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Introduction

We study deviations from the textbook law of one price in equity index futures, known as bases.
The basis is the futures price minus the synthetic fair-value futures price implied by the spot price
and the benchmark borrowing rate.1 The conventional interpretation is that bases reflect differ-
ences between benchmark borrowing rates and actual interest rates arbitrageurs can finance their
positions in the spot market. In equilibrium, bases emerge from a combination of supply-side fric-
tions that intermediaries face, such as balance sheet costs, as well as the amount of futures demand
to be intermediated.2 If demand for futures exceeds the supply intermediaries are able to provide at
current rates, then intermediaries raise the borrowing rates embedded in futures contracts. We refer
to these potential demand-supply imbalances as “demand effects,” (assuming shocks come from
the demand side and identifying these shocks in the data). Intermediary financing costs increase
with the amount of futures demand, where long (short) futures demand implies a more positive
(negative) basis. Rather than focusing solely on the cost of financial intermediation implied by the
basis, we focus on the demand that gives rise to the basis, identifying several new implications that
find support in the data.

Focusing on the demand side allows us to explain cross-sectional variation in the magnitude
of bases across equity indices. Such heterogeneity, which is substantial in the data, is difficult to
explain by balance sheet costs alone and has not been explored in previous work. While the link
between bases and futures demand is implicitly assumed in work on intermediary financing costs,
it has not been directly studied.

In addition to reflecting dealer financing costs, we argue that futures-spot bases in global equity
markets reflect liquidity demand for equity index exposure that is common to both futures markets
and spot markets. Liquidity demand generates predictions for the relationship between bases and
futures and spot prices that are distinct from other explanations for the basis, such as arbitrage
forces and balance sheet costs. We present a simple model of liquidity demand in futures markets,

1The existence of bases in equity index futures is documented by Cornell and French (1983); Figlewski (1984);
MacKinlay and Ramaswamy (1988); Harris (1989); Miller et al. (1994); Yadav and Pope (1994) and Chen et al. (1995),
who posit different theories regarding whether the basis represents a true arbitrage opportunity. Roll et al. (2007) link
the bases in the now-defunct NYSE Composite futures market with market liquidity.

2Deviations from the law of one price related to financing frictions have been documented in a variety of settings,
including equity carve outs (Lamont and Thaler (2003)), equity index options (Constantinides and Lian (2015), Chen
et al. (2018), Golez et al. (2018)), currencies (Garleanu and Pedersen (2011); Borio et al. (2016); Du et al. (2018)),
TIPS/treasuries (Fleckenstein et al. (2014)), CDS/bonds (Duffie (2010); Garleanu and Pedersen (2011)) and corporate
bonds (Lewis et al. (2017)).
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where liquidity traders and informed traders (whom we refer to as “end users” or “customers”)
submit orders to futures dealers. Dealers meet futures demand, and perfectly hedge their risk
exposure by trading in the spot market with risk-averse liquidity providers, who play the role of
market makers. The futures dealers face holding costs that increase with the amount of futures
demand they intermediate. These costs are reflected as bases between futures prices and spot
prices, with more positive (negative) bases corresponding to long (short) futures demand. The
liquidity providers in the spot market take on the equity index exposure offloaded by futures dealers
and demand compensation for holding inventory opposite informed demand. Liquidity provider
compensation is reflected by an increase in prices contemporaneous with customer demand that
eventually reverts after demand abates. Futures prices rise and fall by more than spot prices,
corresponding with the additional price impact associated with futures dealer balance sheet costs.
The trading behavior of market participants is illustrated in Figure 1.

The model generates three novel predictions for the futures-spot basis. The first is that bases
are negatively correlated with the futures positions that dealers hold and positively correlated with
the futures positions of customers, since dealers face increasing costs to meet additional futures
demand. The second prediction is that futures and spot returns are contemporaneously positively
correlated with changes in the basis (with the same sign). Changes in the basis reflect order flow
for equity index exposure, which in turn is reflected in increasing futures prices and spot prices.
This mechanism generates an additional implication, that changes in dealers’ futures positions
are contemporaneously negatively correlated with futures and spot market returns, while changes
in customers’ positions are contemporaneously positively correlated with futures and spot market
returns. The third prediction is that bases negatively predict futures returns and spot returns (with
the same sign). Since bases capture the amount of inventory of liquidity providers in the spot
market, more positive inventory corresponds with positive returns in the futures market and the
spot market. A corollary is that dealers’ futures positions positively predict subsequent futures and
spot market returns, and customers’ futures positions negatively predict subsequent futures and
spot market returns.

We test the first prediction by examining weekly data on dealer inventories and investor po-
sitions from the U.S. Commodity Futures Trading Commission (CFTC) for equity index futures.
Dealer net positioning is strongly negatively related to the basis, while the net positioning of hedge
funds and institutions is positively related to the basis. Cross-sectionally, the basis across equity
indices varies positively with the strength of opposing positions between dealers and end-users,
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which is a novel result consistent with our model. In addition, for a given futures contract, vari-
ation in the basis over time corresponds with variation in the size of opposing positions between
dealers and end-users. These cross-sectional and time-series results are consistent with futures
dealers taking the other side of customer demand for futures, with the total holding costs of dealers
(and the size of the basis) increasing with demand. The analysis also uncovers that hedge funds
are net demanders, rather than suppliers, of liquidity in equity futures markets. This finding runs
counter to hedge fund behavior in other markets, where hedge funds are often liquidity suppli-
ers, and has further implications for the relationship between our results and aggregate funding
conditions, which we explore later.

To test the second and third predictions of the model, we examine the relationship of the basis
with equity index futures and spot market returns. We find, consistent with the second prediction
of the model, that a one percent change in the annualized futures-spot basis corresponds contem-
poraneously with a 13 to 44 basis point weekly return in futures and spot markets (depending upon
the fixed effect specification). We also find that a futures-spot basis of one basis point per week

predicts subsequent futures returns to be 3.9 to 5.1 basis points lower and subsequent spot market
returns to be 2.2 to 3.5 basis points lower the following week, consistent with the third prediction
of the model. For both predictions, we find evidence that the relationships hold in both time-
series comparisons for each index, as well as cross-sectional comparisons across indices. Using
the CFTC futures positions, we also test the corollaries to the second and third predictions relating
dealer and customer positions to futures and spot market returns, and find consistent evidence with
the mechanism captured by the model.

The second and third predictions are unique to our model of liquidity demand explaining the
basis in equity index markets. The traditional perspective on bases suggests that these devia-
tions represent an arbitrage opportunity or are solely the result of balance sheet costs. These
“convergence-based explanations” only make the prediction that bases should converge to zero
when futures contracts expire. They either do not predict a relationship between the basis and spot
market returns, or predict that changes in the basis are negatively contemporaneously correlated
with spot market returns and positively predict subsequent spot market returns. We find the oppo-
site results in the data. Moreover, convergence-based explanations make an exact prediction that
the magnitude of the return predictability of the basis for futures and spot market returns should
be less than or equal to the size of the basis. Our results show that futures prices move four to five
times more than implied by bases simply converging to zero, and spot prices move in entirely the
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opposite direction. These findings are consistent with our model and inconsistent with traditional
views of bases.

The key feature of our explanation is that futures demand, as captured by the basis, also corre-
sponds to liquidity demand for equity index exposure in the underlying spot market. Accordingly,
we interpret the return predictability of bases as capturing returns associated with liquidity pro-
vision for common equity index exposure. To quantify the magnitude of this compensation, we
form two weekly trading strategies. The first is a cross-sectional trading strategy that goes long
equity indices with more negative bases and short equity indices with more positive bases. The
second is an index timing strategy that takes long positions in equity indices that have positive
bases relative to their history and short positions in indices that have negative bases relative to their
history. The annualized Sharpe ratio of the cross-sectional strategy is 0.86 when implemented in
futures contracts and 0.62 when implemented in spot markets. The Sharpe ratio of the timing strat-
egy is 0.68 when implemented in futures contracts and 0.53 when implemented in spot markets.
The returns of these strategies are not explained by exposure to other well known return predic-
tors. The common proxies used to study the returns to liquidity provision in other settings are the
returns of five-day reversal strategies (e.g., Jegadeesh (1990), Nagel (2012), and Drechsler et al.
(2018)). The returns of the trading strategies we construct are of a similar order of magnitude to
the returns of five-day reversal strategies formed with the indices in our sample (Sharpe ratios of
0.78 for the cross-sectional strategy and 0.54 for the timing strategy), but are lowly correlated with
five-day reversal strategies and capture a distinct dimension of liquidity provision. Examining the
profitability of the trading strategies when using lagged values of the futures-spot basis, we still
find return predictability after several weeks and even months, consistent with the high degree of
persistence of bases and dealer net positions in futures. Compared with the evidence from indi-
vidual equities that dealers hold inventories on the order of days (e.g., Hansch et al. (1998) and
Hendershott and Menkveld (2014)), our results suggest that the basis is capturing liquidity demand
for aggregate equity exposure at a lower frequency.

To better identify the demand-based channel, we use data on flows into exchange-traded funds
(ETFs) and open-end funds that are benchmarked to the US indices in our sample. Because these
funds primarily purchase shares in the spot market to rebalance their exposure, the flows into the
funds capture equity index demand that is reflected in the spot market. We find that flows into ETFs
and open-end funds are strongly related to changes in the futures-spot basis, as well as changes in
the futures positions of futures dealers and hedge funds. The evidence is consistent with hedge
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funds using futures and ETFs to rebalance their equity exposure. The results emphasize that the
basis captures demand for equity index exposure reflected in both futures and spot market prices,
with hedge funds playing an important role.

Analyzing the relationship between funding costs and the futures-spot basis, we document
evidence of a mechanism by which equity index futures-spot bases are related to dealer funding
costs by examining securities lending. Dealers that sell futures to meet long futures demand hedge
their positions by buying stocks in the spot market. They may, in part, finance their stock positions
by lending out shares of the stocks that they purchased, as illustrated in Figure 1.3 When faced
with long demand in futures markets, dealers will increase the supply of shares available to borrow
in security lending markets, decreasing security lending fees and increasing the financing costs of
futures market making. As a result, dealer financing costs increase with long futures demand, as
security lending fees decrease. The signs are reversed when dealers face substantial demand for
shorting futures. We provide evidence consistent with this mechanism, using data on securities
lending fees and quantities for global equities.

Analyzing the relationship between our results and aggregate funding conditions, we first doc-
ument that the magnitude of bases increases when aggregate conditions deteriorate, as proxied by
the intermediary capital risk factor of He et al. (2017) and by shocks to the Treasury Minus Eu-
rodollar (TED) spread and the VIX. This evidence is consistent with the size of bases reflecting
aggregate funding conditions that impact the cost of futures intermediation. Second, we study the
exposure of the trading strategies we construct to funding liquidity and volatility shocks. Funding
liquidity and volatility shocks may reflect risk-bearing capacity of leveraged investors (Brunner-
meier and Pedersen (2008) and Adrian and Shin (2010)), and hence may be related to the returns
of liquidity provision. We find that funding liquidity shocks and volatility shocks are only weakly
related to our liquidity trading strategy returns. This result, which is weaker than in other settings,
is partly explained by the fact that some of the futures demand captured by bases comes from hedge
funds, in contrast to hedge funds playing the role of liquidity providers. We present evidence that
hedge funds reduce their equity index exposure in futures when funding conditions deteriorate.
Our results suggest that while futures supply might be impaired by shocks to funding conditions,
these effects are offset by the corresponding impact on futures demand.

3Securities lending can offer dealers more attractive financing since dealers may deduct a security lending fee
from their cash borrowing rate. Song (2016) presents a model in which securities lending/equity repo financing is the
preferred financing strategy for intermediaries in equity derivatives markets.
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Our results offer further evidence for the role that financing costs play in determining asset
prices, particularly violations of the law of one price, and their important interaction with asset
demand. We connect the literature on intermediation costs to the literature on end-user demand,
dealer inventories, and asset prices (De Roon et al. (2000); Chordia et al. (2002); Bollen and Wha-
ley (2004); Garleanu et al. (2009); Hendershott and Menkveld (2014); Greenwood and Vayanos
(2014); Boons and Prado (2019), and He et al. (2019)), making clear that financing rates and asset
demand are intertwined. Our paper is particularly related to a growing body of work that empha-
sizes the role that institutional demand plays in prices across a variety of asset classes (Klingler
and Sundaresan (2019); Koijen and Yogo (2019); Greenwood and Vissing-Jorgensen (2019); Koi-
jen et al. (2020)).4 While other studies primarily focus on the effects of institutional demand on
asset prices in individual stocks or specialized assets, we show that institutional demand forces
can drive variation in the prices of entire equity markets, related to recent evidence presented by
Koijen and Gabaix (2020).

Additionally, our paper is related to work, more broadly, on the role of financial intermediation
in asset pricing. The existence of bases in equity index futures markets reflects the fact that the cost
of capital for intermediaries in these markets is different from simple uncollateralized borrowing
rates (Garleanu and Pedersen (2011)), due to both financial frictions and demand. Our finding that
the return predictability of bases reflects compensation for liquidity provision by intermediaries
in equity index markets provides another piece of evidence on the role of intermediation in deter-
mining asset prices (He and Krishnamurthy (2013); Brunnermeier and Sannikov (2014); Adrian
et al. (2014) and He et al. (2017)). We also highlight that heterogeneity among intermediaries is
important, echoing results in other work (He et al. (2010) and He et al. (2017)).

The rest of the paper is organized as follows. Section 1 presents a simple model of liquidity de-
mand in futures markets and outlines testable predictions. Section 2 presents the data and method-
ology for calculating the futures-spot basis in equity index markets. Section 3 tests predictions
from the model relating the basis, dealer inventory positions, and returns. Section 4 studies trading
strategies in order to quantify the returns to liquidity provision captured by the basis. Section 5
studies the direct relationship of intermediary financing costs with bases via securities lending.
Section 6 examines how liquidity supply and demand influence the results. Section 7 concludes.

4In a similar spirit to our results, Klingler and Sundaresan (2019) link negative swap-spreads (another type of basis)
with persistent demand for swaps by underfunded pension plans and dealers’ balance sheet constraints.
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1 Model of Liquidity Demand for Futures

We present a stylized model of liquidity demand for futures that generates some novel testable
predictions. The model is a simple extension of the model in Nagel (2012), which itself draws
heavily from prior models of liquidity provision, such as Kyle (1985), Grossman and Miller (1988),
and Admati and Pfleiderer (1988).

The model illustrates how a basis emerges between futures prices and spot prices due to hold-
ing costs that futures dealers face to meet customer demand. In the model, futures dealers perfectly
hedge their risk exposure from meeting futures demand by trading in the spot market, where risk-
averse liquidity providers demand compensation for holding inventory. The mechanics of this
trading are depicted in Figure 1. The model motivates a set of empirical predictions that suggest
that futures and spot returns contemporaneously increase with the basis, and are negatively pre-
dicted by the basis. These predictions are unique to an explanation based on liquidity demand and
distinct from predictions of standard explanations for the futures-spot basis.

1.1 Model Setup

There is a risky “spot” asset in zero net supply, one futures contract traded in each period in zero
net supply, and a riskless asset in perfectly elastic supply with a zero interest rate. Time is discrete,
t = 0, 1, . . . , T . There are four groups of market participants: Informed traders, liquidity traders,
futures dealers, and liquidity providers. We alternatively refer to the first two groups jointly as
“end-users” or “customers.”

The value of the risky asset in the final period T is

vT = v0 +
T∑
t=1

δt +
T∑
t=1

ξt, (1)

which is paid as a terminal dividend. The innovations δt, ξt are jointly normal, iid over time,
mutually uncorrelated, and have variances σ2

δ and σ2
ξ , respectively.

A futures contract traded in period t is a promise to deliver one unit of the risky asset at the
beginning of period t + 1. Promises are always fulfilled. Informed traders and liquidity traders
cannot trade the risky asset directly, but trade by submitting market orders for the futures contract
each period. Liquidity traders trade a random, exogenous amount zt in period t. zt is normal, iid
over time, uncorrelated with δt and ξt, and has variance σ2

z . Liquidity providers cannot transact in
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futures contracts but serve as market makers for the risky asset.
Futures dealers transact in both the risky asset and in futures. In each period, they serve as

market makers for the futures contract and fulfill orders from informed traders and liquidity traders
for futures. For each order they receive for a futures contract at time t, futures dealers submit an
offsetting opposite order to the liquidity provider for the risky asset. At the beginning of t + 1,
the dealers fulfill the terms of the futures contracts by delivering the risky assets they purchased
in period t to the end-users. Futures dealers are perfectly competitive and price futures contracts
such that they make zero profit in equilibrium.

The representative futures dealer faces a holding cost that scales quadratically with the the
number of risky assets held by dealers in aggregate, i.e.

ct = cx2t , (2)

where c > 0 is a constant, ct is the total cost faced by dealers and xt is the total number of risky
assets held by dealers in period t. This cost structure can be thought of as a reduced-form catch-
all for the costs dealers face to accommodate customer demand for futures over and above the
benchmark borrowing cost (e.g., balance sheet costs and related holding costs). The cost dealers
face is entirely passed onto futures prices. Because the total cost is quadratic in the total demand,
the holding cost is reflected in futures prices as linear in the amount of total demand.

The signal ξt is public and observed at time t by all market participants. δt becomes public
information at time t, but informed traders receive a private signal in the previous period, st−1 =

δt, that provides them a short-lived informational advantage. Informed traders are competitive,
myopic, and have CARA utility. The demand function for the representative informed trader is
linear in the signal:

yt = βst. (3)

As in Nagel (2012), β is increasing in the aggregate risk-bearing capacity of informed traders and
decreasing in the level of risk they perceive and the price impact they expect to have in aggregate
on the risky asset price. Additionally, β is also decreasing in c, as informed traders internalize the
additional impact their demand has on futures prices via dealer balance sheet costs. (See Internet
Appendix A.1 for details.)

The futures dealers meet the demand for xt = zt+yt futures contracts, and submit a market or-
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der for xt units of the risky asset that the liquidity provider satisfies. The representative competitive
liquidity provider is also myopic with CARA utility. Her asset demand is given by

mt = γ (E[δt+1|Mt] + vt − P s
t ) , (4)

where P s
t is the price of the risky asset at time t, andMt is her information set at time t. γ captures

the aggressiveness with which liquidity providers supply liquidity in a reduced form, decreasing in
the amount of risk and increasing in the risk-bearing capacity of the market-makers.5 Because zt
and δt+1 are independently normal, the liquidity providers’ expectation of δt+1 is given by

E [δt+1|Mt] =
βσ2

δ

β2σ2
δ + σ2

z

xt ≡ φxt, (5)

where φ is defined to satisfy the equation and captures the informativeness of demand, xt, about
the forecastable component of period t+1, δt+1. Imposing market clearing (xt+mt = 0) provides
expressions for the equilibrium prices of the risky asset and the futures contract.

P s
t =

(
1

γ
+ φ

)
xt + vt (Spot Price)

P f
t = P s

t + cxt (Futures Price)

The basis at time t is defined as the difference between the futures price and the spot price.

