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1 Introduction

In many economic environments, agents make choices under incomplete information and have

incentives to align their actions with both economic “fundamentals” and the actions of other

agents [Morris and Shin, 2002, Angeletos and Pavan, 2007]. These games of strategic interaction

form the underlying basis for many micro-founded macroeconomic environments; examples

include firms’ nominal price-setting decisions in New Keynesian models [Woodford, 2003],

firms’ real quantity choices in business cycle models [Angeletos and La’O, 2010, 2013], as well as

investors’ asset positions in models of financial trade [Grossman and Stiglitz, 1976, 1980].

In these games, agents’ beliefs over exogenous fundamentals and the endogenous actions

of others play a key role in determining equilibrium outcomes. But where do these beliefs

come from and how are they formed? In this paper we investigate the endogenous acquisition

of information within games of strategic interaction. We ask two questions. First, what

properties of the agents’ information acquisition costs guarantee that an equilibrium of the

game does or does not exhibit non-fundamental volatility? Second, what properties of the

agents’ information acquisition costs guarantee that an equilibrium is constrained efficient?

A substantial literature has studied non-fundamental volatility and efficiency in exogenous

information environments, that is, when agents form their beliefs based on an exogenously-

given set of signals. In these environments, aggregate equilibrium outcomes are typically

driven by both fundamentals as well as shocks orthogonal to fundamentals. The latter, “non-

fundamental,” shocks are rationalized as the result of errors in publicly-observed signals,

or more generally, correlated errors in beliefs—standard components of generic information

structures [Bergemann and Morris, 2013]. In fact, a robust positive prediction of these games is

that the greater the strategic complementarity in actions (i.e. the greater the incentive to align

actions with others), the greater the role of non-fundamental volatility in equilibrium outcomes

[Morris and Shin, 2002].

Non-fundamental volatility can help explain short-run fluctuations in asset prices or

business cycle activity that appear to be driven by “market sentiment” or “animal spirits”

[Angeletos and La’O, 2010, 2013]. It is tempting to give a normative interpretation to these

positive predictions and assume that non-fundamental volatility is a sign of inefficiency.

Angeletos and Pavan [2007] demonstrate that, with exogenously given information structures,

such conclusions are unwarranted.

But it is not obvious that non-fundamental volatility should be expected when agents

acquire their information endogenously. It is also not clear whether agents will acquire their

information efficiently, nor whether the questions of efficiency and non-fundamental volatility

are related. Our paper seeks to address these questions.
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This paper. We study a general class of large games of strategic interaction. A continuum

of ex-ante identical agents take actions under incomplete information. Each agent has the

incentive to align her own action with exogenous fundamentals as well as with the endogenous

mean action. Agents must therefore form beliefs over these objects.

We allow information to be acquired endogenously. In particular, we adopt the rational

inattention approach to costly information acquisition proposed by Sims [2003]. However,

relative to the standard rational inattention framework, we make two important departures.

First, we do not assume the information acquisition cost is mutual information—the typical

cost function introduced by Sims [2003] and used widely throughout the rational inattention

literature. We instead consider a more general class of cost functions: costs that are “posterior-

separable” in the terminology of Caplin, Dean, and Leahy [2019]. This class nests the standard

mutual information cost function as a special case. However, it also includes other cost

functions that have been proposed in the literature, including LLR cost function of Pomatto

et al. [2018] and the Fisher information cost function proposed by Hébert and Woodford [2020].

Second, we do not restrict agents to acquiring information only about exogenous

fundamentals. Instead, we follow Denti [2019] and allow the rationally-inattentive agents in

our model to learn not only about exogenous states but also about endogenous mean actions.

This modeling choice is motivated by the agents’ incentives to align their actions with the

endogenous mean action, and hence learn about it.

Thus, in our framework, a continuum of rationally-inattentive agents acquire information

in a relatively unrestricted way about payoff-relevant states, payoff-irrelevant states, and

endogenous mean actions. The payoff-irrelevant states are the potential source of “non-

fundamental” volatility in our framework; they play a role similar to “noisy public signals” in

exogenous information environments.

Within this context, we answer the two questions posed above. What properties of the

agents’ information cost structures guarantee that an equilibrium of the game does or does

not exhibit non-fundamental volatility? And, what properties of the agents’ information cost

structures guarantee that an equilibrium exists that is or is not constrained efficient?1 Through

this analysis, we answer a third question: are these properties related? That is, is non-

fundamental volatility synonymous with inefficiency?

We begin our analysis with a leading example: the classic linear-quadratic-Gaussian setting.

In this setting, with either the Fisher information cost function or mutual information, agents

optimally receive Gaussian signals. As a result, one might be tempted to think the two cost

functions make identical predictions. We show that this is false—with mutual information,

there is zero non-fundamental volatility and an efficient equilibrium exists, whereas with the

Fisher information cost function the equilibrium exhibits non-fundamental volatility and is

1Angeletos and Sastry [2019] consider the related question of what properties of information costs are
sufficient to ensure efficiency in a Walrasian context.
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inefficient.

This is our first indication that the cost function matters. But it leaves open the question

of what is it about these cost functions that lead to such divergent predictions. Our general

model and analysis is focused on answering this question, and showing that non-fundamental

volatility and efficiency are driven by separate properties.

Partial Monotonicity and Partial Invariance. Whether or not a cost function leads to non-

fundamental volatility or inefficiency depends on two key properties of the agents’ information

cost structures: what we call “partial monotonicity” and “partial invariance.”

We introduce and define partial monotonicity and partial invariance as properties of

posterior-separable cost functions, and in particular the divergences that define these cost

functions. Loosely speaking, a divergence can be thought of as a measure of the “distance”

between the prior and posterior. Partial monotonicity and partial invariance describe how this

divergence responds to different transformations of the prior and posterior.

Suppose an agent is uncertain about a multi-dimensional aggregate state, and receives a

signal that moves her posterior beliefs “away from” her prior in some dimension of the aggregate

state. This signal is, in a sense, more informative than another signal that leaves posterior beliefs

close to the prior in that dimension. This idea leads to a notion of monotonicity: a divergence is

monotonic if the cost decreases as we make the posterior more like the prior in some dimension.

But note that a divergence might be monotonic in some dimensions but not others—this is

essentially our definition of “partial monotonicity.”

Take for example, a two-dimensional state space, s ∈ S and r ∈ R. We will say that a cost

function is monotonic in R if the cost decreases when we replace the posterior’s conditional

distribution of r given s with the prior’s conditional distribution of r given s. That is, if we make

posteriors more like the prior in this one particular way, this decreases costs.

We define another concept we call “partial invariance.” Take again our two-dimensional

state space s ∈ S and r ∈ R. We will say that a cost function is invariant in R if, for any

prior and posterior with the same conditional distributions of r given s, the divergence between

them is the same regardless of what that conditional distribution is. That is, if their conditional

distributions of r given s are the same, only their marginal distributions on s matter for the

information cost.

The advantage of defining partial monotonicity and partial invariance in this way is that it

allows us to consider cost functions that are monotonic in one dimension, but not monotonic

in others, or invariant in one dimension, but not invariant in others.

The forms of partial monotonicity and partial invariance that we introduce are

generalizations of the invariance concept described in the literature on information geometry

[Chentsov, 1982, Amari and Nagaoka, 2007] and that derived from the behavioral “invariance-
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under-compression” axiom of Caplin, Dean, and Leahy [2019]. Invariance in this sense has been

applied to particular economic applications by Hébert [2018] and Hébert and Woodford [2019].

The invariance and monotonicity properties described by these authors indicate whether

a cost function is invariant or monotone with respect to all possible dimensions of the state

space. In contrast, we show how the answers to the questions posed in this paper relate

to invariance and monotonicity of the cost function with respect to specific dimensions of

the state space. That is, the properties of equilibria in this class of games—namely, non-

fundamental volatility and constrained efficiency—depend on the partial monotonicity and

partial invariance properties of information costs that we define.

Results. In our framework agents may acquire information about payoff-relevant states,

payoff-irrelevant states, and endogenous aggregate actions. We consider information costs that

may be monotone or invariant in any, all, or none of those dimensions.

We first ask: under what conditions does there exist an equilibrium of the game that exhibits

zero non-fundamental volatility? We find that monotonicity of the cost function in payoff-

irrelevant states is necessary and sufficient to ensure the existence of such equilibria for all

payoff functions, and generically necessary. The intuition behind this result is that with such

a cost function, it is always cheaper for agents to condition their signals on the payoff-relevant

states and aggregate actions than to condition their signals on the payoff-irrelevant states. But

this form of monotonicity rules out “public signals,” which are by definition not directly payoff-

relevant but more easily observed than the payoff-relevant state itself. As a result, it prevents all

shocks orthogonal to fundamentals from playing a role in equilibrium.

We then ask: under what conditions does an equilibrium exist that is constrained

efficient? We first provide necessary and sufficient conditions for efficiency when information

is exogenous, extending prior results by Angeletos and Pavan [2007] on efficiency in the use of

information to our more general setting. We then show that, provided there is efficiency in the

use of information, invariance of the cost function in endogenous aggregate actions is sufficient

and generically necessary for the existence of a constrained efficient equilibrium.

The intuition behind this result is the following. When cost functions are not invariant in the

aggregate action, agents’ actions affect the ease with which other agents acquire information.

For example, with the Fisher information cost function in our linear-quadratic example, if

agents take more extreme actions in response to their signals, the endogenous aggregate action

becomes less costly to observe. This is an externality—the planner would like to encourage

more extreme actions to reduce information acquisition costs.

Finally, we answer the third question: are the answers to our first two questions related?

Our results make evident that separate properties of the information cost determine whether

or not the equilibrium exhibits non-fundamental volatility and whether or not it is efficient. By
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precisely defining these properties—namely, partial monotonicity and partial invariance—we

characterize the relationship between information costs and the properties of equilibria.

Mutual information, the standard cost function used in the rational inattention literature, is

monotone and invariant in all dimensions; as a result, this cost leads to zero non-fundamental

volatility and efficiency. However, alternative cost functions such as the Tsallis entropy cost

[Caplin, Dean, and Leahy, 2019] and the Fisher information cost [Hébert and Woodford, 2020]

have been proposed because they are better able to match observed experimental behavior (see,

e.g., Dean and Neligh [2019]). The Fisher information cost results in both non-fundamental

volatility and inefficiency, while the Tsallis entropy cost leads to non-fundamental volatility but

an equilibrium remains efficient.

Related Literature. A large literature has studied the positive and normative implications of

large games of strategic interaction and incomplete information, and applied these insights to

questions in macro, finance, and industrial organization (see Angeletos and Lian [2016] for a

recent survey). Much of this literature assumes linear-quadratic payoffs, Gaussian priors, and

exogenously specified Gaussian signals about exogenous states.

Several authors (e.g. Hellwig and Veldkamp [2009], Myatt and Wallace [2012], Colombo,

Femminis, and Pavan [2014], Pavan [2016]) endogenize information acquisition in the linear-

quadratic setting, allowing agents to choose the precision with which they observe an

exogenously specified set of Gaussian signals about exogenous states. In these papers,

the presence or absence of non-fundamental volatility depends on the assumed correlation

structure of the exogenously given signals (and, with precision choice across multiple signals,

agents’ incentives to coordinate).

Other authors (e.g. Mackowiak and Wiederholt [2009], Paciello and Wiederholt [2014],

Afrouzi [2019]) also endogenize information acquisition in this setting, but follow the rational

inattention approach of Sims [2003]. These models do not assume a particular set of available

signals; instead, agents can choose any signal structure, subject to a cost described by mutual

information. With quadratic payoffs, Gaussian priors, and mutual information costs, the agent’s

optimal signal is a Gaussian signal about economic fundamentals. As a result, equilibria exhibit

zero non-fundamental volatility.

Our paper also follows the rational inattention approach, but generalizes away from the

mutual information cost function. As a result, we are able to accommodate non-fundamental

volatility, building a bridge between these two seemingly distinct approaches.

Our study of efficiency builds on the work of Angeletos and Pavan [2007] and Colombo,

Femminis, and Pavan [2014]. Angeletos and Pavan [2007] study the question of constrained

efficiency in the class of linear-quadratic games with exogenous information structures. We

extend their results to multi-dimensional settings with general payoff functions, and obtain
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necessary and sufficient conditions for efficiency in the use of information in our game.

However, we shut down a key channel present in Angeletos and Pavan [2007] by assuming

that only the cross-sectional mean of actions, but not the cross-sectional variance, enters

payoffs. This is important for understanding our results vis-à-vis Colombo, Femminis, and

Pavan [2014]. Colombo, Femminis, and Pavan [2014] study the efficiency of information

acquisition within the Angeletos and Pavan [2007] linear-quadratic setting; they show that

efficiency in the use of information does not guarantee efficiency in the acquisition of

information because the dispersion of actions enters payoffs—an externality not internalized

by agents. With this channel shut down in our game, their results imply that efficiency in the

use of information should guarantee efficiency in the acquisition of information.

Instead, we find that efficiency in the use of information is not sufficient for efficiency in

the acquisition of information because of a different externality: if agents’ actions affect other

agents’ information costs. The inefficiency we highlight is closely related to the informational

externality that arises when agents observe exogenous signals about endogenous objects such

as prices, as in Laffont [1985], Angeletos and Pavan [2009], Amador and Weill [2010], Vives

[2017], Angeletos, Iovino, and La’O [2020].

In a similar vein, Angeletos and Sastry [2019] allow rationally inattentive agents to learn from

prices in a Walrasian context with complete markets over states and signal realizations. They

find that invariance of the information cost is sufficient to ensure that a planner cannot improve

allocations by sending a message that reduces information costs.2

In considering a large class of possible information costs in a rational inattention problem,

and not just mutual information, we build on the work of Caplin, Dean, and Leahy [2019],

Pomatto et al. [2018], and Hébert and Woodford [2020]. Our focus on games with agents who

can acquire information about the endogenous actions of other agents builds on Denti [2019].

We adapt his approach to static games with a continuum of players. Relative to Denti [2019],

the “largeness” feature of our class of games permits a simpler definition of equilibrium, which

is essentially Bayesian Nash equilibrium in a static, simultaneous-move game. Our definition of

equilibrium can also be thought of as the limit of the dynamic process of strategic information

acquisition Denti [2019] introduces.

We begin with a linear-quadratic-Gaussian example to illustrate the role that the

information cost plays in determining whether or not equilibria exhibit non-fundamental

volatility and are efficient. Following this, we introduce and analyze the general class of models.

2That is, our paper and Angeletos and Sastry [2019] consider different planner’s problems (among
other differences). We employ the constrained efficiency concept in Angeletos and Pavan [2007] and
Colombo, Femminis, and Pavan [2014] for abstract games in which the planner may only control the
action functions and information choices of the players. Angeletos and Sastry [2019] consider a planner
who can send messages to the agents, who can in turn learn about the content of the message (as opposed
to prices or states directly). They ask a different question: whether in markets the price function is an
efficient conveyer of information in the sense of Hayek [1945].
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2 A Linear-Quadratic-Gaussian Example

In this section we use a linear-quadratic-Gaussian example to illustrate the impact that

information costs can have on non-fundamental volatility and efficiency.

We consider a simple, stylized beauty-contest game, similar to the one studied in Morris and

Shin [2002]. A unit-mass continuum of ex-ante identical agents indexed by i ∈ [0, 1] attempt to

choose an action to track both a fundamental state and the average action of the other agents.

Let s ∈ R be the payoff-relevant dimension of the state, and let ai ∈ R be the action of agent

i. We define the aggregate action of all agents as ā =
∫ 1

0 a
idi. The payoff of an agent who takes

action ai when the aggregate action is ā and the fundamental state is s is given by

u(ai, ā, s) = −(1− β)(ai − s)2 − β(ai − ā)2 (1)

where β ∈ (0, 1) is a scalar.

The first component of (1) is a quadratic loss in the distance between the agent’s action

and the exogenous fundamental s; the second component is a quadratic loss in the distance

between the agent’s action and the aggregate action. The scalar β governs the extent of strategic

interaction in this game; for this example, we assume β > 0 so that actions are “strategic

complements.” We also assume that β < 1 so that there is a unique pure-strategy Nash

equilibria of this game under complete information, in which every agent takes the same action:

ai = ā = s, ∀i.
In games with exogenous information, agents receive costless signals about the aggregate

state. Let ωi ∈ R be the realization of agent i’s signal. With the quadratic payoffs in (1), each

agent’s optimal action is chosen according to the linear best response function

ai(ωi) = E[(1− β)s+ βā|ωi], (2)

where E[·|ωi] denotes the agent’s expectations conditional on ωi.

Our focus is on games with endogenous information acquisition by rationally inattentive

agents. For this example, we will consider two different information cost functions: mutual

information and the Fisher information cost function. With linear-quadratic payoffs and

Gaussian priors, both of these cost functions result in agents optimally choosing to observe a

one-dimensional Gaussian signal [Hébert and Woodford, 2020]. As a result, our example falls

into the tractable class of linear-quadratic-Gaussian games. However, we will see that these cost

functions lead to different conclusions about the existence of non-fundamental volatility and

whether equilibria are efficient.

We begin by discussing the issue of non-fundamental volatility, and then turn to the

question of efficiency.
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2.1 Non-Fundamental Volatility

We allow agents to flexibly acquire signals of both the payoff-relevant state, s ∈ R, as well as

a payoff-irrelevant state r ∈ R, subject to a cost. We introduce the payoff-irrelevant states

as potential sources of non-fundamental volatility in equilibrium. Let x = (s, r)T denote the

aggregate state vector. To preserve the linear-quadratic-Gaussian structure of the model, we

assume that all agents have a common Gaussian prior over (s, r), with a prior mean of zero for

both variables and variance-covariance matrix of Σ. That is, x ∼ N (0,Σ).

We consider equilibria in which the aggregate action ā is a linear function of the aggregate

state. In particular, we guess and verify the functional form

ā = ᾱss+ ᾱrr, (3)

for some constants ᾱs and ᾱr. Linearity of the aggregate action preserves the linear-quadratic

Gaussian nature of the individual agents’ problem. Under this assumption, the agent’s best

response after observing the signal ωi is

ai(ωi) = E[(1− β + βᾱs)s+ βᾱrr|ωi] = E[ψTx|ωi],

where ψ is a column vector of endogenous constants given by

ψ ≡ (1− β + βᾱs, βᾱr)
T . (4)

Consider now the individual agents’ problem in this game. With both mutual information

and the Fisher information cost function, agents will optimally choose to receive a one-

dimensional3 Gaussian signal,

ωi = λTx+ σεi, (5)

where λ is a vector describing what the agent chooses to learn about, σ2 is the variance of the

agent’s signal, and εi is a standard normal shock, i.i.d. across agents. That is, both cost functions

deliver Gaussian signals of the form in (5), but as we will show shortly, the two cost functions

have different implications for the agent’s optimal choices of (λ, σ).

Given such a signal, the agent’s optimal action strategy follows from Bayesian updating (see

e.g. Hébert and Woodford [2020]):

ai(ωi) = αωi, α =
ψTΣλ

λTΣλ︸ ︷︷ ︸
”beta” between λTx and ψTx

σ−2

σ−2 + (λTΣλ)−1︸ ︷︷ ︸
update on λTx

. (6)

3The one-dimensional nature of the signal is a consequence of the standard result in rational
inattention problems that it is without loss of generality to equate signals with recommended actions.
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The agent’s unconditional expected payoff is−ψTΣω(λ, σ)ψ,4 where Σω(λ, σ) is the posterior

variance-covariance matrix given by

(Σω(λ, σ))−1 = Σ−1 + σ−2λλT . (7)

Due to the structure of the agents’ optimal signals, this matrix is independent of the realized

state and signal realizations, but depends on the agent’s choice of (λ, σ).

Following Sims [2003] and Hébert and Woodford [2020], under both mutual and Fisher

information, the cost of information acquisition can be written a function of the prior and

posterior variance-covariance matrices Σ and Σω(λ, σ). In either case, the agent chooses

the parameters (λ, σ) of (5) subject to feasibility. The feasibility set is given by Γ ≡
{λ, σ : |λ| = |ψ|, σ ≥ 0}. The first constraint on this set is a normalization. Expression (7) makes

clear that scaling both λ and σ by the same constant does not change the posterior variance.

To simplify notation, for our analysis of non-fundamental volatility we adopt the convention

that |λ| = |ψ|. The second constraint that σ ≥ 0 is called a “no-forgetting” constraint by

Van Nieuwerburgh and Veldkamp [2010], and reflects the fact that the agent cannot reduce

information costs by forgetting information.

Before continuing, we should note that with both of these cost functions, it is possible that

no optimum over (λ, σ) exists, and the optimal policy is to receive a completely uninformative

signal (σ →∞). This leads to an equilibrium in which all agents choose an action equal to their

prior mean about s. In our results, we will assume that information costs are sufficiently small

to rule out this possibility. We next characterize what kind of information the agents choose to

gather.

Consider first the mutual information case.5

Example 1. With mutual information, the problem of the agent is

min
(λ,σ)∈Γ

ψTΣω(λ, σ)ψ + θ
[
ln(det((Σω(λ, σ))−1))− ln(det(Σ−1))

]
(8)

subject to (7), with θ > 0. Substituting in (7), this simplifies to

min
(λ,σ)∈Γ

ψTΣψ − σ−2 (ψTΣλ)2

1 + σ−2λTΣλ
+ θ ln(1 + σ−2λTΣλ). (9)

The first component of the agent’s objective function is her unconditional expected payoff.

