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stagnation is that good ideas are harder to find, rendering slowdown inevitable. We present a 
simple model of the lifecycle of scientific ideas that points to changes in scientist incentives as 
the cause of scientific stagnation. Over the last five decades, citations have become the dominant 
way to evaluate scientific contributions and scientists. This emphasis on citations in the 
measurement of scientific productivity shifted scientist rewards and behavior on the margin 
toward incremental science and away from exploratory projects that are more likely to fail, but 
which are the fuel for future breakthroughs. As attention given to new ideas decreased, science 
stagnated. We also explore ways to broaden how scientific productivity is measured and 
rewarded, involving both academic search engines such as Google Scholar measuring which 
contributions explore newer ideas and university administrators and funding agencies utilizing 
these new metrics in research evaluation. We demonstrate empirically that measures of novelty 
are correlated with but distinct from measures of scientific impact, which suggests that if also 
novelty metrics were utilized in scientist evaluation, scientists might pursue more innovative, 
riskier, projects.
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1.    Introduction  
 

Economic progress in the advanced world has stagnated in recent decades. As recently as 

the 1980s, GDP growth rates of four percent or higher were the standard for success. 

Today, a country that experiences a three percent growth rate in GDP has achieved great 

success. Real growth rates of one or two percent are the norm when a country is not 

experiencing a recession. Even many previously fast-developing poorer countries are now 

experiencing slowing GDP growth rates and diminished expectations for the future. While 

economists are still debating the causes of this global slowdown in GDP and productivity 

growth, most now seem to agree that part of the reason must include a slowdown in the 

rate of discovery of practical new scientific ideas and the development of new technologies 

that those ideas support.  1

It is fair to ask whether science is actually stagnating. Are we not confronted with 

evidence to the contrary daily? For example, in biomedicine, we are (once again) seemingly 

on the cusp of revolutionary technologies that will ultimately (we hope) enable doctors to 

cure cancer and extend life well into our second century. Moreover, the past two decades 

have seen astrophysicists train telescopes on black holes and planets orbiting other stars. 

The recent past has offered us also some very practical advances. For example, the 

development of techniques to miniaturize semiconductors has provided the engine 

underlying Moore’s law, which predicts that the number of transistors in an integrated 

circuit will double every two years. These developments have led to computational devices 

with almost unimaginable power in our pockets. 

Systematic evidence, however, points to a decline in scientific productivity. While 

there are many times more scientists today than in the past, today’s advances do not 

compare favorably to past breakthroughs. In areas where scientific progress is still as 

robust as in the past, today’s discoveries take many times more research effort than did 

past discoveries. The cost of developing new drugs, for example, now doubles every nine 

1 On global economic and productivity growth slowdown, see Hall (2016), Brynjolfsson et al. (2019), 
International Monetary Fund (2019), and Gordon and Sayed (2019). On technological stagnation, see Mandel 
(2009), Thiel (2011), Cowen (2011), Vijg (2011), Gordon (2000, 2012, 2016) and Bloom et al. (2019).  
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years. This empirical regularity has been referred to as Eroom’s law, representing the idea 

that the forces that govern scientific progress today are in many ways a mirror image of the 

forces that were at play at the time while Gordon Moore conceived his law. In other 

scientific areas, such as physics, the decline in scientific productivity appears to be 

absolute; many physicists themselves view current breakthroughs as less significant than 

past ones, despite the larger investment in these scientific areas.  Even economics, a 2

quantitative social science, has not been immune to concerns about stagnation.  3

A common explanation for this scientific stagnation is that finding good new ideas 

has simply gotten harder. Having picked all the low-hanging fruit, the secrets that are still 

there for scientists to unlock are fewer and harder to find.  While this explanation is 4

convenient as it absolves scientists, institutions, and analysts from any responsibility for 

the slowdown, it is likely wrong. One problem is that this explanation is not unique to our 

era. This view was common before the scientific revolution, as well as during the late 

nineteenth century. After the successful extension of classical physical ideas to electricity, 

magnetism, light, and heat, many physicists argued that physicists had solved physics. On 

the verge of two great revolutions in physical thinking (relativity and quantum mechanics), 

Nobel Prize-winning physicist Albert Michelson—one of the duo of physicists who earlier 

debunked the theory of ether—said in an 1894 speech dedicating the Ryerson Laboratory 

at the University of Chicago that: 

"The more important fundamental laws and facts of physical science have all 
been discovered, and these are now so firmly established that the possibility 

2 On scientific stagnation, see Le Fanu (1999, 2010), Scannell et al. (2012), Bloom et al. (2019), Collison and 
Nielsen (2018), and Cowen and Southwood (2019).  
3 ​Caballero (2010) laments the state of macroeconomics and implores researchers to address the pretense of 
knowledge syndrome by shifting to broad exploration mode. Romer (2015, 2016) argues that 
macroeconomics has gone backwards, as a culture of deference to authority has led to careless formalism and 
abandonment of empirical evidence as the coordination device. Heckman and Moktan (2019) worry that the 
obsession with publishing in high-impact journals incentivizes careerism over creativity, as innovative papers 
and exploratory odd-ball ideas are unlikely to survive these journals’ refereeing practices. Akerlof (2019) and 
Ruhm (2019) argue that economics excessively favors work where precise results can be produced over work 
that examines more important questions but yields imprecise results, biasing the profession against new 
ideas as they tend to be initially poorly understood and formulated. Frey (2003) argues that in economics 
new ideas are rejected for lack of rigor as they are by necessity less well formulated than well-established 
ideas, and that this has inundated economics with boring and irrelevant papers. 
4 On ideas becoming harder to find, see Jones (2010), Jones and Weinberg (2010), Cowen (2011), Arbesman 
(2011) and Bloom et al. (2019). 
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of their ever being supplanted in consequence of new discoveries is 
exceedingly remote.”  5

 
In stark contrast with this dark but once again popular view that we are entering an 

era of vanishing secrets and diminished expectations for the future, our explanation for the 

slowdown in research productivity has nothing to do with the paucity of good ideas. On the 

contrary, we believe that an abundance of ideas remains to be uncovered, ideas that—if 

given proper attention by the community of scientists—will produce unparalleled 

breakthroughs. 

In this paper, we argue that the root of the slowdown in scientific progress lies in 

the more quotidian fact that scientific work on truly novel ideas that have the potential to 

develop into groundbreaking advances is no longer rewarded in the same way it once was. 

Because scientists respond to incentives just as everyone else does, the reduction in the 

reward for novel, exploratory, work has reduced the effort devoted to it in favor of 

pursuing more incremental science which seeks to advance established ideas. Furthermore, 

as ideas are not born as breakthroughs—they need the attention and revision of a 

community of scientists to be developed into transformative discoveries—this decrease in 

scientists’ willingness to engage in an exploration of new ideas has meant that fewer new 

ideas have developed into breakthrough ideas. The underlying change in scientist 

incentives in turn has been driven by the shift toward evaluating each scientist based on 

how popular their published work is in the scientific community, with popularity measured 

by the number of times their work is cited by other scientists. We call this shift the ‘citation 

revolution’. This citation revolution has offered a useful way to identify and reward 

5 Michelson (1903, pp. 23-24). On the lack of belief in discovery before the scientific revolution, see Wootton 
(2015). More recent reincarnations of this view include Glass (1971), Horgan (1996), Cowen (2011), Gordon 
(2016) and Bloom et al. (2019). Silverstein (1999) lists further examples from different fields. Betz (2017) 
reviews other prominent stagnation theories including increased regulation and risk-aversion. Another 
problem with the vanishing secrets theory of stagnation is its self-fulfilling nature. Should scientists 
increasingly give up on the prospect of uncovering important secrets, it would become even harder for those 
few who still pursue broad exploration to get funding as their work would then be perceived to be even less 
feasible than today. See Thiel (2014) and Diamond (2019) for related analyses. The vanishing secrets theory 
of stagnation also runs against the idea that the arrival of new ideas leads to a combinatorial explosion in the 
number of possible combinations of ideas and an accompanying increase in available combinations lead to 
breakthroughs. On combinatorial explosion, see Romer (2019). Stagnation is consistent with combinatorial 
explosion if scientists at the same time become less willing to try out combinations that involve new ideas. 
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breakthrough science, contributions that have had a large influence on the scientific 

community.  However, it has also dramatically tilted incentives in favor of incremental 6

me-too science (as work in crowded areas tends to gather many citations) over exploration 

and scientific play, which tends to gather fewer citations but which lays the necessary 

groundwork for subsequent breakthroughs. The fixation with citations—which popular 

academic search engines such as Google Scholar solidify today—and the associated shift in 

scientist incentives and behavior have thus ultimately led to fewer breakthroughs.  7

