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ABSTRACT

The standard approach to modeling inequality, building on Tinbergen's seminal work, assumes 
factor-augmenting technologies and technological change biased in favor of skilled workers. 
Though this approach has been successful in conceptualizing and documenting the race between 
technology and education, it is restrictive in a number of crucial respects. First, it predicts that 
technological improvements should increase the real wages of all workers. Second, it requires 
sizable productivity growth to account for realistic changes in relative wages. Third, it is silent on 
changes in job and task composition. We extend this framework by modeling the allocation of 
tasks to factors and allowing richer forms of technological changes in particular, automation that 
displaces workers from tasks they used to perform, and the creation of new tasks that reinstate 
workers into the production process. We show that factor prices depend on the set of tasks that 
factors perform, and that automation: (i) powerfully impacts inequality; (ii) can reduce real 
wages; and (iii) can generate realistic changes in inequality with small changes in productivity. 
New tasks, on the other hand, can increase or reduce inequality depending on whether it is skilled 
or unskilled workers that have a comparative advantage in these new activities. Using industry-
level estimates of displacement driven by automation and reinstatement due to new tasks, we 
show that displacement is associated with significant increases in industry demand for skills both 
before 1987 and after 1987, while reinstatement reduced the demand for skills before 1987, but 
generated higher demand for skills after 1987. The combined effects of displacement and 
reinstatement after 1987 explain a significant part of the shift towards greater demand for skills in 
the US economy.
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Introduction

Tinbergen’s (1974) approach to inequality, based on the race between technological change

increasing the demand for skills and the rise in the supply of skills due to education, has

been a mainstay of labor economics. Its canonical formalization in the SBTC (skill-biased

technological change) model of, inter alia, Katz and Murphy (1992) and Goldin and Katz

(2008) has transformed the study of inequality and skills. In this model, technological

change takes a factor-augmenting form and increases the productivity of skilled workers

more than those of less skilled workers. In its most common version, changes in the

demand for skills can be expressed as

d ln(
wH
wL
) = −

1

σ
d ln(

H

L
) +

σ − 1

σ
d ln(

AH
AL
) .

where wH/wL is the skill premium, H/L is the relative supply of skills, σ is the elasticity of

substitution between skilled and unskilled workers and AL and AH are factor-augmenting

technologies for unskilled and skilled workers respectively. In Katz and Murphy’s seminal

paper, σ is estimated to be around 1.4, and, combined with a steady growth path for

AH/AL, this model accounts for the time-series of the college premium in the US fairly

successfully.

As argued in Acemoglu and Autor (2011), however, this framework is restrictive in

some crucial respects. It does not help us understand the occupational trends in the labor

market of most advanced economies, whereby, rather than general skill upgrading, we see

the disappearance of middle-skill occupations, such as production and clerical jobs. More

importantly, as pointed out in Acemoglu and Restrepo (2019), the economic mechanism

in the canonical SBTC model is the substitution of the tasks and goods produced by

skilled workers who are becoming more productive for those produced by less skilled

workers (and is thus mediated by the elasticity of substitution σ). This implies that the

canonical SBTC model cannot account for major changes in the US labor market without

technological regress. First, without technological regress, real wages of unskilled workers

should be rising, whereas, in the US over the last four decades, they have declined notably.

Second, even if AL were constant, this model could only generate the rise in the US college

premium between 1963 and 1987 with a growth of 11.3% per annum in AH . But this would

translate into at least a 1.9% increase in TFP, whereas the US TFP over this time period

grew only by 1.2% per annum (the same applies for the more recent 1992–2008 period;

see the Appendix).

Acemoglu and Autor (2011) and Acemoglu and Restrepo (2018, 2019) propose a task-

based model that redresses some of these problems and extends the types of technological

changes that impact the demand for skills (see also Autor, Levy and Murnane, 2003). At
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the center of the framework are (1) the allocation of tasks to different factors of produc-

tion (skilled labor, unskilled labor and capital); and (2) new technologies that affect the

productivity of factors in specific tasks and, as with automation, change the task content

of production. In this framework, the effect of technology on the demand for skills and

wages is not mediated via the elasticity of substitution; the impacts of technology on

productivity and wages are decoupled; and new technologies can easily reduce wages for

some workers. In this paper, we develop a flexible version of this conceptual framework,

study the impact of different types of technologies on productivity and wages, and provide

evidence on the link between automation and inequality.1

1 A Model of Tasks, Output and Inequality

We start with a single-industry model. The unique final good is produced from a mass M

of tasks x ∈ T combined via a CES aggregator:

Y = (
1

M
∫
T

(My(x))
λ−1
λ dx)

λ
λ−1

,

where λ ≥ 0 is the elasticity of substitution between tasks. Tasks are performed by unskilled

labor, `(x), skilled labor h(x), or capital k(x):

y(x) = ψL(x)`(x) + ψH(x)h(x) + ψK(x)k(x),

where ψj(x) ≡ Aj ⋅ γj(x) for j ∈ {L,H,K} denotes the productivity of factor j at task x.

We assume k(x) is produced using q(x) units of the final good, while skilled and

unskilled labor is supplied inelastically, with market-clearing conditions L = ∫T `(x)dx

and H = ∫T h(x)dx. We denote by TL,TH and TK the set of tasks performed by each

factor. A competitive equilibrium is represented by an allocation of tasks to factors and

production of capital goods that maximizes net output Y −∫x q(x)k(x)dx. The Appendix

shows that net output is given by

NY = (Γ
1
λ
L (ALL)

λ−1
λ + Γ

1
λ
H(AHH)

λ−1
λ )

λ−1
λ

,

where the share parameters, ΓL and ΓH , are endogenously determined and represent the

1Our companion paper, Acemoglu and Restrepo (2020b), develops a multi-sector model with multiple
skill types and estimates the contribution of factor-augmenting technological changes and changes in the
task content of production to the evolution of US wage structure. It finds that the bulk of the changes are
due to the task content of production.
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range of tasks performed by the two types of labor:

Γj =

1
M ∫Tj γj(x)

λ−1dx

1 − 1
M ∫TK

(
ψK(x)
q(x) )

λ−1
dx

for j ∈ {L,H}.

Analogously to equation (1) in the canonical SBTC model, the effects of various technolo-

gies on the skill premium can be expressed as

d ln(
wH
wL
) = −

1

σ
d ln(

H

L
) +

σ − 1

σ
d ln(

AH
AL
) +

1

λ
d ln(

ΓH
ΓL
)∣

AHH

ALL

,(1)

where the last term—the main difference from (1)—is evaluated at the initial ratio of

effective skilled to unskilled labor, AHHALL
, and captures the effect of changes in the allocation

of tasks to factors on the skill premium. Moreover, σ = λ/(1 −
∂ ln(ΓH/ΓL)

∂ ln(AHH/ALL)
) ≥ λ is

the derived elasticity of substitution between skilled and unskilled labor. This elasticity

reflects two types of substitution: substitution between tasks, represented by λ (with

more productive skilled labor, there is greater production of skill-intensive tasks); and

substitution at the extensive margin whereby some tasks are reallocated from unskilled

labor and capital to skilled labor. It is because of this second type of substitution that

σ ≥ λ.

In addition to factor-augmenting changes—the AL,AH and AK terms—that increase

the productivity of a factor in all tasks, this framework enables us to analyze the impact

of technologies that affect the productivity of a factor in some tasks. Particularly rele-

vant is automation—changes that enable capital to be used in tasks that were previously

performed by labor (or equivalently increase the productivity of capital in such tasks).

For example, robots can become more productive in welding, a task that was previously

performed by human welders. The effects of automation and other technological changes

impacting the allocation of tasks to factors work through the last term in (1).

Formally, consider an increase in γK(x) for a set of tasks currently not in TK . This type

of advance in automation technology will lead to an expansion in the set of tasks allocated

to capital, TK . Automation can displace skilled or unskilled labor. In the context of

industrial robotics technology, the evidence presented in Acemoglu and Restrepo (2020a)

suggests that most of the automated tasks used to be performed by less skilled workers,

and we start with this case. We also simplify the analysis by assuming that γK(x) = 0 for

all x ∉ TK and that if a task can be automated and produced by capital it will be produced

by capital in equilibrium (see the Appendix for primitive conditions that ensure this).

Proposition 1 Consider an improvement in automation technologies such that the pro-
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ductivity of capital in a set of tasks in A ⊂ TL increases to ψK(x) > 0. Then

d ln(
wH
wL
) =

1

σ
∫A γ

λ−1
L dx

∫TL
γλ−1
L dx

.

Moreover, wH increases, while wL may increase or decrease.

