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of information. This inequality arises when households sort according to known pollution and other
disamenities, which we show are positively correlated with hidden pollution. To help bridge the gap
between environmental justice and economics, we discuss the relationship between hidden information
and three different distributional measures: exposure to pollution; exposure to hidden pollution; and
welfare loss due to hidden pollution.
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Pollution exposure has repeatedly been found to be disproportionately experienced by

the poor and people of color. This observation is the foundation of the environmental justice

(EJ) movement and a frequent subject of study in several social science and medical fields,

including sociology, demography, geography, urban planning, public health, environmental

studies, and economics.1 Research has documented a persistent statistical correlation be-

tween race, ethnicity, and/or income on the one hand and the siting of hazardous waste

facilities on the other.2 Beyond just the siting of polluting facilities, ambient air quality

itself has been linked to socioeconomic and demographic indicators.3

Understanding the causes of disproportionate exposure in any given context is vital to the

design of policy to address it; different causes suggest different solutions. A few potential

causal mechanisms receive the lion’s share of attention in the academic literature. First,

income inequality may cause poorer people to “select” residential areas where environmental

quality is lower. This willingness-to-pay based story (commonly referred to as “coming

to the nuisance”) “continues to receive the most attention from economists interested in

environmental justice questions” (Banzhaf, 2011). Second, direct discrimination on the part

of firms or government, by race or other demographic factor, could produce inequities in

pollution exposure – indeed, some use the term “environmental racism” interchangeably

with environmental injustice (Mohai, Pellow and Roberts, 2009). Third, firms could choose

to locate in places where their costs (including labor, land, transportation, and regulatory

compliance) are lowest (Wolverton, 2009), which may similarly be where the relative poor

and/or minorities are more likely to live. This mechanism extends to encompass the case

in which firms follow a “path of least resistance,” targeting communities with less political

power on the grounds of cost minimization (Hamilton, 1995).

In this paper, we argue that existing research on disproportionate pollution exposure

underweights the importance of another factor: information. There are many obstacles to

accurate information about environmental quality and its benefits: companies and govern-

ments may have incentives to hide pollution, there are only so many pollution monitors,

and our scientific understanding of health impacts continues to evolve. Missing and inac-

curate information has the potential to affect housing choices, siting decisions of polluting

enterprises, and government policy (like permitting, inspection, and enforcement) alike. We

focus here on housing choice: if households sort into homes based on information about

1For examples from each of these disciplines, see Bullard (1983); Taylor (2000); Holifield (2001); Pastor
Jr., Sadd and Hipp (2001); Agyeman, Bullard and Evans (2002); Brulle and Pellow (2018); Mohai and Saha
(2006); Mohai, Pellow and Roberts (2009); Mohai et al. (2009); Banzhaf (2012); Mohai and Saha (2015);
Banzhaf, Ma and Timmins (2019a,b).

2Seminal papers include United States General Accounting Office (1983); United Church of Christ (1987);
Bullard et al. (2007).

3See, e.g., Kriesel, Centner and Keeler (1996); Depro and Timmins (2012); Tessum et al. (2019).
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environmental amenities – or even just other attributes that are correlated with them –

then missing or wrong information should be expected to affect the empirical distribution of

pollution exposure.

Though the economics literature has documented widespread cases of limited information

regarding environmental quality,4 there has been far less focus placed on the distributional

and justice-related implications of this market failure. We provide exactly that focus: we in-

vestigate the relationship between environmental quality and income in a model of residential

location choice that nests various forms of limited or missing information. The most closely

related research is by Ma (2019), who shows that failing to model limited information biases

willingness to pay estimates for pollution clean-up, and that in her application, minority and

low-income homeowners place a high value on information about pollution. Also related is

work by Bakkensen and Ma (2020), who model heterogeneity in preferences for flood risk

in a setting of limited information and argue that improved information provision would

be progressive.5 In contrast to these studies, we investigate how environmental inequities

can arise from uniform limitations to perfect information – that is, when all individuals are

equally wrong or uninformed – and focus on the example of air pollution and housing choice.

We begin by summarizing some of the many potential reasons why information about

environmental quality could be limited or missing, as well as reasons to believe that house-

holds underestimate, rather than overestimate, air pollution and its damages. For instance,

scientists frequently discover new biological pathways for adverse health impacts of pollu-

tants. Companies sometimes hide emissions. Households are aware of some, but not all,

known health impacts of pollutants, and they can experience psychological biases when un-

derstanding pollution impacts.

We then develop a model of the housing decision near a point source of pollution when

air quality is not precisely known. Our aim in working with this model is to provide intu-

ition for how information failures affect both physical pollution exposure and welfare across

households, with a particular focus on how the impacts differ across income levels. We as-

sume particular functional forms for utility and the pollution dissipation process, to show an

intuitive comparative statics analysis with closed-form expressions. While the model focuses

on the relationship between information failures and income-based sorting, we later discuss

how the former may interact with racism and other drivers of disproportionate exposure.

4Among the many examples are Foster and Just (1989); Chivers and Flores (2002); Leggett (2002);
McCluskey and Rausser (2003a); Pope (2008a,b); Mastromonaco (2015); Moulton, Sanders and Wentland
(2018); Von Graevenitz, Romer and Rohlf (2018); Bakkensen, Ding and Ma (2019); Barwick et al. (2019);
Bishop et al. (2019).

5Another recent paper is also somewhat related: Bakkensen and Barrage (2018) model heterogeneity in
beliefs about flood risk, in order to study the dynamic of the relationship between sea level rise and coastal
home prices.
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Under a typical dispersion process for an air pollutant, and assuming people are un-

derinformed about air pollution, we find that: (1) low-income households are exposed to

more pollution; (2) low-income households are exposed to more hidden pollution; and (3)

low-income households experience greater deadweight loss from a lack of information. While

the first relationship is well-known, the latter two results are novel. It is noteworthy that,

in our model, even uniformly limited information can produce disproportionate pollution

exposure and welfare loss among the poor. This occurs because households sort according

to known pollution, which is positively correlated with hidden pollution due to the way

pollution dissipates.

We generalize the model by relaxing assumptions on the functional forms of utility and

the price of air quality. In equilibrium, households sort into different air quality levels based

on their willingness to pay for positively correlated amenities. We replicate the first two

results from our more parametric model: low-income households are exposed to greater

pollution exposure and also greater hidden pollution exposure. Our third result does not

always generalize, although both the physical pollution dissipation process and declining

marginal utility will work towards the third result holding.

We then present descriptive empirical evidence that provides context for our theoretical

findings. We document two instances from recent history in which underestimation of pollu-

tion burdens disproportionately impacted low-income and non-White neighborhoods. First,

we show that neighborhoods with higher airborne lead concentrations had lower percentages

of White occupants just prior to a tightening of federal lead standards in 2001 based on

new epidemiological research on lead’s health impacts. Second, we show that neighborhoods

near refineries had lower income levels and lower percentages of White occupants in 1999,

just before the publication of evidence that the refining industry had widespread unreported

emissions. In each case, an observable, “pre-existing” disparity in physical pollution exposure

was exacerbated by a lack of full information.

Finally, we show that, in the U.S., air pollution is co-located with other, more salient

disamenities – namely, intrusive land uses and noise – and that these disamenities are, in

turn, negatively correlated with income.6 These empirical facts imply that even if households

are completely uninformed about air pollution, they may still tend to sort into houses in such

a way that yields relatively higher pollution burdens for low-income households.

Our findings build on a long literature in environmental justice (in economics, see, for

instance, reviews by Banzhaf 2011, Banzhaf 2012, Hsiang, Oliva and Walker 2019, Banzhaf,

6Here and throughout, we use “salient” to refer to disamenities that are easily discernable, i.e., readily
apparent. We contrast these with “hidden” disamenities, like some forms of pollution. In our setting,
differences in salience across amenities arise out of limited information, not out of behavioral biases.
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Ma and Timmins 2019a, and Banzhaf, Ma and Timmins 2019b). Until recently, household

sorting has been the primary mechanism for environmental disparities analyzed in the eco-

nomics literature (Banzhaf and Walsh, 2008; Gamper-Rabindran and Timmins, 2011; Depro,

Timmins and O’Neil, 2015). However, the broader, multi-disciplinary literature highlights

several other mechanisms, and empirical research in economics has begun supplying evidence

of some of these. Lee (2017) examines the possibility that differential moving costs affect

households’ ability to “flee the nuisance.” Timmins and Vissing (2017) argue that linguistic

isolation affects bargaining power in mineral lease negotiations. Shertzer, Twinam and Walsh

(2016) show historical evidence that non-White neighborhoods in Chicago were more likely

to be zoned for industrial uses. Christensen and Timmins (2018) examine discrimination in

the real estate market that steers minorities towards more polluted areas. We add to this

literature by providing theoretical and empirical evidence that implies unequal pollution and

welfare loss from limited information.

Though our focus in this paper is on air pollution and housing choice, our primary finding

emerges generically from the relationship between salient and hidden amenities. As such, we

believe hidden disamenities have the potential to create income-based or racial disparities

in other contexts where information is likely limited, such as climate change mitigation

(Heal and Park, 2016), groundwater source selection (Kremer et al., 2011), and demand

for environmental quality in developing countries more generally (Greenstone and Jack,

2015). Our findings also contribute to an active, cross-field literature on the economics of

information (Hastings and Weinstein, 2008; Ehrlich, 2014; Kurlat and Stroebel, 2015; Allcott,

Lockwood and Taubinsky, 2019). That a disparity can be produced simply by information

that is uniformly limited across individuals stands out in contrast with existing work that

focuses on heterogeneity in information and its costs.7

In light of our findings, we argue that estimation of marginal willingness to pay for en-

vironmental quality (MWTP) – a primary concern in environmental and public economics

– must account for informational failures. Much of the related literature has used an as-

sumption of full information in analysis of revealed preferences. When limited information is

mentioned, it is generally in the context of noting that estimated willingness to pay reflects

beliefs about environmental quality.8 We show that our motivating empirical examples can

lead to biased estimates of willingness to pay, and that the bias can go in either direction.

7One could imagine modeling access to information as heterogeneous, as has been done in other con-
texts. Importantly, though, environmental justice communities have in many cases been adept at sourcing
information themselves (O’Rourke and Macey, 2003). We discuss extensions to our treatment of information
in Section 5.

8One exception is Kask and Maani (1992), who model the hedonic price as a function of information
level and uncertainty.
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As such, we argue for the explicit incorporation of information about beliefs, along the lines

of what is proposed by Bishop et al. (2019) and Ma (2019).

1 Background

The choice of where to live has substantial consequences for the level of environmental quality

a household experiences. At the same time, of course, the housing choice entails decisions

about many other characteristics of homes and neighborhoods as well. In making a decision,

the potential home buyer must trade off these many characteristics (number of bedrooms,

the presence and size of a backyard, quality of the school district, neighborhood air quality,

etc.), while considering her household budget and the cost of the house. To the extent that

information about environmental quality and its impacts is hidden or missing, households

may fail to choose their privately optimal home.

There are good reasons to believe that individuals are not fully informed about local

air quality. Pollution is not always visible, nor does it always produce an odor. Moreover,

the government’s air quality monitoring network is sparse. Economists studying the con-

sequences of this sparseness have primarily focused on the measurement of fine particulate

matter (PM2.5) (Fowlie, Rubin and Walker, 2019; Sullivan and Krupnick, 2018; Zou, 2018),

but Environmental Protection Agency (EPA) monitoring is even sparser for other pollutants.

In 2016, the EPA reported monitors in around 140 counties for benzene and toluene, 260 for

nitrogen dioxide (NO2), 320 for sulfur dioxide (SO2), 610 for PM2.5, and 790 for ozone – out

of a total of more than 3,000 counties.9

In many places, the public must therefore infer air quality based on what might be

observable to them: air quality at distant monitors, or a proxy such as the existence of a

potentially polluting facility nearby. The use of distance as a proxy has empirical support

from research on how people “perceive” pollution (Bickerstaff and Walker, 2001). A house-

hold might be aware that concentrations of pollutants tend to be higher close to highways

(Currie and Walker, 2011; Herrnstadt et al., 2018), airports (Schlenker and Walker, 2016),

industrial facilities (Currie et al., 2015), and power plants (Massetti et al., 2017).10 In the

first part of our theoretical exercise, we will assume that households cannot observe true air

quality and instead use distance to a point source as a proxy.

In principle, information limitations could cause a household to underestimate or over-

estimate pollution exposure and its health effects. We suspect that cases of underestimation

9These numbers come from the EPA monitoring data that we introduce and use in Section 4.2.
10Some pollutants are transported across long distance; for instance, concerns about cross-state transport

of air pollution led to regulations on power plants. Even so, power plants are also responsible for nearby
deposition of toxics such as chromium, mercury, and nickel (Massetti et al., 2017).

5



are widespread in practice, and we offer several pieces of evidence in support of this. First,

consider the way science has generally progressed: scientists frequently discover new biolog-

ical pathways for health damages. In the United States, industries can typically use new

chemicals until damages have been documented by the EPA – which suggests that, ex post,

the US tends to discover that exposure was worse than thought.

In fact, environmental standards have for the most part become stricter over time, as

these new biological pathways for damages are discovered. In the Appendix (Figure A1), we

show historical changes in EPA standards and World Health Organization (WHO) guidelines

for various indoor and outdoor air pollutants (limited to pollutants for which the standards

or guidelines have changed). In almost all cases, the EPA and WHO have revised their air

quality guidelines downward, reflecting new information about the toxicity of pollutants.

As an example, the EPA standard for ambient lead concentrations changed in 2008, from

1.5 µg/m3 to 0.15 µg/m3, motivated by “important new information coming from epidemi-

ological, toxicological, controlled human exposure, and dosimetric studies” (EPA, 2008, p.

66970).

Given that EPA guidelines and measurements are often the best source of information

relevant to the evaluation (and valuation) of environmental quality, it seems likely that

households have historically sorted into homes based on the EPA’s underestimated health

effects of pollution. To the extent that households have their own knowledge of the science

on health effects, however, they are still unlikely to know about all biological pathways. For

instance, even when households are aware of the negative respiratory impacts of air pollution,

they are frequently not aware of negative cardiovascular impacts (Nowka et al., 2011; Xu,

Chi and Zhu, 2017). In addition, consider that some cognitive impacts have only recently

been documented by academic researchers (e.g., Bishop, Ketcham and Kuminoff, 2018); it

thus seems plausible that the public is not yet fully aware of cognitive impacts.

Another reason individuals may underestimate pollution damages is that they may un-

derstand the hazards stemming from some but not all pollutants. For instance, they may

associate refineries with sulfates (the foul-smelling air pollutants that are released by refiner-

ies) but not with benzene, toluene, and xylenes (chemicals emitted by the refining industry

with developmental and/or carcinogenic effects). A 2019 report on California refineries iden-

tified 188 chemicals emitted, with varying degrees of toxicity and varying levels of odor

(Riveles and Nagai, 2019). It seems likely that individuals are not fully aware of all of these

chemicals and their health impacts. Their decisions will incorporate only the impacts of

those disamenities of which they are aware. Research suggests that awareness of air pollu-

tion depends in large part on whether the pollution is detectable either visually or by smell

(Bickerstaff and Walker, 2001; Hunter, Bickerstaff and Davies, 2004; Xu, Chi and Zhu, 2017),
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so that invisible and odorless pollution may go unnoticed by the public.