The role that exploration and scientific play have in developing new ideas gradually 

from their infancy to breakthroughs forms a central part of our argument. Accordingly, we 

present a simple model of the lifecycle of a scientific idea to capture this aspect of scientific 

production. The model links scientific effort on an idea and the scientific impact of the idea 

in the three phases of the lifecycle of an idea: exploration, breakthrough, and incremental 

advance. Since ideas develop slowly in their infancy, early explorative work on an idea 

typically—and in our model—has little scientific impact. Nevertheless, such work is crucial 

because it lays the necessary groundwork for the later work on the idea, work that yields 

the breakthrough.  

The model is inspired by prominent examples of scientific breakthroughs in 

biomedicine. For instance, consider CRISPR—a recent breakthrough in biomedicine and 

one with the potential for substantial practical patient care benefits. The scientists now 

predicted to win Nobel Prizes for CRISPR began their first work on the idea after 20 years 

of exploration and scientific play by other scientists with the ideas that underlie it. This 

initial work gradually advanced the understanding by biomedical scientists of CRISPR’s 

existence, properties, purpose, and potential uses. 

Given this crucial aspect of scientific production—that early exploration is 

indispensable but typically has little impact on the wider scientific community—an 

excessive reliance on citations in the evaluation of scientists effectively punishes the 

6 For perspectives on the citation revolution, see e.g. Bensman (2007) and Small (2018).  
7 That scientists too respond to incentives is well demonstrated by Azoulay et al. (2019) who find that a 
funding mechanism that tolerates early failures yields more novel work and a 97% increase in breakthroughs 
papers. 
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exploration of new ideas. The incentives created by the focus on citations leads researchers 

to pursue more established research paths, with stagnant science as the by-product. Our 

simple model highlights this tension between the exploration of new ideas and 

citation-based research evaluation. Our analysis also clarifies who exactly stands on the 

shoulders of giants in science (those who make breakthrough discoveries) and who are the 

giants (those contemporaries and predecessors who engaged in the early exploration of 

new ideas). The latter group often has little recognition in the wider scientific community 

but facilitate the subsequent breakthroughs. 

Unlike the “vanishing secrets” theory of stagnation, ​our incentive-based theory of 

stagnation suggests that ​continued stagnation need not be inevitable ​. Changing scientist 

incentives by broadening how scientific productivity is measured and evaluated, in 

particular by rewarding both scientific impact and novelty, could encourage more 

exploration and scientific play. 

The balance of the paper proceeds as follows. In the first half, we delineate the link 

between stagnation and citation-driven science. We first discuss the dominant position that 

citation counts have come to hold in the evaluation of scientific contributions and 

scientists. Next, we present a simple model of the lifecycle of a scientific idea that 

distinguishes the special role that exploration and scientific play have in the development 

of scientific ideas from their infancy to breakthroughs. The model conveys a rationale to 

reward both exploration and impact. We then revisit the citation revolution in light of our 

model, focusing on how the citation revolution shifted scientist incentives and behavior 

away from exploration and toward incremental science. 

In the second half, we examine how changes in the measurement of scientific 

productivity to emphasize ​both ​novelty and impact might reverse the decline in 

exploration. We first discuss how academic search engines such as Google Scholar solidify 

the fixation with citations. We explain how these services could also measure other aspects 

of scientific productivity, such as the propensity to explore new ideas. We then present a 

constructive way to measure such scientific novelty in practice and show that measures of 
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novelty and scientific influence are empirically distinct. The final section describes several 

potential future paths for the process of scientific discovery. 

 
2.    Today’s One-Dimensional Evaluation of Scientific Contributions 

 

Scientists are measured by concrete metrics that are intended to capture the breadth of 

their contributions to the scientific enterprise. The rule for research scientists, at least 

those working in university settings, used to be “publish or perish.” This idea, first 

articulated in the 1940s, implicitly assumes that a productive scientist publishes many 

papers while an unproductive scientist publishes few.  A variant of this rule involves 8

counting the number of papers published in the most prestigious scientific journals. 

While useful, in recent decades, the importance of this simple volume metric has 

faded as another metric focused on measuring how popular a scientist’s published papers 

are in the scientific community has risen in importance. The popularity of a given paper, in 

turn, is measured by the number of times other scientific papers cite that paper. Scientific 

journals are now also ranked largely based on their “impact factor,” which is a function of 

the number of citations that papers published by the journal have attracted. An impactful 

scientist has come to mean a scientist who publishes popular, highly cited papers.  

Some modern metrics such as the “h-index,” developed by physicist Jorge Hirsh, 

combine volume and popularity into a single score that is a function of both. The h-index is 

as important to scientists today as a batting average or slugging percentage is to a 

professional baseball player, and in a directly analogous way. Success as a scientist, 

including tenure, promotion, and pay, often depend crucially on this number.  

A key criticism that raw citation counts, the h-index, and other measures 

constructed from citation data have faced in recent years is that they reduce scientific 

contributions to a number. Even an editorial in Science—the most highly cited scientific 

journal—concurs.  The author laments the prevailing ‘impact factor mania,’ and the 9

8 On the origin of publish and perish, see Garfield (1996)​. 
9 See Alberts (2013). 
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increasing tendency of scientists to work in well-populated research areas and on me-too 

science. Our concern with citations is a bit different, as we believe that advocates of 

citation-based metrics are right in arguing that highly cited discoveries are worth 

celebrating. The issue with citations is not that they reduce scientific contributions to a 

number.  

Rather, our main concern with citations is that they reduce scientific progress to a 

set of numbers that capture just one important dimension of scientific productivity. While 

breakthrough advances are worth celebrating, such contributions are not the only 

discoveries worth celebrating. Scientific progress depends on a steady flow of exploration 

and experiments with new ideas. When first hatched, new ideas are risky for scientists to 

work on in the sense that, at the outset, it is hard to distinguish between the ideas that are 

likely to be good if properly developed and the ideas that will never amount to much. 

Moreover, transformative discoveries—breakthroughs—depend on the base of knowledge 

created by this sort of scientific play with risky new ideas. 

Because citation-based metrics cannot capture distinctions between scientific 

exploration of new ideas and incremental work on mature, well-established, ideas, they 

distort research evaluation and shift scientist incentives away from such exploration and 

toward incremental science. The resulting decline in exploration and scientific play leads to 

fewer ideas that are developed into breakthroughs, rendering science less vibrant. 

 

3.    The Importance of Scientific Exploration and Play 
 

Crucially, not all eureka moments in science were recognized as such at first. Instead, the 

ideas only became transformative ideas after other scientists developed them further. 

Examples from every scientific discipline abound. One particularly instructive example 

comes from biochemistry. 

In 1967, biologists playing around near a Yellowstone National Park hot spring 

isolated the bacteria that they found thriving there. What drew their interest was the fact 

that bacteria could survive at such high temperatures. All living organisms require DNA to 
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reproduce, and the key enzyme that enables the copying of DNA is called DNA polymerase. 

