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1 Introduction

In his AFA presidential address DeMarzo (2019) states that “Capital structure is not static,

but rather evolves over time as an aggregation of sequential decisions in which shareholders

have an incentive to act strategically, maximizing the share price at the potential expense of

creditors.” He further notes that in his model “absent commitment a Modigliani-Miller-like

value irrelevance and policy indeterminacy result holds.”

In this paper, we develop a dynamic capital structure model with no commitment, but

with incomplete markets and costly equity issuance. We show that unlike in DeMarzo and

He (2016) and DeMarzo (2019), a firm’s dynamic capital structure decisions affect its value

despite the lack of any commitment.1 There are three critical differences between our model.

First, we assume that issuing equity is costly, as has been emphasized by Myers and

Majluf (1984) and many follow-up work, and has been confirmed in numerous empirical

studies.2 If that were not the case (as most dynamic capital structure models assume) the

firm’s optimal dynamic financial policy would be to choose a target leverage at inception

and stick to it by offsetting profits with a commensurate increase in debt and losses with

a commensurate equity issue. The firm would stay at its target leverage unless it incurs an

unhedgeable loss that is so large that it is ex-post optimal for shareholders to default.

Second, we assume that financial markets are incomplete. Why is this assumption impor-

tant? Suppose that financial markets were (locally) complete. A firm could then avoid costly

external financing and default by using fairly priced financial instruments to hedge its risk.

It would be able to avoid costly default or equity issuance through dynamic hedging (e.g., via

one-period-ahead Arrow securities). This is the fundamental insight of Arrow (1964), Black

and Scholes (1973), Merton (1973), Harrison and Kreps (1979), Kehoe and Levine (1993),

Kocherlakota (1996), and Alvarez and Jermann (2000). However, with locally incomplete

financial spanning, the firm’s ability to manage its risk to avoid default is limited.3

1Admati, DeMarzo, Hellwig, and Pfleiderer (2018) show that absent commitment shareholders choose to
issue additional debt no matter how excessive the firm’s current leverage, which they refer to as the leverage
ratchet effect (also see Bizer and DeMarzo, 1992).

2See e.g. Altinkilic and Hansen (2000) and Eckbo, Masulis and Norli (2007).
3The possibility of default provides a partial hedge against risks that cannot be insured because of limited

spanning, as emphasized by Zame (1993) and Dubey, Geanakoplos and Shubik (2005). Unlike these papers,
we show that default provides a partial insurance for the firm even under risk neutrality. Although the
implications of market incompleteness for capital structure choice have long been recognized in a static setting
( see e.g. Hellwig, 1981), little attention has been devoted to the consequences of market incompleteness in
a dynamic setting for the evolution of a financially constrained firm’s capital structure, its debt capacity,
and its risk management policies.
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Third, we assume that the firm relies on short-term debt as in Abel (2016, 2018). With

these assumptions we formulate a meaningful and realistic theory of leverage dynamics,

whereby the firm’s leverage increases in response to losses and decreases in response to

profits. When leverage exceeds the firm’s target, the firm seeks to reduce its debt whenever

possible. Leverage then only continues to grow as a result of losses. These leverage dynamics

in the equity inaction region are consistent with the empirical evidence that firms use realized

profits to retire some of their debts and reduce leverage.4

The assumption of market incompleteness takes its full significance when combined with

the assumption that outside equity is costly.5 Because it is costly to do so, the firm only

issues equity episodically when necessary. The cost of issuing equity has a first-order effect on

both leverage dynamics and the level of debt. Unlike most other dynamic capital structure

models, which assume a cost of adjusting debt rather than equity, the firm’s payout and

issuance boundaries are far apart in our model precisely because equity issuance is costly.

“Target” leverage is pinned down by the firm’s optimal payout boundary and its optimal

equity issuance boundary determines when the firm recapitalizes to bring down its excessively

high leverage.

The building blocks of our model are: 1) a firm with an illiquid capital stock that can

be increased (decreased) through investments (divestments, asset sales) subject to adjust-

ment costs, as in the q theory of investment;6 2) the firm’s operations are exposed to both

continuous diffusive shocks and discrete jump shocks;7 3) although some shocks can be

hedged at actuarially fair terms, other (larger) shocks cannot, as hedging instruments for

these contingencies are missing, costly to arrange, or difficult to describe. An important

source of unhedgeable shock is a force majeure, catastrophic, large downward jump, as in

the rare-disasters literature, e.g., Rietz (1988) and Barro (2006).

We make three simplifying assumptions. First, we assume that the firm’s expected prof-

4Unlike existing dynamic tradeoff theories of capital structure the leverage dynamics in our model are not
vulnerable to the ‘leverage-profitability puzzle’ critique (see Titman and Wessels, 1988, Rajan and Zingales,
1995, and Frank and Goyal, 2003).

5Otherwise, by simply issuing equity costlessly, the firm can do away with missing state-contingent hedging
contracts even when markets are incomplete.

6Hayashi (1982) provides conditions under which average Q is equal to marginal q. Abel and Eberly (1994)
develop a unified q theory of investment in neoclassic settings. Lucas and Prescott (1971) and Abel (1983)
are important early contributions. McDonald and Siegel (1986) and Dixit and Pindyck (1994) formulate
investment as a real-options problem.

7Jump diffusion models, e.g., affine jump diffusion models, are widely used in the credit-risk literature.
See Duffie and Singleton (2012).
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itability is constant and that its investment opportunities are time-invariant. Second, as in

DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and Rochet (2007), DeMarzo and

Fishman (2007a, 2007b), DeMarzo and He (2016), and DeMarzo (2019), we also assume

that shareholders are risk neutral and impatient.8 By impatience, we mean that sharehold-

ers discount cash flows at the rate γ, which is larger than the risk-free rate r. This is the

reason why debt is the preferred source of funding, other things equal. Third, we assume

that all the firm’s debt is short term. The main reason for these simplifying assumptions is

to allow us to use the model’s homogeneity property to reduce our original two-dimensional

optimization problem to a one-dimensional problem, where the only state variable is book

leverage xt = Xt/Kt (the ratio of the firm’s debt outstanding, Xt, and its capital stock, Kt).
9

The firm can adjust its debt at any time at no cost (in the absence of default), or issue

costly external equity, or make a payout to shareholders, or declare default. In the model

solution we jointly pin down the firm’s equilibrium credit spread and its endogenous debt

capacity. Finally, the firm can manage its risk exposures, albeit to a limited extent, via

available insurance and hedging contracts. In response to a loss, the firm can also adjust its

investments and conduct asset sales.

The firm continuously adjusts its leverage in response to shocks and manages its risk

with the goal of going back to its long-run target leverage and minimizing the volatility

of its leverage. The optimal dynamic financing policy features four, mutually exclusive,

endogenously determined, regions: a payout region when leverage is below target, a debt

financing (equity inaction) region when the firm incurs a loss and leverage is not too high,

an equity financing region to recapitalize and bring down leverage, and, a default region.

Since shareholders are protected by limited liability, the firm may find it optimal to exercise

its default option when hit by a sufficiently large (unhedgeable) downward shock. Therefore,

the firm may have to promise interest payments at a rate exceeding the risk-free rate.

Our model generates rich leverage dynamics. The firm optimally starts at its long-term

target leverage x at t = 0. For any t > 0, any realized profit that lowers xt below x triggers

a payout to shareholders, and any realized loss increases leverage x and negatively affects

8In the dynamic-contracting literature, Biais Mariotti, Rochet, and Villeneuve (2010), DeMarzo, Fishman,
He, and Wang (2012), and Piskorski and Tchistyi (2010) all make similar assumptions. Brunnermeier and
Sannikov (2014) make the same preferences assumption (risk-neutrality, limited liability, and impatience)
for experts in their equilibrium model.

9If we allowed the firm’s profitability and investment opportunities to vary we would have a second
dimension, and if we also allowed the firm to issue term debt, we would have a third dimension. These are
clearly interesting and relevant generalizations, but they are beyond the scope of this paper.
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firm value. We show that both book leverage and market leverage are highly persistent,

consistent with the evidence of Fama and French (2002). For low values of leverage, the firm

has sufficiently high financial slack and its leverage in expectation drifts down. That is, the

firm seeks to pay out to shareholders. When leverage is low, the firm has a large spare debt

capacity, so that the (endogenous) marginal servicing costs of debt and hedging costs are

low. More likely than not, the firm is then able to generate a sufficiently high profit to be

able to pay down its debt. In contrast, when leverage is high, (endogenous) debt servicing

and hedging costs are so high that the firm tends to be drawn into a debt spiral.

Since issuing equity is costly, the firm manages leverage mostly by relying on dynamic

debt adjustments (in the equity inaction region.) Only a highly levered firm may choose

to issue costly equity to reduce its leverage and replenish its financial slack, but at the

cost of substantially diluting existing shareholders. If the loss is so high that the existing

shareholders are completely wiped out, the firm chooses to default.

These results closely align with the evidence in DeAngelo, Goncalves, and Stulz (2018)

who show that firms appear to behave like households with credit-card debt: they pay down

their debt when they get a positive income shock and they increase their debt when they

have no choice to do otherwise. Indeed, they conclude: “Debt repayment typically plays

the main direct role in deleveraging.” Our results are also consistent with the findings of

Korteweg, Schwert, and Strebulaev (2019) who find that firms tend to cover operating losses

by drawing down a line of credit, giving rise to similar leverage dynamics as in our model.

The highly persistent dynamics of leverage in our model are also consistent with the

findings of Lemmon, Roberts, and Zender (2007) who found that “the adjusted R-square

from a regression of leverage on firm fixed effects (statistical ‘stand-ins’ for the permanent

component of leverage) is 60%.” Indeed, a sensible predictor of leverage in the next interval

of time dt in our model is simply current leverage xt. Over a longer time horizon our leverage

dynamics are consistent with the findings of DeAngelo and Roll (2015), who emphasize that

leverage is far from time invariant. In line with empirical evidence our model also generates

mean-reverting leverage, as in Collin-Dufresne and Goldstein (2001).

Importantly, our results are consistent with most of the evidence on leverage dynamics

even though we have not assumed any adjustment costs for debt. The preferred interpretation

of the empirical literature is that the observed leverage dynamics are a reflection of the

existence of debt adjustment costs (Leary and Roberts, 2005). But, in practice, what is the

size of the adjustment cost of drawing down a line of credit, or retiring debt? This cost
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is likely to be far too small to explain observed leverage dynamics. Rather, we point in a

different direction, equity issuance costs, which create a demand for flexibility and give rise

to leverage dynamics similar to those observed in the data.10

Our analysis also generates novel results on the firm’s dynamic risk management pol-

icy. The firm’s incentives to hedge or to take risk crucially depend on the degree of market

incompleteness and its ability to manage risk. If the firm’s hedging opportunities are suf-

ficiently rich so that it can effectively manage most of its risk exposures, the firm behaves

prudently, seeks to self-insure against its unhedgeable shocks, and delays costly external

equity financing as much as possible. In this situation, the firm’s equity value is globally

concave and there are three mutually exclusive regions: an equity-payout region, a leverage

roll-over (equity inaction) region, and a default region. The firm fully exploits all available

hedging opportunities and hence leverage only responds to unhedgeable diffusive and jump

shocks. Because equity issuance is costly, the firm postpones its equity issuance until the

very last moment.11 Upon equity issuance, existing shareholders are wiped out and new

shareholders take over the firm.

If markets are highly incomplete the firm may become a risk-seeker when its leverage

is sufficiently high. Rather than purchasing insurance to hedge its insurable jump risk, the

firm may decide to sell actuarially fair insurance contracts on its own downside risk in order

to collect insurance proceeds and pay down its debt. But, surprisingly, when it is close to

bankruptcy, selling insurance to pay down its debt may no longer be optimal. Instead, the

firm then goes to the extreme of maxing out on insurance contracts with the hope that it will

be the recipient of a large lump-sum insurance payment that will enable the firm to reduce

its leverage to a manageable level. Thus, excessive insurance purchases become a form of

extreme risk-seeking.12

We illustrate these rich predictions of our model on leverage dynamics and equity issuance

along a simulated path described in Figure 2. The firm begins its life at its target leverage

and is subjected to diffusion and jump shocks that are partially hedgeable. The sample path

comprises a sequence of four different jump shocks. The first shock is small enough that it

can be perfectly hedged. The second jump is too large to be hedged. The loss it causes

10In an influential CFO survey, Graham and Harvey (2001) find that financial flexibility is among CFO’s
very top considerations.

11There are actually four regions, but the “equity issuance” region is a singleton in this case.
12Della Seta, Morellec, and Zucchi (2020) develop a model showing that short-term debt and rollover losses

can foster risk-taking when firms are close to financial distress.
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forces the firm to increase market leverage from 37% to 77%, as seen in Panel B. Going

forward, its market leverage is so high that the firm is trapped in a debt spiral. Eventually,

the firm is pushed into a first recapitalization, which almost completely dilutes the original

shareholders but reduces market leverage from 97% to 47%. The third jump again is too

large to be hedged and forces the firm to immediately respond with a second recapitalization.

The last jump is the finishing stroke and pushes the firm to default on its debt obligations,

following which it is liquidated. Figure 2 illustrates the highly non-linear nature that leverage

dynamics can take in an environment with incomplete markets and external financing costs.

Such dynamics are impossible to fully capture in a reduced-form regression analysis and are

difficult to reconcile with the target-leverage-with-debt-adjustment-costs view of Leary and

Roberts (2005) and others.

Other related literature. Our model belongs to a growing literature on dynamic corpo-

rate finance theory initiated by Leland (1994). In his seminal contribution Leland (1994)

considers a dynamic tradeoff theory model, which pits the tax benefits of debt against as-

sociated financial distress costs, in a model with diffusion shocks to earnings and with no

investment. In his model the firm chooses the level of perpetual risky debt at inception with

no cost but infinite costs thereafter.13

Cooley and Quadrini (2001), Gomes (2001), Hennessy and Whited (2005, 2007), Gamba

and Triantis (2008), and DeAngelo, DeAngelo, and Whited (2011) develop dynamic capital

structure models with investment. An important methodological difference of our analysis

is the continuous-time formulation of the firm’s problem. As in Leland (1994, 1998), De-

Marzo and Sannikov (2006), Brunnermeier and Sannikov (2014), DeMarzo and He (2016),

and DeMarzo (2019), our continuous-time formulation allows a sharper characterization of

the underlying economic tradeoffs and of the firm’s highly nonlinear, non-monotonic, state-

contingent, path-dependent policies.14 For example, the endogenous debt capacity is char-

acterized by an economically intuitive boundary condition where the volatility of leverage is

zero in equilibrium.

