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ABSTRACT
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1 Introduction

All institutions must confront the challenge of deterring opportunistic behavior, and suc-

cessful institutions survive because they are essentially self-enforcing agreements. By their

nature, self-enforcing agreements are built on a shared belief in future cooperation. In the

absence of such shared beliefs, people will behave opportunistically with accompanying ef-

ficiency losses. And a shared belief in future cooperation can be tenuous and difficult to

achieve: While we do see many instances of successful Pareto-improving institutions, there

are also many missed opportunities—situations where opportunistic behavior is not deterred

because the required belief in future cooperation is absent.

We investigate the role of fragile belief coordination on future cooperation for the en-

dogenous formation of self-enforcing risk-sharing institutions. It is common to model limited

commitment in insurance settings as an outside option whose value is autarky (i.e., exclusion

from the risk-sharing arrangement). But, in the absence of commitment, a major threat to

any risk-sharing arrangement is that a wealthy subset of the original participants may de-

fect from the arrangement and insure within the deviating coalition. Since insurance by the

deviating coalition typically is more attractive than autarky (i.e., the value of the outside

option is higher under insurance), such coalitional deviations will typically not be deterred

in a risk-sharing arrangement designed considering only the autarkic outside option.

Just as the successful formation of a risk-sharing institution depends upon a shared belief

in future cooperation, so does the successful defection by a wealthy coalition intending to

internally insure. The possible inability of groups to share beliefs in future cooperation is a

key friction limiting both initial and any deviating risk-sharing arrangements. We refer to

the ability to coordinate beliefs on future cooperation as social capital, and parameterize it

by the probability π ∈ [0, 1] that a coalition can achieve such coordination of beliefs.

We undertake our analysis within a classical insurance environment with only idiosyn-

cratic income risk and assume that the probability π determines the coordination likelihood

for both the original coalition and any deviating coalition. Hence, social capital impacts

both the ex-ante payoff directly and values of the outside option. In particular, while lower

social capital has the potential to decrease ex ante welfare (since ex ante belief coordination

on future cooperation is lower), it can also raise ex ante welfare if the defecting coalition’s

value of insurance decreases sufficiently. This natural feedback provides an explanation for

why more developed societies do not always “solve” the risk-sharing puzzle. Greater social

capital increases the extent to which Pareto improving arrangements are formed, but also

tightens the constraints on such arrangements, lowering welfare conditional on formation.
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We make both a methodological and substantive contribution. Methodologically, we

introduce (in Sections 2 and 3) an equilibrium model of coalition formation and stability.

Loosely, an equilibrium allocation is robust to the possibility that a subset of agents (typi-

cally, but not always, the wealthy agents) could defect, not contribute in the current period

and “reinitialize” risk-sharing using the same allocation. This notion captures the idea that

the allocation is a credible social norm or “self-enforcing” arrangement (i.e., belief in the

arrangement should not be self-defeating). A critical feature of the equilibrium notion is

that the value of the outside option is endogenous, depending upon the allocation. As a

consequence, the constraint set for the program determining the equilibrium allocation is

not convex, necessitating an indirect approach to characterizing efficient allocations.

Section 4 describes the indirect approach: For some parameters, there is a fixed point

characterization of equilibrium. In that case, an equilibrium allocation satisfies a stronger

notion of robustness: it is robust to the possibility that a subset of agents could defect,

not contribute in the current period and “reinitialize” risk-sharing using any allocation

(Proposition 2).

Substantively, we characterize the behavior of equilibrium risk sharing (and its value) as

a function of social capital. Section 5 describes some critical comparative statics of the fixed

point characterization. There is a critical value of social capital, π̄ ∈ (0, 1), such that for

medium to low values of the social capital (π ≤ π̄), the fixed point characterization applies,

and the second-best allocation can be determined using standard techniques (Section 6.1).

For high values of social capital (π > π̄), the value of the outside option is sufficiently high

that equilibrium cannot satisfy the stronger notion of robustness mentioned above and utility

must be “burnt” (Section 6.3). In all cases, however, ex ante welfare is nondecreasing in

social capital, though the amount of insurance provided may be strictly decreasing in social

capital π (due to its impact on outside options).

The remainder of the paper then proceeds as follows: Section 7 presents results for an

illustrative set of examples to convey the qualitative properties of the equilibrium. Finally,

Section 8 describes the related literature, and Section 9 concludes.

2 Model

2.1 The Environment: Endowments, Preferences and Technology

Time t is discrete and extends from period t = 0 to infinity. A unit measure of infinitely-

lived agents are endowed with stochastic streams of the non-storable consumption good

(henceforth referred to interchangeably as endowment or income y). Each agent in each
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period has low income y = ` > 0 and high income y = h > ` with equal probability; we

write Y := {`, h}. Agent’s income is independent across both agents and time. As usual, we

assume that in any positive measure (i.e., large) collection of agents (and thus the economy

as a whole), there is no aggregate income risk. We denote by y the aggregate level of output

per capita (y = 1
2
(`+ h)). We denote an individual’s income history by yt. The probability

of income history yt is denoted by Pr(yt).

All individuals have identical preferences over consumption in periods t ≥ 1 given by

(1− β)E

{ ∞∑
t=1

βt−1u(ct)

}
,

where the utility function is strictly increasing, strictly concave and satisfies the Inada con-

ditions, and where we multiply period utility by (1−β) to express period utility and lifetime

utility in the same units. The autarky payoff, the payoff from consuming one’s endowment,

is therefore given by

V A(y) := (1− β)u(y) + βEu(y) =: (1− β)u(y) + βV A,

so that the ex ante autarky utility is V A := Eu(y). The first-best payoff is

V FB := u(y),

obtained from consuming the average income with certainty.

2.2 Social Contracting, Coalition Formation and Coalition Devi-

ations

In the initial period t = 0, agents attempt to form a risk-sharing arrangement to obtain

insurance against idiosyncratic income risk. Any arrangement needs to be robust to the

possibility of deviations, either by single agents or by coalitions of agents. Agents decide on

deviations after learning their current income. The continual threat of deviations implies

that any coalitional arrangement must itself be self-enforcing (against the possibility that

some members may deviate after that coalition has been formed). Because future income risk

is more effectively shared in large coalitions, the possibility of forming a new large coalition

is most threatening to the original coalition.

We do not model attempted coalition formation and the associated decision to deviate

as a noncooperative game. Rather, we take a cooperative game-theoretic approach and

impose incentive constraints that ensure that such deviations are not profitable. This also
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means that we do not need to specify the outcome for the remaining agents after a successful

deviation.

We view the ability of a group to successfully form a coalition as a reflection of high

social efficiency or social capital, since a coalition only forms if its members are confident

that future cooperation is sustainable. This confidence requires significant social cohesion

since the incentive compatibility of future cooperation depends on intertemporal incentives

that themselves need to be incentive compatible. We model the degree of social cohesion

in an admittedly crude fashion by assuming that any attempt to form a coalition succeeds

with an exogenous probability π. When a new (or deviating) coalitions fails to form (which

happens with probability 1− π), agents receive their autarky payoff V A (and, in this sense,

permanently lose their social capital).1 We also assume that once the option to attempt

secession has been exercised, it cannot be undone.