One reason why most bacteria die at high temperatures, such as those found in hot springs, 

is that excessive heat deactivates DNA polymerase. Unlike other organisms, however, 

exposure to high heat does not harm the hot springs bacteria. The researchers noticed that 

one particular bacterium survived in higher temperatures than previously thought 

possible, and named this bacterium Thermus aquaticus (“hot water”). This curious new fact 

was published in the ​Journal of Bacteriology​ and generated a few citations but did not 

attract the attention of the wider community of biologists. A decade later, in 1976, other 

scientists isolated the DNA polymerase—a key enzyme that all living cells use to copy 

DNA—of the Thermus aquaticus bacterium. This finding too was published in the ​Journal of 

Bacteriology ​ and had a similarly limited scientific impact.  10

In the 1980s, biochemist Kary Mullis dreamed up the idea of applying a cell’s 

capacity to copy DNA over and over again on a particular strand of DNA.  First, there 11

would be two copies, then four, then eight, and so on. After enough replications, there 

might be millions of copies of the desired DNA segment. The technology, called polymerase 

chain reaction (“PCR”), later won Mullis the Nobel prize and revolutionized biomedicine. 

Without PCR, the human genome project would have been impossible. The earliest versions 

of this technology required the repetitive heating and cooling of the DNA sample and the 

continual reintroduction of new DNA polymerase into the solution. This unfortunate fact 

rendered the technology impractical for widespread use. The key breakthrough happened 

a few years later when scientists (including Mullis himself) playing with Mullis’ idea, 

learned about the earlier work on the hot springs bacterium and its unique heat resistant 

DNA polymerase. With this tweak—and no need to repetitively reintroduce DNA 

polymerase at every replication—PCR was automated so that a machine could run the 

procedure cheaply. Today PCR is used as an essential tool in every field where analysis of 

DNA plays a role. But this advance would never have happened without support for the 

biologists to play around near the Yellowstone geysers and hot springs. 

10 See ​Brock and Freeze (1969) and Chien et al. (1976).  
11 See Mullis (1994). 
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The history of CRISPR, a more recent breakthrough in biomedicine, offers a second 

illustration of the importance of scientific play and how ideas gradually develop into 

breakthroughs. In 1987, scientists first noticed ​clustered repeated regularly interspaced 

short repeats​ (CRISPR) in genetic material. During the 20 years that followed, work by 

dozens of scientists demonstrated the presence of CRISPR in different organisms and 

explored its properties, though in the initial years after its discovery, the biological purpose 

of CRISPR remained mysterious. By 2007, though, scientists had discovered CRISPR’s 

evolutionary purpose as an adaptive immune system. Cells use these DNA segments as a 

library of foreign DNA to help immune cells fight off future assaults. 

Despite these breakthroughs, CRISPR had yet to influence the wider scientific 

community. The early work did not receive many citations, and even as late as 2012, 

leading journals rejected contributions that are now considered key advances. In 2011, it 

was not clear that CRISPR was the best technology for genome editing; scientists who chose 

to explore it considered the choice risky. In 2007, the scientists now predicted to win Nobel 

Prizes for their CRISPR-enabled discoveries had not yet begun their work on it. 

Nevertheless, the early work on CRISPR—the two decades of scientific exploration 

and play by many scientists in relative obscurity—had gradually advanced the 

understanding of CRISPR’s existence, properties, purpose, and potential uses within 

biomedicine. This knowledge served as the basis for a flurry of scientific activity in the late 

2000s and early 2010s that culminated in CRISPR being successfully used for mammalian 

genome editing in 2012, with considerable scientific influence and potential practical 

benefits.  12

There are several key lessons to draw from the stories of PCR and CRISPR. First, it is 

exceedingly difficult to anticipate which particular advances in science are likely to prove 

useful for future breakthroughs; it takes a long time for the scientific community to come to 

12 ​For the history of CRISPR, see ​Yoshizumi et al. (2018), ​Mojica and Montoliu (2016), ​Doudna and Sternberg 
(2017) and Lander (2016) (the last reference is controversial not for its emphasis on the key role that 
exploration and scientific play had in terms of facilitating the widely celebrated later breakthroughs but for 
its emphasis on senior scientists over graduate students and postdocs and for its emphasis on some senior 
scientists over others as well as for its lack of acknowledgement of a potential conflict of interest relating to a 
patent dispute).  
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understand the properties of each new idea. There is thus a great long run benefit to 

supporting the exploration of ideas that, at the time, do not have an immediate and 

apparent application.   13

The second lesson is that breakthroughs often cannot take place without prior 

high-risk work. When Isaac Newton—a revolutionary scientist if there ever was one—said 

that he was “standing on the shoulders of giants,” this was not merely false humility. His 

work built on the foundation of the scientific play of his contemporaries and predecessors, 

even if nearly everyone today (barring historians of science) would face insuperable 

difficulties in naming them all or their contributions to physics. It is no accident that 

Gottfried Leibniz discovered calculus at nearly the same time as Newton—they both 

benefited from the same scientific community of contemporaries and predecessors; they 

were both standing on the shoulders of the same giants.   14

The third lesson derives from thinking about all the scientific play that does not 

ultimately prove useful. Most scientific work with new ideas falls into this category, as most 

new ideas fail in the sense that they do not develop into breakthroughs. While early 

exploratory work is crucial for subsequent breakthroughs, it is rare for scientists to reward 

such work with many contemporaneous (or even delayed) citations. Despite the difficulty 

of distinguishing ultimately useful scientific play from less useful play at the time when this 

exploration takes place, such work is valuable nonetheless and worthy of support even 

13 ​The discovery of the DNA double helix provides another illustration of how raw ideas are when they are 
first born. The initial response to the discovery was muted in part due to lack of evidentiary support on 
several dimensions—even Watson and Crick acknowledged the speculative nature of their initial discovery. 
Subsequent work by many scientists who were willing to explore the new hypothesis in the subsequent years 
soon filled those gaps. See Olby (2003). The events leading up to the discovery of the double helix by Watson 
and Crick provide a further illustration of the importance of exploration by a broader scientific community in 
fueling breakthrough discoveries. See Watson (1968) 
14 ​The discovery by eventual Nobel winners Barry Marshall and Robin Warren of the role of Helicobacter 
pylori in pectic ulcers provides another illustration of the value of exploration for later discoveries. Marshall 
and Warren benefited from 90 years of prior exploration on bacteria that can survive in stomach acid. By the 
time Warren turned to the topic, the scientific community had largely forgotten the initial exploratory work 
on the topic. Warren at first faced considerable resistance to his hypothesis, but further experiments by 
Marshall and Warren—including Marshall drinking a slurry of the bacteria and causing himself an ulcer—and 
by others finally convinced the larger scientific community that their idea was right, and led to a flurry of 
research to use the finding in clinical practice. The abovementioned work on hot springs bacteria played a 
role too—it helped change the previous consensus that bacteria do not survive harsh environments such as in 
stomach acid or hot springs. See Marshall (2005, 2016) and Warren (2005). 
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given its high rate of failure.  Scientists who spend their lives on such play need rewards 15

commensurate with the value of their work, which is considerable, even if most of their 

publications do not generate much attention in the form of citations from other scientists. 

In the next section, we develop a simple model that captures these key 

characteristics of how ideas develop and highlights how citation-based evaluation weakens 

the incentive to explore new ideas. Before proceeding, it bears mentioning that the 

distortion of incentives influences not only what scientists do but also who becomes a 

scientist in the first place.  The tilt in incentives drives away those who would prefer to 16

pursue risky exploration in their work. The eccentric scientist type—the introverts who 

prefer to work apart from the crowds—has a weakened incentive to enter science. 

Gradually in science, such individuals will be replaced with people who work well in teams 

but conform more easily to prevailing scientific norms, researchers who tend to eschew 

exploration in new areas of investigation and instead work in more crowded research 

areas. To be sure, both types of scientists are valuable. Science needs scientists who 

develop maturing research areas ​and​ science needs scientists who explore the unknown in 

search of establishing new areas of investigation.  

 

4.    The Lifecycle of a Scientific Idea 

 

We now present a simple model of scientific production that describes the lifecycle of an 

idea. The framework abstracts away many important aspects of the scientific endeavor but 

highlights the natural history of the development of scientific ideas.  At the heart of this 

model is a division of scientific activity on each scientific idea into three phases: 

exploration, breakthrough, and incremental advance. Figure 1 illustrates these three 

phases. Since work on an idea in the latter phases builds on earlier work on the idea, we 

call this framework the “shoulders of giants” model. 

