxt + ηt (13)

with reduced form,

xt =
1

1− αβ
(βηt + ϵt)

yt =
1

1− αβ
(ηt + αϵt)

where ηt and ϵt are the structural shocks and α and β are describing the network.

As it is, this model cannot be estimated from the data. Equations (12) and (13) describe
the behavior of the data entirely with 4 parameters/variables: two shocks ϵ and η and two
parameters α and β. These four constitute the unknowns of the system. The problem of
identification arises because there are three equations in four unknowns. The observable
variables x and y have zero mean and in the data only three moments can be estimated;
all from the variance-covariance matrix. What are the solutions to the problem? In eco-
nomics, solutions tend to create circumstances in which an additional equation is added to
the system of equations. For instance, the exclusion restriction in the instrumental variable
approach boils down to assuming that one parameter is zero (the exclusion assumption).
Randomized controlled trials assume that all the variation is due to the treatment — again,
this is implicitly assuming that there is no feedback effect (β = 0). This is a very reasonable
assumption when the experiment is properly designed. All these solutions are making a pa-
rameter assumption (usually that a parameter is equal to zero). The identification through
heteroskedasticity has a slightly different flavor. The easiest way to explain how identifica-
tion through heteroskedasticity works is to show the system of equation. Assume that the
parameters are stable and that the data has heteroskedasticity. For simplicity assume that
there are two heteroskedastic regimes. In this case, it is possible to estimate one covariance
matrix in each regime.

Ω1 =

[
var(xt,1) covar(xt,1, yt,1)

var(yt,1)

]
=

1

(1− αβ)2

[
σ2
ϵ,1 + β2σ2

η,1 ασ2
ϵ,1 + βσ2

η,1

α2σ2
ϵ,1 + σ2

η,1

]
Ω2 =

[
var(xt,2) covar(xt,2, yt,2)

var(yt,2)

]
=

1

(1− αβ)2

[
σ2
ϵ,2 + β2σ2

η,2 ασ2
ϵ,2 + βσ2

η,2

α2σ2
ϵ,2 + σ2

η,2

]

There are six unknowns in the system. The two parameters (α and β), and four variances
(σ2

ϵ,1, σ2
ϵ,2, σ2

η,1, and σ2
η,2). As can be seen, there are six equations in six unknowns. This

means that the system of equations is just identified.
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Notice that even though in each regime the system is under-identified (fewer equations
than unknowns) the system as a whole is identified. The key assumptions are two: that the
structural shocks are indeed structural (they are uncorrelated) and that the parameters are
stable. In the end, the parameter stability allows the heteroskedasticity to add additional
equations — which helps solve the identification problem.

The intuition of the two endogenous variables case is as follows. First, the graphical
representation of the joint residuals in this model always takes the form of a rotated ellipse.
Second, the rotation is summarized by the variance-covariance matrix.

In equations (12) and (13), the only meaningful moment we can compute to estimate the
degree of contagion is the covariance matrix. An important question is then, what does the
covariance matrix represent? The errors in these models are distributed as a multinomial
and their contours are ellipses. To fix concepts, let us start with a simple endogenous system
of equations (12) and (13). The 95th percentile of the errors is distributed as a rotated
ellipse. We can solve for two independent normal distributions from the structural equations
as follows (with some abuse of notation)

ϕ1 =
xt − βyt

σϵ

∼ N(0, 1)

ϕ2 =
yt − αxt

ση

∼ N(0, 1)

Because ϕ1 and ϕ2 are independent with mean zero and variance one, it is possible to
describe the ζ confidence interval as ϕ2

1 + ϕ2
2 = ζ. This is exactly an ellipse. Substituting

(
xt − βyt

σϵ

)2

+

(
yt − αxt

ση

)2

= ζ (14)

The two axes of the ellipse cannot be computed in closed-form solution, but they depend
on the slope of the curves (structural parameters) as well as the relative variances of the
shocks. In Figure 2 a graphical representation is shown. Suppose that the blue curve
represents the supply and the red is the demand (when there are no shocks). Then xt

represent quantity and yt represent price. Furthermore, the points reflect some random
realization of structural shocks that leads to a point far from the depicted schedules. The
ellipse represents the 90th percentile. In this particular case β is assumed to be negative
(representing the “demand"), while α is positive. In Figure 2, the variance of the demand
shocks is larger than the variance of the shocks to the supply, hence, the ellipse is closely
aligned with the supply curve. In the limit, if the variance of the demand is infinitely large,
the ellipse would coincide exactly with the supply curve.
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Figure 2: Distribution of Errors

The form of the ellipse is also summarized by the covariance matrix computed in the
reduced form. Additionally, most of the methodologies we study are based on the covariance
matrix. Therefore, all the sources of bias can be tracked to it. Finally, as mentioned
previously, in this model the only statistic that can be computed from the data — that
allows us to recover the structural parameters — is the covariance matrix.
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Figure 3: Identification Through Heteroskedasticity

The intuition behind the identification through heteroskedasticity comes from the rota-
tion of the residual ellipses. When the variances change, for the same parameters, the ellipses
rotate. In Figure 3, we show two cases: One when the shocks to the demand dominate (red),
and one when the shocks to the supply dominate (blue). In particular, when the shocks to
the demand dominate, then the ellipse approximates the supply curve. In fact, it is identical
to the supply curve if the variance of the demand is infinite relative to the supply. Conversely,
when the supply shocks are larger, then the long axis of the ellipse tilts toward the demand
curve. It is this rotation of the ellipses when the relative variances shift that provides the
identification.

It is instructive to re-state the underlying assumptions: structural shocks are uncorrelated
(quite uncontroversial) and parameters need to be stable across the regimes (so, this is a
good technique to measure spillovers).