Bt ≡ P f
t − P s

t = cxt (6)

The equilibrium dollar return for the risky asset and the period t futures contract are defined as:

Rs
t+1 ≡ P s

t+1 − P s
t = ξt+1 + ηt+1 +

(
1

γ
+ φ

)
xt+1 −

1

γ
xt (Spot Returns)

Rf
t+1 ≡ P s

t+1 − P
f
t = Rs

t+1 − cxt (Futures Contract Returns)

5For example, γ can vary because of actual risk-aversion (e.g., as assumed in Grossman and Miller (1988) and
Garleanu et al. (2009)) or because constraints induce liquidity providers to behave as if they are risk-averse (e.g.,
Value-at-Risk constraints, as in Adrian and Shin (2010), or funding constraints, as in Brunnermeier and Pedersen
(2008)).
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where ηt+1 ≡ δt+1−φxt is the component of δt+1 that is unpredictable for liquidity providers using
period t information.

The basis scales linearly with the number of futures contracts demanded, as it reflects the
balance sheet costs that dealers face to meet futures demand. Both futures returns and spot returns
have an unpredictable component at time t + 1, which comes from unexpected order flow, and a
predictable component, which is the compensation earned by liquidity providers. Because st+1

and zt+1 are iid, xt+1 is not predictable at time t. For the spot returns, −xt represents the expected
component of period t + 1 order flow, and − 1

γ
xt is the predictable component of returns that

compensates the liquidity provider for bearing inventory risk. Futures returns are equal to spot
returns plus an additional predictable piece,−cxt, which comes from the balance sheet costs borne
by the futures dealers, and represents futures prices converging to the spot price at delivery.

1.2 Model Predictions

We outline three predictions from the model that are distinct from the predictions made by standard
explanations for the futures-spot basis (such as the basis being only an arbitrage opportunity or that
only balance sheet costs determine the basis).

Prediction 1: The (signed) futures-spot basis has a positive relationship with long futures
demand from customers and a negative relationship with dealers’ futures positions.
This prediction follows immediately from the definition of the basis from the model (Bt = cxt,
where xt is customer demand for futures). In the model, if customer demand xt is negative, then
the basis will be negative; if customer demand xt is positive, then the basis will be positive. The
basis increases in magnitude with the amount of futures demand.

Recent work has emphasized the role that balance sheet costs play in the magnitude of bases
(e.g., Du et al. (2018) and Andersen et al. (2019)). The model emphasizes how the signed basis
behaves, which balance sheet cost explanations do not emphasize. This prediction is not unique to
our model, however. The traditional perspective that the basis represents an arbitrage opportunity
would similarly predict that futures prices are increasing in long futures demand from customers.
However, the prediction is important to illustrate our mechanism.

Prediction 2: Changes in the basis are contemporaneously positively correlated with futures
returns and spot returns (with the same sign).
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Corollary: Changes in dealers’ futures positions are contemporaneously negatively corre-
lated with futures returns and spot returns. Changes in customers’ futures positions are
contemporaneously positively correlated with futures returns and spot returns.

In the model, the correlation between changes in the basis and returns comes from the relationship
of each with futures order flow, ∆xt+1 ≡ xt+1 − xt. Changes in the basis are directly proportional
to futures order flow. Spot returns and futures returns are also increasing contemporaneously with
order flow, as increasing order flow drives the liquidity providers to demand a higher price. The
contemporaneous correlations should be slightly stronger in futures, as the balance sheet costs from
futures demand are reflected in futures prices but not spot prices. The corollary follows because
futures order flow is directly captured by changes in dealers’ and customers’ futures positions.

This prediction is unique from other explanations. Traditional explanations that the basis rep-
resents an arbitrage opportunity or explanations that focus solely on dealer balance sheet costs do
not make this prediction. They might predict that the basis is contemporaneously increasing with
futures contract returns, but they would either predict that the basis should be contemporaneously
negatively related to spot market prices, or that it should be unrelated.

Prediction 3: The basis negatively predicts subsequent futures returns and spot returns (with
the same sign).

Corollary: Dealers futures positions positively predict subsequent futures returns and spot
returns, and customer futures positions negatively predict subsequent futures returns and
spot returns.

This prediction directly follows from the equations for returns. Period t + 1 returns are nega-
tively related to the total futures demand in period t, xt, reflecting compensation to the liquidity
provider. The predictive relationship should be stronger for futures, because futures returns include
an additional basis term. The corollary follows because dealers and customer positions capture xt.

This prediction is also unique to our model. Arbitrage or balance sheet cost explanations
might suggest that the basis negatively predicts futures returns, but they would either predict no
relationship between the basis and subsequent spot returns or they would predict that the basis
should be positively related to subsequent returns.
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1.3 Model Discussion

In the model, the basis between futures and spot prices emerges because of the balance sheet cost
that futures dealers face to meet customer demand for futures and hedge their exposure in the spot
market. This is consistent with explanations for the basis that have emerged recently (Du et al.
(2018), Andersen et al. (2019)).

The predictions of the model are primarily based on the standard insight in market microstruc-
ture models that liquidity providers (“market makers” in the standard parlance) earn compensation
for carrying inventory in order to meet the demands of investors (Grossman and Miller (1988)).
However, the unique predictions relating the basis to prices and returns come from the assumption
that customers only trade in futures contracts, which indirectly provides them with their desired
exposure to the risky asset, and that futures dealers taking the other side of end-user demand hedge
their inventory by trading in the spot market. To trade in futures, end-users pay a cost (“the basis”),
on top of the price of the risky asset, in order to compensate the futures dealers for the balance
sheet costs the dealers face.6 A natural set of questions arise. How realistic is the mechanism of
end-users trading in the futures markets instead of in spot markets? How realistic is it that futures
dealers hedge all of their futures inventory? And why do investors trade in futures markets, rather
than trade directly in the spot market, if there is an additional cost associated with trading futures?

The response to the first two questions is that, of course, in reality, all end-users don’t trade in
futures rather than spot markets and dealers don’t necessarily hedge all of their futures inventory.
We expect the model to deliver the same qualitative predictions about the relationship between the
basis and futures and spot market returns across different extensions of the model (e.g. extending
the model to include a subset of customers trading directly in the spot market, or partial hedging by
futures dealers) as long as demand for futures and demand faced by liquidity providers in the spot
market are highly correlated and liquidity providers in the spot market are unable to distinguish
between informed and uninformed demand. This is an important point for interpreting the model
predictions and our empirical results. While in the model, all liquidity demand comes via futures,
in reality, liquidity demand for equity market exposure likely occurs in both spot markets and
in the futures markets. Our empirical results relating the basis with market returns likely reflect
common liquidity demand in futures and spot markets, which is further emphasized by our later

6We assume that futures dealers are competitive and that the cost embedded in the basis simply represents the
balance sheet cost that dealers face. However, it might be the case that in reality, dealers are not competitive. The basis
(and the implicit cost) may also partially reflect imperfect competition. See Wallen (2019).
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empirical results relating the basis with flows into ETFs. However, our explanation does require
that a substantial amount of liquidity demand occurs in futures markets, and that this demand is
transmitted to spot markets by futures dealers hedging their exposure.

In response to the third question, there are many reasons that investors trade futures rather
than trading stocks directly. Futures are more capital efficient than trading stocks – investors can
gain substantial equity market exposure by posting a small amount of margin and holding futures.
Gaining a similar amount of long or short equity market exposure on margin by trading cash
stocks is more expensive, especially at large sizes. Futures contracts are also standardized and
centrally cleared, meaning that market participants can acquire leveraged exposure to an index
without taking on potential counterparty risk. Additionally, to replicate an equity index, like, the
S&P 500, an investor has to purchase each stock in the index, whereas they only have to execute
one transaction to buy S&P 500 futures. Investors that are not informed about cross-sectional
differences in single stock returns may also prefer trading in a single “basket” security than in each
of the stocks to avoid potential trading costs from adverse selection (Subrahmanyam (1991) and
Gorton and Pennacchi (1993)).

One nuance the model is silent on is the frequency over which liquidity demand and liquidity
provision occur (i.e., what the frequency of t is). In our empirical analysis, we find evidence that
liquidity demand in aggregate equity markets may play out over several weeks, which is a lower
frequency than the evidence from individual stocks, where a period may correspond with a few
days.

Finally, because the model is effectively a two period model, it does not fully capture some
dynamics that may be important in reality. For example, it is worth noting that the balance sheet
cost that futures dealers face in the model, c, likely varies over time, and may be correlated with
the demand-absorbing capacity of liquidity providers, γ. Others have demonstrated that funding
constraints can give rise to bases (Garleanu and Pedersen (2011)) as well as impair the ability of
liquidity providers to absorb demand (Gromb and Vayanos (2002) and Brunnermeier and Pedersen
(2008)). Accordingly, the magnitude of the futures-spot bases we measure, and the returns to
liquidity provision, can be correlated over time through a funding channel, and common shocks to
c and γ can affect patterns in prices and returns. Reality also has an added wrinkle that the risk-
bearing capacity of informed traders, β in the model, also likely varies over time with aggregate
funding conditions. This is especially true if futures demand comes from hedge funds, which we
find to be the case empirically. We discuss these potential additions in more depth after analyzing
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the main predictions of the model.

2 Data and Methodology

We describe the data and methodology for computing bases and present summary statistics.

2.1 Data

We study listed futures on eighteen developed market equity indices: S&P 500 (US), NASDAQ
(NASDAQ), Russell 2000 (USRU2K), S&P 400 MidCap (USSPMC), Dow Jones Industrial Aver-
age (DJIA), S&P TSE 60 (Canada, CN), FTSE 100 (United Kingdom, UK), EUROSTOXX (Eu-
ropean Union, EUROSTOXX), CAC40 (France, FR), DAX (Germany, BD), IBEX (Spain, ES),
FTSE MIB (Italy, IT), AEX (Netherlands, NL), Hangseng (Hong Kong, HK), Topix (Japan, JP),
OMXS30 (Sweden, SD), SMI (Switzerland, SW), and ASX SPI 200 (Australia, AU). The sample
period is January 2000 to December 2017, where we have intraday pricing data used to compute
the basis. We compute returns to futures contracts on each index excluding returns on collateral
from transacting in futures contracts, which are essentially returns in excess of the risk-free rate.

2.1.1 Computing the Basis

We construct the basis for each index in our sample using the no-arbitrage relation between futures
and spot prices,

F̂t = St

(
1 + rft

)
− EQt (Dt+1) , (7)

where St is the observed spot price, F̂t is the no-arbitrage implied futures price, rf is the bench-
mark interest rate, and EQt (Dt+1) is the expected dividends in period t + 1 under the risk-neutral
probability measure.

Data on risk-neutral dividend expectations are not systematically available for the indices in
our sample. From January 2007 through the end of our sample, we use point-in-time forecasts
of index dividends provided by Goldman Sachs as our measure of dividend expectations. From
2000 through 2006, we use the realized dividends of an index from t to t+ 1 to proxy for dividend
expectations. We conduct a number of analyses to understand the impact of our use of dividend
expectations under the physical measure and realized dividends to proxy for dividend expectations
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under the risk-neutral measure in Internet Appendix A.3, such as analyzing dividend futures in
the S&P500, imputing dividend risk premia, and analyzing the timing of dividend announcements.
We find that while our treatment of dividends likely introduces small measurement error, this error
does not meaningfully affect our headline results.

For the benchmark borrowing rate, we use the local interbank offer rate for each market, con-
structed by interpolating listed rates to match the maturity of the futures contract. The no-arbitrage
relationship between futures and spot prices assumes that dealers are able to finance their market-
making activities at the local interbank lending rate, an assumption that is often not true in practice
and gives rise to the bases we measure. Accordingly, the bases we measure may or may not capture
true “arbitrage” opportunities. Our particular focus here is not on whether bases capture arbitrage
opportunities, but rather to focus upon the information about supply-demand imbalances contained
in futures prices. The choice of benchmark funding rate (e.g. using local overnight index swap
rates rather than interbank rates) impacts the magnitude of bases we measure. Nevertheless, as we
show in Internet Appendix A.5, our headline results persist even when looking at cross-sections of
indices where the benchmark interest rate is the same.

We construct the basis as the difference between the observed futures prices, Ft, and the fair-
value futures prices, F̂t, normalized by the spot price and time-to-maturity of the contract.

Basist =
Ft − F̂t

St × TTM
= rf∗t − r

f
t . (8)

We normalize by time-to-maturity for comparability across indices with different expiration dates
and to capture the decay of the basis as the contract approaches expiration.7 Equation (8) can be
interpreted as the annualized difference between the expected return to holding futures on an index
and the expected return to holding the stocks of an index in excess of the local interbank lending
rate. It can also be interpreted as the difference between the annualized interest rate implied in
the price of a futures contract, rf∗t , and the annualized benchmark interest rate, rft . Given this
interpretation, the results also have implications for other work that considers the interest rates
embedded in derivatives prices (e.g. Binsbergen et al. (2019)), which we discuss in more detail in
Internet Appendix A.7.

To construct the basis, we use pricing data from Thompson Reuters Tick History (TRTH). For

7MacKinlay and Ramaswamy (1988) and Chen et al. (1995) find that the magnitude of the S&P 500 basis is
approximately proportional to its time-to-maturity. We find a similar result across all equity indices.
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spot index prices, the database contains the last traded prices of each index, aggregated from the
last traded prices of the individual constituents in the index, provided at a minut frequency. For
futures prices, the database contains tick-level data. We compute minute-by-minute futures prices
by taking the mid point from the last bid and ask quotes. We calculate a daily value of the basis as
the average of the minute-by-minute observations, which reduces estimation error and controls for
asynchronous closing prices in futures markets and cash equity markets.8

For each equity index, we construct a series that combines the bases of individual futures con-
tracts with different expirations. We use the near contract until ten days before expiration, where
most of the trading takes place in this market. Within ten days to expiration, we use a linear com-
bination of the basis values of the nearest and the second-nearest contracts, with the weight on the
front contract transferring linearly to the back contract as the front contract nears maturity. This
choice is meant to mitigate spikes in the basis that occur around contract expirations due to a com-
bination of trading behavior around the “roll period” (when the majority of market activity transfers
from the near contract to the second contract), as well as due to potential measurement error com-
ing from scaling by maturity for contracts close to expiration. Results are robust to alternative
methodological choices for combining contract-level basis values, such as using an open-interest
weighted combination of the basis values, using the basis value of the nearest expiration contract
until it’s expiration, or calculating a fixed maturity basis for each index by interpolating the basis
values of different maturity contracts.

2.2 Summary Statistics of the Basis

Table 1 reports summary statistics for the futures-spot basis in global equity markets. We report
summary statistics for the full sample, as well as for two sub-samples: January 2000 to June
2007, and July 2007 to December 2017. The average bases, average absolute value of bases, and
average time-series and cross-sectional standard deviations of bases are reported (in annualized
basis points).9 For global equities, the average basis is -1 basis point (bp), but the average absolute
value of the basis is 57 bps, the average time-series standard deviation is 92 bps, and the average
cross-sectional standard deviation is 90 bps. These numbers suggest that, while bases are close to
zero on average in global equity markets, there is substantial variation in the basis over time and

8For example, spot trading S&P 500 index constituents ends at 4:00 PM, while futures markets close at 4:15 PM.
9We also report asset-by-asset summary statistics of the basis in the internet appendix Table A.1.
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across indices. The magnitude and variation of bases is slightly lower in the post-2007 period than
in the pre-2007 period.

Compared with other settings (e.g., currencies), bases are an order of magnitude larger in global
equity index markets. For example, after the financial crisis, deviations from covered interest
rate parity have been shown to be “large,” the bases we measure are more than twice as large.
One reason for these differences is due to frictions associated with financing positions. Currency
markets are primarily money markets, where the main friction driving the basis appears to be bank
balance sheet costs. In global equity markets, there are additional frictions that increase the cost of
dealers meeting futures demand, such as securities lending, which we explore in more depth later
in the paper.

3 Testing the Model Predictions

We test the three predictions from the model. We test the first prediction by analyzing the rela-
tionship between the basis and investor positions in futures contracts for US indices (which are
the indices in our sample for which we have futures position data). We test the second and third
predictions of the model regarding the relationship between the basis and returns using all of the
indices in our sample. We use the investor positioning data in the US to test the corollaries to the
second and third predictions.

3.1 Prediction 1: The Relationship Between Futures Positions and the Basis

The first prediction is that the futures-spot basis should be negatively related to the futures positions
of futures dealers, and positively related to the futures positions of end-users (both informed traders
and liquidity traders).

To test this prediction, we use data on futures positions from the CFTC. For financial futures
traded on US exchanges, the CFTC publishes the Traders in Financial Futures (TFF) report ev-
ery Thursday, providing the aggregate long and short positions of investors categorized into four
groups: Dealers/Intermediaries, Institutional, Levered Funds, and Other Reportables.10 For equity

10The report officially designates the category “Leveraged Funds”, but we will use the term “Hedge Funds” inter-
changeably to refer to this category. These designations come from Form 40 filings completed by reportable traders, as
mandated by the CFTC. The CFTC expounds on these designations, describing Dealers/Intermediaries as participants
that “tend to have matched books or offset their risk across markets and clients. . . These include large banks (U.S.
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index i and investor category c, we define net positioning as:

Net Positioningi,c =
Long Positionsi,c − Short Positionsi,c

Open Interesti
. (9)

This signed measure captures whether investors in a given category are net long or short in aggre-
gate, and scales their net positioning by the open interest.11

Most trading in equity index futures occurs on exchanges, as opposed to over-the-counter.
Hence, net positioning from the TFF report should capture a substantial amount of the overall
positioning of investors in equity index derivatives. For our sample, we have data on positioning
for futures traded on the S&P 500, S&P 400, DJIA, Russell 2000, and NASDAQ indices.

Before directly testing the first prediction, we document some basic facts in the data to provide
additional color for our story. Figure 2 plots the time-series of each of the positioning series for
each equity index. With the exception of the Russell 2000, Dealer/Intermediary positioning is on
average net negative over the sample period, while Institutional and Hedge Fund positioning is net
positive (the opposite holds for the Russell 2000 in the sample). For each index, dealers hold the
largest net positions, which are negatively correlated with those of all other investor categories.

Table 2 reports the correlations of net positioning across investor categories. Panel A reports the
average correlation of net positioning by investor type within each index. For example, the entry in
the Dealer Column and Institutional row represents the correlation of net positioning of Dealers and
Institutional Investors calculated for each index and then averaged across the indices. The average
within-index correlation of Dealer and Institutional Investor net positioning is -0.66. Similarly, the
average correlation of Dealer and Hedge Fund net positioning is -0.68, and the average correlation
of Dealer and Other Investor net positioning is -0.28. The strong negative relationship between
dealer positioning and positioning of other types of investors is consistent with dealers taking the
other side of futures demand of end-users in equity markets.12

and non-U.S.) and dealers in securities, swaps, and other derivatives.” The Institutional Asset Manager designation
includes “pension funds, endowments, insurance companies, mutual funds, and portfolio/investment managers whose
clients are predominantly institutional,” while Hedge Funds are described as including “hedge funds and various types
of money managers, including registered commodity trading advisors (CTAs); registered commodity pool operators
(CPOs) or unregistered funds identified by the CFTC.” The “Other” category includes traders who “mostly are using
markets to hedge business risk, whether that risk is related to foreign exchange, equities, or interest rates.”