The second component is the agent’s cost of information acquisition under mutual information.

4The unconditional expected payoff is −ψT Σω(λ, σ)ψ plus a constant. However, the constant term is
unaffected by the individual agent’s choices. We ignore it when considering the agent’s optimal choice of
(λ, σ), but must account for this constant when considering efficiency.

5See the proof of Proposition 1 for a more detailed derivation.

9



This is given by the difference in the log-determinant of the (inverse) posterior and prior

variance-covariance matrices. The parameter θ > 0 scales the cost of information.6

We contrast this problem to the case with the Fisher information cost function.

Example 2. With Fisher information, the problem of the agent is

min
(λ,σ)∈Γ

ψTΣω(λ, σ)ψ + θ
[
tr((Σω(λ, σ))−1)− tr(Σ−1)

]
, (10)

subject to (7), where tr(·) is the trace operator, with θ > 0. Substituting in (7), this simplifies to

min
(λ,σ)∈Γ

ψTΣψ − σ−2 (ψTΣλ)2

1 + σ−2λTΣλ
+ θσ−2|λ|2. (11)

The first component is again the agent’s unconditional expected payoff. The second

component is her cost of information acquisition under Fisher information. This given by the

difference in the trace of the (inverse) posterior and prior variance-covariance matrices.

Therefore, the only difference between the mutual information and Fisher information cases

is the functional form of information cost: the trace vs. the log-determinant. It is this difference

that leads to distinct predictions for the agent’s optimal choice of signal structure.

To understand the agent’s optimal signal structure in either case, let ãi ≡ ψ′x denote the

agent’s optimal action under complete information for a given ψ. This is the action the agent

would choose if she herself faced no cost of information acquisition.

Under mutual information, the agent optimally receives a one-dimensional signal that

directly corresponds to her optimal complete info action, ãi.7 That is, the agent chooses

λ∗ = ψ,

and as a result her signal is an unbiased, noisy version of ãi.

In contrast, under Fisher information, the agent optimally receives a one-dimensional signal

that maximally covaries with ãi under the resulting posterior.8 That is, the agent’s optimal

choice of λ satisfies the fixed point:

λ∗ ∈ argmaxλ:|λ|=|ψ|ψ
TΣω(λ∗, σ∗)λ. (12)

Both results are intuitive. It certainly seems logical to learn only about the optimal action ãi

and ignore everything else. On the other hand, it also seems perfectly natural to receive a signal

that maximally covaries with ãi.

6Agents will find it optimal to gather some information if their uncertainty about the optimal action is
sufficiently large relative to the parameter θ. See the proofs of Propositions 1 and 2 for precise conditions.

7This follows from the invariance properties of mutual information, but can also be shown using the
first-order condition from (9).

8See Hébert and Woodford [2020]. This can also be shown using the first-order condition from (11).
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In either case, the agent’s optimal action is linear in her signal by (6), and her signal is linear

in the underlying state (5). Together, and aggregating across individuals, this implies that the

aggregate action is indeed linear in the state:

ā = α∗(λ∗)Tx, (13)

thereby verifying our guess in (3). Finally, in order for (13) to coincide with (3), the equilibrium

vector (ᾱs, ᾱr)
T must satisfy

(ᾱs, ᾱr)
T = α∗λ∗, (14)

and is therefore proportional to the agent’s optimal choice of λ∗. That is, a linear equilibrium of

this game is a collection of parameters (ᾱr, ᾱs, ψ, λ, σ, α) satisfying (4), (6), and (14), with (λ, σ)

chosen optimally given ψ. This leads to the following result.

Proposition 1. (i) Under mutual information, there exists a linear equilibrium. Any such

equilibrium features zero non-fundamental volatility: ᾱr = 0.

(ii) With the Fisher information cost, there exists a linear equilibrium. If r and s are correlated

under the prior and θ is sufficiently small, any such equilibrium features non-fundamental

volatility, ᾱr 6= 0.

Proof. See the appendix, 11.1.

Because agents choose different types of signal structures across the two cases, this leads to

distinct equilibrium properties. In the case of mutual information, the agent’s optimal signal is

one that directly tracks her complete-information action ãi, but ignores everything else. If all

agents choose λ∗ = ψ, in equilibrium ψ must satisfy the fixed point:

ψ = (1− β)e1 + βα∗ψ.

where e1 = (1, 0)T and α∗ is a scalar function strictly less than one by equation (6). It

immediately follows that in any equilibrium, the second element of ψ must be zero; hence,

ᾱr = 0. Therefore, with mutual information, the equilibrium aggregate action does not depend

on the payoff-irrelevant state r.

In the case of Fisher information, the agent chooses a signal to maximize the covariance

between the signal ωi and optimal action ψTx. If s and r are correlated (if the off-diagonal

elements of Σ are non-zero), then this immediately rules out equilibria with zero non-

fundamental volatility. To see this, suppose by contradiction there exists an equilibrium in

which ᾱr = 0, so that the second element of ψ is zero. In this case, as long as s and r are

correlated, the agent chooses a signal such that the second element of λ∗ is non-zero: this choice

maximizes the covariance between her signal and her complete-information action (see (12)).

But if the second element of λ∗ is non-zero, then by (14), ᾱr must be non-zero, a contradiction.
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We conclude that all linear equilibria in the case of Fisher information generically feature non-

fundamental volatility. The only cases in which ᾱr may be zero in equilibrium are the non-

generic cases in which s and r have zero correlation, or when no information is gathered in

equilibrium.

Mutual information and Fisher information therefore generate starkly different predictions

for the existence of non-fundamental volatility in equilibrium in the simple beauty-contest

game. The distinction stems from what these costs imply for agents’ optimal signal structures.

In the mutual information case, agents track their optimal action directly, but ignore everything

else—it would be costly to do otherwise. When all agents behave in this way, in equilibrium

there is no room for the payoff-irrelevant state r to affect equilibrium actions.

In contrast, in the Fisher information case, agents instead find it optimal to receive a signal

that depends at least somewhat on r, as this maximizes covariance with s. That is, it is cheaper

for agents to learn about s by partially observing r, rather than learn about s directly. This

optimal cost-saving behavior is what opens the door for variation in r to affect individual actions

and thereby, in equilibrium, aggregate actions.

One possible interpretation of r in this context is a noisy public signal. In exogenous

information environments, agents learn through costless public signals and base their actions

upon them. Common errors in these signals lead to variation in aggregate actions that is

orthogonal to fundamentals. In the Fisher information case, r plays the exact same role:

learning about r is not costless, but it is a “cheaper” way of learning about s than learning about

s alone.

2.2 Constrained Efficiency

Next, we consider the question of constrained efficiency in the beauty contest game. For

simplicity, we abstract from the payoff-irrelevant states r in our previous example and assume

s ∈ R is the only exogenous aggregate state.

To discuss efficiency in the context of our beauty contest game, we proceed in three steps.

The first step is to ask whether the game is constrained efficient under exogenous information,

that is, when agents cannot choose their information structure. The second step is to ask

whether the game is constrained efficient under endogenous information when agents may

acquire information about the exogenous aggregate state s. The third step is to ask whether

the game is constrained efficient under endogenous information when agents can learn not

only about the exogenous aggregate state s but also about the endogenous aggregate action ā.

Step 1. We begin by asking first whether the equilibrium is constrained efficient under

exogenous information. Agents receive noisy signals ωi ∼ N(s, σ2) about s ∈ R.

12



Consider an equilibrium in which the aggregate action is a linear function of the state, ā =

ᾱss. The agent chooses a strategy ai(ωi) in order to maximize her expected payoffs,

V (σ, ᾱs) = max
ai(ωi)

E[u(ai(ω), ᾱss, s)|ωi] (15)

The agent’s first-order condition to this problem is what gives rise to the linear private best

response function reported in (2). A symmetric equilibrium, then, is an individual strategy a(ω)

(the same for all agents) and an aggregate action coefficient ᾱs, such that optimality conditions

(2) hold along with, by the law of large numbers,

ᾱss = E[a (ω) |s] ∀s ∈ R (16)

Can a planner who controls how each agent responds to her own signal, but is unable to

share information across agents, improve welfare relative to the non-cooperative equilibrium?

To answer this question, we follow Angeletos and Pavan [2007] and solve a constrained planner’s

problem. The constrained planner chooses strategies a(ω) in order to maximize expected utility

across all agents,

W (σ) = max
a(ω)

∫
i
E [u(a(ω), ᾱss, s)] di (17)

subject to the constraint that the aggregate action ᾱss satisfies (16). Taking first-order conditions

with the linear-quadratic payoffs of (1), we find that the efficient “best response” function

dictated by the planner is given by

a(ω) = E[(1− β)s+ βᾱss|ω],

and thereby coincides exactly with the agent’s private best response function in (2).

We conclude that in this particular game, by construction, the equilibrium use of

information is efficient. See Angeletos and Pavan [2007] and Section 7 of this paper for a detailed

discussion of the intuition behind this result.

Step 2. We now ask whether the equilibrium is constrained efficient under endogenous

information acquisition. We begin by allowing agents to choose the standard deviation of their

signals, σ, subject to a cost. Let C(σi) be the cost of receiving a signal with standard deviation

σi. This cost could be based on mutual information, the Fisher information cost, or any other

cost—the details will not matter for our argument.

Consider the individual agent’s problem. Each agent takes ᾱs as exogenous, and chooses

both an action strategy αi and a standard deviation σi. Fixing the agent’s choice of σi, her choice

of αi is exactly as in (15). The agent therefore chooses σi to maximize her private value minus

her information cost,

σi ∈ argmaxσ≥0V (σ, ᾱs)− C(σ).

13



Can a planner who controls both how much information an agent acquires and how each

agent responds to her own signal improve welfare relative to the non-cooperative equilibrium?

Consider a planner that chooses a pair (α∗, σ∗) to maximize expected utility across all agents,

less their information cost.

Again, fix the planner’s choice of σ∗ and observe that the problem of choosing α∗ is exactly

the planner’s problem with exogenous information, (17). The planner therefore chooses σ∗ to

maximize the social value minus the information cost,

σ∗ ∈ argmaxσ≥0W (σ)− C(σ).

It follows almost immediately that the planner’s optimal (α∗, σ∗) is also an equilibrium.

To see this, again fix σ and consider the inner problem of both the agent and the planner.

We know that the planner’s optimal choice of α coincides with the equilibrium α in this “σ-

subgame.” This in fact is true for any σ-subgame, and is simply a restatement of the result that

the equilibrium use of information is efficient. It follows that for any σ, the social value of σ

forms an upper envelope of the private value:

W (σ) = max
ᾱs

V (σ, ᾱs). (18)

That is, even if we were to ignore the mean-consistency requirement (16), the ᾱs that maximizes

the private value is the same ᾱs that solves the planner’s problem and thereby satisfies mean

consistency.

But observe from this equation that the planner’s optimal choice of σ∗ coincides with

the agent’s best response to ᾱ∗s ∈ arg maxᾱs V (σ∗, ᾱs); therefore the solution to the planner’s

problem is an equilibrium. We conclude that in this particular game, efficiency in the use of

information implies efficiency in the acquisition of information when agents receive signals

only about exogenous states. Note that this result relies on the fact that only the mean action,

and not higher moments of the action distribution, enters the agents’ payoffs in (1); see

Colombo, Femminis, and Pavan [2014] for details.

Step 3. We now allow agents to learn not only about the exogenous fundamental s but also

about the endogenous aggregate action of other agents, ā, as in Denti [2019].

To mirror our previous discussion of non-fundamental volatility, let x = (s, ā)T denote

the vector of objects the agents can learn about. To preserve the linear-quadratic-Gaussian

structure of the model, we continue to assume s ∼ N (0, σ2
0) and consider linear equilibria of

the form ā = ᾱss. With either mutual or Fisher information, it remains the case that agents

optimally receive a one-dimensional Gaussian signal ωi of the form given by (5).

Unlike the previous step, agents may now learn about the aggregate action ā. Consequently,

as in our analysis of non-fundamental volatility, agents have choices about both the noise in
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their signal (σ) and what they learn about (λ). In this case, because the aggregate action ā is part

of the state vector x, the payoff-relevant dimension of the state is exogenous, ψ = (1 − β, β)T .

Note also that x = χs, where we define χ = (1, ᾱs)
T . As a result, x is Gaussian, x ∼ N (0,Σ) with

the degenerate variance-covariance matrix Σ = σ2
0χχ

T .

Let us now fix the agent’s choice of σ, and consider the optimal choice of λ under

both mutual information and the Fisher information cost. For this analysis, we adopt the

normalization that χTλ = 1, and consider the optimal choice of λ in (8) and (10) from the

previous section (because these formulas are valid even with a degenerate prior). With this

normalization, the information cost depends on the choice of λ, but the expected payoff

component of these two equations does not.

With mutual information, as discussed in the previous section, an optimal choice of λ is

proportional to the payoff-relevant dimension of the state space. With our normalization,

this is λ∗ = (ψTχ)−1ψ. In contrast, with the Fisher information cost, we can see from the

first-order condition of (10) that λ∗ = (χTχ)−1χ. Again, with mutual information, the agent

receives a signal directly about the payoff-relevant dimension of the state, whereas with the

Fisher information cost the agent maximizes covariance with the payoff-relevant dimension of

the state.

Plugging in these choices for λ∗ back into (8) and (10) , we see that the cost functions in

terms of σ can be written in the mutual information case as

C(σ) = θ ln(1 + σ−2σ2
0),

and in the Fisher information case as

C(σ, ᾱs) =
θσ−2

1 + ᾱ2
s

. (19)

Let us now consider a planner who can choose (α∗, σ∗) as in step 2 of our analysis.9 The following

result is then immediate.

Proposition 2. (i) With mutual information, an optimum of the planner (α∗, σ∗) is also an

equilibrium. (ii) With the Fisher information cost, an equilibrium exists, but if θ is sufficiently

small any optimum of the planner (α∗, σ∗) is not an equilibrium.

Proof. See the appendix, 11.2.

The result for mutual information follows directly from our analysis in step 2 and Colombo,

Femminis, and Pavan [2014]. As long as agents use their information efficiently in any σ-

subgame, then the private value of information is the same as the social value. As a result, agents

behave exactly as the planner would dictate.

9That is, we do not allow the planner to choose λ∗. This is for expositional clarity and does not affect
our results.
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This is not the case with the Fisher information cost. In (19), the agent’s cost of information

acquisition depends on the strategies of others, and in particular it is decreasing in ᾱs. Thus,

if agents make their actions more sensitive to their signals, this increases the sensitivity of

the aggregate action to the aggregate state, which in turn decreases the cost of information

acquisition for all agents. Agents do not internalize this effect when making their own

individually-optimal decisions. The planner on the other hand takes this externality into

account when maximizing welfare, and as a result, dictates a higher α∗ and lower σ∗ relative

to the non-cooperative equilibrium. Note that this externality exists only when agents gather

information in equilibrium, hence our assumption that θ is sufficiently small.

The aforementioned externality does not exist when agents can only gather information

about exogenous states (step 2). Why does it arise here? Agents in this economy learn from both

the fundamental state and the aggregate action. With the Fisher information cost, it is cheaper

for agents to observe the aggregate action when it is highly sensitive to the aggregate state, that

is, when ᾱs is larger. Fisher information thereby incorporates a scale effect into costs: when

aggregate actions are more extreme, they become more salient in the eyes of other agents, and

thereby less costly to observe. It is this scale effect on costs that the agents do not internalize.

Mutual information, on the other hand, is invariant to these scale effects, and as a result this

externality is absent.10

2.3 Summary and Layout

We have shown that these two information cost structures have significantly different

equilibrium implications in this simple linear-quadratic beauty contest game. Under mutual

information, the equilibrium features zero non-fundamental volatility and is constrained

efficient. With the Fisher information cost, the equilibrium exhibits non-fundamental volatility

and is constrained inefficient. But what is it about these two cost functions that leads to such

divergent predictions? We formally address this question in the general framework that follows.

The remainder of this paper is organized as follows. In Section 3 we define the general class

of large games that we study. In Section 4 we define equilibria and prove its existence. In Section

5 we introduce and define certain properties of cost functions that we call partial monotonicity

and partial invariance. In Section 6 we characterize under what conditions equilibria do or do

not feature non-fundamental volatility. In Section 7 we define equilibria and efficiency under

exogenous information and characterize under what conditions there is efficiency in the use

of information. In Section 8 we show what needed in addition to efficiency in use to obtain

efficiency with endogenous acquisition of information. In Section 9 we conclude. All proofs are

10Angeletos and Sastry [2019] construct a related example in which the variance of prices enters
information costs, and show that this leads in their Walrasian setting to multiple, Pareto-ranked
equilibria.
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provided in the Appendix.

3 The General Game

We study large games of strategic interaction. These games generalize our simple example in

several respects. First, agents’ action spaces can be multi-dimensional, payoff functions are not

necessarily quadratic, and the aggregate action is not necessarily linear in the state variables.

Second, we do not restrict ourselves to Gaussian structures: agents can have arbitrary priors.

Third, we study a large class of information cost functions which includes mutual information

and Fisher information but also includes many others. Fourth, we allow for learning about both

payoff-irrelevant states and endogenous actions, rather than consider these things separately

as in our simple examples. In all of these respects, our general environment nests the example

of the previous section; however, to avoid certain technical complications and simplify our

exposition, we assume that the exogenous state space is finite.

3.1 Agents, Actions, and Payoffs

There is a unit mass continuum of agents, indexed by i ∈ [0, 1]. Agent i chooses her action,

ai ∈ A ⊆ RL. Let ā ∈ Ā ⊆ RL be the vector of aggregate actions, defined as the average action

chosen by agents:

ā =

∫ 1

0
aidi.

There is a finite set of exogenous payoff-relevant states, s ∈ S. These states, along with

aggregate actions ā, determine the agent’s payoffs. Agents have payoff function u : A× Ā×S →
R; that is, an agent who takes action ai ∈ A in state s ∈ S when the aggregate action is ā ∈ Ā
receives payoff u(ai, ā, s). Note that individual agents—each of whom is infinitesimal—do not

take into account how their own action affects the aggregate action when making their own

strategic choices. This assumption is a defining feature of “large games.”

We impose the following regularity assumption on the payoff functions and action space.

Assumption 1. A is non-empty, convex, and compact, and u(ai, ā, s) is continuously

differentiable on A× Ā for all s ∈ S.

Assumption 1 will be sufficient, but not necessary, for our results.11 In particular, our results

could readily be extended to games with finitely many actions.

The last primitives of our environment are the agents’ information acquisition technologies,

which we describe next.

11Note that Assumption 1 guarantees the existence of mixed strategy Nash equilibria under complete
information in games with continuous actions spaces. See, e.g., Fudenberg and Tirole [1991] theorem 1.2.
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3.2 Shocks and Information Acquisition

Shocks and Priors. In addition to the payoff-relevant, or “fundamental,” states, s ∈ S, we

allow for a finite set of payoff-irrelevant states, r ∈ R.

Agents are endowed with a common prior µ0 (s, r) over the exogenous states. Let U0 ≡
∆ (S ×R) denote the space of probability measures over the exogenous states, with µ0 ∈ U0.

Note that the payoff-irrelevant states can be independent of the fundamental states, in which

case they can be interpreted as pure noise, or correlated, in which case they case they can

be interpreted as noisy signals about fundamentals. These states are payoff-irrelevant by

definition, but are a potential source of non-fundamental volatility in equilibrium.

We define ᾱ : S×R→ Ā as a function mapping exogenous states to an aggregate action. Let

Ā be the space of all such functions.12 One may think of ᾱ ∈ Ā as the “aggregate strategy,” as this

function will be determined endogenously by aggregating over the individual agents’ strategies.

We will allow agents to learn not only about the exogenous states, but also about

endogenous aggregate actions. Agents will optimally choose which objects to pay attention

to; in order to facilitate this choice, we specify their prior over the larger S × R × Ā space. Let

Ū ≡ ∆
(
S ×R× Ā

)
denote the space of probability measures over this space.

We construct the agents’ prior on this larger space from their prior on the exogenous states

µ0 and the aggregate strategy ᾱ as follows. Let φĀ : U0 × Ā → Ū denote a mapping from any pair

µ0, ᾱ to its induced probability measure, defined as

φĀ {µ0, ᾱ} (s, r, ā) = µ0 (s, r) δ (ā− ᾱ (s, r)) , ∀s ∈ S, r ∈ R, ā ∈ Ā, (20)

where δ(·) is the Dirac delta function. We define the space of all probability measures that may

be generated on S ×R× Ā by some pair (µ0, ᾱ), U ⊂ Ū , as

U =
{
µ ∈ Ū : ∃ µ0 ∈ U0 and ᾱ ∈ Ā s.t. µ = φĀ{µ0, ᾱ}

}
.

Given a prior µ0 ∈ U0 and an aggregate action function ᾱ ∈ Ā, the induced prior on the larger

space µ ∈ U is given by µ = φĀ{µ0, ᾱ}.