One empirically counterfactual implication of Leland’s model is that once the firm is

running, the only source of external financing is equity, which can be raised at no cost. No

13Fischer, Heinkel, and Zechner (1989) is an important early contribution to this literature. Goldstein, Ju,
and Leland (2001) and Strebulaev (2007) generalize Leland (1994) to allow for dynamic recapitalization.

14In their survey, Brunnermeier and Sannikov (2016) discuss the advantages of continuous-time modeling
in dynamic contracting and macro-finance contexts.
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new debt is allowed by assumption. A key difference of our model with respect to Leland

(1994) is that the marginal source of external financing on an ongoing basis is debt. It

is almost as if we put the Leland model on its head when it comes to the firm’s external

financing. In practice debt is generally cheaper to issue than equity. Moreover, at the margin

firms generally use debt rather than equity when they raise external financing. Seasoned

equity offerings are episodic. In addition, firms tend to preserve spare debt capacity, while

at the same time using financial hedging instruments to manage their risk exposures. Both

features are present in our model.

The other closely related dynamic corporate finance model is DeMarzo and He (2016) and

DeMarzo (2019). They generalize Leland (1994, 1998) by allowing the firm to dynamically

issue new pari passu term debt over time.15 Unlike in our model the firm’s debt adjustment

is locally deterministic (debt does not respond to profit and loss realizations) and marginal

changes in leverage do not affect firm value.

Another related model is Abel (2018), who develops a dynamic tradeoff model with short-

term debt and an endogenous cost of default. By assumption the firm is not allowed to issue

equity nor to retain earnings. Cash-flows are assumed to follow a Markov process in which

earnings before interest and taxes (EBIT) remain unchanged for a random length of time,

and a new value of EBIT arrives at a date governed by a Poisson process.

Our paper is related to the literature on dynamic liquidity and risk management. Ex-

amples include Decamps, Mariotti, Rochet, and Villeneuve (2011), Bolton, Chen, and Wang

(2011), Hugonnier, Malamud and Morellec (2015), and Abel and Panageas (2020), building

on the seminal contributions of Baumol (1952), Tobin (1956), and Miller and Orr (1966).16

Alvarez and Lippi (2009) develop a continuous-time dynamic household cash management.

Hugonnier and Morellec (2017) develop a dynamic banking model with short-term debt.

Our paper jointly analyzes the firm’s dynamic capital structure, investment, and hedging as

well as risk taking decisions, and further pins down the firm’s endogenous debt capacity and

equilibrium credit spreads.

Our paper is also related to the recent limited-commitment-based research on dynamic

liquidity and risk management. Rampini and Viswanathan (2010, 2013) develop a limited-

15The firm is also allowed to repurchase debt, but that is never optimal in their setup.
16These papers focus on dynamic cash and corporate liquidity management but not leverage dynamics.

For example, in Bolton, Chen, and Wang (2011), both debt capacity and credit spread are exogenous, and
there is no notion of target leverage. In our paper, both debt capacity and credit spreads are endogenously
determined. And the firm has a target leverage.
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commitment-based theory of risk management that focuses on the trade-off between exploit-

ing current versus future investment opportunities. Building on the insights of Hart and

Moore (1994) and using the recursive contracting methodology of Sannikov (2008), Bolton,

Wang, and Yang (2019) develop a theory of dynamic liquidity and risk management based on

the inalienability of risky human capital.17 These models also generate endogenous debt ca-

pacity and optimal liquidity and risk management policies, but they do not generate default

in equilibrium, as financial markets are assumed to be locally complete.

Finally, our model is related to the dynamic contracting and optimal dynamic security

design literature which often features a combination of debt, (inside and outside) equity, and

corporate liquidity as in DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and Rochet

(2007), Biais, Mariotti, Rochet, and Villeneuve (2010), and DeMarzo and Fishman (2007b),

and DeMarzo, Fishman, He, and Wang (2012).18

2 Model

We describe the firm’s capital accumulation and production technology (the real side) in

subsection 2.1, introduce the incomplete financial markets and financial policies (the financial

side) that the firm make in subsection 2.2, and finally state the firm’s objective and its

optimization problem in subsection 2.3.

2.1 Capital Accumulation and Production

We use K and I to denote the level of the firm’s capital stock and its gross investment,

respectively. At each time t, the firm uses its capital stock Kt to produce cash flows propor-

tional to its contemporaneous capital stock and equal to AKt, where A is a constant that

quantifies the productivity of capital.19 The price of capital is normalized to one, so that

the firm’s unlevered free cash flow net of investment is given by:

Yt = AKt − It . (1)

17Ai and Li (2015) analyze an optimal contracting problem similar to the dual contracting problem in
Bolton, Wang, and Yang (2019).

18Biais, Mariotti, and Rochet (2013) and Sannikov (2013) provide recent surveys on this subject. For static
security design models, see Townsend (1979) and Gale and Hellwig (1985), Innes (1990), and Holmstrom
and Tirole (1997, 1998).

19We can interpret this linear production function as one that features a constant-return-to-scale produc-
tion function also involving other factors of production.
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We assume that capital stock evolves according to the following process:20

dKt = Ψ(It−, Kt−)dt+ σKt−dBKt − (1− Z)Kt−dJt . (2)

There are three terms contributing to the change in capital stock dKt. The first term in

(2), Ψ(It−, Kt−), corresponds to the rate of capital accumulation over time interval dt in

the absence of diffusion shocks and jumps. As in the q theory of investment (Lucas and

Prescott, 1971, Hayashi, 1982, Abel and Eberly, 1994, and Jermann 1998), we assume that

the firm incurs capital-adjustment costs and that the capital stock depreciates over time.

The function Ψ(It−, Kt−) captures both the costs of installing new capital and capital stock

depreciation. As in Lucas and Prescott (1971) and Hayashi (1982), we also assume that

Ψ(I,K) is homogeneous of degree one in I and K, so that

Ψ (I,K) = ψ(i) ·K, (3)

where i = I/K denotes the investment-capital ratio.21 Given that more investment means

more capital, we have ψ′(i) > 0. We further assume that ψ(i) is concave and continuously

differentiable in i.

The second term in (2) describes the Brownian shock, where σ is the diffusion-volatility

parameter and BK is a standard Brownian motion. These continuous shocks can be thought

of as stochastic capital depreciation shocks.

The third term in (2) describes discrete downward jumps in the capital stock, where J
is a jump process with a constant arrival rate λ. Let τJ denote the jump arrival time. If a

jump does not occur at time t, so that dJt = 0, we have Kt = Kt−, where Kt− ≡ lims↑tKs

is the left limit of Kt. If a jump does occur at time t, so that dJt = 1, the capital stock

drops from Kt− to Kt = ZKt−. We denote by Z ∈ [0, 1] the recovery fraction of capital

that survives the jump shock and assume that Z is distributed according to a well-behaved

cumulative distribution function F (Z). The size of a jump can be small or large. Note that

a low realized value of Z means a large negative shock to the capital stock. We interpret

these shocks as rare events that may put the firm into economic and financial distress.

20Pindyck and Wang (2013) use this process in a general-equilibrium setting to quantify the economic cost
of catastrophes. Brunnermeier and Sannikov (2014) and Barnett, Brock, and Hansen (2019) use the same
capital accumulation process given in (2) with no jumps.

21Also see Boldrin, Christiano and Fisher (2001), Jermann (1998), and Brunnermeier and Sannikov (2014)
among others for this widely-used specification.
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2.2 Financial Markets and Corporate Financial Policies

We assume that investors are risk neutral.22 Let r denote the constant risk-free rate. In

equilibrium investors break even by earning an expected rate of return that is equal to

r. One key market imperfection in our model is that financial spanning is incomplete. In

reality, a firm’s ability to manage its risk exposure is often limited as certain types of risk that

a firm faces are simply not hedgeable. Contractual incompleteness and/or costly financial

intermediation may cause certain financial assets to be missing and markets to be incomplete.

If the demand for certain hedging instruments is low, market making for these instruments

are not profitable for intermediaries causing these hedging instruments to be missing.

2.2.1 Diffusion and Jump Hedging Contracts

First, we start with the diffusion hedging contracts.

Diffusion-Hedging Contracts. In practice, some diffusive shocks are easier to hedge

than others in the market place.23 To capture incomplete diffusion hedging, we assume that

there exists a fully liquid diffusion-hedging contract, however, it is only partially correlated

with the diffusion shock BK to capital stock. Let BS denote the standard Brownian motion

that drives the payoff for this liquid hedging contract. Let ρ denote the constant correlation

coefficient between the capital shock, BK , and the shock BS, which determines the payoff

for the diffusion hedging contract. Therefore, we can equivalently express BKt as follows:

BKt = ρBSt +
√

1− ρ2 BOt , (4)

where BOt is a standard Brownian motion that is orthogonal to BSt and captures the un-

hedgeable diffusion risk.

An investor who holds one unit of the hedging contract from t to t + dt receives a gain

or loss equal to σdBSt = σ
(
BSt+dt − BSt

)
at time t + dt and incurs no upfront payment at t,

as investors are risk neutral and markets are competitive.24

22We can generalize our model by allowing investors to be risk averse and well diversified. It is known
that we can properly account for the risk-return adjustments by using the stochastic discount factor (SDF)
to price the firm’s free cash flows.

23For example, diffusion shocks correlated with the stock market or commodities such as oil prices can be
hedged via derivatives.

24The hedging contract at inception is off-the-balance sheet but the realized payoff appears on the balance
sheet. This hedging contract is analogous to a futures contract in standard no-arbitrage models, e.g., Cox,
Ingersoll, and Ross (1981). We normalize the volatility of the diffusion-hedging contract so that it is equal
to the capital diffusion-volatility parameter, σ, given in (2).
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We denote the firm’s demand for this hedging contract at time t by Θt. The realized

instantaneous payoff for this position is then ΘtσdBSt . In general, the firm’s hedging position

is constrained.25 Constraining the size of a firm’s hedging position constitutes another form

of market incompleteness. To capture this form of market imperfection, we assume that the

firm’s hedging demand for the hedgeable component of the diffusion risk in absolute value,

|Θt|, cannot exceed an exogenous upper bound: Θt.

For simplicity, we assume that Θt is proportional to its capital stock Kt:

|Θt| ≤ θKt . (5)

where θ is a constant. The lower the value of θ, the tighter the hedging constraint. When

θ = 0, the firm cannot hedge its diffusion risk at all. When θ →∞, this hedging constraint

is removed. We allow for all values of θ.

To ease our exposition, we proceed by first analyzing the solution where the constraint

(5) never binds and then proceed to the case where the constraint (5) binds under certain

scenarios in Section 6. Next, we introduce the firm’s options to manage jump risk.

Jump Insurance Contracts and Premium Payments. We consider the following in-

surance contract initiated at time t− that covers the first stochastic arrival of a downward

jump in capital stock, with a recovery fraction falling into the interval (Z,Z + dZ) at the

jump arrival time τJ . The buyer of a unit of this jump insurance contract makes a premium

payment per unit of time of λdF (Z), the product of the jump intensity, λ, and probability

dF (Z) that Z falls into the interval (Z,Z + dZ) until the jump arrival time τJ . When the

jump event occurs at τJ , the buyer stops making insurance payments and receives a unit

lump-sum payoff. Conceptually, this jump insurance contract is analogous to a one-step-

ahead Arrow security in discrete settings. In practice, this contract is similar to a credit

default swap.26

As with diffusion shocks, we assume that not all jumps can be hedged in financial markets.

Specifically, we assume that jump-insurance contracts are only available for Z ∈ [Z∗, 1]. Here

Z∗ is a parameter that describes the level of financial spanning. The lower the value of Z∗,

25In practice, to reduce the likelihood of default, the firm may be required to post collateral and it may
be required to pay hedging costs, both of which constrain the firm’s hedging positions.

26Pindyck and Wang (2013) and Rebelo, Wang, and Yang (2018) use similar insurance contracts in different
economic applications.
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the larger the available set of jump insurance contracts.27

We use Πt−(Z) to denote the size of the firm’s jump-risk insurance payment at time t−.

The insurance premium payment is then equal to Πt−(Z)λ dF (Z) prior to the jump arrival,

and at time τJ , the firm receives the lump-sum payment Πt−(Z) if the defined event occurs.

Since the firm can purchase insurance for all levels of Z ∈ [Z∗, 1], the maximum jump

insurance premium payment per period is given by:

Φt− =

∫ 1

Z∗
Πt−(Z)λdF (Z) ≡ λ E [Πt−(Z) IZ≥Z∗ ] , (6)

where the expectation, E[ · ], is calculated with respect to the cumulative distribution func-

tion F (Z). The indicator function IZ≥Z∗ equals one if Z ≥ Z∗ and zero otherwise. This

indicator function imposes the restriction that jump insurance is available only for Z ≥ Z∗.

2.2.2 Debt and Equity

We denote the firm’s outstanding debt by Xt: when Xt > 0 it is in the debt region and when

Xt < 0 the firm is in the savings region.

Debt. We assume that the firm issues short-term debt and it is costless to do so. After

raising Xt via debt issue at t, over a small time increment dt, the firm decides at t + dt

whether to default on its existing debt or to roll over its short-term debt. Using the short-

term debt allows us to simultaneously model the dynamics of both corporate liquidity and

leverage in a parsimonious way.28 Moreover, when the firm can issue short-term debt it faces

a time-consistent dynamic optimization problem.29

Since not all jump shocks can be hedged the firm may find it optimal to default on its

debt obligations following the realization of some jump shocks, so that the firm’s debt may

be risky. The contractual rate of return for short-term debt initiated at t then exceeds the

risk-free rate r by a credit spread, denoted by ηt, which is determined in equilibrium to

27The alternative is to assume that small jump shocks are unhedgeable but large jump shocks are hedgeable.
In this case, it is harder to make the firm default as large shocks are hedged. Empirically, we tend to observe
that firms get into trouble with expensive equity issuance (at the cost of heavily diluting existing shareholders)
or even end up with costly bankruptcy when they are exposed to large negative unhedgeable shocks. For
this reason, we assume that large negative downward shocks are harder to hedge.

28In the full-spanning case, introducing term debt adds no value and hence focusing on short-term debt
is without loss of generality. The intuition is that for the full-spanning case, the firm can achieve any state-
contingent allocation by dynamically managing its short-term debt and state-contingent risk management
policies.

29Rebelo, Wang, and Yang (2018) use short-term debt to model sovereign debt and default.