15 ​Working scientists often view failure to be common and even as a precursor to success, see Livio (2013), 
Firestein (2015), Popovian (2016) and Zaringhalam (2016).  
16 On how scientist evaluation mechanisms influence who becomes a scientist, see Osterloh and Frey (2013). 
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Figure 1. The relationship between scientific effort on an idea and the scientific 
impact of the idea. The horizontal axis captures the three phases of our model: 
exploration, breakthrough, and incremental advance. The vertical axis captures the
influence of the idea on the scientific community. Work done during the 
exploration phase has little observed impact but lays the necessary groundwork for 
the later breakthroughs.  

In this model of scientific production, new ideas occur to scientists all the time 

during the conduct of their work. These new ideas all share the feature that when they first 

arrive, they are in an embryonic form that generates no scientific impact whatsoever. Good 

but yet untested and unexplored ideas are, by themselves, cheap in science and convince no

one of anything. Most new scientific ideas die there, with even the scientist who had the 

original idea giving up on it shortly after it arrives. 

On the other hand, one or maybe a few scientists might see promise in a new idea 

and deem it worthy of further exploration. The idea may even entice a broader group of

scientists to engage. This early work on the idea initiates the exploration phase. The 

importance of such attention by a community of scholars in the development of each new 
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idea into a mature advance is neither new nor controversial. However, in citation-based 

empirical analyses of scientific productivity, this aspect is often forgotten; the analyses 

focus instead on identifying great scientists without regard for the scientific community 

that was integral to their success.  17

During the exploration phase, scientists try out the new idea in different settings 

and different ways, looking to see what does not work and what looks promising, looking 

for applications and combinations with other ideas where the new idea might prove useful. 

Over time and with considerable effort, the cohort of scientists working on the new idea 

builds up a body of knowledge about it and its usefulness. We label work during the 

exploration phase “edge science,” since researchers work with relatively unknown and 

untested ideas that are near the edge of the scientific frontier. 

Often little of the body of knowledge uncovered during the exploration phase will 

end up in the published literature since much of it consists of negative results about 

contexts in which the idea does not work. When a scientist submits a paper for publication 

describing a positive result or files a grant application to garner financial support for 

further exploration, the typical reaction of peer reviewers not involved in the exploration 

of the idea is skepticism and rejection. When a paper about the new idea is accepted, it will 

typically attract only a small audience of scientists who cite it. 

These properties of scientific work on new ideas are modeled in Figure 1 by the long 

flat portion of the exploration phase. This work generates little scientific impact (in the 

sense of cited publications) as a return for the considerable effort that takes place during 

this early work on an idea. Nevertheless, this work is invaluable as the knowledge gained 

from such scientific play facilitates the breakthrough phase.  

Most scientific ideas never make it to the breakthrough phase, but those that do 

make scientific careers. The exploration phase has finally produced a promising application 

17 Kuhn (1962, 1977) emphasized that ideas are poorly understood when they are first born and need the 
attention and debate of a community of scientists to be developed into useful advances. For formal theoretical 
analyses of scientific communities, see Bramoulle and Saint-Paul (2010), Besancenot and Vranceanu (2015) 
and Akerlof and Michaillat (2019). Foster (1986) used an S-curve to describe the link between effort and 
performance in technological innovation. The raw nature of new ideas in technological innovation was 
emphasized by Marshall (1920) and Usher (1929). 
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of the idea or a fruitful line of experiments that make clear to the scientific community that 

the new idea is worth its attention. A broader set of researchers start to use the idea in 

their own work, and someone (not necessarily from the cohort involved during the 

exploration phase) publishes a paper about the idea in a high-profile scientific journal. A 

flood of new scientists are drawn to the now better understood and newly popular idea, 

and a series of high-profile papers are published, and grants awarded to members of this 

newly enlarged cohort of experts on the idea. The impact of the idea on science from this 

work is enormous and is modeled in Figure 1 by a sharp rise in the curve during this 

breakthrough phase. If the idea is important enough or fruitful enough, it may eventually 

generate a prestigious prize for a scientist publishing about the idea during this phase. 

Research conducted during the breakthrough phase is not synonymous with 

revolutionary research in the sense implied by Thomas Kuhn in his Structure of Scientific 

Revolutions. Revolutionary ideas fundamentally upend the assumptions on which a 

scientific discipline operates, relegating much previous research (even breakthrough 

research) to the status of historical interest only. Hence, for example, the theory of 

Ptolemaic epicycles plays almost no role in modern astrophysics since the Copernican 

scientific revolution supplanted it. Though Ptolemy’s system was a breakthrough idea in its 

time, it was supplanted by later developments. Only a select few breakthrough ideas are 

truly revolutionary in the Kuhnian sense; these are only a small fraction of the ideas that 

arrive at the breakthrough phase. 

Breakthrough science in the context of the shoulders of giants model is also not 

synonymous with the ideas being capital-T true. As many scientists have evaluated the idea 

by the time it hits the breakthrough phase, such ideas are more likely to be True than ideas 

that die in the exploration phase. But even large groups of smart and dedicated people can 

be wrong about many things. This fact is one reason why scientific influence in our model is 

not exactly equal to the practical benefit of these ideas, even though in some scientific areas 

such as biomedicine, the two can be linked quite closely. 

Finally, in the incremental advance phase, the idea has matured. There is still 

considerable work left for scientists to do to work out details that were set aside during the 
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heady days of the breakthrough phase. These details are still scientifically important and 

will generate further scientific impact and practical applications, but the ratio of scientific 

advance to total scientific effort on the idea has decreased considerably. As a general rule, 

uncertainty about what a scientist is likely to find from putting further effort into this idea 

has also decreased considerably from the exploration days. Consequently, funding agencies 

may be eager to award grants to scientists working on the subject. Peer reviewers—a 

conservative lot if there ever was one—abet this tendency since grant applicants can 

credibly reassure them the proposed work is likely to produce visible, if marginal, 

successes. 

When the idea has reached near the summit of its potential, further scientific work 

on it produces little scientific impact. We model this fact in Figure 1 with a flat curve during 

much of the incremental advance phase. The idea has enriched the work of many scientists, 

but most gradually recognize that it is time to move on to the next one. The idea has been 

absorbed into the thinking of the scientific community so thoroughly that few researchers 

who use the idea bother to cite the scientists who conducted the earlier work. For example, 

a vanishingly small fraction of published biochemical papers today that involve DNA cite 

the seminal paper by James Watson and Francis Crick on its molecular structure. Hence, 

while citations are a useful tool for measuring scientific influence in the short run, the only 

hope for measuring the long-term impact of an idea is through an analysis of the scientific 

vocabulary. 

Up to now, we have focused on the development and lifecycle of a very successful 

idea. However, most new ideas will never—even if properly developed and explored—turn 

into significant breakthroughs. Figure 2 illustrates this variability in the quality of new 

ideas; it shows the differing potential of four different ideas, imaginatively titled A, B, C, & 

D. Idea A, if pursued by the scientific community, would result in a ground-shattering 

breakthrough. Idea B, if pursued, would also produce a nice result, though perhaps not of 

fundamental significance. By contrast, ideas C & D, no matter how much effort scientists 

pour into them, would not result in much of anything. 
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Figure 2. The relationship between scientific effort and scientific impact on four
ideas with different potential. Ideas A and B are highly successful if properly 
developed, whereas ideas C and D do not amount to much, even if properly 
developed. Ideas that lead to failure in this sense are much more common than 
successful ideas.

Nevertheless, the early exploration of all the ideas A, B, C, and D, is invaluable.

During the early days of scientific investigation of an idea, it is often impossible for 

scientists to distinguish good ideas from the bad—that is, to distinguish ideas A and B from 

ideas C and D. It takes some work by scientists to uncover whether an idea is likely to be 

ultimately fruitful or barren.