11We construct our net positioning variables following the approach of Brunnermeier et al. (2008) and Moskowitz
et al. (2012), who construct net positioning variables using the CFTC Commitments of Traders report, a similar report
to the one we use that groups traders into more coarse categories.

12The negative correlations need not imply that dealers are expanding their balance sheets to provide futures expo-

18



Panel B of Table 2 reports the average pairwise correlation of net positioning by investor type
across indices. For example, the entry in the Dealer row and Dealer column corresponds to the
average pairwise correlation of net positioning of Dealers in one index with Dealer positions in the
other indices, averaged across all indices. Dealer positioning is, on average, 0.37 correlated across
indices. For other investors, positioning is likewise positively correlated across indices, with the
strongest correlation for Hedge Funds (0.39). Taken together, the results from Panels A and B of
Table 2 indicate that dealer and end-user positions are strongly negatively correlated for a given
index, and that positions by investor type are positively correlated across equity indices.

We test the relationship between dealer positions and the basis by running a panel regression of
annualized futures-spot bases on dealer net positioning. Table 3 reports that there is a strong nega-
tive relationship between dealer net positioning and the basis. The coefficient on dealer positioning
(which is scaled to mean zero and unit variance) is strongly significant, with a t-statistic of -3.74
(column (1)). Adding entity, time, and entity and time fixed effects reduces the coefficient, but
still yields a strong and significant negative relationship. The negative relationship holds in both
the time-series and the cross-section. For a given futures contract, the basis declines as dealer net
positioning increases, and across indices the basis is smaller when dealer net positions are larger.
The results suggest that a one standard deviation increase in dealer positioning corresponds to a
28.9 basis point decrease in the basis. Including time and entity fixed effects, the effect is a 10
basis point drop. In times and for indices where dealers have substantial long (short) positions, the
basis is more (less) negative. These findings are consistent with dealer balance sheet costs playing
a role in the basis. The size of dealers’ position in futures increases the cost they face to provide
additional futures exposure, resulting in a bigger wedge between futures and spot prices.

We next investigate the relationship between end-user positioning and the futures-spot basis.
We run multivariate regressions of the futures-spot basis on net positioning by Institutional in-
vestors, Hedge funds, and Other investors. The last four columns of Table 3 report the results.
Across all specifications, Institutional investor positioning is significantly positively related to the
futures-spot basis. A one standard deviation change in institutional investor positioning leads to
a 6.7 to 20.6 basis point increase in the futures-spot basis, depending on the fixed effects specifi-
cation. Hedge fund positioning is also positively related to bases, with a one standard deviation

sure to end-users. If end-users demand to purchase assets held by dealers, then dealers may reduce their balance sheets
while meeting end-user demand. However, combined with the evidence of the persistent opposing signs of dealer and
end-user positioning, the results suggest that dealers are taking on futures inventory to meet end-user demand, and the
amount of inventory they take depends upon the amount of futures exposure demanded by end-users.
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change in hedge fund positioning corresponding to a 3.8 to 19.7 basis point increase in the futures-
spot basis. Other investor positions are also related to the basis, though the coefficients are smaller.

In Internet Appendix Figure A.3, we report the t-statistics from time series regressions of the
basis on the net futures positioning of each investor category for each individual US index. The
figure shows that the positive relationship between the basis and dealers futures positioning, and
the negative relationship of the basis with hedge fund futures positioning and institutional investor
futures positioning holds for every one of the five US indices in our sample, providing further
evidence in support of our story.

The relationship between hedge fund positioning and the basis is interesting. While hedge
funds are known to play the role of liquidity suppliers in some markets, the relationship between
hedge fund positioning and the basis suggests that hedge funds are on the demand side in equity
index futures markets. The idea that hedge funds are demanders in equity index futures is further
emphasized by the strong negative correlation of hedge fund positioning with futures dealer po-
sitioning. We return to this point when discussing how aggregate funding conditions, which may
affect liquidity providers, futures dealers, and hedge funds, relate to our results.

Overall, Table 3 shows that investor positioning captures substantial variation in futures-spot
bases, explaining 26% of the variation over time and across markets without any controls and
69% of the variation in combination with time and entity fixed effects. The basis is strongly
negatively correlated with dealer positioning in futures, and strongly positively correlated with
end-user positioning in futures, consistent with Prediction 1 that the basis varyies with the size
and direction of dealers’ provision of futures to end-users. In Section 5, we present evidence for
a specific mechanism, securities lending fees, by which dealer financing costs are related to the
amount of futures demand that dealers intermediate.

3.2 Prediction 2: The Contemporaneous Relationship Between the Basis
and Returns

The second prediction from the model is that changes in the basis are positively contemporaneously
correlated with futures and spot market returns. We test this prediction by running a set of panel
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regressions of the form:

rfuti,t:t+1 = ai + bt + c(Basisi,t+1 −Basisi,t) + εi,t+1 (10)

rspoti,t:t+1 − rf,t = αi + βt + γ(Basisi,t+1 −Basisi,t) + ηi,t+1 (11)

where Basisit is the futures-spot basis in market i measured in period t, rit:t+1 is the excess return
of asset i from period t to period t + 1, ai is the asset-specific intercept (or fixed effect), bt are
time-fixed effects, and c and γ are the coefficients of interest that measure the contemporaneous
relationship between the basis and returns. Regressions are estimated using weekly data, with the
basis scaled to be in annualized percentage points (returns are multiplied by 100). Standard errors
are clustered by time and entity.

Panel A of Table 4 reports the results. The first four columns display the results for regressions
where the dependent variable is the futures returns for a given market. Coefficients range from
0.44 with no fixed effects (t-statistic of 5.25) to 0.17 with time and entity fixed effects (t-statistic
of 5.39). The last four columns of Panel A report regression results where the dependent variable
is spot returns for a given market. Coefficients range from 0.41 with no fixed effects (t-statistic
of 4.99) to 0.13 with time and entity fixed effects (t-statistic of 3.91). The regression coefficients
suggest that a 100 basis point move in the annualized futures-spot basis corresponds with a 17 to
44 basis point weekly futures market return, and a 13 to 41 basis point weekly spot market return,
which are both large. For context, the average weekly return across all indices from 2000 to 2017
is only 10 basis points.

In Internet Appendix Figure A.4, we report the t-statistics from contemporaneous time series
regressions of weekly futures and spot returns on changes in the basis for each individual index.
The figure shows that the relationship between changes in the basis, futures returns, and spot
returns is positive for seventeen of the eighteen indices in our sample, providing further evidence
that the contemporaneous relationship between changes in the basis and returns is consistent across
different equity markets.

Importantly, the sign of the relationship between futures market returns and the basis is the

same as the sign of the relationship between spot market returns and the basis. The positive rela-
tionship between bases and futures and spot market returns is consistent with a unique prediction
of our model that bases capture futures demand that is also reflected in the spot market. Other
theories of the futures-spot basis that focus on the convergence of the basis, do not predict this ob-
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served relationship. They would either predict no relationship between the basis and spot market
returns, or they would predict that the relationship should be opposite that with futures returns.

We also test the corollary to the second prediction, that changes in dealers’ futures positions
should be negatively correlated with futures market and spot market returns, and that changes in
customers’ futures positions should be positively correlated with futures and spot market returns.
To test this corollary, we use the CFTC net futures positioning data to run the following regressions,

rfuti,t:t−1 = ai + bt + g(F c
i,t − F c

i,t) + εi,t−1 (12)

rspoti,t:t−1 − rf,t−1 = αi + βt + γ(F c
i,t − F c

i,t−1) + ηi,t (13)

where F c
i,t is the net positioning of investor category c at time t in index i. Changes in investor net

positioning are standardized to have zero mean and unit standard deviation (returns are multiplied
by 100). Standard errors are clustered by entity and time.

Panel B of Table 4 reports the regression results. We report results for specifications that in-
clude both time and entity fixed effects. The first four columns display results for the regressions
where the dependent variable is futures market returns and the last four columns display results
where the dependent variable is spot market returns. The results suggest that a one-standard de-
viation increase in futures dealer positioning corresponds with a -15 basis point weekly futures
market return (t-statistic of -3.16) and a -14 basis point weekly spot market return (t-statistic of
-3.08). Looking to end-user positioning, the regression results suggest that a one-standard devia-
tion change in institutional investor positioning corresponds with a 15 basis point weekly futures
return (t-statistic of 7.14) and a 14 basis point weekly spot market return (t-statistic of 6.99). A
one-standard deviation change in hedge fund positioning corresponds with a 7 basis point weekly
futures return (t-statistic of 1.54) and a 7 basis point weekly spot market return (t-statistic of 1.45).
For context, the average weekly return of all US indices over the period for which we have posi-
tioning data (2006 to 2017) is about 20 basis points, so the magnitude of the relationship between
futures positioning and returns is large.

These results, combined with the evidence for Prediction 1, provide support for the mechanism
by which changes in the basis are contemporaneously related to futures and spot market returns.
In particular, bases capture demand for futures market exposure from customers, which is interme-
diated by futures dealers. Increases in the basis and more negative dealer futures positions capture
increased futures demand, which corresponds with rising futures and spot market prices.
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3.3 Prediction 3: The Predictive Relationship Between the Basis and Re-
turns

The third prediction of the model is that the basis should negatively predict subsequent spot and
futures returns. To test this prediction, we run a set of panel regressions,

rfuti,t+1 = ai + bt + cBasisi,t + εi,t+1 (14)

rspoti,t+1 − rf,t = αi + βt + γBasisi,t + ηi,t+1 (15)

where rit+1 is the return of asset i, ai and αi are asset-specific intercepts, bt and βt are time fixed
effects, and Basisi,t is the futures-spot basis for asset i measured in the previous period. The
coefficients c and γ capture the predictive relationship between the basis and subsequent returns.
Regressions are estimated using weekly return data, in basis points, where we scale the basis to be
in basis points per week. Standard errors are clustered by asset and time.

Panel A of Table 5 reports the results from the regressions. The first four columns of the panel
report the results for regressions where the dependent variable is futures returns for a given market.
Coefficients in the futures market regressions range from -5.1 with no fixed effects (t-statistic of
-3.42) to -3.8 with time and entity fixed effects (t-statistic of -4.21). The last four columns of the
panel report the results for regressions where the dependent variable is spot returns for a given
market. Coefficients in the spot market regressions range from -3.5 with no fixed effects (t-statistic
of -2.50) to -2.2 with time and entity fixed effects (t-statistic of -2.14). The regression coefficients
suggest that for a basis of 10 bps per week, the subsequent week’s futures returns are 38 to 51 bps
lower and the subsequent week’s spot returns are 22 to 35 bps lower.

The negative and significant relationship between the basis and the subsequent week’s futures
and spot returns is consistent with our liquidity demand-based explanation for the futures-spot
basis. The unique part of this prediction is that the basis forecasts futures market returns and spot
market returns with the same sign, which is borne out in the data. Convergence-based explanations
of the basis might predict that the basis negatively forecasts subsequent futures returns, but they
would predict either zero relationship or a positive predictive relationship between the basis and
spot returns – the opposite of what we find in the data.

Moreover, the standard formulations of convergence-based explanations of the basis make ex-
act predictions about the magnitude of the coefficients from the regressions. Alternative explana-

23



tions that focus just on the convergence of the basis (and do not account for the common liquidity
demand in futures and spot markets) suggest that the only predictive relationship between the basis
and returns comes from the basis converging to zero. We scaled the variables in the regression
so that the basis converging to zero, without any additional return effects, would coincide with
−1 ≤ γ ≤ 0, 0 ≤ c ≤ 1 and c− γ = 1, where c is the regression coefficient on spot market returns
and γ is the regression coefficient on futures market returns. The evidence from the regression in
Table 5 clearly rejects these predictions and is inconsistent with convergence-based explanations.
Futures prices move four to five times more than predicted by futures prices converging to spot
prices, and spot prices move in entirely the opposite direction. The evidence points to futures
prices and spot prices responding to other forces in addition to convergence. We argue this other
force is common liquidity demand reflected in the basis.

In Internet Appendix Figure A.5, we also report the t-statistics from predictive time series
regressions of weekly futures and spot returns on the lagged basis for each individual index sep-
arately. The figure shows that the relationship between the basis and subsequent futures and spot
market returns is negative for fourteen of the eighteen indices in our sample, providing evidence
that the negative predictability of the basis occurs in the majority of indices in our sample.

To shed additional light on the mechanism, we test the corollary to the third prediction, that
dealer futures positions should positively predict subsequent futures and spot returns, and that
customer futures positions should negatively predict subsequent futures and spot returns. Using
the CFTC investor net positioning data, we run the following panel regressions,

rfuti,t+1 = ai + bt + gF c
i,t + εi,t+1 (16)

rspoti,t+1 − rf,t = αi + βt + γF c
i,t + ηi,t+1 (17)

where F c
i,t is the net positioning of investor category c in index i at time t. Investor net positioning

is normalized to have zero mean and unit standard deviation (returns are in basis points). Standard
errors are clustered by entity and time.

Panel B of Table 5 reports the results (with time and entity fixed effects). A one standard
deviation difference in weekly futures dealer positioning corresponds with a 6.1 basis point higher
weekly return in futures markets (t-statistic of 3.52) and a 5.7 basis point higher weekly spot market
return (t-statistic of 3.48) in the following week. Since the average weekly futures return for US
indices is about 20 bps, these numbers suggest that the relationship between dealer positioning
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and returns is substantial. A one standard deviation difference in institutional investor positioning
corresponds with a -3.6 basis point lower weekly return in futures (t-statistic of -1.72) and a 3.2
basis point lower weekly spot return (t-statistic of -1.58) in the following week. A one standard
deviation difference in hedge fund positioning corresponds with a -6.7 basis point lower weekly
futures return (t-statistic of -3.45) and a -6.5 basis point lower weekly spot return (t-statistic of
-3.30) in the following week.

The regression results provide further evidence for the mechanism driving the return pre-
dictability of bases for futures and spot markets. The evidence is broadly consistent with deal-
ers meeting equity index futures demand from customers, and offloading their risk exposure into
spot markets. The futures and spot market return predictability reflects compensation to liquidity
providers for taking on equity market risk opposite customer demand.13

4 Quantifying the Returns to Liquidity Provision

To quantify the magnitude of the returns to liquidity provision in these markets, we construct trad-
ing strategies based on the basis. It is well known that liquidity providers demand substantial com-
pensation for meeting liquidity demands in individual equities, as others have studied using data on
market maker inventories (e.g. Hendershott and Seasholes (2007) and Hendershott and Menkveld
(2014)) and short-term reversal strategies (e.g. Lehmann (1990), Jegadeesh (1990), Nagel (2012)
and Drechsler et al. (2018)). However, the returns to liquidity provision for aggregated portfolios,
such as equity indices, have been less extensively studied.14

4.1 Cross-Sectional LMH Liquidity Demand Strategy

We construct a Low-Minus-High (LMH) Liquidity Demand trading strategy that goes long equity
indices where futures are “cheap” relative to spot market prices and short equity indices where

13Interestingly, it appears that, at least in the US sample, the net futures positioning of hedge funds negatively pre-
dicts subsequent returns, and more than that of institutional investors. Because the position-level regressions include
entity fixed effects, the results do not mean that hedge funds necessarily lose money on their futures positions (in
fact, hedge funds often trade on time-series momentum in futures, which is highly profitable, see e.g. Moskowitz et
al. (2012)). However, the results do support the interpretation that futures demand from hedge funds may lower the
subsequent returns of an equity market.

14Nagel (2012) is an exception, studying weekly reversal strategies in industry portfolios in addition to reversal
strategies in individual stocks.
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futures are “expensive” relative to spot market prices. We construct two versions of the strategy:
one that trades exclusively in futures and one that trades exclusively in the spot market. These
strategies are distinct from the conventional basis trade, which trades futures versus the underlying
securities. Rather, we trade cheap futures versus expensive futures in the cross-section, and do the
same in the spot market separately. Positive returns to the strategies suggest that markets where
futures are trading cheap relative to their “fair values” outperform markets where futures are trading
expensive relative to their fair values.

We follow Koijen et al. (2018) and form portfolios of indices weighted in proportion to the
cross-sectional rank of their basis, with the weight on each security i at time t given by,

wit = κt

(
rank

(
−X i

t

)
− Nt + 1

2

)
(18)

RLD,t =
Nt∑
i=1

witr̃i,t, (19)

where Nt is the number of available securities at time t, and the scalar κt ensures that the sum
of the long and short positions equals $1 and $−1, respectively. X i

t is the signal used to form
the portfolio, and RLD,t is the return at time t of the LMH Liquidity Demand portfolio. This is
similar to the weighting scheme employed by Asness et al. (2013), who show that the resulting
portfolios are highly correlated with other zero-cost portfolios that use different weights. In the
main specification, the signal we use is the one-day lagged basis for index i at time t for X i

t , and
we form portfolios on Friday of each week. In additional tests, we use lagged values of the basis
to sort portfolios, and also consider portfolio returns rebalanced on the last business day of each
month.15

15Given that five out of the eighteen equity indices in our sample are US indices, we test the robustness of our
results by constructing an alternative global equity LMH Leverage Demand portfolio excluding all US indices except
the S&P500, and an additional alternative portfolio excluding all US indices. The resulting portfolios are highly
correlated with our baseline specification and realize similar performance. The results are reported in the Internet
Appendix A.6.
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4.2 Time-Series LMH Liquidity Demand Strategy

To study the time-series return predictability of the basis, we construct a timing strategy where the
weight of security i is given by

wi,t = zt
(
−2I

(
Xi,t − X̄ > 0

)
− 1
)
, (20)

where I(X i
t − X̄i > 0) is an indicator function that equals one if X i

t > X̄i and X t
i is the basis of

asset i, with X̄i being the mean of that basis (estimated using information up to time t − 1). We
set zt so that we have 2 dollars of exposure in each period, though instead of being $1 long and $1
short at all times, the strategy will typically take either aggregate long or short positions.

4.3 LMH Liquidity Demand Strategy Returns

Table 6 reports the annualized mean, standard deviation, skewness, excess kurtosis, and Sharpe
ratio of the returns to the cross-sectional LMH portfolio (“LMH Liquidity Demand XS”) and the
timing portfolio (“LMH Liquidity Demand TS”). Panel A reports statistics for the main specifi-
cation, which are weekly rebalanced strategies, and Panel B for monthly rebalancing. For com-
parison, we also report statistics for cross-sectional and timing reversal strategies. Panel A reports
statistics for one-week reversal strategies rebalanced at the end of each week, and Panel B reports
statistics for one-month reversal strategies rebalanced at the end of each month.