12



compensate creditors for the losses they bear if the firm defaults at t. We denote the firm’s

interest payment over time interval dt as

Ct = (r + ηt)Xt . (7)

Since debt is short term, equity investors are expected to pay back both the interest and

principal to creditors each period. At the next instant, the firm borrows again, rolling over

its short-term debt and/or issuing equity. This process continues until the firm defaults.

Financial Distress. For simplicity, we assume that the firm is bankrupt after defaulting

on its debt and is liquidated. In bankruptcy, the absolute priority rule (APR) holds, in

that creditors are repaid before equity investors can collect any proceeds. As in Miller

and Modigliani (1961) and Leland (1994), we assume that corporate bankruptcy causes

deadweight losses. Let LτD denote the firm’s liquidation value at the moment of default τD.

To preserve our model’s homogeneity property, we assume

LτD = `KτD . (8)

Here, ` is the market recovery value per unit of capital.30 Default generates deadweight

losses if ` is sufficiently low.

Costly External Equity Issuance. Because default is costly, shareholders could find it

optimal to issue external equity to replenish the firm’s liquidity. However, in reality, firms

often face significant external financing costs due to asymmetric information and managerial

incentive issues.31 A large empirical literature has sought to measure these costs, in particular

the costs arising from the negative stock price reaction in response to the announcement of

a new equity issue.32

30For essentially the same assumption, see Bolton, Chen, and Wang (2011) and DeMarzo, Fishman, He,
and Wang (2012), for example.

31Explicitly modeling informational asymmetry would result in a substantially more involved analysis.
Lucas and McDonald (1990) provides a tractable analysis by making the simplifying assumption that the
informational asymmetry is short lived, i.e. it lasts one period.

32An early study by Asquith and Mullins (1986) found that the average stock price reaction to the an-
nouncement of a common stock issue was −3% and the loss in equity value as a percentage of the size of
the new equity issue was as high as −31% (See Eckbo, Masulis and Norli, 2007 for a survey.) Calomiris and
Himmelberg (1997) estimate the direct transactions costs firms face when they issue equity and find that
mean transactions costs (underwriting, management, legal, auditing and registration fees) are as high as 9%
of an issue for seasoned public offerings and 15.1% for initial public offerings.
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We model the firm’s external equity financing as follows. Let Nt denote the firm’s (undis-

counted) cumulative net external equity financing up to time t and Ht to denote the corre-

sponding (undiscounted) cumulative costs of external equity financing up to time t. Following

Bolton, Chen, and Wang (2011), we assume that the firm incurs both fixed and proportional

costs of issuing equity. To preserve the model’s homogeneity property for tractability pur-

poses, we further assume that these costs are proportional to capital stock Kt, so that h0Kt

denotes the fixed equity-issuance cost, and h1Mt refers to the proportional equity-issuance

cost, where Mt is the net amount raised via external equity issuance.

Finally, we turn to the firm’s leverage dynamics, which also serves as the firm’s law of

motion connecting its sources of funds with its uses of funds.

Leverage Dynamics and Law of Motion. When the firm is solvent (i.e. when t < τD),

its debt, Xt, evolves according to the following law of motion:

dXt = − [AKt− − (It− + Ct− + Φt−)] dt−Θt−σdBSt − Πt− dJt − dNt + dUt , (9)

where Ut denotes the firm’s cumulative (nondecreasing) payout to equityholders up to time

t. The first term on the right side of (9) describes the firm’s operating revenues AKt−dt

net of expenditures (It− + Ct− + Φt−) dt, which are the sum of (a.) investment outlays It−,

(b.) interest payments Ct− = (r+ ηt−)Xt−, and (c.) jump-insurance premium payments Φt−.

The second and third terms describe the payoffs from the diffusion hedging position and

the jump hedging position, respectively. The fourth term dNt describes the effect of net

amount raised from external equity issuance on debt balance. The signs of these four terms

are negative because the firm’s debt is lowered when realized payoffs are positive. Finally,

dUt is the (non-negative) incremental payout to shareholders.

2.3 Optimality

Shareholders are risk-neutral with a discount rate γ. Following DeMarzo and Sannikov

(2006) and DeMarzo and Fishman (2007a, 2007b), we assume that the firm’s shareholders

are impatient relative to other investors, γ ≥ r. This impatience could be preference based

or could arise indirectly because shareholders have other attractive investment opportunities.

Due to this relative impatience, shareholders prefer early payouts, ceteris paribus.

The firm’s shareholders choose investment (It), payout (Ut), diffusion and jump risk

hedging demands (Θt and Πt), short-term debt issues (if Xt > 0), external equity issuance
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Nt, and the default timing τD to maximize their equity value defined below:

Et

[∫ τD

t

e−γ(s−t) (dUs − dNs − dHs)

]
, (10)

subject to the capital accumulation equation given in (2), the law of motion given in (9),

and the equilibrium pricing for all financial claims including corporate debt, diffusion-hedging

contracts, and jump-insurance contracts. Because equity issuance is costly, (dHt > 0 when-

ever dNt > 0), we need to subtract the cost of equity issuance, dHt, in (10). Because the

APR is enforced, shareholders receive nothing upon default.

Let Pt and Vt denote the firm’s equity value and its total market value, respectively.

Vt = Pt + Xt. The firm’s book leverage is then xt = Xt/Kt. We use vt to denote the

firm’s total value scaled by its capital vt = Vt/Kt. Similarly, pt denotes scaled equity value,

pt = Pt/Kt. Let mlt denote the firm’s market leverage, the ratio between the value of debt

Xt and the firm’s total value Vt:

mlt ≡
Xt

Vt
=
xt
vt
. (11)

As Kt and Xt are the two state variables for the optimization problem, we use P (Kt, Xt)

and V (Kt, Xt) to denote the firm’s equity value function for the problem defined in (10) and

the corresponding total firm value, respectively. We have

V (Kt, Xt) = P (Kt, Xt) +Xt . (12)

The firm’s average q is equal to its total market value divided by K:

v(xt) =
V (Kt, Xt)

Kt

= p(xt) + xt . (13)

3 Costless Equity Issuance: Classical Tradeoff Theory

Before turning to the general solution of our model it is helpful to consider the special case

where equity issuance is costless (h0 = h1 = 0), as is assumed in Leland (1994), DeMarzo

and He (2016), DeMarzo (2019), and most other dynamic capital structure models. Since

γ > r, the firm borrows up to the point where the benefit of an additional dollar is equal

to the expected incremental cost of default. In effect, the firm’s optimal debt-financing

calculation is similar to the classical tradeoff theory, with the tax-advantage of debt replaced
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by a discounting-advantage of debt.33 Moreover, in our model the firm faces a constant

investment opportunity set, so that it is optimal for the firm to maintain a constant target

leverage ratio when equity issuance is costless, as we formally establish below.

3.1 Solution

Let x denote the firm’s endogenous maximal book leverage beyond which it defaults. Let x

denote the firm’s target leverage and v(x) denote the firm’s corresponding average q at the

target leverage. By definition, x ≤ x. Moreover, for all x ∈ [x, x], we have v(x) = v(x) =

x+ p(x), as equity issuance is costless. Since equity value at the default boundary x is zero

(p(x) = 0), it follows that

x = v(x) . (14)

That is, market leverage at x is 100% and hence the firm declares default when xt ≥ x.

At its target leverage, the firm’s average q, v(x), satisfies the Gordon-growth formula:

v(x) =
1

γ − g(i)

[
(A− i) + (γ − r)x− λ(v(x)− `)

(∫ Z

0

ZdF (Z)

)]
, (15)

where g(i) is the endogenously chosen constant growth rate and the constant investment-

capital ratio i satisfies:
1

ψ′(i)
= v(x) = x. (16)

Equation (16) is the standard first-order condition (FOC) for investment in q theory

models. The firm equates its marginal cost of investing, 1/ψ′(i), with its marginal q, v(x) =

p(x) + x. Under costless equity issuance, the marginal cost of equity financing is one, which

explains why the marginal cost of financing does not appear in the FOC. It also explains

why the firm’s marginal q is equal to its average q, as in Hayashi (1982).

The term inside the square brackets on the right side of (15) is the total expected cash-

flow to the firm’s (debt and equity) investors (scaled by K). This payoff is equal to the sum

of three terms: the unlevered scaled FCF (A − i), the net flow benefit due to the cheaper

cost of debt financing (γ − r)x, and the expected firm-value loss due to costly default. The

denominator on the right side of (15) is equal to the difference between the equity holders’

33Our main argument does not depend on the details of the funding advantage of debt. We could formulate
our model with a tax benefit of debt instead of a discounting-benefit. DeMarzo and He (2016) and DeMarzo
(2019) discuss the similarities between the two formulations.
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discount rate γ and the expected growth rate g( · ) (evaluated at the optimal investment-

capital ratio i), as in the standard Gordon growth model.

Note that the expected growth rate of the firm’s free cash-flow g( · ) includes a jump term:

g(i) = ψ(i)− λ(1− E(Z)) . (17)

As we model jumps as negative shocks, any realization of a jump lowers the expected growth

rate from ψ(i) by λ(1−E(Z)). Indeed, the second term in (17) is equal to the product of the

jump arrival probability per unit of time, λ, and the expected percentage loss, (1 − E(Z)).

Note also that the relevant discount rate is that of shareholders, γ, who are the residual

claimants of the firm’s free cash flows.

The endogenous default boundary can also be expressed in terms the recovery boundary

value upon the arrival of a jump, Z, which satisfies

Z = min {x/x , Z∗} . (18)

Equation (18) connects the firm’s recovery boundary default value Z to its leverage default

threshold, x, target leverage x, and the maximum insurable jump loss (1− Z∗). Given that

the firm can avoid default by insuring any loss (1− Z) ∈ (0, 1− Z∗], we must have Z ≤ Z∗.

Also by definition, as the firm is indifferent between defaulting or not when Z = Z, we have

Z = x/x, provided that Z = x/x < Z∗. Combining these two inequalities, we obtain (18).

By choosing x and i to maximize (15) subject to (14), (16), and (18), we characterize the

solution: x, i, x, v(x), and Z. We provide details for the derivation in Appendix A.1.

There are two possible solutions, depending on parameter values:

A. The optimal default boundary is such that Z = Z∗ and v(x) = x = x. That is, the

optimal policy is to set market leverage at 100% at x, so that p(x) = p(x) = 0.

B. Target leverage and the optimal default boundary are such that x = Zx and Z < Z∗.

The firm’s optimal market leverage is then equal to x/v(x) = Zx/x = Z, which is

less than 100%. Under this solution the firm optimally self-insures any unhedgeable

downward jump shock such that Z ≤ Z < Z∗ by issuing equity to make up this loss.

The standard tradeoff theory, balancing distress costs and the funding advantage of debt,

implicitly assumes that financial markets are incomplete. Otherwise, the firm can use fairly

priced financial securities to perfectly hedge its risk, thereby fully capturing the funding

advantage of debt and achieving 100% market leverage without incurring any costly default.

Next, we summarize the first-best result.
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3.2 First Best

Under complete spanning, we obtain the first-best solution.34 Note that even when equity

issuance is costly, we can attain the first-best solution, by purely relying on fairly priced

hedging contract and avoiding any equity issuance.

The firm then never defaults and attains the value x = qFB by setting its investment at

i = iFB for all t > 0. Here, qFB is Tobin’s average q given by

qFB = max
i

A− i
r − g(i)

, (19)

where g(i) is given in (17),35 and investment, iFB satisfies the FOC: ψ′(iFB)qFB = 1 .

As shareholders are more impatient that debtholders (γ > r), it is efficient to make a

lump-sum payment, qFBK0 at t = 0 to shareholders, in effect “selling” all future cash flows

to creditors, so that the firm’s market leverage is 100% for all t > 0. This resource allocation

is efficient, as it brings forward all future cash flows for impatient shareholders.

4 Solution: Costly Equity Issuance

In this section, we characterize the firm’s optimal policies. We focus on the case where the

hedging constraint given in (5) never binds. In Section 6, we turn to the other important

case where the constraint given in (5) may bind. We show in Appendix C how these results

are derived from a recursive formulation of the firm’s dynamic optimization problem.

Because our model is homogeneous of degree one in X and K, our analysis is considerably

simplified by characterizing the solution in one dimension. For convenience, we define the

following scaled variables: xt = X t/Kt, x̂t = X̂t/Kt, xt = X t/Kt, ct = Ct/Kt, mt = Mt/Kt,

θt = Θt/Kt, πt = Πt/Kt , φt = Φt/Kt, and xJt = XJt /K
J
t . The scaled jump insurance-

premium φt = Φt/Kt is then given by φt = φ(xt−, Z
∗), where

φ(xt−, Z
∗) = λE[π(xt−, Z) IZ≥Z∗ ] . (20)

4.1 Debt Financing (Equity Inaction) Region

Consider first the firm’s optimal investment policy.

34Specifically, by incorporating fairly priced diffusion-hedging contracts for the shock dBOt and setting
Z∗ = 0, we ensure that all (diffusion and jump) shocks are fully hedged. To obtain full spanning we must,
of course, also remove the hedging constraint given in (5).

35See Bolton, Chen, and Wang (2011), DeMarzo, Fishman, He, and Wang (2012), and Brunnermeier and
Sannikov (2014), among others for essentially the same FB solution.
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Investment. We show in Appendix C.1 that the optimal investment is given by:

ψ′(i(x)) =
−p′(x)

p(x)− xp′(x)
. (21)

Because ψ( · ) is concave, ψ′( · ) is decreasing and hence i is a monotonically increasing

function of the ratio of marginal q (that is, PK(K,X) = p(x) − xp′(x)) and the marginal

cost of debt, −p′(x). Importantly, investment not only depends on marginal q, but also on

the marginal cost of debt financing.36 Next, we analyze the firm’s leverage dynamics.

Leverage Dynamics. By using Ito’s Lemma, we have the following law of motion for xt

in the equity-inaction region:

dxt = µx(xt−) dt− σ
√

1− ρ2 xt−dBOt − σ (θt− + ρxt−) dBSt +
(
xJt − xt−

)
dJt , (22)

where µx( · ) is given by:

µx(xt−) = −(A− [i(xt−) + φ(xt−) + c(xt−)])︸ ︷︷ ︸
scaled free cash-flow

− xt−ψ(i(xt−))︸ ︷︷ ︸
capital growth

+ σ2(ρθt− + xt−)︸ ︷︷ ︸
quadratic covariation

. (23)

The first term in (23) corresponds to the negative of free cash-flow and shows how capital

expenditures, jump insurance premia, and debt interest payments increase the firm’s lever-

age. The second term in (23) shows how capital accumulation reduces leverage xt = Xt/Kt

by increasing Kt. The last term in (23) shows how unhedgeable diffusion shocks to the

capital stock increase leverage (due to Jensen’s inequality.) We derive similar dynamics for

the firm’s market leverage, mlt, defined in (11) (see Appendix B).