Furthermore, even the scientists who work on idea A in its exploratory phase do not 

generate much immediate scientific impact. Rather, they are the giants upon whose 

shoulders the later breakthrough phase scientists stand since their work enables the later 

ground-breaking discoveries. The designation of “giant” extends to all the scientists

working in the exploration phase, whether they work on ideas A, B, C, or D; they all advance 

science whether their results turn out positive or negative by guiding the thinking and 
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actions of future scientists. To further highlight this point, Figure 3 shows the model 

together with the separate designation of scientific work conducted by giants and work

conducted by scientists standing on the shoulders of giants.  

 
 
Figure 3. The delineation of scientific effort as giants and as standing on the 
shoulders of giants. Giants are not only those who work on the idea during the
breakthrough phase but also those who investigated and developed the idea during 
the exploration phase. Furthermore, the status of giant does not depend on 
whether the idea is ultimately successful. 

Figures 2 and 3 together imply a rationale for measuring and rewarding exploration

phase work by scientists, even if the idea does not develop into a meaningful advance. First, 

rewarding exploration promotes those scientific giants who set the groundwork for future 

breakthroughs. Second, and just as importantly, such a policy would reward fruitful

scientific failures. Of course, this is valuable because, at the time of exploration, there is 
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often considerable uncertainty about whether a particular idea is a good one. It is only by 

trying out the idea that we gain knowledge about which new ideas are the best new ideas. 

Without rewards for work on ideas that fail, such an exploration of new ideas is too risky 

for most scientists to undertake. 

It is natural to ask which scientist played in retrospect the most important role in 

the development of a mature and successful scientific idea. There are several plausible 

candidates, including the scientist who first conceived the idea, the cohort of scientists who 

played with the idea during its exploration phase, and the scientists who published the 

most prominent papers during the breakthrough phase. In our view, there is no need to 

decide who was most important since they were all important. 

Crucially, though, in today’s science, those who work on the idea during the 

breakthrough phase will reap the lion’s share of the rewards since they are the ones 

publishing the papers that generate the most citations. Yet their work would have been 

impossible without the edge science done by scientists during the exploration phase, work 

that is unlikely to be measured as high impact since it generally does not garner a 

substantial number of citations. 

Furthermore, even work pursued during the incremental advance phase often 

receives far more citations than comparable work done on the idea during the exploration 

phase. As a consequence, scientists who work on an important idea after it has matured to 

the incremental advance phase are usually considerably better rewarded than scientists 

who worked on the idea during its exploration phase (not to mention scientists who 

explored ideas that failed). As the idea matures, the relative certainty of making 

discoveries—however incremental—attracts more and more scientists to the area. As a 

result, while the scientific impact of work on mature ideas is not necessarily any greater 

than the scientific impact of work during the exploration phase, there are often many times 

more scientists working on the idea during the mature phase than during the exploration 

phase. Because so many are working on the idea, the work will tend to receive many 

citations, which will attract even more scientists. This cycle leads to an amplified 

divergence between citations and scientific impact. Thus, the incentive to continue working 
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on the idea is considerable long after the additional value of contributions on it has greatly 

diminished. 

The model thus helps bring to focus a key disconnect: while rewarding exploratory 

phase science is important for scientific progress, the current practice in science evaluation 

favors breakthrough and incremental science over exploration. Furthermore, as citation 

measurement is a valuable tool for rewarding scientists who work during the breakthrough 

phase, the main issue with citation-based evaluation is that citation counts do not 

distinguish between early, exploratory, work on an idea and later, incremental, work on an 

idea. The reliance on citation counts tends to encourage incremental science at the expense 

of the exploration of new ideas. 

The model also points to how we could increase the incentive to pursue exploration. 

If we can construct a metric that identifies which scientific contributions represent edge 

science, we could use that metric to reward scientists who direct their time and effort to 

the trying out of new ideas. Before discussing how edge science contributions can be 

identified in practice (section 7), we next discuss in more detail the rise of citations and its 

impact on science. 

 

5.    As Citations Became Prominent, Science Became More 

Conservative 

 

Evaluating scientific contributions and scientists was not the original purpose of citation 

indices. Instead, they were first built to help scientists process the rapidly growing 

scientific literature. But soon after their introduction, scientific administrators and funders 

noticed that these indices could also be used to identify influential scientific contributions, 

influential journals, and influential scientists. A natural consequence of this development 

was that citations quickly gained a prominent role in determining rewards in science. 

Ironically, Eugene Garfield—the scientist primarily responsible for developing the 

idea of using citations as a measure of scientific productivity in the 1950s—had 
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considerable reservations about their use to evaluate scientific productivity. His obituary, 

published in ​Nature ​, reported that: 

“Garfield came to see the impact factor as a mixed blessing, ‘like nuclear 
energy.’ Although he felt that citation indexing and the impact factor could be 
remedies for the limitations of peer review, he was uncomfortable with their 
misuse as performance indicators.”  18

 

The citation revolution started to gather steam in the 1970s. Scientists, university 

administrators, and funding agencies increasingly focused their attention on citations. In 

1983, Eugene Garfield noted how commonplace citation analysis had become in research 

assessment, and emphasized that he had not advocated using citation analyses in 

evaluating individual scientists. At that point, he felt obliged to give guidance to 

administrators on how to use citations responsibly in tenure and promotion decisions. 

Observing the popularity of citation metrics in research evaluation, later 

commentators—usually focusing on the misuse of journal impact factors rather than 

citations in general—have often raised the issues in starker terms, even characterizing the 

situation as “tyranny”, “mania” and “obsession”.  19

As citations gained prominence in research evaluation, this tilted incentives in favor 

of incremental science at the expense of more innovative science.  Increased competition 20

for resources has further exacerbated these distortions.  It is thus not surprising that 21

science has become more conservative in the decades that span the citation revolution: 

quantitative evidence from biomedicine shows that scientists are now less likely to try out 

new ideas in their work. For instance, University of Chicago biologist Andrey Rzhetsky and 

his colleagues, writing in the ​Proceedings of the National Academy of Sciences​ report that 

18 ​For the obituary, see Wouters (2017). Garfield (1955, 1972) was tenacious with developing and 
disseminating citation metrics but was not the first to introduce the idea of using citations to rank papers and 
journals, as the idea had been previously explored by Gross and Gross (1927) and Fussler (1949).  
19 ​See e.g. Seglen (1997), Lawrence (2003, 2007), Calquhoun (2003), Alberts (2013), Scheckman and 
Patterson (2013) and Berenbaum (2019). 
20 ​The recent decade has seen many attempts at alleviating these distortions (see footnote 26). 
21 ​On increased competition in science, see e.g. Edwards and Roy (2017) who argue that in the last 50 years 
incentives in science have changed dramatically for the worse as a result of increased competition and 
emphasis on quantitative metrics. In contrast with our analysis, they do not explicitly tie these developments 
to novelty of research and stagnation in scientific progress.  
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“the typical research strategy used to explore chemical relationships in biomedicine... 

generates conservative research choices focused on building up knowledge around 

important molecules. These choices [have] become more conservative over time.”  22

Another paper in the ​American Sociological Review ​by the same team (led this time by UCLA 

sociologist Jacob Foster) reports even more bluntly that: 

“High-risk innovation strategies are rare and reflect a growing focus on 
established knowledge. An innovative publication is more likely to achieve 
high impact than a conservative one, but the additional reward does not 
compensate for the risk of failing to publish.”  23

 

In recent decades the largest scientific funding agency, the National Institutes of 

Health (NIH), has also become less likely to support novel work despite its best efforts to 

the contrary.  The NIH’s failure to foster more innovative science in biomedicine is not 24

surprising. Its own funding structures appear to stifle scientific creativity both in terms of 

novelty and impact.  Furthermore, beyond NIH’s control, impact factors still dominate the 25

assessment of scientific contributions in hiring, promotion, and salary decisions. And while 

the NIH strives to evaluate the innovativeness of research proposals separately, it too 

currently lacks access to metrics to evaluate the innovativeness of researchers’ existing 

contributions and is thus forced to rely largely on impact factors and citation counts in any 

quantitative evaluation of scientists or grant programs.  