2.3.2 Identification in the Contingent Financial Network

Suppose there are N banks and M types of shock (or networks). Suppose further that the
networks Γ1,Γ2, · · · ,ΓM are constant over time but the variance of shock ϵ is time-varying,
i.e., there is heteroskedasticity in the time series data. Let Σh, a diagonal matrix, be the
variance of shock ϵ in regime h ∈ {1, 2, · · · , H}, be unknown constants. We are implicitly
assuming that the shocks across different banks are uncorrelated – or that a decomposition
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can be written to describe the data generating process as such. In fact, this assumption is
standard in economics, where structural shocks are usually assumed to be independent with
each other.

The model parameters we need to identify are

θ =

[
Γm

Σh

]
,

and the number of parameters for each network m is N(N − 1) + N
∑

hwmh. The first
term comes from the networks. There are N (N − 1) elements in each network (diagonal are
ones). The second tem comes from the variance of the structural shocks. The shock affects
N banks for each regime — and there are

∑
hwmh regimes in which the specific network

dominates.

On the other hand, observed moments (moment constraints) are given by the variance
covariance matrix of Xi in each regime h. Without loss of generality, we can assume that
∀m, E [Fmt] = 0. The following constraints are obtained

Et∈Rh
XtX

⊤
t −

M∑
m=1

wmh

(
(I − Γm)

−1Σmh (I − Γm)
−T

)
= 0,

where Et∈Rh
X2

t denotes the expected value of the matrix XtX
⊤
t given that t belongs to

regime h. Because wmh ∈ {0, 1} and
∑

m wmh = 1, the above constraints can be written as

Et∈Rh
XtX

⊤
t −

(
(I − Γm)

−1Σmh (I − Γm)
−T

)
= 0, ∀wwh = 1. (15)

In the above, each matrix Et∈Rh
XtX

⊤
t −

∑M
m=1

(
(I − Γm)

−1Σmh (I − Γm)
−T

)
is a N -by-

N symmetric matrix, therefore each regime h provides N(N+1)
2

moment constraints. In total,∑
hwmh regimes implies N(N+1)

2

∑
hwmh moment constraints.

The condition for an exact or over-identified model is

N(N − 1) +N
∑
h

wmh ≤ N(N + 1)

2

∑
h

wmh (16)

which implies that the data must have at least∑
h

wmh ≥ 2 (17)

for just-identification and ∑
h

wmh ≥ 3 (18)

for over-identification. i.e., we need each network to dominate in at least 3 regimes to achieve
over-identification. This identification is the order condition: how many equations are needed
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for the system to have less unknowns than knowns. In the single network case, this is simple:
the single network will dominate all regimes, hence H =

∑
hwmh. In the multiple network

case, we need to figure out how many different mixture of networks (M) present in the data,
and which network dominate which regimes. Those two questions are fundamental questions
for the identification of many mixture models, and we will discuss them in more detail later
in Section 4

2.4 Solution Uniqueness

When there is a single network, parameters in the above model can be estimated via the
Generalized Method of Moments (GMM). We define the score function

g(Γ,Σh) =
{
XtX

⊤
t −

(
(I − Γ)−1 Σh (I − Γ)−⊤

)}
t∈Rh,h=1,··· ,H

(19)

where {·}h=1,··· ,H denote the H-column vector whose entry are evaluated at h = 1, · · ·H.
Estimation is achieved by solving the optimization problem

min
A,Σh

Et∈Rh
g(Γ,Σh)

⊤V −1Et∈Rh
g(Γ,Σh)

s.t. g(Γ,Σh) =
{
XtX

⊤
t −

(
(I − Γ)−1Σh (I − Γ)−⊤

)}
t∈Rh,h=1,··· ,H

Σh are diagonal.

(20)

GMM requires that the score function is zero iff the system parameters are correct. We
can prove that this requirement is satisfied when there is only one network, i.e. M = 1.
To prepare for the proof, we define Σ =

[
w11diag(Σ1) w12diag(Σ2) · · · wMHdiag(ΣH)

]
,

where diag(·) denotes the diagonal entries of the matrix in the form of a column vector. In
addition, define Ωh = Et∈Rh

XtX
⊤
t

Lemma 1. If (i). M = 1, (ii). Γ and Σ are both full rank and (iii). H ≥ 2, then
Ωh −

(
(I − Γ)−1Σh (I − Γ)−⊤

)
= 0 has an unique solution.

Intuition of the proof:

The identification problem is equivalent with a tensor decomposition problem (for details
of this equivalence, refer to the Appendix). According to the Kruskal’s rank condition, if

Krank(ar) +Krank(ar) +Krank(σr) ≥ 2R + 2

then the tensor decomposition problem has a unique solution. In the above equation, Krank
stands for Kruskal rank, which is equivalent with matrix rank given assumption (ii). Hence
we have Krank(ar) = N and Krank(σr) = min{H,MN}. Furthermore, R is the rank of the
tensor in (28), which equals MN . Inserting the numbers into the Kruskal’s rank condition
and considering assumption (i) and (iii), we obtain the solution uniqueness.
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3 Single Network Estimation under Endogeneity

Throughout we use Credit Default Swap (CDS) as a measure of the risk of bank bonds.
The mechanism of CDS can partly justify the additivity assumption (4): suppose Fmt is
a CDS that only covers one specific type of shocks (e.g. interest rate). Then to cover all
types of shocks (interest rate, GDP, stock index, etc.), one has to purchase multiple CDS for
all those types of shocks, and the overall cost is the addition of each individual CDS, i.e.,
Xt =

∑M
m=1 Fmt.