Diffusion and Jump-Risk Hedging. Again, in Appendix C.1 we show that the diffusion-

hedging demand, θt−, is linear in xt−, in that θt− = θ(xt−), where

θ(xt−) = −ρxt− . (24)

Since only the risk spanned by BS is hedgeable, the firm optimally sets θ(x) to −ρx so that

its remaining exposure to diffusion shocks is purely via BO which is orthogonal to BS.

For hedgeable jumps, the hedging demand, π(x, Z), is given by

π(xt−, Z) = xt−(1− Z) , if Z ∈ [Z∗, 1] . (25)

36The marginal q and −p′(x) are correlated in our model. Also, as we show, the marginal cost of debt
financing is greater than one, −p′(x) ≥ 1.
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What is the total cost for the firm to purchasing these hedgeable jump-insurance contracts?

Substituting (25) into (20) and integrating over all hedgeable jumps Z ∈ [Z∗, 1] we obtain

the following explicit expression for the firm’s total insurance premium payment:

φ(xt−) = xt− ·
(
λ

∫ 1

Z∗
(1− Z)dF (Z)

)
. (26)

In words, φ(xt−)Kt− is the firm’s jump-hedging cost per unit of time.

Substituting (24) into (22), we obtain the following expression for the book leverage

dynamics:

dxt = µx(xt−) dt− σ
√

1− ρ2 xt− dBOt +
(
xJt − xt−

)
dJt . (27)

We see that only the unhedgeable diffusion shocks to capital, BOt , appear in (27). The

firm completely neutralizes the effect of hedgeable diffusion shocks, BSt , on leverage x at

actuarially fair terms. For the same reason, the diffusion volatility of x, σ
√

1− ρ2 xt−, only

reflects the unhedgeable diffusion shocks.37

The last term in (27) describes the effect of jumps on leverage x. First, obviously, when

there is no jump, dJt = 0 so that this term is equal to zero. Second, when a hedgeable jump

arrives, i.e., dJt = 1 and Z ∈ [Z∗, 1] , the jump-insurance contract seller compensates the

firm via a contingent repayment, Πt− = Xt−(1− Z), so that the firm’s debt decreases from

its pre-jump level Xt− to XJt = Xt− − Πt− = ZXt−. Therefore,

xJt =
XJt
KJt

=
ZXt−

ZKt−
= xt− , if Z ∈ [Z∗, 1] . (28)

The hedgeable jump has no effect on leverage and the jump term in (27) disappears for all

values of Z in the region of [Z∗, 1] .

In sum, for both diffusion and jump shocks that are hedgeable at actuarially fair terms, it

is optimal for the firm to choose state-contingent hedging policies θt− and πt−, given in (24)

and (25), to fully insulate its leverage xt = Xt/Kt from these hedgeable shocks. Hedging

allows the firm to effectively manage its leverage policy.

For unhedgeable jumps Z ∈ [0, Z∗), by definition, we have XJt = Xt−, KJt = ZKt−, and

xJt =
XJt
KJt

=
Xt−

ZKt−
=
xt−
Z

, if Z ∈ [0, Z∗) . (29)

37The minus sign for the volatility term reflects the fact that a positive unhedgeable diffusion shock dBOt
to K decreases x.
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That is, in the absence of default, unhedgeable jump arrivals automatically increase the firm’s

leverage, as xJt > xt− > 0 and decrease equity value from P (Kt−, Xt−) to P (ZKt−, Xt−), as

P (KJt , X
J
t ) = p(xJt )KJt = p(xt−/Z)ZKt− < p(xt−)Kt− = P (Kt−, Xt−) . (30)

The inequality in (30) follows from the concavity of p( · ). That is, provided that the firm

remains solvent, both stock price P (K,X) and leverage x = X/K respond passively to

unhedgeable shocks.

4.2 Default and Payout Regions

Default or Not? The firm defaults whenever a jump causes its leverage xt to exceed

the endogenous leverage capacity, x, where p(x) = 0, as implied by the limited liability

protection for equity investors.

We can also describe the firm’s optimal default strategy via the recovery-threshold Zt.

When a jump arrives at t and Zt = Zt, the firm is indifferent between defaulting or not.

Therefore, xJt = xt−/Zt = x . Solving this equation yields Zt = xt−/x. By incorporating the

firm’s option of using actuarially fairly priced insurance contracts to manage hedgeable risk,

we can write Zt as a function of its pre-jump level of xt− as follows:

Zt = Z(xt−) ≡ min{xt−/x , Z∗} , (31)

where 0 < xt−/x ≤ 1. In sum, when a moderate unhedgeable jump occurs at t such that

Z ∈ [xt−/x, Z
∗), the firm does not default and fully repays its outstanding debt. Doing

so preserves the firm’s option value of using default to hedge even larger downward shocks.

When the jump is so large that Z < xt−/x it is optimal for shareholders to default.

Equilibrium Credit Spreads. By describing the firm’s default policy with the threshold

Zt we obtain the following expression for the expected liquidation value upon default:

Et− (Ltλ IXt>Xt
) = Et− (`Ktλ IZ<Zt

) = λ `Kt− Et−(Z IZ<Zt
) = λ `Kt−

∫ Zt

0

ZdF (Z) . (32)

Combining equation (32) with the zero-profit condition for debt-investors as given in equation

(C.7) in Appendix C.2, we obtain the following pricing equation for the credit spread ηt−:

η(xt−) = λ

[
F (Z(xt−))−

(
`

xt−

)∫ Z(xt−)

0

ZdF (Z)

]
. (33)
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This equation ties the equilibrium credit spread to the firm’s default strategy.

For the special case where creditors recover nothing upon the firm’s default, ` = 0, the

equilibrium η is then simply given by λF (Z(xt−)), the probability of default. When creditors’

recovery in default is positive, ` > 0, the credit spread is lower than λF (Z(xt−)) as creditors

recover a fraction, Lt/Xt = `Z/xt− of the firm’s outstanding debt Xt.

Next, we provide additional conditions to pin down x.

Equity Issuance versus Liquidation. When the cost of a seasoned equity offering is not

too high, the firm optimally issues equity when x = x̂. In Appendix C.3 we show that x̂ is

given by the following value-matching condition:

p(x̂) = p(x̂−m)− (h0 +m+ h1m) . (34)

Differentiating with respect to m, it follows from condition (34) that the net optimal amount

raised m is given by:

−p′(x̂−m) = 1 + h1 . (35)

Finally, the debt capacity x is the same as the equity issuance boundary x̂, where p(x̂) = 0.

When the cost of issuing equity is too high the firm prefers liquidating its capital over

issuing equity. The firm’s debt is then limited by the liquidation value of capital: x = ` .

In both equity-issue and liquidation cases, the firm postpones its default decision until

the last moment, when it exhausts its debt capacity, and equity is completely wiped out:

p(x) = 0 . Obviously, when the firm’s debt exceeds x, i.e., x ≥ x the firm immediately

defaults and equity is worthless:

p(x) = 0 , when x ≥ x . (36)

Although default generates deadweight costs, it is also value-enhancing for the firm’s

shareholders, as it provides a partial hedge against risks that cannot be insured otherwise.

In contrast, when financial spanning is complete and hedging can be achieved at actuarially

faire terms, the firm will instead use the state-contingent hedging instruments to manage

risk and default is no longer optimal. In this case, there is no default and debt is risk-free.

Next, we turn to the region where the firm pays out to its shareholders.
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Equity Payout. When x < x, the firm makes a scaled lump-sum payment, x − x, to

equityholders, so that p(x) = p(x) + x − x, where the endogenous payout boundary x can

be shown to satisfy the following smooth-pasting and super-contact conditions: 38

p′(x) = −1 and p′′(x) = 0 . (37)

4.3 Summary

We show in Appendix C that in the equity-inaction region where x ∈ (x, x), the equity value

function p(x) satisfies the following ODE:

γp(x) = [i(x) + φ(x) + c(x)− A] p′(x) + ψ(i(x))(p(x)− xp′(x)) +
(1− ρ2)σ2x2

2
p′′(x)

+ λE
[
p(x)

(∫ 1

Z∗
ZdF (Z)

)
+

∫ Z∗

Z(x)

Zp(x/Z)dF (Z)− p(x)

]
, (38)

where: (i) c(x) = (r + η(x))x; (ii) the equilibrium credit spread η(x) is given in (33); (iii)

Z(x) is given in (31); (iv) the jump-insurance premium payment φ(x) is given by (26); and,

(v) i(x) is given by (21). This ODE is solved subject to the payout and default boundary

conditions (encompassing both equity-issuance and liquidation decisions) described above.

The optimal diffusion- and jump- hedging policies are given by (24) and (25), respectively.

We briefly discuss the last term in (38), which reflects three possible outcomes as a

result of a jump shock. First, if Z ∈ [Z∗, 1] the firm’s value remains unchanged at p(x) as

xJt = xt−. Neither leverage nor firm value change in response to insurable jump shocks. This

case corresponds to the (local) complete-hedging solution, captured by the first term inside

the square brackets. Second, if Z ∈ [Z(x), Z∗), the jump is unhedgeable, but the firm does

not default. As a result, its leverage increases to xJt = xt−/Z > xt−. In this case, the equity

value decreases to p(x/Z). Finally, if Z ∈ [0, Z(x)), the unhedgeable jump-induced loss is so

large that the firm defaults and equity is entirely wiped out.

In sum, the firm optimally manages its risk and leverage dynamics as follows. First, for

hedgeable shocks, it is optimal to fully insulate leverage x from these shocks. Second, for

unhedgeable shocks that cause sufficiently large losses, it is optimal for the firm to default on

its debt obligations. Third, for all other unhedgeable shocks, it is optimal for the firm to roll

over its existing debt and let leverage randomly drift in response to these unhedgeable shocks.

38Similar value-matching and smooth-pasting conditions also appear in optimal contracting models, e.g.,
DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and Rochet (2007), Biais, Mariotti, Rochet, and
Villeneuve (2010), DeMarzo, Fishman, He, and Wang (2012), and others.
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Payout region Equity inaction region Default region

x x
Book leverage: x

Equity-issue case: x = x̂ > `
Liquidation case: x = `

Figure 1: This figure demonstrates the mutually exclusive regions for the case when the firm’s
equity value is globally concave. The upper boundary x is the equilibrium debt capacity.
The lower boundary x is the payout boundary. When the equity-issuance cost is not too
high, the firm issues equity when x = x̂ > `. When the equity-issuance cost is too high, the
firm never issues equity and x = `. Finally, due to incomplete financial spanning, the firm
defaults in response to sufficiently large downward jumps, i.e., when x > x.

In equilibrium, a financially distressed firm should use costly external equity financing or

asset liquidation as the last defense: As long as the firm can achieve an equilibrium debt

capacity through equity issuance that is larger than the liquidation value of capital, it is

optimal for the firm to issue equity rather than liquidate its asset.

Figure 1 illustrates the mutually exclusive regions for the solution when the firm’s equity

value function is globally concave. We have two special cases. First, when the cost of equity

issuance is not too high, we have x = x̂ > `, a singleton. Second, when the cost of equity

issuance is too high, the firm never to issues any equity and we have x = `, also a singleton.

These two special cases are illustrated in Figure 1.

4.4 Leverage Dynamics and Equity Dilution: A Simulated Path

In this section we illustrate the rich predictions of our model on leverage dynamics and

equity issuance along a simulated path described in Figure 2. We show how the firm dynam-

ically manages its leverage and equity issuance along a given sample path for the case with

Z∗ = 0.95, which allows us to illustrate all aspects of corporate financial policy. The other

parameter values are reported in Table 1 in the next section. For brevity, we do not display

the simulated (hedgeable and unhedgeable) Brownian motion paths and only plot the four

realized jumps in Panel A.

The first jump occurs at t = 1.40 and results in a fractional capital loss of 1− Z = 4%.

Neither market leverage mlt nor equity ownership change as a result of this shock because
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Figure 2: This figure uses a simulated sample path for the case where Z∗ = 0.95 to illustrate
how the firm uses risk management, equity issuance, debt rollover, and default in response
to shocks.
Panel A highlights the four jump-shocks resulting in fractional capital losses 1−Z of respec-
tively 4%, 49%, 55%, 56% at respectively t = 1.40, 3.14, 4.50, 5.04. The first jump causes no
change in market leverage as it is perfectly hedged ex ante. The second jump is not hedge-
able ex ante, and causes a substantial increase in market leverage from 0.37 to 0.77; the firm
optimally rolls over its debt, so that leverage jumps following the capital loss. The third
jump is also not hedgeable. It triggers a recapitalization, as a result of which there is only
a moderate increase in market leverage from 0.41 to 0.47, but the price is a hefty dilution
of ownership of incumbent shareholders. The fourth jump triggers a default. Note finally
that a negative (unhedgeable) diffusion shock at t = 3.49 triggers another recapitalization
so that leverage is reduced from 0.97 to 0.47. This is an illustration of a situation where a
small (continuous, diffusive) shock can trigger a fundamental change in the firm’s financial
policy, with a more than half reduction in leverage.

shocks of such small size could be fully hedged ex ante (1− Z ≤ 1− Z∗ = 0.05).

The second jump occurs at t = 3.14 and causes a loss that is too large to be hedged

(1 − Z = 49%). Still, the firm is able to absorb this loss and to roll over its debt. As a
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result of the shock its market leverage increases from 37% to 77%, as seen in Panel B.39 The

firm does not respond by immediately issuing equity and retiring some of its outstanding

debt because external equity issuance is costly. But, once its market leverage is very high

it becomes very difficult for the firm to reduce its leverage going forward. Indeed, the high

debt servicing costs and other payments due on its hedging positions trap the firm in a debt

spiral, as in Brunnermeier and Sannikov (2014).40

At t = 3.49 the firm’s leverage hits the equity-issuance boundarywhere market leverage

equals 97%. At that point a negative unhedgeable diffusion shock pushes the firm to raise

external equity and retire some of its debt. The firm raises 0.54 percent of its pre-jump level

of capital in return for giving up 94% of the firm’s equity to the new shareholders. As a

result of this recapitalization, the original equity investors are almost wiped out, holding on

to only 6% of the firm’s equity. However, the firm’s market leverage is substantially reduced

from 97% to 47% after this recapitalization.41 This is an illustration of a situation where

a small (continuous, diffusive) negative shock can trigger a fundamental change in a firm’s

financial policy; here the firm responds by decreasing its leverage by more than half.