Several points are worth noting. First, the effect of automation technologies on the skill

premium is completely driven by the set of tasks (weighted by their effective productivity)

that unskilled labor loses relative to the entire set of tasks previously performed by these

workers (and is not mediated by the elasticity of substitution, and σ does not need to be

greater than one). This close connection between the set of tasks reallocated and factor

price changes is the main conceptual insight of this class of models. Second, advances in

automation technologies increase TFP, but these effects, coming from cost savings due to

automation, may be small (see the Appendix). Third, the magnitude of the change in

the skill premium is decoupled from productivity increases.2 Fourth, the unskilled wage

may decline, and this happens precisely when the increase in TFP is small (Acemoglu

and Restrepo, 2018), but the skilled wage always increases because tasks produced by

other factors, which are q-complements to those produced by skill workers, are becoming

cheaper.3

This framework also allows us to study the implications of new labor-intensive tasks.

The role of new tasks was emphasized in Acemoglu and Restrepo (2018, 2019) in both

maintaining a stable labor share in GDP in the face of steady automation and as a source

of productivity growth. For example, design tasks, most manufacturing engineering tasks,

most back-office activities and all programming occupations are new relative to the first

half of the 20th century and have been major drivers of the growth of labor demand.

Proposition 2 Suppose a small set of new tasks (expanding M) is introduced. If skilled

workers have comparative advantage in these tasks—that is, wH/ψH(x) < wL/ψL(x) at

2Specifically, in the canonical SBTC model, we have d lnTFP
d ln(wH/wH) ∣AL

= sH ⋅ σ/(σ − 1), where sH is the

share of skilled labor in value added. Thus, to get the demand for skilled labor to increase by 1%, one needs
a 0.83% increase in productivity. Instead, in our model, in response to automation, d lnTFP

d lnwH/wL
= σ ⋅ sL ⋅ π,

where π > 0 is the average proportional cost reduction in automated tasks. This expression shows that,
when π → 0, our model generates large swings in the skill premium from very small changes in TFP.
Because of this difference, our framework generates sizable changes in the skill premium for reasonable
changes in TFP. For example, if automation reduces the cost of producing a task by π = 30%, as in the
case of industrial robots, then the increase in the college premium between 1963 and 1987 can be explained
with as little as 0.54% per annum growth in TFP.

3Some of the automated tasks in A may be previously performed by skilled workers: AI may replace
tasks currently employing skilled workers, and many of the iconic innovations of the Industrial Revolution
automated spinning, weaving and knitting tasks previously performed by skilled artisans. If so, automation
may have the opposite effect on the skill premium.
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current wages—then the skill premium increases by

d ln(
wH
wL
) =

1

σ
∫N γ

λ−1
H dx

∫TH
γλ−1
H dx

.

If, on the other hand, unskilled workers have comparative advantage in these tasks—that

is, wL/ψL(x) < wH/ψH(x) at current wages—then the skill premium will decline by

d ln(
wH
wL
) = −

1

σ
∫N γ

λ−1
L dx

∫TL
γλ−1
L dx

.

The interpretation of this proposition is similar to that of Proposition 1. In particular,

the effect on the skill premium is again a function of the set of tasks reallocated across

factors. Analogously, these changes always increase TFP, but small changes in TFP can

go hand-in-hand with sizable changes in the skill premium. Also notable is that new tasks

may increase or reduce the skill premium, depending on whether they are allocated to

skilled or unskilled labor.4

Two other types of technological changes can be studied in this framework. The first

is “standardization,” which involves the simplification of previously complex and skilled

tasks so that they can now be more cheaply performed by unskilled workers. The second

is “skill upgrading,” which involves the transformation of unskilled tasks so that they can

be more productively performed by skilled workers. We derive the implications of these

two types of technological changes in the Appendix.

2 Empirical Evidence from US industries

We next suppose that the model outlined in the previous section describes production at

the industry level and then use industry-level data from the US to investigate whether

automation and new tasks are associated with changes in the relative demand for skills.

We follow Acemoglu and Restrepo (2019), who show how changes in the task content of

production across industries can be estimated. We use data from the BEA, BLS, and

NIPA on factor shares, factor prices, and capital stocks for 1947–1987 and 1987–2016 at

3-digit industry level, and exclude industries heavily dependent on commodity prices, in

particular, oil and gas, mining, and agriculture, which exhibit large temporary fluctuations

in factor shares. This leaves us with 44 industries. We combine these with data on wage

bill and hours of work by college and high school workers from the US Censuses and the

ACS.5

4This is in contrast to the extension considered in Acemoglu and Restrepo (2018), where we assumed
that new tasks were always performed by skilled workers.

5We follow Acemoglu and Autor (2011) and define college workers as those with a college degree and
half of those with some college. High school workers are therefore those with a high school degree or less
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We follow Acemoglu and Restrepo (2019) in constructing estimates of displacement

and reinstatement effects (corresponding to automation and the creation of new tasks)

at the industry level for our two subperiods. Displacement [resp., reinstatement] effects

correspond to declines [resp., increases] in the labor share of value added in an industry not

explained by changes in factor prices over a five-year period. In the Appendix, we provide

details on data sources and the construction of these variables, and present descriptive

statistics. Both measures are expressed in percent changes, so that a 0.1 displacement

corresponds to a 10% decline in the labor share.

Figure 1: Change in relative demand for skills 1947–1987 and 1987–2016 versus displace-
ment and reinstatement. Relative demand for skills measured as the log of the college
wage bill relative to the high school wage bill. See the Appendix for details and derivation
of the estimates for displacement and reinstatement.

Using these measures, we estimate the following model separately for the two periods:

∆Skill Demandi =βd ⋅ displacementi + βr ⋅ reinstatementi + εi,(2)

where ∆Skill Demandi—our measure of industry-level increase in the relative demand for

skills—is the change in the log of the college wage bill relative to the high school wage bill

in each industry during the relevant period. All regressions are weighted by the average

share of the wage bill accounted by the industry during the period. These regression

results are presented in the Appendix. Here we depict them visually.

and half of those with some college.
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Figure 1 shows a strong association between industry-level demand for skills and our

measures of displacement (due to automation) and reinstatement (due to new tasks). Dur-

ing both subperiods, displacement is associated with increases in the relative demand for

skills of the industry, though displacement changes are larger and the relationship becomes

steeper in 1987–2016, shown in Panel b. A 10% increase in displacement during 1987–2016

is associated with a 8% increase in the relative demand for college workers (s.e.=0.015).

This estimate implies that displacement alone explains about 30% of the variation in

the demand for skills across industries during this period.6 Panels c and d depict the

relationship between reinstatement and the demand for skills. Greater reinstatement is

associated with lower relative demand for skills during 1947–1987, presumably because

unskilled labor had a comparative advantage in many of the new tasks introduced during

this period. In contrast, reinstatement goes hand-in-hand with greater demand for skills

in 1987–2016, which we interpret as new tasks being allocated to skilled workers during the

last three decades. Our estimates suggest that during this latter period, a 10% increase in

reinstatement is associated with a 7% increase in the relative demand for college workers

(s.e.=0.035).7

3 Conclusion

Automation and new tasks can have sizable effects on the demand for skills and factor

prices (including declines in the wages for some or all types of labor), while leading only

to small changes in TFP. These effects are not mediated by the elasticity of substitution

between factors and instead operate via the changes in the allocation of factors to tasks

(the task content of production). This contrasts with factor-augmenting technological

changes, which are assumed to raise the productivity of factors in all tasks and therefore

always cause large TFP increases.

We have argued that the canonical SBTC model can be significantly enriched by

incorporating this task-level perspective and technologies that change the allocation of

tasks to factors. We also document that proxies for automation and the introduction of

new tasks are robustly associated with changes in the relative demand for skills at the

industry level. This perspective further suggests that a primary reason for the increase

in the skill premium (and the decline in the real wages of less skilled workers) has been

rapid automation that has replaced tasks previously performed by less skilled workers.

6The 0.55% increase in displacement per annum at the aggregate level during this period could account
for as much as a 0.44% increase in the demand for college skills (out of an estimated shift in the relative
demand of 2.4% per annum—see Acemoglu and Autor, 2011). Assuming that π = 30%, this substantial
increase in the relative demand for college skills is consistent with automation technologies increasing TFP
by as little as 0.11% per annum between 1987 and 2016.

7The Appendix provides several robustness checks, using different measures of the demand for skills
and different constructions of the displacement and reinstatement effects, and also present estimates from
several regression models. These results confirm the patterns summarized in the text.
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Online Appendix for “Unpacking Skill Bias: Automation and

New Tasks.”

Appendix A. Model, Additional Results, and Proofs

This section of the Appendix provides the derivation of equation (1) and the proofs of

generalized versions of Propositions 1 and 2. We also present additional results on the

effects of standardization and skill upgrading on wages, inequality and productivity.

Characterization of Equilibrium

We first provide a full characterization of the equilibrium for the model presented in the

main text.