The credit default swaps (CDSs) have been used widely in the literature studying risk
contagion. Most notably, the CDSs of sovereign debt has been examined by various papers
to understand international risk propagation. E.g., Kalbaska and Gątkowski (2012) investi-
gates the eurozone contagion via a regression on CDS spread changes. In general, if a risk
contagion mechanism exists among certain countries, their CDS spread will co-move. From
the trend of CDS spread, the author reaches a conclusion that Sovereign debt risk is mainly
limited to EU countries. Similarly, Caporin et al. (2018) also studies European debt crisis by
examines the CDS spread. Through a Bayesian quantile regression that incorporates shock
heteroskedasticity, they conclude that the increases in the correlation of CDS come from
heteroskedasticity instead of structural changes of risk propagation mechanism.

The CDSs of banks have also been widely used in studying interbank risk propagation.
As pointed out by Eichengreen et al. (2012), the CDS spreads of major banks co-move
and reflects market economic prospects. Furthermore, during the Subprime Crisis and the
following crisis of Lehman Brothers, the common trend is more dominant, i.e., the absorption
ratio (Kritzman et al., 2010) is higher. The fact that major financial crises are reflected by
CDS regime changes is the exact characteristic we want to study. In our contingent linear
financial network model, a significant regime shift is required for unique identification. As
shown in (Eichengreen et al., 2012), the common factor accounted for 62% of the variance
of major bank CDSs before the 2007 breakout of Subprime Crisis and raised to 77% during
the crisis, signaling a major regime shift. Apart from stronger co-movements, we also want
to discover whether the change of regime is a sole result of heteroskedasticity of shocks, or a
result of both the heteroskedasticity of shocks and the structural change of risk propagation
mechanisms.

Suppose there is a set of shocks that we are interested in. A question arises whether or not
we can measure them directly rather than model them as exogenous variables. E.g., suppose
we are interested in the risk propagation caused by the fluctuation of interest rate, then we
may use the time series of interest rates to fit the model. However, one should note that it is
not the interest rate at each time instant that affects CDS, it is the expectation of interest
rate over future time instances that does. Furthermore, it is the change of expectation,
rather than the change of interest rate itself, that acts as a shock. Therefore, in the lack of a
model for such expectation, it is better to model them as exogenous shocks and obtain their
variance through the identification process.

Figure 4 shows the 100-day moving volatility of the 10 banks of interest. The first thing to
notice is that they exhibit a significant regime shift of heteroskedasticity over time. Around
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Figure 4: 100 days moving volatility of the 10 banks of interest. CDS data of 10 largest
banks in US are collected from Sep. 1, 2009 to June. 20 2017. The stock exchange id tickers
of the 10 banks are JPM, BAC, WFC, C, GS, MS, COF, HSBC, AXP, and CSGN.
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the time of Nov. 2009, the volatilities of CDS of all 10 banks are high, while the volatilities
are significantly lower in mid-2010. In addition, their volatility co-move most of the time,
despite regime shifts. The fact that they co-move, allow us to identify a network that is
well connected. Apart from similarities in the overall trend, the CDS volatilities exhibit a
certain level of bank-specific movements. For example, in early-2016, the CDS of Capital One
Financial Corporation has very high volatility that is comparable with that around late 2009.
In contrast, the CDS of Morgen Stanley is at a relatively low historical level. That kind of
bank-specific characteristic could allow as explore the different risk propagation mechanisms
among different banks.

3.1 Selection of Regimes

As mentioned in previous sections, our model is not uniquely identifiable if the variance of
shock is constant. When the variance of shock is not constant, we can divide our data into
different heteroskedastic regimes. Because the network parameters are constant over regimes,
additional regimes are offering our more additional constraints than additional unknowns.
With enough heteroskedastic regimes, our model can be uniquely identified (Rigobon, 2003).
In practice, however, dividing date into heteroskedastic regimes is not trivial. An effective
regime division method should achieve heteroskedasticity among regimes and maintaining
homogeneity within regimes. In addition, the regime divided should have some reasonable
interpretations in macroeconomics. There are two broad categories of methods to identify
heteroskedastic regimes: regime divided by statistic properties of the data itself, and regime
divided by other exogenous variables (in our case, it makes sense to use macroeconomic
factors). An identification process using regimes defined by statistic properties is named
statistic identification, and an identification process using regimes defined by macroeconomic
factors is named macroeconomic identification. In this section, we will introduce those two
categories of regime divisions in detail, and then apply both to our problem of identifying
contingent linear financial networks.

The first category of regime dividing methods is by statistic properties of the data itself.
Because we want to separate the variance of shock, it makes sense to look at the quantile
level of CDS data volatility. To maximize the separation of unobserved networks, one could
use the quantile level of volatility of CDS to define regimes. For example, if there are two
banks A and B in the network, one can define four regimes: bank A’s volatility is at top
20% quantile level while B is not; bank B’s volatility is at top 20% quantile level while A
is not; both banks’ volatility is at top 20% quantile level, and neither banks’ volatility is at
top 20% quantile level. It is clear that the overall financial network cannot be the same in
different regimes.

However, regimes divided by a fixed quantile level is usually very unbalanced, i.e., the
low volatility regimes have far more data points than the high volatility regimes. From an
economic perspective, this is fine because exceptionally high volatility only occurs during
crises. For identification purposes, however, this is not optimal, and many regimes have so
few data points to be used in the identification. Alternatively, we could use unsupervised
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learning techniques, such as K-mean and Gaussian Mixture Model to divide data into groups
according to their volatility levels. Intuitively, a clustering algorithm group data points at
different time instances into subsets, and maximize the similarities of the volatility vector in
each subset. Due to the inherent limitation of most clustering algorithms, the global optimal
grouping is usually very difficult to find, and the algorithm is sometimes trapped at local
optimal solutions. If the dimension of the volatility vector is very high, i.e., we are identifying
the network for a large number of banks, then it is even harder for the algorithm to find the
global optimal solutions. In this case, we can reduce the dimension of the volatility vector
by applying PCA prior to clustering.