Panel A reports the annualized Sharpe ratio of the cross-sectional LMH portfolio is 0.86 in
futures and 0.62 in the spot market, while the annualized Sharpe ratio of the timing portfolio is 0.68
in futures and 0.53 in the spot market. The performance of the strategies is of a similar order of
magnitude to the performance of one-week reversal strategies formed in our cross-section, another
proxy for the returns to liquidity provision (Jegadeesh (1990), Nagel (2012), and Drechsler et al.
(2018)). We find no evidence of negative skewness for the LMH Liquidity Demand strategies, but
some evidence of excess kurtosis.

Panel B shows that the performance of the LMH Liquidity demand strategies persists, even
at lower rebalance frequencies. The Sharpe ratio of the monthly rebalanced cross-sectional LMH
portfolio is 0.84 when implemented in futures and 0.72 when implemented in the spot market.
The monthly-rebalanced timing LMH portfolio has a Sharpe ratio of 0.39 when implemented in
futures and 0.32 when implemented in the spot market. These results stand in contrast to the more
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substantial decay in performance of reversal strategies as we move to the monthly frequency. The
cross-sectional reversal strategies have Sharpe ratios of 0.39 (in futures) and 0.32 (in spot). The
monthly timing reversal strategies have Sharpe ratios of -0.39 (in futures) and -0.40 (in the spot
market), consistent with equity indices exhibiting one month continuation in the time-series, as
documented by Moskowitz et al. (2012). The evidence suggests that the LMH Liquidity Demand
strategies are picking up a distinct dimension of liquidity demand and supply not captured by
short-term past price changes.

The returns of the LMH portfolios are stronger when the portfolio is implemented with futures
than when it is implemented in the spot market because the futures strategy also earns profit from
the basis converging to zero. However, the returns to the strategy are still substantial when imple-
mented in the spot market. With weekly rebalancing, in the cross-sectional strategy, the annualized
average return of the strategy trading in futures is 7.21% per year, while the average annualized
return of the strategy trading in the spot market is 5.22%. The difference between the two, 1.99%,
captures the amount that can be attributed to profitability accrued from basis convergence. The
results suggest that the vast majority of the profitability of the LMH Liquidity demand strategy
returns occur in the spot market, and are not coming from the convergence of the basis.

4.4 Lagging the Basis

We next study the impact of lagging the basis on the profitability of the LMH Liquidity Demand
strategy. We form cross-sectional and timing portfolios following Equations (18) and (20), where
the signal is the futures-spot basis lagged n-(week)days, in addition to the one-day implementation
lag in the main specification. We consider values of n ranging from 0 to 100 days. Figure 3 plots
the Sharpe ratios of the returns of the portfolios. The first plot in the figure displays results for
the cross-sectional strategies. Lagging the signal an additional week, the strategy Sharpe ratios
are 0.61 and 0.55 when implemented in the futures and the spot market, respectively. The two-
week lagged strategies have Sharpe ratios of 0.27 and 0.21. The observed decay from lagging
the signal is consistent with the strategy capturing the returns to liquidity provision. The signal
becomes stale in its ability to capture information about liquidity provider positions over time
as liquidity providers clear their inventory. However, the plot also reveals some evidence that
the cross-sectional return predictability of the basis may be more persistent. The results suggest
that bases predict cross-sectional returns on the order of weeks to months. The results are also

28



potentially suggestive of seasonal patterns in liquidity demand captured in the basis.
The second plot in Figure 3 plots the Sharpe ratio of the LMH Liquidity Demand timing port-

folio against the number of days the signal is lagged. The time-series return predictability of the
basis decays more quickly than the cross-sectional return predictability, though it still displays per-
sistence on the order of weeks. Lagging the signal an additional week, the Sharpe ratio is 0.29 and
0.25 in futures and in the spot market. Lagging the signal two weeks, the Sharpe ratios are 0.39
and 0.34. Again, there is evidence that the signal captures lower frequency variation.

One way to further understand the persistence of the return predictability of the basis is to di-
rectly analyze the persistence of the basis and the persistence of dealer futures positions. The first
plot in Figure 4 displays the daily autocorrelation function plot for the basis, estimated over all
indices in our sample. The daily AR(1) coefficient is 0.7, and autocorrelations decay nearly mono-
tonically over time. The autocorrelation of the basis with the one-month lagged basis is about 0.2,
consistent with much of its return predictability occurring within a month. Autocorrelations of the
basis remain significant for lags of up to 90 weekdays, which is also consistent with the evidence
of the longer-horizon return predictability results we observe. We do not observe the quarterly
seasonality observed in the cross-sectional strategy returns, though there is an uptick in autocor-
relations of the basis at lags of around one year. The second plot in Figure 4 displays the weekly
autocorrelation function plot for dealer positions, estimated for US indices. The weekly AR(1)
coefficient is 0.96, with autocorrelations decaying monotonically over time. Autocorrelations are
still significant using values lagged by one year. The evidence suggests that net dealer positions
are even more persistent than captured by the basis.

The persistence of dealer positions, the basis, and its return predictability is notable when
compared to the evidence in individual stocks, where liquidity providers only hold inventories on
the order of a few days. For example, Hansch et al. (1998) report that the average half-life of
dealer inventory positions at the London Stock Exchange is roughly two days. Hendershott and
Menkveld (2014) find half-lives ranging from half a day for large stocks to two days for the smallest
stocks, using data on market-makers inventories at the New York Stock Exchange. This horizon
of liquidity provision in individual stocks is consistent with the horizon of one to five days used to
study reversal strategies in Nagel (2012) and Drechsler et al. (2018). The persistence of the basis
in equity indices and its return predictability suggest that liquidity supply and demand imbalances
may be more persistent at the equity market level than for individual stocks. The persistence of the
basis and dealer futures positions are consistent with the interpretation that the basis is capturing a
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different dimension of liquidity provision than short-term reversals.

4.5 Spanning Tests and Factor Exposures

Table 7 reports regression results of the LMH strategy returns on the other known return factors
in equity indices (value and momentum (from Asness et al. (2013), updated from the AQR Data
library), time-series momentum from Moskowitz et al. (2012), updated from the AQR Data Li-
brary) and carry (from Koijen et al. (2018)). We also include the returns of a weekly rebalanced,
passive long strategy holding an equal weight in each of the equity indices in our sample, as well as
the returns to one-week reversal strategies, as independent variables in the regressions. Since the
returns of other return predictors are available on a monthly frequency, we aggregate the returns of
the weekly rebalanced portfolios to a monthly frequency and run the regressions.

The first two columns report results for the LMH strategies implemented in futures. The cross-
sectional LMH portfolio in futures loads positively on the momentum portfolio (t-statistic of 2.48),
but insignificantly on the other factors. The strategy earns an alpha of 56 basis points per month
(t-statistic of 3.44), with an annualized information ratio (alpha divided by residual volatility) of
0.86. In the second column of the table, the timing portfolio in futures has a positive loading on
the momentum portfolio (t-statistic of 3.35), the passive long portfolio (t-statistic of 3.61), and
the one-week reversal strategy (t-statistic of 2.98). The timing portfolio has a negative loading on
time-series momentum (t-statistic of -4.27). The strategy earns an alpha of 118 basis points per
month (t-statistic of 3.07), with an annualized information ratio of 0.76.

The third and fourth columns of the table report regression results using the returns of LMH
strategies implemented in the spot market. The factor loadings are similar to the strategies trading
in futures. The cross-sectional portfolio earns a monthly alpha of 41 basis points per month (t-
statistic of 2.49), corresponding with an information ratio of 0.62, and the timing portfolio earns a
monthly alpha of 91 basis points per month (t-statistic of 2.39), corresponding with an information
ratio of 0.59. The results suggest that the returns of the LMH Liquidity Demand strategies cannot
be explained by exposure to other well-known factors in global equity indices. With regards to
reversal strategies, the evidence is consistent with LMH Liquidity Demand strategies capturing a
different dimension of liquidity provision than reversal strategies. Additionally, the LMH timing
strategies are strongly negatively correlated with time-series momentum. This negative exposure
is consistent with the results in Moskowitz et al. (2012) that “speculators” (primarily hedge funds

30



and commodity trading advisors) trade time-series momentum in futures contracts. In equity index
futures, we show that dealers are primarily on the other side of hedge fund trading. While time-
series momentum strategies are highly profitable in the sample, the results suggest that, conditional
on the negative exposure to the time-series momentum strategy, trading in the same direction as
liquidity providers in equity index markets carries a high alpha. This alpha is consistent with
liquidity providers earning compensation for absorbing demand.

5 Futures Dealer Financing Costs, Securities Lending, and the
Futures-Spot Basis

To more closely study the mechanism by which dealer financing costs increase with equity index
futures demand, we examine the relationship between supply-demand imbalances for equity index
exposure, the basis, and securities lending fees.

Dealers in futures markets seek to maintain hedged positions that are not exposed to market
risk. Hence, if a dealer takes on inventory to meet demand for long equity exposure in futures mar-
kets, they may hedge their exposure by purchasing shares in the underlying spot market. Dealers
often obtain financing in order to hedge their futures exposure by lending out shares from their
hedge positions in exchange for cash (see Figure 1). Securities lending is a cheaper financing
strategy for most dealers than other types of borrowing, such as uncollateralized borrowing, since
dealers can deduct a security lending fee from the rate they pay to borrow cash (Song (2016)). As
a result, dealer financing costs for an index should vary with the cost of borrowing shares in the
underlying asset. An implication is that if dealer financing costs are embedded in the pricing of
futures, then the futures-spot basis should be related to security lending fees and utilization.

To test this implication we use the Markit Securities Finance (MSF) Buy Side Institutional
dataset, which contains daily data on stock loans aggregated from a variety of market participants
from August 2004 to 2019. The dataset contains information on security lending utilization, a
measure of the ease of borrowing a stock, which is defined as the ratio of the value of shares on
loan from beneficial owners to the value of the inventory of shares available to be lent out by
beneficial owners. From May 2007 onwards, the MSF dataset also provides data on the security
lending fee for stocks. Both variables provide a proxy for the marginal cost of borrowing shares,
which is directly related to the financing costs that dealers pay to finance their hedge positions.
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We combine stock-level security lending data from MSF with the index weights of individual
constituents in each index to create a weighted average of borrowing costs for each index. We
winsorize the data at the 1st and 99th percentiles in order to avoid the impact of potential data
errors. When security lending information is not available for a particular stock, we exclude that
stock from our index-level calculations and re-normalize the index weight for each stock that has
available data. This approach is equivalent to assuming that the stock with missing data has the
same value as the index-weighted average of all stocks with available data in the index.

The MSF dataset has good coverage for the universe of stocks we study. In 2004, the beginning
of the sample, we cover at least 80% of the index for 14 of the 18 indices we study, and cover at least
80% for all of the indices in our sample by 2008. Table A.14 in the internet appendix summarizes
information on data coverage for the MSF data across the indices in our sample.

We test the relationship between the basis and security lending measures by running regres-
sions of year-on-year changes in the futures spot-basis on year-on-year changes in each of the
security lending measures. We use the Hansen-Hodrick correction to adjust standard errors for
overlapping observations.16 Panel A of Table 8 reports the results. The coefficient on security
lending utilization is significantly negative and indicates that a 10% increase in security lending
utilization corresponds to a decrease of 19 to 29 bps in the basis, depending on the regression
specification. The last four columns of Panel A repeat the regressions using lending fees as the
independent variable. The coefficient on security lending fees is significant at the one percent level
across all specifications, where a one percent increase in the stock lending fee corresponds to a 29
to 35 basis point decline in the basis.

This evidence suggests an economically significant relationship between the basis and secu-
rity lending costs. Moreover, the evidence is also consistent with the basis increasing in end-user
demand for long-equity exposure that is not offset by corresponding demand for short-equity ex-
posure. There are two potential mechanisms at play, both of which might be happening, that are
consistent with our story. The first is that dealers are increasing the supply of shares available to
borrow in the cash-equity market when faced with demand for futures, where the increased supply

16We run these regressions in changes rather than levels due to potential non-stationarity in the security lending
measures. Furthermore, we use year-on-year changes rather than changes over other horizons (such as weekly changes
or monthly changes), to mitigate the impact of seasonal covariation between securities lending and equity demand that
we find in the data that can confound inference (e.g., for nearly all of the indices in our sample, returns and security
lending utilization and fees spike during dividend season). We obtain similar results by deseasonalizing and detrending
the security lending variables and the basis.
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reduces security lending utilization and fees and increases the basis. The second potential mech-
anism is that there is a negative relationship between the basis and shorting demand in the cash
equity market. A primary purpose of the equity security lending market is to facilitate shorting.
High demand to short, by borrowing shares in the underlying, reduces financing costs to meet long
demand in the futures market for dealers, resulting in a smaller basis. For both mechanisms, the
basis is increasing in end-user demand for long-equity exposure that is not offset by corresponding
demand for short-equity exposure.

Finally, we examine how index level security lending utilization and fees are related to dealer
net positioning in futures, to come back full circle to the results in the previous subsections. Panel
B of Table 8 reports results from regressing net futures positioning changes on security lending uti-
lization and fees. There is a positive relationship between dealer positioning and securities lending
measures, consistent with the theory. Point estimates range from 3.2 to 8.3, depending upon the
fixed effects included, and indicate that a 10 percent change in security lending utilization corre-
sponds to a 0.32 to 0.81 standard deviation change in dealer net positioning. Coefficient estimates
on security lending fees are also significantly positive across all specifications, and indicate that
a one percent increase in an index’s security lending fee corresponds to a 0.46 to 0.63 standard
deviation increase in dealer net positioning. This evidence is consistent with the futures-spot basis
reflecting the financing cost in excess of benchmark borrowing rates that dealers face to hedge their
equity exposure, which is affected both by demand pressure from investors in futures markets and
securities lending costs.

6 Liquidity Supply and Liquidity Demand

6.1 Liquidity Demand: Evidence from Fund Flows

To further study the role that liquidity demand plays in giving rise to bases, we examine fund flows
to capture liquidity demand in the spot market, which provides tighter identification for our story.
Others document the effects that flow-induced price pressures may have on individual stock returns
(Coval and Stafford (2007), Lou (2012), and Khan et al. (2012)), so it is possible that flows may
capture demand at the market level.

We obtain data on daily net flows and fund sizes for US open-end funds and exchange traded
funds (ETFs) from 2007 through 2017 from Morningstar Direct, for all funds for which data is
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available at a daily frequency. We construct a weekly proxy for flow-based demand for each of the
five US indices in our sample, as the sum of all weekly net flows into funds that list the index as
a benchmark on their prospectus, normalized by the lagged sum of the net assets of those funds.
The logic behind this measure is that open-end funds and ETFs respond to inflows largely by
purchasing the shares of stocks in the underlying index, so flows broadly correspond with liquidity
demand for index exposure.

We run panel regressions of weekly changes in the five-day rolling average of the basis on the
flow-driven demand measure, which we standardize to have mean zero and unit standard deviation.
A positive coefficient corresponds to the basis of an index increasing in weeks where there are
inflows associated with that index. Panel A of Table 9 reports the results, which are all statistically
significant, with t-statistics ranging from 4.08 to 4.22. A one standard deviation change in weekly
flows corresponds with a 1.9 to 2.7 basis point increase in the weekly basis (which has a standard
deviation of 30 basis points). This relationship is consistent with the idea that liquidity demand for
index exposure corresponds with a larger basis.

We next run panel regressions of the weekly changes in futures positions on the flow driven
demand measure. Panel B of Table 9 reports regression results where the dependent variable is
changes in dealer net positioning. As before, we standardize the positioning variables to have
zero mean and unit standard deviation, meaning that the coefficients can broadly be interpreted
as correlations. Coefficients range from -0.15 (with time and entity fixed effects) to -0.25 (with
time fixed effects only), with t-statistics ranging from -3.85 to -4.93. The results suggest a strong
negative relationship with dealer positioning and mutual fund flows, suggesting that the demand
that dealers face in futures markets is highly correlated with flows into ETFs and open-end funds.
Panels C and D report results from panel regressions where the dependent variables are changes
in Hedge fund and Institutional investor net positioning. The relationship between weekly flows
and changes in the positions of hedge funds is highly significant, with coefficients ranging from
0.15 (t-statistic of 3.94) with time fixed effects to 0.24 (t-statistic of 7.43) with entity fixed ef-
fects. None of the regression coefficients on the flow-based measure are statistically significant
in the Institutional Investor position regressions, though the coefficients are consistently positive.
The evidence suggests that our flow-based demand variable captures demand for futures by hedge
funds and other levered investors, but not necessarily demand from institutional investors. The
institutional investor category is defined by the CFTC to include pension funds, endowments, and
insurance companies, whose liquidity needs in futures may be different.
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The relationship we identify between the basis, investor positions, and fund flows can occur
through two channels, both of which are consistent with liquidity demand. The first channel, which
we believe is likely the more dominant one, is that hedge funds simultaneously use futures, ETFs,
and index funds as vehicles to rebalance their equity index exposure. The use of all three types
of instruments results in common demand that is reflected in fund flows, the basis, and hedge
fund futures positioning.17 The second channel is that open-end funds and ETFs facing inflows
themselves use futures to rebalance their market exposure. For example, the BlackRock iShares
S&P 500 ETF is listed as holding S&P 500 futures contracts.

The results from the relationship between flows, the basis, and investor positions support an
interpretation of the futures-spot basis corresponding with liquidity demand that is reflected in the
spot market. Funds that need to rebalance their index exposure rebalance their portfolios using
futures and ETFs, corresponding with an increase in the basis and a decrease in dealer net posi-
tioning. The evidence supports the role that demand for equity index exposure plays in the basis
and its return predictability.

6.2 Relationship with Aggregate Funding Conditions

The returns to liquidity provision are an equilibrium result that depends on the capacity of liquidity
providers to absorb demand (γ in the model) as well as on the amount of demand that liquidity
providers face (xt in the model). The conditions that affect these quantities may also be related to
the balance sheet costs that futures dealers face to intermediate in futures markets (c in the model).

We first analyze how the magnitude of the bases we measure vary with the intermediary capital
risk factor of He et al. (2017) (which proxies for innovations to the intermediary sector’s marginal
value of wealth), innovations to the Treasury minus Eurodollar (TED) spread (as a measure of
shocks to the ease or difficulty with which intermediaries may finance positions), and innovations
to the VIX (as a measure of volatility risk and shocks to the level of aggregate risk). In the context
of the model, this analysis is meant to capture how c, the balance sheet cost of futures dealers,
varies with aggregate conditions. Of course, the aggregate variables used may be related to other
quantities in the model, so this test is not perfectly identified. However, the tests provide additional
verification that shocks to aggregate funding conditions can affect bases, via their impact on dealer
balance sheet costs.

17Relatedly, Brown et al. (2020) explore mispricings from non-fundamental demand in ETFs.
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To measure changes in the magnitude of the basis at a given point in time we compute the aver-
age change in the absolute value of the basis for each index, and the change in the cross-sectional
standard deviation of the basis across indices. We regress weekly changes in the magnitude of
bases on weekly innovations to the liquidity variables, with the independent variables standardized
to have zero mean and unit standard deviation, and scaled so that the expected sign in the regres-
sion is positive (increases in the independent variables correspond with deteriorating aggregate
conditions). We exclude observations for the week of the Lehman Brothers failure. Including this
week strengthens the regression relationships we document, because bases and liquidity variables
all spike substantially, but the week unduly influences the regression results.