Agents’ strategies. We now consider the strategies of the agents. In games of imperfect

information with exogenous signals, an individual agent chooses her own action based on the

realization of her own signal ωi ∈ Ω, where Ω is a signal alphabet. We assume Ω has a cardinality

weakly greater than RL (and hence the action space). In these games, an individual agent’s pure

strategy is a mapping from signals to actions, αi : Ω→ A. LetA be the space of all possible pure

strategies.

12We are restricting the aggregate action to be a deterministic function of (s, r). However, r could
include elements that are independent of the rest of (s, r) and can be regarded as sunspots.
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In games with endogenous information acquisition, agents also choose their signal

structure. A signal structure is a conditional probability distribution function

νi : S ×R× Ā→ ∆ (Ω) .

where ∆ (Ω) is the space of probability measures on Ω. That is, νi (ω|s, r, ā) denotes agent i’s

probability of observing signal ω ∈ Ω conditional on (s, r, ā). Let VΩ be the space of all such

functions; the superscript indicates the signal alphabet. In what follows, it will also be useful to

consider signal structures that depend only on the exogenous states. We define VΩ
0 ⊂ VΩ as the

set of signal structures whose conditional probabilities depend only on the exogenous states.

That is,

VΩ
0 = {ν ∈ VΩ : νi(ω|s, r, ā) = νi(ω|s, r, ā′) ∀s ∈ S, r ∈ R, ā, ā′ ∈ Ā}.

Note that our setup allows agents to learn about the mean (or aggregate) action, but

precludes agents from learning about any other particular agent’s action.13 To summarize,

with endogenous information acquisition, an individual agent chooses both an action strategy

αi ∈ A and a signal structure νi ∈ VΩ in order to maximize his or her payoffs subject to a cost

of information acquisition.14 We discuss these costs after introducing some notation for signal

probabilities and posteriors.

Posterior distributions. Take any signal structure ν ∈ VΩ and prior µ ∈ U ; together these

induce a joint distribution on S × R × Ā × Ω. The marginal distribution on Ω associated with

this joint distribution is the agent’s unconditional probability of observing signal ω ∈ Ω,

π{ν, µ} (ω) =
∑

s∈S,r∈R

∫
Ā
ν (ω|s, r, ā)µ (s, r, ā) dā, (21)

with π{ν, µ} ∈ ∆ (Ω).

The joint distribution also induces posteriors over the S×R× Ā space. The agent’s posterior

over (s, r, ā) conditional on observing any signal ω ∈ Ω, is given by

µω{ν, µ} (s, r, ā) =
ν (ω|s, r, ā)µ (s, r, ā)

π{ν, µ} (ω)
, (22)

consistent with Bayes’ rule and assuming π{ν, µ} (ω) > 0. Note that, if µ ∈ U (meaning that ā is

deterministic conditional on (s, r) under µ), then µω{ν, µ} ∈ U for all ν ∈ VΩ, ω ∈ Ω. We adopt

the convention that, for zero probability signals, posteriors are equal to priors.

We use these objects to define “uninformative” and “informative” signal structures.

13This choice, made for tractability, is motivated by the “largeness” feature of the game.
14By standard arguments in the rational inattention literature, it will be without loss of generality to

identify signals with actions, and hence to assume pure as opposed to mixed action strategies.
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Definition 1. A signal structure ν is uninformative if for all ω ∈ Ω such that π{ν, µ} (ω) > 0,

µω{ν, µ} = µ. A signal structure is informative if it is not uninformative, that is, if there exists an

ω such that π{ν, µ} (ω) > 0 and µω{ν, µ} 6= µ.

Thus, informative signal structures are those that move posteriors away from the prior.

Armed with these definitions, we next describe the cost of information.

Cost of information acquisition. Agents face a cost of acquiring informative signal

structures. We generalize the standard rational inattention setup and define the cost of

information acquisition by a function

CΩ : VΩ × U → R+.

That is, given a prior µ, an agent i which chooses signal structure νi ∈ VΩ incurs information

costs CΩ(νi, µ), where the superscript Ω indicates the signal alphabet over which the agent

chooses its signal structure.

It is without loss of generality to impose the following assumptions on the cost function.

Assumption 2. For all µ ∈ U ,

1. The cost function CΩ(ν, µ) is zero if the signal structure ν is uninformative.

2. Take ν ∈ VΩ and ν ′ ∈ VΩ′ for two signal alphabets Ω and Ω′. If ν Blackwell-dominates ν ′ in

the sense of Blackwell [1953], then CΩ(ν, µ) ≥ CΩ′(ν ′, µ).

3. The cost function CΩ(ν, µ) is convex in ν.

As discussed by Caplin and Dean [2015], and invoking Lemma 1 of Hébert and Woodford

[2019],15 these assumptions are without loss of generality. That is, any behavior that could be

observed for a rationally inattentive agent with a cost function not satisfying the second and

third conditions could also be observed for a rationally inattentive agent with a cost function

satisfying those conditions, and the first condition is a normalization. The intuition for this

result comes from the possibility of the agent pursuing mixed strategies over actions conditional

on a signal realization and over choices of signal structures.

Our next assumption requires that the information costs we study are continuous. This

assumption is phrased in a somewhat technical fashion in order to account for the possibility

that the signal space Ω is not a finite set. Observe by the finiteness of S × R and Ā ⊆ RL that Ā
can be viewed as a subset of RL×|S|×|R| and endowed with the standard (Euclidean) topology.

15Lemma 1 of Hébert and Woodford [2019] allows us to replace the Caplin and Dean [2015] “mixture
feasibility” condition with convexity. Hébert and Woodford [2019] prove it in the context of a finite signal
alphabet, but nothing in the proof depends on the alphabet being finite.
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Assumption 3. Under the topology of weak convergence on VΩ and U , the cost function CΩ is

continuous in the product topology of VΩ × U .

Assumption 2 by itself implies continuity in ν (due to convexity), holding fixed µ. What

Assumption 3 adds is the requirement of continuity in (ν, µ).16

Posterior-Separability. Finally, we restrict attention to information costs that are

“posterior-separable,” in the terminology of Caplin, Dean, and Leahy [2019]. Posterior-

separable cost functions can be written as the expected value of a divergence between the

agents’ posterior and prior beliefs. A divergence is a measure of how “close” or “far” two

distributions are from one another.17 To capture the idea that the action of other agents might

influence the cost of information, we define these divergences on the larger space of probability

measures, U .

Take any signal structure ν ∈ VΩ and prior µ ∈ U . A posterior-separable cost function is a

cost function that can be written as

CΩ(ν, µ) =

∫
Ω
π{ν, µ} (ω)D(µω{ν, µ}||µ)dω, (23)

whereD : U ×U → R+ is a divergence from the agents’ prior µ to posterior µω, convex in its first

argument and continuous on U × U .18

Assumption 4. The cost function CΩ is posterior-separable as defined by equation (23), with a

divergence D that is continuously differentiable in both arguments.

Mutual information, the standard rational inattention cost function, is posterior separable.

The associated divergence is the Kullback-Leibler divergence, defined in our context as

DKL(µ′||µ) =
∑

s∈S,r∈R

∫
Ā
µ′(s, r, ā) ln(

µ′(s, r, ā)

µ(s, r, ā)
)dā. (24)

Other posterior-separable cost functions include the Tsallis entropy cost function proposed

by Caplin et al. [2019], versions of the LLR cost function proposed by Pomatto et al. [2018],

16Note that continuity in (ν, µ) implies continuity in (ν, ᾱ) holding fixed µ0.
17A divergence is a function of two probability measures that is weakly positive and zero if and only if

the measures are identical. Unlike a distance, a divergence does not need to be symmetric, nor does not
necessarily satisfy the triangle inequality.

18Convexity in the first argument is implied by Assumption 2 and continuity (under the weak topology)
by Assumption 3. Also note that we have defined the divergence D on U rather than the entire space
Ū = ∆(S×R×Ā); all priors and posteriors in our problem will remain inU , and therefore it is unnecessary
to define the divergence on the entire space. By the finiteness of S,R and the definition of U , elements
of U can be represented as a subset of R|S|×|R|×(L+1), and as a result differentiability for D can be defined
in the usual way. Finally, observe that, under the assumption of posterior-separability, the cost function
depends on the signal alphabet only through the domain of integration.
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and the neighborhood-based cost functions proposed by Hébert and Woodford [2020]. Hébert

and Woodford [2019] show that all differentiable information cost functions can be locally

approximated by a differentiable posterior-separable cost function.

Hereinafter, we impose Assumption 1 on action spaces and payoffs and Assumptions 2, 3,

and 4 on information costs. Before turning to our definition of equilibrium, we briefly discuss

one implication of these assumptions.

Recall that the set U is defined by the property that the aggregate action ā is deterministic

conditional on the exogenous states (s, r). The following lemma demonstrates that, as a result,

for any signal structure ν ∈ VΩ, there is another signal structure that does not condition on

ā, ν ′ ∈ VΩ
0 , that generates the same signal probabilities and posteriors, and consequently (by

Assumption 4) the same information cost.

Lemma 1. Given any ν ∈ VΩ and µ ∈ U , there is signal structure ν ′ ∈ VΩ
0 such that π{ν, µ} =

π{ν ′, µ} and, for all ω ∈ Ω, µω{ν, µ} = µω{ν ′, µ}.

Proof. See the appendix, 11.3.

The intuition for this result is the following: zero-probability (s, r, ā) events have no

impact on either unconditional signal probabilities or posteriors, and therefore do not change

information costs. Because these two signal structures result in identical posteriors, we will see

that the resulting distribution of actions in our game are also identical, and therefore from an

individual agent’s perspective the two signal structures are equivalent.

Why, then, do we consider the possibility that agents acquire information about the

endogenous actions of the others? The answer is that, despite the fact that it is without loss

of generality for an agent to choose a signal structure in VΩ
0 , the information cost of this signal

structure might nevertheless be influenced by the actions of others. To see this, observe that by

(28), the prior µ ∈ U depends the aggregate strategy ᾱ ∈ Ā. As a result, the divergence D in (23)

might depend on ᾱ even if the signal structure ν does not condition on ā, because both the prior

and posteriors will be affected by ᾱ. This channel—aggregate actions affecting information

costs—is exactly the one illustrated by our beauty contest example with Fisher information. We

will eventually show that this can lead to an externality in our general game.

4 Equilibrium Definition and Existence

We proceed by defining our equilibrium concept and proving equilibrium existence.

To streamline our exposition, we first invoke the usual result in rational inattention

problems that it is without loss of generality to equate signals with actions. To do so, let σ :

Ω → ∆ (A) denote a mixed strategy: a mapping from signal realizations ω ∈ Ω to distributions
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over actions, ∆ (A). Given any mixed strategy σ : Ω → ∆ (A) and signal structure νΩ ∈ VΩ, we

may define the induced conditional distribution over actions, νA : S ×R× Ā→ ∆(A), as

νA(a|s, r, ā) =

∫
Ω
σ(a|ω)νΩ(ω|s, r, ā)dω. (25)

Let VA be the set of all conditional distributions over actions. Rather than write the problem of

the agent as a choice over both σ and νΩ, we condense these choices and write the problem of

the agent as a choice over the conditional distribution of actions, νA ∈ VA.

Each agent is infinitesimal, meaning that the agent treats the joint distribution of payoff-

relevant states, payoff-irrelevant states, and aggregate actions as exogenous. We will look for

symmetric Bayesian Nash equilibria in which all agents play best responses to the equilibrium

action function ᾱ ∈ Ā, all agents choose the same conditional distribution of actions νA, and

the equilibrium action function is generated by these conditional distributions.

We denote a symmetric strategy profile by

ξ ≡ {νA, ᾱ},

consisting of identical strategies νA ∈ VA for all agents and an aggregate action function ᾱ ∈ Ā.

We furthermore assume that, conditional on (s, r, ā), the realizations of signals across agents

are independent. That is, it is only the distributions of actions, not the realizations, that are

identical across agents. This independence of realizations allows us to apply the law of large

numbers and require that each agent’s average action ai be consistent with the mean action ā in

the population [Uhlig, 1996]. We impose this as follows.

Definition 2. A symmetric strategy profile ξ is mean-consistent if it satisfies∫
A
aiνA(ai|s, r, ᾱ(s, r))dai = ᾱ (s, r) ∀s ∈ S, r ∈ R, s.t. µ0 (s, r) > 0. (26)

By assuming that signal realizations are independent across agents, we are not ruling out

correlation in equilibrium actions. Instead, we are simply imposing that the only channel by

which agents may correlate is through their choice of how their actions condition on (s, r, ā). In

particular, the exogenous state r allows agents to coordinate their actions on public signals or

sunspots.

We define an equilibrium in our game as follows.

Definition 3. Given a common prior µ0 ∈ U0, a symmetric Bayesian Nash equilibrium (BNE)

of the game is a mean-consistent strategy profile ξ such that agents’ strategies νA ∈ VA are best

responses

νA ∈ argsupν′∈VA
∑

s∈S,r∈R

∫
Ā

[∫
A
u
(
ai, ā, s

)
ν ′
(
ai|s, r, ā

)
dai
]
µ (s, r, ā) dā− CA

(
ν ′, µ

)
, (27)

where

µ = φĀ{µ0, ᾱ}. (28)
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Our equilibrium concept is based on Denti [2019]. Equilibrium Definition 3 is a hybrid of

a Bayesian Nash equilibrium and a Rational Expectations equilibrium. It is a Bayesian Nash

equilibrium in the sense that all agents play best responses given their beliefs, which we assume

to be formed according to Bayes’ rule. It is a Rational Expectations equilibrium [Grossman,

1976, Grossman and Stiglitz, 1980, 1976] in the sense that agents’ may learn from endogenous

aggregate variables while simultaneously choosing their own actions; thus beliefs are functions

of endogenous actions while actions are functions of endogenous beliefs. Consistency of beliefs

and actions is imposed by mean-consistency of strategy profiles (Definition 2) along with (28),

which is the usual requirement that agents best-respond to the equilibrium strategies of other

agents.

Our first result is that such an equilibrium exists.

Proposition 3. A symmetric BNE of the game exists.

Proof. See the appendix, 11.4.

The proof of this result uses Kakutani’s fixed point theorem in the usual way, relying on the

finiteness of S×R, the continuity of the utility function, and the convexity and continuity of the

information cost function.

Having now established that our equilibria exist, we begin to study these equilibria. We

first investigate under what circumstances equilibria do or do not exhibit “non-fundamental”

volatility; we then study the circumstances under which equilibria are constrained efficient,

defining constrained efficiency as coinciding with the solution to a particular planner’s problem

(which we will define subsequently).

For both of these results, the focus of our investigation will be the relationship between

properties of the information cost function, in particular its associated divergence D, and the

properties of the equilibrium. We therefore begin by defining the properties of information

costs that will be the focus of our analysis.

5 Partial Monotonicity and Partial Invariance

In this section we define two concepts, “partial monotonicity” and “partial invariance,” as

properties of divergences. Mutual information exhibits both of these properties; Fisher

information exhibits neither property. We will later show how these two properties of

divergences are related to properties of the equilibria.

5.1 Coarsening and Embedding

We begin by introducing two types of operators, coarsenings and embeddings, which we define

with respect to different partitions of the state space. Coarsenings and embeddings are ways
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of moving back and forth between joint and marginal distributions. Specifically, coarsenings

take joint distributions and transform them into marginal distributions, while embeddings

transform a marginal into a joint by adding a conditional distribution.

Consider first a “coarsening” that removes information about r ∈ R. We let UR ≡ ∆(S × Ā)

denote the space of probability measures on (S × Ā) and µR ∈ UR denote a particular

distribution on this space. The subscript R indicates the dimension (of the larger space) that

is missing, a convention we follow below. We define a coarsening function γR : U → UR by

γR{µ} (s, ā) =
∑
r∈R

µ (s, r, ā) , ∀s ∈ S, ā ∈ Ā. (29)

This operator takes a probability distribution µ ∈ U on the larger space (S×R× Ā) and projects

it onto the smaller state space (S×Ā). As indicated by its subscript, this coarsening “throws out”

all information about r ∈ R, conditional on (s, ā).

Consider now the opposite transformation, an “embedding,” that adds information about

r ∈ R. Letting φ̂R (r|s, ā) denote a conditional distribution for r ∈ R, conditional on (s, ā),

we define an embedding function φR : UR → U associated with the conditional distribution

function φ̂R : S × Ā→ ∆ (R) by,

φR{µR} (s, r, ā) = φ̂R (r|s, ā)µR (s, r, ā) , ∀s ∈ S, r ∈ R, ā ∈ Ā. (30)

This operator takes a probability measure on the smaller space (S × Ā) and embeds it into the

larger space (S × R × Ā) using the information contained in φ̂R . It thereby “adds” information

about r ∈ R, conditional on (s, ā).19

Any embedding φR is associated with a particular conditional distribution φ̂R, and in turn

any conditional distribution function defines a particular embedding. Thus, while there is only

one way to coarsen from U to UR, there are many possible ways to embed from UR to U . Let ΦR

denote the set of all possible embeddings from UR to U .

5.2 Monotonicity and Invariance in R

Armed with these definitions of coarsenings and embeddings with respect toR, we are now able

to define our concepts of partial monotonicity and partial invariance with respect to R.

Consider a composition of the coarsening operator γR and a specific embedding φR ∈ ΦR.

Let ηR : U × U → U denote the operation that coarsens its first argument in R, then embeds

using the conditional distribution defined by its second argument. We define this compositional

operator as follows:

ηR{µ1, µ2} (s, r, ā) =

{
µ2(s,r,ā)

γR{µ2}(s,ā)γR{µ1} (s, ā) if γR{µ2} (s, ā) > 0

0 if γR{µ2} (s, ā) = 0.
(31)

19To ensure that the resulting distribution on ∆(S × R × Ā) remains in U , we require that for all s ∈ S
and ā, ā′ ∈ Ā, the supports of φ̂R(·|s, ā) and φ̂R(·|s, ā′) do not intersect.
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To apply this operation, we require that γR{µ1} be absolutely continuous with respect to γR{µ2},
which we denote by γR{µ1} � γR{µ2}.

This compositional operator first takes the probability measure µ1 ∈ U on the larger space

and projects it onto the smaller state space (S × Ā) by coarsening it in R. It then takes

the resulting distribution and embeds it back into the larger space using not the conditional

distribution defined by µ1 ∈ U , but instead the conditional distribution defined by µ2 ∈ U . That

is, it essentially replaces the conditional distributions of µ1 (of r ∈ R conditional on s, ā) with

those of µ2. The end result is a distribution that is arguably “more like” µ2 than µ1 was originally.

Note that by construction, ηR{µ, µ} = µ for any µ ∈ U .

With this compositional operator, we define “monotonicity in R” as follows.

Definition 4. A divergence D : U × U → R+ is monotone in R if for all µ, µω ∈ U such that

γR{µω} � γR{µ},
D(µω||µ) ≥ D(ηR{µω, µ}||µ). (32)

Recall that a divergence is a non-negative function of the prior and the posterior with no

requirements other than being equal to zero if and only if the prior and posterior are the same.

The above property compares the divergence of the priorµ to the posteriorµω after replacing the

posterior’s conditional distributions of r ∈ R, conditional on (s, ā), with the divergence before

this replacement. Monotonicity captures the idea that if we make the posterior more like the

prior in this sense, then this reduces the divergence from the prior to the posterior.

We next define a different concept, “invariance in R.”

Definition 5. A divergence D : U × U → R+ is invariant with respect to ΦR, or invariant in R, if

for all µ, µω, µ′ ∈ U such that γR{µω} � γR{µ} and γR{µ′} � γR{µ},

D(ηR{µω, µ}||µ) = D(ηR{µω, µ′}||ηR{µ, µ′}). (33)

The above property compares the divergence of the priorµ to the posteriorµω after replacing

both the prior and the posterior’s conditional distributions (of r ∈ R conditional on s, ā), which

may originally differ, with an identical conditional distribution from µ′. Invariance captures

the idea that if the prior and posterior share a common conditional distribution, the exact

values of this conditional distribution should not matter for the divergence from the prior to

the posterior. This is different than monotonicity, which requires that replacing the posterior’s

conditional distributions of r ∈ R with that of the prior reduces their divergence. Invariance

and monotonicity together require the divergence to shrink to the same value for all possible

conditional distributions (i.e. embeddings).

5.3 Invariance in Ā

We have thus far defined coarsenings, embeddings, monotonicity, and invariance only with

respect to partitions in r ∈ R. However, we can define these concepts with respect to other
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dimensions as well, e.g. in s ∈ S or ā ∈ Ā. For the purposes of our exercise, we now consider

coarsenings and embeddings with respect to partitions in ā ∈ Ā and define invariance in Ā

along the same lines as our previous definition of invariance in R.

Consider U0 ≡ ∆ (S ×R), the space of probability measures over the exogenous state space.

We define a coarsening function, γĀ : U → U0, by

γĀ{µ} (s, r) =

∫
Ā
µ (s, r, ā) dā, ∀s ∈ S, r ∈ R. (34)

This operator takes a probability distribution µ ∈ U on the larger space (S×R× Ā) and projects

it onto the smaller state space (S × R). As indicated by its subscript, this coarsening “throws

out” all information about ā ∈ Ā, conditional on (s, r).