To simplify the notation and without loss of any generality, we assume that when indif-

ferent between producing with labor or capital, firms produce with capital. Furthermore,

when indifferent between producing with skilled and unskilled labor, firms produce with

skilled labor. Cost minimization then implies that

TL ={x ∶
wL

ψL(x)
<

wH
ψH(x)

,
wL

ψL(x)
<

q(x)

ψK(x)
}

TH ={x ∶
wH

ψH(x)
≤

wL
ψL(x)

,
wH

ψH(x)
<

q(x)

ψK(x)
} ,

TK ={x ∶
q(x)

ψK(x)
≤

wL
ψL(x)

,
q(x)

ψK(x)
≤

wH
ψH(x)

} .

It also follows that the price of task x is given by

p(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

wL
ψL(x)

if x ∈ TL
wH

ψH(x)
if x ∈ TH

q(x)
ψK(x)

if x ∈ TK

Because the price of the final good is normalized to 1, we have that task prices satisfy

the price-index condition

1 =
1

M
∫
x
p(x)1−λdx,

which can be written in terms of factor prices and the cost of producing capital as follows:

(A.1) 1 =
1

M
∫
TL

(
wL

ψL(x)
)

1−λ

dx +
1

M
∫
TH

(
wH

ψH(x)
)

1−λ

dx +
1

M
∫
TK

(
q(x)

ψK(x)
)

1−λ

dx.

The demand for task x is given by y(x) = 1
M ⋅Y ⋅p(x)−λ. Thus, the demand for unskilled
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labor from tasks in TL satisfies

Ld = ∫
TL

y(x)

ψL(x)
dx = ∫

TL

1
M Y ⋅ p(x)−λ

ψL(x)
dx = Y ⋅w−λL ⋅

1

M
∫
TL

ψL(x)
λ−1dx,

and the demand for skilled labor from tasks in TH satisfies

Hd
= ∫
TH

y(x)

ψH(x)
dx = ∫

TH

1
M Y ⋅ p(x)−λ

ψH(x)
dx = Y ⋅w−λH ⋅

1

M
∫
TH

ψH(x)
λ−1dx.

Let K = ∫x q(x)k(x) denote the total amount of capital used in the economy. The

demand for capital from tasks in TK is

Kd
= ∫
TK

q(x) ⋅
y(x)

ψK(x)
dx = ∫

TK

1
M q(x) ⋅ Y ⋅ p(x)−λ

ψK(x)
dx = Y ⋅

1

M
∫
TK

(
ψK(x)

q(x)
)

λ−1

dx.

Market clearing implies that Ld = L, Hd = H and Kd = K. Using the expressions for

factor demands above, we can express equilibrium wages as

wL =(
Y

L
)

1
λ

⋅ (
1

M
∫
TL

ψL(x)
λ−1dx)

1
λ

wH =(
Y

H
)

1
λ

⋅ (
1

M
∫
TH

ψH(x)
λ−1dx)

1
λ

.

Substituting these expressions into (A.1) and solving for Y we obtain

Y =

⎛
⎜
⎜
⎝

( 1
M ∫TL

ψL(x)
λ−1dx)

1
λ

1 − 1
M ∫TK

(
q(x)
ψK(x)

)
1−λ

dx
⋅L

λ−1
λ +

( 1
M ∫TH

ψH(x)
λ−1dx)

1
λ

1 − 1
M ∫TK

(
q(x)
ψK(x)

)
1−λ

dx
⋅H

λ−1
λ

⎞
⎟
⎟
⎠

λ
λ−1

.

Combining this expression with the market cleaning condition for capital, we can write

the equilibrium net output as

Y −K =Y ⋅
⎛

⎝
1 −

1

M
∫
TK

(
ψK(x)

q(x)
)

λ−1

dx.
⎞

⎠

=

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎝

1
M ∫TL

ψL(x)
λ−1dx

1 − 1
M ∫TK

(
q(x)
ψK(x)

)
1−λ

dx

⎞
⎟
⎟
⎠

1
λ

⋅L
λ−1
λ +

⎛
⎜
⎜
⎝

1
M ∫TH

ψH(x)
λ−1dx

1 − 1
M ∫TK

(
q(x)
ψK(x)

)
1−λ

dx

⎞
⎟
⎟
⎠

1
λ

⋅H
λ−1
λ

⎞
⎟
⎟
⎟
⎠

λ
λ−1

,

which coincides with the expression for net output in the main text.

Finally, the capital share in output is given by K/Y . Using the market-clearing con-
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dition for capital we obtain

sK =
K

Y
=

1

M
∫
TK

(
ψK(x)

q(x)
)

λ−1

dx,

and the labor share is given by

(A.2) s = 1 −
1

M
∫
TK

(
ψK(x)

q(x)
)

λ−1

dx.

The labor share can be decomposed into the share of unskilled labor in production

sL =
1

M
∫
TL

(
wL

ψL(x)
)

1−λ

dx,

and the share of skilled labor in production

sH =
1

M
∫
TH

(
wH

ψH(x)
)

1−λ

dx,

where s = sL + sH .

Derivation of Equation (1)

A proportional increase in AHH and ALL does not alter the allocation of tasks to factors,

and hence has no impact on ΓH/ΓL. We can therefore write this ratio as a function of

AHH/ALL and other technologies, such as automation and new tasks:

ln(
ΓH
ΓL
) = Γ(

AHH

ALL
, θ) ,

where θ is a vector denoting the state of technology. We can then decompose changes in

ln (ΓH
ΓL
) as

d ln(
ΓH
ΓL
) =

∂ ln(ΓH/ΓL)

∂ ln(AHH/ALL)
⋅ d ln(

AHH

ALL
) + d ln (

ΓH
ΓL
)∣

AHH

ALL

,

where d ln (ΓH
ΓL
)∣AHH

ALL

denotes changes in ΓH and ΓL due to technology holding AHH
ALL

constant.

From the expression for net output given in the main text, that the skill premium can

be written as

ln(
wH
wL
) =

1

λ
ln(

ΓH
ΓL
) +

λ − 1

λ
ln(

AH
AL
) −

1

λ
ln(

H

L
) .
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Taking a total differential of this equation, we obtain

d ln(
wH
wL
) =

1

λ

⎛

⎝

∂ ln(ΓH/ΓL)

∂ ln(AHH/ALL)
⋅ d ln(

AHH

ALL
) + d ln (

ΓH
ΓL
)∣

AHH

ALL

⎞

⎠
+
λ − 1

λ
d ln(

AH
AL
)−

1

λ
d ln(

H

L
) .

Regrouping terms, we obtain

d ln(
wH
wL
) = − (

1

λ
−

1

λ

∂ ln(ΓH/ΓL)

∂ ln(AHH/ALL)
)d ln(

H

L
) + (1 −

1

λ
+

1

λ

∂ ln(ΓH/ΓL)

∂ ln(AHH/ALL)
)d ln(

AH
AL
)

+
1

λ
d ln (

ΓH
ΓL
)∣

AHH

ALL

,

which coincides with equation (1) in the main text with σ = λ/(1 −
∂ ln(ΓH/ΓL)

∂ ln(AHH/ALL)
).

Additional Results and Proofs

This section of the Appendix provides general statements and proofs for the propositions

in the main text. We first present a lemma that provides sufficient conditions for all tasks

that can be produced by capital to be produced by capital in equilibrium. We then state

and prove an additional lemma that will be used for computing the productivity gains

from different types of technology. Finally, we present five propositions characterizing the

effects of different types of technologies on wages, skill premium and productivity. The first

three of those are generalizations of Propositions 1 and 2 in the text. The next two study

the implications of skill upgrading (technologies that allow skilled workers to perform more

efficiently/cheaply some of the tasks that were previously allocated to unskilled labor) and

standardization (technologies that simplify tasks and increase the relative productivity of

unskilled labor in tasks reviously performed by skilled workers).

Lemma A.1 Suppose that γK(x) is bounded away from zero in the set of tasks for which

γK(x) > 0 and that γL(x) and γH(x) are bounded above. Then there exists a threshold q

such that, if q(x) < q for all tasks, all tasks for which γK(x) > 0 are produced by capital.

Proof. Consider an allocation in which

TL ={x ∶
wL

ψL(x)
<

wH
ψH(x)

, γk(x) = 0}

TH ={x ∶
wH

ψH(x)
≤

wL
ψL(x)

, γK(x) = 0} ,

TK ={x ∶ γK(x) > 0} .

We prove that there exists a q such that, if q(x) < q for all tasks, this is the equilibrium
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allocation. This is equivalent to showing that

wj = Γ
1
λ
LA

λ−1
λ
L (

NY

L
)

1
λ

>
Aj

AK
⋅ q(x) ⋅

γj(x)

γK(x)
for j ∈ {L,H} and x ∈ Tk.