Table 10 reports the results from the regression. All coefficients on the liquidity variables
are positive, suggesting that the signs of the relationships are as expected, and most statistically
significant. A one standard deviation shock to the liquidity variables increases the magnitude of
the basis from 3.2 to 8.6 basis points, depending upon the regression specification. The result is
consistent with dealer balance sheet costs varying with aggregate funding costs that is reflected
in larger bases. The coefficients from the regressions do not control for the behavior of market
participants corresponding with the shocks. If futures dealers reduce their net futures positions
corresponding with deteriorating conditions, then the coefficients are a lower bound for the increase
in the magnitude of balance sheet costs embedded in the basis.

We next analyze how aggregate funding conditions are related to the LMH Liquidity Demand
strategies by regressing the strategies’ returns on funding liquidity variables. Our model does
not directly speak to this question. The logic behind this analysis is that deteriorating funding
conditions may correspond with shocks to the risk-bearing capacity of leveraged investors that
face binding funding constraints, which in turn cause these investors to deleverage and reduce
their positions. In our setting, if liquidity providers face funding constraints (e.g., Brunnermeier
and Pedersen (2008)), then we may expect the LMH strategies to perform poorly coincident with
deteriorating funding conditions.18 However, this effect may be muted by leveraged investors on
the demand side (e.g., hedge funds) facing funding constraints as well, and thus reducing their
futures demand with funding liquidity shocks (e.g., Brunnermeier et al. (2008)).

We run regressions of the LMH Liquidity Demand returns on variables related to aggregate

18Drechsler et al. (2018) present an alternative channel by which volatility shocks may be negatively related to
the returns to liquidity provision strategies, showing that liquidity provider positions are directly exposed to volatility
shocks in a Kyle (1985) model with stochastic volatility.
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conditions, including the lagged monthly level of the VIX. Nagel (2012) shows that the VIX pos-
itively predicts the returns of five-day reversal strategies, capturing the increased returns liquidity
providers demand when volatility is high. All variables are signed such that positive coefficients
correspond with the trading strategies performing poorly coincident with shocks to volatility and
funding liquidity.

Panel A of Table 11 reports results from univariate regressions, while Panel B reports results
from regressions that include a control for the global market return, which we construct as the
returns of a weekly rebalanced, equally weighted basket of the indices in the sample. All returns in
the regression are multiplied by 100, and the liquidity variables are standardized so that coefficients
can be interpreted as the number of percentage points returns change with a one-standard deviation
change in the variable. The timing strategies implemented in futures and in the spot market have
significant loadings on the intermediary capital ratio factor, the TED spread, and shocks to the
VIX, with the expected signs. The coefficients indicate that one standard deviation shocks to these
variables correspond to a change in weekly returns of 44 to 68 basis points, with t-statistics ranging
from 4.16 for the TED spread to 6.99 for the intermediary capital ratio. However, after controlling
for the market return, in Panel B, only the loading on the TED spread remains significant, with
coefficients of 0.31 and 0.28 in futures and spot markets (t-statistics of 2.91 and 2.69). The cross-
sectional strategies do not have statistically significant loadings in any of the specifications, with
many of the signs going in the opposite direction as predicted.

The results suggest that the LMH Liquidity Demand returns are modestly affected by aggregate
funding conditions. Given the wealth of theoretical and empirical evidence that aggregate funding
conditions should matter for the returns of liquidity provision strategies, this modest result seems a
bit surprising. However, deteriorating funding conditions may also reduce futures demand, which
provides a counterbalancing effect. To test this idea, we use investor futures positioning data to
examine their behavior with funding liquidity and volatility shocks, taking an approach similar in
spirit to Brunnermeier et al. (2008). Using the net positioning data from the Traders in Financial
Futures report, we run panel regressions of the form,

∆F i,c
t = βV IX ×∆V IXt × sign(F i,c

t−1) + λV IXF
i,c
t−1 + ηi,V IX (21)

∆F i,c
t = βTED∆TEDt × sign(F i,c

t−1) + λTEDF
i,c
t−1 + ηi,TED (22)

∆F i,c
t = βHKM(−HKMt)× sign(F i,c

t−1) + λHKMF
i,c
t−1 + ηi,HKM (23)
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where F i,c
t is the net futures positioning of investor category c in index i at time t, ∆V IXt and

∆TEDt are innovations to the TED spread and the VIX, HKMt is the intermediary capital risk
factor from He et al. (2017), and the η terms are asset fixed effects. The betas in the regression
are the coefficients of interest. The regressions capture whether, in aggregate, investors in a par-
ticular category expand (positive beta) or contract (negative beta) their positions in response to
deteriorating funding conditions.

Table 12 reports the results. For dealer net positioning, the coefficients are negative, but in-
significant. If funding liquidity shocks correspond with futures supply being withdrawn, we expect
a negative coefficient for dealer net futures positioning. The regressions also present evidence that
hedge funds reduce their net futures positions corresponding with volatility shocks (t-statistic of
-3.22) and with shocks to the intermediary capital risk factor (t-statistic of -3.09).19 These results
are reminiscent of the result in Brunnermeier et al. (2008), who suggest that speculators execut-
ing the carry trade in currencies unwind their positions during deteriorating financial conditions.
Contraction in the net positions of hedge funds may be a reason that the LMH liquidity demand
strategies do not appear strongly related to volatility and funding liquidity shocks. The LMH liq-
uidity demand strategies take positions opposite hedge fund and institutional investor positioning.
If hedge funds liquidate their positions (which would be consistent with de-risking when fund-
ing liquidity and volatility shocks hit), investors with positions opposite hedge funds may actually
be buoyed by the liquidation of hedge fund net positions. Reductions in equity demand are also
broadly consistent with volatility shocks and funding liquidity shocks reflecting bad times. How-
ever, the effects are not strong enough that the LMH strategies actually perform better in periods
of deteriorating conditions, suggesting the shocks likely also affect liquidity providers in the stock
market, whose positions we do not observe.

Our results highlight that both demanders and suppliers of equity index liquidity are likely to be
affected by aggregate funding conditions. Volatility shocks and funding shocks likely correspond
with the withdrawal of liquidity supply by liquidity providers and futures dealers, but likely also
correspond with reductions in demand for equity exposure from futures end-users. In sum, these
effects may cancel out, which can lead to the weak relationship we observe between the LMH
Liquidity Demand strategy returns and proxies for funding liquidity and volatility shocks. More
broadly, the results echo the discussion in He et al. (2017), that the relationship between financial

19Lagged futures positions are also highly statistically significant, suggesting weekly reversion in net positioning
by each investor category, which is to be expected in a liquidity provision story.
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intermediaries and asset prices may vary for different types of intermediaries. For example, debt-
constrained “hedge funds” may have procyclical leverage in equilibrium, while equity-constrained
commercial “banks” may face countercyclical leverage.

7 Conclusion

We show that violations of the law of one price convey more than just intermediation costs, offering
information about liquidity demand in equity futures markets. Consistent with this notion, we find
that bases between futures and spot prices negatively predict returns in futures and spot markets in

the same direction, distinct from futures market and spot market prices merely converging. Bases
appear to capture futures demand from hedge funds and institutional investors, with the associated
return predictability compensating liquidity providers for meeting this demand.

Our results highlight the important role that supply and demand imbalances play in giving rise
to violations of the law of one price, which may also be relevant in other asset classes. A previous
version of this paper shows that deviations from Covered Interest Rate parity in currency markets
are related to hedging demand stemming from international capital flows. This relationship means
that deviations from covered interest rate parity contain information relevant for exchange rates, a
point also made in Liao and Zhang (2020) and Greenwood et al. (2020), the latter also connecting
the results with global bond markets. The supply and demand imbalance captured by bases also
have implications for interpreting the interest rates embedded in derivatives prices (e.g., as studied
by Binsbergen et al. (2019)), which we discuss further in Internet Appendix A.7. The results
suggest that in addition to reflecting financial frictions, the demand captured by deviations from
the law of one price may contain additional economic insights.
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Tables and Figures

Figure 1: Mechanics of Futures Trading

The figure illustrates the mechanics of market making in equity index futures. Dealers in the futures market meet
demand for leveraged equity exposure from end-users by selling futures contracts to the end-users. They hedge their
exposure to equity market fluctuations by buying stocks in the underlying cash equity market. Dealers obtain financing
for their hedge positions by lending out their cash equity shares or entering into repurchase agreements for those
shares, both of which provide a cheaper source of financing than uncollateralized borrowing (see Song (2016) for
more discussion).

Futures Dealer

Futures End-User

Liquidity Provider

Bank

Securities Lending

(+ futures)

(- stocks)
(- futures)

(+ stocks)

(- cash)

Cash
(rf +

shadow cost)

Stocks

Futures
Contract

Cash
(rf - lending fee)

Stocks
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Figure 3: Signal Lagging and Strategy Performance

The figure plots the Sharpe ratio of LMH Liquidity Demand portfolios. The portfolios are formed following Equation
(18) and Equation(20), where the signals are constructed by using an n-day lagged futures-spot basis (in addition to the
one-day implementation lag in the main specification). The x-axis in the figure corresponds with different values of
n and the y-axis corresponds with the Sharpe ratio of returns. Results are presented for trading strategies exclusively
trading in futures and trading strategies exclusively trading in the spot market. The first plot corresponds with the
cross-sectional strategy and the second plot corresponds with the timing strategy.
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Figure 4: Autocorrelations of the Basis and Dealer Positions

The first plot in the figure displays the daily autocorrelation function of the basis in global equity markets, estimated
from January 2000 through December 2017. The second plot in the figure displays the weekly autocorrelation function
of dealer positions in US equity index futures markets, estimated from June 2006 through December 2017. For both
plots, the values are calculated via a univariate panel regression of the variable of interest on lagged values of the
variable, including entity-fixed effects. Standard errors are clustered by index and time. The dotted lines represent the
95% confidence interval for the autocorrelation coefficients.
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Table 1: Basis Summary Statistics

The table displays summary statistics of the annualized basis in global equity markets. The table displays the average
value of all basis observations within the sample, the average absolute value of all basis values within the sample, the
average of the time-series standard deviation of the basis for each asset in the sample, and the average of the cross-
sectional standard deviation of the basis in each time period. The table displays these statistics over the full sample, as
well as in sub-samples of the data.

Average
Basis

Average
Absolute

Basis

Average Basis
TS-Stdev

Average Basis
XS-Stdev

Jan. 2000-Dec. 2017 -0.83 56.58 91.84 90.39
Jan. 2000-Jun. 2007 -8.15 63.92 94.48 111.05
Jul. 2007-Dec. 2017 3.52 52.22 84.82 75.67
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Table 2: Correlation of Net Positioning by Investor Type

Net positioning is the ratio of the net number of contracts held by each investor type to the total open interest for a given
equity index, as published in the weekly Traders in Financial Futures Report published by the CFTC. Panel A reports
the correlation of net positioning by each investor type with other investor types within a given index, averaged across
indices. Each element of Panel A represents the average time-series correlation of net positioning across investor types
for each index. Panel B reports the average correlation of net positioning for each investor type across indices. For
example, the the Dealer/Dealer component of the table represents the average time-series correlation of net-positioning
of dealers across each of the five indices.

Panel A: Correlation of Within-Index Net Positioning, Averaged Across Indices
Dealer Institutional Hedge Funds Other

Dealer 1.00 -0.66 -0.68 -0.28
Institutional 1.00 0.12 0.11
Hedge Funds 1.00 0.05
Other 1.00

Panel B: Correlation of Cross-Index Net Positioning, Averaged Across Indices
Dealer Institutional Hedge Funds Other

Dealer 0.36 -0.16 -0.40 -0.12
Institutional 0.11 0.21 0.10
Hedge Funds 0.39 0.08
Other 0.01
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Table 3: Regression of Futures-Spot Basis on Investor Net Positioning in Futures

Net positioning is the ratio of the net number of contracts held by each investor type to the total open interest for a
given equity index, as published in the weekly Traders in Financial Futures Report published by the CFTC. Panel A
reports results of a regression of the futures-spot basis on standardized dealer net positioning. Panel B reports results
of a regression of the futures-spot basis on standardized institutional, levered, and other positioning. Futures-spot basis
is an annualized rate. Standard errors are clustered by index and time, with t-statistics in parentheses.

(1) (2) (3) (4) (5) (6) (7) (8)

Dealer -28.87∗∗ -22.20∗∗ -25.50∗∗ -10.00∗∗

(-3.74) (-4.22) (-3.26) (-2.87)

Institutional 20.63∗∗ 12.60∗∗ 18.00∗ 6.74∗∗∗

(3.11) (3.99) (2.73) (6.24)

Hedge Funds 19.74∗∗ 18.64∗∗ 14.81∗ 3.82
(3.68) (4.10) (2.57) (0.73)

Other 1.11 1.03 7.16 5.41∗∗

(0.37) (0.41) (1.87) (2.90)

R2 0.26 0.32 0.62 0.69 0.27 0.32 0.62 0.70
Observations 2874 2874 2874 2874 2874 2874 2874 2874
Time FE No No Yes Yes No No Yes Yes
Entity FE No Yes No Yes No Yes No Yes

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Contemporaneous Relationship Between the Basis and Returns

The table reports the results from a set of regressions of the form

rfuti,t:t+1 = ai + bt + c(∆xi,t) + εi,t+1

rspoti,t:t+1 − rf,t = αi + βt + γ(∆xi,t) + ηi,t+1

where rit:t+1 is the return of asset i from period t to period t + 1, ai is the asset-specific intercept (or fixed effect),
bt are time-fixed effects, ∆xi,t is the change in the variable x for index i from the previous period, and c and γ are
the coefficient of interest that measure the contemporaneous relationship between the independent variable and market
returns. Panel A reports the results for regressions where the independent variable is the futures-spot basis. Panel B
reports the results for regressions where the independent variable is the net positioning of investor categories, with the
independent variable scaled to have zero mean and unit standard deviation. The regression in Panel B only contains
the US equity indices in the sample. The basis is measured in annualized percentage points. Returns are multiplied
by 100. Observations are sampled weekly. Standard errors are clustered by time and entity. t-statistics are reported in
parentheses.

Panel A: Contemporaneous Relationship Between Returns and The Basis
Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

∆Basist 0.44∗∗∗ 0.44∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.41∗∗∗ 0.41∗∗∗ 0.13∗∗∗ 0.13∗∗∗

(5.25) (5.25) (5.39) (5.39) (4.99) (4.99) (3.91) (3.91)

R2 0.03 0.03 0.71 0.71 0.02 0.02 0.71 0.71
Observations 15522 15522 15522 15522 15522 15522 15522 15522
Time FE No No Yes Yes No No Yes Yes
Entity FE No Yes No Yes No Yes No Yes

Panel B: Contemporaneous Relationship Between Returns and Futures Positions
Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

∆FDealer
t -0.15∗∗ -0.14∗∗

(-3.16) (-3.08)

∆F Institutional
t 0.15∗∗∗ 0.14∗∗∗

(7.14) (6.99)

∆FHedge Fund
t 0.07 0.07

(1.54) (1.45)

∆FOther
t -0.01 -0.00

(-0.17) (-0.12)

R2 0.91 0.91 0.91 0.91 0.91 0.92 0.91 0.91
Observations 2852 2852 2852 2852 2852 2852.00 2852 2852
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Entity FE Yes Yes Yes Yes Yes Yes Yes Yes

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Basis Return Predictability

The table reports the results from a set of panel regressions of the form

rfuti,t+1 = ai + bt + cxi,t + εi,t+1

rspoti,t+1 − rf,t = αi + bt + γxi,t + ηi,t+1

where rit:t+1 is the return of asset i from period t to period t+ 1, xi,t is the independent variable in market i measured
in the period t, ai is the asset-specific intercept (or fixed effect), bt are time-fixed effects, and c and γ are the coefficient
of interest that measure the predictive relationship between the independent variable and equity market returns. Panel
A reports the results for regressions where the independent variable is the futures-spot basis, scaled to be in basis points
per week. Panel B reports the results for regressions where the independent variable is the net positioning of different
investor categories, scaled to have zero mean and unit standard deviation. Returns in both sets of regressions are scaled
to be in basis points. The regression in Panel B only contains the US equity indices in the sample. Observations are
sampled weekly. Standard errors are clustered by time and entity. t-statistics are reported in parentheses.

Panel A: Return Predictability of the Basis
Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

Basist−1 -5.09∗∗∗ -3.85∗∗∗ -5.06∗∗∗ -3.80∗∗∗ -3.54∗∗ -2.28∗∗ -3.44∗∗ -2.15∗∗

(-3.42) (-4.30) (-3.17) (-4.21) (-2.50) (-2.32) (-2.26) (-2.14)

R2 0.00 0.71 0.00 0.71 0.00 0.71 0.00 0.71
Observations 15649 15649 15649 15649 15649 15649 15649 15649
Time FE No Yes No Yes No Yes No Yes
Entity FE No No Yes Yes No No Yes Yes

Panel B: Return Predictability of Investor Net Futures Positioning
Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

FDealer
t−1 6.11∗∗ 5.66∗∗

(3.52) (3.48)

F Institutional
t−1 -3.59 -3.24

(-1.72) (-1.58)

FHedge Fund
t−1 -6.72∗∗ -6.50∗∗

(-3.45) (-3.30)

FOther
t−1 1.93 2.07

(1.17) (1.29)

R2 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
Observations 2879 2879 2879 2879 2879 2879 2879 2879
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Entity FE Yes Yes Yes Yes Yes Yes Yes Yes

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

48



T a
bl

e
6:

L
M

H
L

iq
ui

di
ty

D
em

an
d

R
et

ur
ns

T
he

ta
bl

e
re

po
rt

s
th

e
w

ee
kl

y
m

ea
n

ex
ce

ss
re

tu
rn

,a
nn

ua
liz

ed
m

ea
n

ex
ce

ss
re

tu
rn

,a
nn

ua
liz

ed
st

an
da

rd
de

vi
at

io
n,

sk
ew

ne
ss

of
re

tu
rn

s,
ku

rt
os

is
of

re
tu

rn
s,

an
d

an
nu

al
iz

ed
Sh

ar
pe

ra
tio

of
th

e
L

M
H

L
iq

ui
di

ty
D

em
an

d
st

ra
te

gy
re

tu
rn

s.
Pa

ne
lA

di
sp

la
ys

st
at

is
tic

s
fo

rw
ee

kl
y

re
ba

la
nc

ed
po

rt
fo

lio
s

an
d

Pa
ne

l
B

di
sp

la
ys

st
at

is
tic

s
fo

r
m

on
th

ly
re

ba
la

nc
ed

po
rt

fo
lio

s.
T

he
ta

bl
e

di
sp

la
ys

st
at

is
tic

s
co

rr
es

po
nd

in
g

w
ith

th
e

cr
os

s-
se

ct
io

na
l

L
M

H
L

ev
er

ag
e

D
em

an
d

po
rt

fo
lio

s
(“

L
M

H
L

iq
ui

di
ty

D
em

an
d

X
S”

)a
nd

th
e

L
M

H
L

ev
er

ag
e

D
em

an
d

tim
in

g
po

rt
fo

lio
s

(“
L

M
H

L
iq

ui
di

ty
D

em
an

d
T

S”
),

im
pl

em
en

te
d

vi
a

fu
tu

re
s

co
nt

ra
ct

s
an

d
in

th
e

sp
ot

m
ar

ke
t.