Even for individuals who actively seek out information on chemicals, rather than sim-

ply relying on visual or other clues, underestimation of exposure may occur. It is perhaps

instructive that the count of chemicals that facilities are required to report has grown sub-

stantially over time. Appendix Figure A2 plots over time the number of chemicals listed

in the EPA’s Toxics Release Inventory (TRI), which requires firms to disclose their use and

emissions of listed chemicals; the time trend is dominated by periodic, large expansions to

the list.11 Before a new chemical is added to the list, it is plausible that either (1) house-

holds are unaware of the existence of that chemical at a point source, or (2) they believe the

chemical is not harmful to human health. Indeed, Moulton, Sanders and Wentland (2018)

argue that the addition of new industries to the TRI in 2000 changed home prices near the

most toxic plants, which the authors attribute to a change in beliefs about pollution levels.

Additionally, firms may have incentives to deceive regulators and underestimate their

emissions (Duflo et al., 2013). While some emissions are monitored (e.g., SO2 emissions

from power plants), the EPA relies on self-reporting for other types of emissions (e.g., toxic

emissions from industrial facilities). Moreover, companies have occasionally been prosecuted

for tampering with monitoring equipment.12 At the same time, regulators may have in-

centives to obscure true pollution levels through strategic monitoring (Grainger, Schreiber

and Chang, 2018; Zou, 2018) – for instance, in order to avoid being in non-attainment with

federal standards.

Lastly, behavioral bias may well contribute to underestimation of pollution and its dam-

ages. According to the literature on pollution perceptions, when individuals do report knowl-

edge that air pollution in general is damaging, they may still believe that their own neigh-

borhood is not heavily polluted (Bickerstaff and Walker, 2001; Brody, Peck and Highfield,

2004; Xu, Chi and Zhu, 2017). This has been termed a “halo effect” or a “halo of optimism.”

Estimation of pollution levels and associated health damages could, of course, go in the

opposite direction, and psychologists have pointed to instances where the public overperceives

the level of risk relative to academic scientists. For instance, researchers have argued that

the public experiences “dread” of the risk of a nuclear power plant accident beyond what is

implied by actuarial risk (Abdulla et al., 2019). As another example, cleaned-up hazardous

waste sites may continue to be “stigmatized” (McCluskey and Rausser, 2003b). There are

11Note that the Toxics Release Inventory was created as part of the 1986 Emergency Planning and
Community Right-to-Know Act and, as such, was originally intended to increase the information about
pollution available to communities and decision-makers.

12Consider, for instance, a 2017 case against Berkshire Power Company and Power Plant Management
Services, Inc. (https://cfpub.epa.gov/compliance/criminal prosecution), or the case against Volkswagen
(https://www.epa.gov/vw/learn-about-volkswagen-violations).
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also cases where some members of the public overestimate risk and others underestimate it,

such as with lifetime radon exposure (Warner, Mendez and Courant, 1996). We do not rule

out upward bias in perceived pollution, but we nonetheless focus on downward bias in the

remainder of our analysis, since we believe that direction of bias to be more widespread.

2 A Stylized Model of Location Choice

We begin with a simplified model of housing demand under limited information, drawing

on our previous discussion of pollution perception and misinformation. The model is fairly

standard in that it depicts a household optimizing over the choice of air quality and a

numeraire representing all other goods, given a budget constraint. We alter this setup to

capture the information limitation in which we are interested: the household cannot observe

air quality directly and instead uses distance to a point source as a proxy.13 We derive

demand for distance, i.e., air quality, under full information, and then we compare it with

what happens when the household underestimates the added utility gained by moving further

from the pollution source. As we noted in the previous section, this could occur, for example,

through underreporting by the point source or a lack of knowledge about the health impacts

of pollution.

In this section, we will assume a parameterization of the utility function, a parameteri-

zation of the physical pollution dissipation process, and a simplified housing price function.

After working through this more specific model, we present a more generalized model in the

next section that relaxes the functional form assumptions on demand, pollution dissipation,

and housing prices.

Suppose a consumer gets utility from two goods:

� q healthiness, a function of air quality. However, q is not directly observable by the

consumer (nor by other market participants). Instead, the consumer has a belief about

the level of q in a location, based on what is observable: distance x to the source of

pollution.14 Thus, q is a function of x and exogenous parameters like the amount of

pollution emitted at the point source.

13Because we model housing demand as demand for distance, our model shares many features with a
monocentric city model in an Alonso-Muth-Mills framework. The primary differences are that (1) we are
interested in distance to a polluter (such that distance brings positive utility) rather than to a central business
district (such that distance brings commuting costs); and (2) we focus on income heterogeneity, whereas the
simplest monocentric city models begin with homogenous income. Income sorting in monocentric city models
is discussed in Arnott (2011) and Duranton and Puga (2015) and citations therein.

14We consider proxies other than distance in the more generalized model that follows.
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� y all other goods, both housing (e.g., square footage) and non-housing (e.g., food).15

Here we have collapsed the impact of the point source on pollution and the impact of pollution

on health into a single function, as the distinction is not important for our purposes. As

such, we refer to q throughout as “healthiness” and “air quality” interchangeably.

In this section, we assume Cobb-Douglas preferences: U(q, y) = qγy1−γ. It is important

to note that, even though the consumer infers rather than observes the level of q at the

time she makes her decision, the true value of q is what ultimately impacts her utility. For

instance, she may immediately experience health impacts such as asthma, without knowing

that the asthma was caused by q. Or she may experience a delayed health impact such as

cancer. We are not the first to allow for an input into the utility function that is unobservable

to the agent (Foster and Just, 1989; Leggett, 2002; Just, Hueth and Schmitz, 2004).16

The next component of the model is pollution decay: the relationship between emissions

and ambient air quality at different distances. A large literature has found that pollution

tends to decay exponentially with distance to its source. Much of this literature comes from

the environmental sciences (Hu et al., 1994; Rooarda-Knape et al., 1999; Zhu et al., 2002;

Karner, Eisinger and Niemeier, 2010; Apte et al., 2017), but Currie et al. (2015) also doc-

ument such a relationship using econometric methods. Numerous airborne pollutants have

been evaluated, including criteria pollutants such as PM and NO2 and toxic pollutants such

as benzene. Additionally, while we focus here on pollution as the variable of interest, a sim-

ilar relationship has been found for health outcomes such as low birthweight and premature

birth (Currie and Walker, 2011).

Figure 1 shows a typical pollution decay function, in which ambient pollution concentra-

tion C is a function of distance x: C(x) = α + β exp(−x/k), where “the urban background

parameter α represents concentrations far-from-highway..., the near-road parameter β rep-

resents the concentration increment resulting from proximity to the highway, and the decay

parameter k governs the spatial scale over which concentrations relax to α” (Apte et al.,

2017, p 7004). This particular quote is from research on roadways, but note that similar

decay has been found for other sources.

We can re-write air quality q, i.e., the absence of pollution, as q(x) = α̃ − β exp(−x/k).

With this type of pollution dissipation, the effect of the near-source parameter β declines

with distance x. Formally, note that ∂q
∂β

< 0 and ∂q
∂x

> 0; air quality decreases with the

15Note that here the numeraire embeds all housing characteristics other than pollution exposure – so that
we are implicitly assuming that other characteristics are not correlated with distance to the point source.
In the more generalized model that follows, we allow for additional characteristics that are correlated with
distance and therefore pollution exposure.

16For a lengthier discussion of utility and preferences in the context of limited information, see Hausman
(2012).
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Figure 1: Exponential Decay of Pollution

Note: This figure plots the function C(x) = α + β exp(−x/k) for two levels of β: low
β0 and high β1. Pollution is higher in β, and especially higher at small distances; put
differently, air quality is lower in β, and especially lower at small distances.

near-source parameter and increases with distance, respectively. Furthermore, ∂2q
∂x∂β

> 0; the

marginal effect of distance on air quality rises in β. An alternative interpretation is that the

negative impact of β gets closer to zero as distance increases.

For intuition regarding the partial derivatives, consider the case where firms are hiding

their emissions, i.e., are misleading the public about the magnitude of the parameter β.

Then, air quality everywhere is worse than the public believes (since ∂q
∂β
< 0) and air quality

is especially worse close to the firm ( ∂2q
∂x∂β

> 0).

To ease calculations in the model, we simplify this exponential decay process by taking

a linear approximation. Specifically, we assume that healthiness from air quality improves

with distance according to the following equation:17

q = α0 − α1β + βx (1)

A larger β parameter lowers air quality, while also increasing the importance of distance for

air quality. For instance, β could represent the amount of pollution actually emitted by a

point source. Alternatively, β could represent the impact that a given level of pollution has

on an individual’s health. Note that, as in the exponential version, ∂q
∂β

< 0; ∂q
∂x

> 0; and
∂2q
∂x∂β

> 0.

17This equation follows from a Taylor expansion of q(x) = α̃− β exp(−x/k).
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Figure 2: Environmental Quality Increases with Distance

Note: This figure plots the function q = α0 − α1β + βx for two levels of β: low β0 and
high β1. α0 and α1 values are identical for the two functions. Air quality is lower in β
within this range, and especially lower at small distances.

Figure 2 plots healthiness as a function of distance for two possible values of β. We

highlight two points about this function. First, air quality is linear in distance. In reality,

pollution dissipation is non-linear, as is the pollution-health dose response function. We

think of our linear parameterization as a starting point that provides a useful approximation

for small changes in distance. Second, the two lines depicted in Figure 2 cross at some

distance threshold, past which a larger β increases air quality. In the model that follows, we

assume that a household is living close enough to the point source that this case does not

occur.18

The consumer’s maximization problem is

max
x,y

U(q(x), y) s.t. px+ y = m (2)

where p is the price of distance, the price of y is normalized to one, and m is income. Here, we

assume that house price is linear in distance to the point source.19 We also assume that the

price schedule does not shift in response to changes in information; this assumption is most

appropriate when only a small number of households experience changes in information. In

18That is, we assume that x < α1, so that ∂q
∂β = −α1 + x < 0.

19House prices that increase with distance could arise from a standard hedonic model, as in Greenstone
(2017).
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Section 2.3, we relax these assumptions by allowing for endogenous prices in a pure exchange

economy.20

Because the consumer doesn’t observe q, she doesn’t incorporate it directly in her maxi-

mization problem. Instead she maximizes over what she can observe, by making an assump-

tion about the relationship between q and x. Under full information, the consumer knows

the true value of the β parameter that relates q and x, which we denote β1. In contrast,

under limited information she believes that the parameter takes some perceived value β0.

We assume that β0 < β1 (i.e., distance matters more for true utility than the consumer is

aware), but of course one could solve the model under the opposite assumption. So her true

utility is determined by the true air quality q(x, β1), but when misinformed, she will choose

x to maximize utility assuming q(x, β0).

2.1 Demand for Environmental Quality

We solve the consumer’s utility maximization problem to obtain the demand for distance.

Initially, we assume the household correctly perceives the relationship between distance and

air quality. As we show in the Appendix (Section A1.1), demand for distance is given by:

x∗ =
γm

p
− (1− γ)(α0 − α1β)

β
(3)

This is similar to the typical Cobb-Douglas demand equation, but with a linear shifter that

depends on preferences and on the relationship between air quality and distance.

From this demand equation, it is straightforward to see that distance from the point

source is a normal good: ∂x∗

∂m
= γ

p
> 0. Since ∂q∗

∂x∗
= β, we have that ∂q∗

∂m
= γβ

p
> 0: air quality

is also a normal good. This occurs because low-income households choose less distance to

the pollution source, due to their budget constraint. This result provides the basis for one

potential definition of an environmental injustice or disparity:

Environmental Justice Metric 1. Low-income households experience lower environmental

quality, i.e., environmental quality is increasing in income: ∂q∗

∂m
> 0.

This is the metric referred to in much of the economics literature on disproportionate

siting and pollution exposure. Environmental justice researchers have pointed to correlations

between air quality and income as evidence of the existence of an injustice.21 Economists have

20For simplicity, we define income as exogenous to the model; research has, however, shown that pollution
can affect income (Graff Zivin and Neidell, 2012). This may exacerbate the inequalities we document.

21Note that our model has thus far only incorporated income-based inequality. In Section 4, we discuss
extensions that apply to racial inequality.

12



frequently countered that low-income households have chosen to sort into neighborhoods

with low air quality, that is, to “move to the nuisance.” The condition for EJ Metric 1

is the mathematical foundation of the policy prescription that economists tend to propose:

redistribution of income, rather than direct intervention in the housing market. Here and

throughout, our metrics do not imply a particular policy prescription on our part. Rather,

we wish to formalize existing concepts used in the literature, which we believe will allow for

more fruitful dialogue across disciplines going forward.

This policy debate in part reflects underlying questions about whether the disparity is also

an injustice. In this paper, we generally refer to disparities and inequalities when outcomes

across individuals are different. We use the term “environmental injustice” in keeping with

a long-standing literature and social movement. We leave to the reader’s judgment whether

the disparities we document fit the definition of an injustice, noting that the answer may

vary across contexts. The cause of income inequality may matter, such as whether it is in

part the result of racism or other discrimination. See, for example, Deaton (2013) for a

related debate on health inequalities and injustices.

2.2 Information Failures and Experienced Air Quality

Suppose now that the household misperceives β, believing it to be lower than it truly is.

She thus believes that air quality is higher than it really is, and that distance matters less

than it truly does. In this case, households experience worse air quality than they expect

regardless of income level. However, the amount of hidden pollution experienced varies across

households. We show this in Figure 3, which depicts perceived and experienced air quality

as a function of distance.

A relatively lower-income household selects a distance x that yields perceived air quality

at point A. However, because air quality is worse than the household believes, it experi-

ences true air quality B. Because air quality is a normal good, the relatively higher-income

household chooses a greater distance, believing it has chosen air quality at point C but

in reality experiencing air quality at point D. Crucially, because of the physical pollution

dissipation process, the wedge between true and believed air quality is larger for the low-

income household than for the high-income household. This provides the basis for our second

environmental justice metric:

Environmental Justice Metric 2. Low-income households experience a greater hidden

level of pollution, i.e., the amount of hidden pollution is decreasing in income.
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Figure 3: Incorrect Information Regarding Air Quality

Note: This figure plots the function q = α0−α1β+βx for perceived air quality (the dashed
black line with a low β) versus experienced air quality (the grey line with a high β). The
point A is the perceived air quality for a low-income household, and B the experienced
air quality for that same household. C and D give believed and experienced air quality,
respectively, for a high-income household.

EJ Metric 2 holds if:

d (|q(x(β0), β1)− q(x(β0), β0)|)
dm

< 0. (4)

The household experiences air quality q(x(β0), β1), in which x is chosen as a function of β0

but translates into air quality (which impacts utility) as a function of β1. In contrast, the

household has chosen x assuming β0 and believing it translates into air quality as a function

of β0. We have written the metric in absolute value terms because, recalling that the amount

of hidden air quality is negative (the amount of hidden pollution is positive) – see Figure 3

– we find that all households experience a negative amount of hidden air quality, and that

this amount is smaller in absolute value for high-income households.

It is easy to see graphically that this holds in Figure 3, implying the existence of this kind

of environmental disparity. We provide a proof using the expressions for q(x(β0), β1) and

q(x(β0), β0) in the Appendix (Section A1.2). This metric incorporates some of the intuition

that one sees in advocacy reports, which sometimes argue that low-income households have

experienced greater levels of hidden pollution when, for instance, firms do not initially reveal

the full extent of their emissions or regulatory oversight is weak (United Church of Christ,

1987). Note that whether the disparity implies an injustice may depend in part on the cause
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of hidden pollution – such as illegal behavior by firms versus a lack of scientific information.