A sufficient condition for this inequality to hold is that

(A.3) wj = Γ
1
λ
LA

λ−1
λ
L (

NY

L
)

1
λ

>
Aj

AK
⋅ q ⋅

γj

γ
K

for j ∈ {L,H},

where γj is an upper bound for γj(x) and γ
K

is a lower bound for γK(x) in TK .

As q declines, the left-hand side of this equation (weakly) increases. To see this, note

that we can rewrite the left-hand side as

wj =
⎛

⎝
1 −

1

M
∫
TK

(
q(x)

ψK(x)
)

1−λ
⎞

⎠

1
1−λ

⋅
⎛

⎝
(

1

M
∫
TL

ψL(x)
λ−1dx)

1
λ

⋅L
λ−1
λ + (

1

M
∫
TH

ψH(x)
λ−1dx)

1
λ

⋅H
λ−1
λ
⎞

⎠

1
λ−1

⋅
A
λ−1
λ
L

L
1
λ

,

which increases as q(x) falls.

Instead, as q declines towards zero, the right-hand side of equation (A.3) converges to

zero. Thus, there exists q > 0 such that the sufficient condition in equation (A.3) holds,

as claimed. ◻

We now provide an additional lemma that we use repeatedly in the proof of the main

propositions.

Lemma A.2 Consider any improvement in technology increasing TFP by d lnTFP > 0.

Then

d lnTFP = sL ⋅ d lnwL + sH ⋅ d lnwH .

Proof. Because of constant returns to scale and the fact that we have competitive

markets,

Y = wL ⋅L +wH ⋅H +K.

Following an improvement in technology, both sides of this equation change by

∂ lnY

∂ lnK
d lnK + d lnTFP = sL ⋅ d lnwL + sH ⋅ d lnwH + sKd lnK,

where d lnTFP = d ln Y ∣L,H,K denotes the expansion in output holding inputs constant.

The lemma follows from the fact that in a competitive equilibrium ∂ lnY
∂ lnK = sK . ◻

We now turn to general statements of Propositions 1 and 2 and their proofs.
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Proposition A.1 Suppose that q(x) < q, with q as defined in Lemma A.1. Consider an

improvement in automation technologies such that the productivity of capital in a small

set of tasks in A ⊂ TL increases to ψK(x) > 0. Then:

• the skill premium changes by

(A.4) d ln(
wH
wL
) =

1

σ
∫A γ

λ−1
L dx

∫TL
γλ−1
L dx

;

• TFP increases by

(A.5) d lnTFPA =
1

M
∫
A

(
wL

ψL(x)
)

1−λ
− (

q(x)
ψK(x)

)
1−λ

1 − λ
dx > 0;

• the labor share declines by

ds = −
1

M
∫
A

(
ψK(x)

q(x)
)

λ−1

dx

• wH increases while the effect on wL is ambiguous.

Proof. Define the function

Γ̃(wH/wL; θ) =
∫
wH/ψH(x)≤wL/ψL(x),γK(x)=0

ψH(x)
λ−1dx

∫
wH/ψH(x)>wL/ψL(x),γK(x)=0

ψL(x)
λ−1dx

.

Because q(x) < q, we have that in equilibrium Γ̃(wH/wL; θ) = Γ(AHH/ALL; θ). Thus, the

skill premium satisfies the implicit equation

(A.6)
wH
wL

= Γ̃(wH/wL; θ)
1
λ ⋅ (

AH
AL
)

λ−1
λ

(
H

L
)

−
1
λ

.

The definition of the derived elasticity of substitution implies that a change in lnH/L

reduces the skill premium by
∂ lnwH/wL
∂ lnH/L

= −
1

σ
.

Using equation (A.6), we can expand this expression as

∂ lnwH/wL
∂ lnH/L

=
1

λ

∂ ln Γ̃

∂ lnwH/wL

∂ lnwH/wL
∂ lnH/L

−
1

λ
,

and consequently,

∂ lnwH/wL
∂ lnH/L

= −

1
λ

1 − 1
λ

∂ ln Γ̃
∂ lnwH/wL

.
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Therefore, the function Γ̃ satisfies the equation

(A.7)
1

σ
=

1
λ

1 − 1
λ

∂ ln Γ̃
∂ lnwH/wL

.

To obtain the effect of automation on the skill premium, we can take a log differential

of (A.6):

d ln(
wH
wL
) =

1

λ

∂ ln Γ̃

∂ lnwH/wL
d ln ln(

wH
wL
) +

1

λ
∫A γ

λ−1
L dx

∫TL
γλ−1
L dx

.

Solving for d ln (wHwL ) yields

d ln(
wH
wL
) =

1
λ

1 − 1
λ

∂ ln Γ̃
∂ lnwH/wL

∫A γ
λ−1
L dx

∫TL
γλ−1
L dx

=
1

σ
∫A γ

λ−1
L dx

∫TL
γλ−1
L dx

,

where the last step follows by substituting σ from (A.7).

To derive the expression for the change in TFP, we start by differentiating equation

(A.1):

0 = sL ⋅ (1 − λ) ⋅ d lnwL + sH ⋅ (1 − λ) ⋅ d lnwH +
1

M
∫
A

⎡
⎢
⎢
⎢
⎢
⎣

(
q(x)

ψK(x)
)

1−λ

− (
wL

ψL(x)
)

1−λ⎤
⎥
⎥
⎥
⎥
⎦

dx.

Note that, because the cost of producing a task with different factors is equated at marginal

tasks, additional changes in the allocation of tasks to factors are second order and do not

contribute to this expression. Hence, we can rewrite this equation as

sL ⋅ d lnwL + sH ⋅ d lnwH =
1

M
∫
A

(
wL

ψL(x)
)

1−λ
− (

q(x)
ψK(x)

)
1−λ

1 − λ
dx.

Lemma A.2 then implies that the left-hand side of the above equation equals d lnTFPA,

as claimed. Furthermore, because q(x) < q, we have that wL/ψL(x) > q(x)/ψK(x) for

tasks in A, and therefore the right-hand side of the above equation is positive, as stated

in the proposition.

The expression for the decline in the labor share follows from differentiating equation

(A.2).

Finally, wH increases because the skill premium increases and Lemma A.2 implies that

sL ⋅d lnwL + sH ⋅d lnwH = d lnTFPA > 0. That the effect on wL is ambiguous follows from

the fact that

wL = Γ
1
λ
L ⋅A

λ−1
λ
L (

NY

L
)

1
λ

.

On the one hand, an improvement in automation reduces ΓL (in particular, equation (A.1)
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implies Aλ−1
L ΓL + A

λ−1
H ΓH = 1, and ΓH/ΓL = Γ̃ increases with automation, which implies

that ΓL must decrease and ΓH must increase). On the other hand, NY increases by

d lnTFPA/(1 − sK). Consequently, automation reduces unskilled wages when it gener-

ates small productivity gains, but increases unskilled wages when productivity gains from

automation are large. ◻

Proposition A.2 Suppose that q(x) < q, with q as defined in Lemma A.1. Consider the

introduction of a small set of tasks N that expand M such that: i. wH/ψH(x) < wL/ψL(x),

ii. wH/ψH(x) < 1, and iii. γK(x) = 0 for all tasks in N . These new tasks will be produced

by skilled labor, and:

• the skill premium changes by

d ln(
wH
wL
) =

1

σ
∫N γ

λ−1
H dx

∫TH
γλ−1
H dx

;

• TFP increases by

d lnTFPN =
1

M
∫
N

1 − ( wh
ψh(x)

)
1−λ

1 − λ
dx > 0;

• and the labor share increases by

ds =
∣A∣

M2 ∫
TK

(
ψK(x)

q(x)
)

λ−1

dx.

Proof. By assumption, the most cost effective way of producing the new tasks is with

skilled labor. Thus, new tasks expand the set TH and the mass of tasks M increases to

M + ∣N ∣.

To obtain the effect of new tasks on the skill premium, we can take a log differential

of (A.6):

d ln(
wH
wL
) =

1

λ

∂ ln Γ̃

∂ lnwH/wL
d ln(

wH
wL
) +

1

λ
∫N γ

λ−1
H dx

∫TL
γλ−1
H dx

,

which implies

d ln(
wH
wL
) =

1
λ

1 − 1
λ

∂ ln Γ̃
∂ lnwH/wL

∫N γ
λ−1
H dx

∫TL
γλ−1
H dx

=
1

σ
∫N γ

λ−1
H dx

∫TL
γλ−1
H dx

,

where the last step follows from (A.7).