Given the changes in incentives toward more conservative science, these 

developments are not surprising. ​Without proper incentives to explore and build on new 

ideas, we should not expect scientists to try to unlock their mysteries to the same extent 

that they once did. Moreover, given the decline in exploration and how ideas develop 

through sustained exploration by a community of scientists, neither is it ​surprising that 

also research productivity in science has decreased (as discussed in the introduction). This 

decline is most apparent in areas such as biomedicine, where direct measures of the 

22 ​Rzhetzky et al. (2015). 
23 ​Foster et al. (2015). 
24 ​On increased conservatism in NIH funded research, see Packalen and Bhattacharya (2018).  
25 ​Azoulay et al. (2011) show that recipients of grants from the Howard Hughes Medical Institute that tolerate 
early failure better than NIH grants have higher productivity in terms of novelty and impact. 
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practical benefits of science are available. It is also not surprising that science no longer 

fuels technological innovations at the same robust rate as during earlier eras, as evidenced 

by the ongoing slowdowns in productivity growth and economic progress. 

While others have attributed this stagnation to science getting harder due to the 

gradual vanishing of valuable secrets and the associated diminishing of research 

opportunities, we see this change as an unintended consequence of the citation revolution. 

That science no longer produces breakthroughs comparable to those in the (now quite 

distant) past is an expected consequence of the shifting of reward structures and research 

priorities in science in favoring incremental work. 

Figure 4 conceptually illustrates the shift in the distribution of scientists’ research 

priorities away from exploration phase science. Before the citation obsession (left panel), a 

healthy proportion of scientists was willing to engage in true exploration and scientific play 

with new ideas. Today (right panel), after the shift to the single-minded celebration of 

high-impact science, scientists are less willing to engage in true exploration. This shift in 

the distribution of scientists’ effort away from exploration and toward incremental science 

has been costly; as attention to novel ideas has decreased, science has stagnated. 
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Figure 4. The shift in scientists’ effort away from exploration and toward 
incremental science. Before citations came to dominate research evaluation, more 
scientists were willing to engage in risky exploration that laid the groundwork for 
later breakthroughs (left panel). The citation revolution led to a decline in
exploration in favor of incremental science. The decline in exploration eventually 
also decreased opportunities for breakthrough science (right panel).

6.    Academic Search Engines Solidify the Citation Obsession

Today, the fixation with scientific impact, as measured by citations, is on full display on all 

popular academic search engines such as Google Scholar, Microsoft Academic, and Web of 

Science. While these services provide a valuable function in that they help researchers 

identify related works, at the same time, they reduce the value of each scientific

contribution to only the citations it has received, and they reduce the worth of each 

scientist to an index that captures how many citations the scientist’s works have generated 

to date. In Google Scholar, for example, the default view for each scientist shows how many 

citations the scientist’s papers have received (summarized by the total citation count and

the h-index) and lists the scientist’s papers in a descending order based on the number of 

citations to them. The alternative view panel, which can be seen by the press of a button, 

lists the scientist’s most recent research papers first. By contrast, information on what kind 

of science each paper represents—whether the research is exploratory or whether it

advances well-established ideas—is not readily available. Nor does Google Scholar show a 

measure of a scientist’s proclivity to engage in the exploration of new ideas. 

By presenting information only on scientific influence, popular academic search 

engines Google Scholar, Web of Science, Scopus, and PubMed, as well as their new

competitors such as Dimensions and Semantic Scholar, tilt scientists’ incentives toward 

incremental science. Rather than helping scientists “stand on the shoulders of giants” 

(which is Google Scholar’s motto) or promoting science conducted by exploratory phase 

giants, these services in their current form end up diminishing the exploration upon which

groundbreaking discoveries build. The decreased incentive to explore shifts scientists 

toward incremental work, which in turn causes breakthroughs to become rarer. Thus, 
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while the stated purpose of academic search engines is to accelerate scientific discovery, 

these services in their current form run the risk of hindering scientific progress. 

Because citation-focused approaches distort scientist incentives in this way, simply 

counting papers rather than citations might lead to a more innovative scientific ecosystem. 

However, simply counting papers creates its own distortions in incentives by rewarding 

volume alone and not quality. In any case, given the widespread and easy availability of 

citation-based metrics and their correlation with scientific impact and contribution quality, 

it is unlikely that the scientific community would accept a return to a volume-based 

measure alone.  

More exploration could be encouraged by measuring it directly. Since scientists and 

scientific administrators pay attention to the metrics presented at these sites, if academic 

search engines were to include paper-level measures that capture whether a contribution 

represents work that tries out new ideas and scientist-level assessments that capture to 

what extent each scientist engages in exploration versus incremental science, scientist 

incentives to pursue innovative research directions would increase. 

Our analysis of the state of affairs in science is different from the argument the key 

distortions in scientist incentives stem from either excessive reliance on metrics or from 

the focus on journal-level rather than article-level citation counts.  As we have emphasized 26

repeatedly, in our view measuring scientific influence is useful. It is only the focus on 

influence alone that ultimately leads to stagnant science. The alternative approach is to 

evaluate scientific contributions and scientists on multiple dimensions, including volume, 

impact, ​and novelty ​. This approach would be more balanced than the present situation, 

because the kind of science a scientist pursues is as important as how influential or prolific 

the scientist is. Curiously, as it currently stands, even baseball players are evaluated on 

many more dimensions than scientists. Yet this comparison is useful for just as 

26 ​See e.g. Cagan et al. (2013), Hicks et al. (2015) and Hutchins et al (2016). As we discuss in the concluding 
section, attempts to move away from the quantification of scientific contributions are likely to be unfruitful. 
We also suspect that a shift toward emphasizing article-level measures of impact even more than today would 
have adverse effects in terms of novelty of science—unless we start measuring also article-level novelty—as 
researchers who are successful in publishing novel but less cited work in high-impact journals would then 
receive less credit for their work than they currently do. 
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sabermetrics serves a useful purpose in baseball, so can a broad enough suite of measures 

of scientific production help guide scientists, university administrators, and funding 

agencies. 

 

7.    Measuring Exploration in Science  

 

While others have suggested that economic and scientific stagnation is an inevitable 

consequence of diminished scientific opportunities, our message is a constructive one. We 

believe that a decline in scientists’ incentives to pursue exploratory phase science drives 

stagnation. If that is right, then rewarding scientific novelty in addition to influence can 

reignite science. Because scientists, like all people, respond to incentives, increasing 

rewards for novel work will induce scientists once again to pursue exploratory phase 

research directions more often. Of course, to reward scientific novelty, we must first 

measure it. 

Measuring any aspect of scientific activity is not a simple task. For example, it is 

well-known that citations are an imperfect and noisy way to measure scientific influence, 

and yet, citations are a useful measure of scientific influence. Accurately measuring the 

scientific novelty of a contribution is similarly difficult. Recent advances, though, have 

rendered the measurement of scientific novelty no more difficult or flawed than the 

measurement of scientific influence. 

Our preferred approach to measuring scientific novelty is based on a textual 

analysis of research publications. The underlying premise of this approach is three-fold. 

First, each scientific contribution builds on and advances many ideas. By using an idea and 

further elaborating on it, scientific work advances our understanding of the idea. Second, 

the text of a scientific contribution reveals many of the important ideas that the work 

builds upon and advances. Third, new ideas in science often manifest themselves as new 

words and word sequences. 

Combining these premises, we arrive at the following idea: by indexing the words 

and word sequences that appear in each scientific paper, we can construct first a list of the 
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ideas that each scientific contribution builds upon and advances. The vintage of each idea 

can then be determined based on how long ago the idea first appeared in the literature. 

Having determined the ideas that appear in each paper and the vintage of each idea, we can 

then identify which research papers try out and advance relatively new ideas. 