Finally, we assume that the allocation within any newly formed coalition is determined

by a social planning problem in which all members initially have equal weights and therefore

are treated ex ante symmetrically.

2.3 Preliminary Analysis: The Coalitions

We now argue that without loss of generality, we can restrict attention to large homogeneous

coalitions. The sufficiency of large coalitions follows from two observations. First, any finite

coalition’s per capita outcome can be replicated by a large coalition with the same initial

output composition. Second, the large coalition improves on the original outcome since it

has no aggregate randomness.

We can restrict attention to homogeneous (by income y) deviating coalitions because

we assume the initial bargaining weight of each agent in a newly formed coalition is fixed

and equal, and each agent’s decision to join a newly formed coalition is irrevocable: If

a coalition successfully forms, then consumptions will be equalized for all agents in the

deviating coalition in the first period, and consumptions thereafter will depend upon the

agent’s realized history. This implies that an agent will prefer a coalition with high, rather

than low, first period per capita income. Agents with the high income realization will

therefore prefer to join a coalition composed only of other individuals with the high income

realization (and so leaving low income agents to form a coalition without them).

1The precise specification after a deviating coalition fails to form is not important (though it does have
implications for our quantitative analysis); it is important that the failure of an attempt to deviate is costly.
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3 Equilibrium

An allocation for a coalition is a consumption plan c specifying, for all periods t, an agent’s

consumption c(yt) in period t for every possible sequence yt ∈ Y t of individual income shocks.

We assume, again without loss of generality, that individual consumption depends only on

that agent’s income history, independent of identity.

The initial coalition formed in period 0 faces an ex ante notion of feasibility since the

member income levels are not known at the time of coalition formation.

Definition 1 An allocation for a coalition c is resource feasible if∑
yt
c(yt) Pr(yt) ≤ y, ∀t ≥ 1. (1)

The lifetime utility from an arbitrary consumption allocation c is given by

W 0(c) := (1− β)
∞∑
τ=1

∑
yτ

βτ−1 Pr(yτ )u(c(yτ )).

In period 0, all agents are identical, and they will agree to follow any resource-feasible

consumption plan c that maximizes W 0(c), as long as they can be confident that the con-

sumption plan will be followed in the future. The danger is that some coalition may find

it optimal to leave the original arrangement and internally insure. A necessary condition

for a consumption plan to be a credible social norm is that if all the agents do believe in

it today, that it should not be the case that after some history, some large coalition finds

it optimal to deviate, and after the deviating period follow the same consumption plan.2

Phrased differently, suppose the grand coalition believes that the allocation c̃ is credible, but

that a coalition after some history yt with current income yt receives strictly higher payoff

from seceding, and if successful in coordinating beliefs, implementing c̃ from the next period.

Such a history means that the grand coalition should not have believed in the credibility of

the original allocation c̃, since it will not be implemented in its entirety. Accordingly, we are

interested in allocations that are not subject to such a criticism.

For an arbitrary income history yt ∈ Y t, the continuation lifetime utility under the

allocation is

W (yt, c) := (1− β)u(c(yt)) + (1− β)
∞∑
τ=1

∑
yτ

βτ Pr(yτ )u(c(ytyτ )),

2Since the coalition is large, the (per capita) resource-feasibility constraint faced by the coalition is
identical to the (per capita) resource-feasibility constraint.
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where ytyτ denotes the t+ τ -history that is the concatenation of t-period history yt and the

τ -period history yτ .

Definition 2 An allocation c is internally-incentive feasible if for all t ≥ 1 and for all

yt ∈ Y t,

W (yt, c) ≥ π{(1− β)u(yt) + βW 0(c)}+ (1− π)V A(yt)

= (1− β)u(yt) + β[πW 0(c) + (1− π)V A] (2)

Let C denote the set of resource feasible and internally-incentive feasible allocations.

This is a weak notion of credibility when coalitional deviations are possible. For example,

while the autarky allocation is trivially internally-incentive feasible, that allocation has lower

utility than allocations with some insurance. The stability notion is “internal” in the sense

that when evaluating the credibility of an allocation, agents only consider the possibility

that if accepted, that allocation will also determine the outside for any deviating coali-

tion.3 Agents do not consider the possibility that the payoffs for a deviating coalition may

determined by a different (possibly more attractive) allocation. As in the cooperative-game-

theory and renegotiation-proof repeated-games literatures,4 the stronger requirement (which

we discuss just after Proposition 2 in Section 4) can lead to nonexistence of equilibrium.

The internal-incentive constraint (2) is the key friction that prevents full consumption

insurance within a coalition.

Definition 3 For given social capital π, an allocation c is an equilibrium allocation if it

solves the program

max
c∈C

W 0(c).

Denote by W = maxc∈C W 0(c) the resulting optimal lifetime utility and by F = πW +

(1− π)V A the associated ex ante (and so deviation continuation) utility.

An equilibrium allocation c is the best ex ante resource-feasible and internally-incentive-

feasible allocation. Note that an equilibrium allocation maximizes ex ante utility given π, as

well as the utility conditional on the agreement being reached. The value W is the maximum

per capita value the grand coalition can achieve, given the credible threat that any group

3In this sense, the notion is similar to von Neumann and Morgenstern’s (1944) internal stability notion;
see the discussion in Greenberg (1990, Section 2.3). It is also similar to Farrell and Maskin’s (1989) notion
of weakly renegotiation proof in repeated games.

4For the former, the stronger analogous notion is von Neumann and Morgenstern’s (1944) external stabil-
ity ; again see the discussion in Greenberg (1990, Section 2.3). For the latter, the analogous stronger notion
is called strongly renegotiation proof ; see Farrell and Maskin (1989).
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of agents will deviate (and implement the same agreement) if the initial arrangement is not

sufficiently generous to that group. Recall that if any group has an incentive to deviate,

then a homogeneous large group does.

Since the autarkic allocation is trivially resource and internally-incentive feasible, the set

of resource and internally-incentive-feasible allocations is nonempty, and so the supremum

of W 0(c) exists and is bounded above by u(y), the utility of first-best insurance. We will

show that in fact the supremum is always attained and so equilibrium exists.

Our first result (the proof is a straightforward calculation) is that first-best insurance

is consistent with equilibrium only when social capital is not too large (and agents are

sufficiently patient).

Proposition 1 The first-best allocation is an equilibrium allocation if and only if

π ≤ πFB := 1− (1− β)[u(h)− V FB]

β [V FB − V A]
< 1. (3)

Moreover, if

β < βFB :=
u(h)− V FB

u(h)− V A
,

then πFB < 0 and full insurance is not an equilibrium for any level of social capital π.

The requirement that social capital not be too large for full insurance should not be

surprising. Under the first-best allocation, the currently h-income agents sacrifice current

consumption to insure the currently `-income agents. If π is close to one, seceeding and then

immediately insuring within the deviating coalition incurs almost no loss in insurance and

so secession is attractive.