To derive the expression for the change in TFP, we start by taking a differential of
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equation (A.1):

0 = sL ⋅ (1 − λ) ⋅ d lnwL + sH ⋅ (1 − λ) ⋅ d lnwH +
1

M
∫
N

(
wH

ψH(x)
)

1−λ

dx −
∣N ∣

M

We can rewrite this equation as

sL ⋅ d lnwL + sH ⋅ d lnwH =
1

M
∫
A

1 − ( wH
ψH(x)

)
1−λ

1 − λ
dx.

Lemma A.2 then implies that the left-hand side of the above equation equals d lnTFPN .

Moreover, the assumptions made in the proposition ensure that wH/ψH(x) < 1 for tasks

in N , and therefore the right-hand side of the above equation is positive, as stated in the

proposition.

The expression for the increase in the labor share follows from differentiating equation

(A.2). ◻

Proposition A.3 Suppose that q(x) < q, with q as defined in Lemma A.1. Consider the

introduction of a small set of tasks N that expand M such that: i. wL/ψL(x) < wH/ψH(x),

ii. wL/ψL(x) < 1, and iii. γK(x) = 0 for all tasks in N . These new tasks will be produced

by unskilled labor, and:

• the skill premium falls by

d ln(
wH
wL
) = −

1

σ
∫N γ

λ−1
L dx

∫TL
γλ−1
L dx

;

• TFP increases by

d lnTFPN =
1

M
∫
N

1 − ( wL
ψL(x)

)
1−λ

1 − λ
dx > 0;

• and the labor share increases by

ds =
∣A∣

M2 ∫
TK

(
ψK(x)

q(x)
)

λ−1

dx.

Proof. The proof is analogous to that of Proposition A.2 and is omitted. ◻

Propositions 1 and 2 in the main text follow as corollaries from Propositions A.1–A.3.

We now provide two additional propositions characterizing the effect of skill upgrading

and standardization.
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Proposition A.4 Suppose that q(x) < q, with q as defined in Lemma A.1. Suppose that

the productivity of skilled labor rises in a small set of tasks U ⊂ TL in such a way that

wH/ψH(x) < wL/ψL(x) for all x ∈ U at the new productivity levels. Then:

• the skill premium changes by

d ln(
wH
wL
) =

1

σ
∫U γ

λ−1
H dx

∫TH
γλ−1
H dx

+
1

σ
∫U γ

λ−1
L dx

∫TL
γλ−1
L dx

> 0;

• TFP increases by

d lnTFPU =
1

M
∫
A

(
wL

ψL(x)
)

1−λ
− (

wH
ψH(x)

)
1−λ

1 − λ
dx > 0;

• the labor share remains unchanged;

• wH increases while the effect on wL is ambiguous.

Proof. To obtain the effect of skill upgrading on the skill premium, we can take a log

differential of (A.6), which yields

d ln(
wH
wL
) =

1

λ

∂ ln Γ̃

∂ lnwH/wL
d ln(

wH
wL
) +

1

λ
∫U γ

λ−1
H dx

∫TH
γλ−1
H dx

+
1

λ
∫U γ

λ−1
L dx

∫TL
γλ−1
L dx

.

This expression can be solved for d ln (wHwL ):

d ln(
wH
wL
) =

1
λ

1 − 1
λ

∂ ln Γ̃
∂ lnwH/wL

⎛

⎝

∫U γ
λ−1
H dx

∫TH
γλ−1
H dx

+
∫U γ

λ−1
L dx

∫TL
γλ−1
L dx

⎞

⎠

=
1

σ
∫U γ

λ−1
H dx

∫TH
γλ−1
H dx

+
1

σ
∫U γ

λ−1
L dx

∫TL
γλ−1
L dx

> 0,

where the second equation follows from (A.7), and the overall expression is positive because

both terms are positive.

To derive the expression for the change in TFP, we start by taking a differential of

equation (A.1):

0 = sL ⋅ (1 − λ) ⋅ d lnwL + sH ⋅ (1 − λ) ⋅ d lnwH +
1

M
∫
U

⎡
⎢
⎢
⎢
⎢
⎣

(
wH

ψH(x)
)

1−λ

− (
wL

ψL(x)
)

1−λ⎤
⎥
⎥
⎥
⎥
⎦

dx.

We can rewrite this equation as

sL ⋅ d lnwL + sH ⋅ d lnwH =
1

M
∫
U

(
wL

ψL(x)
)

1−λ
− (

wH
ψH(x)

)
1−λ

1 − λ
dx.
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Lemma A.2 then implies that the left-hand side of this equation equals d lnTFPU . Also,

note that because wH/ψH(x) < wL/ψL(x) for all tasks in U , we have that the right-hand

side of the same equation is positive, as stated in the proposition.

The fact that the labor share remains unchanged follows from equation (A.2).

Finally, wH increases because the skill premium increases and Lemma A.2 implies that

sL ⋅ d lnwL + sH ⋅ d lnwH = d lnTFPU > 0. The effect on wL is ambiguous because

wL = Γ
1
λ
L ⋅A

λ−1
λ
L (

NY

L
)

1
λ

,

and skill upgrading reduces ΓL, while NY increases by d lnTFPU/(1−sK). Consequently,

skill upgrading reduces unskilled wages when the productivity gains from this technology

are small, but increases unskilled wages when the productivity gains are large. ◻

One interesting implication of this proposition is that skill upgrading, though it in-

creases inequality between skilled and unskilled labor, leaves the labor share unchanged.

This highlights that recent developments in the US labor market, involving both greater

inequality between skilled and unskilled labor and lower labor share (at least in manu-

facturing, see Acemoglu and Restrepo, 2019), cannot just be explained by skill upgrading

and likely entail some reallocation of tasks previously performed by workers to capital.

Finally, we turn to the implications of standardization.

Proposition A.5 Suppose that q(x) < q, with q as defined in Lemma A.1. Suppose that

the productivity of unskilled labor rises in a small set of tasks S ⊂ TH in such a way that

wL/ψL(x) < wH/ψH(x) for all x ∈ S at the new productivity levels. Then:

• the skill premium falls by

d ln(
wH
wL
) = −

1

σ
∫S γ

λ−1
H dx

∫TH
γλ−1
H dx

−
1

σ
∫S γ

λ−1
L dx

∫TL
γλ−1
L dx

;

• TFP increases by

d lnTFPS =
1

M
∫
A

(
wH

ψH(x)
)

1−λ
− (

wL
ψL(x)

)
1−λ

1 − λ
dx > 0;

• the labor share remains unchanged;

• wL increases while the effect on wH is ambiguous.

Proof. To obtain the effect of automation on the skill premium, we can take a log
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differential of (A.6):

d ln(
wH
wL
) =

1

λ

∂ ln Γ̃

∂ lnwH/wL
d ln(

wH
wL
) −

1

λ
∫S γ

λ−1
H dx

∫TH
γλ−1
H dx

−
1

λ
∫S γ

λ−1
L dx

∫TL
γλ−1
L dx

.

Solving for d ln (wHwL ) yields

d ln(
wH
wL
) = −

1
λ

1 − 1
λ

∂ ln Γ̃
∂ lnwH/wL

⎛

⎝

∫S γ
λ−1
H dx

∫TH
γλ−1
H dx

+
∫S γ

λ−1
L dx

∫TL
γλ−1
L dx

⎞

⎠
= −

1

σ
∫S γ

λ−1
H dx

∫TH
γλ−1
H dx

+
1

σ
∫S γ

λ−1
L dx

∫TL
γλ−1
L dx

,

where the last step follows from (A.7).

To derive the expression for the change in TFP, let us differentiate equation (A.1):

0 = sL ⋅ (1 − λ) ⋅ d lnwL + sH ⋅ (1 − λ) ⋅ d lnwH +
1

M
∫
S

⎡
⎢
⎢
⎢
⎢
⎣

(
wL

ψL(x)
)

1−λ

− (
wH

ψH(x)
)

1−λ⎤
⎥
⎥
⎥
⎥
⎦

dx.

We can rewrite this equation as

sL ⋅ d lnwL + sH ⋅ d lnwH =
1

M
∫
S

(
wH

ψH(x)
)

1−λ
− (

wL
ψL(x)

)
1−λ

1 − λ
dx.

Lemma A.2 then implies that the left-hand side of the above equation equals d lnTFPS .

Also, note that because wL/ψL(x) < wH/ψH(x) for all tasks in S, the right-hand side of

the above equation is positive, as stated in the proposition.

That the labor share remains unchanged follows from equation (A.2).