The second category of regime dividing methods is by macroeconomic factors. While the
above selection of regimes could maximize the separation of unobserved networks, it does not
have any economic interpretation. To draw a connection with the macroeconomic environ-
ment, one could use the quantile level of macroeconomic factors instead of quantile levels of
CDS volatility. The macroeconomic factors we choose include inflation rate, oil/commodity
index, security index, market volatility indicators, currency index, and interest rate/yield.
Because the CDS data is available daily, ideally we would like all the above macroeconomic
factors to be daily as well. Daily inflation data, in particular, is available through the MIT
Billion Price Project (Cavallo and Rigobon, 2016) and the PriceStats data platform.
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3.2 Estimates: Statistical Identification

JPM BAC WFC C GS MS COF HSBC AXP CSGN
JPM 0.00 0.12 -0.04 0.28 0.00 -0.05 0.20 -0.02 0.01

(0.02) (0.06) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) (0.01)
BAC 0.31 1.00 -0.15 0.35 0.25 0.04 -0.04 0.00 -0.06

(0.26) (0.12) (0.05) (0.16) (0.11) (0.08) (0.13) (0.05) (0.16)
WFC 0.13 0.15 0.05 -0.04 -0.01 0.46 -0.07 0.03 -0.09

(0.06) (0.03) (0.04) (0.04) (0.02) (0.05) (0.04) (0.03) (0.03)
C -0.76 0.21 1.00 0.20 0.13 0.40 -0.35 0.06 -0.08

(0.22) (0.05) (0.14) (0.08) (0.04) (0.09) (0.09) (0.05) (0.06)
GS 0.35 0.02 -0.04 0.05 0.55 -0.07 0.22 -0.05 -0.06

(0.06) (0.04) (0.08) (0.03) (0.03) (0.02) (0.04) (0.02) (0.03)
MS 0.17 0.11 -0.19 0.25 1.00 0.04 -0.09 0.03 0.16

(0.05) (0.04) (0.12) (0.03) (0.00) (0.06) (0.06) (0.03) (0.05)
COF -0.06 0.00 0.87 0.10 -0.15 0.01 0.05 0.01 0.07

(0.09) (0.03) (0.07) (0.03) (0.05) (0.02) (0.04) (0.04) (0.04)
HSBC 0.28 0.01 -0.07 -0.03 0.26 -0.07 0.03 -0.05 0.26

(0.08) (0.02) (0.07) (0.02) (0.03) (0.02) (0.02) (0.04) (0.05)
AXP 0.50 -0.07 0.05 0.41 -0.50 0.17 0.55 -0.12 -0.09

(0.12) (0.03) (0.13) (0.05) (0.14) (0.09) (0.10) (0.13) (0.08)
CSGN 0.07 0.01 -0.29 0.05 -0.13 0.23 0.01 0.64 0.12

(0.09) (0.06) (0.13) (0.04) (0.05) (0.04) (0.06) (0.14) (0.03)

Table 1: Estimates of the network structure. We use a Lasso cost function with λ = 10.
Standard deviations (in brackets) are obtained by bootstrapping (2000 resamples) across
regimes. In this case, regimes are decided by CDS quantile. There are H = 20 regimes.
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Figure 5: Visualization of the single network identified by statistical regimes

We now turn to the estimation results for our linear network model. As defined in Section 2,
we estimate the linear shock propagation channel among the top 10 US banks. In our esti-
mates, we assume that the linear structural parameters that we estimate is always between
-1 and 1. i.e.,

γi,j,m ∈ [−1, 1], ∀i, j,m. (21)

Mathematically, this constraint will remove any non-unique solutions due to columns per-
mutations. Economically, this means that the bank which receives a shock directly is most
affected. This approach of removing permutation solutions will be problematic if a lot of
the estimated structural parameters are on the boundary (i.e., the constraint (21) is binding
for a lot of parameters). However, at least for the CDS spread dataset that we study, only
2 parameters are on the boundary in statistical identification, and no parameter is on the
boundary in macroeconomic identification.

Table 1 shows the estimates of the 10-by-10 network structure using statistical identi-
fication. We use a Lasso cost function with λ = 10. Standard deviations (in brackets)
are obtained by bootstrapping (2000 resamples) across regimes. In this case, as the name
“statistical identification” suggested, regimes are decided by CDS quantile levels discussed
in Section 3.1. The matrix in Table 1 can be regarded as a weighted directed graph. Each
column shows where the shock is originated from, and each row shows where the shock
propagates to. For example, the structural parameter in the 4th column (Citigroup) and the
1st row (JP Morgan) represents the channel where shock propagates from Citigroup to JP
Morgan. In an earlier example in Section 2.1, we used the correlation between Citigroup to
JP Morgan as an example to show that the correlation between banks can be very volatile.
Here the structural parameter, on the other hand, is reliably estimated with bootstrapping
standard deviation of only 0.04.
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The estimated matrix of structural parameters is asymmetric in general. However, this
does not mean any causal relationship between each pair of banks. In our original model,
without (21), any column permutation of Γ will give a new solution and change the direction
of edges of the weighted directional graph in Table 1. Now with constraint (21), the directions
of the edges of the graph are pinned down by the constraint, but not by any inherent causality
in the data.

Figure 5 gives a visualization of the same network. The values of structural parameters
are represented by the color and size of the corresponding circles. Positive structural pa-
rameters are displayed in blue and negative structural parameters are displayed in red. In
addition, color intensity and the area of the circles are proportional to the absolute values of
the structural parameters. The visualization helps identify patterns in the risk transmission
mechanism. For example, Wells Fargo is exposed to a number of different shocks, while Bank
of America is more resilient to shocks transmitted from other banks.