Consider now an embedding that adds information about ā ∈ Ā. We have in fact already

defined such an embedding; the function φĀ{µ0, ᾱ} defined in (20) is an embedding that maps

probability measures µ0 ∈ U0 on the smaller (exogenous) state space (S×R) to measures on the

larger one. The associated conditional distribution function for this embedding is given by

φ̂Ā (ā|s, r) = δ (ā− ᾱ (s, r)) , ∀s ∈ S, r ∈ R, ā ∈ Ā, (35)

that is, the degenerate distribution induced by the aggregate action function ᾱ (s, r) . Any

aggregate action function ᾱ ∈ Ā defines a particular embedding from U0 to U with associated

conditional distribution (35), and the set U is defined by the property that for all µ ∈ U , there

exists a µ0 ∈ U0 and ᾱ ∈ Ā such that µ = φĀ{µ0, ᾱ}. We can therefore think of Ā as defining the

set of all possible embeddings from U0 to U .

Armed with these definitions of coarsenings and embeddings with respect to ā ∈ Ā, we may

now define our concept of invariance in Ā, in a manner that is exactly analogous to our defining

of invariance inR (Definition 5). Consider again a composition of the coarsening operation and

a specific embedding, ηĀ : U × U → U , that coarsens its first argument in ā ∈ Ā, then embeds

using the conditional distribution defined by its second argument. This operator is

ηĀ{µ1, µ2} (s, r, ā) =

{
µ2(s,r,ā)

γĀ{µ2}(s,ā)γĀ{µ1} (s, ā) if γĀ{µ2} (s, ā) > 0

0 if γĀ{µ2} (s, ā) = 0,
(36)

which is the exact analog of (31). With this operator, we define invariance in Ā as follows.

Definition 6. A divergence D : U × U → R+ is invariant with respect to Ā, or invariant in Ā, if

for all µ, µω, µ′ ∈ U such that γĀ{µω} � γĀ{µ} and γĀ{µ′} � γĀ{µ},

D(ηĀ{µω, µ}||µ) = D(ηĀ{µω, µ′}||ηĀ{µ, µ′}). (37)

In our game, different aggregate strategies ᾱ, ᾱ′ ∈ Ā will lead to different priors µ, µ′ ∈ U .

However, if the divergence D is invariant in Ā, we will demonstrate below that these different
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priors do not lead to different information costs for signal structures that condition only on

exogenous states (ν ∈ VΩ
0 , as in Lemma 1). Consequently, with this form of invariance,

the aggregate action strategy will not matter for agents’ information costs, as in the linear-

quadratic-Gaussian example with mutual information.

5.4 Relation to the standard definition of invariance.

This leads to our next point, which is the relationship between the forms of partial monotonicity

and invariance we have defined and the stronger form of invariance discussed in other papers.

The literature has focused on divergences that are simply “invariant,” meaning that they are

both monotone and invariant with respect to all possible coarsenings and embeddings between

a larger space and a smaller space. These invariant divergences have been described in

the information geometry literature (see Chentsov [1982], Amari and Nagaoka [2007]), and

employed in economics by Hébert [2018] and Hébert and Woodford [2019]. Another term

for coarsening is “compression,” and invariant divergences have a close connection to the

invariance-under-compression axiom described in Caplin, Dean, and Leahy [2019]. Mutual

information, in particular, is invariant in this stronger sense, and hence is invariant and

monotone in both R and Ā. Fisher information, in contrast, is not invariant or monotone in

either of these senses, provided that agents are allowed to learn about endogenous actions.

Our generalization to partial monotonicity and partial invariance allows us to study

divergences that are invariant to some but not necessarily all partitions of the state space. In

particular our concepts of partial monotonicity and partial invariance are defined with respect

to partitions in certain dimensions, e.g. R and Ā.Our framework thereby allows for divergences

that may, for example, be invariant in R, but not invariant in Ā, and vice-versa.

For example, consider the divergence defined by

D (µω||µ) = θ1DKL (µω||µ) + θ2

∑
r∈R

(
∑
s∈S

∫
Ā
µ(s, r, ā)dā)DKL (µωr||µr) ,

where DKL is the Kullback-Leibler divergence and, for values of r occurring with positive

probability,

µr(s, ā) =
µ(s, r, ā)∑

s∈S
∫
Ā µ(s, r, ā)dā

, µωr(s, ā) =
µω(s, r, ā)∑

s∈S
∫
Ā µ

ω(s, r, ā)dā
.

Here, µr ∈ UR and µωr ∈ UR are the prior and posterior distributions on ∆(S × Ā) condition on

observing r ∈ R.

When θ2 = 0, this divergence is simply the KL divergence. When θ2 > 0, there is an extra

penalty for having a distribution conditional on r under µω that deviates from the distribution

conditional on r under the prior µ. In the limit as θ2 → ∞, the cost to learn about r remains

unchanged, but it becomes impossible to learn anything aside from r. In this limit, every agent
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will optimally choose to learn about r and only r even if r is not payoff-relevant (that is, if ā does

not depend on r), provided that r is in some way correlated with the payoff-relevant variables.

Even away from this limit, it will generally be cheaper for the agent to choose signal structures

that vary in r, even if learning about r is less useful than learning directly about s. One very

straightforward interpretation of this cost function is that r is a public signal, and it is cheaper

for agents to observe this public signal than to observe either the fundamentals or other agents’

actions.

From this discussion, it is immediately apparent that this divergence is neither invariant nor

monotone inR. However, because of the invariance of the Kullback-Leibler divergence, it is also

straightforward to observe that this divergence is invariant and monotone in Ā. We therefore

conclude from this example that cost functions with one form of partial invariance but not the

other exist and are potentially interesting.

Armed with these definitions, we next demonstrate that monotonicity in R and invariance

in Ā are critical in determining the equilibrium properties of our game.

6 Non-Fundamental Volatility in Equilibrium

In this section we consider the question of whether the equilibrium depends on the payoff-

irrelevant exogenous state r. We begin by defining a notion of measurability; we will say an

equilibrium is s-measurable if the agents’ signal structures νA and the aggregate strategy ᾱ do

not depend on r.

Definition 7. An aggregate strategy ᾱ ∈ Ā is s-measurable if, for all s ∈ S and r, r′ ∈ R, ᾱ (s, r) =

ᾱ (s, r′). A symmetric BNE (Definition 3) ξ = {νA, ᾱ} is s-measurable if ᾱ is s-measurable and if,

for all s ∈ S and r, r′ ∈ R, νA(ai|s, r, ᾱ (s, r)) = νA(ai|s, r′, ᾱ (s, r′)).

When the aggregate strategy ᾱ depends on r, the associated equilibrium exhibits non-

fundamental volatility in the sense that outcomes depend on non-payoff-relevant exogenous

states. When it does not, the associated equilibrium exhibits zero non-fundamental volatility.

By definition, if an equilibrium is s-measurable, it exhibits zero non-fundamental volatility.

However, if an equilibrium is not s-measurable, it could either be that the aggregate strategy

ᾱ is not s-measurable, or that ᾱ is s-measurable but the signal structure νA conditions on r. In

the first of these situations, the economy exhibits non-fundamental volatility.

The second situation is non-generic. If νA conditions on r, then by the mean-consistency

condition (Definition 2) we would generically expect that ᾱ(s, r) depends on r. The special

case in which this would not occur is if, under νA, r influences the higher moments of the

agents’ actions but not the mean action. This case is non-generic, in the sense that by slightly

perturbing the agents’ utility function, we can construct a new game with an equilibrium
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involving an ᾱ function that does depend on r. We discuss this issue in more detail in the

Appendix, Section 10. In what follows, we will treat the question of whether or not the

equilibrium is s-measurable as equivalent to the question of whether or not ᾱ is s-measurable,

which determines whether or not there is non-fundamental volatility.

6.1 Equilibrium Implications of Monotonicity in R

We begin by demonstrating that if the divergence D is monotone in R, an s-measurable

equilibrium (featuring zero non-fundamental volatility) exists.

Monotonicity inR has the implication that if an agent does not care about r per se, only how

it affects ā, then there is no reason for the agent to acquire any information about r. Recall that

in our framework a signal structure ν ∈ VΩ is a conditional distribution. That is, ν (ω|s, r, ā) is

the probability of observing signal ω ∈ Ω conditional on the realization of (s, r, ā).

Let us now define an operator νR : VΩ ×U → VΩ that removes from ν ∈ VΩ the conditioning

of the signal on r, while preserving the probabilities of each ω ∈ Ω conditional on (s, ā),

νR{ν, µ} (ω|s, r, ā) =

∑
r′∈R (ν (ω|s, r′, ā)µ (s, r′, ā))

γR{µ} (s, ā)
∀s ∈ S, ā ∈ Ā s.t. γR{µ} (s, ā) > 0.

From this definition, we can observe immediately that νR{ν, µ} (ω|s, r, ā) = νR{ν, µ} (ω|s, r′, ā)

for all r, r′ ∈ R, which is to say that the signal structure does not condition on r. It also follows

immediately that π{νR{ν, µ}, µ} = π{ν, µ}, which is to say that the unconditional probabilities

of each signal are preserved by this operator.

Our next lemma answers the following question: when is it always less costly (in terms of the

information cost) to avoid conditioning signals on r?

Lemma 2. (i) If the divergence associated with the cost functionCΩ is monotone inR, then for all

priors µ ∈ U and all signal structures ν ∈ VΩ,

CΩ (νR{ν, µ}, µ) ≤ CΩ (ν, µ) .

(ii) If, for all priors µ ∈ U and all signal structures ν ∈ VΩ ,

CΩ (νR{ν, µ}, µ) ≤ CΩ (ν, µ) ,

then the divergence is monotone in R.

Proof. See the appendix, 11.5.

Part (i) of Lemma 2 states that if the divergence is monotone in R, then the minimally-

informative signal structure is also the least-costly. One implication of this result is conditional
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independence: because the agents’ payoff never depends on r conditional on (s, ā), the agent’s

optimal signal ω will be independent of r conditional on (s, ā). Part (ii) of Lemma 2 states the

converse: if removing conditioning on r always reduces information costs, then the divergence

is monotone in R. Put together, Lemma 2 tells us that monotonicity in R is equivalent to

the statement that paying attention to r is always costly. We now use this result to show that

monotonicity in R is sufficient for the existence of s-measurable equilibria.

Proposition 4. If the divergence associated with the cost function CΩ is monotone in R, then an

s-measurable symmetric BNE of the game exists.

Proof. See the appendix, 11.6.

Our proof is essentially a restatement of our existence proof combined with an application of

part (i) of Lemma 2. The key observation is that with monotonicity inR, agents optimally choose

actions that conditional on (s, ā), are independent of r. This is because conditional on (s, ā),

an agent has no reason to acquire information about r: this would only increase the agent’s

information costs with no benefit. As a result, if agents face an s-measurable aggregate action

function ᾱ, they best-respond with a policy whose mean action is indeed s-measurable.

The sufficient conditions in Proposition 4 are in fact stronger than necessary: divergences

need not be R-monotone on all priors. Instead, it suffices for divergences to be R-monotone

only on priors that may occur in an s-measurable equilibrium. Intuitively, only these priors

matter when conjecturing the existence of an s-measurable equilibrium.

To weaken the conditions Proposition 4, we define Us−meas(µ0) ⊆ U to be the set of priors

that may be generated by s-measurable ᾱ given the exogenous prior µ0 ∈ U0,

Us−meas(µ0) =
{
µ ∈ U : ∃ᾱ ∈ Ā s.t. µ = φĀ{µ0, ᾱ} and ᾱ(s, r) = ᾱ(s, r′) ∀s ∈ S, r, r′ ∈ R

}
,

and define Us−meas = ∪µ0∈U0
Us−meas(µ0) as the set of all s-measurable priors. We are now able to

state a version of Proposition 4 demonstrating that monotonicity in R on s-measurable priors

is both necessary and sufficient to ensure the existence of an s-measurable symmetric BNE,

regardless of the utility function.

Proposition 5. An s-measurable symmetric BNE of the game exists for all utility functions u

satisfying Assumption 1 if and only if the divergence associated with the cost function CΩ is

monotone in R on all priors µ ∈ Us−meas(µ0).

Proof. See the appendix, 11.7.

The intuition for this result is essentially the converse of our previous result. With non-

monotonicity in R, there are priors µ ∈ U such that agents optimally choose actions that,

conditional on (s, ā), are not independent of r. This is because even if the agent has no particular
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concern for the value of r, she finds it cheaper to obtain signals correlated with r than to

gather no information about r at all. As a result, each agent best-responds with a policy that,

conditional on (s, ā), varies in r, provided that the agent gathers any information at all.

We conclude that R-monotonicity on s-measurable priors is the key condition that

guarantees zero non-fundamental volatility. When this condition is violated, there are utility

functions that will generate non-fundamental volatility in equilibrium (because an equilibrium

exists by Proposition 3, and it is not s-measurable by Proposition 5).

To further extend our results, we consider cost functions that are generically non-monotone

in R. We define the “opposite” of monotonicity in R, relying on the “only-if” aspect of Lemma

(2). Consider any informative signal structure ν ∈ VΩ
0 that does not condition on r. We will say

that a cost function CΩ is “generically non-monotone in R” if, generically on the set of priors

µ ∈ U , the signal structure ν is not the least-costly of all the signal structures that coarsen to ν,

except at isolated points. Our use of the term generic follows Geanakoplos and Polemarchakis

[1986] and Farhi and Werning [2016].

Definition 8. A cost function CΩ is generically non-monotone in R if, generically on the set µ ∈
Us−meas, for all informative signal structures ν ∈ VΩ

0 such that ν = νR{ν, µ}, there exists a ν ′ ∈ VΩ
0

with ν = νR{ν ′, µ} such that

CΩ
(
ν ′, µ

)
< CΩ (ν, µ) .

We have defined generic non-monotonicity as a property of the cost function CΩ as

opposed to of the divergence purely for convenience. Note that monotonicity and generic

non-monotonicity are not exhaustive classes of cost functions; cost functions might exhibit

monotonicity in R for some priors but not others. We have little to say about whether s-

measurable equilibria will or will not exist in this case.

The reason we need a notion of generic non-monotonicity, as opposed to non-monotonicity

for all priors, is illustrated in our linear-quadratic-Gaussian example with the Fisher information

cost function. In that example, if under the prior s and r are independent, then even with the

Fisher information cost function the equilibrium will have zero non-fundamental volatility. This

situation is non-generic in the sense that even small amounts of correlation between s and rwill

restore the result that the equilibrium features non-fundamental volatility.

Before presenting our result, we need one more definition. We will say that an equilibrium

is deterministic if the aggregate action is constant and agents do not acquire any information.

Definition 9. A symmetric BNE (Definition 3) ξ = {νA, ᾱ} is deterministic if, for all s, s′ ∈ S and

r, r′ ∈ R, ᾱ (s, r) = ᾱ (s′, r′) and νA(ai|s, r, ᾱ (s, r)) = νA(ai|s′, r′, ᾱ (s′, r′)).

As we discussed in our linear-quadratic-Gaussian example, if the costs of acquiring

any information exceed the benefits (which can happen in that example with both mutual

information and Fisher information), there can be equilibria in which no information is
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acquired and the aggregate action is identical in all states. This is also a possibility in

our general game, but as our next result shows, if the cost function is non-monotone in R

and the equilibrium features some information gathering, then it will generically have non-

fundamental volatility.

Proposition 6. If the cost function is generically non-monotone in R on the set of priors Us−meas,
then generically all symmetric BNE of the game are either not s-measurable or are deterministic.

Proof. See the appendix, 11.9.

6.2 Interpretation and Remarks

When do equilibria exhibit non-fundamental volatility? In exogenous information

environments, non-fundamental volatility originates as errors in public signals. Noisy public

signals, or more generally correlated errors in beliefs, are natural components of generic

information structures [Bergemann and Morris, 2013]. In these environments, agents costlessly

observe public signals; as long as public signals contain information about fundamentals,

agents condition their actions on it. As a result, errors in these signals orthogonal to

fundamentals affect equilibrium outcomes.

However, under endogenous information acquisition, what appears to be a rather natural

property to impose on cost structures—monotonicity in R—leads to a surprising and strong

result: zero non-fundamental volatility in equilibrium. That is, if agents have no reason per

se to obtain information about r ∈ R, and paying attention to r only increases costs, then

in equilibrium agents will optimally choose to ignore r. As a result, actions are conditionally

independent of r, and equilibria feature zero non-fundamental volatility. In fact, as we show

in Section 2, mutual information—the typical cost function used in the rational inattention

literature—produces this result.

To break this—to eliminate s-measurable equilibria altogether—we show that one must

break monotonicity in R. If cost functions are non-monotonic in R, then agents pay attention

to r, even conditional on s, ā. And, because the realization of r is common across all agents,

it introduces correlated errors in agents’ actions, resulting in non-fundamental volatility in

equilibrium outcomes.

The variables r ∈ R thereby play the role of “noisy public signals:” they capture the idea

that it is comparatively cheap for agents to observe r as opposed to receiving signals only about

fundamentals s. In fact, note that in the limit in which r is completely costless, they are identical

to costless public signals (e.g. as in the exogenous information case). Away from this limit, the

variables r ∈ R are not costless, but are “salient.”

Our beauty contest example in Section 2 demonstrates that with Fisher information, the

equilibrium generically features non-fundamental volatility. It should now be clear that the

33



underlying reason for why Fisher information and mutual information lead to such different

equilibrium properties is due to this particular difference in cost structure: mutual information

is monotonic in R, while Fisher information is not.

7 Efficiency under Exogenous Information

We next turn to the question of efficiency, and the connection between the cost functions and

informational externalities. To study inefficiencies with endogenous information acquisition,

we must first isolate inefficiencies that may arise in any other aspect of the game. In this section,

we consider a version of the game in which information is incomplete but exogenous. If the

equilibrium is constrained efficient in the game under exogenous information, then agents use

their information efficiently.

We first establish a sufficient condition that ensures the use of information is efficient.

Angeletos and Pavan [2007] provide a related condition in a linear-quadratic setting with one-

dimensional action spaces (like our beauty contest example). Our analysis in this section

generalizes their result to our game, which features multi-dimensional actions and general

payoffs. After we establish that our condition is sufficient, we show that it is also necessary

to guarantee constrained efficiency for all possible priors and signal structures.

In the subsequent section, we assume efficiency in the use of information, and ask what

more is needed to guarantee efficiency in the acquisition of information.

7.1 The Game under Exogenous Information

In the spirit of Lemma 1, we define our game with exogenous information by endowing agents

with a given signal structure νΩ ∈ VΩ
0 . These signal structures are exogenous both in the

sense that agents do not choose them and in the sense that they condition only on exogenous

state variables.20 We formalize the agent’s choice set under exogenous information in a slightly

unusual way, to emphasize the connection between games with exogenous information and

games with endogenous information.

All other features of the game—payoffs, action spaces, exogenous priors–remain the same.

Throughout this section we continue to impose Assumption 1 on action spaces and payoffs.

Because the agent no longer chooses his own signal structure and there are no information

costs, our assumptions on information acquisition costs are not applicable in this section.

20It is well-known that in games with exogenous information structures, allowing for signals about
endogenous objects introduces an informational externality; see e.g. Laffont [1985], Angeletos and Pavan
[2009], Amador and Weill [2010], Vives [2017], Angeletos, Iovino, and La’O [2020]. In order to maintain a
clean benchmark, we abstract from such externalities in this section.
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Choice sets with exogenous signal structures. Recall that any mixed strategy σ : Ω →
∆ (A) and exogenously given signal structure νΩ ∈ VΩ

0 together define a conditional distribution

over actions, νA ∈ VA0 , by (25). In the game with endogenous information, we wrote the agent’s

problem as a choice over his conditional distribution of actions, νA ∈ VA; see Definition 3. In

the exogenous information game, we instead endow the agent with a signal structure νΩ; as a

result, the agent’s only choice is his mixed strategy σ.

But now observe that the mapping σ can be thought of as a “garbling” in the sense of

Blackwell [1953]. That is, the conditional distributions νA that arise from the signals νΩ and

mixed strategies σ are weakly Blackwell-dominated by the conditional distributions νΩ. In fact,

by Blackwell’s theorem, the set of conditional action distributions νA ∈ VA0 that can be feasibly

created by any mixed strategy σ are precisely those that are Blackwell-dominated by νΩ.

For any signal structure νΩ ∈ VΩ
0 , let BA(νΩ) ⊂ VA0 denote the convex subset of conditional

action distributions in VA0 that are Blackwell-dominated by νΩ. In the game with exogenous

information, we can write the agent’s problem as a choice over conditional action distributions

νA ∈ BA(νΩ), given the exogenously endowed signal structure νΩ ∈ VΩ
0 .

7.2 Equilibrium and Efficiency Definitions

We are now in a position to define equilibrium and efficiency with exogenous information. As

in our definition of equilibrium in the original game with endogenous information (Definition

3), we focus on symmetric Nash equilibria in which all agents choose the same action strategy.