The second environmental justice metric is illuminating, but it is incomplete in two ways.

First, it is in units of physical pollution exposure, rather than in utility terms. Second,

a more appropriate counterfactual might be not to compare experienced air quality and

perceived air quality, but rather experienced air quality and the optimal air quality that

the household would have chosen, given full information. That is, whereas EJ Metric 2

compares q(x(β0), β1) to q(x(β0), β0), we might care more about a comparison between utility

associated with q(x(β0), β1) and utility associated with q(x(β1), β1). We thus turn to an

analysis that allows households to re-optimize all of their consumption decisions in response

to full information and then calculates the utility gain associated with that ability to fully

optimize.

Recall that the demand for distance is given by (Equation 3)

x∗ =
γm

p
− (1− γ)(α0 − α1β)

β

for whatever β the household perceives, and that the true relationship between distance and

air quality is given by (Equation 1)

q = α0 − α1β1 + β1x

Substituting the expression for x∗ into the expression for q, we can write optimal air quality

under full information, which we denote q∗, as

q∗ = q(β1, x
∗(β1)) = α0 − α1β1 + β1

(
γm

p
− (1− γ)(α0 − α1β1)

β1

)
(5)

In contrast, the chosen air quality under limited information, which we denote q†, is given

by

q† = q(β1, x
†(β0)) = α0 − α1β1 + β1

(
γm

p
− (1− γ)(α0 − α1β0)

β0

)
(6)

Here x† denotes the consumer’s chosen distance under limited information, i.e., what she

believes to be the optimal distance given her information set. The difference between the

optimal and experienced level of air quality is q∗ − q† = α0(1−γ)(β1−β0)
β0

> 0. Under the

simplifying assumptions we have made, we see that all households would have re-optimized

to a higher level of air quality q∗, and the amount by which they would have changed their

air quality purchase (q∗ − q†) does not depend on income.

Lost air quality leads to deadweight loss, and we next explore whether the level of that

utility loss varies with income. The difference in utility under full information and under
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limited information for any household is given by:

∆U = (q∗)γ(y∗)1−γ − (q†)γ(y†)1−γ (7)

This gives us a third potential definition of an environmental disparity:

Environmental Justice Metric 3. Low-income households experience a greater deadweight

loss from incorrect information regarding pollution: d∆U
dm

< 0.

In the Appendix (Section A1.3), we derive the sign of the derivative of ∆U with respect to

income, showing that d∆U
dm

< 0. Therefore, under the assumptions we have made (limited

information; Cobb-Douglas utility; etc.), an environmental disparity of this type exists. The

intuition for this is that the low-income household would have received greater marginal util-

ity from avoiding the hidden pollution than would have the high-income household (because

of declining marginal utility). Later, we expand on this intuition to show alternative frame-

works where it might not hold. We also give intuition using a consumer surplus framework,

below.

One could also consider a “proportional” version of this metric, in which deadweight

loss is divided by income. Such a metric incorporates the idea that low-income households

experience greater pollution exposure while simultaneously having fewer economic resources

for dealing with the health effects of the hidden pollution, which has been highlighted in some

of the related literature (United Church of Christ, 1987; Fleischman and Franklin, 2017).

The absolute version defined here is a stricter condition: if it holds, then the proportional

version does, too (that is, if d∆U
dm

< 0, then
d∆U

m

dm
< 0); if it does not hold, then the welfare

“burden” as a proportion of one’s income could still be greater for poorer households.

Frequently the researcher does not observe the full utility function but is able to estimate

demand and thus consumer surplus. It is easiest to visualize the change in consumer surplus

by considering the demand for distance x from the point source. Figure 4 shows how to

evaluate this increase in consumer surplus. When believing that air quality relates to distance

via a parameter value of β0, the low-income consumer (grey) demands x†, the lowest demand

function pictured. If instead informed that air quality relates to distance via β1, the low-

income consumer will demand x∗. The consumer surplus gain associated with full information

can thus be evaluated as the area under the full-information inverse demand curve over the

range (x∗, x†), minus the change in expenditure. The outer grey demand curve comes from

the true underlying utility function and thus is the appropriate demand curve to use for

evaluating consumer surplus.

As we show in the Appendix (Section A1.4), ∂∆CS
∂m

is negative, so Metric 3 holds under

the assumptions we have made when evaluated using consumer surplus rather than the full
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Figure 4: Consumer Surplus

Note: This figure plots demand for information under full (thin lines) versus biased
(thick lines) beliefs about β, for low-income (grey) versus high-income (black) individuals.
Shaded areas show deadweight loss from limited information, given by the area under the
full-information inverse demand curve over the range x† to x∗, minus the change in
expenditure.

utility function. For intuition, recall that we have shown that the wedge between x† and x∗

does not change with income. So in comparing the grey and black areas in Figure 4, what

matters is the height (and the curvature) of demand. We show in the Appendix (Section

A1.5) that the height is decreasing with income; that is, ∂p†

∂m
< 0, where p† is the price

that would have yielded x† in the full information case. So it is intuitive that we show

that consumer surplus is also decreasing with income. Below, we discuss to what extent

this result generalizes when we relax assumptions about utility, pollution dissipation, and

housing prices.

2.3 Endogenous Prices

Our theoretical analysis thus far has held constant the marginal price of distance. It is

natural, however, to wonder what would happen in an equilibrium framework in which prices

are allowed to vary with information. We note first that allowing prices to vary endogenously

in the model does not affect EJ Metrics 1 and 2. Recall that EJ Metric 1 holds because

air quality is a normal good: high-income individuals purchase relatively more air quality,

and that holds even when prices vary. EJ Metric 2 says that low-income households are

physically more affected by underestimation of pollution damages. This result of the model
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relies on air quality being a normal good and on the physical pollution dissipation process.

Since EJ Metric 2 does not incorporate re-optimization, it is unaffected by how we model

prices.

Turning to EJ Metric 3, we evaluate whether the low-income household experiences

greater deadweight loss from limited information than does the high-income households.

We explore this setting by modeling pure exchange, in which two individuals have initial

endowments of distance to a point source and a numeraire, and the total supply of each

good is fixed. The price of distance is therefore endogenous, responding to changes in

the perceived utility function.22 We derive equilibrium outcomes and environmental justice

metrics in the Appendix (Sections A1.6 and A1.7). Here, we describe the intuition for what

happens when prices change.

The key point from this exercise is that the price of distance is higher when pollution

is known to be higher (specifically, when β is higher). This happens because the marginal

value of distance x is greater at every level of x, so both households have greater demand

for distance under full information. That is, under limited information, the price of distance

is artificially too low. Since high-income households purchase more distance, an artificially

low price helps the high-income household more than it helps the low-income household.

Meanwhile, as before, low-income households also experience more hidden air pollution (EJ

Metric 2), and in a full-information counterfactual, increasing distance would have meant

larger marginal gains in utility for the low-income household (because of declining marginal

utility).

Overall, then, we see that the intuition regarding a larger deadweight loss for low-income

households is not overturned by allowing prices to vary endogenously in this pure exchange

economy with Cobb-Douglas preferences. A formal proof for EJ Metric 3 can be found in the

Appendix (Section A1.6). The Appendix also shows similar intuition for a pure exchange

model in which there are two houses at fixed distances (Section A1.7).

3 Generalized Model

The models in Section 2 yield three key results: poorer households choose relatively less air

quality than their richer counterparts; they experience relatively more hidden air pollution;

and they experience relatively more utility loss from limited information. Note that the

only difference across households is their income level; we do not make assumptions about

22We note that our analysis holds income from housing fixed – the changing price of x only affects
the perceived utility function, not initial wealth. Mathematically, we show that the utility benefit of full
information decreases in the initial allocation of the numeraire good, i.e., y0.
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heterogeneity in preferences or access to information across households. The same mistake

made by all households leads to inequality – not just in pollution exposure, but in welfare

itself. Next, we develop a more general model that relaxes some of our assumptions, so that

we might better understand which aspects of the model drive the key results.

Consider a household that, as before, derives utility from healthiness q (a function of

air quality) that is not directly observable by the consumer but is a function of distance

x to a source of pollution. We now posit that this household also gets utility from salient

neighborhood amenities s, which are similarly a function of distance x to a pollution source,

in addition to all other goods y. We assume that ∂q
∂x
> 0 and ∂s

∂x
> 0: both amenities increase

with distance, so that they are positively correlated.23 One can interpret s as salient pollution

and q as hidden pollution, or s as salient health impacts of air pollution and q as non-salient

ones. Alternatively, one can interpret s as salient non-pollution amenities (such as lack of

noise, or availability of green space) that are correlated with hidden pollution q – we provide

empirical context for this interpretation in the following section.24

In this version of our model, we do not impose a Cobb-Douglas utility function. We

do assume that all goods provide positive utility at a declining rate (Uq > 0, Uqq < 0, and

the corresponding conditions for s and y). We also relax our previous assumption of house

prices rising linearly in distance to the point source: now, we only require that house prices

increase with distance according to some hedonic price schedule, which need not be either

strictly concave or strictly convex. We continue to assume that the hedonic price schedule

does not shift with changes in information, but we note that the distributional effects of such

a shift are ambiguous (Kuminoff and Pope, 2014).

Suppose the consumer is completely uninformed about air pollution. Then she optimizes

according to the following:

max
x,y

U(s(x), y) s.t. p(x) + y = m (8)

She fails to incorporate q(x) into her decision-making, since she is unaware of how it impacts

her utility. She does, however, incorporate distance to the point source into her decision,

since distance yields other, salient amenities (visible pollution, a lack of noise, or a nice

view). Note that this setup nests the narrower model of the last section, in which the salient

23In this generalized model, it would be straightforward to incorporate an interpretation of x other than
distance, since all we are assuming is that both salient and non-salient amenities are correlated with some
signal variable x.

24We highlight lack of noise and availability of green space because they are directly tied to the same
industrial sources that produce pollution. In this model, other non-pollution amenities, such as school quality
and crime, are assumed to be part of the y good; however, one could extend the model to allow them to be
correlated, whether positively or negatively, with distance x.
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disamenity – known pollution – is captured in q(x) and the non-salient disamenity – hidden

pollution – is positively correlated with the choice q†.

We derive first-order and second-order conditions for this problem in the Appendix (Sec-

tion A1.8). Using comparative statics, we show that ∂x†

∂m
> 0 (i.e., distance is a normal good)

if ∂p
∂x†
Uy†y† > Us†y†

∂s†

∂x†
.25 This is similar to the standard condition for a normal good, except

that it incorporates the potential for the hedonic price schedule to be non-linear as well as

the impact of distance x on salient amenities s at the misinformed optimum.

Because ∂s
∂x
> 0 (the salient amenity is increasing in distance), we know that if distance

is a normal good, then the salient amenity is a normal good as well. Thus, the condition for

the first environmental justice metric holds: low-income households experience higher levels

of pollution. In general, salient environmental quality will be a normal good unless Usy is

negative and large. Similarly, because ∂q
∂x
> 0 (“hidden” environmental quality is increasing

in distance), we know that if distance is a normal good, hidden environmental quality is as

well. Thus, under very few assumptions, the condition for EJ Metric 2 holds too, and lower

income households are exposed to greater levels of hidden pollution.

Turning to the third environmental justice metric, we ask whether the welfare impact

of incorrect information is larger for low-income or high-income households. As before, we

can evaluate the difference in utility at the optimal bundle under full information (q∗, s∗, y∗)

versus the selected bundle under limited information (q†, s†, y†). The bundle (q∗, s∗, y∗) is

determined by optimization under full information:

max
x,y

U(q(x), s(x), y) s.t. p(x) + y = m (9)

We evaluate the difference in the utility given by the two bundles:

∆U = U(q∗, s∗, y∗)− U(q†, s†, y†) (10)

Thus,
d∆U

dm
= Uq∗

∂q∗

∂m
+ Us∗

∂s∗

∂m
+ Uy∗

∂y∗

∂m
− Uq†

∂q†

∂m
− Us†

∂s†

∂m
− Uy†

∂y†

∂m
(11)

While this is unambiguously negative in the simplified model presented in Section 2, it cannot

in general be signed as is; it depends on additional assumptions about utility.

Consider instead how utility changes for a small perturbation of the value of x around

the uninformed equilibrium (q†, s†, y†). This utility change is given by Uq†
∂q†

∂x†
dx.26 We

25Other housing papers simply assume normality of the good in question; for a discussion of this assump-
tion and how it leads to a single-crossing property in sorting models, see Epple and Romer (1991).

26To see this, write the change in utility as a change in the marginal utilities from s and q and y, when

the consumer buys slightly more x and slightly less y: dU = Us†
∂s†

∂x†
dx + Uq†

∂q†

∂x†
dx + Uy†dy. Then recall
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show above that q† is smaller for low-income consumers than for high-income consumers

(s is a normal good, so x is a normal good, so q is a normal good). As a result, Uq†

is larger for low-income consumers (recall that Uqq < 0). Also, because of how pollution

dissipates, it will typically be the case that ∂q†

∂x†
is weakly larger for low-income consumers.27

Put together, Uq†
∂q†

∂x†
is larger for low-income consumers, which works in favor of Metric

3 holding. However, we don’t know whether dx is larger for low-income or high-income

consumers. In the simplified Cobb-Douglas model we present in the previous section, dx

is invariant to income, but that need not be the case in general. If dx is much larger for

high-income consumers, outweighing the Uq†
∂q†

∂x†
effect, then Metric 3 will not hold.28

Overall, this more general model suggests that environmental justice metrics of the first

two types are likely to be widespread in practice: both visible and hidden pollution are likely

to be disproportionately experienced by low-income communities. Whether this translates

into larger welfare losses depends on additional modeling assumptions, but our initial model

with particular functional forms shows one set of circumstances under which the welfare loss

caused by limited information is largest for low-income households.

4 Applications

We have described several reasons why air quality (and its adverse health impacts) may be

underestimated, and we have explored the consequences of such underestimation in stylized

models of housing choice. We now turn to a discussion of our findings in the light of empirical

evidence. First, we consider two instances in which prevailing knowledge about local air

quality was wrong, and we ask the question of whose air quality and health was worse than

previously thought. Second, we investigate the correlation between pollution and other,

perhaps more salient, disamenities (noise and high-intensity land use). Third, we highlight

extensions of our information-failures mechanism in other contexts – including those where

disproportionate exposure emerges from factors other than income inequality, as well as those

where the disproportionate outcome is something other than air quality.

that the change in expenditure on x must be equal to the negative of the change in expenditure on y, from

the budget constraint, and that Us†
∂s†

∂x†
must be equal to ∂p

∂xUy† , from the first-order conditions. This leaves

only the expression Uq†
∂q†

∂x†
dx.

27If pollution dissipation is linear, then ∂q†

∂x†
is invariant to income. More realistically, if the dissipation

follows exponential decay, then ∂q†

∂x†
is larger for low-income consumers.

28Similarly, in evaluating consumer surplus over distance, rather than the full utility function, whether
deadweight loss increases or decreases with income will depend on whether the change in distance is increasing
or decreasing, as well as whether the height of the inverse demand curve is increasing or decreasing. Both
of these could be evaluated in particular empirical contexts, for instance via stated preference analysis.
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4.1 Who Is Impacted by Limited Information?