Finally, wL increases because the skill premium decreases and Lemma A.2 implies that

sL ⋅ d lnwL + sH ⋅ d lnwH = d lnTFPS . The fact that the effect on wH is ambiguous follows

from the same argument as before: we have

wH = Γ
1
λ
H ⋅A

λ−1
λ
H (

NY

L
)

1
λ

,

and following a standardization of tasks, ΓH decreases and NY increases by d lnTFPS/(1−

sK). ◻

Appendix B. Productivity Calculations

This section provides the details for productivity calculations provided in the introduc-

tion and in footnote 2. Throughout, we approximate changes over time using first-order

expansions.
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Productivity Implications of Skill-Biased Technological Change in the Canon-

ical Model

We provide two complementary exercises to illustrate the implications for productivity of

the canonical SBTC model. First, we use the estimates for the growth rate in AH/AL from

Katz and Murphy (1992) and Acemoglu and Autor (2011) and compute the productivity

gains that would result from such changes. We then estimate the growth in AH that one

would need to explain the observed shift in the relative demand for college workers, and

also compute how real wages would respond to such changes.

Regarding the fist exercise, the resulting productivity gains from improvements in

factor-augmenting technologies are approximately

∆ lnTFPSBTC = sH∆ lnAH + sL∆ lnAL.

If there is no technological regress, then ∆ lnAL ≥ 0, and thus

(A.8) ∆ lnTFPSBTC ≥ sH∆ lnAH/AL.

Katz and Murphy (1992) estimate σ = 1.41 and a yearly growth rate for lnAH/AL

of 11.34% during the 1963–1987 period. In addition, sH = 17% at the beginning of their

sample (skilled workers accounted for 25% of wages, and the labor share was roughly of

2/3, which gives sH = 25% ⋅ 2/3 = 17%). Using equation (A.8), their estimates imply a

yearly increase in TFP of at least 1.9% per annum. If we use the average value of sH

between 1963 and 1987, we obtain an increase in TFP of at least 2.76% per annum.

Acemoglu and Autor (2011) estimate σ = 1.63 and a yearly growth rate for lnAH/AL

of 7.22% during the 1963–1992 period and of 4.64% during the 1992–2008 period. In

addition, sH = 17% at the beginning of their sample, sH = 32% around 1992 and sH = 38%

around 2008. Using equation (A.8), their estimates imply an annual increase in TFP of

at least 1.2% per annum for 1963–1992 (1.76% if we use the midpoint of sH during this

period). Finally, their estimates imply a yearly increase in TFP of at least 1.48% per

annum for 1992–2008 (1.62% if we use the midpoint of sH during this period).

The canonical SBTC model also has strong implications for real wages. In particular,

if there is no technological regress, an increase in AH/AL changes wages by at least

∆ lnwL ≥ sH ⋅
1

σ
⋅∆ lnAH/AL.(A.9)

Using the midpoint estimates for sH , this formula implies a growth rate for unskilled

wages of 1.95% for 1963–1987 using Katz and Murphy estimates for σ and the growth

rate of AH/AL. Likewise, this formula implies a growth rate for unskilled wages of 1.08%
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for 1963–1992 and 0.98% for 1992–2008 using Acemoglu and Autor estimates for σ and

the growth rate of AH/AL. In contrast, as noted in the text, real wages for man with no

college reached a maximum in 1970 and declined since then at a rate of 0.2% per annum;

whereas real wages for woman with no college rose by 0.2% per annum (see Acemoglu and

Autor, 2011).

Table A.1 summarizes the estimates from the literature and our calculations for differ-

ent time periods. For comparison, Fernald’s (2012) estimates of TFP are provided in the

last column of the table. In particular, these estimates imply a 1.2% per annum increase

in TFP for 1963–1987; 1.1% per annum for 1963–1992; and 1% per annum for 1992–2008,

which are much smaller than the lower bounds implied by the canonical SBTC model.

Table A.1: Productivity implications of the canonical SBTC model

σ
Growth rate
of AH/AL

Share of
college labor

in GDP
(start of
period)

Share of
college labor
in GDP (end

of period)

TFP growth
using start of

period
estimate for

sH

TFP growth
using

midpoint
estimate for

sH

Implied
growth of
unskilled

wages, wL

Observed
TFP growth

(Fernald,
2012)

Katz and
Murphy,
63–87

1.41 11.3% 16.7% 32.0% 1.89% 2.76% 1.95% 1.18%

Acemoglu and
Autor, 63–92

1.63 7.2% 16.7% 32.0% 1.20% 1.76% 1.08% 1.11%

Acemoglu and
Autor, 92–08

1.63 4.6% 32.0% 37.8% 1.48% 1.62% 0.98% 0.98%

Turning to the second exercise, note that the total shift in the relative demand for

college workers is given by

∆ ln(
wH
wL
) +

1

σ
∆ ln(

H

L
) .

Using the numbers from Acemoglu and Autor (2011), it follows that the relative demand

for college workers increased by 3.3% per annum from 1963 to 1992 (1.3% from wages and

2% from the 90% increase in the relative supply of skills during this period), and then by

2.4% per annum from 1992 to 2008.

Equation (A.8) implies that, if shifts in the relative demand for college workers were

driven by factor augmenting technologies, then:

∆ lnTFPSBTC
∆ lnwH/wL

= sH ⋅
σ

σ − 1
.

The estimates from Katz and Murphy in Table A.1 then imply that, if the only source

of technological change were improvements in AH , a 1% increase in the relative demand

for college workers would be associated with an increase in TFP of 0.83% for 1963–1987

(using the midpoint estimate for sH). Likewise, The estimates from Acemoglu and Autor

in Table A.1 imply that a 1% increase in the relative demand for college workers would be

associated with an increase in TFP of 0.63% for 1963–1992 and 0.9% for 1992–2008 (using

the midpoint estimate for sH). Thus, the changes in AH required to explain the total
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shift in the relative demand for college workers would generate productivity increases of

at least 2.08% per annum for 1963–1992 (= 0.63×3.3) and 2.16% per annum for 1992–2008

(= 0.9 × 2.4).

Moreover, equation (A.9) implies that if all changes in inequality were driven by factor-

augmenting technologies, we would expect an increase in unskilled wages of at least 1.27%

per annum for 1963–1992 and of 1.32% per annum for 1992–2008.

Productivity Implications of Automation

To illustrate the differences between the task framework and the canonical SBTC model,

we now estimate the amount of automation that one would need to explain the observed

shift in the relative demand for college workers, and also compute how real wages respond

to such technological changes.

Suppose instead that technological changes are driven by automation. Then, the in-

creases in TFP would be given by equation (A.5). Using a first-order Taylor expansion,

these productivity gains can be approximated as

d lnTFPA ≈ ∫
A

(
wL

ψL(x)
)

1−λ

⋅ (ln(
wL

ψL(x)
) − ln(

q(x)

ψK(x)
))dx.

This expression shows that the productivity gains from automating a task are given by its

initial share in value added (the term (wL/ψL(x))
1−λ), and the percent reduction in the

unit cost of producing the task (the term ln (wL/ψL(x)) − ln (q(x)/ψK(x))). We can also

express the productivity gains from automation as

(A.10) d lnTFPA ≈ π ⋅ ∫
A

(
wL

ψL(x)
)

1−λ

dx,

where π > 0 is the (weighted) average reduction in the cost of producing tasks due to

automation and ∫A (
wL

ψL(x)
)

1−λ
dx gives the share of automated tasks in value added.

Using equations (A.4) and (A.10), it follows that if shifts in the relative demand for

college workers were driven by automation, then:

∆ lnTFPA
∆ lnwH/wL

= σ ⋅ sL ⋅ π.

This equation shows that automation technologies that bring modest reductions in costs

(in the extreme, π → 0) can generate sizable changes in inequality accompanied by modest

increases in TFP.

In particular, suppose π = 30%, which is in line with estimates for industrial automation

surveyed in Acemoglu and Restrepo (2020a). Using a value for σ of 1.63 and a midpoint

estimate for sL, we obtain that, if the only source of technological change were automation,
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a 1% increase in the relative demand for college workers would be associated with an

increase in TFP of 0.21% for 1963–1992 and 0.14% for 1992–2008. Using a value for σ of

1.41 (as in Katz and Murphy, 1992) and a midpoint estimate for sL, we obtain that a 1%

increase in the relative demand for college workers would be associated with an increase

in TFP of 0.18% for 1963–1987.

Thus, the changes in automation technology required to explain the total shift in the

relative demand for skilled labor would generate productivity increases of as little as 0.54%

per annum for 1963–1987 (using Katz and Murphy’s estimates of 0.18 × 3.3); 0.66% per

annum for 1963–1992 (= 0.21 × 3.3); and 0.34% per annum for 1992–2008 (= 0.14 × 2.4).

Moreover, automation technologies would change unskilled wages by

∆ lnwL = ∆ lnTFPA − sH∆ ln(
wH
wL
) = (σ ⋅ sL ⋅ π − sH) ⋅∆ ln(

wH
wL
)

Thus, if all changes in inequality were driven by automation, we would expect a reduction

of unskilled wages by 0.12% per annum for 1963–1992 and of 0.5% per annum for 1992–

2008 (which contrasts with the predicted increase in unskilled wages under just factor-

augmenting technologies as in the standard SBTC model).