The third jump occurs at t = 4.50 and causes such a large loss (1 − Z = 55%), that

the firm has to respond by issuing immediately a large amount of external equity so as to

maintain its leverage at a sustainable level. As a result, the market leverage barely increases

from 0.41 to 0.47. (Without the recapitalization, the firm’s leverage would have reached an

excessively high level.) This second recapitalization again heavily dilutes the firm’s existing

shareholders. The firm’s original shareholders from t = 0 see their ownership share decrease

from 6% (following the previous recapitalization) to barely 0.18%, a tiny stake.42

39The post-jump debt level Xt, remains the same as the pre-jump level Xt−, but Kt = ZKt− = 0.51Kt−.
Therefore, book leverage increases from its pre-jump level xt− = 0.49 to xt = xt−/Z = 0.96. Correspondingly,
the firm’s average q decreases from v(xt−) = 1.30 to v(xt) = 1.24. As a result, market leverage increases
from mlt− = xt−/v(xt−) = 0.49/1.30 = 0.37 to mlt = xt/v(xt) = 0.96/1.24 = 0.77.

40The debt-spiral mechanism in our model is a partial-equilibrium mechanism that is somewhat different
from the general-equilibrium effect in Brunnermeier and Sannikov (2014). Both models are illustrations of
the conceptual and quantitative importance of non-linearities in leverage dynamics.

41At t = 3.49, book leverage is xt = x̂ = 1.15, equity value is p(xt) = p(x̂) = 0.04, and average q is v(xt) =
p(xt) + xt = 1.19, implying a very high market leverage: mlt = xt/v(xt) = 1.15/1.19 = 97%. A negative
unhedgeable diffusion shock triggers the firm to recapitalize its balance sheet by raising external equity in
the net amount of mt = 0.54. Hence, right after equity issuance, the book leverage decreases significantly
to xt − mt = 1.15 − 0.54 = 0.61 and its equity value (including new equity) increases substantially from
p(1.15) = 0.04 to p(0.61) = 0.69, which decreases market leverage from 97% to 0.61/(0.61 + 0.69) = 47%.
The original equity investors now only own 6% of the firm.

42At t = 4.50, the pre-jump book leverage is xt− = 0.53, the average q is v(xt−) = 1.30, and market
leverage is mlt− = xt−/v(xt−) = 0.53/1.30 = 0.41. Without equity issuance, the post-jump book leverage
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Finally, at t = 5.04, the firm suffers another capital loss of 1 − Z = 56%, which pushes

leverage beyond the default boundary 1 − Z(xt) = 0.55 (as xt = 0.54 and Z(xt) = xt/x =

0.54/1.19 = 0.45), so that the firm’s shareholders respond by defaulting on the firm’s debt

obligations, and creditors in turn respond by liquidating the firm’s assets.

4.5 Special Case with Exogenous Earnings

In this subsection, we briefly outline the special case where the firm’s earnings are exogenous

with subject to permanent shocks in levels. This special case is obtained by setting It = īKt,

with i a constant rather than an endogenously chosen level. That is, we replace (1), (2), and

(3) with the following exogenous process for earnings Y :

dYt = µY Yt−dt+ σYt−dBYt − (1− Z)Yt−dJt . (39)

where µY = ψ(i) and BYt = BKt . This earnings process, and its special case with no jumps,

may be more familiar to readers of the dynamic corporate finance literature, which uses this

setup.43 We can straightforwardly reinterpret all our previous results by shutting down the

investment margin and replacing (A − i)Kt with Yt. But, our analysis also applies more

generally to firms with endogenous capital accumulation.

5 Quantitative Analysis

In this section, we explore our model’s conceptual and quantitative results in detail.

Parameter Values. First, we specify the scaled investment efficiency function as:

ψ (i) = i− ξ

2
i2 − δ . (40)

would have been xt−/Z = 1.17, average q would have been v(1.17) = 1.19, and market leverage would have
been 1.17/1.19 = 98%, which is too high. Therefore the firm immediately recapitalizes to adjust its leverage.
By again issuing a net amount of equity, mt = 0.56, the firm’s book leverage significantly decreases from
xt = 1.17 to xt − mt = 0.61, its equity value (including new equity) substantially increases from 0.02 to
p(0.61) = 0.69, and its average q increases from 0.02 + 1.17 = 1.19 to v(0.61) = 0.69 + 0.61 = 1.30. As a
result, market leverage changes modestly from 41% to 0.61/(0.61 + 0.69) = 47% at the cost of substantial
equity dilution. The pre-jump shareholders’ stake decreases from 100% (by definition) to 0.02/0.69 = 3%
and the ownership stake of the original shareholders decreases from 6% to 6%× 3% = 0.18%.

43See Leland (1994, 1998), Leland and Toft (1996), Goldstein, Ju, and Leland (2001), DeMarzo and He
(2016), and DeMarzo (2019) for a partial list in the contingent-claim capital-structure literature.
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We set the investment adjustment cost parameter at ξ = 1.5 and the annual depreciation

rate δ at 10%, the liquidation value at ` = 20%, and the annual productivity A at 21% in

line with Bolton, Chen, and Wang (2011).

Following the rare-disasters literature,44 we assume that the cumulative distribution func-

tion, F (Z), for the capital recovery fraction, Z ∈ [0, 1], is given by the following power law:

F (Z) = Zβ . (41)

We choose the annual arrival rate of a jump at λ = 0.734, β = 23.17, and the annual diffusion

volatility of capital shocks at σ = 13.55%, as in Barro (2006) and Pindyck and Wang (2013).

Although the entrepreneur (shareholders) and the debt investors are risk neutral, whether

shocks are hedgeable or not plays a critical role in our model. For the continuous and diffusive

shocks, we set the correlation coefficient ρ between the shock to the firm’s capital stock, BK ,

and the hedgeable component of the capital diffusion shock, BS, i.e., ρ = 0.2.

For jumps, we choose Z∗ = 0.5 so that only jump shocks that cause the fraction of capital

losses, (1− Z), to exceed 1− Z∗ = 50% are not hedgeable. These unhedgeable catastrophic

jump shocks have first-order effects on corporate policies and valuation.

Turning to the preferences, we set the entrepreneur’s annual subjective discount rate γ

to 5% and the annual risk-free rate to r = 4.6% as in DeMarzo and Sannikov (2006) and

DeMarzo, Fishman, He and Wang (2012). The key is to require γ > r so that the firm has

incentives to pay out to shareholders when it has sufficiently large slack. Finally, for the

equity-issuance costs, we set h0 = 0.1 and h1 = 0.02, broadly in line with estimates and

numbers used in the literature.45

Table 1 summarizes the parameter values. Whenever applicable, the parameter values

are on an annualized basis.

Classical Tradeoff Theory: Costless Equity Issuance. For the parameter values in

Table 1 we obtain that the firm’s target leverage is extremely high in special case where there

are no equity issuance costs. For the case where Z∗ = 0.5, the firm is all debt financed with

100% market leverage. Additional, the firm’s scaled enterprise value is v(x) = x = x = 1.416.

This corresponds to Case A summarized in Section 3.1.

44See Barro (2006) and Pindyck and Wang (2013) among others.
45Among others, see Altinkilic and Hansen (2000), Riddick and Whited (2009), and Bolton, Chen, and

Wang (2011).
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Table 1: Parameter Values

This table summarizes the parameter values for our baseline analysis in Section 4. Whenever
applicable, parameter values are annualized.

Parameters Symbol Value
subjective discount rate γ 5%
risk-free rate r 4.6%
productivity A 21%
capital diffusion volatility σ 13.55%
jump arrival rate λ 0.734
jump recovery parameter β 23.17
capital liquidation recovery ` 20%
adjustment cost parameter ξ 1.5
depreciation rate δ 10.07%
correlation coefficient ρ 0.2
financial spanning parameter Z∗ 0.5
equity issue fixed cost h0 0.1
equity issue propositional cost h1 0.02

hedging constraint θ 1

When Z∗ = 0.95, the firm’s market leverage is equal to x/v(x) = Z = 70.3% < Z∗, which

is still high.46 It is well known that the dynamic tradeoff models (e.g., Leland, 1994), predict

excessively high leverage.

We point out that this empirically counter-factual prediction is primarily due to the as-

sumption that equity issuance is costless. Without equity issuance costs, the firm’s marginal

cost of issuing equity is one and hence does not value financial flexibility. The firm’s payout

boundary is the same as its equity-issuance boundary. As we show, once we incorporate

costly equity issuance, our model generates substantial lower leverage, as its target leverage

is directly tied to its payout boundary but its equity issuance boundary can be quite far

from its payout boundary.

Figure 3 shows how to determine the firm’s target leverage in our generalized tradeoff the-

ory by plotting its enterprise value and investment as we exogenously vary market leverage,

ml. It is common to represent the capital structure solution under the static tradeoff theory

with a plot where firm value is on the vertical axis and market leverage is exogenously varied

46The solution features a target book leverage of x = 0.936, a target enterprise value of v(x) = v(x) = 1.332,
and an implied target equity value of p(x) = v(x)− x = 0.396.
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Figure 3: Optimal capital structure and investment under classic tradeoff theory
with Z∗ = 0.95 and without external financing costs, h0 = h1 = 0. Panels A and B plot
the average q and investment as a function of market leverage. For both panels, (14), (15),
(16), and (18) are satisfied. The firm targets its market leverage at x/v(x) = 70.3%, where
v(x) attains the maximal value at 1.33, and sets investment i(x) at 0.166. The first-best
enterprise value and investment are qFB = 1.417 and iFB = 0.196, respectively. Parameter
values other than h0 = h1 = 0 and Z∗ = 0.95 are given in Table 1.

along the horizontal axis. The optimal leverage is then given by the point where firm value

is maximized.47 In this figure, the firm has optimized over all decision margins other than its

market leverage choice, i.e., (14), (15), (16), and (18) are satisfied. Panel A shows the firm’s

enterprise value v(x) increases with market leverage and reaches its maximum v(x) = 1.332

when market leverage, x/v(x), is equal to 70.3%. Increasing market leverage beyond 70.3%

lowers the firm’s enterprise value. Therefore, 70.3% is the optimal target market leverage.

Panel B shows that the firm’s investment i(x) essentially follows the same pattern as v(x)

does in Panel A: i(x) first increases with leverage, reaches its maximum value, 0.165 at the

firm’s target market leverage, 70.3%, and then decreases once its market leverage exceeds its

target level. Due to financial distress costs and γ > r, even when issuing equity is costless,

the firm under-invests, which destroys a substantial fraction of its value: i(x) = 0.166 <

iFB = 0.196 and v(x) = 1.332 < qFB = 1.417.

47See e.g. Figure 1 in both Myers’ 1984 AFA presidential address and Shyam-Sunder and Myers (1999)

30



As we show next, however, when incorporating external equity issuance costs into the

classical tradeoff theory we obtains much more plausible predictions about leverage dynamics.

Indeed, the firm barely spends any time at its target.

Average and Marginal q, Investment, and Marginal Cost of Debt Financing.

The firm’s average q is given by (13). The net marginal value of debt financing for the firm

as a whole is then

VX(Kt, Xt) = v′(xt) = p′(xt) + 1 , (42)

where the first equality follows from the homogeneity property and p′(xt) is the marginal

equity value of debt financing. As the firm is financially constrained, p′(xt) ≤ −1. Therefore,

the net marginal cost of debt financing to the whole firm is weakly positive: −v′(xt) ≥ 0.

The firm’s marginal q is given by

qm(xt) =
∂V (Kt, Xt)

∂Kt

= p(xt)− xtp′(xt) . (43)

Therefore, the firm’s marginal q is larger that its average q, as

qm(xt)− v(xt) = −xt [1 + p′(xt)] ≥ 0 , (44)

provided that the firm is levered, xt ≥ 0. At the endogenous payout boundary x, the firm

is indifferent between paying out its profit to shareholders and retaining it inside the firm,

i.e., −p′(x) = 1 and v′(x) = 0. That is, the firm’s average q is equal to its marginal q.

Panel A in Figure 4 plots Tobin’s average q, v(x), as a function of leverage x. It shows that

Tobin’s average q is lower than the first-best level, qFB = 1.417, for all levels of leverage x. As

the firm is unable to completely hedge its exposure to idiosyncratic risk, it is thus financially

constrained and hence its value is lowered, i.e., v(x) < qFB. Limited risk management

opportunity also lowers its debt capacity from the FB level, qFB = 1.417, to x = 1.19. That

is, the firm is only able to borrow up to 84% of its capital stock without triggering costly

equity issue or inefficient liquidation.

In addition, the higher is the firm’s leverage x, the greater the loss in value, measured

by qFB − v(x). The intuition is as follows. The more levered the firm is, the closer it is to

costly equity issuance and/or inefficient liquidation, the more distorted its investment, the

more valuable its risk management opportunity, and the larger its value loss.

Panel B shows that the more levered the firm is, the higher the firm’s marginal q. This is

because q′m(x) = −xp′′(x) > 0 as the firm is levered, x > 0. This result may appear at first
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Figure 4: Tobin’s average q, v(x) = p(x) + x, the marginal q, qm(x) = v(x) − xv′(x),
the net marginal cost of debt financing, −v′(x) = −p′(x)− 1, and the investment-
capital ratio i(x). The first-best investment-capital ratio is iFB = 0.196 and the first-best
average q is qFB = 1.417. The endogenous payout boundary is x = 0.53 and the endogenous
upper boundary, at which the firm either issues equity or liquidates, is x̂ = x = 1.19. All
parameter values other than Z∗ = 0.95 are given in Table 1.

counter-intuitive, as it is often said that a firm’s marginal q increases with its investment

opportunity. However, this conventional wisdom is incorrect as the firm’s investment oppor-

tunity by construction is constant over time. The reason that the marginal q increases with

leverage is as follows. The higher the firm’s capital stock Kt, the larger the firm’s borrowing

capacity as X t = xKt increases with Kt, and hence the higher the marginal value of capital.

Interestingly, for sufficient high leverage, i.e., x ≥ 0.87, the marginal q is greater than qFB.
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Comparing Panels A and B shows that the firm’s marginal q is always higher than its

average q. This result is shown in (13), as the firm’s marginal source of financing in the

region where x < x < x. Moreover, while the marginal q increases with leverage x, the

average q decreases in leverage x. Bolton, Chen, and Wang (2011) report a similar result for

the case when the firm is financed by credit line.

Panel C shows that the firm’s marginal cost of debt financing, −v′(x), increases with

its leverage x. When the firm is highly levered and is near its equity-issuance/liquidation

boundary x̂ = x = 1.19, reducing the firm’s debt by one dollar generates an extra benefit of

forty-eight cents at the margin in addition to reducing its liability by one dollar.