There are a great many instances in which individuals, communities, and societies have

realized that pollution was worse or more detrimental than previously thought. In this

subsection, we briefly introduce two such instances and present descriptive empirical facts

that clarify who is likely to have borne the historical health burden of collective information

failure. These empirical exercises are not intended to in of themselves prove welfare impacts,

but rather to provide intuition for the results of our theoretical modeling.

Consider first new information about the health impacts of lead that emerged from re-

search in the mid-2000s. This information was so compelling that the EPA dropped the

federal ambient lead standard by an order of magnitude in 2008. Prior to this information

becoming public, we might infer that communities had incorrect beliefs about the health

damages of high lead concentrations. This could be modeled in our theoretical framework

as an incorrect belief about β if higher levels of lead had proportionately higher damages to

health. As such, it is worth considering which communities were experiencing the highest

ambient lead exposure at the time of the EPA’s standard change. Note that the analysis that

follows does not focus on the change in the standard’s level per se, but rather is motivated

by the existence of new scientific information that caused the standard to change.

We assemble EPA monitoring data on annual average concentrations of airborne lead29 as

measured by the speciated PM2.5 monitoring network.30 We locate each monitor in a 5-digit

Zip Code Tabulation Area (ZCTA) using latitude and longitude data provided by the EPA

and shapefiles from the 2000 Census. To these data, we add demographic characteristics

of neighborhoods at the zip code level from the 2000 Census. Descriptive statistics are in

Appendix Table A2; we note that the mean level of measured lead is well below the new

standard.

We regress each demographic characteristic on the level of airborne lead (logged).31 We

include fixed effects at the level of a core-based statistical area (CBSA), to compare residents

of the same metro area with low versus high levels of lead.32 As we show in Panel A of

Table 1, communities with high lead concentrations tend to have lower incomes, greater

29Lead exposure can also occur via soil or water contamination, so the air concentrations on which we
focus do not represent all forms of lead exposure.

30The EPA’s Chemical Speciation Network measures the amount of various elements (e.g., arsenic, cad-
mium, lead, etc.) in collected particulate matter.

31We use lead data from 2001, representing an intermediate year between the 2000 Census and the 2008
standard change. Lead monitoring in 1999 and 2000 (i.e., more closely matching the demographic data) is
very sparse. Results using data from 2008 (i.e., at the time of the standard change) are very similar to the
2001 results; see Appendix Table A3.

32Around 4.5 percent of the population is in a Zip Code Tabulation Area that does not match to a CBSA;
we drop these ZCTAs from our regressions.
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Table 1: Demographic Characteristics Were Correlated with Pollution Exposure Prior to
Full Information Provision

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Panel A. Ambient Lead Exposure in 2001

Log airborne lead concentration -4.21 0.44 2.67 -11.72** 5.50 5.27**
(2.60) (0.43) (1.71) (4.57) (4.09) (2.40)

Observations 203 203 203 203 203 203
Within R2 0.04 0.02 0.04 0.10 0.03 0.07
Mean of dep. var. 37.07 4.80 13.18 74.61 16.37 11.98

Panel B. Refinery Locations in 1999

Refinery in zip code -4.01*** 0.43** 2.07*** -4.29*** 2.10** 5.90***
(1.03) (0.21) (0.53) (1.17) (1.00) (0.68)

Observations 23,952 23,892 23,833 23,912 23,912 23,912
Within R2 0.00 0.00 0.00 0.00 0.00 0.00
Mean of dep. var. 42.24 3.42 9.00 85.68 8.53 7.15

Note: This table reports estimates and standard errors from twelve separate regressions. The dependent variable is listed above
each column. In Panel A, the independent variable is ambient lead concentrations: logged lead in PM2.5 form. In Panel B, the
independent variable is a dummy for whether a refinery is located in the zip code. The unit of observation is a 5-digit Zip Code
Tabulation Area. Income is the median household income in the zip code, in thousands of 1999 dollars. Percent below poverty
refers to the percentage of families below the poverty line. Percentage White, Black, and Latino/a refer to the percentage of
individuals. Data source: Census for demographics; EPA for ambient lead concentrations; EIA’S Petroleum Supply Annual
and EPA’s National Emissions Inventory for refinery locations. All regressions include CBSA fixed effects. *** Statistically
significant at the 1% level; ** 5% level; * 10% level. ” ”

unemployment rates, a higher proportion of families below the poverty line, and a higher

proportion of people of color. Unsurprisingly, the standard errors are large; only 206 zip

codes had a monitor for speciated particulate matter in this year, and we are relying for

identification on CBSAs with multiple zip codes containing monitors (n = 95). Regressions

in the Appendix (Table A3) without CBSA fixed effects yield the same directional impacts,

and much greater statistical significance. If we instead use modeled lead concentrations from

the 2002 National Air Toxics Assessment, which cover the entire US, we obtain qualitatively

similar estimates with more precision (again, see Appendix Table A3).

The simplest interpretation of these results (particularly the first three columns, relating

to income, unemployment, and poverty) might be that lack of lead pollution is a normal

good – i.e., our first environmental justice metric. However, this would miss the key point

that communities were not fully aware of lead’s impacts. Indeed, the results also point

to our second environmental justice metric – that low-income communities (and people of

color) were historically the most physically impacted by incomplete scientific information

about the health impacts of lead. To measure the welfare implications (our third metric),

23



one could next examine whether households moved following the release of the new scientific

information. However, additional data or assumptions would be needed on (1) the degree to

which (and mechanisms by which) the public became aware of the new scientific information;

(2) moving costs; and (3) other potential confounders in the housing market over this time

period.

A second empirical example illustrates how underreporting of pollution may affect the

distributional impacts of emissions. In October 1999, the EPA issued an enforcement alert

for the petroleum refining sector. The alert stated that an EPA monitoring program had

shown “that the number of leaking valves and components is up to 10 times greater than had

been reported by certain refineries,” and that as a result, emissions rates of volatile organic

compounds (some of them hazardous chemicals) were substantially higher than had been

reported by firms (EPA, 1999). Again, this can be modeled as implying an incorrect belief

about the β parameter in our model – given the way pollution dissipates, being closer to a

refinery would imply proportionately higher concentrations of air pollution.

We can assess who is likely to have been most impacted by this historical underreporting

by investigating the characteristics of people living near refineries prior to the EPA’s alert.

We thus obtain information on the location of US petroleum refineries from the EPA’s

National Emissions Inventory (NEI). Specifically, we analyze all zip codes with a facility in

the 1999 NEI that was classified in SIC sector 2911 (Petroleum Refining); 210 zip codes had

such a facility in 1999. Using the 2000 Census data described above, we examine differences

in demographic characteristics across zip codes with and without a refinery. Note that

the 2000 Census asks about income in 1999, i.e., at the time the Enforcement Alert was

published.

We regress each demographic variable on the refinery indicator, including CBSA fixed

effects, to compare communities in the same metro area.33 Results, in Panel B of Table

1, show that zip codes with refineries in them had significantly lower income levels and

significantly higher proportions of non-White families and families below the poverty line.

(We again show results without CBSA effects in the Appendix, in Table A4.) Thus, it

appears that the communities most physically impacted by the historical underreporting

were economically disadvantaged and non-White. These results again are consistent with

both our first and second environmental justice metrics; additional modeling assumptions

and empirical evidence would be needed to analyze the full welfare impacts.

33The NEI dataset appears to classify some facilities, such as tank farms, as SIC 2911, in addition to
refineries. We perform a fuzzy string match to match EPA NEI facilities to petroleum refineries listed in the
US Energy Information Administration’s (EIA) Petroleum Supply Annual. Regressions using the subset of
facilities that match to the EIA report (located in 137 zip codes, rather than 210) yield similar results; see
Appendix Table A4.
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4.2 Co-located Amenities

The general model in Section 3 shows that, in theory, disproportionate pollution exposure

can emerge even when households know nothing about local pollution; this happens because

households sort on observable (dis)amenities that are co-located with hidden pollution. In

the absence of information about air quality, a household will choose the best (i.e., highest-

utility) residential location based on other, more salient attributes (though the choice may

appear to be pollution-based to the econometrician). For instance, suppose a household is

unaware of the work by Currie and Walker (2011) documenting the health impact of roadway

congestion, and as a result, it does not take into consideration differential exposure according

to distance to highways or other busy routes. At the same time, the household does know

that highways are noisy and ugly. All else equal, it would not like to live too close to the

highway, wishing to avoid noise and wanting a nicer view.34 Similarly, suppose a household

is unaware that small airports are sources of lead exposure (Zahran et al., 2017) but wishes

to avoid airport noise.

This thought exercise suggests that the correlation between these salient amenities (i.e.,

lack of noise and lack of an ugly view) and the hidden amenity (lack of health-damaging

air pollutants) is an important determinant of experienced environmental quality.35 To

shed light on this correlation, we assemble data on air pollution, noise pollution, and land

use. From the EPA’s monitoring network, we collect ambient concentrations of four criteria

pollutants – NO2, ozone, PM2.5, and SO2 – and two toxic pollutants – benzene and toluene.

As described above, these latter two compounds are emitted by the refining industry (as well

as other industries) and have negative developmental and/or carcinogenic effects. We focus

on benzene and toluene both because (1) refining has been a focus of the environmental

justice movement (Fleischman and Franklin, 2017); and (2) the monitoring network of these

chemicals is denser than is the monitoring of other hazardous air pollutants.

We observe annual average concentrations by monitor for the year 2001 (which matches

the time period of our land use data),36 and we locate each monitor in a 5-digit ZCTA using

latitude and longitude data provided by the EPA. Unfortunately, even for these six criteria

and hazardous pollutants (which have the densest coverage in the EPA dataset), monitoring

is quite incomplete; we observe the fewest zip codes for toluene (215 total) and the most for

ozone (1,116 zip codes) in our analysis.37

34Von Graevenitz (2018) shows empirical evidence on the value of reduced road noise.
35Here and throughout, we refer to “experienced” environmental quality as the true level to which a

household is exposed, as opposed to “perceived” environmental quality, the level which the household believes
it is getting.

36In Appendix Table A5, we show results using pollution measures from 2016.
37We provide coverage maps in Appendix Figure A3.
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We collect data on one additional measure of pollution exposure, modeled cancer risk,

from the EPA’s 2002 National Air Toxics Assessment (NATA). This measure takes emissions

data from the National Emissions Inventory – covering both point and nonpoint sources –

and imputes cancer risk.38 An advantage of these data is that the EPA presents estimates

for every zip code, so we have broader coverage than for the measured pollution concentra-

tion data.39 Additionally, the variable aggregates the risk associated with many different

pollutants. A disadvantage is that the risk is modeled based on NEI emissions, rather than

measured in the way that concentrations of our six criteria and toxic pollutants come directly

from pollution monitors.40

We merge these pollution exposure variables with noise and land use data.41 Noise

data come from the Department of Transportation’s National Transportation Map. Like

our estimates of cancer risk, our estimates of noise are modeled, rather than measured.

They are based on information about major roadways as well as airports, and “represent

the approximate average noise energy due to transportation noise sources over the 24 hour

period.”42 Meanwhile, land use data are published by the US Geological Survey at the

Department of the Interior.43 The key variable is a land use classification – such as “developed

- high intensity,” “developed - medium intensity,” “water,” or “wetlands”– derived from

satellite imaging. We tabulate descriptive statistics in Appendix Table A2.

We start by examining the correlation between salient disamenities (noise and ugly views)

and NO2. NO2 causes negative health effects such as asthma and cardiovascular conditions,

and mobile sources (trucks and cars) are a major contributor to NO2. The left-hand panel of

Figure 5 plots NO2 concentrations against noise levels and reveals a strong positive correla-

tion between these two disamenities. The right-hand panel similarly plots NO2 against a zip

38More specifically, the NATA uses NEI emissions, dispersion and deposition models, and an inhalation
exposure model (which includes components such as a human activity pattern database).

39The EPA NATA data are at the Census Tract level. We match these to zip codes using a 2010 US
Department of Housing and Urban Development crosswalk. Around 0.2 percent of the conterminous US
population is in a ZCTA that does not directly merge with the NATA data; we drop these ZCTAs from our
cancer risk regression.

40The EPA cautions that NATA should not be used for analyses such as “pinpoint[ing] specific risk values
within a census tract,” but argues that the results “help to identify geographic patterns and ranges of risks
across the country” (Environmental Protection Agency, 2011, p 5) We use the NATA data in ways consistent
with the latter but caveat our results accordingly. Interestingly, one of the reasons EPA provides caution
about NATA data is that they have, over time, provided “a better and more complete inventory of emission
sources, an overall increase in the number of air toxics evaluated, and updated health data for use in risk
characterization” (Environmental Protection Agency, 2011, p 6) – supporting our argument that historically,
pollution exposure has been (uninentionally) underreported.

41Again, we use 2000 Census shapefiles to match locations to ZCTAs.
42This description is from http://osav-usdot.opendata.arcgis.com/. We use 2018 noise data; data for 2001

are not available.
43Specifically, we use the 2001 Land Cover 100 Meter Resolution - Conterminous United States, Albers

Projection data.
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code’s proportion of land dedicated to high-intensity development; the fitted relationship is

similarly positive. From these two figures, then, it is clear that a household wishing to avoid

noise or to avoid high-intensity development (perhaps because of visual disamenities) would

also likely avoid high concentrations of NO2.

Figure 5: Noise and Land Use Are Correlated with Pollution Exposure

Note: The left-hand figure plots the annual average NO2 level (measured in parts per billion) in a 5-digit Zip Code Tabulation
Area in 2001 against the transportation noise in that area (measured in LAeq , roughly equivalent to decibels). The right-hand
figure similarly plots the annual average NO2 level (measured in parts per billion) in a 5-digit Zip Code Tabulation Area in
2001 against the portion of the land in that zip code dedicated to high-intensity development. Data sources are the EPA, DOT,
and USGS; see text for details. The black line shows a linear fit. Roughly 400 zip codes have NO2 monitors.

We next turn to regression analysis. Table 2 shows regressions of each measure of pollu-

tion exposure on the more salient disamenities of noise and land use. The pollution exposure

variables are all in logs, as is the noise variable. The land use variables each represent the

percentage of the zip code’s area that is dedicated to a particular land use. The omitted

category of land use is forest. We include fixed effects at the level of a core-based statistical

area in all seven regressions. These regressions are not intended to provide causal estimates

of amenities on pollution exposure. Rather, they are intended to show cross-sectional cor-

relations between ambient amenities and pollution exposure. The thought experiment that

they are designed to replicate is: if an individual were to choose one zip code over another

(within a metro area) based on the geographic variation in noise level and land use, what

is the typical level of pollution to which she would be exposed? Because individuals make

these decisions infrequently, we rely solely on cross-sectional variation.