Of more interest is the possibility of partial insurance in equilibrium, as illustrated by the

next example. As in Krueger and Perri (2011), where the outside option is fixed, the lower

bound on β in Example 1 turns out to be necessary for insurance as well (see Proposition

3.1 in the next section).

Example 1 Suppose βu′(`) > u′(h), and consider the allocation

cε(y
t) =


h− ε, yt = h,

`+ 2ε, yt−1 = h, yt = `,

`, otherwise.
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This allocation satisfies resource feasibility with equality in every period except the initial

period, when ε resources are destroyed. We claim that for ε > 0 small, cε ∈ C. Observe first

that W 0(cε) > V A for ε small, and so this allocation does provide partial insurance.

A sufficient condition for cε ∈ C is

W (h, cε) ≥ (1− β)u(h) + βW 0(cε). (4)

This is the condition for internal-incentive feasibility when π = 1, which is stricter than

internal-incentive feasibility for any π < 1 when W 0(cε) > V A.

By deviating, an agent in the h-coalition gives up one period of 2ε insurance in the event

that she has ` income in the next period (which occurs with probability 1/2). So a sufficient

condition for (4) to hold for ε small is that the marginal benefit of deviating be smaller than

the marginal expected delayed cost,

(1− β)u′(h)ε ≤ (1− β)
β

2
u′(`)2ε,

which reduces to the assumed bound on β.
F

Two features of Example 1 deserve mention. The first is that the initial period resource

destruction plays a critical role in the internal-incentive feasibility of Example 1’s allocation.

In particular, if the ε resources sacrificed by the initial h-income agents is given to the

initial `-income agents (providing additional ex ante insurance), the resulting allocation is

not internally-incentive feasible for high π (it is internally-incentive feasible for π close to

0); the proof of Lemma A.3 uses this property of the modified allocation.

The second is the time-varying nature of the insurance provided. When first-best insur-

ance is not internally-incentive feasible, h-income agents optimally secede under the first-best

allocation. To reduce this secession incentive, a natural modification is to consider simple

allocations of the form

cζ(y
t) :=

h− ζ, yt = h,

`+ ζ, yt = `.
(5)

For ζ = 0, cζ is the autarkic allocation, while for ζ = h − y, cζ is the first-best allocation.

While such an allocation can be internally-incentive feasible, it is less efficient in its provision

of incentives. For example, for π = 0, cζ is only internally-incentive feasible for

β ≥ 2u′(h)

u′(`) + u′(h)
>
u′(h)

u′(`)
.
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The allocation in Example 1 achieves partial insurance without violating incentive feasibility

for lower β by rewarding h-income agents through insurance: in exchange for giving up

ε today, the allocation promises 2ε in insurance to any agent realizing ` tomorrow (while

providing no insurance to agents who had realized ` previously and continue to realize `).

4 Equilibrium as a Fixed Point

Solving for equilibrium allocations is complicated by the nature of the internal-incentive-

feasibility constraint. In particular, the set of internally-incentive-feasible allocations is not

convex. This lack of convexity arises from the endogeneity of the outside option, i.e., the

deviating coalition’s payoff. Accordingly, we follow an indirect path that first solves for

equilibrium via a fixed point argument for a subset of values of π, and then solves for

equilibrium for the remaining values of π.

Recall that internal-incentive feasibility requires

W (yt, c) ≥ (1− β)u(yt) + β[πW 0(c) + (1− π)V A] ∀yt ∈ ∪τY τ .

We begin by considering resource-feasible allocations that satisfy an exogenous version of

this constraint, which we call the incentive-feasibility constraint,

W (yt, c) ≥ (1− β)u(yt) + βF ∀yt ∈ ∪τY τ . (6)

For exogenous F ∈ R+, denote by C(F ) the set of resource-feasible allocations satisfying

(6). If F is too large, then C(F ) will be empty. But if c is internally-incentive feasible, then

c ∈ C(πW 0(c) + (1 − π)V A), and so the constraint set C(F ) 6= ∅ is non-empty for outside

options F ≤ πW 0(c) + (1− π)V A.

When C(F ) 6= ∅, define

V(F ) := max
c∈C(F )

W 0(c). (7)

Social capital π does not appear in the maximization in (7). Instead, the exogenous value of

the outside option F determines the optimal allocation and value.5 But there is a connection.

Since a deviating coalition only successfully coordinates after deviation with probability π,

if F is the implied continuation value of the outside option for a deviating coalition, then,

5We discuss the connection with the earlier literature on efficient insurance under limited commitment
with an exogenous outside option in a remark at the end of Section 6.1 and in the Related Literature Section
8.
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for all y ∈ Y , the value of the outside option is determined by the mapping

T (F ; π) := πV(F ) + (1− π)V A.

Proposition 2 Suppose F = πW 0(c†) + (1 − π)V A is a fixed point of T (·;π) for some

allocation c† ∈ C(F ). Then W 0(c†) = V(F ), c† is an equilibrium allocation, and F is the ex

ante value of the equilibrium.

Proof. It is immediate that W 0(c†) = V(F ) and that F is the ex ante value of the

equilibrium if c† is an equilibrium allocation. It remains to argue that c† is an equilibrium

allocation.

Since c† ∈ C(F ), c† is internally-incentive compatible. If c† is not an equilibrium, there

exists a resource and internally-incentive-compatible allocation c′ with

W 0(c′) > W 0(c†).

Then, for all t ≥ 1 and yt ∈ Y t,

W (yt, c′) ≥ (1− β)u(yt) + β[πW 0(c′) + (1− π)V A]

> (1− β)u(yt) + β[πW 0(c†) + (1− π)V A]

= (1− β)u(yt) + βF,

and so c′ ∈ C(F ), implying W 0(c†) could not be a fixed point of T (·; π). �

Proposition 2 indicates that equilibria exists for those π consistent with outside options

that are fixed points of T ( · ; π). But this is uninformative without a better understanding

of the fixed points of T ( · ; π) (which we provide in the next section).

The equilibrium nature of the fixed points of T ( · ; π) deserves comment. The fixed points

(when they exist) satisfy a stronger notion of credibility than that captured by internal-

incentive feasibility. In particular, if F = πW 0(c†) + (1 − π)V A is a fixed point of T ( · ; π)

for some allocation c† ∈ C(F ), then it is robust to the threat of secession from any coalition

when any seceding coalition is free to reoptimize subject only to the constraint that there may

be further deviations by subcoalitions. As mentioned earlier, this is analogous to stronger

notions of stability and renegotiation-proofness in game theory that are known to have

nonexistence problems. Similarly, in our setting, there is no guaranteee that T ( · ; π) will

have a fixed point.

If a fixed point does exist, it is unique because V(F ) and thus T (F ; π) is weakly decreasing

in F . The fixed point may fail to exist because the constraint set is not a “nice” function of

10



the parameter F , or the constraint set is empty for F in a relevant region. While Proposition

4 below (proved in Appendix A) assures us that the former is not an issue (the constraint

set is a “nice” function of F ), the constraint set is empty for large F (which will correspond

to large π) and so a fixed point does not exist in that case. Define

F̄ := sup{F | C(F ) 6= ∅}.