Definition 10. (Exogenous information game.) Given a common prior µ0 ∈ U0 and exogenous

signal structure νΩ ∈ VΩ
0 , a symmetric Bayesian Nash equilibrium of the game under exogenous

information is a mean-consistent strategy profile ξ such that agents’ strategies νA ∈ VA0 are best

responses

νA ∈ sup
ν′∈BA(νΩ)

∑
s∈S,r∈R

∫
Ā

[∫
A
u
(
ai, ā, s

)
ν ′
(
ai|s, r, ā

)
dai
]
µ (s, r, ā) dā.

with µ = φĀ{µ0, ᾱ}.

Our equilibrium definition under exogenous information mirrors our equilibrium definition

under endogenous information. In fact, Definitions 10 and 3 are nearly identical—the only

difference is that with endogenous information, agents face a convex cost of information (CA),

whereas with exogenous information, their choice of signal structure is restricted to a convex

set (BA(νΩ)). Viewed from this perspective, the game under exogenous information is not very

different from the game under endogenous information, and our proof of existence applies

almost unchanged.

Proposition 7. A symmetric BNE of the game under exogenous information exists.
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Proof. See the appendix, 11.10.

Having established equilibrium existence, we next consider constrained efficiency. We

define constrained efficiency in this game as the solution to a particular planner’s problem.

Our definition enforces symmetry in strategies as a constraint on the planner, mirroring our

symmetric BNE definition.

Definition 11. (Exogenous information game.) Given a common prior µ0 ∈ U0 and exogenous

signal structure νΩ ∈ VΩ
0 , a symmetric strategy profile ξ∗ = (νA∗, ᾱ∗) is constrained efficient if it

solves

sup
νA∈BA(νΩ),ᾱ∈Ā

∑
s∈S,r∈R

∫
Ā

[∫
A
u
(
ai, ā, s

)
νA
(
ai|s, r, ā

)
dai
]
µ (s, r, ā) dā

subject to µ = φĀ{µ0, ᾱ} and mean-consistency (Definition 2).

Our notion of constrained efficiency follows that in Angeletos and Pavan [2007].21 In our

environment, the planner chooses a mean-consistent symmetric strategy profile ξ in order to

maximize welfare. This planner can tell agents how to use their information, but is constrained

in that she may not endow agents with more information nor transfer information from one

agent to another. The planner therefore treats the convex set BA(νΩ) as a feasibility constraint

on the set of possible strategies.

7.3 A Sufficient Condition for Constrained Efficiency

As already stated, the purpose of this section is to obtain sufficient conditions for efficiency

in the use of information in our setting, as Angeletos and Pavan [2007] have done for linear-

quadratic games. This entails ensuring that no externalities exist in the game under exogenous

information.

A symmetric BNE of the game under exogenous information will not necessarily be

constrained efficient in the sense of Definition 11. Even under complete information, standard

“payoff externalities” may arise in any environment in which agents’ actions affect the payoffs

of others. Classic examples of payoff externalities include pollution, monopolistic competition,

public goods provision, network spillovers (vaccines), etc.22

To understand the source of potential externalities in our game, consider first the special

case in which all agents have complete information, and suppose for expositional purposes

that the utility function is differentiable and all actions are interior. In this case, the first-

order conditions of an individual agent i and the planner with respect to that agent’s action

21See also Radner [1962] and Vives [1988].
22Of course, payoff externalities also do not necessarily lead to inefficiency—as the classic welfare

theorems demonstrate in the case of pecuniary externalities.
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are, respectively,

∂u(·)
∂ai

= 0, and
∂u(·)
∂ai

+

∫
∂u(·)
∂ā

dj = 0, ∀i ∈ [0, 1], s ∈ S.

These first-order conditions are similar except that the planner considers the impact of agent i’s

action on other agents,
∫ ∂u(·)

∂ā dj, whereas the agent does not. This term represents a standard

payoff externality: the effect of agent i’s action on the aggregate action, which in turn affects all

other agents’ payoffs. This effect is not internalized by agent i and is therefore absent from her

first-order condition. Constrained efficiency requires that this term be equal to zero given the

equilibrium actions of the other agents.

Consider the same heuristic argument when agents have incomplete and dispersed

information. In the exogenous information game, the first-order conditions of an individual

agent i and the planner with respect to that agent’s action are, respectively:

E
[
∂u(·)
∂ai

∣∣∣∣ωi] = 0, and E
[
∂u(·)
∂ai

+

∫
∂u(·)
∂ā

dj

∣∣∣∣ωi] = 0, ∀i ∈ [0, 1], ωi ∈ Ω (38)

These conditions are similar to those in the complete information game; again the second

term in the planner’s condition is absent from the agent’s optimality condition. Now, however,

efficiency requires that this condition hold for all possible realizations of the agent’s signal,

ωi ∈ Ω. Thus, in order for the equilibrium to be efficient under exogenous information, there

must be no payoff externalities from the perspective of any agent in the economy conditional

on any realization of his or her signal.

The question, then, is under what circumstances this equation will hold in equilibrium.

Angeletos and Pavan [2007] show that this condition requires more than what is required

for efficiency under complete information. That is, a game can be efficient under complete

information, but inefficient under incomplete and dispersed information. This is because

under complete information, the equilibrium actions of all agents are identical and equal to

the aggregate action. In this case efficiency only requires that the planner’s and the agents’

optimality conditions coincide at the equilibrium aggregate action. With incomplete and

dispersed information, efficiency requires that (38) hold for all signal realizations in equilibrium

given the optimal strategies of agents νA and the associated aggregate action function ᾱ.

With a one-dimensional action space and linear-quadratic payoffs, e.g. as in our beauty

contest example, Angeletos and Pavan [2007] demonstrate that

∂2

∂ai∂ā
u(ai, ā, s) = − ∂2

∂ā2
u(ai, ā, s)

is sufficient to guarantee efficiency under exogenous information.23 Likewise, our main result

in this section provides a sufficient condition for efficiency with exogenous information to hold

23In the context of our beauty contest game in Section 2, this condition holds for the quadratic payoff
function in (1).
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given a utility function u defined on an action space A and set of fundamental states S, for all

finite sets R, priors µ0 ∈ U0, and signal structures νΩ ∈ VΩ
0 .

Proposition 8. Suppose there exists a functionG : Ā× S → R and a function g : A× S → R such

that

u(ai, ā, s) = g(ai; s) +G(ā; s) + (ai − ā) · ∇G(ā; s), (39)

where ∇G(ā; s) denotes the gradient of G with respect to its first argument, and that u satisfies

Assumption 1.24 Then there exists a symmetric BNE with exogenous signals (Definition 10) that is

constrained efficient (Definition 11).

Proof. See the appendix, 11.11.

The proof of sufficiency is relatively straightforward. The first-derivative of the payoff

function in (39) with respect to ā is given by

∂u (·)
∂ā

= H(G(ā; s))(ai − ā).

where H(G(·)) is the Hessian matrix of second-order partial derivatives of G. Integrating

this expression across agents results in a gradient of zero, as required by (38). It is also

immediately apparent from this expression that, if u were quadratic and the action space were

one-dimensional (so that H(G(ā; s)) is a constant), then our condition would reduce to the

Angeletos and Pavan [2007] condition.

Note that condition (39) is a condition on payoffs u alone; it is sufficient for constrained

efficiency with exogenous information regardless of the details of the information structure.

Note also that the convexity or concavity of G determines whether this functional form exhibits

strategic complementarity of substitutability. For example, in the one-dimensional context, ifG

is convex, then∇G is increasing in ā, and larger actions a become preferable as ā increases.

Armed with this result, we now know how to “shut down” these externalities, so as to isolate

externalities arising from information acquisition in our game with endogenous information—

the focus of our following section. Prior to that, however, we will show that our condition is not

only sufficient but in a certain sense necessary to guarantee constrained efficiency.

7.4 A Necessary Condition for Constrained Efficiency

In this sub-section, we demonstrate that the functional form described in Proposition 8

is necessary for constrained efficiency to hold regardless of the details of the information

structure, within a large class of utility functions.

24That is, g is continuously differentiable on A for all s ∈ S, and G is continuously twice-differentiable
on Ā for all s ∈ S.
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To simplify our analysis, we focus on payoffs that are concave in ā; this is equivalent under

the functional form of (39) (and in Angeletos and Pavan [2007]) to assuming weak strategic

complementarity. The class of utility functions we consider in this sub-section is the set of

strictly concave and sufficiently smooth utility functions that guarantee optimal actions on

the interior of A. The two assumptions below formalize the properties of this class of utility

functions.

Assumption 5. For all s ∈ S, the utility function u(ai, ā, s) is strictly concave and continuously

twice-differentiable on (ai, ā).

Assumption 6. There exists a set A∗ in the relative interior of A such that for all a′ ∈ A \ A∗ there

exists an a ∈ A∗ satisfying u(a, ā, s) > u(a′, ā, s) ∀s ∈ S, ā ∈ Ā.

The utility function in our beauty contest fall into this class given any finite set S, for a

sufficiently large action space A. That is, at some point, actions are so far from optimal given

any exogenous state that they are dominated regardless of what the other agents do. As a

result, in any equilibrium, actions are guaranteed to be interior. To understand why we want to

ensure that optimal actions are interior, observe that if they are not, allocations can be efficient

despite the presence of externalities. For example, an excessive incentive for private agents to

consume gasoline does not lead to inefficiency if the planner would choose maximal gasoline

consumption anyways.

Our necessity result shows that, if we are given a set S, action space A, and utility function

u satisfying Assumptions 1, 5, and 6, and are furthermore told that for all finite sets R, priors

µ0 ∈ U0, and signals νΩ ∈ VΩ
0 , there is a constrained efficient symmetric BNE, then the utility

function must satisfy (39) on the relevant part of its domain. To understand this last qualifier,

let us suppose we are given such a utility function u, and let us define given this utility function

the set Ace ⊂ A of actions that occur in some constrained efficient symmetric BNE. That is, if

a ∈ Ace, there is some (R,µ0, ν
Ω) such that in a constrained efficient symmetric BNE this action

occurs with positive probability.

Let us now consider a different utility function ũ, with the property that ũ(ai, ā, s) = u(ai, ā, s)

for all ai ∈ Ace, ā ∈ Ā, and s ∈ S, and ũ(ai, ā, s) < u(ai, ā, s) otherwise. It is immediately apparent

that the set of constrained efficient symmetric BNE given ũ is identical to the set of constrained

efficient symmetric BNE given u, because all we have done is make socially sub-optimal actions

even worse. Consequently the set of actionsAce is identical for the two utility functions, and if u

guarantees constrained efficiency, so does ũ.

What we learn from this example is that it cannot be necessary for u to satisfy (39) on all of its

domain to guarantee constrained efficiency. Instead, we will show thatAce is a convex subset of

A, and that it is necessary for u to satisfy (39) onAce×Ace×S to guarantee constrained efficiency.

We begin by formally defining Ace.
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Definition 12. Fix a set S, action space A, and utility function u. An action a ∈ A is an element

of the set Ace if there exists a finite set R, prior µ0 ∈ U0, and signal structure νΩ ∈ VΩ
0 such that a

constrained efficient symmetric BNE (νA, ᾱ) exists with νA(a|s, r, ᾱ(s, r)) > 0 for some s ∈ S, r ∈ R
with µ0(s, r) > 0.

That is, a ∈ Ace if there is some situation that rationalizes this action in some circumstances

as part of a constrained efficient equilibrium. Armed with this definition, we provide our

necessary condition to guarantee constrained efficiency with exogenous signals.

Proposition 9. Take as given the set of fundamental states S, action space A, and a utility

function u satisfying Assumptions 1, 5, and 6. If for all finite sets R, priors µ0 ∈ U0 and signal

structures νΩ ∈ VΩ
0 there exists a constrained efficient symmetric BNE, then u(ai, ā, s) satisfies (39)

for some functions g,G on all (ai, ā, s) ∈ Ace ×Ace × S, with G twice-differentiable and convex.

Proof. See the appendix, 11.12.

Condition (39) is therefore both sufficient and necessary to guarantee efficiency in the use

of information. Let us now assume it, and ask what more is required to guarantee efficiency in

the acquisition of information.

8 Efficiency under Endogenous Information

We now return to the original game with endogenous information acquisition as described in

Section 3. In addition to Assumption 1 on action spaces and payoffs, we reinstate Assumptions

2-4 on the costs of information acquisition. We define constrained efficiency as the solution to

a certain planner’s problem in this setting as follows.

Definition 13. Given a common prior µ0 ∈ U0, a symmetric strategy profile ξ∗ = (νA∗, ᾱ∗) is

constrained efficient if it solves

sup
νA∈VA,ᾱ∈Ā

∑
s∈S,r∈R

∫
Ā

[∫
A
u
(
ai, ā, s

)
νA
(
ai|s, r, ā

)
dai
]
µ (s, r, ā) dā− CA

(
νA, µ

)
subject to µ = φĀ{µ0, ᾱ} and mean-consistency (Definition 2).

Our definition of constrained efficiency under endogenous information mirrors our

definition of constrained efficiency under exogenous information, but with a convex cost on

νA in the place of a restriction to a convex set. This cost enters the planner’s problem; that is,

the planner acknowledges that the agents face information acquisition costs.

The distinction between exogenous and endogenous information games in our context

makes clear why, at least potentially, a new externality may arise in the game with endogenous
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information acquisition. In the exogenous information game, agents strategies’ could affect

other agents only through payoffs. This was by construction: each agent’s convex set BA(νΩ)

of strategies was independent of other agents’ actions.25 In contrast, in the endogenous

information game, the cost functionCA can in general depend on the aggregate action function

ᾱ. This is true even though it is without loss of generality for agents to choose signals about

exogenous states only (νA ∈ VA0 ), as discussed in Section 3. This dependence opens the door

to externalities in the acquisition of information: agents may not internalize how their own

strategy affects the information acquisition costs of others. In what follows, we derive under

what conditions such an externality can arise.

8.1 Efficiency in the Acquisition of Information

In order for there to be inefficiency in the acquisition of information, there must be an

externality by which the actions of one agent affect the welfare of others. In our framework,

such an externality can exist only via the the aggregate action function ᾱ.26 Recall our definition

of posterior-separable cost functions CA in (23), and note that in what follows we will use the

action space A as the signal alphabet, to align our results with our definitions of equilibrium

and constrained efficiency. In principle, CA can vary with the aggregate action function ᾱ via

both the unconditional signal probabilities π{νA, µ} and the divergence D.

However, Lemma 1 shows that it is without loss of generality to assume that νA ∈ VA0 ,

meaning that νA does not in fact condition on ā. As a result, the distribution of ā does not

affect the unconditional signal probabilities holding fixed such a signal structure, meaning that

for all µ0 ∈ U0, νA ∈ VA0 , and ᾱ, ᾱ′ ∈ Ā,

π{νA, φĀ{µ0, ᾱ}} = π{νA, φĀ{µ0, ᾱ
′}}.

Moreover, νA ∈ VA0 has implications for the structure of the posteriors. Let µ = φĀ{µ0, ᾱ},
and observe that the posterior after receiving the signal recommending action a ∈ A, µa ∈ U , is,

for an arbitrary ā0 ∈ Ā,

µa{νA, µ}(s, r, ā) =
νA (a|s, r, ā0)µ0 (s, r) δ(ā− ᾱ(s, r))

π{νA, µ} (a)
,

and therefore satisfies, for all all µ ∈ U and νA ∈ VA0 ,

µa{νA, µ} = ηĀ{µa{νA, µ}, µ}
25This was due to the assumption that νΩ ∈ VΩ

0 . If this were not the case, then this set would in general
vary with the aggregate action function ᾱ, as it does in Laffont [1985], Angeletos and Pavan [2009], Amador
and Weill [2010], Vives [2017], Angeletos, Iovino, and La’O [2020].

26As discussed in our beauty contest example, our framework precludes the possibility that the cross-
sectional dispersion of actions affects agents’ payoffs. This channel is the central focus of Colombo,
Femminis, and Pavan [2014]; we abstract from it here.
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where ηĀ is the composition of a coarsening and embedding we used to define invariance with

respect to Ā (see (36) and Definition 6). That is, the conditional distribution of ā given (s, r)

under the posterior µa is the same as the conditional distribution under the prior µ.

From this observation, it is a small step to show that, if D is invariant with respect to

Ā and νA ∈ VA0 , changing ᾱ does not change the divergence between the posterior and

prior. Consequently, in this case, ᾱ does not change the information cost. Conversely, if the

information cost is unaffected by ᾱ regardless of the values of νA ∈ VA0 and µ0 ∈ U0, it must be

the case that the divergenceD is invariant in Ā . The following lemma summarizes these results.

Lemma 3. (i) If the divergence associated with the cost function CA is invariant in Ā, then for all

priors µ0 ∈ U0 and all signal structures νA ∈ VA0 , and all ᾱ, ᾱ′ ∈ Ā,

CA
(
νA, φĀ{µ0, ᾱ}

)
= CA

(
νA, φĀ{µ0, ᾱ

′}
)
.

(ii) If, for all priors µ0 ∈ U0 and all signal structures νA ∈ VA0 , and all ᾱ, ᾱ′ ∈ Ā,

CA
(
νA, φĀ{µ0, ᾱ}

)
= CA

(
νA, φĀ{µ0, ᾱ

′}
)
,

then the divergence is invariant in Ā.

Proof. See the appendix, 11.14.

Thus, if the divergence associated with the cost function is invariant with respect to Ā,

then there is no channel by which agents’ actions affect another agents’ cost of information.

Consequently, if the game is constrained efficient under exogenous information (which we

guarantee by assuming (39) holds), it will also be constrained efficient under endogenous

information acquisition.

Proposition 10. In the game with endogenous information, a constrained-efficient symmetric

BNE exists if u satisfies the conditions of Proposition 8 and the divergence D is invariant with

respect to Ā. There exists a convex function Ḡ : Ā → R, which is determined by g and CA, such

that if the function

Ḡ(ᾱ)−
∑

s∈S,r∈R
µ0(s, r)G(ᾱ(s, r); s)

is convex (where g andG are defined as in Proposition 8), then all symmetric BNE are constrained

efficient.

Proof. See the appendix, 11.15.

Proposition 10 provides sufficient conditions under which a constrained efficient

equilibrium exists in the game with endogenous information. If the game is efficient under

exogenous information, and if agents have cost functions with associated divergences that are
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invariant with respect to Ā, then there are no externalities related to the cost of information

acquisition.

Our proof of Proposition 10 shows something stronger: that all symmetric BNE are critical

points of the planner’s problem. If strategic complementarities are not too strong (G is not too

convex), then the social planner’s problem is concave, and consequently all symmetric BNE are

maximizers, and hence constrained efficient. The requirement that strategic complementarities

not be too strong is the analog of our assumption that β < 1 in our beauty contest example. Note

also that even in games of complete information, with strong strategic complementarities, there

are in general multiple Pareto-ranked equilibria.

A related result appears in work by Angeletos and Sastry [2019], who study constrained

efficiency of equilibria in a Walrasian setting. Angeletos and Sastry [2019] consider two cases:

one in which agents can track only the exogenous state, and one in which agents can also track

endogenous prices. They show that the two cases are equivalent, and equivalent to the planner’s

problem they consider (which is different than our planner’s problem), if agents’ information

costs are invariant in the standard sense (e.g. as in mutual information). The condition we offer

in Proposition 10 is weaker than the invariance condition in Angeletos and Sastry [2019] as it

only imposes invariance with respect to embeddings in Ā, rather than all possible embeddings.

This is a useful distinction in our setting when considering necessity, which we turn to next.

8.2 Inefficiency in Information Acquisition.

We begin by defining a notion of generic non-invariance. Loosely speaking, a cost function is

generically non-variant with respect to Ā if perturbations to the aggregate strategy affect the

cost of information.

Definition 14. A cost function CΩ is generically non-invariant with respect to Ā at µ0 ∈ U0 if,

for all (νΩ ∈ VΩ
0 , ᾱ ∈ Ā) except possibly at a set of isolated points, there exists an ωj ∈ Ω with

∑
s∈S,r∈R

νΩ
(
ωj |s, r, ā0

)
∇ᾱ{CΩ

(
νΩ, φĀ{µ0, ᾱ}

)
}(s, r) 6= ~0

With generic non-invariance with respect to Ā, there is an interaction between agent’s

actions and other agents’ cost of information. Our necessity result shows that this leads

to inefficiency generically in the space of utility functions that would otherwise guarantee

efficiency under exogenous information. As in our necessity proof in the exogenous information

case, it is convenient to impose an assumption that guarantees interior actions (Assumption 6).

Proposition 11. Fix the sets S, R, and A, and let CΩ be a cost function that is generically non-

invariant with respect to Ā at the prior µ0 ∈ U0. Generically on the space of utility functions u

satisfying Assumptions 1 and 6 and the sufficient conditions of Proposition 8, all symmetric BNE

are either deterministic or not constrained-efficient.
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Proof. See the appendix, 11.16.

Even when the game is efficient under exogenous information, an externality arises in the

endogenous information game if the cost function is non-invariant in Ā. When agents choose

how their conditional distribution of actions correlates with the exogenous states and other

agents’ actions, they affect the conditional distribution of the aggregate action. If the cost

function is generically non-invariant in Ā, then the equilibrium conditional distribution of the

aggregate action affects all agents’ information acquisition costs. Agents do not internalize this

information cost effect, and as a result, the equilibrium is inefficient.