Column 1 shows that a higher level of the salient disamenity implies a higher measure

of pollution exposure. When an individual accepts a doubling of noise, she also accepts a

roughly 13 percent higher concentration of NO2, statistically significant at the one-percent

level. Similarly, if she were to move from an entirely forested area to an area that was

entirely high-intensity development, she would experience roughly 60 log points more NO2

(or more than 80 percent), again statistically significant at the one-percent level. As one
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Table 2: Pollution Risk is Correlated with Other Disamenities

NO2 Ozone PM2.5 SO2 Benzene Toluene Cancer risk

Noise 0.13*** -0.01** 0.06*** 0.06 0.19 0.19 0.04***
(0.04) (0.01) (0.02) (0.06) (0.14) (0.15) (0.00)

Land use:
Developed, high intensity 0.60*** -0.22*** 0.28*** 0.22 0.55** 0.69** 0.93***

(0.11) (0.03) (0.04) (0.17) (0.26) (0.29) (0.01)
Developed, medium intensity 0.35*** -0.12*** 0.21*** -0.06 0.59** 0.49* 0.55***

(0.10) (0.02) (0.04) (0.16) (0.25) (0.28) (0.01)
Developed, low intensity 0.33*** -0.05* 0.10** -0.01 0.29 0.88** 0.53***

(0.12) (0.03) (0.04) (0.19) (0.31) (0.36) (0.01)
Developed, open space 0.40** 0.02 0.14** -0.03 0.36 0.14 0.51***

(0.19) (0.04) (0.06) (0.27) (0.44) (0.47) (0.01)
Water 0.32 0.01 0.04 0.25 0.54 0.33 0.27***

(0.22) (0.06) (0.10) (0.43) (0.47) (0.51) (0.02)
Wetlands -0.75*** -0.10** 0.14 -0.00 0.39 0.47 0.16***

(0.22) (0.05) (0.08) (0.34) (0.42) (0.46) (0.02)
Farmland 0.07 -0.02 0.17*** -0.12 -0.17 -0.38 0.00

(0.10) (0.02) (0.04) (0.18) (0.28) (0.31) (0.01)
Barren land -0.61 0.12 -0.96*** 0.26 0.28 -0.30 0.02

(0.41) (0.10) (0.23) (1.07) (2.36) (2.55) (0.06)

Observations 408 1,049 980 465 216 208 23,328
Within R2 0.49 0.21 0.32 0.04 0.28 0.34 0.48

Note: This table reports estimates and standard errors from seven separate regressions. The dependent variable in the first
six columns is log ambient concentrations; in the last column it is log total cancer risk. The unit of observation is a 5-digit
Zip Code Tabulation Area. The noise variable is also logged. Land use variables are the portion of the zip code dedicated
to that land use; the omitted category of land use is forest. All regressions include CBSA fixed effects. *** Statistically
significant at the 1% level; ** 5% level; * 10% level.

moves from high-intensity development down to low-intensity development, the pollution

exposure drops. Wetlands and barren land have the lowest levels of NO2, conditional on the

CBSA fixed effects and on a level of noise.

Ozone shows the opposite pattern. Ozone forms from the interaction of two separate

types of chemicals: nitrogen oxides (NOx) and volatile organic compounds (VOCs). While

human activity emits both of these pollutant types, vegetation is major source of VOCs

(Auffhammer and Kellogg, 2011). As a result, rural and suburban areas can have high levels

of ozone concentration.

PM2.5, however, follows a pattern similar to that of NO2, with the highest concentrations

in zip codes that are noisy and more intensely developed. As with NO2, the concentrations

decline as one moves from high-intensity development to medium- and then low-intensity

development. SO2 does not follow this clear pattern, perhaps because it is travels fairly far

(Burtraw et al., 2005). However, “the largest threat of SO2 to public health is its role as

a precursor to the formation of secondary particulates, a constituent of particulate matter”

(Burtraw et al. 2005, p. 257), so the PM2.5 results are arguably more relevant for the thought
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exercise we are carrying out. Benzene, toluene, and cancer risk all follow a pattern similar

to that of NO2 and PM2.5.44

Overall, across the seven regressions, we see that five major types of pollutants are closely

and positively correlated with noise and land use. The two exceptions are ozone (which

displays the opposite relationship) and SO2 (for which no statistically significant relationship

appears in the regression results). We take this as evidence that non-salient environmental

disamenities are co-located with more salient ones, consistent with one interpretation of the

generalized form of our theoretical model.

Finally, in Appendix Tables A6 through A8, we briefly examine whether these co-located

disamenities are correlated with household sorting decisions. Using the income data from

the 2000 Census that we described above, we regress median household income at the zip

code level on various types of disamenities.45 We show first that zip codes with high levels of

PM2.5 and zip codes with higher cancer risk have significantly lower incomes. We then run

a “horse race” regression by including noise levels and land use variables. We show that the

magnitudes of the coefficients on PM2.5 and cancer risk drop substantially and lose statistical

significance. In contrast, high-intensity development is associated with a significantly lower

income level. This suggests that co-located disamenities may be playing an important role

in the decision of households of where to live. Importantly, we note that households may

still have a positive willingness to pay for ambient environmental quality, because the small

coefficients on PM2.5 and cancer risk in the horse race regressions could reflect a lack of

information rather than a lack of willingness to pay.

4.3 Extensions to Other Contexts

We have shown that a lack of a full information can theoretically do more than just cause

overall efficiency (i.e., deadweight) loss; it can also exacerbate the disparities that emerge

from environmental quality being a normal good. In the context of the causes of dispro-

portionate exposure, then, we can say that our model shows how missing information works

through the “moving to the nuisance” channel. However, it could also act through other

channels less directly dependent on income, such as racism or targeting based on political

power. For instance, if racism in the housing market leads communities of color to be more

exposed to salient pollution, missing information may cause such communities to be more

exposed to hidden pollution as well. In general, systematic underestimation of pollution and

44In the cancer risk regression, there is a positive and statistically significant coefficient on both the water
and wetlands variables. Part of the explanation may be that ports and other industrial facilities are located
near water. Coverage maps in Appendix Figure A4 show where water and wetlands appear.

45As before, we include CBSA fixed effects to compare households within a metro area.
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its impacts has the potential to make existing inequality worse than previously thought. In

this regard, our findings are relevant to the discussion of climate justice across countries:

there is evidence that the damages of climate change are experienced disproportionately

by low-income countries (Dell, Jones and Olken, 2012; Heal and Park, 2016), and as-yet

undiscovered impacts of climate change may amplify the disparity.

In both our simplified model and our generalized model, two conditions drive our results:

(1) a salient normal good; and (2) a positively correlated non-salient good. In contexts

where these conditions are satisfied, limited information may contribute to inequality. We

thus believe that information failures have the potential to create disparities in other envi-

ronmental and energy contexts. Consider, first, the application of water quality. Willingness

to pay for it has been shown to rise with both income and information provision (Jalan and

Somanathan, 2008; Graff Zivin, Neidell and Schlenker, 2011). It is plausible that in some

contexts – for example, rural groundwater quality (Kremer et al., 2011) – less salient water

quality may be positively correlated with more salient attributes of a water source, such as

the source’s visual appearance. This example also illustrates that our model and findings

may be relevant for all kinds of pollution avoidance behavior, whether it is the housing

choice, the decision to purchase an air filter or mask, or the selection of a water source.

A second application of potential relevance is household energy efficiency. Evidence sug-

gests that households are not fully informed about the value of energy efficiency (Graff Zivin

and Novan, 2016; Cassidy, 2018) and that wealthier households are more energy efficient

(Bednar, Reames and Keoleian, 2017). If the salient attributes of energy-using durables (for

instance, the newness of a refrigerator or other home appliance) are positively correlated

with the harder-to-measure energy efficiency, then income differences and information fail-

ures may interact to produce efficiency loss and inequality in energy-related outcomes. In

fact, such inequality is one the main premises behind the field of “energy justice” (Hernandez,

2015).

There is a long-standing economics literature, spanning multiple settings, on the adverse

impacts of limited information. Our model departs from this literature in its treatment of

the distribution of missing information. Whereas other papers are motivated by or focus

exclusively on the implications of heterogeneity in information or in the willingness to pay

for information, we assume that every individual is wrong about air quality in the same

way. In our simplified model, all individuals have the same mistaken belief about a key

parameter in the estimation of air quality or its health impacts (which we model through β).

In our more general model, all individuals might even know nothing about air quality and

choose locations based on other salient home attributes and goods. We stress that cross-

sectional differences in knowledge of air quality and health would also affect the distribution
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of pollution exposure, and they could either exacerbate or alleviate inequality.

Our model does abstract from several theoretically- and empirically-established facts

about preferences, prices, and pollution. We model households as differing only in their

incomes (Ellickson, 1971),46 but real-world preference heterogeneity can lead to different

equilibrium sorting of households into locations (Epple and Platt, 1998). We also employ a

static model that allows (in our more general version) the price of distance to adjust but no

other general equilibrium effects; see, for instance, Kuminoff, Smith and Timmins (2013) for

an in-depth review of such effects, and Bayer et al. (2016) for a dynamic model of housing

demand. Thirdly, we have not modeled other sources of inequality. For instance, inequality

in access to health care could interact with the inequalities we document (Mullins and White,

2020); additionally, there is empirical evidence that pollution affects labor productivity and

therefore income (Graff Zivin and Neidell, 2012). We have chosen to focus on a relatively

simpler model in order to highlight the basic logic of our argument, but the added complexity

of real-world markets and behavior means that the effect of limited information on inequality

likely varies from setting to setting.

Despite the restrictions of our theoretical exercise, the results that it produces have

important implications for the revealed preference models that are frequently used in envi-

ronmental economics. Such models assume that agents have full information, or at least that

the economist is able to observe agents’ beliefs about the goods over which they are choosing.

We argue in Section 1 that many individuals are not fully informed about their pollution

exposure. The empirical researcher, then, must take a stand on what individuals’ beliefs

are regarding their exposure. As Hausman (2012) argues, when we observe Romeo choos-

ing poison over eloping with Juliet, we must remember that Romeo believes that Juliet has

died: “he does not prefer death to life with Juliet. His choice does not reveal his preference,

because he is mistaken about what the alternatives are among which he is choosing” (p 28).

Similarly, when we observe households sorting across neighborhoods, we must acknowledge

that they are frequently mistaken about the level of health risks across neighborhoods, and

temper our conclusions regarding their preferences accordingly.

In fact, our results point to the possibility of either overestimation of marginal willingness

to pay or underestimation of marginal willingness to pay in empirical revealed preference

studies of, for instance, air quality and the housing market. Suppose a researcher observes

that a household is willing to pay $100 more for house A than for house B, where the two

houses are identical except for one unit less of ambient pollution at house A. From this, the

researcher concludes that the household has a marginal willingness to pay to avoid pollution

46In particular, our modeling exercise is consistent with early theory on equilibrium sorting that uses the
“single-crossing property” of Ellickson (1971).
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of $100 per unit. If it turns out that house A also has 1 unit less of a salient disamenity (such

as noise), about which the home-buyer is aware but the econometrician is not, then of course

the empirical estimate is biased, and the homeowner actually has a marginal willingness to

pay of less than $100 per unit of air quality (some of the $100 was spent to avoid the other

disamenity). In this case, the researcher has overestimated the willingness to pay.

However, suppose that households are not fully informed, and they believe that house A

has only 0.5 units less of ambient pollution (because of imperfect monitoring, fraud on the

part of the polluting firm, etc.). In that case, the home-buyer that is willing to pay $100

more actually has a marginal willingness to pay of $200 per unit of air quality. This point

is illustrated in an empirical application in Ma (2019), where willingness to pay estimates

are significantly larger after accounting for incomplete information in a Bayesian updating

framework. As such, we argue that hedonic methods should account for limited information

regarding amenities more explicitly than has generally been done in the literature. Bishop

et al. (2019) also argue for incorporating information and subjective beliefs, pointing to the

possibility of using survey data.

5 Conclusion

There are several reasons to believe that individuals are lacking accurate information on local

air pollution and its health impacts. In this paper, we demonstrate how this information fail-

ure can theoretically lead not just to economic inefficiency but also to inequality in pollution

exposure and in well-being. We do this by deriving equilibrium comparative statics in two

different models of residential location choice under limited information, which we motivate

by pairing existing research with descriptive statistics on air quality and air quality stan-

dards. Our results suggest the potential for disparities under modest assumptions: relative

to their higher-income counterparts, lower-income individuals experience greater pollution

exposure, greater hidden pollution exposure, and – in some situations – greater welfare loss

(as compared to full-information outcomes). Depending on the source of income inequality

and the cause of information failures, some of these disparities may be considered injustices.

We believe that our results inform several important pursuits. First, the economics

literature on the distribution of pollution exposure and the associated disutility focuses

primarily on the role of income, firm costs, and discrimination in a full-information world.

To this literature, we add evidence that information limitations play an integral role as

well, thus complicating the standard “moving to the nuisance” story. Second, there is a

gap between economists and non-economists in the definition and understanding of what

constitutes an environmental “injustice.” We help bridge this gap by jointly investigating
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the effects of income and information, and by considering not just pollution exposure but

also hidden pollution exposure and welfare loss. Third, the estimation of willingness to pay

for environmental quality has conventionally relied on revealed preference methods under an

assumption of full information. We argue that the tendency of individuals to misestimate

or underestimate air quality presents challenges to the interpretation of revealed-preference

estimates. All of this has policy implications: the Environmental Protection Agency is legally

required to consider environmental justice concerns, and distributional outcomes continue

to be of widespread political and social interest.

There are several areas in which future research could advance our understanding of

information, environmental quality, and welfare. In our modeling exercise, we set aside a

number of phenomena that may affect choices and utility under limited information, such as

the evolution of beliefs about pollution over time or other dynamic effects. In addition, we

abstract from the notions of costly information and uncertainty. One could consider modeling

information as sufficiently costly that no individual obtains it on their own, but as cheap to

disseminate – this would appear to match the community-based “bucket brigades” that have

emerged in some areas (O’Rourke and Macey, 2003). We have left our model deliberately

simple, to show the potential for environmental disparities under very few assumptions, but

future models could incorporate these additional considerations. Lastly, we have focused

specifically on the role of information in the housing choice, but information also likely has

played and continues to play important roles in both industrial siting and government policy

decisions as well; we believe that future research on these roles would be very valuable.
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Online Appendix

This Appendix provides derivations and proofs for the models in Sections 2 and 3. It also

provides additional summary statistics and robustness checks pertaining to Section 4.

A1 Theoretical Derivations

A1.1 Derivation of Demand Functions, Simplified Model

In the demand model in Section 2, we assume that utility is Cobb-Douglas in two goods,

q and y: U(q, y) = qγy1−γ. The first good, q, is unobserved healthiness. It is a function

of observable distance x to a point source: q = α0 − α1β + βx. When households are

fully informed, they know the true α0, α1, and β parameters. Under limited information,

they misperceive the β parameter. The second good, y, is the other (i.e., numeraire) good,

unrelated to distance x to the point source.