We can now state the main result of the paper (which summarizes the analysis to follow):

Proposition 3 Equilibrium exists for all π ∈ [0, 1].

1. Suppose β ≤ u′(h)/u′(`). There is no risk sharing in equilibrium (i.e., autarky is the

unique equilibrium).

2. Suppose β > u′(h)/u′(`). Risk sharing does occur in equilibrium. There exists a value

of π, π̄ ∈ (0, 1), such that

(a) for π ∈ [0, π̄], equilibrium is unique and its ex ante value is strictly increasing in

π, equaling F̄ > V A at π̄, and

(b) for π ∈ (π̄, 1], equilibrium allocations are not unique, but all have the same ex

value of F̄ .

Proof.

1. This is an implication of the machinery we develop to characterize F̄ , and is proved in

Corollary 1 in Section 6.2.

2. (a) This is an immediate implication of Propositions 2 and 4 (which is in the next

section).

(b) This is Lemmas 1 and 2 in Section 6.3.

�

5 Understanding Equilibrium Values

We begin by studying the program (7) and the fixed points of T ( · ; π). The proof of the

following result is in Appendix A.
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V = F

F

V

F FB

V FB

V(F )

F̄

V A

πV FB + (1− π)V AπV FB + (1− π)V A

T (F, π)

T (F, πFB)

T (F, 0)

T (F ; π̄)

Figure 1: Determination of the fixed point of T (F ; π) = πV(F ) + (1 − π)V A for different
values of π. Drawn assuming β > βFB, defined in Proposition 1 (Lemma A.2 verifies that
in this case F > F FB); if β < βFB, then F FB < V A.

Proposition 4 Suppose β > u′(h)/u′(`).

1. V A < F̄ .

2. C(F̄ ) 6= ∅.

3. For F ≤ F̄ , the value of the problem (7), V(F ), is continuous in F .

4. For all F ∈ [V A, F̄ ], F < V(F).

5. Defining

π̄ =
F̄ − V A

V(F̄ )− V A
∈ (0, 1),

for all π ∈ (0, π̄], T ( · , π) has a fixed point. The value of this fixed point is increasing

in π and

F̄ = T (F̄ ; π̄).

6. For π > π̄, T ( · , π) does not have a fixed point.

Figure 1 presents the previous proposition graphically by plotting V(F ) and T (F ; π)

against the value of the outside option F for various degrees of social capital π. At one

extreme, π = 0 and we have T (F ; 0) = V A and thus trivially F = V A is the unique fixed

point for the outside option. In this case, for β ≥ βFB, Proposition 1 implies V(V A) = V FB

and the allocation for the initial coalition would feature full insurance (but since π = 0, it

12



never successfully forms). From Proposition 1, full insurance remains the outcome for the

successful coalition as long π ≤ πFB < 1. The associated largest deviation lifetime utility

F FB for which the full-insurance allocation can be sustained inside the initial coalition is

given by

F FB := πFBV FB + (1− πFB)V A.

For π ∈ (πFB, π̄], the value of the outside option F is determined as the fixed point of

T ( · ; π). The fixed point is larger than F FB, and so the constraint (6) strictly binds at least

for households with currently high income, implying the initial coalition cannot sustain first-

best insurance (i.e., V(F ) < V FB) and that the utility V(F ) it delivers is strictly decreasing

in F .

Proposition 4.4 implies that π̄ < 1. To see why F < V(F ), suppose that for some

F > V A, we have F = V(F ). But then that F is a fixed point of T ( · ; 1). In other words,

by seceding, a rich coalition can guarantee a payoff of (1 − β)u(h) + βV(F ), implying that

the optimal consumption allocation must promise these agents a current consumption of at

least h. But then there is no insurance, contradicting F > V A.

For π > π̄,

πV(F̄ ) + (1− π)V A > F̄ .

Since C(F ) is empty for F > F̄ , this implies that T (·; π) does not have a fixed point. However,

this does not imply that there is no equilibrium (recall that the fixed point characterizes a

stronger notion of incentive feasibility, and is only a sufficient condition for equilibrium in

our setting).

Suppose c is an equilibrium allocation with value W 0(c). Then it must satisfy

c ∈ C(πW 0(c) + (1− π)V A),

and so

πW 0(c) + (1− π)V A ≤ F̄ . (8)

Since π > π̄, we have W 0(c) < V(F̄ ), leading us to define:

Definition 4 An equilibrium allocation c burns utility if

W 0(c) < V(F̄ ).

An equilibrium allocation maximizes ex ante utility (the left side of (8)). We show in

Section 6.3 that equilibrium allocations in fact satisfy (8) with equality.

13
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Figure 2: The insurance possibilities as a function of the discount factor and social capital.
Equation (3) shows that πFB(βFB) = 0; see Lemma A.3 for the proof that π̄(β) = 0 when
β = u′(h)/u′(`).

Our notation suppresses the dependence of π̄ and πFB on β, but it is worthwhile to

clarify the relationship between β and π, which is illustrated in Figure 2. For π ≤ πFB(β), a

successfully formed coalition provides its members with full insurance and ex-ante utility is

strictly increasing in social capital. For all π ∈ (πFB(β), π̄(β)], T ( · , π) has a fixed point and

its value (the value of ex ante utility) is strictly increasing in π. The associated allocation

features partial insurance that gets worse with π, as does lifetime utility conditional on

successfully forming the coalition. Finally, for π > π̄(β), T ( · ; π) does not have a fixed point,

the internal-feasibility constraint is binding in equilibrium, expected lifetime utility is fixed

at F̄ independent of π (since (8) holds with equality) and attained with an allocation that

features utility burning and partial risk sharing.

6 Characterizing Equilibrium Allocations

From Proposition 1, if π ≤ πFB, the first-best allocation is consistent with equilibrium.
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6.1 The case of no utility burning, π ∈ (πFB, π̄]

We now characterize the equilibrium allocations for intermediate values of π, that is, values

of π that are consistent with a fixed point of T ( · ; π) exceeding F FB. We have already

seen that this is equivalent to characterizing the allocations that maximize W 0(c) subject to

c ∈ C(F ) for F ∈ (F FB, F̄ ]. This is a strictly concave problem, and so has a unique solution,

that we denote by c.

We first state some standard properties of the optimal allocation. The proofs (most of

which are standard, though tedious, variational arguments) are left to Appendix B.

Proposition 5 Suppose βu′(`) > u′(h) and F ∈ (F FB, F̄ ]. The optimal allocation c has the

following properties:

1. There exists δt+1 < 1 such that if incentive feasibility does not bind at yt+1, then

u′(c(yt))

u′(c(yt+1))
= δt+1 (9)

and so

c(yt) > c(yt+1).

2. Incentive feasibility binds at all yt−1h, and so for all yt−1,

W (yt−1h, c) = (1− β)u(h) + βF =: W F (h), (10)

and for all yt−1 and ŷt−1,

c(yt−1h) = c(ŷt−1h) =: ct(h).