Appendix C. Data Description and Additional Empirical Exercises

This part of the Appendix describes the data and provides additional empirical exercises.

Set of Industries Used in the Analysis

We use a set of 44 industries which we could track across different sources, including the

Census, the BEA industry accounts, and NIPA. The crosswalks used are part of the repli-

cation package for this paper (see http://economics.mit.edu/faculty/acemoglu/data). Our

sample excludes industries that are heavily dependent on commodity prices, in particular,

oil and gas, mining, agriculture, and petroleum derivatives.

Measures of Relative Demand for Skills

Using the US Census and the American Community Survey (ACS), we compiled data on

the college and high school wage bill and hours of work by industry for 1950, 1990, and

2016. We follow Acemoglu and Autor (2011) and define college workers as those with a

college degree and half of those with some college. We then define high school workers as

those with a high school degree or less and half of the workers with some college.

For the 44 industries in our sample, we study two separate periods. First, for the

period from 1987–2016 we use the 1990 Census and 2016 ACS to construct measures of

changes in the relative demand for skills across industries during this period. Second, for
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the period from 1947–1987, we use the 1950 and 1990 Censuses to construct measures of

changes in the relative demand for skills across industries during this period.

Measures of Displacement and Reinstatement

The construction of these measures follows Acemoglu and Restrepo (2019). First, suppose

that the model in the main text describes the production process of an industry. The labor

share in that industry is given by

s =
∫TL
(

wL
ψL(x)

)
1−λ

dx + ∫TH (
wH

ψH(x)
)

1−λ
dx

∫TL
(

wL
ψL(x)

)
1−λ

dx + ∫TH (
wH

ψH(x)
)

1−λ
dx + ∫TK (

q(x)
ψK(x)

)
1−λ

dx
.

We can hen decompose changes in the labor share in two components. On the one hand,

we have changes driven by factor prices and by technologies that do not change the allo-

cation of tasks between capital and labor (including improvements in factor-augmenting

technologies). On the other hand, we have the effect of technologies, like automation and

new tasks, which directly change the allocation of tasks between capital and labor. As

in Acemoglu and Restrepo (2019) we refer to these as changes in the task content of pro-

duction. Specifically, we decompose changes in the labor share of an industry as follows

(suppressing industry indices to simplify notation):

(A.11) d ln s = dtask content + (1 − λ) ⋅ (1 − s) ⋅ (d lnw − d ln r + g),

where d lnw = (sL/(sL + sH)) ⋅ d lnwL + (sH/(sL + sH)) ⋅ d lnwH denotes the change in

the average wage paid in the industry, d ln r = 1
sK ∫TK

(
q(x)
ψK(x)

)
1−λ

d ln q(x)dx denotes the

change in the average rental rate of capital used in the industry, and

g =
1

sL + sH

⎛

⎝
∫
TL

(
wL

ψL(x)
)

1−λ

d lnψL(x)dx + ∫
TH

(
wH

ψH(x)
)

1−λ

d lnψH(x)dx
⎞

⎠

−
1

sK
∫
TK

(
q(x)

ψK(x)
)

1−λ

d lnψK(x)dx

denotes the increase in the productivity of labor relative to capital in the tasks that are

currently allocated to labor. Note that g also incorporates the effect of changes in AL,AH

and AK through the ψ terms. Because q(x) < q, these improvements in factor-augmenting

technologies do not alter the allocation of tasks between capital and labor, and for the

same reason λ, coincides with the elasticity of substitution between capital and labor.

Building on equation (A.11), for each of the 44 industries in our sample, we compute
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its yearly changes in the task content of production as

∆task contentit = ∆ ln sit − (1 − σK) ⋅ (1 − sit) ⋅ (∆ lnwit −∆ ln rit − git) .

We measure sit using the industry payroll share, which we obtained from the BEA industry

accounts (in some of our robustness checks, we also used a measure from the BEA and

BLS KLEMS that adjusts the payroll share for self-employment). In addition, σK denotes

the elasticity of substitution between capital and labor, which we set to 0.8 following

Oberfield and Raval (2014). We obtained the industry-specific wage and capital rental

rate indices, wit and rit, from the BLS KLEMS accounts for 1987–2016. For the earlier

period, we constructed these indices using data on the quantity of labor and capital used in

each industry from NIPA. Finally, we follow Acemoglu and Restrepo (2019) and set git—

improvements in labor productivity relative to capital productivity—to 2% per annum for

1947–1987 and 1.46% per annum for 1987–2016.

Increases in the (labor) task content of an industry are indicative of the reinstatement

effect generated by new tasks, whereas reductions in the (labor) task content are indicative

of the displacement effect brought by automation. To separate these two effects, we assume

that over a five-year period, each industry either introduces new automation technologies

or new tasks but not both. This assumption implies that we can compute the extent of

displacement and reinstatement in a given year and industry as

displacementit =max{0,−
1

5

t+2

∑
τ=t−2

∆task contentiτ}

reinstatementit =max{0,
1

5

t+2

∑
τ=t−2

∆task contentiτ} .

(If there are simultaneously new automation technologies and new tasks within five-year

periods in our data, then our estimates will be lower bounds on the extent of displacement

and reinstatement).

Finally, in our regressions we use the cumulative extent of displacement and reinstate-

ment during our period of analysis. These measures are given in percent changes over the

entire period, so that a 0.1 displacement corresponds to a 10% decline in the labor share

that is unexplained by changes in factor prices.

Figure A.1 shows the total displacement and reinstatement in each industry for 1947–

1987 and 1987–2016. For 1947–1987, the average reinstatement across industries was

19.6% (0.49% per annum) and the average displacement was 17% (0.425% per annum).

For 1987–2016, the average reinstatement was 10% (0.345% per annum) and the average

displacement was 16% (0.55% per annum).
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Figure A.1: Measures of displacement and reinstatement, 1947–1987 and 1987–2016.

Regression Results

Tables A.2, A.3 and A.4 present various estimates of equation (2).

Table A.2 presents our main estimates. Panels A–C provide estimates for 1947–1987

and Panels D–F provide estimates for 1987–2016. In Panels A and D we use the wage bill

of college workers relative to high school workers as our measure for the demand for skills

in an industry. In Panels B and E we use the hours worked by college workers relative to

high school workers as our measure for the demand for skills in an industry. In Panels C

and F we use the number of college workers relative to high school workers as our measure

for the demand for skills in an industry. Columns 1–3 present estimates of (2) for all

workers, and columns 4–7 present estimates separately for men, women, and workers in

different age groups.

Tables A.3 and A.4 provide estimates using alternative measures of changes in the

task content of industries and the resulting measures of displacement and reinstatement.

For this exercise, we use relative wage bill (columns 1–3) and relative hours (columns

4–6) as our measures of skill demand. Table A.3 focuses on the 1947–1987 period. Panel

A provides results obtained by setting σK = 1 in our computation of the displacement

and reinstatement effects. Panel B reverts to σK = 0.8 but we now use a 10-year moving

average, rather than a 5-year moving average in our calculation of the displacement and

reinstatement effects. Finally, in Panel C we implement both changes simultaneously.

Table A.4 focuses on the 1987–2016 period. Panel A provides results obtained by

setting σK = 1 in our computation of the displacement and reinstatement effects. Panel

B reverts to σKL = 0.8 but we now use a 10-year moving average, rather than a five-year
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moving average, in our calculation of the displacement and reinstatement effects. In Panel

C we implement both changes simultaneously. In Panel D–F we repeat these exercises but

now we use data from the BEA KLEMS accounts for 1987–2016. These data provide the

labor share for each industry inclusive of self employment.

Overall, the results in Tables A.2, A.3 and A.4 confirm our summary in the text.

Automation is associated with significant increases in the relative demand for skills in both

periods, regardless of the specification or measure we use (and for different subgroups such

as men, women and younger workers). Reinstatement between 1947 and 1987 is associated

with lower relative demand for skills, whereas between 1987 and 2016, it is associated with

higher relative demand for skills. This pattern is robust as well. One additional finding

is worth noting: even between 1947 and 1987, reinstatement does not appear to increase

the demand for unskilled men by much, likely reflecting the fact that less skilled women

may have been the ones with comparative advantage in new tasks introduced during this

period.

Additional References

Fernald, J.G. (2012) “A Quarterly, Utilization-Adjusted Series on Total Factor Pro-

ductivity.” FRBSF Working Paper 2012–19 (data accessed on 12/25/2019).

Oberfield, E. and Raval, D. (2014) “Micro Data and Macro Technology,” MIMEO,

Princeton University.
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Table A.2: Changes in task content and relative demand for skills, 1947–1987 and 1987–
2016.