The individual has the following maximization problem, as stated in Section 2:

max
x,y

U(q(x), y) s.t. px+ y = m

The first-order conditions that define the optimal bundle (λ∗, x∗, y∗) are as follows:

m− px− y = 0

γqγ−1y1−γ ∂q
∗

∂x∗
− λp = 0

(1− γ)qγy−γ − λ = 0

Taking the second and third conditions above, we rearrange them so that the terms con-

taining λ are on the right-hand side. We then divide the second condition by the third and

rearrange terms to obtain
q∗

y∗
=

1

p
· γ

1− γ
· ∂q

∗

∂x∗

Note that we can express q∗ as a function of x∗, and that ∂q∗

∂x∗
= β. Substituting for y∗

using the first first-order condition, we find the optimal, full-information choice of distance:

x∗ =
γm

p
− (1− γ)(α0 − α1β)

β
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Subbing this back into q(x) yields

q∗ = α0 − α1β + β
γm

p
+
β(γ − 1)(α0 − α1β)

β

Substituting x∗ into the budget constraint, we can also solve for y∗:

y∗ = (1− γ)m+
p(1− γ)(α0 − α1β)

β

To determine the sign of ∂q∗

∂m
, we can differentiate the equation for x∗ with respect to m and

the equation for q∗ with respect to x∗ (alternatively, we could differentiate q∗ directly with

respect to m):
∂q∗

∂m
=
∂q∗

∂x∗
∂x∗

∂m
=
γ

p
β > 0

To check that we are at an interior solution, we calculate the bordered Hessian:

D2L(λ, x, y) =

 0 −p −1

−p γ(γ − 1)qγ−2y1−γβ2 γ(1− γ)qγ−1y−γβ

−1 (1− γ)γqγ−1y−γβ (1− γ)(−γ)qγy−γ−1


The determinant of this is:

det
(
D2L(λ, x, y)

)
= p2(1− γ)γqγy−γ−1 + 2pγ(1− γ)qγ−1y−γβ + γ(1− γ)qγ−2y1−γβ2

Each is these three terms is positive, so the second order conditions are satisfied, and we are

at an interior solution.
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A1.2 Proof: Low-Income Households Experience A Greater Amount

of Hidden Pollution, Simplified Model

The household chooses x(β0) believing that air quality is a function of distance x and the

exogenous parameter β0. However, true air quality is a function of the exogenous parameter

β1. As such, we have the following expression for the level of pollution the household believes

it experiences:

q(x(β0), β0) = α0 − α1β0 + β0(x(β0))

In contrast, the level of pollution the household actually experiences is

q(x(β0), β1) = α0 − α1β1 + β1(x(β0))

The difference between these is

q(x(β0), β1)− q(x(β0), β0) = −α1(β1 − β0) + (x(β0))(β1 − β0) = (x(β0)− α1)(β1 − β0)

The first term, (x(β0)−α1), is negative (see footnote 18 in the main text). The second term,

(β1 − β0), is positive. The full difference is therefore negative: the household experiences

worse air quality than it believes.

The derivative of this difference with respect to income is:

d(q(x(β0), β1)− q(x(β0), β0))

dm
= (β1 − β0)

γ

p
> 0

Thus, every household experiences worse air quality than it believes, but the magnitude of

this experienced air quality deficit drops in income. In other words, low-income households

experience more “hidden pollution.”
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A1.3 Proof: Low-Income Households Experience A Greater Util-

ity Loss, Simplified Model

We wish to compare utility at the optimum – that is, when the household is fully informed

and therefore selects the bundle (q∗, y∗) – with the utility experienced when the household

misperceives pollution exposure and selects the bundle (q†, y†):

∆U =
(
(q∗)γ(y∗)1−γ)− ((q†)γ(y†)1−γ)

First, we re-write this as:

∆U =

(
q∗

y∗

)γ
y∗ −

(
q†

y†

)γ
y†

We then take the total derivative with respect to income:

d∆U

dm
= γ

(
q∗

y∗

)γ−1 ∂
(
q∗

y∗

)
∂m

y∗ +

(
q∗

y∗

)γ
∂y∗

∂m
− γ

(
q†

y†

)γ−1 ∂
(
q†

y†

)
∂m

y† −
(
q†

y†

)γ
∂y†

∂m

The first term in the d∆U
dm

expression drops out, because q∗

y∗
does not depend on income m (see

its expression in Appendix A1.1). Note, however, that the third term remains; the equation

for q∗

y∗
does not apply to q†

y†
because the bundle (q†, y†) is away from the optimum.

To make further progress in signing d∆U
dm

, the following partial derivatives are useful:47

∂y∗

∂m
=
∂y†

∂m
= 1− γ

∂q†

∂m
=
β1γ

p

We differentiate ( q
†

y†
) with respect to m and find:

∂
(
q†

y†

)
∂m

= −q†(y†)−2∂y
†

∂m
+ (y†)−1 ∂q

†

∂m

= −q
†

y†
· 1

y†
· (1− γ) +

1

y†
· β1γ

p

=
1

y†

(
−
(
q†

y†

)
(1− γ) +

β1γ

p

)
47The derivative ∂q†

∂m depends on β1 because q† refers to experienced air quality, q(x†(β0), β1) = α0 −
α1β1 + β1

(
γm
p −

(1−γ)(α0−α1β0)
β0

)
.
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Substituting these in and re-arranging, we have:

d∆U

dm
=

((
q∗

y∗

)γ
−
(
q†

y†

)γ)
(1− γ)− γ

(
q†

y†

)γ−1 ∂
(
q†

y†

)
∂m

y†

=

((
q∗

y∗

)γ
−
(
q†

y†

)γ)
(1− γ)− γ

(
q†

y†

)γ−1
1

y†

(
−
(
q†

y†

)
(1− γ) +

β1γ

p

)
y†

= (1− γ)

(
q∗

y∗

)γ
− (1− γ)

(
q†

y†

)γ
+ γ(1− γ)

(
q†

y†

)γ
− γ2β1

p

(
q†

y†

)γ−1

= (1− γ)

(
q∗

y∗

)γ
− (1− γ)2

(
q†

y†

)γ
− γ2β1

p

(
q†

y†

)γ−1

From the FOCs, we have that β1
γ

1−γ
1
p

= q∗

y∗
, so:

d∆U

dm
= (1− γ)

(
q∗

y∗

)γ
− (1− γ)2

(
q†

y†

)γ
− γ(1− γ)

(
q∗

y∗

)(
q†

y†

)γ−1

= (1− γ)

((
q∗

y∗

)γ
− (1− γ)

(
q†

y†

)γ
− γ

(
q∗

y∗

)(
q†

y†

)γ−1
)

= (1− γ)

((
q∗

y∗

)γ
−
(
q∗

y∗

)γ (
(1− γ)Rγ + γRγ−1

))

where R = (q†/y†)
(q∗/y∗)

< 1, since q† < q∗ and y† > y∗.

Our remaining task is to evaluate whether ((1− γ)Rγ + γRγ−1) is greater than or less

than 1. To do so, first consider the situation in which R = 1. Then

(
(1− γ)Rγ + γRγ−1

)
= 1− γ + γ = 1

In our setting, 0 < R < 1. To find whether ((1− γ)Rγ + γRγ−1) is greater than or less than

1, we calculate its derivate with respect to R:

d [(1− γ)Rγ + γRγ−1]

dR
= γ (1− γ)Rγ−1 + γ (γ − 1)Rγ−2

= γ (1− γ)Rγ−1 − γ (1− γ)Rγ−2

= γ (1− γ)
(
Rγ−1 −Rγ−2

)
This derivative is negative: both γ and 1−γ are positive, but the third term is negative. Thus,

((1− γ)Rγ + γRγ−1) > 1 when R < 1. In turn,
((

q∗

y∗

)γ
−
(
q∗

y∗

)γ
((1− γ)Rγ + γRγ−1)

)
< 0,

which ensures that d∆U
dm

< 0.
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A1.4 Proof: Low-Income Households Experience A Greater Change

in Consumer Surplus, Simplified Model

We argue in the main text that one could evaluate whether the change in consumer surplus

from having full information is increasing or decreasing in income. Frequently the researcher

does not observe the full utility function, but is able to estimate demand and thus consumer

surplus. It is easiest to evaluate consumer surplus in our simplified Cobb-Douglas model

by considering the demand for distance x from the point source. The consumer surplus

gain associated with full information can be evaluated as the area under the full-information

inverse demand curve over the range (x∗(p), x†(p)), minus the change in expenditure, as in

Figure 4. The outer grey demand curve comes from the true underlying utility function and

thus is the appropriate demand curve to use for evaluating consumer surplus.

To derive an analytic expression for this change in consumer surplus using the model

we present in the main text, we take the integral under the inverse demand expression and

subtract off the change in expenditure, as follows:

∆CS =

(∫ p∗(x†)

p∗(x∗)

γm

p
− (1− γ)(α0 − α1β1)

β1

dp

)
−
(
p∗(x†)− p∗(x∗)

)
· x†,

where p∗(x∗) denotes the actual market price of distance x and p∗(x†) denotes the implicit

price that would have yielded x† in the full information case. This is equal to:

∆CS =γm ln (p∗(x†))− (1− γ)(α0 − α1β1)

β1

· (p∗(x†))

− γm ln (p∗(x∗)) +
(1− γ)(α0 − α1β1)

β1

· (p∗(x∗))

−
(
p∗(x†)− p∗(x∗)

)
· x†

We are interested in how the change in consumer surplus that would result from full

information varies with income, so we take the derivative of ∆CS with respect to income:

∂∆CS

∂m
=
γm

p†
∂p†

∂m
+ γ ln p† − (1− γ)(α0 − α1β1)

β1

∂p†

∂m

− γm

p∗
∂p∗

∂m
− γ ln p∗ +

(1− γ)(α0 − α1β1)

β1

∂p∗

∂m

− ∂x†

∂m
(p† − p∗)− x†

(
∂p†

∂m
− ∂p∗

∂m

)
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Noting that the true price p does not change with income, this simplifies to:

∂∆CS

∂m
=
γm

p†
∂p†

∂m
+ γ ln p† − (1− γ)(α0 − α1β1)

β1

∂p†

∂m

− γ ln p∗ − ∂x†

∂m
(p† − p∗)− x†

(
∂p†

∂m

)
Re-arrange to:

∂∆CS

∂m
= γ(ln p† − ln p∗) + (p∗ − p†)∂x

†

∂m

+

(
γm

p†
− (1− γ)(α0 − α1β1)

β1

− x†
)
∂p†

∂m

Recall that ∂x†

∂m
= γ

p
, so:

∂∆CS

∂m
= γ(ln p† − ln p∗) + (p∗ − p†) γ

p∗

+

(
γm

p†
− (1− γ)(α0 − α1β1)

β1

− x†
)
∂p†

∂m

Next, note that p† is the price that yields x† along the true demand curve, i.e., x† = (γm
p†
−

(1−γ)(α0−α1β1)
β1

). Therefore the last term in the ∂∆CS
∂m

expression drops out, and we are left

with:
∂∆CS

∂m
= γ(ln p† − ln p∗) + (p∗ − p†) γ

p∗

Recall that p† > p∗, so (ln p† − ln p∗) is positive whereas p∗−p†
p∗

is negative. However, (ln p† −
ln p∗) is smaller in absolute value,48 leaving the entire expression γ(ln p†− ln p∗) + (p∗−p†) γ

p∗

negative.

Then ∂∆CS
∂m

is negative, so EJ Metric 3 holds for Cobb-Douglas preferences with linear

dissipation and linear pricing.

48Denote r = p†

p∗ . Then we are evaluating simply r − 1 compared to ln r. Since r − 1 > ln r, we have

that (p†−p∗)
p∗ > ln p† − ln p∗. Note it is easy to see graphically that r − 1 > ln r. More formally, note that

ln r = r − 1 for r = 1. Then note that d(ln r)
dr < d(r−1)

dr for all r > 1, implying that ln r < r − 1 for all r > 1.

Also, d(ln r)
dr > d(r−1)

dr for all r < 1, implying that ln r < r − 1 for all r < 1. Therefore ln r ≤ r − 1 for all r.
In the case we are considering, p† 6= p∗, so the inequality is strict.
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A1.5 Proof: Implicit Counterfactual Price is Decreasing in In-

come

In the main text, we discuss how low-income households experience a greater change in con-

sumer surplus in the simplified model (Cobb-Douglas preferences, linear dissipation, fixed

prices). Appendix Section A1.4 gives a formal proof. The main text simply gives intu-

ition, and that intuition relies on the height of the consumer surplus triangle in Figure 4.

Specifically, we rely on the fact that p† (the price that would have yielded the uninformed

quantity x† in the full information case) decreases with income m. In this Appendix, we

prove mathematically that ∂p†

∂m
< 0.

First, define p† to be the price that would yield x† along the full information demand

curve:

x† =
γm

p†
− (1− γ)(α0 − α1β1)

β1

And recall that the uninformed demand curve for x† as a function of the true price p is given

by:

x† =
γm

p
− (1− γ)(α0 − α1β0)

β0

Therefore by substitution:

γm

p
− (1− γ)(α0 − α1β0)

β0

=
γm

p†
− (1− γ)(α0 − α1β1)

β1

Rearranging:
1

p†
=

1

p
− (1− γ)(α0 − α1β0)

β0γm
+

(1− γ)(α0 − α1β1)

β1γm

Simplifying:
1

p†
=

1

p
+

(1− γ)α0(β0 − β1)

β0β1γ

1

m

Re-write this as:
1

p†
= A+

B

m
=
Am+B

m
=⇒ p† =

m

Am+B

where A = 1
p
> 0 and B = (1−γ)α0(β0−β1)

β0β1γ
. Recall that β0 < β1, so B = (1−γ)α0(β0−β1)

β0β1γ
< 0.

Taking the partial derivative:

∂p†

∂m
=

B

(Am+B)2
< 0

The derivative of p† with respect to income is negative.
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A1.6 Equilibrium under Pure Exchange with Continuous Choice

of Distance

Here we maintain the modeling assumptions from Section 2 in the main text but allow

the price of distance to vary endogenously. Specifically, we now consider a pure exchange

economy with two individuals. We assume a fixed total supply of distance X to be divided up

between the two individuals in a continuous manner. While this clearly does not map directly

into a real-world housing scenario, it can help ground intuition about how prices might behave

in general equilibrium and what that might imply for the Cobb-Douglas scenario given above.

The numeraire good also has fixed total supply (Y ). We continue to assume that the

two individuals have identical preferences and access to information and differ only in their

initial endowments. We also continue to assume that pollution decay can be approximated

with a linear functional form. Finally, we maintain our assumption that preferences are

Cobb-Douglas.

Recall that this implies that individual i’s demand for distance is given by:

xi =
γmi

p
− (1− γ)(α0 − α1β)

β

where m is income (i.e., the value of the initial allocation), p is the price of good x, the

numeraire good y has a price of 1, γ is the Cobb-Douglas parameter, and the exogenous

parameters (α0, α1, β) relate distance x to air quality q.

As such, EJ Metric 1 again holds: distance is increasing in m, and since air quality

increases with distance, whoever has the greater value of the initial allocation obtains better

air quality in equilibrium. Thus EJ Metric 1 holds simply because air quality is a normal

good. Furthermore, since the wedge between true and perceved air quality is decreasing in

distance (because of the pollution dissipation process), EJ Metric 2 again holds.

To check whether EJ Metric 3 holds, we must evaluate utility for each individual in

the limited-information equilibrium versus in the full-information equilibrium. Suppose that

individual 1 begins with initial allocation (x0
1, y

0
1) and individual 2 begins with initial alloca-

tion (x0
2, y

0
2). Denote the equilibrium bundles under limited information (x†1, y

†
1) and (x†2, y

†
2).