Panel D shows that the firm under-invests relative to the first best. The degree of under-

investment, measured by the gap between the two lines in Panel D, increases with leverage.

This is the standard debt-overhang result in Myers (1977). What is new here is that the cause

of debt overhang is the unhedgeable shocks due to incomplete financial market spanning.

An increase in debt reduces financial slack and gets the firm closer to costly equity issuance

or default.

Even when paying dividends, i.e., xt = x, the firm still underinvests. At x̂ = x = 1.19,

the firm’s investment is i(x) = 0.106, which is about half of the first-best level iFB = 0.196.

As a result, the average q, q(x) = 1.19, which is much lower than qFB = 1.417. These results

illustrate how the quantitative effects of limited risk hedging opportunities can be large.48

6 Risk-seeking Incentives

So far, we have focused on the case where the firm’s equity value is globally concave. But,

with a strictly positive probability of default under limited financial spanning, shareholders

may have risk-shifting incentives when debt is risky. This is indeed the case when the firm’s

hedging opportunities are sufficiently constrained, as we show in this section.

6.1 Model Solution

Risk seeking may be optimal when the firm’s hedging constraint (5) is tight and binding,

so that θ(x) = θ for some levels of x, or when the firm’s ability to hedge jump shocks is

48In Appendix D we further illustrate the firm’s optimal hedging policy. Figure 7 describes the firm’s
diffusion and jump hedging demand when the equity value function is globally concave, and Figure 9 describes
the firm’s diffusion and jump hedging demands, as well as the firm’s insurance premium payments for the
risk-seeking case.
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sufficiently limited (when Z∗ is sufficiently high).

Diffusion Risk Taking. Consider the case where ρ ≥ 0. The optimal θ(x) is given by




θ(x) = max

{
−ρx,−θ

}
, p′′(x) < 0 ,

θ(x) = θ , p′′(x) ≥ 0 .
(45)

That is, the optimal position θ(x) critically depends on whether the firm is endogenously risk

averse or risk loving. First, when p′′(x) < 0, the firm’s hedging position is equal to the larger

of −ρx (as in the baseline model of Section 4), or −θ, (when the hedging constraint binds.)

Second, when p′′(x) > 0, the firm is endogenously risk seeking and hence maximizes its risk

exposure by going long on the diffusion-contingent hedging contract, θ(x) = θ. In general,

the firm may change θ(x) and even switch its sign (that is, switch between speculating and

hedging) depending on its leverage.

Jump Risk Taking. When the firm chooses to seek risk, π(x, Z) no longer satisfies (25).

We thus need to revise the optimization problem with respect to Π for the general formulation

given in (C.4), and, allowing for convexity, rewrite the firm’s problem for π, as:49

max
π(x,Z)

[
Zp

(
x− π(x, Z)

Z

)
− π(x, Z) · (−p′(x))

]
. (46)

The scaled insurance premium payment per unit of time is equal to π(x, Z)λ dF (Z). Since

debt is the marginal source of financing, the marginal cost of debt financing is (−p′(x)) ≥ 1

and the economic cost of purchasing π(x, Z) unit is equal to π(x, Z) · (−p′(x)) multiplied by

the probability λ dF (Z) > 0 that this contingency occurs. The first term in (46) gives the

firm’s equity value (scaled by pre-jump capital stock) if this jump contingency occurs.

The shareholder’s optimal exposure to the contingency of a jump arrival with recovery

Z boils to choose π(x, Z) by maximizing (46). Unlike the risk-taking decisions involving

diffusion shocks, the jump risk-taking decisions requires a global search of π(x, Z) as jumps

are discrete rather than continuous.

Equity Issuance and Risk Taking. The firm no longer postpones its equity issuance to

the point when it has exhausted all its (endogenous) debt capacity, which would be optimal

49The more general formulation for the optimal choice of π(x, Z), stated in (46), boils down to the explicit
formula given in (25) when p′′(x) < 0.
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Figure 5: This figure demonstrates the four possible regions for the general case. In general,
when the firm’s value is not globally concave and the cost of equity issue is not too high, the
firm finds it optimal to issue equity for a range of x, i.e., the firm also has an equity-issuance
region, where x̂ ≤ x < x.

if p(x) is globally concave as we have shown earlier. When p(x) is convex for a certain range

of leverage, issuing equity before exhausting its debt capacity can be optimal.

We show that there is an equity-issuance region characterized by x̂ ≤ x < x, where

x̂ and x are endogenous scaled equity issuance and liquidation boundaries. The following

value-matching and smooth-pasting conditions hold in this region:

p(x) = p(x−m)− (h0 +m+ h1m) , (47)

−p′(x−m) = 1 + h1 . (48)

Additionally, the firm’s optimality with regard to equity issuance implies that p(x) is

continuous and differentiable at its endogenous equity-issuance boundary x̂. That is, the

following value-matching and smoothing pasting conditions must hold:

p(x̂+) = p(x̂−) and p′(x̂+) = p′(x̂−) , (49)

where x̂+ and x̂− denote the right and left limits of x̂.

The mechanism for issuing equity proactively (before the firm exhausts its debt capacity)

is very different from that in Bolton, Chen, and Wang (2013), where the firm issues equity

sooner than exhausting its financing capacity because the firm anticipates that the firm’s

financing cost may increase in the future. Equity issuance in our model arises from the

firm’s anticipation that paying the equity issuance cost to replenish its liquidity before fully

exhausting its financing capacity is optimal.

Figure 5 demonstrates the four possible regions for the general case where x̂ < x. For

the special case that we have analyzed earlier, i.e., when the firm has no incentives to seek

risk, x̂ = x and conditions (47) and (48) specialize to (34) and (35).
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Solution Summary. Having analyzed the firm’s decisions, we next characterize the share-

holders’ scaled value , p(x), via the following ODE in the region where x < x < x̂ :

γp(x) = [i(x) + φ(x) + c(x)− A] p′(x) + ψ(i(x))(p(x)− xp′(x))

+
x2 + 2xρθ(x) + θ(x)2

2
σ2p′′(x) + λE

[
Zp(xJ )− p(x)

]
. (50)

The post-jump leverage, xJt , is given by

xJt =
xt− − π(xt−, Z)

Z
IZ≥Z∗ +

xt−
Z
IZ(xt−)≤Z<Z∗ +

xt−
Z
IZ<Z(xt−) (51)

and π(xt−, Z) is given by (46).

In addition, c(x) = (r + η(x))x is the equilibrium interest payment, the scaled jump-

insurance premium payment φ(x) is given by (20), and i(x) is given by (21). The conditions

for the payout boundary x are still given by (37). The conditions for equity issuance bound-

ary, x̂, are given by (49). When x > x, the firm defaults, p(x) = 0, i.e., (36) holds.

Finally, the dynamics of xt in the equity-inaction region (x, x̂) is given by (22). Impor-

tantly, the firm’s leverage is now exposed to the hedgeable risk, dBSt , in addition to the

unhedgeable risk, dBOt . This is because the firm may be a risk seeker rather than a hedger.

In summary, the firm may find it optimal to engage in risk seeking when risk management

opportunities are limited. The intuition is that when risk management opportunities are

limited, by managing risk prudently locally, the firm may not be able to pull itself out of a

highly levered (financially distressed) situation. In that case, the firm may find it optimal to

take more aggressive financial policies, e.g., speculation and equity issuance, with the hope

of significantly deleveraging itself within a short period of time. Of course, doing so comes

with a greater risk of going bankruptcy as well.

6.2 Quantitative Results

Figure 6 illustrates the effect of changing the firm’s (jump) hedging opportunity on its

investment and value. We compare the case where Z∗ = 0.95 to our baseline model where

Z∗ = 0.5. If Z∗ = 0.95, hedging contracts for jumps causing the fractional loss 1 − Z to

exceed 1− Z∗ = 5% are not available in the markets.

Average q, Marginal q, Marginal Cost of Debt Financing, and Investment. Panel

A shows that reducing the firm’s hedging opportunity set (by increasing Z∗ from 0.5 to 0.95)
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Figure 6: Tobin’s average q, v(x) = p(x) + x, marginal q, qm(x) = v(x) − xv′(x), net
marginal cost of debt, −v′(x) = −p′(x)−1, and investment-capital ratio i(x). The FB
investment-capital ratio is iFB = 0.196 and the FB average q is qFB = 1.417. For the baseline
case where Z∗ = 0.5, the payout boundary is x = 0.53 and the endogenous upper (equity-
issuance and liquidation) boundary is x = 1.19. When Z∗ = 0.95, the payout boundary
is x = 0.48, the liquidation boundary is x = 1.19, and the equity-issuance boundary is
x̂ = 1.15. All parameter values other than Z∗ are given in Table 1.

lowers its average q. This value-destruction result (measured by the corresponding reduction

of the firm’s average q) is intuitive and holds for all levels of leverage x.

A less obvious result is that reducing the firm’s hedging opportunity causes it to delay its

payout to shareholders: The payout boundary x decreases from 0.53 to 0.48 as we increase

Z∗ from 0.5 to 0.95. The intuition is as follows. When the firm is near its endogenous payout
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boundary, the firm naturally has a strong balance sheet. In this case, the more limited the

firm’s hedging opportunity, the greater the marginal benefit of using the marginal unit of

its profit to reduce its leverage, and therefore, the more valuable it is for shareholders to

postpone the firm’s payout to themselves.

A key result for the case with Z∗ = 0.95 is that the firm’s average q is no longer globally

concave in leverage x. Let x̃ denote the inflection point for the firm’s average q, i.e., the

point at which v′′(x̃) = p′′(x̃) = 0. In our numerical example, x̃ = 1.03. To the left of x̃,

i.e., when x < x < x̃ = 1.03, the average q, v(x), is decreasing and concave in leverage x.

This is the region where leverage is sufficiently low so that the firm is locally risk-averse to

uncertainty.

Panels B and C confirm this result by showing that the firm’s marginal q, qm(x), and its

net marginal cost of debt, −v′(x), increase with leverage x, reach their respective maximum

values at the inflection point x̃ = 1.03, and then decrease with x in the region where x >

x̃ = 1.03. It is immediate to see that at the inflection point, i.e., when xt = x̃ = 1.03, we

have q′m(x̃) = −x̃p′′(x̃) = 0 and v′′(x̃) = p′′(x̃) = 0.

For a financially distressed firm, the more limited its hedging opportunity set, the riskier

the firm’s earnings, the more likely and sooner the firm uses its costly external financing or

bankruptcy option.50 Indeed, increasing Z∗ from 0.5 to 0.95 causes the firm to issue costly

external equity sooner by lowering its equity-issuance boundary from 1.19 to x̂ = 1.15. The

liquidation boundary is x = 1.19, which is almost the same for the two levels of Z∗. That

is, while x = x̂ = 1.19 for the case with Z∗ = 0.5, we now have a region of leverage,

1.15 = x̂ < x < x = 1.19, where it is optimal for the firm to issue equity.

Panel D shows that the more limited the firm’s hedging opportunity, the more signifi-

cant the firm’s under-investment (compared with the FB.) However, the degree of under-

investment is not monotonic in leverage. Investment decreases with leverage x in the region

where x < x̃ = 1.03, reaches the lowest level at x̃ = 1.03, and then increases with leverage x.

By differentiating the FOC for investment, (21), with respect to x, we obtain:

ψ′′(i(x))i′(x) =
−p(x)p′′(x)

(p(x)− xp′(x))2
. (52)

Because ψ( · ) is concave by assumption, the sign of i′(x) is the opposite of that of p′′(x).

Therefore, i(x) is decreasing in x in the region x < x̃, where p(x) is concave, and increasing

50We illustrate the credit spread as a function of book leverage in Figure 10 of Appendix D. As can be
seen credit spreads sharply increase when the firm has risk-seeking incentives.
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in the region x > x̃, where p(x) is convex. At the inflection point x̃ = 1.03, the investment-

capital ratio attains its minimal value of 0.093.

The intuition for the behavior in the region to the left of the inflection point, i.e., x <

x̃ = 1.03, is the standard Myers’ debt-overhang result: the higher the level of the firm’s risky

debt the lower its investment.

In contrast, when the firm is financially distressed, the firm’s investment becomes less

distorted as its leverage increases. The intuition is that when the firm is highly levered and

very close to bankruptcy, increasing the firm’s survival likelihood by cutting investment to

increase its financial slack is unlikely to work. Instead, the firm relies on more aggressive

strategies, such as costly lumpy equity issuance and speculation, to replenish the firm’s

liquidity buffer and preserve the firm’s going-concern value.51 These risk-seeking policies

also induce the firm to reduce its under-investment when x > x̃.

In Appendix D we also illustrate the stationary distribution for firm leverage (Figure 11)

and the comparative statics of the firm’s policies with respect to changes in equity issuance

costs (Figure 12). The main observation from Figure 11 is that leverage is mostly bunched

around the firm’s target level; higher levels of leverage are less and less likely, the higher

is leverage. This is consistent with the findings in Figure 2 of DeAngelo and Roll (2015).

The key insight from Figure 12 is that target leverage and the recapitalization boundary are

lower when equity issuance costs rise, so that leverage decreases with equity issuance costs.

7 Conclusion

Our model predicts that corporate leverage decreases when its profits go up and decreases

otherwise. This financing behavior is driven by corporate demand for financial flexibility

when facing equity issuance costs and incomplete markets. Our model also explains why

leverage is persistent, why at the same time it is time varying and stochastic, and why it is

mean-reverting in the long run. Paradoxically, the explanation for leverage persistence and

other dynamics, far from being that debt is costly to adjust, is that it is costly to raise funds

by issuing equity. One would think that when equity is costly firms would want to rely more

on debt. But that is a static intuition. From a dynamic perspective firms seek to avoid

costly equity issuance in the future and therefore maintain financial slack today. Somewhat

counter-intuitively it is the cost of equity that causes leverage to be low on average and

51We illustrate these risk-seeking policies in Figure 9 of Appendix D.
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explains the average level and dynamics of leverage.52

Additional insights from our analysis are as follows. First, when the firm issues equity

in order to delever, existing equityholders are highly diluted, consistent with the evidence

in DeAngelo, DeAngelo, and Stulz (2010), and moreover, the firm taps equity markets at a

cost before exhausting its endogenous debt capacity, consistent with findings of Fama and

French (2005). Equity holders are generally conservative with corporate leverage choices

even in normal times but they can be aggressive with both risk seeking and deleveraging in

bad times. Second, most of the time the firm is endogenously risk averse, in which case it

is optimal for the firm to manage its liabilities and risk so as to minimize the volatility of

leverage. This is a very simple and natural objective.