3. If incentive feasibility binds at some yt−1`, then it binds at yt−1``.

4. If incentive feasibility binds at yt`, then c(yt`) = c`(F ), where c`(F ) > ` solves

u(c`(F )) = u(`) + β(F − V A) > u(`),

and for all yt,

c(yt`) ≥ c`(F ). (11)

5. Incentive feasibility does not bind in the initial period at `, nor after any history of the

form yth`.
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6. There is an L such that for 0 ≤ k < L and all histories yt−1−k, ŷt−1−k

c(yt−1−kh`k) = c(ŷt−1−kh`k) := ct(h`
k),

and for k ≥ L, c(yt−1−kh`k) = c`(F ).

Proposition 5 implies that the optimal allocation is a sequence of consumption ladders:

the optimal consumption in any period is determined by the number of ` realizations after

the last h realization with consumption falling after each additional ` realization until the

consumption floor c`(F ) is reached. Accordingly, with a slight abuse of notation, we write

ct+k(h`
k) for the consumption in period t+ k after any history yt−1−kh`k.

Definition 5 A period-t consumption ladder is a finite sequence of consumptions, denoted((
ct+k(h`

k)
)L−1

k=0
, c`(F )

)
, specifying for each k = 0, . . . , L, the consumption in period t + k

of an agent who had the income history yt−1h`k. A stationary consumption ladder is a finite

sequence of consumptions, denoted
(
c∗(h`k)

)L
k=0

, specifying the consumption in any period t

of an agent who had the income history yt−k−1h`k.

We extend any finite consumption ladder to an infinite ladder (sequence) by setting

ct+k(h`
k) := c`(F ) for k ≥ L.

A period-t consumption ladder specifies the current and future consumption of an agent

with current h-income and future `-income realizations. If that agent again receives h in the

subsequent period t + k, her consumption from period t + k on is determined by a period

t+ k consumption ladder. Consequently, the continuation lifetime utility of any agent with

current h-income is determined by the details of the current and future consumption ladders.

The calculation of lifetime utility is simpler when the current and future ladders agree,

i.e., for a stationary ladder. The lifetime utility of an agent with currently high income from

a stationary ladder c∗ is

W (h, c∗) = (1− β)u(c∗(h))

+ β
2
{(1− β)u(c∗(h`)) +W (h, c∗)}
+
(
β
2

)2 {
(1− β)u(c∗(h`

2)) +W (h, c∗)
}

...

= (1− β)
∞∑
k=0

(β
2
)ku(c∗(h`

k)) + β
2−βW (h, c∗),
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and so, simplifying, we get

W (h, c∗) =
(
1− β

2

) ∞∑
k=0

(β
2
)ku(c∗(h`

k)). (12)

The only income histories for which consumption is not specified by any consumption

ladder have the form `k, and those consumptions are pinned down by resource feasibility,

since in every period there is only one such history.

For F > F FB, the optimal allocation provides maximal risk sharing consistent with

incentive feasibility. Incentive feasibility always binds for h-income agents and sometimes

for `-income agents.

In order to deter an h-income agent from seceding, the optimal allocation does two

things: First, it reduces her transfer to low-income individuals below the first-best level.

And, second, the risk sharing offered is “front-loaded” so that `-income agents who had

more recently received a h realization receive more insurance than those who last received a

h realization further in the past.

This front-loading (reflected in the declining consumption ladder) implies that eventually

the consumption specified after a sufficiently long string of `-realizations is determined by

incentive feasibility for the `-realization. The resulting lower bound on consumption, c`(F ) >

` reflects the following tradeoff: Seceding from c does mean that the agents give up some risk-

sharing today, but the benefit is that in a new coalition tomorrow, any agent who receives

another ` realization receives more generous risk sharing tomorrow (since incentive feasibility

does not bind in the first period after ` by Proposition 5.5, c`(F ) < c(`)).

Remark 1 When π ≤ π̄ and the equilibrium allocations are solutions to the fixed point of

T ( · ; π), the consumption allocations within the coalition can be decentralized as in Kehoe

and Levine (1993). In the literature stimulated by Kehoe and Levine (1993), the outside

option is taken to be autarky, but the key is that the efficient allocation is generated by opti-

mizing against this option (see, for example, Chien and Lustig (2009), Alvarez and Jermann

(2000)). This decentralization is one within a successfully formed coalition. The individ-

ual’s optimization problem in this decentralization is to choose her consumption allocation

so as to maximize her ex ante payoff subject to a single intertemporal budget constraint

and a sequence of incentive constraints for each history state yt. In the individual’s present

value budget constraint the price of a unit of consumption in her history state yt is given

by γtPr(y
t), where γt is the resource multiplier from the coalition’s social planning problem

given the outside options and hence corresponds to the individual-level present value con-

straint. In addition, the incentive compatibility constraints at the individual level are exactly
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the incentive feasibility constraints in (6). Thus,the individual’s problem is isomorphic to

the Lagrangian problem for the coalition. Note that this is not the case when π > π̄ since

the coalition must respect a coalition-level constraint on the overall level of ex ante welfare.
�

6.2 Characterizing π̄

We now characterize π̄, or equivalently, F̄ . It turns that F̄ has a simple characterization as

the maximum value of the outside option consistent with h-incentive feasibility. In particular,

a specific stationary ladder attains this maximal sustainable deviation payoff F̄ . Using this

property, we then argue that the associated equilibrium allocation also converges to this

stationary ladder.

We are interested in the stationary ladder that maximizes ladder lifetime utility W (h, c∗),

given in (12), subject to incentive feasibility for ` realizations and resource feasibility. Re-

calling (11), this is

V∗(h;F ) := max
c∈C∗(F )

W (h, c∗), (13)

where C∗(F ) is the set of infinite stationary ladders satisfying resource feasibility

∞∑
k=0

(1
2
)k+1c∗(h`

k) ≤ y (14)

and incentive feasibility

c∗(hy
k) ≥ c`(F ) for all k ≥ 1. (15)

In this problem, h-incentive feasibility does not appear as a constraint because we are

maximizing the payoff of the h agents. Note also that resource feasibility is being imposed

on the ladder, and so there is only one constraint. In contrast, resource feasibility was not

imposed on any ladder in C(F ), being imposed instead in each period.

The next proposition (proved in Appendix C) makes precise the sense in which F̄ is the

maximum value of the outside option consistent with h-incentive feasibility.

Proposition 6 The set of resource and incentive feasible allocations C(F ) is nonempty if

and only if

V∗(h;F ) ≥ W F (h),

where W F (h) is the deviation value of high-income individuals defined in (10). Moreover,

F = F̄ ⇐⇒ V∗(h;F ) = W F (h).
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Corollary 1 If βu′(`) ≤ u′(h), then

F̄ = V A.