Under limited information, the β parameter is believed by all agents to be at level β0 (in

reality, it is at level β1 > β0). In equilibrium, p† is such that total demand across the two

consumers is equal to total supply:

x†1 + x†2 = x0
1 + x0

2

y†1 + y†2 = y0
1 + y0

2

A-9



Substituting in the expressions for xi and mi, we have:

γ(x0
1p
† + y0

1)

p†
− (1− γ)(α0 − α1β0)

β0

+
γ(x0

2p
† + y0

2)

p†
− (1− γ)(α0 − α1β0)

β0

= x0
1 + x0

2

Re-arranging to solve for the equilibrium price p† under limited information:

p† =
γ(y0

1 + y0
2)

(1− γ)(x0
1 + x0

2) + 2
(

(1−γ)(α0−α1β0)
β0

)
Denote equilibrium price in the full information scenario as p∗, given by:

p∗ =
γ(y0

1 + y0
2)

(1− γ)(x0
1 + x0

2) + 2
(

(1−γ)(α0−α1β1)
β1

)
We wish to compare utility at the optimum – that is, when the household is fully informed

and therefore selects the bundle (q∗, y∗) – with the utility experienced when household

misperceives pollution exposure and selects the bundle (q†, y†):

∆U =
(
(q∗)γ(y∗)1−γ)− ((q†)γ(y†)1−γ)

This expression is identical to the one in Appendix A1.3, but note that now the two bundles

(q∗, y∗) and (q†, y†) are at different equilibrium prices p∗ and p†. We re-write this as:

∆U =

(
q∗

y∗

)γ
y∗ −

(
q†

y†

)γ
y†

We want to evaluate whether this is change in utility is larger for low-income or high-income

individuals. To do so, we take the derivative with respect to the initial endowment of

the numeraire good y, holding constant the total supply of that good, Y = y0
1 + y0

2. We

define “low-income” and “high-income” this way so as to separate out effects of the initial

endowment as opposed to the impact of information on total wealth (which would include

the price effects of the initial endowment). Taking the total derivative with respect to y0:

d∆U

dy0
= γ

(
q∗

y∗

)γ−1 ∂
(
q∗

y∗

)
∂y0

y∗ +

(
q∗

y∗

)γ
∂y∗

∂y0
− γ

(
q†

y†

)γ−1 ∂
(
q†

y†

)
∂y0

y† −
(
q†

y†

)γ
∂y†

∂y0

The first term in the d∆U
dy0 expression drops out, because q∗

y∗
does not depend on the individual’s

initial endowment y0 (see its expression in Appendix A1.1). Note, however, that the third

term remains; the equation for q∗

y∗
does not apply to q†

y†
because the bundle (q†, y†) is away
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from the optimum.49

To make further progress in signing d∆U
dy0 , the following partial derivatives are useful:50

∂y∗

∂y0
=
∂y†

∂y0
= 1− γ

∂q†

∂y0
=
β1γ

p†

We differentiate ( q
†

y†
) with respect to y0 and find:

∂
(
q†

y†

)
∂y0

= −q†(y†)−2 ∂y
†

∂y0
+ (y†)−1 ∂q

†

∂y0

= −q
†

y†
· 1

y†
· (1− γ) +

1

y†
· β1γ

p†

=
1

y†

(
−
(
q†

y†

)
(1− γ) +

β1γ

p†

)
This expression is identical to the one in Appendix A1.3, but where the equilibrium price is

equal to p†. Substituting these in and re-arranging, we have:

d∆U

dy0
=

((
q∗

y∗

)γ
−
(
q†

y†

)γ)
(1− γ)− γ

(
q†

y†

)γ−1 ∂
(
q†

y†

)
∂y0

i

y†

=

((
q∗

y∗

)γ
−
(
q†

y†

)γ)
(1− γ)− γ

(
q†

y†

)γ−1
1

y†

(
−
(
q†

y†

)
(1− γ) +

β1γ

p†

)
y†

= (1− γ)

(
q∗

y∗

)γ
− (1− γ)

(
q†

y†

)γ
+ γ(1− γ)

(
q†

y†

)γ
− γ2β1

p†

(
q†

y†

)γ−1

= (1− γ)

(
q∗

y∗

)γ
− (1− γ)2

(
q†

y†

)γ
− γ2β1

p†

(
q†

y†

)γ−1

From the FOCs, we have that q∗

y∗
= β1

γ
1−γ

1
p∗

. Rearranging, γ(1−γ)p
∗

p†
q∗

y∗
= β1γ

2 1
p†

(this is

different from the expression in Appendix A1.3, for which p was constant and the expression

49Recall that here q† refers to experienced rather than perceived q.
50The derivative ∂q†

∂y0 depends on β1 because q† refers to experienced air quality, q(x†(β0), β1) = α0 −

α1β1 + β1

(
γy0

p −
(1−γ)(α0−α1β0)

β0

)
.
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simplified). Substituting it in, we have:

d∆U

dy0
= (1− γ)

(
q∗

y∗

)γ
− (1− γ)2

(
q†

y†

)γ
− γ(1− γ)

(
p∗

p†

)(
q∗

y∗

)(
q†

y†

)γ−1

= (1− γ)

((
q∗

y∗

)γ
− (1− γ)

(
q†

y†

)γ
− γ

(
p∗

p†

)(
q∗

y∗

)(
q†

y†

)γ−1
)

= (1− γ)

((
q∗

y∗

)γ
−
(
q∗

y∗

)γ (
(1− γ)Rγ + γ

(
p∗

p†

)
Rγ−1

))

where R = (q†/y†)
(q∗/y∗)

. This is similar to the expression in Appendix A1.3, but with the new

term
(
p∗

p†

)
.

Our task is to evaluate whether the expression
(

(1− γ)Rγ + γ
(
p∗

p†

)
Rγ−1

)
is greater

than or less than one, because this will tell us the sign of d∆U
dy0 . The proof that follows is

similar to the one in Appendix A1.3, but with a few extra details that were not necessary in

the simplified case where the price is exogenous.

Consider the case where R = p∗

p†
. Then the expression

(
(1− γ)Rγ + γ

(
p∗

p†

)
Rγ−1

)
sim-

plifies to Rγ. Note that p∗

p†
> 1. Mathematically,

p∗

p†
=

 γ(y0
1 + y0

2)

(1− γ)(x0
1 + x0

2) + 2
(

(1−γ)(α0−α1β1)
β1

)
(1− γ)(x0

1 + x0
2) + 2

(
(1−γ)(α0−α1β0)

β0

)
γ(y0

1 + y0
2)


Simplifying,

p∗

p†
=

(1− γ)(x0
1 + x0

2) + 2 (1−γ)(α0−α1β0)
β0

(1− γ)(x0
1 + x0

2) + 2 (1−γ)(α0−α1β1)
β1

Since β0 < β1, (1−γ)(α0−α1β0)
β0

> (1−γ)(α0−α1β1)
β1

. Therefore p∗

p†
> 1. Therefore Rγ =

(
p∗

p†

)γ
>

1. Therefore d∆U
dy0 < 0, so EJ Metric 3 holds: low-income households experience greater

deadweight loss from limited information.

Next consider the case where R > p∗

p†
. Take the derivative with respect to R of the entire

expression
(

(1− γ)Rγ + γ
(
p∗

p†

)
Rγ−1

)
. This derivative is equal to: γ(1−γ)

(
Rγ−1 −

(
p∗

p†

)
Rγ−2

)
.

Since p∗

p†
> 1 and R > p∗

p†
, the derivative is positive. Thus

(
(1− γ)Rγ + γ

(
p∗

p†

)
Rγ−1

)
> 1.

Therefore, d∆U
dy0 < 0 and EJ Metric 3 holds.

Next consider the case where R < p∗

p†
. Take the derivative with respect to R of the entire

expression
(

(1− γ)Rγ + γ
(
p∗

p†

)
Rγ−1

)
. This derivative is equal to: γ(1−γ)

(
Rγ−1 −

(
p∗

p†

)
Rγ−2

)
.

Since p∗

p†
> 1 andR < p∗

p†
, the derivative is negative. Thus the expression

(
(1− γ)Rγ + γ

(
p∗

p†

)
Rγ−1

)
>
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1. Therefore, d∆U
dy0 < 0 and EJ Metric 3 holds.
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A1.7 Equilibrium under Pure Exchange with Houses at Fixed Dis-

tance

Rather than modeling the choice of two houses at fixed distances from a point source of

pollution, we can instead consider a setting with two houses at fixed locations: one house

HH with high air quality, and one house HL with low air quality. As before, we assume there

are no other differences between the two houses. There are also two consumers, individual 1

and individual 2. As before, we assume the two individuals are identical in their preferences

and their access to information. All non-housing goods are aggregated into a numeraire good

y with price 1 and with total supply Y . Trade can occur via a transfer of size p from one

individual to another.

Whether or not a mutually beneficial trade exists depends, in part, on the initial allo-

cation. We first assume that the same individual holds the higher quality house HH and

a larger quantity of good y. In that case, this “high-income” individual will only accept a

trade if:

U(HL, yH + p) > U(HH , yH)

Subtract U(HL, yH) from both sides:

U(HL, yH + p)− U(HL, yH) > U(HH , yH)− U(HL, yH) (A1)

The “low-income” individual will only accept a trade if:

U(HH , yL − p) > U(HL, yL)

Subtract U(HL, yL − p) from both sides:

U(HH , yL − p)− U(HL, yL − p) > U(HL, yL)− U(HL, yL − p) (A2)

Both Equation A1 and Equation A2 must hold in order for a trade to occur.

If UHy (the cross partial) is non-negative – such as with Cobb-Douglas or additively

separable utility – then the right-hand side of Equation A1 is larger than the left-hand side

of Equation A2:

U(HH , yH)− U(HL, yH) > U(HH , yL − p)− U(HL, yL − p)

However, the right-hand side of Equation A2 is larger than the left-hand side of Equation A1

because of declining marginal utility (conditional on HL, p is worth more if you only have
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yL than when you have yH):

U(HL, yL)− U(HL, yL − p) > U(HL, yH + p)− U(HL, yH)

Therefore, under these conditions, there is no value of p for which Equations A1 and A2

both hold. In general, we expect this to be true if air quality is a normal good.

Given no trade, suppose that it is revealed that a polluter has been hiding emissions.

The typical pollution dissipation process described above implies that air quality is worse

everywhere than had been believed, and especially worse for the house with lower air qual-

ity HL. Thus, trade will still not occur, by the same logic as before. Furthermore, both

households experience lower utility, and the individual owning home HL experiences an even

bigger difference in utility. This is both because the wedge between true and believed air

quality is higher for that individual (because of the way pollution dissipates), and because

the marginal utility of air quality is higher for that individual (assuming, as is typical, that

marginal utility is declining). There is no feasible re-optimization that improves total wel-

fare. But it is the case that the low-income individual experiences greater hidden pollution

(i.e., Metric 2 holds), and that the welfare impact of that hidden pollution is larger for the

low-income individual (related to Metric 3, albeit without deadweight loss per se, since in

equilibrium the allocations do not change).

Now suppose that in the initial allocation, the individual with the larger initial allocation

of good y has the lower quality house HL. We will assume that housing is a small part of

the total budget for each individual and accordingly refer to the individual with a higher

initial allocation of y as the “high-income” individual. In this case, trade is possible, and we

consider the transfer required to induce such a trade. Utility for each individual, with and

without trade, is as follows:

� Low-income individual, no trade: U(HH , yL)

� High-income individual, no trade: U(HL, yH)

� Low-income individual, with trade: U(HL, yL + p)

� High-income individual, with trade: U(HH , yH − p)

Trade will occur if there is a transfer p such that both parties can be made weakly better

off: U(HL, yL + p) ≥ U(HH , yL) and U(HH , yH − p) ≥ U(HL, yH). Suppose again that it

is revealed that a polluter has been hiding emissions. To simplify the logic, consider the

case of additively separable utility. In this case, the transfer p needed to induce trade is

larger: the low-income individual requires a greater payment to accept the drop in utility
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from moving from HH to HL. Furthermore, the high-income individual is willing to make

a larger payment to obtain the increase in utility from moving from HL to HH . By not

knowing about the true level of emissions, the low-income individual has missed out on the

full value of the transfer payment p that she would actually require to be weakly better off

with trade.

To evaluate welfare, we can consider both the change in utility coming from the housing

stock and the change in utility coming from the numeraire good. Both households expe-

rience lower utility from housing, and the individual owning home HL in equilibrium (in

this case, the low-income individual) experiences an even bigger difference in utility. This is

both because the wedge between true and believed air quality is higher for that individual

(due to pollution dissipation), and because the marginal utility of air quality is higher for

that individual (due to declining marginal utility). Moreover, the low-income individual is

additionally worse off from a too-small transfer payment, while the high-income individual

is conversely better off for the same reason. Overall then, in this scenario, Metrics 2 and

3 both hold: the low-income individual experiences greater hidden pollution, and a greater

utility loss as a result of the information failure.
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A1.8 Optimization in the General Model

In the demand model in Section 3, we assume that households gain utility from three goods:

salient amenities s(x) that increase with distance to a point source, hidden amenities q(x),

and other goods y. Distance to the point source is priced according to some positive hedonic

pricing function p(x). The household’s optimization problem when unaware of q(x) is:

max
x,y

U(s(x), y) s.t. p(x) + y = m

We assume that ∂q
∂x

> 0 and ∂s
∂x

> 0 (both amenities increase with distance) and ∂p
∂x

> 0

(house prices increase with distance). We also assume that all goods provide positive utility

at a declining rate: Uq > 0, Uqq < 0, etc.

The first-order conditions that define the chosen bundle (λ†, x†, y†) under limited infor-

mation are as follows:

m− p(x)− y = 0

Us
∂s

∂x
− λ∂p

∂x
= 0

Uy − λ = 0

To check that we are at an interior solution, we calculate the bordered Hessian:

D2L(λ, x, y) =

 0 − ∂p
∂x

−1

− ∂p
∂x

Uss
(
∂s
∂x

)2
+ Us

∂2s
∂x2 − λ ∂

2p
∂x2 Usy

∂s
∂x

−1 Usy
∂s
∂x

Uyy


The determinant of this is:

−
(
∂p

∂x

)2

Uyy + 2
∂p

∂x
Usy

∂s

∂x
−
(
∂s

∂x

)2

Uss − Us
∂2s

∂x2
+ λ

∂2p

∂x2

For this to be positive, it must be the case that the two positive terms −
(
∂p
∂x

)2
Uyy and

−
(
∂s
∂x

)2
Uss are not swamped by any negative terms in the rest of the expression (the re-

maining three terms have ambiguous signs, depending on the signs of Usy,
∂2s
∂x2 , and ∂2p

∂x2 ).

Assuming we are not at a corner solution, we can use comparative statics to find the sign
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of the derivative of distance with respect to income, at the optimum:


∂λ†

∂m
∂x†

∂m
∂y†

∂m

 =

 0 − ∂p
∂x

−1

− ∂p
∂x

Uss
(
∂s
∂x

)2
+ Us

∂2s
∂x2 − λ ∂

2p
∂x2 Usy

∂s
∂x

−1 Usy
∂s
∂x

Uyy


−1

·

−1

0

0


By Cramer’s Rule, we have:

∂x†

∂m
=

∣∣∣∣∣∣∣
0 −1 −1

− ∂p
∂x

0 Usy
∂s
∂x

−1 0 Uyy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0 − ∂p

∂x
−1

− ∂p
∂x

Uss
(
∂s
∂x

)2
+ Us

∂2s
∂x2 − λ ∂

2p
∂x2 Usy

∂s
∂x

−1 Usy
∂s
∂x

Uyy

∣∣∣∣∣∣∣
The numerator will be positive provided that Usy

∂s
∂x
> Uyy

∂p
∂x

. This is similar to the standard

condition under which a good is normal, with additional accounting for the shape of the

hedonic price function and the impact that distance x has on the good of interest s. Thus

we expect ∂x†

∂m
> 0, i.e., x will be a normal good.
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A2 Data Appendix

To match data sources to zip codes, we start with EPA’s air quality data, which provide

latitude and longitude coordinates for each monitor. We then use GIS to match these to

ZCTA locations (shapefiles) from the U.S. Census Bureau. We drop non-conterminous US

observations (Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands).