Another important conceptual take-away from our analysis is that capital structure the-

ory relies on either contractual incompleteness or market incompleteness. If firms had access

to a complete set of one-step ahead Arrow securities to manage their risk exposures, they

would never have to issue either risky debt or costly external equity, as they could manage all

their risk exposures and achieve a constrained efficient production outcome by dynamically

trading the complete set of one-period-ahead Arrow securities.

For parsimony and tractability, we have left out term debt. In practice, however, firms

tend to use long-term debt to avoid rollover risk and interest rate risk, or to finance lumpy

capital expenditures as Korteweg, Schwert and Strebulaev (2019) have shown. Introducing

term debt significantly complicates our analysis. We leave it for future research.

There has been a long-running and still unresolved empirical debate between the tradeoff

and pecking order theories of capital structure ever since Myer’s 1984 presidential address.53

We develop a generalized tradeoff theory by building on the core insights from both the

tradeoff and pecking order theories. As in the standard tradeoff theory, there is a benefit of

debt over equity and a cost of financial distress. In the spirit of the pecking-order theory,

our model accounts for the fact that issuing equity is costly, giving rise to a demand for

financial flexibility. But importantly, our model’s predictions differ from both static theories

in very important ways. Our dynamic model generates highly nonlinear, non-monotonic,

state-contingent, path-dependent dynamics of leverage, investment, hedging, risk-taking,

and payout policies, which is broadly consistent with the empirical evidence.

52A common explanation is that firms face adjustment costs in changing their leverage. But adjustment
costs of debt in practice seem too small to explain these dynamics.

53See Fama and French (2002) and Frank and Goyal (2008) for example.
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Appendices

A Proofs for Section 3

A.1 Costless Equity Issuance

The solution for this case can be derived from the general case with costly equity issuance by setting
h0 = h1 = 0.

Recall that in the equity-issuance region characterized by x̂ ≤ x < x, the value-matching and
smooth-pasting conditions given in (47) and (48), respectively, can be simplified as:

p(x) = p(x−m)−m, (A.1)

p′(x−m) = −1 . (A.2)

Also, as p′(x) = −1 at the payout boundary x, we must have p′(x) = −1 for x ≤ x ≤ x̂.
Otherwise if −p′(x) > 1 for some x in this region, the firm will issue equity immediately. Hence,
equity value takes the following form:

p(x) = p(x) + (x− x) , (A.3)

which implies v(x) = v(x) = v(x̂) = v(x) for x ≤ x. Note that (A.3) holds in both the payout
region when x ≤ x and x ≤ x ≤ x.

Next, we rewrite the ODE given in (50) for the general case in the region x ≤ x ≤ x̂ as:

γp(x) = − [i(x) + φ(x) + c(x)−A] + ψ(i(x))(p(x) + x) + λE
[
Zp(xJ )− p(x)

]
. (A.4)

Conjecturing and verifying, we obtain that the firm completely hedges its hedgeable jump risk.
Hence, the post-jump leverage, xJt , is given by

xJt = xt−IZ≥Z∗ +
xt−
Z
IZ(xt−)≤Z<Z∗ +

xt−
Z
IZ<Z(xt−) . (A.5)

The FOC for investment is 1 = ψ′(i)v(x). As v(x) = p(x) + x, we can rewrite (A.4) as

[γ + λ− ψ(i(x))] v(x) = (γ + λ)x− [i(x) + φ(x) + c(x)−A]

+ λ

[∫ Z∗

Z(x)
(Zv(x/Z)− x)dF (Z) +

∫ 1

Z∗
Z(v(x)− x)dF (Z)

]
. (A.6)

By using (26) and the pricing equation (33) for the credit spread η, we obtain

[γ + λ− ψ(i(x))] v(x) = (γ − r)x+A− i(x) (A.7)

+ λ

[∫ Z(x)

0
Z`dF (Z) +

∫ Z∗

Z(x)
Zv(x/Z)dF (Z) +

∫ 1

Z∗
Zv(x)dF (Z)

]

in the region where x ≤ x ≤ x̂. By substituting v(x) = v(x) = v(x̂) = v(x) for x ≤ x, which we
have shown, into (A.7), we obtain:

[γ + λ− ψ(i(x))] v(x) = (γ − r)x+A− i(x) + v(x)λE(Z)

− λ (v(x)− `)
[∫ Z(x)

0
ZdF (Z)

]
(A.8)
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Rearranging (A.8), and since the preceding equation holds for x = x, we have

[γ − g(i(x))] v(x) = A− i(x) + (γ − r)x− λ (v(x)− `)
[∫ Z(x)

0
ZdF (Z)

]
,

where g( · ) is given by (17).
The optimization problem is now reduced to a single control variable problem x, so that we

can just choose x to maximize v(x). In summary, we now have shown the solution for the costless
equity-issuance case is characterized by (14), (15), (16), and (18) in Section 3.1. Our results are
valid for any concave φ( · ) and admissible distribution F ( · ) for Z. In our numerical analysis, we
focus on the case where F (Z) is given by a power law as in (41).

A.2 First Best

Under the first-best, the firm chooses its investment policy to maximize its market value:

V FB(Kt) = max
I

Et
[∫ ∞

t
e−r(s−t)(AKs − Is)ds

]
, (A.9)

where the firm’s capital stock, K, follows (2).
By using the dynamic programming method, we obtain

rV FB(K) = max
I

AK − I + Ψ(I,K)V FB
K (K) +

σ2K2

2
V FB
KK (K) + λE

[
V FB(ZK)− V FB(K)

]
.

(A.10)
The homogeneity property implies that V FB(K) = qFBK, where qFB satisfies

rqFB = max
i

A− i+ [ψ(i)− λ(1− E(Z))]qFB . (A.11)

Let iFB denote the firm’s first-best investment. Equation (A.11) implies that ψ′(iFB)qFB = 1, the
FOC for iFB. Substituting It = iFBKt into (2), we obtain:

dKt = Kt−
[
ψ(iFB)dt+ σdBKt − (1− Z)dJt

]
. (A.12)

Substituting It = iFBKt and (A.12) into (A.9) and simplifying the expression, we obtain that
V FB(K) = qFBK, where qFB satisfies the present-value formula, (19).

B Market Leverage

Applying Ito’s Lemma to market leverage mlt defined in (11) and using the homogeneity property,
we obtain the following process for mlt:

d

(
xt
v(xt)

)
=
v(xt−)− xt−v′(xt−)

v(xt−)2
dxt +

(
v′′(xt−)

v(xt−)3
− v′(xt−)

v(xt−)2

)
(dxt)

2 +

(
xJt
v(xJt )

− xt−
v(xt−)

)
dJt

= µml(xt−) dt− σOml(xt−)dBOt − σSml(xt−)dBSt +

(
xJt
v(xJt )

− xt−
v(xt−)

)
dJt , (B.1)
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where

µml(x) =
v(x)− xv′(x)

v(x)2
µx(x) +

v′′(x)− v′(x)v(x)

v(x)3
σx(x)2 , (B.2)

σOml(x) =
v(x)− xv′(x)

v(x)2
σ
√

1− ρ2 x , (B.3)

σSml(x) =
v(x)− xv′(x)

v(x)2
σ (θ(x) + ρx) , (B.4)

σx(x) = σ
√
x2 + 2ρxθ(x) + θ(x)2 . (B.5)

and µx(x) is given by (22).

C Solution: Costly Equity Issuance

In this section, we first characterize the firm’s risk management, investment, and debt financing
decisions in the equity-inactionregion, where the marginal source of financing is debt. We then
solve for the firm’s optimal default, equity issuance, and payout decisions. We focus on the case
where the hedging constraint given in (5) never binds. In Section 6, we turn to the other impor-
tant case where the constraint given in (5) may bind. Decomposing our analysis into these two
cases substantially facilitates the exposition of the economic mechanism and allows us to better
understand the economic insights.

C.1 Debt Financing Region: Risk Management and Investment

In this region, the marginal source of financing is debt. We use dynamic programming to solve for
the firm’s equity value P (K,X) and to derive the firm’s optimal risk-management and investment
policies.

Hamilton-Jacobi-Bellman (HJB) Equation. The equity-value function P (K,X) satisfies
the following HJB equation in the equity-inaction region:

γP (K,X) = max
Θ , I ,Π

Ψ(I,K)PK(K,X) + [I −AK + C + Φ]PX(K,X)

+
σ2K2

2
PKK(K,X) +

σ2Θ2

2
PXX(K,X) + ρσ2ΘKPKX(K,X)

+λE [P (ZK,X −Π)− P (K,X)] , (C.1)

where E[ · ] in (C.1) is evaluated with respect to the cumulative distribution function F (Z) for the
capital-stock recovery fraction Z, and includes both default and no-default events.

The first term on the right side of (C.1) describes how expected capital accumulation changes
equity value P (K,X); the second term captures how expected changes in debt X affect P (K,X);
the third term reflects the effects of capital-stock diffusion shocks on P (K,X); the fourth and
fifth terms capture the effects of diffusion-hedging demand Θ on P (K,X); and finally the last
term (appearing on the third line) of (C.1) describes the effects of jumps on the expected change
in P (K,X). When a jump arrives at time t (dJt = 1), the firm’s capital stock falls from Kt−
to Kt = ZKt− and debt is reduced from Xt− to the level of Xt = Xt− − Πt−. By definition,
Πt− 6= 0 for hedgeable jump shocks, Z ∈ [Z∗, 1] and Πt− = 0 for unhedgeable jump shocks such
that Z ∈ [0, Z∗). In addition, a jump shock may also trigger a default on the firm’s debt.
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First-Order Conditions (FOCs). Consider first the diffusion-hedging demand Θ. When the
hedging constraint given in (5) does not bind, the value function P (K,X) is concave in X and the
following FOC characterizes the optimal diffusion-hedging demand:

Θ = −ρKPKX(K,X)

PXX(K,X)
. (C.2)

This equation resembles the intertemporal hedging demand in standard intertemporal portfolio
choice models à la Merton (1971). Moreover, following the homogeneity property and simplifying
the FOC for (C.2), we obtain the diffusion- hedging demand given by (24).

Next, consider the jump-insurance demand Π. We use J as the superscript to indicate the
arrival of a jump at time t (dJt = 1) so that KJt and XJt denote the firm’s post-jump capital stock
and debt at t, respectively. When a jump occurs at t and Z ∈ [0, Z∗), Π(Z) = 0 by definition. When
a jump occurs at t and the recovery fraction Z lies in the insurable range of [Z∗, 1], the firm’s capital
stock decreases from Kt− to KJt = ZKt− and its debt decreases from Xt− to XJt = Xt− − Πt−.
By substituting the formula for Φt− given in (6) into the HJB equation (C.1), we obtain that the
firm maximizes the following expression by choosing Πt−:

λE
[(
P (KJt , X

J
t ) + Πt−PX(Kt−, Xt−)

)
IZ≥Z∗

]
. (C.3)

This problem can be simplified to the choosing Π for each Z ∈ [Z∗, 1]:

max
Π

[P (ZK,X −Π)− (−PX(K,X)) ·Π] (C.4)

The intuition for (C.4) is as follows: The insurance premium payment per unit of time is equal
to Πλ dF (Z). Since debt is the marginal source of financing to purchase jump insurance, and the
marginal cost of debt financing is −PX(K,X) ≥ 1, the economic cost of the jump-hedging demand
Π is equal to −PX(K,X)Πλ dF (Z) > 0. The expected benefit of this jump insurance is that when
there is a jump in the capital stock from K to ZK (with probability λ dF (Z) per unit of time),
the firm is able to reduce its debt from X to X − Π via the insurance payment Π. Therefore,
the firm chooses Π for each Z ∈ [Z∗, 1] to maximize the difference between the hedging benefit
(P (ZK,X −Π)− P (K,X))λ dF (Z) and the cost (−PX(K,X))Πλ dF (Z). Factoring out λ dF (Z)
and dropping the pre-jump-equity-value term P (K,X) which is independent of Π, we obtain (C.4).

Finally, the FOC for investment I is:

−PX(K,X) = ΨI(I,K)PK(K,X) . (C.5)

Because Ψ(I,K) is increasing and concave in I, the SOC is satisfied for I. The left side of (C.5)
is the marginal cost of debt −PX(K,X) and the right side of (C.5) is given by the product of (a.)
the expected marginal increase of capital stock, ΨI(I,K), and (b.) the marginal value of capital,
PK(K,X), also known as the marginal q. The firm optimally chooses investment I to equate the
two sides at the margin. Due to costly external financing, investment depends on the (endogenous)
stochastic marginal value of debt. This is in contrast to the neoclassic q-theory of investment, where
−PX(K,X) = 1. Finally, using the homogeneity property and simplifying the FOC for (C.5), we
obtain the investment equation given by (21).
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C.2 Default Region: Debt Capacity, Equity Issue, and Liquida-
tion

Having described the firm’s policies in the equity-inactionregion, we now turn to the questions of:
1.) when should the firm raise external financing, and in what form? 2.) How much debt can the
firm raise? and 3.) under what conditions should the firm liquidate itself?

Endogenous Debt Capacity and Default Boundary. As the firm cannot manage all its
risk exposures via actuarially fair insurance contracts, declaring default is optimal under certain
scenarios, for example upon the arrival of a large downward unhedgeable jump in earnings. Put
differently, there exists a range of values of debt for which it is optimal for the firm to default.
In this default region, the APR is applied, giving creditors the right to seize the firm’s assets and
be paid before shareholders. Because shareholders are protected by limited liability and because
default is inefficient, a firm that maximizes its equity value will default if and only if equity value
is zero.54 Let Xt denote the endogenous default boundary and equivalently debt capacity. The
default region is defined by Xt ≥ Xt and

P (Kt, Xt) = 0 , when Xt ≥ Xt . (C.6)

We characterize the firm’s default boundary as a function X( · ) of its capital stock Kt by evaluating
(C.6) at Xt. Because X( · ) is a free boundary, we need an additional condition, to which we return.

Debt Pricing: Credit Spreads. The equilibrium credit spread ηt−can be derived from the
following zero-profit condition for debt-investors given the firm’s default policy Xt:

Xt−(1 + rdt) = Xt−(1 + (r + ηt−)dt)Pt−(Xt ≤ Xt) + Et− (Ltλ IXt>Xt
)dt . (C.7)

The first term on the right side of (C.7) describes the full debt repayment, Xt− + Ct−dt, where
Ct− = (r+ηt−)Xt− is the interest payment, to creditors multiplied by Pt−(Xt ≤ Xt), the probability
at time t− that the firm won’t default at time t. The second term gives the creditors’ expected
payoff upon default, which is equal to the firm’s stochastic liquidation value, Lt, given by (8). In
sum, the equilibrium condition (C.7) states that creditors’ expected rate of return is equal to the
risk-free rate, r.