Proof. Suppose F̄ > V A. By Proposition 6, for all F ∈ (V A, F̄ ],

V∗(h, F ) ≥ (1− β)u(h) + βF. (16)

But βu′(`) ≤ u′(h) implies that the autarkic consumption provides an upper bound for

(13) and so

V∗(h, F ) ≤ (1− β)u(h) +
(1− β)β

2− β u(`) +
β

2− β [(1− β)u(h) + βF ]

= (1− β)u(h) +
β

2− β [(1− β)2V A + βF ]

< (1− β)u(h) + βF, (17)

because

(1− β)2V A + βF < (2− β)F

⇐⇒ (1− β)2V A < 2(1− β)F.

Since (17) contradicts (16), we must have F̄ = V A. �

This corollary shows that under the specified condition the highest outside option that

can be attained is autarky, and thus under this condition the only equilibrium is one without

any insurance.

It remains to characterize the allocation that maximizes ex ante utility at F̄ (the proof

is in Appendix C) ).

Proposition 7 Suppose βu′(`) > u′(h) and F = F̄ . The equilibrium allocation c converges

to the unique solution to problem (13), c̄∗, that is (where L is from Proposition 5.6),

lim
t→∞

ct(h`
k) = c̄∗(h`

k) for any k < L

and

ct(`
L) = c`(F̄ ).
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Suppose u is CRRA, i.e., for some γ ≥ 0,

u(c) =


c1−γ − 1

1− γ , γ 6= 1,

log(c), γ = 1.

(18)

Then convergence to the optimal stationary ladder (which is given by ḡ = β1/γ) does not

occur in finite time.

We have not been able to prove an analogous result to Proposition 7 when F < F̄ .

Indeed, in these cases it is not obvious what the appropriate limiting stationary ladder is.

Nonetheless, we can gain some insight by considering the following variant of our model:

Assume (as we do in our computational exercises) that utility is CRRA, and suppose only

coalitions with high income realizations can leave. In other words, ignore the `-incentive

feasibility, but maintain resource and h-incentive feasibility. Now, agents with a current `

realization never face a binding incentive constraint, and so in the optimal allocation, such

individuals have consumptions that decay at a common rate. Of course, there is no floor

on the consumption of such agents (beyond the feasibility floor of 0). This suggests that

a stationary ladder of the form c(h`k) = chg
k will be optimal, for some value of g. The

stationary resource constraint is then given by

ȳ =
ch
2

∞∑
j=0

(g
2

)j
=
ch
2

1

1− g
2

,

and so, ch = (2− g)ȳ.

Consider the allocation in which the h agents are immediately put on the stationary

ladder (and so after the history yt−k−1h`k have consumption chg
k). In period t, agents with

realizations `t receive the residual consumption

ȳ −
t−1∑
k=0

chg
k2−k−1 = ȳ − 1

2
ch

1− (g/2)t

1− (g/2)
= ȳ(g/2)t,

and since the mass of such agents is 2−t, their per capita consumption is ȳgt. But this implies

that the per capita consumption of the “residual” agents is declining at the same rate as

agents with histories of the form h`k, suggesting that the allocation in which the h agents are

immediately put on the stationary ladder is in fact ex ante when the `-incentive constraints

are ignored.
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It remains to pin down g, which is determined from the binding h-incentive-feasibility

constraint for given F . So the ex ante value of the stationary ladder implied by that g is an

upper bound for W 0(c). A natural lower bound is given by the ex ante utility from putting

the high income agents immediately on the stationary ladder with the consumption floor

c`(F ) and a binding h-incentive-feasibility constraint. The calculations in Section 7 suggest

that these two bounds can be close.

6.3 The case of utility burning, π > π̄

For high values of social capital (π > π̄), equilibrium requires utility burning. While equi-

librium must now impose additional inefficiencies, the precise nature of these inefficiencies

is not determined. Rather, these inefficiencies are chosen to exactly offset the increase in

social capital so that the ex ante value remains at F̄ .

We present two lemmas, illustrating two possible choices of inefficiencies due to either

postponing risk sharing or burning resources. Denote by c̄ the optimal consumption for

F = F̄ . The first lemma describes an equilibrium that postpones risk sharing.

Lemma 1 Suppose π > π̄. Denote the allocation specifying T periods of autarkic con-

sumption followed by c̄ in a history independent manner by c(T ). There exists T (π) and

α(π) ∈ [0, 1] for which the convex combination

c(α(π)) := α(π)c(T (π)−1) + (1− α(π))c(T (π)).

is an equilibrium allocation, and the value of this allocation is F̄ .

The allocation c(α(π)) postpones risk sharing for T (π) − 1 periods and then provides

intermediate risk sharing in future periods.

Proof. We first observe that if c(T−1) ∈ C(F̄ ) and

F̄ ≤ π[(1− βT−1)V A + βT−1V ∗(F̄ )] + (1− π)V A,

then c(T ) ∈ C(F̄ ). This holds because

(1− β)u(y) + βW 0(c(T−1)) ≥ (1− β)u(y) + βF̄ .
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Denote by T (π) the unique value of T satisfying

π[(1− βT )V A + βTV ∗(F̄ )] + (1− π)V A < F̄ ≤
π[(1− βT−1)V A + βT−1V ∗(F̄ )] + (1− π)V A.

Since utility is concave, c(α) ∈ C(F̄ ) for all α ∈ [0, 1]. Moreover, W 0(c(α)) is continuous

function of α, with

πW 0(c(0)) + (1− π)V A < F̄ ≤ πW 0(c(1)) + (1− π)V A.

Thus, there exists α(π) such that

πW 0(c(α(π))) + (1− π)V A = F̄ ,

and so c(α(π)) is an optimal consumption allocation for π > π̄.

�

The next lemma describes an equilibrium that burns resources.

Lemma 2 Define the consumption allocation c[α] as follows:

c[α](yt) =

c̄(yt) if yt 6= `t,

αc̄ + (1− α)c`(F̄ ), if yt = `t.

There exists α(π) for which c[α(π)] is an equilibrium allocation whose value is F̄ .

Note that the consumption allocation c[α] only differs from c̄ at histories `t. Moreover,

since c̄(`t) = c`(F̄ ) in finite time (Lemma B.9), c[α](yt) = c̄(yt) for t ≥ L.

Proof. Since c̄(`t) ≥ c`(F̄ ) for all t, c[α] ∈ C(F̄ ).

Since the payoff to any agent receiving the income h in the initial period is the same as

under c̄ and the h incentive feasibility constraint is always binding, the h payoff is given by

(1− β)u(h) + βF̄ .

The consumption c`(F̄ ) is determined by the requirement that the ` incentive feasibility

constraint is binding, and so the payoff to any agent receiving the income ` in the initial

period under c[0] is

(1− β)u(`) + βF̄ .
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This implies

W 0(c[0]) < F̄ ,

so that

πW 0(c[0]) + (1− π)V A < F̄ < πW 0(c[1]) + (1− π)V A.

Thus, there exists α(π) such that

πW 0(c[α(π)]) + (1− π)V A = F̄ ,

and so c[α(π)] is an optimal consumption allocation for π > π̄.