3.3 Estimates: Macro Identification

JPM BAC WFC C GS MS COF HSBC AXP CSGN
JPM 0.10 0.28 -0.10 0.29 -0.05 -0.06 0.15 0.00 0.01

(0.06) (0.07) (0.02) (0.08) (0.04) (0.03) (0.03) (0.04) (0.04)
BAC 0.34 0.84 0.03 0.35 0.12 0.07 -0.01 -0.01 0.01

(0.25) (0.21) (0.08) (0.54) (0.33) (0.15) (0.24) (0.05) (0.19)
WFC 0.30 -0.02 0.15 -0.23 0.14 0.30 0.11 0.03 -0.08

(0.10) (0.05) (0.03) (0.05) (0.03) (0.04) (0.03) (0.04) (0.03)
C 0.10 0.29 0.95 0.48 -0.21 0.10 0.28 0.04 -0.31

(0.16) (0.07) (0.28) (0.17) (0.13) (0.12) (0.15) (0.12) (0.11)
GS 0.94 -0.07 -0.43 0.22 0.30 0.23 0.20 -0.08 0.01

(0.10) (0.09) (0.09) (0.05) (0.06) (0.07) (0.06) (0.04) (0.06)
MS 0.59 0.09 0.06 0.12 0.99 0.17 -0.30 0.01 0.24

(0.24) (0.10) (0.20) (0.06) (0.08) (0.09) (0.13) (0.05) (0.12)
COF 0.03 -0.06 0.87 0.13 0.25 -0.26 0.00 0.06 0.23

(0.09) (0.06) (0.10) (0.07) (0.09) (0.04) (0.08) (0.05) (0.04)
HSBC 0.40 0.00 0.13 -0.21 0.24 0.11 0.01 -0.02 -0.03

(0.09) (0.05) (0.09) (0.06) (0.06) (0.06) (0.03) (0.06) (0.07)
AXP 0.11 -0.23 0.11 0.71 -0.60 0.25 0.28 -0.09 0.23

(0.34) (0.06) (0.27) (0.16) (0.16) (0.11) (0.18) (0.24) (0.12)
CSGN 0.38 -0.02 0.08 0.01 0.07 0.20 -0.11 0.54 0.11

(0.13) (0.06) (0.12) (0.07) (0.06) (0.12) (0.07) (0.18) (0.05)

Table 2: Estimates of the network structure. We use a Lasso cost function with λ = 10.
Standard deviations (in brackets) are obtained by bootstrapping (2000 resamples) across
regimes. In this case, regimes are decided by macroeconomic indicators. There are H = 20
regimes.
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Figure 6: Visualization of the single network identified by macroeconomic regimes

If we select regimes by the quantile levels of macroeconomic factors rather than the quantile
levels of CDS spreads, we obtain estimates of the network by macro identification. Table
1 and Figure 5 shows the result of macro identification. Similarly to the statistical identi-
fication, Table 2 shows the estimates of the 10-by-10 network structure with a Lasso cost
function with λ = 10. Standard deviations (in brackets) are obtained by bootstrapping (2000
resamples) within regimes. Furthermore, Figure 6 gives a visualization of the network. The
values of structural parameters are represented by the color and size of the corresponding cir-
cles. Positive structural parameters are displayed in blue and negative structural parameters
are displayed in red.

In macro identification, standard deviations of structural parameters are estimated by
bootstrapping within each regime, as opposed to bootstrapping across regimes in the entire
dataset for statistical identification. This is because the regimes and networks are inter-
changeable. When we bootstrap the whole dataset, what constitutes network 1 changes.
and in fact, the computer has no way to pick network 1 always, and this will exacerbate the
standard errors. In the end, the estimates are the mixture of the networks.

Comparing Figure 5 with Figure 6 we notice that the two networks are almost identical.
This is because the linear network identified using our approach is the same no matter how
regimes are selected. In the last subsection and this subsection, we are using the same
dataset, and the model we adopt is a linear model, hence the underlying linear financial
network is the same. The bootstrapping standard deviations, on the other hand, are very
different between statistical identification and macroeconomics identification. Both methods
give consistent estimators but the estimators converge at different rates as the number of
data points increases.
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4 Multiple Contingent Network Estimation

This section presents a test for the multiple network assumption. In particular, we propose a
testing procedure that compares the consistency of the estimates of structural variables in a
single network case versus a multiple network case. In a point-wise test, one can obtain the
distribution of differences and carry out the test without any assumptions on distributions.
However, a point-wise test cannot provide a summary of the results. If we further assume that
structural variables follow independent but not necessarily identical Gaussian distributions,
we can test the sum of normalized residuals, which follows a Chi-squared distribution.

4.1 F-test for Network Contingency and the Rejection of the Single
Network Hypothesis

In this subsection, we construct an intuitive F-test that is used to reject the single net-
work hypothesis. Suppose one observes two sequences of data {Xt}t∈D1 and {Xt}t∈D2 , and
estimates structural parameters ΓD1 and ΓD2 . We want to know whether the two sets of
structural parameters are consistent. Let γi,j,1 and γi,j,2 denote the ith row, jth column
entry of the network estimated from data set D1 and D2 respectively.

We begin with a number of assumptions

Asymptotic Assumptions: (a) The parameter space Θ of θ =

[
Γ
Σh

]
is a compact subset

of Rd, and the true value θ0 lies in the interior of the parameter space Θ. (b) The moment
function θ → g(θ) defined in (19) identifies θ0: g(θ) = 0 iff θ = θ0. (c) The empirical
moment function θ → ĝ(θ) converges uniformly in probability to the moment function
θ → g(θ), namely supθ∈Θ ∥ĝ(θ) − g(θ)∥ →p 0 (d) The empirical Jacobian Ĝ(θ) = ∂

∂θ
ĝ(θ)

is continuous and is uniformly consistent for the Jacobian matrix, G(θ) = ∂
∂θ
g(θ), i.e.,

supθ∈Θ ∥Ĝ(θ) − G(θ)∥ →p 0 (e) The matrix G(θ0)
⊤G(θ0) is positive definite. (f) The

empirical moment function evaluated at the true parameter value obeys a central limit
theorem: √

nĝ(θ0) ∼ N(0,Ω)

asymptotically, where n is the number of samples.