In this case the planner chooses a different signal structure than the one that arises in

equilibrium—one that instead internalizes the aforementioned information cost externality. In

contrast, if the agents’ cost structures are invariant with respect to Ā, then no such externality

arises, and the planner’s solution coincides with the equilibrium strategy profile.

Our formulation of this proposition side-steps the issue of deterministic equilibria

(Definition 9), which also arose in our analysis of non-fundamental volatility. In a deterministic

equilibrium, agents do not gather information, and consequently their information costs are

zero. As a result, if both the planner and the agents are at this corner, there is no externality

even if the cost function is generically non-invariant.

8.3 Interpretation and Remarks

Does efficiency under exogenous information imply efficiency under endogenous information

acquisition? In our game, the answer is no. Propositions 10 and 11 demonstrate that efficiency

under endogenous information requires an extra condition on information costs: namely,

invariance with respect to Ā.

This condition arises from the influence that agents’ actions have on other agents’

information costs. Such a channel is natural if we imagine that agents learn in part by observing

other agents’ actions; in this case, it is intuitive to suppose that some actions reveal more

information than other actions.

With exogenous signals, which we interpret as restricting conditional action distributions to

a convex set, the importance of the distinction between signals about exogenous states and

signals about endogenous objects has been highlighted in several papers; see, e.g. Laffont

[1985], Angeletos and Pavan [2009], Amador and Weill [2010], Vives [2017], Angeletos, Iovino,

and La’O [2020]. When agents receive exogenous signals about endogenous objects, an

information-aggregation externality arises: agents do not take into account how their own use of

information affects the information content of these signals. In these environments, the planner

may wish for agents to use their information in a way that differs from what is privately-optimal,

in order to improve the aggregation of information in the endogenous signals.
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With endogenous acquisition of information, these issues are subtler. Many authors in the

literature have assumed both that agents can only acquire signals about exogenous states and

that the cost of such signals does not depend on the actions of other agents. That is, they have

implicitly assumed invariance with respect to Ā. Our analysis makes clear that by doing so,

one is effectively substituting a fixed convex set (the exogenous signals case) with a convex cost

function invariant with respect to Ā. We show that this in and of itself unsurprisingly does not

alter whether the game is efficient or inefficient. Put simply, in this context, efficiency in the

use of information automatically implies efficiency in the acquisition of information. Although

this result may not be not well-known in this literature, it has been shown in some specific

contexts.27

Our results offer a different perspective. Assuming that agents receive signals that condition

only on exogenous states is without loss of generality (Lemma 1), but it does not imply that

agents are not “learning about the actions of others” because those actions are in equilibrium

a deterministic function of the exogenous states. Put another way, when the prior µ ∈ U over

exogenous states and endogenous outcomes is degenerate, and it always is in our framework,

which variables the signal structure conditions on cannot be interpreted as describing what

the agent is paying attention to. Instead, it is the invariance or lack thereof of the information

cost with respect to Ā that describes whether agents are attending to the exogenous state,

endogenous outcomes, or some combination thereof. Moreover, it is this condition that

determines the constrained efficiency properties of equilibria.

9 Conclusion

In this paper, we have explored the relationship between information cost functions

and the properties of equilibria in large games with strategic interaction and rationally

inattentive agents. Under the assumption of posterior separability, we have demonstrated the

close connection between certain properties of information cost functions—namely, partial

monotonicity and partial invariance—and whether or not the equilibrium is efficient/exhibits

non-fundamental volatility. We have interpreted these forms of invariance as describing

whether or not it is possible to learn directly about the actions of others and whether or not

public signals are available to the agent.

Efficiency holds only when cost functions are invariant in endogenous actions and when

there are no externalities under exogenous information. The class of utility functions that

rules out externalities under exogenous information has a particular functional form; this form

generalizes the characterization of Angeletos and Pavan [2007] to games that are not necessarily

27See e.g. Online Appendix A of Angeletos and La’O [2020], the analysis in Angeletos and Sastry [2019]
of non-price-tracking economies, or the analysis of Colombo, Femminis, and Pavan [2014] when action
dispersion does not enter payoffs.
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linear-quadratic. Non-fundamental volatility exists when information costs are non-monotone

in payoff-irrelevant dimensions of the exogenous state space. The standard rational inattention

cost function, mutual information, leads to both efficiency and zero non-fundamental volatility.

In contrast, Fisher information, an alternative cost function proposed by Hébert and Woodford

[2020], leads to both non-fundamental volatility and inefficiency.
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10 Non-s-Measurability and Generic Non-Fundamental
Volatility

Let us suppose that, given some utility function u satisfying Assumption 1 and divergence D

satisfying our assumptions on information costs, there exists an equilibrium (νA, ᾱ) that is not

s-measurable (Definition 7), but satisfies ᾱ(s, r) = ᾱ(s, r′) for all s ∈ S and r, r′ ∈ R. By Lemma

1, it is without loss of generality to suppose that νA ∈ VA0 .

Let us now define a sequence of functions fε : A → A with the following properties: fε(a)

is strictly increasing and differentiable in each dimension of A ⊂ RL, strictly convex in a for

all ε > 0, and satisfies limε→0+ fε(a) = a for all a ∈ A. Observe that each of these functions is

invertible. Given such a sequence of functions, define the utility functions

uε(a
′, āε(s, r), s) = u(f−1

ε (a′), ᾱ(s, r), s) ∀s ∈ S, r ∈ R, a′ ∈ A,

where, for some ā0 ∈ Ā,

āε(s, r) =

∫
A
a′νA(f−1

ε (a′)|s, r, ā0)da′.
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By construction, this ᾱε and νAε (a′|s, r, ā′) = νA(f−1
ε (a′)|s, r, ā0) are an equilibrium of the game

with the game with the uε utility functions.

But now observe that we can rewrite āε as

āε(s, r) =

∫
A
fε(a

′)νA(a|s, r, ā0)da′.

Because the higher moments of the distribution of a given (s, r) depend on r under νA, we can

find a sequence of functions such that, for some arbitrary s, āε(s, r) 6= āε(s, r
′) for all ε > 0 and

r 6= r′.

We conclude that the case in which the equilibrium is not s-measurable but the economy

nevertheless exhibits zero non-fundamental volatility is non-generic, in the sense that arbitrary

perturbations to the utility function will generate non-fundamental volatility in this case.

11 Appendix A: Proofs

11.1 Proof of Proposition 1

The problems defined by (7), (8), and (10) follow from the results of Hébert and Woodford [2020].

We first derive (9) and (11).

By the Sherman-Morrison lemma and (7),

ψTΣω(λ, σ)ψ = ψTΣψ − σ−2 (ψTΣλ)2

1 + σ−2λTΣλ
.

Using (7) and the matrix determinant lemma,

det((Σω(λ, σ))−1) = (1 + σ−2λTΣλ) det(Σ−1),

and therefore with mutual information, using,

ln(det((Σω(λ, σ))−1))− ln(det(Σ−1)) = ln(1 + σ−2λTΣλ).

With Fisher information, using (7),

tr((Σω(λ, σ))−1)− tr(Σ−1) = tr(σ−2λλT )

= σ−2|λ|2.

Note that in what follows we will assume (σ∗)−2 > 0 (i.e. that the agents acquire information).

With mutual information, the agents will never find it optimal to choose σ∗ = 0, and we will

show below that this is also true with the Fisher information cost.
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The optimal action with mutual information described by (6) follows from standard

Bayesian updating (the fact that λ = ψ is known in the literature, and follows from the first-

order condition of (9)). In this case,

α∗ =
(σ∗)−2λTΣλ

(σ∗)−2λTΣλ+ 1
< 1.

We can rewrite (9) as

max
α∗∈[0,1]

−(ψTΣψ)α∗ − θ ln(1− α∗),

noting that α∗ = 1 will never be optimal. The first order condition yields

θ

1− α∗
− (ψTΣψ) ≤ 0, (40)

with equality if α∗ > 0. We conclude that α∗ is continuous in ψ.

From Hébert and Woodford [2020], the optimal action with Fisher information described by

(6) simplifies to

α∗ = θ
1

2 |ψ|(σ∗)−2.

This could also be derived from the first-order condition characterizing λ∗. Note here that our

normalization of λ and σ is different from the one used in Hébert and Woodford [2020]. Let the

Hébert and Woodford [2020] parameters be λ̂ = |ψ|−1θ−
1

2λ and σ̂ = |ψ|−1θ−
1

2σ, noting that a

factor of two is omitted due to a difference in the definition of θ. The above equation follows

from Hébert and Woodford [2020] and

λ̂(σ̂)−2 = |ψ|θ
1

2λσ−2.

The optimal value of (σ∗)−2 satisfies, by Hébert and Woodford [2020],

|(Σ−1 + θ−1σ̂−2I)−1ψ|2 ≤ θ,

with equality if the signal is informative. If the signal is informative, this is

|(Σ−1 + |ψ|2(σ∗)−2I)−1ψ|2 = θ,

or

|(Σ−1 + θ−
1

2 |ψ|α∗I)−1ψ|2 = θ (41)

It follows that

|(θ−
1

2 |ψ|α∗I)−1ψ|2 > θ,

which is

α∗ < 1.

If the signal is uninformative, α∗ = 0. It follows that α∗ is continuous in ψ.
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Equilibrium requires that

ψ = (1− β)e1 + βα∗λ∗,

where e1 =

[
1
0

]
. For both mutual information and Fisher information, α∗ and λ∗ are continuous

in ψ under the optimal policies. It follows that this equation can be understood as a continuous

fixed point problem in ψ. Because α∗ < 1 in both cases and β ∈ (0, 1), this fixed point problem

defines a mapping from the unit sphere to the unit sphere. By Brouwer’s fixed point theorem,

a fixed point exists, and this fixed point characterizes an equilibrium of our linear-quadratic

game.

In the case of mutual information, the fixed point satisfies

ψ = (1− β)e1 + βα∗ψ,

and it immediately follows that the second element of ψ (ᾱr) must be zero.

In the case of the Fisher information cost, from Hébert and Woodford [2020] we have

(assuming some information is gathered)

λ̂ = (θΣ−1 + (σ̂)−2I)−1ψ, (42)

where I is the identify matrix. Note that this could also be derived from the first-order condition

of (10).

It follows immediately that ᾱr = 0 cannot be a fixed point if r and s are correlated, provided

that some information is gathered. If it were, we would require that the second element ofψ was

zero, and hence that the second element of λ is zero. But the off-diagonal element

(θΣ−1 + (σ̂)−2I)−1

will be zero if and only if r and s have zero correlation under Σ.

No information will be gathered with the Fisher information cost if |Σψ| ≤ θ. In this case, we

must have ψ = (1−β)e1, and therefore a sufficient condition to ensure information gathering is

|Σe1| >
θ

1− β
.

11.2 Proof of Proposition 2

With the degenerate covariance matrix Σ = σ2
0χχ

T , we can simplify (9) and (11). Conjecture that

χTλ 6= 0, so that our normalization is innocuous. In this case, we have

ψTΣψ − σ−2 (ψTΣλ)2

1 + σ−2λTΣλ
= σ2

0(ψTχ)2 − σ−2 σ
4
0(ψTχ)2

1 + σ2
0σ
−2
,
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which does not depend on λ. In the mutual information case,

C(σ) = θ ln(1 + σ−2λTΣλ) = θ ln(1 + σ2
0σ
−2),

as stated in the text. Hence it follows that the choice of λ is irrelevant in this case, and it is

without loss of generality to assume λ ∝ ψ (which is the limit from the non-degenerate case).

With the Fisher information cost, the agent solves

C(σ) = min
λ:χTλ=1

θσ−2|λ|2,

which is λ = |χ|−2χ. Note that this is also the limit of the non-degenerate case (as can be seen

from (12) or the explicit solution in (42)). Plugging this into the cost yields

C(σ, ᾱs) = θσ−2|χ|−2

= θσ−2(1 + ᾱ2
s)
−1.

Let us consider the fixed point that defines equilibrium. We have (as in the text)

ā = ᾱss = α∗(λ∗)Tx = α∗(λ∗)Tχs,

and therefore by our normalization

ᾱs = α∗ ∈ [0, 1).

By equations (40) and (41) in the proof of Proposition 1, α∗ is continuous in χ. This implies

equilibrium existence with either cost function. That is, given a ᾱs ∈ [0, 1], there exists a best

response α∗ ∈ [0, 1], continuous in ᾱs, and therefore by Brouwer’s fixed point theorem a fixed

point exists. A sufficient condition for the Fisher information case to involve information-

gathering is, from Hébert and Woodford [2020], |Σψ| > θ. To rule out equilibrium in which

ᾱs = 0, it is therefore sufficient to assume

σ2
0 >

θ

1− β
.

By the argument in the text (i.e. that the social planner would choose a mean-consistent ᾱs
even if not required to), in the mutual information case the planner solves

max
σ≥0,ᾱs∈R

V (σ, ᾱs)− C(σ),

which is also an equilibrium of the problem in which the agents solve

max
σ≥0

V (σ, ᾱs)− C(σ)
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and ᾱs is determined by mean-consistency. Observe also that by the definition of the utility

function, (1), V (σ, ᾱs) is strictly concave in ᾱs and diverges to negative infinity as ᾱs diverges.

Therefore, a maximizer exists and is unique. It follows immediately that in the mutual

information case, assuming it is optimal to choose a finite σ (gather some information), a

solution exists and is also an equilibrium. Note that our normalization was without loss of

generality, as

χTλ ∝ χTψ = 1− β + βᾱ∗ > 0.

Now consider the Fisher information cost case. In any equilibrium (σ′, ᾱ′s), we must satisfy

mean-consistency. It follows that, assuming (σ′)−2 > 0,

∂

∂ᾱs
[V (σ′, ᾱs)− C(σ, ᾱs)]|ᾱs=ᾱ′s = 2θ(σ′)−2(1 + (ᾱ′s)

2)−2(ᾱ′s).

Hence the equilibrium will be the solution to the planner’s problem if and only if ᾱ′s = 0, but for

θ sufficiently small, ᾱs > 0.

11.3 Proof of Lemma 1

We begin with the following observation: suppose that for some ν, ν ′ ∈ VA and aggregate action

function ᾱ ∈ Ā,

ν(ω|s, r, ᾱ(s, r)) = ν ′(ω|s, r, ᾱ(s, r)).

for all (s, r) ∈ S ×R, and ω ∈ Ω. It immediately follows by (20) and (21) that

π{ν, µ} (ω) =
∑

s∈S,r∈R

∫
Ā
ν (ω|s, r, ā)µ0 (s, r) δ (ā− ᾱ (s, r)) dā

=
∑

s∈S,r∈R
ν (ω|s, r, ᾱ (s, r))µ0 (s, r)

=
∑

s∈S,r∈R
ν ′ (ω|s, r, ᾱ (s, r))µ0 (s, r)

= π{ν ′, µ}.

Similarly, by (20) and (22),

µω{ν, µ} (s, r, ā) =
ν (ω|s, r, ā)µ0 (s, r) δ (ā− ᾱ (s, r))

π{ν, µ} (ω)

=
ν (ω|s, r, ᾱ (s, r))µ0 (s, r) δ (ā− ᾱ (s, r))

π{ν, µ} (ω)

= µω{ν ′, µ} (s, r, ā) .
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11.4 Proof of Proposition 3

Invoking the results of Lemma 1, it is without loss of generality to assume that νA ∈ VA0 .

By the finiteness of S×R and by the compactness forA (Assumption 1), the set VA0 is a finite

set of measures on the compact subsets of RL (i.e. A). Consequently, by Prokhorov’s theorem,

using the topology of weak convergence, VA0 is compact. Therefore, maxima exist; note also that

VA0 is non-empty and does not depend on ᾱ.

Individual optimality requires that

νA ∈ max
ν∈VA0

∑
s∈S,r∈R

∫
Ā

[∫
Ai
ui
(
aj , ā, s

)
ν
(
aj |s, r, ā

)
daj
]
µ (s, r, ā) dā

− CA (ν, µ) ,

where µ = φĀ{µ0, ᾱ} as defined in (20), and mean consistency requires that∫
Ai
ajνA(aj |s, r, ᾱi (s, r))daj = ᾱi (s, r) ∀s ∈ S, r ∈ R s.t. µ0 (s, r) > 0.

We apply the Theorem of the Maximum and Kakutani’s fixed point theorem in the usual

fashion. Observe by continuity of u (Assumption 1), and by continuity ofC (Assumption 3), that

the objective function of the individual agent’s problem is continuous in (ν, ᾱ). Consequently,

we can invoke the theorem of the maximum. It follows that the agent’s optimal policy

correspondence A∗ : Ā ⇒ VA0 is non-empty, upper semi-continuous, and compact-valued.

By the concavity of the objective function (due the convexity of the cost function, Assumption

2), the optimal policy correspondence is convex.

Recall that Ā is the set of possible aggregate actions ᾱ : S×R→ Ā. Let ā0 ∈ Ā be an arbitrary

value in Ā. Define the function f : VA0 → Ā by

f(ν) =

∫
A
aiν(aj |s, r, ā0)daj .

Observe that f is continuous and linear in ν, and does not in fact depend on ā0 for ν ∈ VA0 .

Define the correspondence F : Ā ⇒ Ā by composing the correspondences A∗ and the

function f ,

F (ᾱ) = f(A∗(ᾱ)).

By the upper semi-continuity of A∗ and continuity of f , F is upper semi-continuous. By the

non-emptiness ofA∗, F is non-empty. By the convexity ofA∗ and the linearity of f , F is convex.

By the finiteness of S × R and the fact that Ā ⊆ RL, Ā is isomorphic to a subset of

R|S|×|R|×L. Consequently, by Kakutani’s fixed point theorem, there exists a fixed point of the

correspondence F . This fixed point ᾱ∗, along with the best response A∗(ᾱ∗) ∈ VA0 , constitute a

symmetric BNE.
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11.5 Proof of Lemma 2

Part (i). By definition,

νR{ν, µ}(ω|s, r, ā) =

∑
r′∈R (ν (ω|s, r′, ā)µ (s, r′, ā))

γR{µ} (s, ā)
, ∀s ∈ S, r ∈ R, ā ∈ Ā, ω ∈ Ω

and observe that this signal structure does not condition on r.

Given this signal structure, the unconditional probability of observing ω ∈ Ω satisfies

π{νR{ν, µ}, µ} (ω) =
∑

s∈S,r∈R

∫
Ā
νR{ν, µ}(s, r, ā)µ(s, r, ā)dā

=
∑
s∈S

∫
Ā
νR{ν, µ}{s, ā}γR{µ}(s, ā)dā

=
∑

s∈S,r∈R

∫
Ā
ν
(
ω|s, r′, ā

)
µ
(
s, r′, ā

)
dā

and therefore

π{ν, µ} = π{νR{ν, µ}, µ}, ∀ν ∈ VΩ, µ ∈ U . (43)

Let µω′ ≡ µω{νR{ν, µ}, µ}, which is

µω′(s, r, ā) =
νR{ν, µ} (ω|s, r, ā)µ (s, r, ā)

π{νR{ν, µ}, µ} (ω)
,

and note that for all ω ∈ Ω,

γR{µω′} (s, ā) =

∑
r∈R νR{ν, µ} (ω|s, r, ā)µ (s, r, ā)

π{νR{ν, µ}, µ} (ω)

=

∑
r∈R ν (ω|s, r, ā)µ (s, r′, ā)

π{ν, µ} (ω)

= γR{µω} (s, ā)

=
νR{ν, µ} (ω|s, r′, ā) γR{µ} (s, ā)

π{νR{ν, µ}, µ} (ω)
∀r′ ∈ R,

where the last equality follows from the fact that νR{ν, µ} (ω|s, r′, ā) does not condition on r.

We now apply the composition operator ηR : U × U → U defined in (31). This operation that

coarsens its first argument in r, then embeds using the conditional distribution of its second

argument. Applying this operator to µω, we have

ηR{µω, µ} (s, r, ā) =
µ (s, r, ā)

γR{µ} (s, ā)
γR{µω} (s, ā) ,

and therefore

ηR{µω, µ} (s, r, ā) =
µ (s, r, ā)

γR{µ} (s, ā)
γR{µω′} (s, ā)

=
νR{ν, µ} (ω|s, r, ā)µ (s, r, ā)

π{νR{ν, µ}, µ} (ω)

= µω′(s, r, ā).
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By R-monotonicity,

D (µω||µ) ≥ D (ηR{µω, µ}||µ) = D
(
µω′||µ

)
,

and combining this with (43), we conclude that

CΩ
(
ν ′, µ

)
≥ CΩ (νR{ν, µ}, µ) ,

as required.

Part (ii). We prove the “only if” by contradiction. Suppose there exists µ0, µ1 ∈ U with

γR {µ1} � γR {µ0} such that

D (µ1||µ0) < D (ηR{µ1, µ0}||µ0) .