Pa
ne

lA
re

po
rt

s
th

e
st

at
is

tic
s

fo
rw

ee
kl

y
re

ba
la

nc
ed

on
e-

w
ee

k
re

ve
rs

al
st

ra
te

gi
es

(c
ro

ss
-

se
ct

io
na

la
nd

tim
e-

se
ri

es
)

an
d

Pa
ne

lB
re

po
rt

s
th

e
st

at
is

tic
s

fo
r

on
e-

m
on

th
re

ve
rs

al
st

ra
te

gi
es

(c
ro

ss
-s

ec
tio

na
la

nd
tim

e-
se

ri
es

),
al

lf
or

m
ed

us
in

g
th

e
gl

ob
al

eq
ui

ty
in

di
ce

s
in

th
e

sa
m

pl
e.

Pa
ne

lA
:W

ee
kl

y
R

eb
al

an
ce

d
St

ra
te

gi
es

W
ee

kl
y

M
ea

n
A

nn
ua

liz
ed

M
ea

n
A

nn
ua

liz
ed

St
an

da
rd

D
ev

ia
tio

n
Sk

ew
ne

ss
K

ur
to

si
s

A
nn

ua
liz

ed
Sh

ar
pe

R
at

io

Fu
tu

re
s

R
et

ur
ns

L
M

H
L

iq
ui

di
ty

D
em

an
d

X
S

0.
14

%
7.

21
%

8.
40

%
0.

53
4.

00
0.

86
L

M
H

L
iq

ui
di

ty
D

em
an

d
T

S
0.

28
%

14
.6

4%
21

.5
2%

0.
52

4.
10

0.
68

Sp
ot

R
et

ur
ns

L
M

H
L

iq
ui

di
ty

D
em

an
d

X
S

0.
10

%
5.

22
%

8.
36

%
0.

17
3.

71
0.

62
L

M
H

L
iq

ui
di

ty
D

em
an

d
T

S
0.

22
%

11
.3

1%
21

.2
5%

0.
36

3.
88

0.
53

Fu
tu

re
s

R
et

ur
ns

1-
W

ee
k

R
ev

er
sa

lX
S

0.
16

%
8.

07
%

10
.4

1%
0.

62
3.

36
0.

78
1-

W
ee

k
R

ev
er

sa
lT

S
0.

34
%

17
.6

0%
32

.3
2%

-0
.4

4
8.

98
0.

54
Sp

ot
R

et
ur

ns
1-

W
ee

k
R

ev
er

sa
lX

S
0.

15
%

7.
60

%
10

.4
5%

0.
64

3.
61

0.
73

1-
W

ee
k

R
ev

er
sa

lT
S

0.
33

%
17

.2
1%

32
.1

3%
-0

.4
0

8.
58

0.
54

Pa
ne

lB
:M

on
th

ly
R

eb
al

an
ce

d
St

ra
te

gi
es

W
ee

kl
y

M
ea

n
A

nn
ua

liz
ed

M
ea

n
A

nn
ua

liz
ed

St
an

da
rd

D
ev

ia
tio

n
Sk

ew
ne

ss
K

ur
to

si
s

A
nn

ua
liz

ed
Sh

ar
pe

R
at

io

Fu
tu

re
s

R
et

ur
ns

L
M

H
L

iq
ui

di
ty

D
em

an
d

X
S

0.
49

%
5.

84
%

6.
97

%
0.

45
2.

34
0.

84
L

M
H

L
iq

ui
di

ty
D

em
an

d
T

S
0.

55
%

6.
59

%
17

.1
1%

0.
27

1.
39

0.
39

Sp
ot

R
et

ur
ns

L
M

H
L

iq
ui

di
ty

D
em

an
d

X
S

0.
42

%
5.

01
%

7.
01

%
0.

51
2.

60
0.

72
L

M
H

L
iq

ui
di

ty
D

em
an

d
T

S
0.

45
%

5.
44

%
17

.1
2%

0.
26

1.
32

0.
32

Fu
tu

re
s

R
et

ur
ns

1-
M

on
th

R
ev

er
sa

lX
S

0.
21

%
2.

56
%

8.
77

%
0.

28
2.

50
0.

29
1-

M
on

th
R

ev
er

sa
lT

S
-0

.8
9%

-1
0.

69
%

27
.1

4%
-0

.2
9

2.
16

-0
.3

9
Sp

ot
R

et
ur

ns
1-

M
on

th
R

ev
er

sa
lX

S
0.

20
%

2.
41

%
8.

84
%

0.
40

3.
05

0.
27

1-
M

on
th

R
ev

er
sa

lT
S

-0
.9

0%
-1

0.
82

%
27

.0
4%

-0
.2

5
2.

10
-0

.4
0

49



Table 7: LMH Liquidity Demand Exposure to Other Factors

The table reports regression results for each LMH Liquidity Demand portfolio’s returns on a set of other portfolio
returns of factors that explain the cross-section of asset returns: the passive long portfolio returns (equal-weighted
average of all securities), a one-week reversal factor, the value and momentum factors of Asness et al. (2013), the
time-series momentum (TSMOM) factor of Moskowitz et al. (2012), and the carry factor of Koijen et al. (2018),
each calculated for global equity indices and updated through the end of our sample. The returns are scaled to be in
percentage points by multiplying by 100. The table reports intercepts or alphas (in percent) from regressing the LMH
Liquidity Demand strategy returns on the other factor returns, as well as the regression coefficients or betas on the
various factors. The last two rows report the R2 from the regression and the information ratio, IR, which is the alpha
divided by the residual volatility from the regression.

Futures Returns Spot Returns
XS TS XS TS

Value 0.10 0.13 0.12 0.16
(1.33) (0.72) (1.59) (0.94)

Momentum 0.18∗∗ 0.57∗∗∗ 0.20∗∗∗ 0.58∗∗∗

(2.48) (3.35) (2.72) (3.40)

Carry 0.01 -0.02 0.02 -0.00
(0.47) (-0.24) (0.75) (-0.06)

TSMOM -0.01 -0.23∗∗∗ -0.01 -0.23∗∗∗

(-0.35) (-4.27) (-0.49) (-4.38)

PassiveLong -0.02 0.27∗∗∗ -0.02 0.26∗∗∗

(-0.52) (3.61) (-0.48) (3.61)

1W Reversal-XS -0.00 -0.02
(-0.05) (-0.28)

1W Reversal-TS 0.14∗∗∗ 0.14∗∗∗

(2.98) (2.95)

α 0.56∗∗∗ 1.18∗∗∗ 0.41∗∗ 0.91∗∗

(3.44) (3.07) (2.49) (2.39)

R2 0.04 0.18 0.05 0.19
IR 0.86 0.76 0.62 0.59
t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: The Futures-Spot Basis, Securities Lending, and Futures Positions

Panel A reports results from a set of univariate regressions of year-on-year changes of the futures-spot basis of an index
on changes in security lending utilization and fees for that index. Observations are sampled monthly. Panel B reports
a set of univariate regression results of year-on-year changes in dealer net positioning (standardized) on changes in
security lending utilization and security lending fees. Observations are sampled weekly. Standard errors are clustered
by index and time and are adjusted using the Hansen-Hodrick correction for overlapping observations, with t-statistics
in parentheses. The reportedR2 values are within-group values that do not include variation explained by fixed effects.

Panel A: The Basis and Securities Lending
(1) (2) (3) (4) (5) (6) (7) (8)

utilization -2.830∗∗∗ -2.882∗∗∗ -1.856∗∗ -1.908∗∗

(-5.78) (-6.42) (-2.11) (-2.23)

fee -0.289∗∗∗ -0.286∗∗∗ -0.347∗∗∗ -0.343∗∗∗

(-4.99) (-5.72) (-3.02) (-3.08)

R2 0.0132 0.0136 0.00512 0.00535 0.00287 0.00282 0.00341 0.00335
Observations 2672 2672 2672 2672 2088 2088 2088 2088
Time FE No No Yes Yes No No Yes Yes
Entity FE No Yes No Yes No Yes No Yes

Panel B: Futures Positioning and Securities Lending
(1) (2) (3) (4) (5) (6) (7) (8)

utilization 8.113∗∗ 8.261∗∗ 3.244 3.378
(2.23) (2.18) (1.10) (1.23)

fee 0.00465∗ 0.00463∗ 0.00618∗ 0.00625∗

(1.70) (1.73) (1.81) (1.92)

R2 0.0530 0.0539 0.00873 0.00924 0.00878 0.00872 0.0155 0.0160
Observations 2619 2619 2619 2619 2435 2435 2435 2435
Time FE No No Yes Yes No No Yes Yes
Entity FE No Yes No Yes No Yes No Yes

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 10: Futures-Spot Bases and Aggregate Funding Conditions

The table displays regression results from time-series regressions of the changes in the magnitude of the futures-spot
basis on shocks aggregate funding conditions. There are two proxies for changes in the magnitude of the futures-spot
basis: the difference in the average absolute value of the basis across indices at time t and t − 1, and the difference
in the cross-sectional standard deviation of the basis across indices at time t and t − 1. Shocks to aggregate funding
conditions are measured via the returns of the intermediary capital risk factor (He et al. (2017)), innovations to the
Treasury minus Eurodollar (TED) spread, and innovations to the VIX. Independent variables in the regression are
scaled to have zero mean and unit standard deviation. Observations are sampled weekly.

∆ Absolute Basist ∆ Basis XS STDt

HKM ∆TEDt ∆VIXt HKM ∆TEDt ∆VIXt

Intercept -0.24 -0.22 -0.21 -0.47 -0.45 -0.45
-(0.27) -(0.25) -(0.24) -(0.22) -(0.21) -(0.21)

Beta 3.93 4.35 4.96 3.22 8.64 6.39
(4.46) (5.00) (5.68) (1.51) (4.13) (3.02)

N 927 927 927 927 927 927
R2 0.02 0.03 0.03 0.00 0.02 0.01
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A.1 Proof of Informed Trader Demand

The expression and derivation are nearly identical to Nagel (2012). Because informed traders are
myopic and have CARA utility, their demand function is linear in the expected dollar return of
investing in futures:

yt = β̃
(
E
[
P f
t+1|It

]
− E

[
P f
t |It

])
(24)

where It reflects the informed traders’ information set at time t. Shocks are iid and each futures
contract delivers a unit of the risky asset in period t + 1, so E

[
P f
t+1|It

]
=
[
P s
t+1|It

]
= vt +

st. When submitting market orders, the informed traders accurately conjecture that their market
impact per unit of order flow on futures will be 1/γ + φ + c and that their aggregate demand is
linear in their signal, yt = βst. 1/γ + φ is the market impact on the risky asset price and c is the
additional market impact on futures prices. Hence,

E
[
P f
t |It

]
= vt +

(
1

γ
+ φ+ c

)
βst (25)

Substituting back into Equation (24) we have that

yt = β̃

(
st −

(
1

γ
+ φ+ c

)
βst

)
(26)

which is consistent with the conjecture that y = βst, with

β =
β̃

1 + β̃ (1/γ + φ+ c)
(27)

This is the same as the expression in Nagel (2012), with an added term that corresponds to informed
traders internalizing how the balance sheet costs from their trading is incorporated into futures
prices.
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A.2 Basis Summary Statistics

Table A.1: Starting Dates for Basis Series

Instrument Starting Date

AU Jun-00
BD Jan-00
CN Jan-00
DJIA Apr-02
ES Jan-00
EUROSTOXX Jun-01
FR Jan-00
HK Jan-00
IT Sep-04
JP Jan-00
NASDAQ Jan-00
NL Oct-00
SD Jun-05
SW Jan-02
UK Jan-00
US Jan-00
USRU2K Dec-02
USSPMC Jan-02
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Table A.2: Global Equities Basis Asset-level Summary Statistics

For each asset in the sample of global equities, the table includes the average value of the basis in the sample, the
average value of the absolute value of the basis in the sample, and the time-series standard deviation of the basis in
the sample. The table reports statistics over the full sample, as well as over two sub-samples: one sub-sample from
January 2000 to June 2007, and one-sub-sample from July 2007 to December 2017. The basis is reported in annualized
terms in basis points.

Jan. 2000-Dec. 2017 Jan. 2000-Jun. 2007 Jul. 2007-Dec.2017

Average
Basis

Average
Absolute

Basis

Basis
TS-Stdev

Average
Basis

Average
Absolute

Basis

Basis
TS-Stdev

Average
Basis

Average
Absolute

Basis

Basis
TS-Stdev

AU -10 72 106 -48 107 133 13 51 77
BD -2 32 57 -9 29 59 3 34 55
CN -15 40 57 -30 47 61 -4 35 51
DJIA 10 21 27 7 15 23 12 23 29
ES 12 93 158 6 111 198 17 80 122
EUROSTOXX 10 35 57 13 32 64 8 37 53
FR 11 47 90 19 63 122 5 36 56
HK -32 205 284 -38 242 325 -26 176 247
IT 11 43 61 -11 40 54 17 43 62
JP -21 54 78 -38 64 92 -8 46 64
NASDAQ 1 28 41 -2 28 44 3 28 38
NL 20 51 180 27 46 59 16 54 225
SD 7 73 145 42 103 207 1 68 128
SW 46 62 102 14 39 62 63 74 114
UK 8 32 47 3 38 57 13 27 37
US 11 22 31 15 22 33 8 22 30
USRU2K -76 88 86 -89 96 83 -70 85 87
USSPMC -8 29 46 -9 17 24 -8 33 52
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A.3 Impact of Measurement of Dividends on Results

There are two notable obstacles we face in our construction of bases. First, we do not have data on
expectations of dividends in the first part of the sample. Second, even when we do have estimates
of expected dividends, our estimates correspond with estimates under the physical measure, while
Equation (7) requires estimates of expected dividends under the risk-neutral measure. For the first
issue, we use realized dividends to proxy for expected dividends. For the second issue, we use
dividends under the physical measure to proxy for dividends under the risk neutral measure. The
equity index futures contracts in our sample have maturities ranging from ten days to three months,
and in all of the markets we consider, dividends are usually announced one-to-three months before
dividend ex-date. Hence, we expect the majority of dividends for an index to be known in our
calculation of the basis, mitigating concerns associated with the two issues.

We extensively analyze the impact of both modeling choices about dividends on our results
and find that the effects are small. Internet Appendix A.3.1 provides evidence that dividends are
generally announced one to three months in advance of dividend ex-date. Internet Appendix A.3.2
analyzes measurement error in the basis from our assumptions about dividends using two case
studies. First, since the end of 2015, futures contracts on the quarterly dividends of the S&P 500
have traded on the Chicago Mercantile Exchange. We therefore use the dividend futures prices to
provide a measure of dividend expectations under the risk neutral measure. We use risk-neutral
dividend expectations from dividend futures prices to assess the impact of using dividends under
the physical measure and realized dividends in the S&P 500 basis. Second, we study the basis
in the German DAX index, which is a total return index. Because the DAX index is a total re-
turn index, the basis for the DAX is unaffected by measurement issues with dividend expectations.
We compare the behavior of the basis of the DAX index to the behavior of the basis of the EU-
ROSTOXX index; approximately 30% of the index weight of the EUROSTOXX index consists
of German stocks in the DAX index, which makes it a close counterpart of the DAX index. In
Internet Appendix A.3.3, we assess the impact of the use of physical expectations to proxy for
risk-neutral expectations on our results relating the basis with returns. In Internet Appendix A.3.4,
we compare how using realized dividends versus expectations of dividends from Goldman Sachs
affects the estimated relationships between bases and returns in the sample from 2007 to 2017. We
find that our treatment of dividends introduces a small amount of measurement error, but it does
not meaningfully impact our results, and in some cases, the results suggest that our treatment of
dividends may slightly understate the strength of our findings.
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A.3.1 Dividend Announcement Dates and Ex-Dates

We provide evidence for the number of days between dividend announcement and dividend ex-date
for stocks in the indices in our sample. We obtain data on dividend announcement and dividend
ex-dates from Xpressfeed and Datastream for the companies that are part of the equity indices in
our sample. Using these data, we calculate the average number of calendar days between divi-
dend announcement and dividend ex-dates for each index, where each observation in the average
corresponds with a single dividend paid by a company that is part of the index.

Figure A.1 plots the average number of calendar days between dividend announcement and
ex-dates for each index in the sample. The figure also plots a dotted red line at 30 days. The
average number of days ranges from approximately 22.5 days (for the Russell 2000 index) to
approximately 120 days for the French CAC40 index. With the exception of the Australian index,
the average time between dividend announcement and dividend ex-date is more than 30 days for
non-US indices, and often more than two months for European stocks. American companies and
Australian companies announce dividends a little bit less than 30 days before dividend ex-date.

One reason for the difference in the length between dividend announcement and dividend ex-
dates across indices comes from differences in how often companies pay dividends. In European
countries, for example, the norm in our sample is to pay dividends semi-annually or annually.
US companies often pay quarterly or even monthly dividends, with the amount mostly remaining
constant from quarter-to-quarter (or month-to-month). Generally, companies that pay dividends
less often tend to have a wider gap between dividend announcement and dividend ex-dates.

A last idiosyncrasy for our sample is that in Japan, the common practice is to announce an
estimated dividend amount on the announcement date. The announced amount is usually honored.
However, the amount of the dividend payment is not usually confirmed until after dividend ex-date.
In the figure, we show the number of days between the dividend ex-date and the initial dividend
announcement date for Japan. On average, we find that dividends are confirmed a little less than
40 days after dividend ex-dates.
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Figure A.1: Dividend Announcement and Ex-Dates

The figure plots the average number of calendar days between dividend announcement and dividend ex-date for the
indices in our sample. The data used in the calculation are from Xpressfeed and Datastream. For each index, the
average is calculated where each observation corresponds with a single dividend paid out by a company that is a part
of the index. The dotted red line corresponds with thirty calendar days.
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A.3.2 Two Case Studies on the Impact of Dividend Assumptions

We present two case studies of the basis that suggest that the impact of our assumptions about
dividends are likely to be small. First, since December of 2015, listed futures on the quarterly div-
idends of the S&P 500 have traded on the Chicago Mercantile Exchange. These futures contracts
allow us to directly observe the risk-neutral expectations of S&P 500 dividends required to satisfy
Equation (7).20 In Figure A.2, we plot the annualized expected dividend used in the calculation
of the basis for the S&P 500, Et(Dt+1)/St from January 2016 to March 2020. The figure plots
the expected dividend yield calculating using risk-neutral dividend expectations, dividend expec-
tations from Goldman-Sachs, and the realized dividends over the lifetime of the futures contracts.
The lines lie on top of each other, and are generally quite similar, though not identical, with differ-
ences usually occurring near futures expiration dates. The average difference and average absolute
difference between the basis calculated using dividend expectations under the physical measure
and the basis calculated using dividend expectations under the risk-neutral measure are 0.6 basis
points and 4.3 basis points. The average difference and average absolute difference between the
basis calculated using expectations under the risk-neutral measure and the basis calculated using
realized dividends are 1.6 basis points and 4.3 basis points. Compared with the average absolute
value of and the time-series standard deviation the basis of 22 basis points and 31 basis points re-
ported for the S&P500 in Table A.1, these numbers suggest that there may be some measurement
error coming from the treatment of dividends, but the error is small compared with variation in the
basis.