Equation (C.7) shows that jumps are necessary to generate default in our model. To see this,
suppose that there are only diffusion shocks, then (C.7) implies that the credit spread ηt must be
zero. The intuition that is as follows. For a small time increment dt, diffusions shocks can cause
losses of order

√
dt with strictly positive probability. These losses cannot be compensated with any

finite credit spread ηt, as this compensation is only of order ηtdt, which is much lower than
√
dt. In

contrast, in Leland (1994) and other diffusion-shock-based models default is possible because the
firm issues term debt, which cannot be adjusted.

Substituting the expected liquidation value upon default given in (32) into (C.7), we obtain the
pricing equation for the credit spread given by (33).

Next, we analyze the equity issuance decision and link it to the firm’s debt capacity, Xt.

54If equity value is strictly positive after creditors liquidate the firm, shareholders would have defaulted
too soon. A dominant strategy for shareholders is to keep on rolling over the firm’s debt as long as equity
value is strictly positive, thereby preserving the firm as a going-concern. This argument implies that (C.6)
must hold for the debt default region.
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External Equity Issuance. The firm’s option to issue equity is valuable as doing so allows it
to reduce its debt level and lower the likelihood of a costly default. As P (K,X) must be continuous
when the firm issues equity, the following value-matching condition holds:

P (K,X) = P (K,X −M)− (h0K +M + h1M) . (C.8)

The left and right sides of (C.8) are the firm’s equity value before and after equity issuance,
respectively. On the right side of (C.8), P (K,X − M) is the firm’s equity value after it raises
external funds with the net amount of M . The firm’s debt after the equity issue is reduced to
X −M . The second term on the right side of (C.8) is the total cost of the equity issue, which
includes the fixed cost h0K and the variable cost h1M . The proceeds from the equity issue are
used to repay a fraction of the firm’s outstanding debt. Doing so reduces the likelihood of costly
default and inefficient liquidation.

What is the optimal amount M the firm should raise when it goes to public equity markets?
The optimal level of M must be chosen so that the marginal equity value of reducing leverage at
(X −M) is equal to the marginal cost of raising external equity. This tradeoff is described by the
following smooth-pasting condition (Dumas,1991):

−PX(K,X −M) = 1 + h1 . (C.9)

Obviously, the fixed cost h0Kt does not appear in (C.9).
Finally, because external equity financing is costly, it is optimal for the firm to postpone its

equity issue as much as possible, as doing so reduces the present discounted costs of tapping
external equity markets.55 The firm issues equity only at the very last moment before reaching the
bankruptcy point when its equity value is zero. Let X̂t denote the firm’s debt level at and above
which the firm chooses to issue costly external equity, then the equity-issue and default boundaries
are the same, X̂t = Xt, and P (Kt, X̂t) = 0.

Again using the homogeneity property, we can transform the value-matching condition (C.8)
into (34). The FOC (C.9) for the net amount raisedm then becomes (35), and p(x̂) = P (Kt, X̂t)/Kt =
0.

Firm Liquidation. When equity issuance is too costly, the firm chooses liquidation over equity
issue and the firm’s debt capacity Xt must equal the liquidation value of its capital stock: Xt = Lt.
Suppose this were not true. If Xt < Lt, then the firm can always make itself better off by increasing
debt capacity, which is feasible. If Xt > Lt, then the creditors cannot break even in response to
diffusion shocks.56

Summary. We can calculate the debt capacity by using the following two-step procedure. First,
suppose that the firm uses costly equity issue to reduce its debt. We can solve for the equity issue
boundary X̂t by using (C.8), (C.9), and P (Kt, X̂t) = 0. If X̂t > Lt, we have obtained the debt
capacity and Xt = X̂t. However, if X̂t < Lt, the firm is better off never using its equity issuance
option as it is too costly. As a result, the equilibrium debt capacity is then Xt = Lt, which is
supported by the firm’s liquidation policy.

55This intuition is analogous to that in Bolton, Chen, and Wang (2011) who show that the firm should
only issue equity after running out of its cash balances. Unlike in Bolton, Chen, and Wang (2011), however,
here debt capacity is endogenous and debt is risky.

56See the discussion for the intuition in the paragraph following the debt pricing equation (C.7).
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C.3 Payout Region

When the firm’s debt is very low the firm is better off paying out the firm’s excess liquidity, as
shareholders are impatient (γ > r). A basic question is how low the firm’s debt needs to be before
it starts paying out. We denote by Xt the firm’s endogenous payout boundary: When Xt > Xt the
firm retains all its earnings and when Xt < Xt the firm pays out the lump-sum amount Xt −Xt

to its shareholders.
Since P (K,X) must be continuous before and after the payout decision, the value P (K,X) for

X < X is given by
P (K,X) = P (K,X) + (X −X) , for X < X . (C.10)

Moreover, since the above equation holds for X close to X, we may take the limit and obtain the
following condition for the endogenous lower boundary X:

PX(K,X) = −1 , (C.11)

which states that the marginal cost of debt is equal to one at X, as the firm is indifferent between
distributing and retaining one dollar. Equation (C.11) defines X as a function of K, which we
denote by X(K). As the payout boundary X(K) is optimally chosen by the firm, we also have the
following super-contact condition (Dumas, 1991):

PXX(K,X(K)) = 0 . (C.12)

Finally, substituting P (K,X) = p(x)K in (C.11) and (C.12), we obtain the scaled equity value
which satisfies the smooth-pasting and super-contact conditions given in (37).

D Hedging and Risk Taking

In this Appendix, we report hedging and risk-taking results for both the cases where v(x) is globally
concave and the general case.

D.1 Globally concave case

Diffusion and Jump Hedging Demand. Panel A of Figure 7 shows that the firm optimally
exploits all available hedging opportunities by setting θ(xt) = −ρxt = −0.2xt, so that its leverage
xt is independent of the hedgeable diffusion shock, dBSt . Panel B of Figure 7 describes the optimal
jump hedging strategy. As for the hedgeable diffusion shocks, the firm optimally chooses π(xt, Z) =
(1−Z)xt = 0.5xt, where Z = 0.5, so that its leverage xt does not respond to hedgeable jump shocks.
That is, the arrival of a jump whose Z satisfies Z ∈ [Z∗, 1) does not change xt at all.

In sum, the firm is endogenously averse to fluctuations in leverage xand through its risk man-
agement policy the firm seems to minimize the volatility of leverage.

Leverage Drift and Costly External Equity Financing. When Z∗ = 0.5 firm value
v(x) is globally concave and the firm’s equity-issuance and bankruptcy boundaries are the same:
x = x̂ = 1.19. When leverage reaches x = 1.19 the firm engages in a recapitalization by issuing
costly external equity, raising a net amount m = 0.53, and using these proceeds to bring down its
leverage to x −m = 1.19 − 0.53 = 0.66, where the firm’s net marginal benefit of reducing debt is
equal to its marginal cost of issuing equity, −v′(0.66) = 0.02.
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Figure 7: Diffusion hedging demand, θ(x), and jump hedging demand for Z = 0.5,
π(x, 0.5). All parameter values are given in Table 1.
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Figure 8: The drift of market leverage for the case Z∗ = 0.5. Other parameter values are
given in Table 1.

Figure 8 plots the drift of market leverage mlt (excluding jumps) as a function of its current
level mlt. This figure captures the firm’s leverage dynamics in a succinct way under its optimal
financial policy. Note first that the firm’s target market leverage is equal to 41% at its the left
boundary. Second, when current leverage is very high the drift of leverage is positive, indicating
that it is difficult for the firm to reduce its leverage going forward. The reason is that when leverage
is high the firm faces large interest payments and hedging costs, causing leverage to drift upward
(positive µml.) This generates a self-reinforcing debt spiral. Although the firm cuts investment to
get out of this spiral, it is difficult to do so because of the positive drift and debt overhang. That
being said, for most levels of market leverage the drift is negative. The firm is able on average to
bring leverage down from these levels, get closer to its target leverage, so as to be able to resume
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Figure 9: Diffusion hedging demand, θ(x), jump hedging demand for Z = 0.95, π(x, 0.95)
and π(x, Z) for x = 0.87, x = 1, 1.13, and the insurance premium payment, φ(x). All
parameter values other than Z∗ are given in Table 1.

payouts to its shareholders.

D.2 Risk-seeking case

Diffusion and Jump Hedging Demands and Insurance Premium Payments. Fig-
ure 9 focuses on the impact of changing the firm’s hedging opportunity set on its hedging strategies
and the cost of hedging/insurance payments. Panel A shows that the firm completely hedges all
its hedgeable idiosyncratic risk exposure by setting θ(x) = −ρx = −0.2x in the region where p(x)
is concave. In contrast, in the convex region, the firm takes the maximally allowed diffusion risk
exposure by setting θ(x) = θ = 1 for x ∈ (x̃, x̂) = (1.03, 1.15). For Z∗ = 0, 95, θ(x) jumps precisely
at the inflection point x̃ = 1.03.

Panels B and C demonstrate that the firm’s jump hedging demand, π(xt, Z), drastically changes
with the firm’s hedging opportunity. Consider π(xt, 0.96), its demand for the jump contingency
with Z = 0.96. When the firm’s balance sheet is sufficiently strong, i.e., x ∈ (0.48, 0.92), it chooses
to completely hedge this jump exposure by setting π(xt, 0.96) = (1 − 0.96)xt = 0.04xt, as it does
for the case with Z∗ = 0.5. The solid line in Panel C plots the function, π(0.87, Z) = (1−Z)×0.87
making the same complete-hedging point, as 0.87 ∈ (0.48, 0.92).

Second, when the firm is sufficiently highly levered, i.e., x ∈ (0.92, 1.11), the firm’s net marginal
cost of debt, −v′(x) is greater than 0.28 and reaches 0.42 at x = x̂ = 1.03, as can be seen from
Panel C of Figure 9. In this case, it is optimal for the firm to attempt reducing its leverage by
taking on actuarially fairly priced bets before tapping costly external equity financing: Rather than
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Figure 10: The equilibrium credit spread, η(x), interest payment, c(x), interest coverage
ratio, A/c(x), and (net) equity issuance, m. All parameter values other than Z∗ are given in
Table 1.

hedging out this jump contingency, the firm sells jump-insurance contracts and uses the insurance
proceeds to pay down debt. For example, π(1, 0.96) switches the sign and changes from 0.04 to
-0.14, as we increase Z∗ from 0.5 to 0.95. The dashed line in Panel C plots the function, π(1, Z),
which is negative and decreasing with Z, confirming that it is optimal to sell jump insurances, as
1 ∈ (0.92, 1.11).

Finally, for a firm that is very highly levered and close to exhausting its debt capacity, i.e.,
when x > 1.11, rather than speculating on the potential jump losses of its own capital stock as we
have just discussed, the firm chooses a very large (positive) jump hedging demand. For example,
π(x, 0.96) = 0.23 for x = 1.11 and π(x, 0.96) = 0.56 for x = x̂ = 1.15. In this region, even by selling
jump insurance is unlikely to save the firm from financial distress. The firm concludes that buying
(seemingly excessive) jump insurances is the best bet in the interest of shareholders. The dotted
line in Panel C plots the function, π(1.13, Z), which is positive and very high, as 1.13 ∈ (1.11, 1.15).
This result is in sharp contrast with the other two cases. In this case, receiving a large negative
capital stock shock saves the firm from bankruptcy.

Panel D shows that the insurance premium payment, φ(x), approximately tracks the shape of
the jump hedging demand, π(x, Z), as shown in Panel B. This follows from the fact that the jump
insurance premium payment φ(x) is equal to the integration of π(x, Z) over all hedgeable jump
exposures, i.e., Z ≥ Z∗.

Credit Spreads, Interest Payments, Coverage Ratio, and Equity Financing. Fig-
ure 10 displays the impact of changing the firm’s hedging opportunity set on its debt and equity
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financing strategies and terms.
Panel A shows that the equilibrium credit spread η(x) increases x. The higher the firm’s leverage

the higher default risk. Unlike for the case with Z∗ = 0.5, where the credit spread is essentially
equal to zero regardless of the firm’s leverage, the effect of leverage on η(x) is very large: The
sensitivity of credit spread with respect to leverage increases significantly as leverage exceeds 0.9,
reaching 19% at the equity-issuance boundary x = x̂ = 1.15. This panel shows the large impact of
lacking hedging opportunity on the firm’s cost of borrowing.

Panel B shows that the interest payment is also sensitive to leverage. This is expected as
the coupon, c(x), is equal to the product of the interest rate, (r + η(x)), and leverage x. As the
firm’s book leverage x increases from 0.9 to 1.15, the coupon payment c(x) increases from four
percent of its capital stock to 27 percent causing the firm’s interest coverage ratio, A/c(x), to drop
substantially from a very prudent level, 4.96 to quite a risky level, 0.78, as seen from Panel C.

Panel D plots the net external equity financing amount, m(x), as a function of x in the equity
issuance region, where x ∈ (x̂, x) = (1.15, 1.19) for the case of Z∗ = 0.95. As the firm’s shareholders
use the entire net amount raised via equity issuance to pay down the firm’s debt, the firm’s book
leverage after its equity issuance is xt−mt. Additionally, the FOC for equity issuance implies that
the net marginal cost of debt, −v′( · ), at the post-equity-issue leverage of (xt −mt), must equal to
the marginal cost of equity financing, h1. In our example, h1 = 0.02. By using the plot of −v′(xt)
in Panel C of Figure 6, we conclude that the firm’s book leverage after equity issuance is equal to
0.61.

Finally, the stand-alone dot in Panel D depicts the net equity financing amount for the case of
Z∗ = 0.5. Recall that the equity issuance and the bankruptcy boundaries are the same: x = x̂ =
1.19, the post-equity-issue leverage then must equal to 0.66 = 1.19− 0.53.

As we improve the firm’s hedging opportunity by decreasing Z∗ from 0.95 to 0.5, the firm
delays issuing equity (by increasing x̂ from 1.15 to 1.19), raises less equity (by decreasing m), but
achieves a higher post-equity-issue leverage x (an increase from 0.61 to 0.66.) The intuition is that
improving the firm’s hedging opportunity (by decreasing Z∗) improves the firm’s ability to take on
debt, enhancing debt capacity.
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Figure 11: The density functions of market leverage ml: Comparative statics with
respect to Z∗ and h0. All parameter values other than Z∗ and/or h0 are given in Table 1. In
Panel A, h0 = 0.1. In Panel B, Z∗ = 0.95. Other parameter values are given in Table 1.
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