Contributions that build on relatively recent ideas represent novel science, whereas 

contributions that only build on well-established ideas represent more conventional 

science. In our prior published research work, we have implemented this idea to measure 

scientific novelty.  27

Thus, a simple approach already exists for identifying ideas used by scientists and 

the vintage of those ideas, an approach that allows us to distinguish which papers 

represent edge science and which do not. Paper-level measures of novelty can then be used 

to calculate, for example, scientist-level and journal-level tendencies to pursue and 

promote novel science. Calculating such “edge factors” that capture the average tendency to 

use novel ideas is analogous to calculating “impact factors” that capture the average 

tendency to publish influential research papers and which today is commonly used to 

evaluate scientists, scientific journals, and research institutions. 

While the impact factor and edge factors measures are related, they capture two 

distinct aspects of science. Conceptually, Figure 5 illustrates this point. Impact factors are 

useful for rewarding work done during the breakthrough phase and during the early part 

of the incremental advance phase. Impact factors, however, cannot be used to encourage 

more exploration in science. Edge factors, by contrast, are useful for rewarding work done 

during the exploration phase. It is thus necessary to have both measures at hand to provide 

scientists incentives that properly balance the rewards that accrue to those who engage in 

an exploration of new ideas in their work and the rewards that accrue to those who pursue 

work that builds on more mature ideas. 

27 See, for instance, Packalen and Bhattacharya (2011, 2012, 2015a, 2015b, 2017, 2018, 2019). 
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Figure 5. The impact factor and the edge factor capture distinct aspects of science. 
The impact factor (citation counts) identifies contributions, journals, and scientists 
that had a large influence on the scientific community. The edge factor identifies
contributions, journals, and scientists that explore and develop new ideas, 
contributions that tend to receive fewer citations but are novel and upon which 
breakthroughs are built. Rewarding also scientific novelty as opposed to only 
scientific influence could encourage more scientists to again engage in risky
exploration, resulting in healthier science. 
 

Figure 6 illustrates a further fundamental difference between impact and edge 

factors. While impact factors are mainly useful for rewarding high-impact work on 

successful ideas, edge factors are useful for rewarding early exploratory work both on
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successful ideas (ideas A and B) and on ideas that ultimately fail (ideas C and D). 

 

 
Figure 6. The impact factor and the edge factor for four ideas. The impact factor
(citation counts at journal-, scientist-, or article-level) rewards only high-impact 
work on ideas that succeed. The edge factor rewards early exploratory work on 
successful ideas (A and B) and on ideas that ultimately fail (C and D). Increasing the 
tolerance for failure is one key rationale for measuring and rewarding scientific
novelty separately from scientific impact. 

This ability to increase scientists’ tolerance for failure is one key objective of 

measuring and rewarding explorative work on new ideas. Of course, no scientist will

purposefully choose to explore an idea that she deems more likely to fail than other 

available new ideas. The human capital accumulated during explorative work on an idea is 

more useful for the scientist if the idea is successful. A scientist who embarks on 

exploratory work thus has an incentive to select the new idea she believes is the most likely

to work. 
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Empirically, measures of novelty are correlated with but distinct from measures of 

scientific influence. We next illustrate this with data on biomedical research papers. In this 

analysis, we rely on an analysis of the textual content of every published biomedical 

research paper indexed in the comprehensive PubMed database. Using the method we 

describe above, we identify every idea input employed in each paper, and then we 

determine the vintage of each idea. Using this information, we determine the novelty of the 

idea inputs for every published peer-reviewed paper in PubMed. We then rank papers by 

the novelty of their idea inputs. We designate papers that contain newer ideas at the time 

of publication (within the top 20% of idea vintage recency) as relying on particularly novel 

ideas and construct an indicator variable of novelty on this paper. We also observe the 

number of citations each paper received since publication through 2015, which is a 

measure of the scientific influence of each paper. We then rank papers by their received 

citation counts and determine the citation percentile of each paper. Finally, we calculate for 

each citation percentile group what share of papers are novel and what share of papers 

build on more mature ideas. 

Figure 7 depicts the resulting empirical link between citations and novelty. In this 

figure, the horizontal axis captures the citation percentile, where we group papers to 

twenty groups that range from the bottom 5% least cited to the top 5% most cited. The 

vertical axis in turn captures the novelty status of each research paper. The figure 

illustrates that while novelty rank (edge science) and the citation count rank (scientific 

influence) are positively correlated, the two measures are distinct. Research evaluation 

that focuses on scientific influence will mainly reward papers in region 1 as these papers 

receive the bulk of citations. By contrast, research evaluation that measures and also 

rewards novelty will also reward papers in region 2, which includes novel, high-impact 

papers as well as novel, low-impact papers.  
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Figure 7. Empirical link between a measure of novelty and a measure of scientific 
influence. The horizontal axis captures the citation percentile of a research paper. 
The vertical axis captures whether a research paper is in the top 20% in terms of
novelty of idea inputs. We calculate novelty status and citation percentile for 
191,354 biomedical papers published in 2001 (PubMed/Web of Science data). 

Novelty and scientific influence are empirically distinct for two reasons. First, 

science that builds on mature ideas does sometimes lead to high-impact contributions, 

even breakthroughs. This fact underlines the point that incremental science is not useless.

The danger with incremental science is not that it serves no purpose; rather, the danger 

with incremental science is that there is too much of it, that not enough attention is given to 

new ideas when incentives are tilted too much in favor of incremental science. Second, 

novel science is not synonymous with breakthrough science. On the contrary, it often leads

to failure. This failure comes in many forms, including a lack of publishable work. Even 

when work on a novel idea results in a publication, other scientists often do not find the 
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idea worthy of pursuit. Alternatively, the idea may not yet be mature enough to have much 

scientific influence.  

Research evaluation that measures and rewards edge science thus increases the 

incentive to pursue work that results in both potential breakthrough successes and 

unproductive failures. While rewarding edge science will increase the tolerance for these 

types of failures in science, it does not mean fetishizing failure. Such incentives will not 

induce scientists to try out new ideas that they know will certainly fail. As long as research 

evaluation also rewards scientific impact, the incentive to pursue early work on ultimately 

successful ideas will still be considerably higher than the incentive to pursue early work on 

ideas that fail merely for the sake of trying something new. Relative to the status quo, 

scientists will have a greater incentive to work on those new ideas that they perceive to 

have the best chance of ultimately leading to transformative discoveries.  

As with citation-based measures of scientific influence, the text-based measures of 

novelty too can have unintended consequences. For example, scientists and journals may 

be tempted merely to mention new ideas rather than actually incorporate them into their 

work. For most individuals and journals, the potential reputational costs from writing and 

publishing frivolously should prevent this sort of gaming. Moreover, future researchers will 

develop algorithms to detect such behavior, as will new, more robust versions of the edge 

science measure. These developments will mirror the proliferation of various 

citation-based indices that have improved on the initial impact measures introduced years 

ago.  28

Synonyms can also pose a potential threat to the measurement scheme we propose 

since this approach treats every unique word or phrase in the text of scientific publications 

as representing a unique idea. The simple approach we outline above then will work fine as 

long as two distinct words or phrases never mean the same thing, but we know from 

common English that that is not the case, and the same holds for scientific and technical 

vocabularies. In biomedicine, for example, synonyms abound as can be seen from medical 

28 Recent work aimed at improving citation-based measures of scientific influence include Valenzuela et al. 
(2015), Catalini et al. (2015) and Gerow et al. (2018). That citations are yet a very flawed measure of 
knowledge flows extends to patent citations, as demonstrated by Arora et al. (2018). 
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vocabularies, and they certainly have the potential to cause problems for using text to 

identify edge science. 

Fortunately, however, there is a simple solution to this problem, namely the medical 

thesaurus itself. In particular, the National Library of Medicine in the U.S. compiles a 

particularly comprehensive medical dictionary that maps millions of biomedical terms 

together based on whether they refer to the same concept. This metathesaurus, called the 

Unified Medical Language System (“UMLS”), is collated by professional medical librarians 

and other experts who scour and combine other medical vocabularies to identify new 

concepts and place them in their proper place. In our past work, for example, we have 

taken advantage of this incredible project to inoculate our edge science measure against 

the problems caused by synonyms. A further advantage is that, since they link each concept 

to a concept category, the UMLS thesaurus allows us to categorize each idea in each paper 

based on the new ideas they represent. The UMLS, for instance, enables us to identify 

papers that explore and develop a recently discovered gene and papers that use a recently 

introduced research tool. 