Second, our sample contains the German DAX index, which is unique in that it is a total return
index. The level of the index is constructed by assuming that all dividends are reinvested. This
means, in calculating the fair-value of a futures contract, there is no need to subtract the risk-
neutral expectation of dividends in Equation (7), and there is no measurement issue in the basis
coming from the treatment of dividends. Looking to the asset-by-asset summary statistics for the
basis presented in Table A.1, we observe that the time-series standard deviation of the basis for the
DAX is 57 basis points, and the average absolute basis is 32 basis points. We can compare these
numbers with the same numbers for the closest counterpart to the DAX index in our sample, the

20Traded dividend futures, which provide expectations of dividends under the risk-neutral measure rather than the
physical measure, are only available for a subset of the indices in our sample. Additionally, with the exception of
dividend futures traded on the S&P 500, the majority of dividend futures tend to trade at annual expirations, while the
equity index futures in our sample generally trade at quarterly expirations. This mismatch prevents us from using data
from dividend futures, even where such data is available, in our calculations of the basis.
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EUROSTOXX index, which is a broad-based index that contains Eurozone stocks. In our sample,
approximately 30% of the index weight of the EUROSTOXX comes from German stocks that
are also in the DAX index. The time-series standard deviation of the basis for the EUROSTOXX
index is 57 basis points and the average absolute basis is 35 basis points. In the sample for which
we have data for both the EUROSTOXX and the DAX (the EUROSTOXX index starts in 2001),
the average of the basis is 4 basis points for the DAX and 10 basis points for the EUROSTOXX.
The magnitude and behavior of the basis is quite similar for the DAX and EUROSTOXX indices,
suggesting that there is not a clear or large bias stemming from our assumptions about dividends
for the EUROSTOXX index.
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Figure A.2: S&P500 Dividend Expectations

The figure plots the annualized expected dividend yield for a futures contract used in the calculation of the basis,
defined as the expectation of index dividends divided by the spot price, using three different methods of calculation
for the S&P500. The first blue line corresponds with dividend expectations under the risk-neutral, which are extracted
from the prices of quarterly dividend futures. The second orange line corresponds with dividend expectations under
the physical measure, which are provided by Goldman Sachs. The third gray line plots the realized dividends.
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A.3.3 Expectations of Dividends Under the Physical Versus Risk-Neutral Measure and Re-
turns

Throughout the paper, due to data availability, we use expectations of dividends under the physical
measure to proxy for expectations of the dividends under the risk-neutral measure. In this section,
we provide back-of-the-envelope calculations to assess the impact of this choice.

Binsbergen and Koijen (2017) calculate that the monthly holding period returns of one-year
maturity dividend strips range from 41 basis points (for the S&P 500) to 1.1 percent (for the
Japanese Nikkei index), which are broadly in line with Binsbergen et al. (2012). These estimates
present a conservative upper bound for the risk premium we expect to be embedded in the dividend
expectations of the futures contracts used in our sample. The equity index futures contracts in
our sample have maturities ranging from ten days to three months. As we show in the internet
appendix, in all of the markets that we consider, dividends are announced approximately one to
three months prior to the dividend ex-date. Therefore, we expect the majority of dividends for an
index to be known in our calculations of the basis (and thus have little risk premium associated
with them). Put differently, we expect the majority of the risk premium earned in the one-year
maturity dividend strips analyzed by Binsbergen and Koijen (2017) to be earned on ex-dividends
beyond the maturity of the contracts that we use in the calculation of bases. The case studies in
Section A.3.2 suggest that the magnitude of error introduced in our calculations of the basis may
be around one to five basis points, which are small in comparison to the bases we measure. The
numbers also imply much smaller dividend risk premium embedded in the very short maturity
contracts we analyze, compared to those studied in Binsbergen and Koijen (2017).

Nevertheless, we conduct additional analysis on the impact that potentially larger dividend risk
premia may have on our results. To do so, we calculate the basis under various assumptions for
the dividend risk premium, which for simplicity, we assume to be constant over time and across
indices. For each day and each futures contract in our sample from 2000-2017, we calculate the
annualized difference in the futures-spot basis that come from dividend risk premia by using the
amount of ex-dividends expected until expiration and our assumed level of dividend risk premia.
Subtracting these estimates from the futures-spot basis for each contract, we reconstruct the index
level basis series for each equity index and rerun our tests.

For the sample from January 2000 to December 2017, we re-run the regressions in Table 4
using the basis series constructed with various dividend risk premium estimates. We use monthly
dividend risk premia estimates of 0 bps (the baseline estimates reported in the main paper), 20 bps,
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50 bps, 80 bps, 110 bps. The results are reported in Table A.3. The regression coefficients are
broadly similar. The t-statistics actually increase as we increase the estimated dividend risk pre-
mium. Differences in dividends across time for the same index capture stocks going ex-dividend.
The regression results may be picking up on well documented dividend ex-date effects, whereby
the stock prices do not drop by the full amount of the dividend (e.g. Grinblatt et al. (1984)). This
would be consistent with the stronger contemporaneous basis-return relationship we observe as we
increase the assumed dividend risk premium.

From January 2000 to December 2017, we rerun the return predictability regressions from
Table 5 using our basis series constructed under the various dividend risk premia estimates. Ta-
ble A.4 reports the results from these regressions. The regression coefficients are broadly similar
under various dividend risk premia assumptions. Return predictability becomes slightly stronger
as we increase the magnitude of the dividend risk premia. Increasing the dividend risk premia
estimate for an equity index makes the basis we estimate more correlated with the index’s “carry”
(defined as the normalized difference between the futures and spot price of the index), from Koijen
et al. (2018), which also has strong return predictability.

We also form cross-sectional and timing trading strategies using the newly constructed futures-
spot basis series. Table A.5 reports the annualized return statistics for these portfolios. For the
cross-sectional strategies, when implemented in futures markets, the performance decays slightly,
but annualized Sharpe ratios remain above 0.78 in all specifications. In the spot market, Sharpe
ratios are all above those reported in the baseline specification. For the timing strategies, the
alternative strategies all have slightly higher Sharpe ratios than the main specification.

The analysis suggests that the time-series and cross-sectional return predictability of the futures-
spot basis are not largely affected by assumptions about dividend risk premia.
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Table A.3: Contemporaneous Relationship Between the Basis and Returns under Dividend
Risk Premia Assumptions

The table reproduces the regressions in Panel A of Table 4, using futures-spot basis series that are constructed by
making assumptions about the size of monthly dividend risk premia. Each row labeled x corresponds with the basis
constructed assuming a monthly dividend risk premium of x basis points.

Futures Market Returns Spot Market Returns
(1) (2) (3) (4) (5) (6) (7) (8)

0 0.44∗∗∗ 0.44∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.41∗∗∗ 0.41∗∗∗ 0.13∗∗∗ 0.13∗∗∗

(5.25) (5.25) (5.39) (5.39) (4.99) (4.99) (3.91) (3.91)

20 0.46∗∗∗ 0.46∗∗∗ 0.18∗∗∗ 0.18∗∗∗ 0.42∗∗∗ 0.42∗∗∗ 0.14∗∗∗ 0.14∗∗∗

(4.80) (4.80) (6.51) (6.51) (4.64) (4.64) (4.69) (4.69)

50 0.46∗∗∗ 0.46∗∗∗ 0.19∗∗∗ 0.19∗∗∗ 0.43∗∗∗ 0.43∗∗∗ 0.15∗∗∗ 0.15∗∗∗

(4.69) (4.69) (6.50) (6.50) (4.53) (4.53) (4.80) (4.81)

80 0.46∗∗∗ 0.46∗∗∗ 0.19∗∗∗ 0.19∗∗∗ 0.43∗∗∗ 0.43∗∗∗ 0.15∗∗∗ 0.15∗∗∗

(4.66) (4.66) (6.45) (6.44) (4.50) (4.50) (4.86) (4.86)

110 0.45∗∗∗ 0.45∗∗∗ 0.18∗∗∗ 0.18∗∗∗ 0.42∗∗∗ 0.42∗∗∗ 0.15∗∗∗ 0.15∗∗∗

(4.70) (4.70) (6.40) (6.39) (4.53) (4.53) (4.88) (4.88)

Time FE No No Yes Yes No No Yes Yes
Entity FE No Yes No Yes No Yes No Yes
t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.4: Global Equities Basis Return Predictability Under Dividend Risk Premia Assump-
tions

The table reproduces the regressions in Panel A of Table 5, using futures-spot basis series that are constructed by
making assumptions about the size of monthly dividend risk premia. Each row labeled x corresponds with the basis
constructed assuming a monthly dividend risk premium of x basis points.

Futures Market Returns Spot Market Returns
(1) (2) (3) (4) (5) (6) (7) (8)

0 -5.09∗∗∗ -3.85∗∗∗ -5.06∗∗∗ -3.80∗∗∗ -3.54∗∗ -2.28∗∗ -3.44∗∗ -2.15∗∗

(-3.42) (-4.30) (-3.17) (-4.21) (-2.50) (-2.32) (-2.26) (-2.14)

20 -4.84∗∗∗ -4.22∗∗∗ -4.91∗∗∗ -4.18∗∗∗ -3.34∗∗ -2.66∗∗ -3.34∗ -2.54∗∗

(-3.03) (-4.40) (-2.93) (-4.36) (-2.19) (-2.54) (-2.08) (-2.39)

50 -5.26∗∗∗ -4.35∗∗∗ -5.38∗∗∗ -4.38∗∗∗ -3.78∗∗ -2.82∗∗ -3.83∗∗ -2.74∗∗

(-3.35) (-4.60) (-3.23) (-4.60) (-2.53) (-2.69) (-2.42) (-2.60)

80 -5.48∗∗∗ -4.34∗∗∗ -5.68∗∗∗ -4.44∗∗∗ -4.09∗∗ -2.87∗∗ -4.19∗∗ -2.86∗∗

(-3.51) (-4.67) (-3.37) (-4.66) (-2.74) (-2.78) (-2.61) (-2.74)

110 -5.52∗∗∗ -4.19∗∗∗ -5.78∗∗∗ -4.37∗∗∗ -4.24∗∗ -2.83∗∗ -4.40∗∗ -2.89∗∗

(-3.55) (-4.64) (-3.39) (-4.63) (-2.83) (-2.82) (-2.70) (-2.80)

Time FE No Yes No Yes No Yes No Yes
Entity FE No No Yes Yes No No Yes Yes

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.3.4 Using Realized Dividends vs. Expected Dividends in Basis Construction

In the early part of our sample (from 2000 through the end of 2006), due to lack of data availability
on dividend expectations, we proxy for the expectations of dividends on an index from time t until
the expiration of a futures contracted traded on the index by using the realized ex-dividends on the
index from time t until expiration. We argue and show that the use of realized dividends to proxy
for expected dividends likely understates the relationship between the basis and expected returns
in equity index futures. First, we argue that the use of realized dividends in the calculation of the
basis is likely to have small impact. In all of the markets that we consider, dividends are announced
one to three months prior to the ex-date, which is about the maturity of most of the contracts that
we consider. We therefore expect the majority of dividends for an index to already be embedded
in the expectations of the basis. Second, given the negative relationship we find between bases and
subsequent market returns, the use of realized dividends to proxy for expected dividends in equity
index futures in the early part of the sample, if anything, may present a conservative estimate of the
relationship. Equity indices that realize negative dividend surprises (realized dividends less than
expected) will have more negative bases when constructed using realized dividends, and vice-versa
for equity indices that realize positive dividend surprises. We expected negative (positive) dividend
surprises to be related to negative (positive) returns, so we expect the use of realized dividends may,
if anything, understate the relationship between bases and subsequent returns.

We re-run the regressions capturing the contemporaneous relationship between the basis and
returns from Table 4 for the sub-sample from 2007-2017 using the dividend expectations from
Goldman Sachs and using realized index dividends. Table A.6 reports the results from the regres-
sions. The coefficients and t-statistics are very similar when using realized dividends and when
using dividend expectations.

Next, we re-run the basis return predictability regressions reported in Table 5, for the sub-
sample from 2007 to 2017, using both the dividend expectations from Goldman Sachs as well as
realized dividends in the construction of the basis. The results are similar, though the coefficients
and statistical significance are smaller when using realized dividends. This is consistent with the
idea that the use of realized dividends might understate the predictive power the basis has for
subsequent returns.

We also construct the LMH Liquidity Demand strategies using realized dividends and compare
them to the strategies constructed using dividend expectations. The strategies constructed using
realized dividends are highly correlated with the corresponding strategies constructed using divi-
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dend expectations (0.88 to 0.89), but the strategies constructed using realized dividends have lower
returns on average (Table A.8). Once again, this is consistent with a slight understatement of the
strategy’s profitability when using realized as opposed to expected dividends.

Table A.6: Contemporaneous Relationship Between Changes in the Basis and Returns, 2007-
2017

The table reproduces the regressions in Panel A of Table 4 using futures-spot basis series constructed using dividend
expectations from Goldman Sachs (“Expected Dividends”) and using the actual dividends that were paid out for each
index (“Realized Dividends”). The sample period is January 2007 through December 2017.

Futures Market Returns Spot Market Returns
(1) (2) (3) (4) (5) (6) (7) (8)

Expected Dividends 0.69∗∗∗ 0.69∗∗∗ 0.24∗∗∗ 0.24∗∗∗ 0.64∗∗∗ 0.64∗∗∗ 0.19∗∗∗ 0.19∗∗∗

(4.20) (4.20) (4.86) (4.86) (4.10) (4.10) (3.67) (3.67)

Realized Dividends 0.67∗∗∗ 0.67∗∗∗ 0.24∗∗∗ 0.24∗∗∗ 0.63∗∗∗ 0.63∗∗∗ 0.20∗∗∗ 0.20∗∗∗

(4.25) (4.25) (4.82) (4.82) (4.14) (4.14) (3.68) (3.68)

Time FE No No Yes Yes No No Yes Yes
Entity FE No Yes No Yes No Yes No Yes
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Table A.7: Global Equities Basis Return Predictability, 2007-2017

The table reproduces the regressions in Panel A of Table 5 using futures-spot basis series constructed using dividend
expectations from Goldman Sachs (“Expected Dividends”) and using the actual dividends that were paid out for each
index (“Realized Dividends”). The sample period is January 2007 through December 2017.

Futures Market Returns Spot Market Returns
(1) (2) (3) (4) (5) (6) (7) (8)

Expected Dividends -5.93∗ -4.76∗∗ -6.07∗ -4.81∗∗ -4.38 -3.09 -4.43 -3.01
(-1.99) (-2.89) (-1.89) (-2.83) (-1.51) (-1.61) (-1.41) (-1.49)

Realized Dividends -4.57 -4.26∗∗ -4.66 -4.35∗∗ -3.17 -2.76 -3.21 -2.78
(-1.34) (-2.34) (-1.29) (-2.31) (-0.97) (-1.42) (-0.93) (-1.37)

Time FE No No Yes Yes No No Yes Yes
Entity FE No Yes No Yes No Yes No Yes
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A.4 Index Level Regressions

As a supplement to the panel regressions we present to test the main predictions of the model, we
present the results from time-series regressions for each index. As a test of the first prediction of
the model, Figure A.3 plots t-statistics of contemporaneous regressions of the basis on net futures
positioning of each investor category. As a test of prediction two of the model, Figure A.4 plots t-
statistics of contemporaneous time-series regressions of weekly futures and spot market returns on
changes in the basis for each index in our sample. As a test of prediction three of the model, Figure
A.5 plots t-statistics of time-series regressions of weekly futures and spot market returns on the
basis measured at the end of the previous week. For all index-level regressions, standard errors are
calculated using the Newey-West adjustment with 12 lags to control for potential autocorrelations
in errors. In each plot, we also report the t-statistics of the pooled time-series regression with entity
fixed effects reported in the main specification.

Figure A.3: Contemporaneous Relationship Between the Basis and Dealer Futures Positions

The figure plots the t-statistics from contemporaneous time-series regressions of the basis on net futures positions for
each American index in our sample. Standard errors are calculated using a Newey-West correction with twelve lags.
The pooled bars corresponds with t-statistics reported in Table 3 for the panel regressions with entity fixed effects.
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Figure A.4: Contemporaneous Relationship Between Changes in the Basis and Returns

The figure plots the t-statistics from contemporaneous time-series regressions of weekly futures and spot market
returns on changes in the basis for each index in our sample. Standard errors are calculated using a Newey-West
correction with twelve lags. The pooled bars correspond with t-statistics reported in Table 4 for the panel regressions
with entity fixed effects.
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Figure A.5: Return Predictability of the Basis

The figure plots the t-statistics from predictive time-series regressions of weekly futures and spot market returns on
the lagged for each index in our sample. Standard errors are calculated using a Newey-West correction with twelve
lags. The pooled bars correspond with t-statistics reported in Table 5 for the panel regressions with entity fixed effects.
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A.5 Impact of Assumed Benchmark Funding Rates

In our construction of the basis, we assume that the benchmark funding rate for an index is the
interbank offer rate in the location that the index trades. In the literature on Covered Interest Rate
(CIP) deviations, Rime et al. (2019) point out that interbank rates likely do not reflect the true
funding rate at which arbitrageurs can fund positions. Calculating the profitability of CIP arbitrage
requires accurately capturing the uncollateralized borrowing rates at which traders in currency
markets can fund their positions. Rime et al. (2019) find that only a limited number of financial
institutions are able to profit from CIP arbitrage.

Our main goal in this paper is not to analyze the profitability of the futures-spot arbitrage
trade, but is rather to connect deviations from the law of one price, as measured using benchmark
borrowing rates, with liquidity demand that simultaneously affects futures prices and spot prices.
Nevertheless, the discussion in currency markets does raise the question as to how our results
may be impacted by using interbank lending rates in our construction of the basis, which may not
reflect the true uncollateralized rate at which arbitrageurs can borrow. To address this question,
we run cross-sectional analyses of the basis in markets where the benchmark borrowing rates
are the same. For example, if we compare bases for futures contracts on US indices, the cross-
sectional dispersion in bases does not depend upon whether we assume the benchmark funding
rate is LIBOR or the US Treasury bill rate because the benchmark rate used is the same for all
of the US indices. Comparing bases across indices in the same market allows us to quantify the
magnitude of bases without having to know the exact funding rate at which investors can finance
their positions. Moreover, it also allows us to test if the patterns in returns that we document are
affected by assumptions about benchmark borrowing rates.