Note those assumptions are inherently the same with the assumptions in the original
GMM paper by Hansen (1982).

Under the null hypothesis that

H0 : γi,j,1 and γi,j,2 are the same

their difference
γi,j,1 − γi,j,2 (22)
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should follows a distribution that with zero mean. If the estimated value of γ̂i,j,1 − γ̂i,j,2 lies
in the 0.05 left or right quantiles of the bootstrapping distribution, we can reject the null
hypothesis and claim that with 90% confidence

H1 : ΓD1 and ΓD2 are different

The above point-wise test has the advantage of distribution-free. However, without a
summarizing statistics, one cannot draw conclusions on the overall network. Suppose further
that γi,j,1 − γi,j,2 follows Gaussian distribution N (γi,j, σ

2
i,j). Under the null hypothesis that

H0 : ΓD1 and ΓD2 are the same (23)

their squared difference (γi,j,1 − γi,j,2)
2 /σ2

i,j follows a Chi-squared difference with degree of
freedom 1.

In addition, under the independence assumption, the sum of squared differences∑
i̸=j

(γi,j,1 − γi,j,2)
2 /σ2

i,j ∼ K (N(N − 1))

If the estimated value of
∑

i̸=j (γi,j,1 − γi,j,2)
2 /σ2

i,j lies in the 0.1 right quantiles of the
bootstrapping distribution, we can reject the null hypothesis and claim that with 90% con-
fidence

H1 : ΓD1 and ΓD2 are different

4.2 Estimates: the Sensitivity of Network Structures to Macroeco-
nomic Environments

Using the statistical test derived in the last subsection, we are able to compare the network
contingency given any two sets of data. In this subsection, we divide our dataset according to
quantile levels of macroeconomic factors and test the network contingency to those factors.
This procedure is analogous to a sensitivity test of our model. For example, we first look at
the network contingency to the inflation rate.

More specifically, let Xt, a 10-by-1 vector time series, denote the CDS spread of top 10
US banks, and St denote the time series of a macroeconomic factor. Similarly to Section 3,
macroeconomic factors in this paper include Price Index, WTI, S&P Index, VIX Volatility,
3-month Interest Rate, US Dollar Index, and 10-year minutes 3-month Interest Yield Curve.
The dataset is divided into two parts

D1 = {Xt|St ≤ median[St]}, D2 = {Xt|St > median[St]}

and both the pointwise test and Chi-squared test in Section 4.2 is carried out on these two
sub-datasets. The result of tests are summarized in Table 3. In this table, we do not list the
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corresponding p-values because the J-statistics is large enough to reject the null hypothesis
with p-value less than 0.01 in all scenarios.

Macro Indicator Mean diff Mean std Num. rejection Jstat
Inflation 0.0923 0.1336 13 105
WTI 0.1859 0.1235 40 314
S&P 0.2015 0.148 31 411
VIX 0.1541 0.1419 21 181
i_3M 0.1634 0.1248 29 235
USD 0.1831 0.1381 27 245
i_10Y-i_3M 0.1533 0.1462 18 236

Table 3: Structural changes driven by macroeconomic indicators

Among the seven macroeconomic factors, network structural changes are most significant
when asset prices are used to split the sample. Inflation and Volatility (as measured by the
VIX) have the least rejections. Nevertheless, in all seven cases we reject the hypothesis of
single network.

4.3 Estimating mixture models using EM-Algorithm

We first repeat the main characteristics of our mixture model. Suppose the data Xt in each
regime t ∈ Rh is generated by

Xt = (1− Γm)
−1ϵt (24)

with probability pmh, where Γm are a set of parameters to be identified. Let wmh denote
the indicator random variable that equals to 1 if network m dominates in regime h. So

wmh =

{
1 w.p. pmh

0 o.w.
Also, for now, we assume that the number of mixtures M is already

known.

Furthermore, assume that the shock ϵt follows a distribution

ϵt ∼ N (0,Σh +∆) (25)

where Σh is a diagonal matrix characterizing the supposedly uncorrelated shocks ϵt. In the
actual data generating process, however, the shocks may not be perfectly uncorrelated, and
this deviation is captured by ∆ where each entry{

δij = δji ∼ N (0, σ2
δ ), if i ̸= j

δij = 0, otherwise

Here because we are over-identifying we will not get exact zero covariances in the struc-
tural shocks even though that is our identifying restriction. Later, we will use this for the
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rejection of the number of networks. Hence, we need to formalize the distribution of δij here
when we define the mixture model.

By construction, the variance-covariance matrix Ωh = Var(Xt; t ∈ Rh) follows

[(1− Γm)Ωh(1− Γm)
⊤]ij,i̸=j ∼ N (0, σ2) (26)

In summary, we are looking at a mixture model with parameters Γm, hidden random
variables wij, and observed random variables Ωh.

EM-Algorithm
If we assume that only one of Σmh dominates in each regime, then the model becomes a
mixture with discrete hidden variables, in which case we can estimate Γm fast and in a
scalable manner. i.e., we estimate each Γm separately.
E-step:
Update pm,h, the probability that network m dominates in regime h.
M-step:

min
Γm

∏
h

{
pm,h exp

[∑
i̸=j,h

([
(I − Γm) Ωh (I − Γm)

⊤
]
i,j

)2
]}

4.4 The number of networks

To obtain the optimal number of networks, we apply the Bayesian information criterion.
The Bayesian information criterion is defined as

BIC = ln(n)k − 2 ln(L).

where n is the number of samples, k is the number of parameters, and L is the maximum
log-likelihood. Due to the Gaussian assumption in (26), the negative log-likelihood function
is equivalent to the total mean squared error normalized by variance σ2

δ , up to an additive
constant. Because BIC is used for the purpose of model selection, the additive constant is
irrelevant.