We conduct similar exercises for the noise and land use data. Land use data are provided

as dummy values at a 100 meter resolution. For computational purposes, we decrease the

resolution level of the land use data by a factor of 10 (taking the modal land use value)

before overlaying zip code shapefiles. Within a zip code, we take the mean of each land use

dummy value to approximate the portion of the zip code dedicated to each land use.

Demographic characteristics are provided by ZCTA directly from the Census Bureau.

ZCTA-to-CBSA matches are also provided by the Census Bureau.

A2.1 Descriptive Statistics and Robustness Checks

Figure A1: Air Pollution Guidelines Have Become Tighter

Note: This figure plots the changes in EPA standards and WHO guidelines for selected
air pollutants. The left axis is used for all pollutants except lead and the EPA’s ozone
standard, which use the right axis. Some guidelines use the midpoint of a range; see
Appendix Table A1 for the full range. For time frames (e.g., 8-hour standards versus
annual average standards), also see Appendix Table A1. This figure plots only those
standards and guidelines that have changed over time; for information on standards that
have not changed, see original sources: WHO (2000, 2005, 2010, 2017); EPA (2018).
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Table A1: Air Pollution Guidelines and Standards

Year Pollutant Standard Value

1987 Carbon monoxide 1 hour, mg/m3, WHO 30
2000 Carbon monoxide 1 hour, mg/m3, WHO 30
2010 Carbon monoxide 1 hour, mg/m3, WHO* 35

1987 Lead 1 year, µg/m3, WHO 0.5-1.0
2000 Lead 1 year, µg/m3, WHO* 0.5

1978 Lead 3 month, µg/m3, EPA 1.5
2009 Lead 3 month, µg/m3, EPA* 0.15

1987 Nitrogen dioxide 1 hour, µg/m3, WHO 400
2000 Nitrogen dioxide 1 hour, µg/m3, WHO* 200
2005 Nitrogen dioxide 1 hour, µg/m3, WHO 200
2010 Nitrogen dioxide 1 hour, µg/m3, WHO 200

1987 Ozone 8 hours, µg/m3, WHO 100-120
2000 Ozone 8 hours, µg/m3, WHO* 120
2005 Ozone 8 hours, µg/m3, WHO* 100

1997 Ozone 8 hours, ppm, EPA 0.08
2008 Ozone 8 hours, ppm, EPA* 0.075
2015 Ozone 8 hours, ppm, EPA* 0.07

2006 PM2.5 annual, µg/m3, EPA 15
2012 PM2.5 annual, µg/m3, EPA* 12

1987 Sulfur dioxide 24 hours, µg/m3, WHO 125
2000 Sulfur dioxide 24 hours, µg/m3, WHO 125
2005 Sulfur dioxide 24 hours, µg/m3, WHO* 20

Notes: This table shows changes in EPA standards and WHO guidelines for selected air pol-
lutants. We show all EPA standards that changed. We show WHO guidelines only for those
pollutants for which the EPA has a standard and for which the WHO guideline changed.
Sources are the WHO (2000, 2005, 2005, 2010, 2017); EPA (2018). Guidelines for less com-
monly monitored pollutants (e.g. cadmium, dichloromethane) are in the WHO reports.
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Figure A2: Toxic Chemicals Reporting Has Grown Stricter

Note: This figure plots the count of TRI-listed chemicals over time. The TRI
program is an EPA-run mandatory reporting program for chemicals with cancer
effects, other chronic health effects, significant acute health effects, and significant
environmental effects. The source is EPA (2017).
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Table A2: Summary Statistics

Mean Std. Dev. N

Pollution levels:
Lead in PM2.5, µg/m3 0.004 0.007 246
NO2, ppb 28.490 12.354 425
Ozone, ppm 0.046 0.007 1,116
PM 2.5, µg/m3 12.571 3.631 1,053
SO2, ppb 14.134 10.025 503
Benzene, ppbc 3.344 2.999 224
Toluene, ppbc 8.475 6.559 215
Cancer risk, per billion 0.024 0.015 31,126

Refinery in zip code, NEI definition 0.006 0.080 32,718
Refinery in zip code, EIA match 0.004 0.065 32,718

Noise, LAeq 14.237 14.068 30,999
Land use:

Developed, high intensity 0.018 0.099 30,905
Developed, medium intensity 0.047 0.157 30,905
Developed, low intensity 0.067 0.169 30,905
Developed, open space 0.041 0.116 30,905
Barren land 0.003 0.024 30,905
Forest, shrubland, or grassland 0.446 0.371 30,905
Farmland 0.316 0.352 30,905
Wetlands 0.043 0.114 30,905
Water 0.018 0.069 30,905

Demographics:
Median household income, ’000s 38.330 17.452 32,718
Percent unemployed 3.450 3.199 31,712
Percent of families below the poverty line 9.891 9.152 31,590
Percent White 86.746 19.564 31,789
Percent Black 7.806 16.300 31,789
Percent Latino/a 6.375 13.500 31,789

Notes: A unit of observation is a Zip Code Tabulation Area. Air pollution data are annual aver-
ages for the year 2001. Each air pollutant is measured using whatever averaging time is used for
the primary standard (e.g. 1-hour vs 8-hour vs 24-hour) that was in effect in 2018. Noise data
are in a 24-hr equivalent sound level (LEQ, denoted by LAeq) noise metric. Data are from the
Environmental Protection Agency, the Energy Information Administration, the US Geological
Survey, the Department of Transportation, and the Census. See text for details.
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Figure A3: Data Coverage

Note: These figures plot a dot in each Zip Code Tabulation Area with both land use
data and the additional data (either noise or air quality).
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Figure A4: Water and Wetlands Locations

Note: These figures plot a dot in each Zip Code Tabulation Area with a non-zero portion
of the ZCTA devoted to water or wetlands.
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Table A3: Robustness: Demographic Characteristics Were Correlated with Ambient Lead
Exposure

Panel A. Using 2008 Ambient Lead Data

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Log airborne lead concentration -6.25** 1.26 2.83 -10.93** 2.97 5.28*
(2.85) (0.80) (2.53) (4.67) (3.88) (2.89)

Observations 290 290 288 290 290 290
Within R2 0.05 0.03 0.01 0.06 0.01 0.04
Mean of dep. var. 36.72 4.98 13.17 74.82 15.65 11.82

Panel B. Using 2001 Ambient Lead Data, No CBSA Fixed Effects

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Log airborne lead concentration -1.67** 0.49** 2.89*** -11.39*** 10.88*** 0.88
(0.85) (0.23) (0.64) (1.46) (1.34) (1.15)

Observations 245 245 244 245 245 245
R2 0.02 0.02 0.08 0.20 0.21 0.00
Mean of dep. var. 36.20 4.71 13.04 77.52 13.93 11.39

Panel C. Using Modeled Ambient Lead Concentration Data from the 2002 NATA

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Log lead concentration -1.10*** 0.59*** 1.55*** -9.33*** 6.24*** 3.62***
(0.17) (0.03) (0.09) (0.19) (0.16) (0.11)

Observations 23,867 23,808 23,753 23,827 23,827 23,827
Within R2 0.00 0.01 0.01 0.10 0.06 0.04
Mean of dep. var. 42.28 3.41 8.98 85.69 8.53 7.15

Note: This table is identical to Panel A of Table 1 in the main text, but with the changes noted in the panel titles. *** Statis-
tically significant at the 1% level; ** 5% level; * 10% level.
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Table A4: Robustness: Demographic Characteristics Were Correlated with Proximity to
Refineries

Panel A. Using only refineries listed in the EIA’s Petroleum Supply Annual

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Refinery in zip code -3.75*** 0.48* 2.29*** -4.07*** 1.48 5.96***
(1.26) (0.25) (0.65) (1.42) (1.21) (0.83)

Observations 23,952 23,892 23,833 23,912 23,912 23,912
Within R2 0.00 0.00 0.00 0.00 0.00 0.00
Mean of dep. var. 42.24 3.42 9.00 85.68 8.53 7.15

Panel B. Using all NEI-listed facilities, No CBSA Fixed Effects

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Refinery in zip code -0.17 0.83*** 3.15*** -12.69*** 5.46*** 10.57***
(1.21) (0.22) (0.63) (1.35) (1.13) (0.93)

Observations 32,718 31,712 31,590 31,789 31,789 31,789
R2 0.00 0.00 0.00 0.00 0.00 0.00
Mean of dep. var. 38.33 3.45 9.89 86.75 7.81 6.37

Note: This table is identical to Panel B of Table 1 in the main text, but with the changes noted in the panel titles.
*** Statistically significant at the 1% level; ** 5% level; * 10% level..
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Table A5: Robustness: 2016 Air Quality Data

NO2 Ozone PM2.5 SO2 Benzene Toluene Cancer risk

Noise 0.23*** 0.00 0.09*** -0.27** -0.03 0.06 0.04***
(0.06) (0.00) (0.02) (0.13) (0.09) (0.14) (0.00)

Land use:
Developed, high intensity 0.77*** -0.16*** 0.19*** 0.51 0.49*** 0.79*** 0.93***

(0.17) (0.02) (0.06) (0.32) (0.17) (0.27) (0.01)
Developed, medium intensity 0.42*** -0.08*** 0.19*** 0.52* 0.57*** 0.96*** 0.55***

(0.15) (0.02) (0.05) (0.28) (0.17) (0.27) (0.01)
Developed, low intensity 0.54*** -0.03 0.06 0.06 0.30 0.66* 0.53***

(0.19) (0.02) (0.06) (0.35) (0.21) (0.33) (0.01)
Developed, open space 0.36 0.01 0.14* 0.02 0.30 -0.12 0.51***

(0.25) (0.02) (0.08) (0.52) (0.31) (0.49) (0.01)
Water 0.88** -0.02 0.12 -0.17 1.08** 3.01*** 0.27***

(0.36) (0.05) (0.13) (0.89) (0.43) (0.66) (0.02)
Wetlands -0.50 -0.05 0.14 -0.81 -0.67 0.86 0.16***

(0.32) (0.04) (0.14) (0.61) (0.44) (0.68) (0.02)
Farmland 0.25 -0.06*** 0.16*** 0.07 0.18 0.03 0.00

(0.17) (0.01) (0.05) (0.34) (0.23) (0.37) (0.01)
Barren land -0.08 0.02 0.09 1.55 0.50 -1.78 0.02

(0.69) (0.09) (0.43) (1.83) (1.68) (2.60) (0.06)

Observations 402 1,103 829 390 192 188 23,328
Within R2 0.43 0.12 0.22 0.06 0.28 0.43 0.48

Note: Regressions are identical to Table 2 in the main text, but with 2016 air quality data. *** Statistically significant at
the 1% level; ** 5% level; * 10% level.
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Table A6: Income is Correlated with Disamenities

(1) (2) (3)

PM 2.5 (log) -0.65*** -0.15
(0.09) (0.09)

Cancer risk, per million (log) -0.45*** -0.12**
(0.04) (0.05)

Log noise 0.06*
(0.03)

Land use:
Developed, high intensity -0.87***

(0.10)
Developed, medium intensity -0.61***

(0.09)
Developed, low intensity -0.19**

(0.09)
Developed, open space 0.07

(0.12)
Water -0.85***

(0.22)
Wetlands -0.18

(0.18)
Farmland -0.00

(0.09)
Barren land -1.42***

(0.49)

Observations 980 980 980
Within R2 0.09 0.17 0.39

Note: This table reports estimates and standard errors from three sepa-
rate regressions. The dependent variable in all columns is logged median
household income in 1999. The unit of observation is a 5-digit Zip Code
Tabulation Area. The noise, PM 2.5, and cancer risk variables are also
logged. Land use variables are the portion of the zip code dedicated to
that land use; the omitted category of land use is forest. All regressions
include CBSA fixed effects. All three columns restrict the sample to zip
codes with PM 2.5, cancer risk, noise, and land use data. *** Statisti-
cally significant at the 1% level; ** 5% level; * 10% level.
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Table A7: Robustness: Income is Correlated with Disamenities

(1) (2) (3) (4) (5) (6) (7) (8)

NO2 (log) -0.46*** -0.30***
(0.06) (0.08)

Ozone (log) 0.94*** 0.29***
(0.11) (0.11)

PM 2.5 (log) -0.65*** -0.19**
(0.09) (0.09)

SO2 (log) -0.13** -0.07
(0.05) (0.04)

Log noise 0.16*** 0.05*** 0.05 0.05
(0.05) (0.02) (0.03) (0.05)

Land use:
Developed, high intensity -0.89*** -0.93*** -0.94*** -0.85***

(0.14) (0.09) (0.09) (0.12)
Developed, medium intensity -0.57*** -0.55*** -0.65*** -0.63***

(0.12) (0.06) (0.08) (0.11)
Developed, low intensity -0.32** -0.28*** -0.22** -0.17

(0.15) (0.07) (0.09) (0.13)
Developed, open space 0.07 0.15 0.05 0.27

(0.23) (0.11) (0.12) (0.19)
Water -0.22 -0.16 -0.94*** -0.33

(0.27) (0.18) (0.22) (0.30)
Wetlands -0.27 -0.33** -0.18 0.05

(0.27) (0.13) (0.18) (0.24)
Farmland -0.08 -0.02 0.01 0.10

(0.13) (0.06) (0.09) (0.13)
Barren land -1.06** -0.16 -1.36*** -0.58

(0.49) (0.29) (0.49) (0.76)

Observations 408 408 1,049 1,049 980 980 465 465
Within R2 0.18 0.38 0.09 0.31 0.09 0.38 0.02 0.35

Note: This table is identical to Table A6, but for additional pollutants. The dependent variable is the log of median household
income in a Zip Code Tabulation Area in 1999. The pollutants cannot all be combined into one regression because there are
insufficient zip codes with monitors for all pollutants. *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A8: Robustness: Income is Correlated with Disamenities

(1) (2) (3) (4) (5) (6)

Benzene (log) -0.34*** -0.14**
(0.06) (0.06)

Toluene (log) -0.25*** -0.06
(0.06) (0.06)

Cancer risk, per million (log) -0.08*** 0.19***
(0.01) (0.01)

Log noise -0.04 -0.07 0.02***
(0.09) (0.10) (0.00)

Land use:
Developed, high intensity -0.92*** -0.95*** -1.06***

(0.18) (0.19) (0.02)
Developed, medium intensity -0.47*** -0.52*** -0.61***

(0.17) (0.18) (0.01)
Developed, low intensity -0.16 -0.13 -0.21***

(0.21) (0.23) (0.01)
Developed, open space -0.10 -0.14 0.14***

(0.29) (0.30) (0.02)
Water 0.19 0.16 -0.07***

(0.31) (0.33) (0.03)
Wetlands -0.29 -0.32 -0.09***

(0.28) (0.30) (0.02)
Farmland -0.01 -0.01 0.01

(0.18) (0.20) (0.01)
Barren land -0.58 -0.65 -0.18**

(1.56) (1.62) (0.08)

Observations 216 216 208 208 23,293 23,293
Within R2 0.19 0.49 0.13 0.47 0.01 0.22

Note: This table is identical to Table A6, but for additional pollutants. The dependent variable is the
log of median household income in a Zip Code Tabulation Area in 1999. The pollutants cannot all be
combined into one regression because there are insufficient zip codes with monitors for all pollutants. ***
Statistically significant at the 1% level; ** 5% level; * 10% level.
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