Thus, one approach for handling synonyms is developing and utilizing large-scale 

controlled vocabularies. Another option for handling synonyms involves applying recently 

developed machine learning methods. These methods embed each word and phrase into a 

vector space, in which “distance” between words and phrases can be measured based upon 

how often two words or phrases appear near each other in the published literature. To the 

extent that synonyms are interchangeable, their vector space positions will be nearly 

identical. The distance of any two words or phrases in the vector space can thus be used to 

determine which terms are nearly synonymous with one another. 

Furthermore, there are fewer synonyms for biomedical terms than one might 

expect. Indeed, as the purpose of language is communication, it is inefficient to have 

multiple words and phrases with the same meaning. This fact limits the number of 

synonyms in natural languages, especially after a word has acquired a well-established, 

widely used, meaning. Words that represent a scientific idea are thus more likely to change 

when the underlying idea is still relatively novel. For example, the acronym CRISPR and the 
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corresponding term were invented in 2002 to unify the terminology used until then. This 

terminological unification happened fifteen years after the first papers on CRISPR had been 

published and after it had already become an emerging area of investigation, but before its 

purpose and potential uses had been discovered, and well before the scientists who are 

now predicted to win Nobel Prizes for CRISPR had begun their work on the idea.  

While above we introduced to the reader one particular way of measuring which 

papers pursue more explorative research directions, this specific approach is not the main 

thrust of our argument. Rather, our main point is that there is a rationale for measuring 

also exploration in science and that there already exist ways of doing so.  Of course, we are 29

confident that future analysts will develop better ways of measuring edge science. Indeed, 

should Google Scholar and other academic search engines start including measures of 

exploration on them, there will be a strong incentive to further improve upon these metrics 

just as there is now a strong incentive to continuously improve citation-based measures of 

scientific influence.  

 
8.    Conclusion 

 

An influential essay written by engineer and science administrator Vannevar Bush in 1945 

put forward a grand vision for post-war science. A central focus of this vision was the need 

to facilitate exploration in science: 

“Scientific progress on a broad front results from the free play of free 
intellects, working on subjects of their own choice, in the manner dictated 
by their curiosity for exploration of the unknown.”  30

 

29 Other approaches to measuring novelty include Jones et al. (2008), Azoulay et al. (2011), Kelly et al. (2018), 
Iaria et al. (2018), Lee et al. (2015), Wang et al. (2016), Jones and Weinberg (2010), Youn et al. (2015), Uzzi et 
al. (2013) and Boudreau et al. (2016). For the Doc2Vec algorithm, see Le and Mikolov (2014). Giorcelli et al. 
(2018) utilize a related Word2Vec algorithm to study the flow of new ideas from science to culture. Our own 
work on measuring new ideas and novelty include Bhattacharya and Packalen (2011), Packalen and 
Bhattacharya (2012, 2015ab, 2017, 2018, 2019) and Packalen (2018).  
30 Bush (1945a). 
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The impetus for this emphasis was that academic freedom had in many ways been lost 

during the war, as scientific endeavors were redirected to support the needs of the military. 

This emphasis on scientific play stands in stark contrast with a common refrain about 

modern science according to which scientists today have gone too far in terms of following 

their own whims in search of the unknown at the expense of work that places more 

emphasis on potential practical societal benefits.   31

Our analysis in this paper, however, indicates that the issue with modern science is 

more likely the opposite of this common refrain. Scientists now engage in true scientific 

exploration much less than once envisioned by Vannevar Bush. The rise of citation metrics 

to prominence in research evaluation shifted scientists’ incentives away from the 

exploration of new ideas and toward incremental science. Because scientists are like 

everyone else in that they respond to incentives, this shift induced scientists to increasingly 

pursue research that closely follows well-established research paths and generates only 

incremental advances, at the expense of the kind of exploration emphasized by Bush. The 

decreased attention to exploring and nurturing new ideas has meant that fewer new ideas 

have had the opportunity to be developed into breakthroughs, resulting in more stagnant 

science.  32

Broadly, we see three potential paths forward for science. Along the first path, 

science continues on the current citation-focused path that heavily favors incremental 

work over true exploration. Choosing this route means accepting diminished hopes for the 

future of scientific and technological progress.  

Along the second path, we stop measuring scientific impact. To us, this path seems 

infeasible; it stretches credulity that in today’s era of relentless quantification, scientists 

could successfully insist that anything but their own activities can be usefully measured. 

Moreover, when used properly, quantified measures of research productivity—including 

31 On science as an ivory tower in this sense, see Sarewitz (2016). 
32 To the extent that it was the citation revolution that led to the decline of free play in science and thus to the 
betrayal of Vannevar Bush’s grand vision, this development is somewhat ironic since another Vannevar Bush 
essay—written that same year—inspired the birth of citation indices. For this essay, see Bush (1945b). For 
how the essay influenced the development of citation metrics, see Brynko (2007) and Tutterow and Evans 
(2016). 
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citations—can serve a useful purpose in efficiently allocating limited research dollars. The 

issue with using citations and with measuring scientific impact, in general, is not that 

impact is unimportant. Rather, the issue is that scientific impact has gradually become the 

only dimension on which scientific research and scientists are evaluated. 

The third possible path forward could put science back on the path envisioned by 

Vannevar Bush by broadening how scientific productivity is measured and evaluated. On 

this path, in addition to scientific impact, we start measuring and evaluating research based 

on what kind of science it represents—whether the work is novel in that it tries out new 

ideas or more conventional in that it seeks to advance well-established ideas. 

Academic search engines like Google Scholar could end their exclusive focus on 

citations and scientific influence when summarizing the contributions of scientists, 

journals, and academic institutions, and calculate and report also measures that capture 

the novelty of scientific papers. This change can be implemented relatively quickly. As we 

explained in the previous section, measuring novelty is no more difficult or flawed than is 

measuring scientific impact. University administrators and funding agencies could also 

shift reward structures toward a model in which rewards depend on both the number 

citations and on the extent to which the work represents true scientific exploration of the 

unknown. Journal editors might also start offering more space for novel contributions as 

they too will no longer compete only on the scientific influence of the papers that they 

publish. 

Together, changes like these could enable scientists to pursue exploration of the 

unknown without fear of penalty. First, the changes in incentives would encourage some 

current scientists to change their research focus toward more exploration. Second, the 

changes would encourage some adventurous people, who now choose to stay out of 

academia for fear that true exploration is no longer appreciated in science, to become 

scientists in the first place. Third, by encouraging and rewarding exploration, changes like 

these could increase the tolerance for failure and make it considerably easier to establish 

new scientific communities that explore and develop new areas of investigation. The birth 

of such communities, and the debate and scientific play that they facilitate, is a key 
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component of a fruitful scientific enterprise. However, because new areas of investigation 

are usually small in terms of the number of scientists working in them, the current practice 

of research evaluation that focuses on scientific impact alone severely punishes scientists 

working in communities focused on new ideas. 

Measuring and evaluating science and scientists in a more balanced way than is 

currently done does not involve allocating any more funds for science but it could 

jumpstart a new era of true exploration in science and this exploration would serve as a 

springboard for new scientific breakthroughs. This could have the follow-on consequence 

of reversing the longstanding slowdown in productivity growth, which many believe has 

been driven in part by the scientific stagnation. However, we do not want to overpromise; 

we, of course, do not know what kind of breakthroughs we will get from this different, 

novelty-driven science; they might not come with practical benefits that would also reignite 

economic growth. We are certain however that, since people respond to incentives, 

rewarding scientific novelty as well as scientific impact will ultimately alter the behavior of 

scientists to focus more on exploratory phase science and ultimately reignite science. 
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