As shown in Figure 7, the optimal number of networks selected by Bayesian information
criteria is 3.

4.5 Network Centrality

In our macro-identification process, we divide regimes according to macroeconomic shocks.
It turns out some of those shocks play important roles in the network switching process,
while others only contribute to the network switching marginally. In Table 4, regimes are
grouped by networks in which they dominate. e.g., in regimes 1, 2, 3, 6, 14, 16, 17 and 18,
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Figure 7: Negative log-likelihood and BIC vs. No. of networks

network 1 dominates. On top of that, we list whether or not each macroeconomic factor is
active in each regime.9 Active factors are denoted by 1 and others by 0.

From Table 4, we can summarize what each network represents. Network 1, which
includes the regime where no macroeconomic factor is active, can be interpreted as normal
times. Network 2, on the other hand, is very likely to be an asset price shocks, because
S&P and exchange rates are both moving. Network 2 also reflects some short-run monetary
policy that is usually reflected in asset prices. Finally, Network 3 is clearly an uncertainty
shock, as it corresponds to VIX and yield curve activities. We also find that those shocks
have different transmission mechanisms within the networks as can be seen in Figure 9.

Now that we know there are three networks in the interbank financial system, a systemic
risk measure, namely the Katz centrality, will be calculated for each of the networks. The
Katz centrality (Katz, 1953; Junker and Schreiber, 2008) of a network with adjacency matrix
Γ is defined as −→

C Katz = ((I − αAT )−1 − I)
−→
I , (27)

where α is a damping factor that satisfies 0 ≤ α < 1/|λmax|. In our paper, we choose α = 0.5.

The Katz centrality is a generalization of the degree centrality. Intuitively, a node in the
graph is more important if it more often receives shocks from other nodes. Furthermore, the
Katz centrality considers both the direct impact from other nodes as well as the cascade im-
pact many steps ago. It assumes that both direct and indirect impacts affect the importance
of a node, given that indirect impacts are discounted by a factor of α after each step. Apart

9By active macroeconomic factor, we mean that the specific macroeconomic factor is in its top 25%
quantile in that regime.
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Inflation WTI S&P VIX i_3M USD i_10Y-i_3M

Network 1

regime 1 0 0 0 0 0 0 0
regime 2 1 0 0 0 0 0 0
regime 3 0 1 0 0 0 0 0
regime 6 1 0 0 1 0 0 0
regime 14 0 0 0 1 1 1 0
regime 16 1 0 0 0 0 0 1
regime 17 0 1 0 0 0 0 1
regime 18 1 1 0 0 0 0 1

Network 2

regime 4 0 0 1 0 0 0 0
regime 8 1 0 1 0 1 0 0
regime 9 0 0 1 0 0 1 0
regime 10 1 0 1 0 0 1 0
regime 11 0 0 0 1 0 1 0
regime 12 0 0 1 0 1 1 0
regime 13 1 0 1 0 1 1 0

Network 3

regime 5 0 0 0 1 0 0 0
regime 7 0 1 0 1 0 0 0
regime 15 0 0 0 0 0 0 1
regime 19 0 0 0 1 0 0 1
regime 20 1 0 0 1 0 0 1

Table 4: Network vs. Macro shocks
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Figure 8: Estimated 3 networks
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Network 1 Network 2 Network 3
JPM 0.041 (0.005) 0.008 (0.013) 0.055 (0.015)
BAC 0.150 (0.018) 0.176 (0.017) 0.195 (0.045)
WFC 0.059 (0.006) 0.046 (0.013) 0.066 (0.011)
C 0.124 (0.008) 0.152 (0.022) 0.054 (0.039)
GS 0.100 (0.012) 0.122 (0.017) 0.139 (0.021)
MS 0.181 (0.016) 0.188 (0.021) 0.221 (0.025)
COF 0.117 (0.018) 0.054 (0.039) 0.075 (0.032)
HSBC 0.037 (0.016) 0.066 (0.036) 0.075 (0.015)
AXP 0.084 (0.020) 0.144 (0.033) 0.027 (0.016)
CSGN 0.107 (0.012) 0.044 (0.050) 0.095 (0.036)

Table 5: Estimates of network Katz centrality. Centrality values are normalized to sum up
to 1. We use a discount factor α = 0.5. Standard deviations (in brackets) are obtained
by bootstrapping (2000 resamples) across regimes. In this case, regimes are decided by
macroeconomic indicators. There are H = 20 regimes.

from original applications in social networks and biological networks, Katz centrality has
also been applied to evaluate systemic risk in financial networks, see (Thurner and Poledna,
2013; Temizsoy et al., 2017). The Katz centrality of the top 10 banks in the US in the three
estimated networks is shown in Table 5.

To understand the economic intuition of the Katz centrality, we first look at an alternative
definition of it

CKatz(i) =
∞∑
k=1

N∑
n=1

αk(Γk)ni

From this definition, it is easy to see that the Katz centrality calculates the summation of
an infinite series of impacts given a uniform shock to each bank. In our estimates, centrality
values are normalized to sum up to 1, therefore each value C̃i just means the portion of shock
that is transmitted through bank i.

In summary, we find the data can be explained by 3 networks in the financial network
among the top 10 banks in the US with our criteria. We reject the hypothesis of 1 network
using an F-test and then use the Bayesian information criteria to conclude that 3 networks
are optimal. With 4 or more networks, the model complexity penalty term in the BIC
would standout and reject the models. We are only applying our identification method on
financial networks though, other applications of our identification method could give 4 or
more networks as the optimal solution.

The three different networks we estimates imply different economic behaviors. The first
network represents normal time, the second network represents an equity market shock, and
the third network represents a VIX shock. Furthermore, the Katz centrality in different
networks is not the same. Interestingly, some banks are always systemically important (i.e.,
Bank of America and Morgan Stanly), but depending on the type of shocks other banks
might change their rank of centrality.
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Figure 9: Rank of the estimated Katz centrality of in the 3 estimated networks.