Define Ω = {ω1, ω2} and define, for ε > 0 sufficiently small, the signal structure νε ∈ VΩ as

follows

νε (ω1|s, r, ā) = δ (ω1) ε
γR {µ1} (s, ā)

γR {µ0} (s, ā)

and

νε (ω2|s, r, ā) = δ (ω2)

(
1− εγR {µ1} (s, ā)

γR {µ0} (s, ā)

)
,

where δ(·) is the Dirac delta function. Note that this signal structure does not condition on r,

and that

ηR {µ1, µ0} (s, r, ā) = µ0 (s, r, ā)

∑
r′∈R µ1 (s, r′, ā)∑
r′∈R µ0 (s, r′, ā)

Therefore

νε (ω1|s, r, ā) = δ (ω1) ε
ηR {µ1, µ0} (s, r, ā)

µ0 (s, r, ā)

and

νε (ω2|s, r, ā) = δ (ω2)

(
1− εηR {µ1, µ0} (s, r, ā)

µ0 (s, r, ā)

)
.

Note also that π(νε, µ0)(ω1) = ε and π(νε, µ0)(ω2) = 1−ε, by construction. Posteriors are therefore

µω1 {νε, µ0} = ηR {µ1, µ0} ,

µω2 {νε, µ0} =
1

1− ε
µ0 −

ε

1− ε
ηR {µ1, µ0} .

Now consider instead an alternative signal structure ν ′ε ∈ VΩ, defined by

ν ′ε (ω1|s, r, ā) = δ (ω1) ε
µ1 (s, r, ā)

µ0 (s, r, ā)
,

ν ′ε (ω2|s, r, ā) = δ (ω2)

(
1− εµ1 (s, r, ā)

µ0 (s, r, ā)

)
.
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By construction,

νR{ν ′ε, µ0}(ω1|s, r, ā) = δ (ω1) ε
γR{µ1} (s, ā)

γR{µ0} (s, ā)
= νε (ω1|s, r, ā) ,

νR{ν ′ε, µ0}(ω2|s, r, ā) = δ (ω2) (1− εγR{µ1} (s, ā)

γR{µ0} (s, ā)
) = νε (ω2|s, r, ā) ,

and therefore νR{ν ′ε, µ0} = νε. Posteriors given ν ′ε are given by

µω1
{
ν ′ε, µ0

}
= µ1

µω2
{
ν ′ε, µ0

}
=

1

1− ε
µ0 −

ε

1− ε
µ1,

and again π(ν ′ε, µ0)(ω1) = ε and π(ν ′ε, µ0)(ω2) = 1− ε.
The cost of signal structure νε is given by

C (νε, µ0) = εD (ηR {µ1, µ0} ||µ0) + (1− ε)D
(
µ0 −

ε

1− ε
(ηR {µ1, µ0} − µ0)

∥∥∥∥µ0

)
,

and the cost of signal structure ν ′ε is likewise given by,

C
(
ν ′ε, µ0

)
= εD (µ1||µ0) + (1− ε)D

(
µ0 −

ε

1− ε
(µ1 − µ0)

∥∥∥∥µ0

)
.

Now consider the difference between these two cost structures:

f (ε) ≡ C
(
ν ′ε, µ0

)
− C (νε, µ0) .

By assumption, D (µ′||µ0) is differentiable with respect to µ′ at µ′ = µ0, and the gradient must

be zero by the definition of the divergence. Therefore, f (ε) is differentiable with respect to ε at

ε = 0+ and

f ′ (ε) |ε=0+ = D (µ1||µ0)−D (ηR {µ1, µ0} ||µ0) < 0.

But we must have that

CΩ
(
ν ′ε, µ0

)
− CΩ

(
νR{ν ′ε, µ0}, µ0

)
≥ 0

for all feasible ε ≥ 0, and f (0) = 0 (both signal structures are uninformative in the limit),

a contradiction. We conclude that no such (µ0, µ1) exists, and therefore that D satisfies R-

monotonicity.

11.6 Proof of Proposition 4

The proof is essentially identical to our existence proof (Proposition 3), and we will refer to the

existence proof (Proposition 3) rather than repeat most of the arguments. Let ĀS ⊂ Ā denote

the subset of α functions that are s-measurable. Let VA
ĀR
⊂ VA denote the set of signal structures

who distributions do not in fact depend on ror ā.
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By Lemma 2 (characterizing R-monotonicity) and Lemma 1, the optimality policy

correspondencesA∗ (defined in the proof of Proposition 3) are mappings from ĀS (inducing s-

measurable priors) to VA
ĀR

. By construction, the functions f defined in the proof of Proposition

3 map conditional distributions in VA
ĀR

to functions that are measurable on s. Consequently,

the mapping F defined in the proof of Proposition 3 is a map from ĀS to ĀS .

The arguments for the upper semi-continuity, non-emptiness, and convexity of F apply

unchanged from the proof of Proposition 3. It follows that a fixed point in ĀS exists, and this

fixed point constitutes an s-measurable equilibrium.

11.7 Proof of Proposition 5

The “if” part of the proposition is implied by Proposition 4. We therefore focus on the “only-if.”

To prove this result, we use the following lemma:

Lemma 4. Suppose the divergence D is not monotone in R on the set of s-measurable priors

Us−meas(µ0). Then there exists an s-measurable, mean-consistent (νA ∈ VA0 , ᾱ ∈ Ā) such that

νA has finite support, and a ν̂A ∈ VA0 such that νA = νR{ν̂A, φĀ{µ0, ᾱ}} and

CA(ν̂A, φĀ{µ0, ᾱ}) < CA(νA, φĀ{µ0, ᾱ}).

Proof. See the appendix, 11.8.

The only-if direction of the proposition requires that if D is not monotone in R on the set

of s-measurable priors, there exists a utility function satisfying Assumption 1 such that no s-

measurable equilibrium exists. Armed with this lemma, we take as given the s-measurable,

mean-consistent (νA, ᾱ) described in the lemma, along with the alternative ν̂A, such that

CA(ν̂A, φĀ{µ0, ᾱ}) < CA(νA, φĀ{µ0, ᾱ}).

Note that if such an inequality holds, it holds by continuity for some prior µ0 with full support

on S ×R.

We will construct a utility function with the property that, if an s-measurable equilibrium

were to exist, it could only exist in the neighborhood of this (νA, ᾱ). Let A∗ be the finite set of

actions that occur with positive probability under νA. Choose an arbitrary function κ : S → R,

and define, for all a ∈ A∗,

ũ(a, ᾱ(s, r0), s) = D(µa||µ) +

∑
r∈R µ0(s, r)∇1{D(µa||µ)}(s, r, ᾱ(s, r))∑

r∈R µ0(s, r)
+ κ(s),

where µ = φĀ{µ0, ᾱ}, µa = µa{νA, µ}, and ∇1 denotes the gradient with respect to the first

argument. This is the first-order condition associated with choosing νA among all s-measurable

ν ∈ VA0 , and by the convexity of the cost function it is sufficient for optimality.
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We extend the utility function ũ to other values of ā using, for all a ∈ A∗,

ũ(a, ā, s) = ũ(a, ᾱ(s, r0), s)− χ(a− ᾱ(s, r0))T · (ā− ᾱ(s, r0)) +
χ

2
|ā− ᾱ(s, r0)|2.

We extend this utility function to other actions a ∈ A \A∗ by defining

ũ(a, ā, s) = min
a′∈A∗

ũ(a′, ā, s)− |a′ − a|2.

By construction, all actions not in A∗ are dominated by some action in A∗. Consequently, with

this utility function, any optimal policy will have support only on A∗.

The utility function ũ is not differentiable at certain points. However, we can define a

mollified version of it,

uδ(a, ā, s) =

∫
A
ρδ(a

′′ − a)ũ(a′′, ā, s)da′′,

where ρδ(z) is a smooth symmetric kernel with full support on z < δ. Setting δ sufficiently small

ensures that, for some constant cδ that depends on the kernel,

uδ(a, ᾱ(s, r0), s) = ũ(a, ᾱ(s, r0), s)− cδ

for all a ∈ A∗, and that uδ is continuously differentiable, while preserving the property that

actions not in A∗ are dominated.

It immediately follows that, given the utility function uδ, (νA, ᾱ) cannot be an equilibrium,

and moreover there is no other s-measurable (ν̃A, ᾱ) that can be an equilibrium, because all

such signal structures are dominated by ν̂A.

Let us now rule out equilibrium for other s-measurable α̃ ∈ Ā. We claim that, for sufficiently

large values of χ, any equilibrium must lie in the neighborhood of ᾱ(s, r0). To see this, suppose

that for some ε > 0,

|α̃(s, r0)− ᾱ(s, r0)| > ε.

Observe by the optimality of the actions inA∗ and mean-consistency that any equilibrium value

of α̃(s, r0) − ᾱ(s, r0) must lie in the span of {a − ᾱ(s, r0)}a∈A∗ . For sufficiently large χ, for any

a ∈ A∗ such that (a − ᾱ(s, r0))T · (ā − ᾱ(s, r0)) ≤ 0 will be dominated by an action a′ ∈ A∗

with (a′ − ᾱ(s, r0))T · (ā − ᾱ(s, r0) > 0. As a result, under any optimal policy, only the latter

category of actions will be chosen, but this contradicts mean-consistency. We conclude that

any equilibrium α̃ must be close to ᾱ for sufficiently large χ.

Now consider a sequence χn with limn→∞ χn = ∞, and suppose that along this sequence

of utility functions there exists an s-measurable equilibrium (νAn , ᾱn). By construction,

limn→∞ ᾱn = ᾱ. By the theorem of the maximum, the optimal policy correspondence for the

agents is upper semi-continuous (see the proof of existence, Proposition 3), and consequently

limn→∞ ν
A
n must be an s-measurable best response to ᾱ. But we have already shown that no

such policy exists, and consequently for sufficient large χ no s-measurable equilibrium exists.
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11.8 Proof of Lemma 4

If D is not r-monotone on Us−meas(µ0), there exists an s-measurable ᾱ ∈ Ā, and µ′ ∈ U with

γR{µ′} � γR{µ} such that

D(µ′||φĀ{µ0, ᾱ}) < D(ηR{µ′, φĀ{µ0, ᾱ}}||φĀ{µ0, ᾱ})

Observe that if this inequality holds, it holds by continuity for some µ′ that is mutually

absolutely continuous with µ on S (γR{µ′} ∼ γR{µ}). Similarly, such an inequality must hold

for some ᾱ function whose image is strictly in the interior of A and that is non-degenerate. To

streamline the proof, we will assume without loss of generality that µ0 has full support on S×R.

Define µ = φĀ{µ0, ᾱ} and µ′′ = ηR{µ′, µ}, and observe that we must have γĀ{µ′′} 6= µ0.

Define the actions

a1 =
∑

s∈S,r∈R
ᾱ(s, r)γĀ{µ′′}(s, r),

a0 =
∑

s∈S,r∈R
ᾱ(s, r)µ0(s, r).

Note that, under the interiority assumption on ᾱ, a1 and a0 are interior, and by continuity it is

without loss of generality to assume they are not equal to each other.

Now define a shifted ᾱ function,

α̃(s, r) = ᾱ(s, r)+
εργĀ{µ

′′}(s,r)
µ0(s,r)

1− εργĀ{µ
′′}(s,r)

µ0(s,r) − ε(1− ρ)
(ᾱ(s, r)−a1)+

ε(1− ρ)

1− εργĀ{µ
′′}(s,r)

µ0(s,r) − ε(1− ρ)
(ᾱ(s, r)−a0)

for some ε > 0 and ρ ∈ (0, 1). By the interiority of the image of ᾱ, for sufficiently small ε, α̃(s, r)

remains in A. By the fact that ᾱ is s-measurable and µ′′ = ηR{µ′, µ}, α̃(s, r) is s-measurable.

Define Aext as the set of extreme points A, and define A∗ = Aext ∪ {a0, a1}. Because a0 and

a1 are interior, they are not extreme points and hence not in Aext.

By definition, every value in the image of α̃ is a unique convex combination of elements of

Aext. Consequently, there is a unique measure ν̃A ∈ VA0 such that, for each (s, r) ∈ S×R, and an

arbitrary ā0 ∈ Ā, ν̃A has support entirely on Aext and that satisfies∫
A
aν̃A(a|s, r, ā0)da = α̃(s, r).

Moreover, because α̃ is s-measurable, ν̃A does not condition on r.

Now define the signal structure

νA(a|s, r, ā0) = (1− εργĀ{µ
′′}(s, r)

µ0(s, r)
− ε(1− ρ))ν̃A(a|s, r, ā0)

+ ερ
γĀ{µ′′}(s, r)
µ0(s, r)

δ(a1 − a) + ε(1− ρ)δ(a0 − a)
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By construction, ∫
A
aνA(a|s, r, ā0)da = ᾱ(s, r),

and the posterior associated with the signal a1 is (because a1 /∈ Aext) equal to µ′′. Similarly, the

posterior associated with a0 is the prior.

Moreover, because ᾱ does not condition on r, and because by definition

γĀ{µ′′}(s, r)
µ0(s, r)

=
γĀ{ηR{µ′, µ}}(s, r)

γĀ{µ}(s, r)

does not depend on r, νA does not condition on r.

Now observe by the convexity and differentiability of the divergence that

D(µ′||µ) ≥ D(µ′′|µ) + (µ′ − µ′′) · ∇1D(µ′′|µ),

where∇1 is the gradient with respect to the first argument. It follows by assumption that

(µ′ − µ′′) · ∇1D(µ′′|µ) < 0.

Let µa = µa{νA, µ} be the posteriors associated with the signal structure νA, and let π{νA, µ}
be the unconditional probabilities. Now consider a new set of unconditional probabilities and

posteriors, defined by π̂(a) = π{νA, µ}(a) for a ∈ A∗ and

µ̂a =


µa a /∈ {a0, a1}
µ′′ + τ(µ′ − µ′′) a = a1

µ− ρ
1−ρτ(µ′ − µ′′) a = a0.

Observing that π̂(a0) = ε(1 − ρ) and π̂(a1) = ερ, this set of unconditional probabilities and

posteriors is Bayes-consistent with the prior µ. The resulting signal structure conditions on r,

because µ′ 6= µ′′. Define this signal structure as ν̂τ . Considering the derivative, we have

∂

∂τ
CA(ν̂τ , µ) = ερ(µ′ − µ′′) · ∇1D(µa1 |µ)

− ε ρ

1− ρ
(µ′ − µ′′) · ∇1D(µa0 |µ)

Evaluating at τ = 0+,

∂

∂τ
CA(ν̂τ , µ)|τ=0+ = ερ(µ′ − µ′′) · ∇1D(µ′′|µ)) < 0.

Hence it follows by convexity that for all τ > 0,

CA(ν̂τ , µ) < C(νA, µ),

completing the proof.
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11.9 Proof of Proposition 6

Suppose that in a neighborhood of some µ0 ∈ U0, there generically exists an s-measurable

equilibrium. For each µ′0 in this neighborhood, let ᾱ(µ′0) ∈ Ā denote the corresponding s-

measurable aggregate strategy. By the definition of generic R-non-monotonicity, agents must

respond to almost all (µ′0, ᾱ(µ′0)) by choosing some νA ∈ VA such that either the distribution

of ai ∈ A depends on r or the signal structure is uninformative. But in the former case the

equilibrium cannot be s-measurable. Consequently, generically in all such neighborhoods,

either equilibria are not s-measurable or equilibria are deterministic.

11.10 Proof of Proposition 7

Our proof is almost identical to that of Proposition 3. By equation (25), BA(νΩ) is convex

and compact (in the topology of weak convergence) subset of VA0 (i.e. like VA0 in the proof of

Proposition 3). To adapt the proof of Proposition 3 to the exogenous information case, suppose

that the information cost function is CA (ν0, µ) = 0, which is continuous and convex. The

remainder of the proof applies unchanged.

11.11 Proof of Proposition 8

Note that νA(ai|s, r, ā) = νA(ai|s, r, ā0) for all ai ∈ A, s ∈ S, r ∈ R, and ā, ā0 ∈ Ā, by the

assumption that νΩ ∈ VΩ
0 . We prove that

u(ai, ā, s) = g(ai; s) +G(ā; s) + (ai − ā) · ∇G(ā; s)

with G convex and twice-differentiable and u concave in ā, is sufficient.

Consider the Lagrangean version of the planner’s problem (Definition 11), substituting in

the mean-consistency constraint,

sup
νA∈BA(νΩ)

∑
s∈S,r∈R

[∫
A
g(ai; s)νA

(
ai|s, r, ā0

)
dai
]
µ0 (s, r)

+
∑

s∈S,r∈R
µ0(s, r)G(

∫
A
ajνA

(
aj |s, r, ā0

)
daj ; s),

where ā0 ∈ Ā is arbitrary.

Observe that any solution to the problem remains optimal if we replace g(ai; s) with its

concavification (see, e.g., Kamenica and Gentzkow [2011]), ĝ(ai; s). Any action a in the support

of the optimal policy νA must satisfy, if it is interior,∑
s∈S,r∈R

ĝa(a
j ; s)νA

(
aj |s, r, ā0

)
µ0(s, r) + µ0(s, r)∇G(ᾱ∗(s, r); s) = 0,
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where ᾱ∗(s, r) is the aggregate strategy associated with the solution to the planner’s problem. If

ais on the boundary of A defined by the hyperplane a · x ≤ b, the necessary condition is

z · (
∑

s∈S,r∈R
ĝa(a

j ; s)νA
(
aj |s, r, ā0

)
µ0(s, r) + µ0(s, r)∇G(ᾱ∗(s, r); s)) ≥ 0

for any z ∈ RL with z · x > 0.

These necessary conditions are exactly the necessary and sufficient conditions in the

concavified version of the agent’s problem, taking ᾱ∗(s, r) as given. It follows immediately that

there exists a solution (νA∗, ᾱ∗) that is both optimal in the planner’s problem and for which νA∗

is a best-response to ᾱ∗. Therefore, there exists a constrained efficient symmetric BNE.

11.12 Proof of Proposition 9

We will use rely on the following lemma, which characterizes two useful properties of the set

Ace.

Lemma 5. The set Ace is a convex subset of A. For any a1, a2 ∈ Ace and ρ ∈ [0, 1], there exists a

finite set R, prior µ0 ∈ U0, and signal structure νΩ ∈ VΩ
0 such that there exists a solution to the

planner’s problem (νA, ᾱ) such that, for some s ∈ S and r ∈ R, νA is a two-point distribution on

a1 and a2,

νA(ai|s, r, ᾱ(s, r)) = ρδ(ai − a1) + (1− ρ)δ(ai − a2).

Proof. See the appendix, 11.13.

Armed with this lemma, we prove necessity. Let us suppose that for all (µ0, ν
Ω), the

solution to the planner’s problem coincides with the competitive equilibrium. By Assumption

5, in any symmetric BNE, agents will take interior actions for all realizations of their signals.

Consequently, this must be true in the solution to the planner’s problem as well. Moreover, by

the strict concavity part of Assumption 5, in any symmetric BNE the best response to any signal

realization is unique. Consequently, this also applies in the planner’s problem. Recall from

above that νΩ ∈ VΩ
0 does not condition on ā ∈ Ā.

We can therefore write the planner’s problem as

sup
α∈A,ᾱ∈Ā

inf
ψ∈R|S|×|R|×L

∑
s∈S,r∈R

[∫
Ω
u
(
α(ωj), ᾱ(s, r), s

)
νΩ
(
ωj |s, r, ā0

)
dωj
]
µ0 (s, r)

+

L∑
l=1

∑
s∈S,r∈R

µ0 (s, r)ψl(s, r)[ᾱl(s, r)−
∫

Ω
α(ωj)νΩ

(
ωj |s, r, ā0

)
dωj ],

where A ≡ Ω → A is the set of action strategies. Note that we have scaled the multiplier by

µ0 (s, r) to denote that mean consistency need not hold for (s, r) not in the support of µ0.
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The first-order condition for αl(ωj) is

∑
s∈S,r∈R

∂u (a, ᾱ(s, r), s)

∂al
|a=α(ωj)ν

Ω
(
ωj |s, r, ā0

)
µ0 (s, r)

−
∑

s∈S,r∈R
µ0 (s, r)ψl(s, r)ν

Ω
(
ωj |s, r, ā0

)
= 0.

Note that this must hold by the result that the optimalα(ωj) is interior. The first-order condition

for ᾱl(s, r) is (∫
Ω

∂u(α(ωj), ā, s)

∂āl
|ā=ᾱ(s,r)ν

Ω
(
ωj |s, r, ā0

)
dωj
)
µ0(s, r)

+µ0 (s, r)ψl(s, r) = 0,

and note that this also must be interior by mean consistency. In contrast, the private FOC for

al(ω
j) is ∑

s∈S,r∈R

∂u (a, ᾱ(s, r), s)

∂al
|a=α(ωj)ν

Ω
(
ωj |s, r, ā0

)
µ0 (s, r) = 0,

which again must hold because the optimal policy is interior. Consequently, because there

exists a symmetric BNE that coincides with the solution to the planning problem, we must have,

in any solution to the planner’s problem,

∑
s∈S,r∈R

(∫
Ω

∂u(α(ωj), ā, s)

∂āl
|ā=ᾱ(s,r)ν

Ω
(
ωj |s, r, ā0

)
dωj
)
µ0(s, r)νΩ

(
ωi|s, r, ā0

)
= 0 (44)

for all l ∈ {1, . . . , L}, ωi ∈ Ω, and s ∈ S, r ∈ R such that µ0(s, r) > 0.