�

7 Numerical Examples and Comparative Statics

In this section we illustrate the computation of equilibrium allocations, and present results

for an illustrative set of examples to convey the qualitative properties of the equilibrium.

Throughout we assume the CRRA period utility function (18). This functional form implies

that equation (9) in Proposition 5 characterizing equilibrium allocations can be written as

∀yt, c(yt`) > c`(F ) =⇒ c(yt)−γ

c(yt`)−γ
= δt+1.

for some δt+1 < 1. Since δt+1 < 1, and defining gt+1 := (δt+1)
1/γ < 1,

∀yt, c(yt`) > c`(F ) =⇒ c(yt`) = gt+1c(yt).

Thus, equilibrium allocations have the form of a sequence of consumption ladders (as in

Definition 5), where the period t-ladder is determined by an initial consumption after the

high income y = h realization, ct(h), and then a decreasing sequence of lower consumptions

gt+1ct(h), gt+1gt+2ct(h), . . . , until the lower bound c`(F ) is reached (after L− 1 realizations

of `). Note that a stationary ladder has gt = gt+1 = g. When F = F̄ (equivalently, π = π̄),

the equilibrium allocation converges to the unique stationary ladder satisfying h-incentive

feasibility, so that gt → ḡ := β1/γ (Proposition 7).

With these observations based on our theoretical results in hand, the computation of

an equilibrium with associated outside option F ∈ (V A, F̄ ] (and thus for social capital π

associated with that outside option) proceeds as follows. The algorithm first computes a

stationary consumption ladder and associated consumption decay rate g that satisfies the
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h-incentive-feasibility constraint associated with F with equality (as well as the resource

constraint and the `-incentive-feasibility constraint with equality for those at the very bot-

tom of the ladder).6 The algorithm then determines the dynamic equilibrium consumption

allocation under the assumption that it converges into the stationary ladder in finite (but

potentially long) time. The key distinction between an arbitrary outside option F and F̄ is

that at the latter we know

1. the stationary decay rate ḡ,

2. the associated stationary ladder is unique, and

3. the dynamic equilibrium consumption allocation converges to the stationary ladder

asymptotically.

We therefore focus on the F̄ case in what follows.7

Figure 3 plots the dynamics of the equilibrium consumption allocation when the period

utility function is logarithmic, u(c) = log(c), incomes are (`, h) = (0.75, 1.25), and the

discount factor is β = .9. Social capital is π = π̄ = 0.41 so that the value of the outside

option is given by F = F̄ . Table 1 provides additional summary statistics for the allocation

in this parameterization, as well as for alternative values of (β, γ) to display the comparative

statics of the model with respect to its preference parameters (the values of F̄ and π̄ changes

with (β, γ)).

From Figure 3 we observe that as the transition unfolds, consumption spreads out over

time, and eventually converges to the stationary ladder, which for this parameterization has

five consumption steps. Consumption insurance worsens over time but remains positive: for

high income individuals the outside option is binding, but they consume substantially less

than their income h (indicated by the upper dashed line) and thus provide insurance to low-

income individuals. Initially low income individuals consume significantly more than their

income (lower dashed line), and also significantly more than implied by a binding outside

option, c`(F̄ ). Over time those with continuously low income see their consumption drift

down until the outside option becomes binding, and c = c`(F̄ ). In the example this occurs

in period four of the transition.

The equilibrium allocation can generate high initial consumption insurance because the

allocation does not inherit any implicit promises to past high income types. As time evolves,

the consumption level of c(`t) declines as the burden of efficient smoothing of consumption to

6While there may be multiple stationary ladders satisfying the three constraints, each ladder is associated
with a distinct value of g. Moreover, it is inefficient to converge to a stationary ladder with g < β1/γ = ḡ
(Lemma D.1).

7The details of the computational procedure are described in Appendix D
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Figure 3: The consumption allocation along the transition, with ` = 0.75, h = 1.25, β =
0.9, γ = 1.

past high income types makes consumption scarcer. The allocation also becomes statically

inefficient since individuals with the same current income receive different consumption levels.

Finally, the figure shows that although we do not force convergence to the stationary ladder

until period 10 (the last period of the blending phase) in this example, effectively allocations

have converged to the stationary ladder by period four of the transition. Expanding the

length of the transition yields utility gains that are indistinguishable from zero. Thus,

although theoretically convergence to the stationary ladder is only asymptotic, our numerical

examples suggest that in practice convergence happens rapidly.

Table 1 contains summary statistics of equilibrium allocations along the transition for

alternative parameterizations of the model. Focusing first on the benchmark case in the first

column, we observe that the consumption allocation a coalition can implement improves

significantly (worth 0.94% of consumption) on the outside option, by providing insurance to

initially poor individuals, but also needs to leave significant insurance opportunities unex-

ploited (worth 0.63% of consumption relative to full insurance). Insurance gets worse over

time as expected period utility falls and consumption dispersion rises over time.8 Comparing

across parameterizations, as households become more patient (higher β) and more risk-averse

8We only display the first two periods, relative to the stationary ladder.
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Table 1: Summary Statistics of the Transition

γ = 1 γ = 2
Statistic β = 0.9 β = 0.95 β = 0.9 β = 0.95

V FB/V (F̄ ) in % 0.63% 0.22% 0.45% 0.12%
V (F̄ )/F̄ in % 0.94% 0.71% 1.24% 0.80%
π̄ 0.41 0.66 0.69 0.85
c`(F̄ ) 0.761 0.767 0.776 0.782
ch 1.092 1.049 1.050 1.025
Steps 5 8 7 12
EU(c1)
EU(c∞)

in % 0.28% 0.11% 0.25% 0.07%
EU(c2)
EU(c∞)

in % 0.05% 0.05% 0.11% 0.03%

V ar(c∞) 0.01 0.004 0.004 0.001
V ar(c1)
V ar(c∞)

0.62 0.55 0.55 0.52
V ar(c2)
V ar(c∞)

0.94 0.80 0.81 0.77

Notes: Ratios of (lifetime) utilities are converted into consumption equivalent variation and give the percent-
age increase in consumption (uniform across all states or histories) required to equalize period (or lifetime)
utility across the two alternatives. The first two lines measure the welfare loss from imperfect consumption
insurance relative to full insurance, and the welfare gain of coalition allocations relative to the outside option.
The second panel provides summary statistics of the stationary ladder, and the third and forth panels show
how expected utility and consumption insurance declines over time.

(higher γ), the equilibrium allocations get closer to full insurance, but the gains from coali-

tion risk sharing relative to the outside option become smaller. The stationary ladder has

more steps and the support of the consumption distribution tightens. We also observe that

increased patience (higher β), elevates the gains of coalition risk sharing (compared to the

outside option) mostly through an improvement of the stationary ladder. An increase in risk

aversion (larger γ), in contrast, leads to better risk sharing both because of an improved

stationary ladder and longer initial insurance and thus slower convergence to the ladder.