All employees Men Women Ages 25–34 Ages 35–64

(1) (2) (3) (4) (5) (6) (7)

Panel A. College wage bill relative to high school wage bill—1947–1987
Automation 0.504 0.470 0.108 0.384 0.764 0.293

(0.193) (0.184) (0.352) (0.423) (0.225) (0.273)
Reinstatement -0.585 -0.546 0.023 -0.639 -0.594 -0.544

(0.306) (0.278) (0.482) (0.501) (0.430) (0.261)
Observations 44 44 44 44 44 44 44
R-squared 0.06 0.06 0.12 0.00 0.05 0.08 0.07

Panel B. College hours relative to high school hours—1947–1987
Automation 0.686 0.644 0.315 0.458 0.738 0.608

(0.219) (0.165) (0.301) (0.401) (0.252) (0.194)
Reinstatement -0.723 -0.670 -0.361 -0.630 -0.707 -0.633

(0.343) (0.304) (0.431) (0.434) (0.463) (0.234)
Observations 44 44 44 44 44 44 44
R-squared 0.09 0.08 0.16 0.04 0.07 0.11 0.15

Panel C. College employees relative to high school employees—1947–1987
Automation 0.873 0.834 0.587 0.536 0.941 0.769

(0.204) (0.158) (0.323) (0.337) (0.224) (0.206)
Reinstatement -0.697 -0.629 -0.368 -0.575 -0.596 -0.644

(0.352) (0.292) (0.363) (0.415) (0.422) (0.256)
Observations 44 44 44 44 44 44 44
R-squared 0.15 0.07 0.21 0.09 0.07 0.15 0.17

Panel D. College wage bill relative to high school wage bill—1987–2016
Automation 0.800 0.764 1.053 1.061 0.353 0.947

(0.152) (0.159) (0.288) (0.247) (0.209) (0.186)
Reinstatement 0.707 0.483 0.299 0.299 0.850 0.390

(0.348) (0.340) (0.401) (0.506) (0.391) (0.384)
Observations 44 44 44 44 44 44 44
R-squared 0.31 0.06 0.34 0.34 0.40 0.16 0.37

Panel E. College hours relative to high school hours—1987–2016
Automation 0.558 0.520 0.754 0.778 0.185 0.697

(0.137) (0.141) (0.220) (0.227) (0.179) (0.169)
Reinstatement 0.658 0.506 0.196 0.404 0.768 0.431

(0.310) (0.317) (0.329) (0.431) (0.349) (0.371)
Observations 44 44 44 44 44 44 44
R-squared 0.19 0.07 0.22 0.29 0.33 0.12 0.25

Panel F. College employees relative to high school employees—1987–2016
Automation 0.546 0.514 0.696 0.793 0.257 0.657

(0.134) (0.135) (0.195) (0.214) (0.154) (0.166)
Reinstatement 0.582 0.431 0.100 0.345 0.540 0.450

(0.326) (0.325) (0.335) (0.409) (0.323) (0.376)
Observations 44 44 44 44 44 44 44
R-squared 0.19 0.05 0.22 0.29 0.34 0.11 0.24

Notes: the table provides regression estimates of changes in the relative demand for skills across industries
on measures of displacement and reinstatement. The Appendix provides a description of the construction of
these explanatory variables. Panels A–C provide estimates for 1947–1987. Panels D–F provide estimates
for 1987–2016. Each panel uses a different measure of changes in the relative demand for skills across
industries. Panels A and D use the change in the log of the college wage bill relative to the high school
wage bill in each industry as outcome. Panels B and E use the change in the log of college hours relative
to high school hours in each industry as outcome. Panels C and F use the change in the log of the number
of college employees relative to high school employees in each industry as outcome. In columns 1–3, the
measures of changes in relative demand for skills are computed for all employed in an industry; in column
4 only for men; in column 5 only for women; in column 6 for employees aged 25–34 years; and in column
7 for employees aged 35–64 years. Standard errors robust against heteroskedasticity are in parentheses.
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Table A.3: Robustness to measures of task content, 1947–1987

College wage bill relative to highschool wage bill College hours relative to highschool hours

(1) (2) (3) (4) (5) (6)

Panel A. BEA data with σK = 1 and 5-year moving averages
Automation 0.447 0.446 0.647 0.646

(0.207) (0.161) (0.249) (0.165)
Reinstatement -0.484 -0.483 -0.580 -0.578

(0.226) (0.205) (0.256) (0.228)
Observations 44 44 44 44 44 44
R-squared 0.06 0.07 0.13 0.10 0.08 0.18

Panel B. BEA data with σK = 0.8 and 10-year moving averages
Automation 0.536 0.410 0.774 0.624

(0.224) (0.219) (0.220) (0.183)
Reinstatement -0.660 -0.595 -0.806 -0.708

(0.265) (0.262) (0.303) (0.294)
Observations 44 44 44 44 44 44
R-squared 0.04 0.09 0.11 0.07 0.11 0.16

Panel C. BEA data with σK = 1 and 10-year moving averages
Automation 0.488 0.352 0.759 0.601

(0.235) (0.204) (0.245) (0.190)
Reinstatement -0.577 -0.529 -0.698 -0.618

(0.203) (0.200) (0.230) (0.224)
Observations 44 44 44 44 44 44
R-squared 0.04 0.10 0.12 0.08 0.12 0.17

Notes: the table provides regression estimates of changes from 1947 to 1987 in the relative demand for skills
across industries on measures of displacement and reinstatement. The Appendix provides a description
of the construction of these explanatory variables. Columns 1–3 use the change in the log of the college
wage bill relative to the high school wage bill in each industry as outcome. Columns 4–6 use the change
in the log of college hours relative to high school hours in each industry as outcome. Each panel presents
results for a different construction of the displacement and reinstatement measures, as explained in the
Appendix. Standard errors robust against heteroskedasticity are in parentheses.
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Table A.4: Robustness to measures of task content, 1987–2016

College wage bill relative to highschool wage bill College hours relative to highschool hours

(1) (2) (3) (4) (5) (6)

Panel A. BEA data with σK = 1 and 5-year moving averages
Automation 0.620 0.535 0.412 0.335

(0.138) (0.154) (0.120) (0.136)
Reinstatement 0.931 0.606 0.755 0.551

(0.333) (0.350) (0.301) (0.329)
Observations 44 44 44 44 44 44
R-squared 0.23 0.12 0.27 0.12 0.10 0.17

Panel B. BEA data with σK = 0.8 and 10-year moving averages
Automation 0.773 0.928 0.500 0.645

(0.153) (0.210) (0.131) (0.188)
Reinstatement 0.122 0.873 0.296 0.818

(0.516) (0.522) (0.424) (0.466)
Observations 44 44 44 44 44 44
R-squared 0.22 0.00 0.27 0.11 0.01 0.17

Panel C. BEA data with σK = 1 and 10-year moving averages
Automation 0.630 0.807 0.385 0.537

(0.149) (0.195) (0.130) (0.169)
Reinstatement 0.593 1.195 0.627 1.028

(0.557) (0.563) (0.486) (0.512)
Observations 44 44 44 44 44 44
R-squared 0.16 0.03 0.27 0.07 0.04 0.17

Panel D. KLEMS data with σK = 0.8 and 5-year moving averages
Automation 0.520 0.550 0.366 0.379

(0.143) (0.140) (0.117) (0.118)
Reinstatement 0.024 0.321 -0.072 0.132

(0.368) (0.333) (0.355) (0.344)
Observations 44 44 44 44 44 44
R-squared 0.24 0.00 0.26 0.15 0.00 0.15

Panel E. KLEMS data with σK = 1 and 5-year moving averages
Automation 0.521 0.404 0.331 0.251

(0.167) (0.199) (0.142) (0.182)
Reinstatement 0.957 0.666 0.632 0.451

(0.351) (0.382) (0.299) (0.362)
Observations 44 44 44 44 44 44
R-squared 0.14 0.11 0.19 0.07 0.06 0.10

Panel F. KLEMS data with σK = 1 and 10-year moving averages
Automation 0.444 0.558 0.243 0.322

(0.200) (0.199) (0.170) (0.165)
Reinstatement 1.196 1.535 0.865 1.060

(0.716) (0.719) (0.670) (0.673)
Observations 44 44 44 44 44 44
R-squared 0.08 0.07 0.18 0.03 0.04 0.09

Notes: the table provides regression estimates of changes from 1987 to 2016 in the relative demand for skills
across industries on measures of displacement and reinstatement. The Appendix provides a description
of the construction of these explanatory variables. Columns 1–3 use the change in the log of the college
wage bill relative to the high school wage bill in each industry as outcome. Columns 4–6 use the change
in the log of college hours relative to high school hours in each industry as outcome. Each panel presents
results for a different construction of the displacement and reinstatement measures, as explained in the
Appendix. Standard errors robust against heteroskedasticity are in parentheses.
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