Without the multi-network assumption in this paper, we would have incorrectly estimated
a single network. In that case, the centrality rank assuming 1 network is given by JPM:
10, BAC: 2, WFC:9, C:7, GS:3, MS:1, COF:5, HSBC:8, AXP:6, CSGN:4. The resulting
centrality measures, or any other systemic risk measures, will only be the weighted average
of different scenarios in general. As a result, we lack the ability to identify banks that is
systematic with respect to some specific shocks. Furthermore, with WFC for example, the
centrality rank assuming 1 network is only 9th place, but it is actually more important in
all three networks. Such an incorrect estimate of systemic risks could result in suboptimal
decisions for financial practitioners, policymakers and regulators.

5 Conclusions

Understanding the interconnections within the financial system has been a first-order con-
cern in developed economies since the 2008 global financial crises. In fact, macroeconomic
prudential regulation needs to determine which banks and financial institutions are system-
ically important so they can be supervised closely. In the network language, it would mean
that such financial institutions have a large centrality. Most of this analysis has been done
either by concentrating on symmetric responses (computation based on correlations) or by
observing a subset of financial contracts. This approach has been quite fruitful. In our view,
however, both approaches might be incomplete.

On the one hand, the estimation of networks tends to obviate the directionality of the
effects. In other words, Bank of America might have a large impact on American Express,
but the opposite might not be true. Network analysis in the literature tends to obviate
this feature. The second approach, which concentrates on the detail description of the
contingent contracts across banks, could represent a solution to this problem. On the other
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hand, it is virtually impossible to observe all possible contracts. Therefore, a market price
is conceivably a more reliable measure of the actual exposure. This ambivalence implies
that each procedure has a weakness that we have tried to address in the current paper.
Furthermore, as has been shown in the literature, the nature of the transmission mechanisms
changes with the shocks hitting the economy – meaning that the network is contingent on
the state of the economy. We argue that the estimation of an asymmetric and contingent
network requires a different identification method. We develop a methodology based on
identification through heteroskedasticity. Applying this estimation method on CDS data of
10 large banks, we construct a financial network model and find that the data generating the
model is consistent with three networks, each one contingent on one different macroeconomic
shock.

Our results indicate that the systemically important bank depends on the type of shock
that hits the economy – which is ultimately transmitted through a different network. Without
our contingent financial network model, it is not possible to identify the importance of each
bank in the financial system when a specific type of shock hits the economy. Indeed, we reject
that the data is explained by a single network – suggesting that a policy designed based on
that network would be inappropriate when a different transmission mechanism governs the
dynamics of the system.

From the regulatory point of view, understanding the relative rankings on the financial
institutions and how such ranking shifts in the sample is important. Our data is short and
therefore we are limited in our ability to observe shocks that have not happened yet. For
instance, we have not observed large positive productivity shocks, or relatively high inflation
rates, or even high interest rates. Therefore, our conclusions are conditional to the sample
we have seen. Within that sample, though, it is easy to identify tranquil times, periods
when there are shocks to asset prices, and times where uncertainty is high. In those settings,
which bank is systemically important changes. Central banks and regulators need to pay
attention to these changes if the proper macro-prudential regulation is to be designed. In
fact, regulators with misleading information about the financial network may not be able to
make the most appropriate policy decisions to minimize the impact of those shocks.

Furthermore, the application of our identification method for contingent networks is not
limited to policymaking. For example, asset management practitioners could use our method
to estimate the contingent network and allocate assets according to the dominate shock in
a period of time, and macroeconomists could use our method to evaluate the impact of
macroeconomic interventions. In general, how to model, estimate and intervene in shock
contingent networks is still an open and important topic for future research.
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Appendices

A Equivalent Formulation via Tensor Decomposition

We first show that the identification problem is equivalent to a tensor decomposition problem.

In previous sections, we identify multiple layers by matching the second moments

Ωh =
M∑

m=1

(1− Γm)
−1Σmh(1− Γm)

−⊤

We define a new N -by-MN matrix

Ā =
[
(1− Γ1)

−1 (1− Γ2)
−1 · · · (1− ΓM)−1

]
and a MN -by-MN diagonal matrix

Σ̄h =


Σ1h

Σ2h

. . .
ΣMh

 .

Then we can write the moment matching equation as

Ωh = ĀΣ̄hĀ
⊤.

Because the matrix Σ̄h is diagonal, we can further write

Ωh =
MN∑
r=1

−→a rσrh
−→a ⊤

r

where −→a r is the rth column of Ā and σrh is the rth diagonal entry of Σ̄h. Because vector
outer products can be written as tensor products, we can also write

Ωh =
MN∑
r=1

(−→a r ⊗−→a r)σrh

where ⊗ is the tensor product. Now if we stack all the second moments Ωh along a third
dimension, we obtain a N -by-N -by-H tensor [Ωh] and it holds that

[Ωh] =
MN∑
r=1

−→a r ⊗−→a r ⊗−→σ r (28)

where −→σ r =
[
σr1 σr2 · · · σrH

]⊤.
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We can obtain estimates of Am by taking the rank-MN tensor decomposition of [Ωh].

According to the Kruskal’s rank condition, if

Krank(ar) +Krank(ar) +Krank(σr) ≥ 2R + 2

then the tensor decomposition problem has a unique solution. In the above equation, Krank
stands for Kruskal rank, which is equivalent with matrix rank given assumption (ii). Hence
we have Krank(ar) = N and Krank(σr) = min{H,MN}. Furthermore, R is the rank of the
tensor in (28), which equals MN . Inserting the numbers into the Kruskal’s rank condition
and considering assumption (i) and (iii), we obtain the solution uniqueness.
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