Suppose that, for some (µ0, ν
Ω) there exists a solution to the planner’s problem (νA, ᾱ) such

that, for some s0 ∈ S and r0 ∈ R with µ0(s0, r0) > 0 and l ∈ {1, . . . , L},∫
A

∂u(α(ωj), ā, s)

∂āl
|ā=ᾱ(s0,r0)ν

A
(
aj |s0, r0, ā0

)
daj 6= 0.

By our assumption on the cardinality of Ω, it is without loss of generality to suppose there

are elements of Ω that does not occur with positive probability under νΩ. Consider a new signal

structure defined by

νΩ
ε (ω|s, r, ā0) =

{
νΩ(ω|s, r, ā0) (s, r) 6= (s0, r0)
(1− ε)νΩ(ω|s, r, ā0) + εδ(ω − ω0) (s, r) = (s0, r0).

Applying (44) to the model with this signal structure and the prior µ0, in the case of the signal ω0

we must have ∫
Ω

∂u(αε(ω
j), ā, s0)

∂āl
|ā=ᾱε(s0,r0)ν

Ω
ε

(
ωj |s0, r0, ā0

)
dωj = 0,

65



where αε and ᾱε satisfy∑
s∈S,r∈R

∂u (a, ᾱε(s, r), s)

∂al
|a=αε(ωi)ν

Ω
ε

(
ωi|s, r, ā0

)
µ0 (s, r) = 0 ∀ l ∈ {1, . . . , L}, ωi ∈ Ω,

and ∫
Ω
αε(ω

i)νΩ
ε (ωi|s, r, ā0)dωi = ᾱε (s, r) ∀s ∈ S, r ∈ R s.t. µ0(s, r) > 0.

Here, these should be understood as policies characterizing the solution to the planner’s

problem given ε, and by assumption these solutions coincide with a symmetric BNE.

Taking the limit as ε→ 0+, we have by strict concavity and continuity of derivatives that

lim
ε→0+

αε(ω
i) = α(ωi) ∀ω 6= ω0

and limε→0+ ᾱε(s, r) = ᾱ(s, r). But this implies

lim
ε→0+

∫
Ω

∂u(αε(ω
j), ā, s0)

∂āl
|ā=ᾱε(s0,r0)ν

Ω
ε

(
ωj |s0, r0, ā0

)
dωj 6= 0,

a contradiction. It follows that, for all (µ0, ν
Ω) and associated solutions to the planner’s problem

(νA, ᾱ), we have∫
A

∂u(aj , ā, s)

∂āl
|ā=ᾱ(s,r)ν

A
(
aj |s, r, ā0

)
daj = 0 ∀s ∈ S, r ∈ R s.t. µ0(s, r) > 0. (45)

Let us now invoke Lemma 5, and observe that one-point (degenerate) νA also exist, placing

all support on one a ∈ Ace. It follows that we must have

∂u(a, ā, s)

∂āl
|ā=a = 0,

implying by concavity that for all s ∈ S and a ∈ Ace,

a ∈ arg max
ā∈Ace

u(a, ā, s).

Define the function

f(a, ā, s) = u(a, a, s)− u(a, ā, s).

It follows immediately that

a ∈ arg min
ā∈Ace

f(a, ā, s),

and f(a, a, s) = 0 by construction. Consequently, on the domain Ace × Ace × S, f(a, ā, s) is a

weakly positive, continuously twice-differentiable function. Moreover, by mean-consistency,

(45), and Lemma 5, for all two-point measures κ ∈ ∆(Ace),∫
Ace

aκ(a)da ∈ arg min
ā∈Ace

∫
Ace

f(a, ā; s)κ(a)da.
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By theorem 4 of Banerjee et al. [2005] (which is proven using only two-point measures; see

also the discussion in that paper on restrictions to subspaces of RL), it follows that

f(a, ā; s) = G(a; s)−G(ā; s)− (a− ā) · ∇G(ā; s).

Defining

g(a; s) = u(a, a, s)−G(a; s)

proves the result.

Note that by strict concavity and twice-differentiability of u, we have, for arbitrary vectors z,

∂2u(a, ā+ εz, s)

∂2ε
|ε=0 = (a− ā) · ∂

2∇G(ā+ εz; s)

∂2ε
|ε=0 −

∂2G(ā+ εz; s)

∂2ε
|ε=0,

and hence the gradient of G is twice-differentiable. Moreover, evaluating at ā = a, we have

∂2u(ā, ā+ εz, s)

∂2ε
|ε=0 = −∂

2G(ā+ εz; s)

∂2ε
|ε=0

and therefore by strict concavity G is strictly convex.

11.13 Proof of Lemma 5

Let a1 ∈ Ace be an action that occurs in a constrained efficient symmetric BNE given prior

and signals (µ1, ν
Ω
1 ) and non-fundamental states R1, after agents observe signal ω1. Let a2,

(µ2, ν
Ω
2 ), R2, and ω2 be another such set of objects. Suppose without loss of generality that R2

does not intersect R1, and that νΩ
1 and νΩ

2 use disjoint parts of the signal alphabet Ω (w.l.o.g.

due to our cardinality assumption on Ω). The actions a1 and a2 are associated with posteriors

µω1

1 = µω1{νΩ
1 , µ1} and µω2

2 = µω2{νΩ
2 , µ2}.

Define a new set of states,R = R1 ∪R2 ∪ {r0}, and extend the distributions µ1, µ2, µ
ω1

1 , µω2

2 to

∆(S ×R) by assigning zero probability any state not defined in the original distribution. Define

a new prior

µ0,ε = (
1

2
− ε)µ1 + (

1

2
− ε)µ2 + 2ε1(r = r0, s = s0)

for some arbitrary s0 ∈ S. Define a new signal structure νΩ ∈ VΩ
0 by, for arbitrary ρ ∈ [0, 1],

νΩ(ω|s, r, ā0) =

ν
Ω
1 (ω|s, r, ā0) r ∈ R1

νΩ
2 (ω|s, r, ā0) r ∈ R2

ρδ(ω − ω1) + (1− ρ)δ(ω − ω2) r = r0.

From this signal structure, it is immediately apparent that the posteriors µω{νΩ, µ0,ε} converge

in the limit as ε approaches zero to the posteriors associated with either (νΩ
1 , µ1) or (νΩ

2 , µ2). It

follows that in this limit a solution to the social planner’s problem conditional on r ∈ R1 features

actions that are identical to the solution associated with (νΩ
1 , µ1), and likewise for r ∈ R2 with
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the solution associated with (νΩ
2 , µ2). Consequently, in this limit the action given ω1 is a1, and

likewise with ω2 and a2. It follows immediately that in the planner’s solution to the merged

problem,

lim
ε→0+

νA
(
aj |s0, r0, ā0

)
= ρδ(aj − a1) + (1− ρ)δ(aj − a2).

We conclude that given any pair (a1, a2) from the set of actions that occur in a solution to the

planner’s problem, any two-point distribution on these actions can occur in some equilibrium.

Let us next demonstrate that Ace is convex. Consider the same setup as in the previous

argument, and suppose without loss of generality there is a signal ω0 ∈ Ω that does not occur

under either νΩ
1 or νΩ

2 . Let R = R1 ∪R2 and

µ0 =
1

2
µ1 +

1

2
µ2.

Consider a signal structure νΩ
ε such that

µω{νΩ, µ0} =


µω{νΩ

1 , µ1} π{νΩ
1 , µ1}(ω) > 0

µω{νΩ
2 , µ2} π{νΩ

2 , µ2}(ω) > 0
ρµω1{νΩ

1 , µ1}+ (1− ρ)µω1{νΩ
1 , µ1} ω = ω0.

By Bayes’ rule, such a signal structure exists with

π{νΩ, µ0}(ω) =


π{νΩ

1 , µ1}(ω) ω 6= ω1, π{νΩ
1 , µ1}(ω) > 0

π{νΩ
2 , µ2}(ω) ω 6= ω2, π{νΩ

2 , µ2}(ω) > 0
π{νΩ

1 , µ1}(ω)− ερ ω = ω1

π{νΩ
2 , µ2}(ω)− ε(1− ρ) ω = ω2

ε ω = ω0

for any ε sufficiently small.

Now consider the socially optimal action after observing signal ω0 in the limit as ε → 0+.

In this limit, the solution to the social planner’s problem must converge to the aggregate action

strategies that are the solutions to the separate problems. By the strict concavity of the utility

function, the optimal action must be continuous in ρ, and therefore by the intermediate value

theorem must traverse all points on the line segment between a1 and a2. It follows that the set

of socially optimal actions is a convex set.

11.14 Proof of Lemma 3

By definition, for any µ0 ∈ U0, ᾱ ∈ Ā, νA ∈ VA0 , and µ ∈ U such that µ = φĀ{µ0, ᾱ}, and an

arbitrary ā0 ∈ Ā, the posterior after observing a ∈ A is

µa{νA, µ}(s, r, ā) =
νA (a|s, r, ā0)µ0 (s, r) δ(ā− ᾱ(s, r))

π{νA, µ} (a)
,
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as described in the text. By the definition of ηĀ, (36),

ηĀ{µa{νA, µ}, φĀ{µ0, ᾱ
′}} = δ(ā− ᾱ′(s, r))ν

A (a|s, r, ā0)µ0 (s, r)

π{νA, µ} (a)

= µa{νA, µ′}.

Consequently, for all µ ∈ U and νA ∈ VA0 ,

D(µa{νA, µ}||µ) = D(ηĀ{µa{νA, µ}, µ}||ηĀ{µ, µ}).

Note also that for all µ0 ∈ U0 and ᾱ, ᾱ′ ∈ Ā,

ηĀ{φĀ{µ0, ᾱ}, φĀ{µ0, ᾱ
′}} = φĀ{µ0, ᾱ

′},

which implies by the definition of U that for all µ, µ′ ∈ U ,

ηĀ{µ, µ′} = µ′.

With these results, we first prove sufficiency, then necessity.

Part (i). If D is invariant in Ā, then by definition

D(ηĀ{µa{νA, µ}, µ}||ηĀ{µ, µ}) = D(ηĀ{µa{νA, µ}, µ′}||ηĀ{µ, µ′})

for all µ, µ′ ∈ U and νA ∈ VA0 . It follows from the results above that

D(ηĀ{µa{νA, µ}, µ′}||ηĀ{µ, µ′}) = D(ηĀ{µa{νA, µ}, µ′}||µ′)

= D(µa{νA, µ′}||µ′).

It immediately follows that for all µ0 ∈ U0, νA ∈ VA0 , and ᾱ, ᾱ′ ∈ Ā,

D(µa{νA, φĀ{µ0, ᾱ}}||φĀ{µ0, ᾱ}) = D(µa{νA, φĀ{µ0, ᾱ
′}}||φĀ{µ0, ᾱ

′}),

and by the argument in the text

π{νA, φĀ{µ0, ᾱ}} = π{νA, φĀ{µ0, ᾱ
′}}.

Consequently, by the definition of posterior separability, (23),

CA
(
νA, φĀ{µ0, ᾱ}

)
= CA

(
νA, φĀ{µ0, ᾱ

′}
)

as required.

Part (ii). Suppose that all µ0 ∈ U0, νA ∈ VA0 , and ᾱ, ᾱ′ ∈ Ā,

CA
(
νA, φĀ{µ0, ᾱ}

)
= CA

(
νA, φĀ{µ0, ᾱ

′}
)
.
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It follows by the definition of posterior separability and the argument in the text that we must

have

D(µa{νA, µ}||µ) = D(µa{νA, µ′}||µ′).

But by the arguments above,

D(µa{νA, µ}||µ) = D(ηĀ{µa{νA, µ}, µ}||ηĀ{µ, µ})

and

D(µa{νA, µ′}||µ′) = D(ηĀ{µa{νA, µ}, µ′}||ηĀ{µ, µ′}),

and therefore

D(ηĀ{µa{νA, µ}, µ}||ηĀ{µ, µ}) = D(ηĀ{µa{νA, µ}, µ′}||ηĀ{µ, µ′}).

Since this must hold for all µ, µ′, νA, D satisfies the definition of invariance.

11.15 Proof of Proposition 10

Recall the definition of the planner’s problem, applying Lemma 1 and using any ā0 ∈ Ā,

sup
νA∈VA0 ,ᾱ∈Ā

∑
s∈S,r∈R

[∫
A
u
(
ai, ᾱ (s, r) , s

)
νA
(
ai|s, r, ā0

)
dai
]
µ0 (s, r)− CA

(
νA, φĀ{µ0, ᾱ}

)
subject to mean consistency.

Now consider a relaxed version of the problem, without the mean consistency constraint.

Let (νA∗, ᾱ∗) denote a solution to the relaxed problem, which exists by our continuity

assumptions that guarantee compactness (see the proof of Proposition 3).

Because D is invariant with respect to Ā,

CA
(
νA, φĀ{µ0, ᾱ}

)
= CA

(
νA, φĀ{µ0, ᾱ

′}
)

for all ᾱ, ᾱ′ ∈ Ā. Consequently,

ᾱ∗ ∈ arg max
ᾱ∈Ā

∑
s∈S,r∈R

[∫
A
u
(
ai, ᾱ (s, r) , s

)
νA∗

(
ai|s, r, ā0

)
dai
]
µ0 (s, r) .

As shown in the proof of Proposition 8, given our assumptions on the utility function, ᾱ∗ satisfies

mean-consistency even though this was not imposed. We therefore conclude that the mean-

consistent symmetric strategy profile (νA∗, ᾱ∗) is a constrained-efficient (Definition 13) if it is

an equilibrium.

By optimality in the relaxed problem,

νA∗ ∈ arg max
νA∈VA0

∑
s∈S,r∈R

[∫
A
u
(
ai, ᾱ∗ (s, r) , s

)
νA
(
ai|s, r, ā0

)
dai
]
µ0 (s, r)− CA

(
νA, φĀ{µ0, ᾱ

∗}
)
.
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It immediately follows that (νA∗, ᾱ∗) constitutes a symmetric BNE (Definition 3), proving the

result.

By this argument, any symmetric BNE (νA, ᾱ) is a critical point of the social planner’s

objective function. Consequently, if the social planner’s problem is concave, all symmetric BNE

are constrained efficient. Define the function

f(ᾱ′) = max
νA∈VA0

∑
s∈S,r∈R

[∫
A
g(ai; s)νA

(
ai|s, r, ā0

)
dai
]
µ0 (s, r)− CA

(
νA, φĀ{µ0, ᾱ

∗}
)

subject to µ(s, r)ᾱ′(s, r) = µ(s, r)

∫
A
g(ai; s)νA

(
ai|s, r, ā0

)
dai, ∀s ∈ S, r ∈ R,

where g(a; s) is part of the functional form of the utility function. Observe that this constraint

set is convex in ᾱ′, and the objective does not depend on ᾱ′, and consequently f(ᾱ′) is concave.

By the invariance of D and the functional form of the utility function, the social planner’s

problem is

max
ᾱ∈Ā

f(ᾱ′) +
∑

s∈S,r∈R
µ0(s, r)G(ᾱ(s, r); s),

noting that the term involving the gradient of G has vanished due to mean-consistency.

Defining Ḡ(ᾱ′) = −f(ᾱ′) proves the result.

11.16 Proof of Proposition 11

Let us assume that u satisfies the conditions of Proposition 8 and Assumptions 1 and 6, and let

U be the set of such functions. Endow this set with the topology of pointwise convergence.

The social planner’s problem is to solve

sup
νA∈VA0 ,ᾱ∈Ā

∑
s∈S,r∈R

[∫
A
u
(
ai, ᾱ (s, r) , s

)
νA
(
ai|s, r, ā0

)
dai
]
µ0 (s, r)− CA

(
νA, φĀ{µ0, ᾱ}

)
subject to mean consistency.

By the finiteness of S × R and by the compactness for A (Assumption 1), the set VA0 is a

finite set of measures on the compact subsets of RL (i.e. A). Consequently, by Prokhorov’s

theorem, using the topology of weak convergence, VA0 is compact. By the compactness of Ā and

the finiteness of S×R, Ā is compact, and it follows from the definition of mean-consistency that

the set of (νA, ᾱ) satisfying mean-consistency is compact. Therefore, a maximizing solution to

the social planner’s problem exists for all u ∈ U .

We apply the Theorem of the Maximum. Observe by continuity of u (Assumption 1), and

by continuity of C (Assumption 3), that the objective function of the planner’s problem is

continuous in (ν, ᾱ), and is continuous on U . Consequently, we can invoke the theorem of

the maximum. It follows that the planners optimal policy correspondence ξ∗ : U ⇒ VA0 × Ā
is non-empty, upper semi-continuous, and compact-valued.
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Let us suppose there is some u ∈ U such, generically in a neighborhood around u, a non-

deterministic, constrained-efficient symmetric BNE exists. By Assumption 6, these equilibria

must involve interior actions.

We next show that generic non-invariance with respect to Ā implies that, generically in this

neighborhood, externalities exist. Define, for some arbitrary vector z ∈ RL, a continuously

differentiable function fε : A→ A with the property that

fε(a) = a+ εz

for all a ∈ A∗, and |fε(a) − a| ≤ ε|z| for all A. Because νA places support only on A∗, such a

function exists for sufficiently small ε.

Now define the utility function

uε(a, ā, s) = u(fε(a), ā, s)

= g(fε(a); s) +G(ā; s) + (fε(a)− ā)∇G(ā; s),

By construction, µε ∈ U , and limε→0 uε = u.

Observe that in both the planner’s problem and the competitive equilibrium, this

perturbation simply shifts the meaning of all relevant actions in the direction z, holding fixed

ᾱ. Consequently, holding fixed ᾱ, the optimal choice of νΩ ∈ VΩ
0 and νΩ

ε ∈ VΩ
0 are identical,

but all actions are shifted in the direction z. However, this violates mean-consistency, and

consequently no (νΩ, ᾱ) ∈ ξ∗(u) can be an equilibrium with the utility function uε. Similarly,

ξ∗(uε) and ξ∗(uε′) must be disjoint for distinct ε, ε′.

By compactness and upper semi-continuity, there exists a convergent sequence of

constrained efficient symmetric BNE. By generic non-invariance we must have, along this

sequence we must have∑
s∈S,r∈R

νΩ
(
ωj |s, r, ā0

)
∇ᾱ{CΩ

(
νΩ
ε , φĀ{µ0, ᾱε}

)
}(s, r) 6= ~0

for except at isolated values of ε. We conclude that this property holds generically in the

neighborhood of u.

Let us next show that this creates a wedge between private and social incentives that rules

out constrained efficient equilibria. Consider the planner’s problem, and observe also that it is

without loss of generality to equate signals with actions, and hence to assume there is a signal

action taken for each signal realization. We therefore rewrite the Lagrangean version of the

planner’s problem as
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sup
νΩ∈VΩ

0 ,α∈A,ᾱ∈Ā
inf

ψ∈R|S|×|R|×L

∑
s∈S,r∈R

[∫
Ω
u
(
α(ωj), ᾱ(s, r), s

)
νΩ
(
ωj |s, r, ā0

)
dωj
]
µ0 (s, r)

− CΩ
(
νΩ, φĀ{µ0, ᾱ}

)
+

L∑
l=1

∑
s∈S,r∈R

µ0 (s, r)ψl(s, r)[ᾱl(s, r)−
∫

Ω
αl(ω

j)νΩ
(
ωj |s, r, ā0

)
dωj ],

where A ≡ Ω → A is the set of action strategies. Note that we have scaled the multiplier by

µ0 (s, r) to denote that the policy need not hold for (s, r) not in the support of µ0.

Recall that we have supposed that all utility functions in the neighborhood of u have

constrained-efficient, non-deterministic symmetric BNE, and therefore involve interior actions.

It follows that the first-order conditions are necessary.

The planner’s first-order condition for αl(ωj) is∑
s∈S,r∈R

∂u (a, ᾱ (s, r) , s)

∂al
|a=α(ωj)ν

Ω
(
ωj |s, r, ā0

)
µ0 (s, r)

−
∑

s∈S,r∈R
µ0 (s, r)ψl(s, r)νΩ

(
ωj |s, r, ā0

)
= 0.

The first-order condition for ᾱl(s, r) is(∫
Ω

∂u
(
α(ωj), ā, s

)
∂āl

|ā=ᾱ(s,r)ν
Ω
(
ωj |s, r, ā0

)
dωj

)
µ0(s, r)

−∇ᾱl{CΩ
(
νΩ, φĀ{µ0, ᾱ}

)
}(s, r)

+µ0 (s, r)ψl(s, r) = 0,

why simplifies under the condition of Proposition 39 to

µ0 (s, r)ψl(s, r) = ∇ᾱl{CΩ
(
νΩ, φĀ{µ0, ᾱ}

)
}(s, r).

In contrast, the private FOC for al(ωj) is∑
s∈S,r∈R

∂u (a, ᾱ (s, r) , s)

∂al
|a=α(ωj)ν

Ω
(
ωj |s, r, ā0

)
µ0 (s, r) = 0,

Efficiency therefore requires

0 =
∑

s∈S,r∈R
νΩ
(
ωj |s, r, ā0

)
∇ᾱl{CΩ

(
νΩ, φĀ{µ0, ᾱ}

)
}(s, r)

for all ωj ∈ Ω. But this is non-zero generically in the neighborhood of u, and therefore

generically all equilibria are either deterministic or inefficient.
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