First, the analysis in Section 3.1 pertains solely to indices traded on US exchanges. Hence,
the regression results with time fixed effects in Table 3 of the basis on futures positioning remain
the same, no matter what benchmark funding rate in the US is used. The evidence suggests that a
one standard deviation difference in dealer futures positioning corresponds with a -10 (with time
+ entity fixed effects) to a -25.5 bp (with time fixed effects) difference in the basis across indices,
no matter what benchmark rate (Overnight Indexed Swap rates, T-Bill rates, or Secured Overnight
Financing Rates) is used, since these rates are the same for all U.S. indices and hence difference
out in the cross-sectional strategy.

Second, we look to the cross-section of Eurozone equity indices in our sample - the EU-
ROSTOXX Index, the German DAX Index, the French CAC40 Index, the Spanish IBEX 35 Index,
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the Italian FTSE MIB Index, and the Dutch AEX Index. We find that the median cross-sectional
standard deviation of the basis across Eurozone indices is 39 basis points over our sample. The me-
dian cross-sectional standard deviation is 29 basis points post-2010. Hence, even controlling for the
benchmark interest rate, there is evidence of heterogeneity in bases across indices. To understand
whether differences in the basis capture the same types of liquidity effects within the Eurozone,
we construct a within Eurozone cross-sectional LMH Liquidity strategy, following Equation (18).
The weekly rebalanced strategy has a Sharpe ratio of 0.53 (t-statistic of 2.19) when implemented
in futures markets, and a Sharpe ratio of 0.37 (t-statistic of 1.57) when implemented in the spot
market. The monthly rebalanced strategy has a Sharpe ratio of 0.71 in futures markets (t-statistic
of 2.93) and a Sharpe ratio of 0.61 when implemented in the spot market (t-statistic of 2.53). The
futures and spot market predictability of the basis persist even when looking within Europe, where
there are no differences in benchmark borrowing rates, and the equity indices have highly corre-
lated returns.21 This evidence suggests that differences in assumed benchmark borrowing rates are
unlikely to explain our results.

21We could perform a similar analysis for the return predictability of bases in the cross-section of US indices.
However, this is less informative, as it yields a largely static portfolio that is long small cap stocks and short large cap
stocks, due to the strong negative basis of the Russell 2000.

24



A.6 Global Equities: Basis Return Predictability and US Indices

In our main results, our cross-section of eighteen equity indices includes five indices on US stocks:
the DJIA, Nasdaq, the Russell 2000, the S&P500 and the S&P 400. Here, we analyze the robust-
ness of our results to using alternative cross-sections that do not include as many American indices.
We consider two cross-sections (in addition to the cross-section used in the main results). The first
excludes all US indices except for the S&P500, and is labeled “S&P500” in the results below. The
second excludes all US indices, and is labeled “Ex US” in the results below. The results are very
similar whether or not we include the US indices.

We first repeat the full-sample regression in Panel A of Table 4 for the two additional cross-
sections. The results are reported in Table A.9, alongside the regression results presented in the
main text. We also repeat the full-sample regression in Panel A of Table 5 for the two additional
cross-sections. Table A.10 reports the results from the regressions alongside the regression results
from the main table. The regression results are all very similar across the three cross-sections.

We next form alternative LMH Liquidity demand portfolios using the two alternative cross-
sections, in addition to our baseline specification. Table A.11 displays the statistics of the returns
of the strategies. There is a slight decay in the performance of the cross-sectional strategies without
the US indices, and a slight improvement in the performance of the timing strategies, but the
differences are very small.
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Table A.9: Contemporaneous Relationship Between the Basis and Returns, with Different
Indices

The table reproduces the regressions in Panel A of Table 4, using different cross-sections of assets. The row labeled
“S&P500” excludes all US indices except for the S&P500 index. The row labeled “Ex US” excludes all US indices.

Futures Market Returns Spot Market Returns
(1) (2) (3) (4) (5) (6) (7) (8)

Main Specification 0.44∗∗∗ 0.44∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.41∗∗∗ 0.41∗∗∗ 0.13∗∗∗ 0.13∗∗∗

(5.25) (5.25) (5.39) (5.39) (4.99) (4.99) (3.91) (3.91)

S&P500 0.40∗∗∗ 0.40∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.36∗∗∗ 0.36∗∗∗ 0.11∗∗∗ 0.11∗∗∗

(6.07) (6.07) (4.92) (4.92) (5.83) (5.83) (3.30) (3.30)

Ex US 0.39∗∗∗ 0.39∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.35∗∗∗ 0.35∗∗∗ 0.11∗∗∗ 0.11∗∗∗

(6.15) (6.15) (4.79) (4.79) (5.89) (5.89) (3.20) (3.20)

Time FE No No Yes Yes No No Yes Yes
Entity FE No Yes No Yes No Yes No Yes
t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

26



Table A.10: Global Equities Basis Return Predictability, with Different Indices

The table reproduces the regressions in Panel A of Table 5, using different cross-sections of assets. The row labeled
“S&P500” excludes all US indices except for the S&P500 index. The row labeled “Ex US” excludes all US indices.

Futures Market Returns Spot Market Returns
(1) (2) (3) (4) (5) (6) (7) (8)

Main Specification -5.09∗∗∗ -3.85∗∗∗ -5.06∗∗∗ -3.80∗∗∗ -3.54∗∗ -2.28∗∗ -3.44∗∗ -2.15∗∗

(-3.42) (-4.30) (-3.17) (-4.21) (-2.50) (-2.32) (-2.26) (-2.14)

S&P500 -5.29∗∗∗ -4.01∗∗∗ -5.35∗∗∗ -3.95∗∗∗ -3.64∗∗ -2.38∗∗ -3.65∗∗ -2.28∗∗

(-3.92) (-4.53) (-3.88) (-4.58) (-2.80) (-2.37) (-2.76) (-2.29)

Ex US -5.14∗∗∗ -4.00∗∗∗ -5.19∗∗∗ -3.94∗∗∗ -3.49∗∗ -2.39∗∗ -3.50∗∗ -2.28∗∗

(-3.86) (-4.46) (-3.84) (-4.50) (-2.72) (-2.34) (-2.69) (-2.25)

Time FE No Yes No Yes No Yes No Yes
Entity FE No No Yes Yes No No Yes Yes

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.7 Implications for Implied Interest Rates from Derivatives

Our results that the basis is related to demand in futures markets also has implications for re-
cent work that studies interest rates implied from derivative prices. For example, Binsbergen et al.
(2019) extract the risk-free rates implied by SPX and DJIA equity index options and compare them
to US Treasury yields to study the behavior of the Treasury “convenience yield,” since the former
does not reflect the money-like liquidity benefits that make Treasury securities “convenient.” The
equity index futures we study are closely related to the equity index options Binsbergen et al.
(2019) extract interest rates from, so it is interesting to examine our results through this comple-
mentary lens.

The futures-spot basis is the difference between interest rates embedded in futures prices and
interbank lending rates. One issue with extracting implied interest rates from futures is estimating
expected dividends, which introduces error. In addition, we focus primarily on futures contracts
with less than three months maturity due to limited data on dividend estimates, while Binsbergen
et al. (2019) use options with longer maturities in order to study the term structure of convenience
yields. Since nearly all trading happens in the closest to expiration contract, the type of leverage
demand pressure we identify might not be present in longer maturity contracts. Of course, it is also
the case that convenience yields should be especially present for short-maturity safe assets, too, so
understanding interest rates implied in shorter maturity derivatives prices is interesting.22

With these caveats in mind, we recast our results in terms of understanding interest rates em-
bedded in futures prices. First, consider the results relating the basis to futures positioning from
Table 3, which provide some quantitative guidance on how much futures demand can affect futures-
implied interest rates. We find that a one standard deviation increase in the futures positions of
dealers corresponds with a 10 basis point decrease in the basis, which equivalently corresponds to
a 10 basis point decrease in the implied interest rate in futures. Taking the estimates from Binsber-
gen et al. (2019), who compare option-implied interest rates to matched-maturity Treasury yields,
our results suggest that maybe 10 to 20 bps may be coming from demand shocks (depending on
their size). These effects are small, but not inconsequential. The results also suggest that when
interpreting the behavior of derivatives-implied interest rates in event-study contexts, it might be
important to understand how those events impact leverage demand for risky assets.

22In equilibrium, the supply of, and demand for, leverage can be related to the convenience yield (e.g., in the model
of Diamond (forthcoming)). The leverage demand we study could very well be related to the Treasury convenience
yield, but this potential relationship is outside the scope of our paper.
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Second, the demand channel can also explain some of the cross-sectional heterogeneity in bases
we observe within a given market. For example, the large variation in bases across U.S. equity
indices in Table A.1 is difficult to justify purely from differences in marginal investor funding rates,
but may be accommodated by a combination of varying leverage demand and intermediary costs.
Consider the basis in Russell 2000 futures, which provides an interesting, albeit extreme, case.
Table A.1 shows that the basis for Russell 2000 futures is, on average, -76 basis points, suggesting
that the interest rate embedded in its futures are consistently far lower than interbank lending rates.
The futures positioning and securities lending data for the Russell 2000 suggest potential reasons
for this large negative basis. Russell 2000 stocks, which are small-cap, are difficult to borrow and
have high security lending fees (on average 64 bps, which is the highest among the equity indices
in our sample). Hedge funds engaged in small-cap equity strategies might have persistent demand
for short positions in R2000 futures, if they are a more convenient/cheaper vehicle to hedge their
long positions than short-selling individual names. This demand for short futures exposure would
result in a negative futures-spot basis. Another story consistent with these observations is that high
security lending fees make it particularly cheap for dealers to provide long leverage in futures on
the R2000, which also results in a negative basis. In both cases, R2000 futures illustrate an example
where leverage demand and dealer provision of leverage can substantially change the interest rates
embedded in risky assets.

Finally, we directly back out the interest rates implied by S&P 500 futures prices to compare
them to Binsbergen et al. (2019). We construct 3-month implied interest rates for S&P500 futures
by linearly interpolating the interest rates embedded in the nearest and second-nearest to expiration
futures contracts.23 We construct the Treasury basis as the 3-month futures implied interest rate
minus the 3-month US Treasury yield. We similarly construct the 3-month LIBOR basis as the 3-
month futures implied interest rate minus 3-month LIBOR. The first column of Panel A Table A.12
reports the average values for the futures implied interest rates and bases that we construct, as well
as the values for the corresponding 3-month benchmark interest rates. We also report the same
statistics for 6- and 12-month SPX box-spread implied interest rates, obtained from Jules van
Binsbergen’s website.

Table A.13 reports the correlations between the LIBOR bases, Treasury bases, and the posi-

23Because of poor behavior of scaling by maturity when maturity approaches zero, we only use the nearest expiration
contract when it has more than ten days to maturity. This means that the maturity for the interest rate we extract is
actually between three months and 3.5 months
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tions of dealers in S&P 500 futures contracts. Panel A reports correlations from June 2006 to
December 2017 and Panel B reports correlations from January 2010 to December 2017. The 3-
month LIBOR basis we estimate from futures contracts is 0.52 and 0.37 correlated with the 6- and
12-month LIBOR bases constructed using the vBDG box spreads in the longer sample (and 0.54
and 0.51 in the post-2010 sample). The 3-month Treasury basis we estimate from futures contracts
is 0.81 and 0.80 correlated with the Treasury bases constructed using vBDG box spreads in the
longer sample (and 0.44 and 0.41 correlated in the post-2010 sample). These numbers suggest
commonality in the futures basis we estimate and the bases implied by the vBDG box spreads.
The 3-month LIBOR and Treasury bases that we estimate are negatively correlated with dealers’
futures positions (correlations of -0.25 and -0.55 for the LIBOR basis in the two samples and -0.32
and -0.28 for the Treasury basis in the two samples), consistent with our story that the implied
interest rates in futures contracts are related to the futures inventories of dealers. The correlations
between dealer positions and the 6- and 12-month LIBOR and Treasury bases constructed using
the vBDG box spreads are a bit more inconsistent. In the sample from 2006-2017, the correlations
between the 6- and 12-month LIBOR bases and dealers’ futures positions are 0.13 and -0.01. These
correlations are -0.32 and -0.30 in the post-2010 sample. The correlations between the 6- and 12-
month Treasury bases are -0.18 and -0.26 in the 2006-2017 sample, while they are 0.20 and 0.09
in the post-2010 sample. It is unclear whether the 6- and 12-month option-implied interest rates
reflect the same types of leverage demand pressures that are present in the 3-month futures-implied
interest rate we estimate.

Further understanding the similarities between futures- and option-implied interest rates, and
their behavior across maturities, is beyond the scope of this paper, but is an interesting avenue for
future research. Our results highlight that demand pressures can materially affect derivatives prices
and the interest rates they imply, consistent with results in other settings (e.g., Bollen and Whaley
(2004); Garleanu et al. (2009); Constantinides and Lian (2015); Chen et al. (2018) and Borio et al.
(2016)), providing complimentary evidence that expands the economic interpretation of implied
interest rates obtained from derivative prices.
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Table A.12: S&P 500 Derivatives Implied Interest Rates

The table reports the average of S&P derivatives implied interest rates and benchmark interest rates. The first column
corresponds with 3-month interest rates calculated from S&P 500 futures. The second and third columns correspond
with 6- and 12-month interest rates calculated from S&P 500 “box spreads”, in Binsbergen et al. (2019) (vBDG).
The Treasury Basis is the difference between the implied interest rate and the same maturity US Treasury yield. The
LIBOR Basis is the difference between the implied interest rate and the same maturity LIBOR rate. All values in the
panel are in basis points.

S&P 500 Derivatives Implied Interest Rates
Jan. 2004 - Dec. 2017

HMV vBDG vBDG
Avg. Implied Interest Rate 168.5 176.0 183.3
Avg. LIBOR 165.5 183.5 208.4
Avg. Treasury Yield 120.9 141.0 146.7

Avg. Treasury Basis 47.6 35.0 36.6
Avg. LIBOR Basis 3.0 -7.5 -25.1
Stdev. LIBOR Basis 22.7 20.4 25.0
Stdev. Treasury Basis 43.6 21.9 20.4

Maturity 3 months 6 months 12 months
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Table A.13: S&P 500 Interest Rate Spread Correlations

The table reports correlations of the 3-, 6-, and 12-month LIBOR bases, the 3-, 6-, and 12-month Treasury bases,
and dealer positions in S&P 500 index futures from the Traders in Financial Futures report. The LIBOR basis for
a maturity is defined as the derivatives implied interest rate minus the LIBOR rate for the corresponding maturity.
The Treasury basis for a maturity is defined as the derivatives implied interest rate minus the Treasury yield for the
corresponding maturity. The 3-month implied interest rates are implied interest rates that we estimate from equity
index futures contracts on the S&P 500. The 6- and 12-month implied interest rates are SPX option box spreads from
Binsbergen et al. (2019). Panel A reports correlations estimated using data from June 2006 to December 2017. Panel
B reports correlations estimated using data from January 2010 to December 2017.

Panel A: Correlations, Jun. 2006-Dec. 2017

3m LIBOR 6m LIBOR 12m LIBOR 3m Treas. 6m Treas. 12m Treas. Dealer
Basis Basis Basis Basis Basis Basis Positions

3m LIBOR Basis 1.00
6m LIBOR Basis 0.52 1.00
12m LIBOR Basis 0.37 0.87 1.00
3m Treasury Basis 0.18 -0.41 -0.17 1.00
6m Treasury Basis -0.21 -0.36 -0.08 0.81 1.00
12m Treasury Basis -0.22 -0.39 -0.04 0.80 0.94 1.00
Dealer Positions -0.25 0.13 -0.01 -0.32 -0.18 -0.26 1.00

Panel B: Correlations, Jan. 2010-Dec. 2017

3m LIBOR 6m LIBOR 12m LIBOR 3m Treas. 6m Treas. 12m Treas. Dealer
Basis Basis Basis Basis Basis Basis Positions

3m LIBOR Basis 1.00
6m LIBOR Basis 0.54 1.00
12m LIBOR Basis 0.51 0.94 1.00
3m Treasury Basis 0.87 0.30 0.28 1.00
6m Treasury Basis 0.17 0.43 0.35 0.44 1.00
12m Treasury Basis 0.16 0.36 0.38 0.41 0.87 1.00
Dealer Positions -0.55 -0.32 -0.30 -0.28 0.20 0.09 1.00
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A.8 Markit Securities Finance Data Coverage

Table A.14: Markit Securities Finance Data Coverage Across Indices

For each index, the table reports information on data coverage in the Markit Securities Finance (MSF) database. The
“Average Index Weight” across time columns reports the time-series average of the percentage of an index for which
we have securities lending data available. The “First Date with 80% coverage” reports the first date for which our data
coverage in MSF exceeds 80% of the index weight of a given index. Lastly, number of observations is the number of
valid, daily observations available in our dataset.

Average Index
Weight Coverage

Across Time

First Date with 80%
Coverage

Number of
Observations

AU 99.9% 8/2/2004 3420
BD 99.4% 8/2/2004 3420
CN 98.5% 8/2/2004 3420

DJIA 100.0% 8/2/2004 3420
ES 94.6% 8/2/2004 3420

EUROSTOXX 97.0% 8/2/2004 3420
FR 98.6% 8/2/2004 3420
HK 79.6% 11/29/2007 3420
IT 92.0% 8/2/2004 3420
JP 85.3% 12/15/2005 3420

NASDAQ 99.8% 8/2/2004 3420
NL 81.8% 8/2/2004 3420
SD 99.3% 8/2/2004 3420
SW 99.4% 8/2/2004 3420
UK 97.5% 8/2/2004 3420
US 99.7% 8/2/2004 3420

USRU2K 99.9% 8/2/2004 3420
USSPMC 99.8% 8/2/2004 3420

34


	Model of Liquidity Demand for Futures
	Model Setup
	Model Predictions
	Model Discussion

	Data and Methodology
	Data
	Computing the Basis

	Summary Statistics of the Basis

	Testing the Model Predictions
	Prediction 1: The Relationship Between Futures Positions and the Basis
	Prediction 2: The Contemporaneous Relationship Between the Basis and Returns
	Prediction 3: The Predictive Relationship Between the Basis and Returns

	Quantifying the Returns to Liquidity Provision
	Cross-Sectional LMH Liquidity Demand Strategy
	Time-Series LMH Liquidity Demand Strategy
	LMH Liquidity Demand Strategy Returns
	Lagging the Basis
	Spanning Tests and Factor Exposures

	Futures Dealer Financing Costs, Securities Lending, and the Futures-Spot Basis
	Liquidity Supply and Liquidity Demand
	Liquidity Demand: Evidence from Fund Flows
	Relationship with Aggregate Funding Conditions

	Conclusion
	Internet Appendix
	Proof of Informed Trader Demand
	Basis Summary Statistics
	Impact of Measurement of Dividends on Results
	Dividend Announcement Dates and Ex-Dates
	Two Case Studies on the Impact of Dividend Assumptions
	Expectations of Dividends Under the Physical Versus Risk-Neutral Measure and Returns
	Using Realized Dividends vs. Expected Dividends in Basis Construction

	Index Level Regressions
	Impact of Assumed Benchmark Funding Rates
	Global Equities: Basis Return Predictability and US Indices
	Implications for Implied Interest Rates from Derivatives
	Markit Securities Finance Data Coverage