8 Related Literature

There is a large literature using limited contract enforcement to rationalize incomplete insur-

ance arrangements and imperfect risk allocations. In financial markets, Kehoe and Levine

(1993) and Alvarez and Jermann (2000) characterize consumption allocations under limited

commitment within a general equilibrium framework. In labor economics, Harris and Holm-

ström (1982) and Thomas and Worrall (1988) study efficient long term-contracts between

employers and employees under limited commitment. Kocherlakota (1996) models two-party
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risk-sharing arrangements as a repeated game and Krueger and Perri (2011) extends this lit-

erature to a risk sharing economy with as a continuum of households exactly of the form

studied in this paper. All these classic papers share our focus on self-enforcing arrangements,

but take the outside option as exogenously given, and equal to the autarkic allocation. Given

this outside option, the qualitative properties of the equilibrium allocation in this work and

our paper are similar: high-income individuals receive high consumption to avoid defection,

and consumption drifts down with low-income realizations until it hits a lower bound.

Building on these classic papers, a literature emerged that endogenizes the outside option

by assuming that one side of the arrangement, typically a financial intermediary, has long

term commitment, as in Krueger and Uhlig (2006).9 A strand of the sovereign debt litera-

ture also considers self-enforcing simple debt contracts because sovereigns cannot commit to

repay, see for example Eaton and Gersovitz (1981) and Bulow and Rogoff (1989). There is

also a related literature which endogenizies the outside option by assuming that private non-

contingent intertemporal trades can be enforced and examines how this impacts on insurance

(see, for example, Allen, 1985) and government taxation (see Farhi et al. (2009)).10

Most papers on risk-sharing consider only unilateral deviations of individuals from the risk

sharing arrangement, thereby explicitly or implicitly limiting the extent of insurance these

individuals can obtain after deviating. An exception to this is Genicot and Ray (2003), who

study the formation and stability to joint deviations of risk sharing coalitions in economies

with finite populations. Bold and Broer (2018) estimate their model on Indian village data

and find that stable risk sharing coalitions are typically small, and that the resulting con-

sumption allocations accord better with the data than those generated by the standard

limited commitment model with exogenous outside option, assumed again to be autarky.

In the finite population world of Genicot and Ray (2003), coalitions must be stable against

deviations of smaller sub-coalitions of the original group, and the main purpose of the paper

is to determine endogenously the size of stable coalitions. Since larger coalitions are more

prone to successful deviation an optimal size of the original coalition emerges. This result

stems from the assumption that the deviating coalition can only make an arrangement with

the original coalition members, while in the formation of the original coalition, all members

of the population could be considered as potential members. We share with this paper and

with Bold and Broer (2018) the basic notion that risk-sharing coalitions must be immune to

9Phelan (1995) also endogenizes the outside option, and makes assumptions on the timing of the model
that implies full commitment for one period. In his paper private information about income limits consump-
tion insurance in his model.

10Within the context of a model with incomplete information, Cole and Kocherlakota (2001) endogenize
the outside option, assuming hidden storage. Ábrahám and Laczó (2017) also analyze a limited commitment
model with a private storage technology.
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not only unilateral deviations by an individual, but to coalitional deviations. In contrast to

Genicot and Ray (2003), the insurance capabilities of deviating continuum coalitions are no

worse than in the original coalition, and so if any coalition is stable, the grand coalition is.

Genicot and Ray (2003) is closely related to the more abstract game theoretic litera-

ture on coalition deviations pioneered by Bernheim et al. (1987) and Greenberg (1990) (and

extended/unified by Kahn and Mookherjee (1992, 1995) to infinite games and to adverse

selection insurance economies in which agents have private information). This abstract liter-

ature shares with Genicot and Ray (2003) the assumption that coalition formation is “easy.”

Our view that coalition formation is “hard” and so the required nontrivial belief coordina-

tion on future behavior does not always arise is consistent with the recent work on strategic

uncertainty. The classical insurance environment is an example of a repeated game (indeed,

Mailath and Samuelson (2006) exposit Kocherlakota (1996) as an example of a repeated

game). Repeated games have many equilibria, with efficient equilibria sustained by delicate

intertemporal incentives that require belief coordination about continuation play. There is

little work on the robustness of equilibria to shocks to belief coordination. The literature on

private monitoring is motivated by a concern that agents may not have sufficient common

knowledge about past histories in order to coordinate continuation play. Surprisingly, this

literature has showed that efficiency is still consistent with equilibrium (see, for example,

Hörner and Olszewski (2006)). Importantly, the constructions in this literature maintain the

assumption of belief coordination on future behavior.

The large literature on global games (surveyed in Morris and Shin (2003)) and higher

order beliefs (Rubinstein (1989) and Weinstein and Yildiz (2007)) is directly concerned with

the difficulties in coordinating behavior. The global games literature has primarily focused

on simple (and often static) coordination games. This permits a direct modeling of the

source of difficulty in coordinating behavior. In order to focus on the implications of the

belief coordination frictions, we model the friction in a reduced form manner. The literature

on higher order beliefs in repeated games is thin (Weinstein and Yildiz (2013, 2016)), but

the few results there confirm our intuition that coordination is no easier in a repeated game

context than in a static one.

The use of utility and money burning at the beginning of the allocation is reminiscent of

some efficiency wage (Shapiro and Stiglitz, 1984, MacLeod and Malcomson, 1989) and some

gift-exchange and related models (Carmichael and MacLeod, 1997, Kranton, 1996b,a, Ghosh

and Ray, 1996). In particular, the idea that if it is too easy to start a new relationship

(worker-firm, principal-agency, partnership, etc) after opportunistic behavior (shirking for

example), then it is impossible to deter opportunistic behavior. In order to deter deviations,

it is therefore necessary to impose some form of tax or friction (such as delays in joining a
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new firm, involuntary unemployment, or engaging in inefficient actions in the beginning of

the new relationship, exchange of inefficient gifts).

9 Conclusion

Pareto improving activities that require trust because they have an intertemporal exchange

aspect, are a major component of societies both primitive and modern. We have focused on

one of the most basic of these, insurance, and parameterized social capital or trust in a very

simple fashion through the ability to coordinate beliefs on the optimal outcome. Despite its

starkness, the model paints a surprisingly rich picture of potential societies.

In societies with a low level of social capital many Pareto improving activities are not

undertaken. However, when they are undertaken, they tend to be extensively exploited and a

high level of insurance is achieved. This occurs because the low level of social capital implies

that the outside options of the participants are low, and hence these outside options do not

distort the allocations within the coalition. This implies that the insurance level is both

intertemporally and statically efficient. Ex ante welfare rises linearly with social capital.

At medium levels of social capital, more Pareto improving activities are undertaken, but

as a result, the outside options of participants are higher. These higher outside options

bind increasingly on allocations attainable with higher social capital. As a result, efficient

allocations must reward higher income. This leads to allocations being statically inefficient,

but not intertemporally inefficient modulo the outside options. When this occurs, overall

utility is declining over time as accumulated past promises of rewards for higher income build

up. Consequently, the extent to which Pareto improving activities are exploited is declining,

and so too is the payoff from forming a coalition. Ex ante welfare is still increasing in social

capital, but now at a decreasing rate.

At high levels of social capital, most if not all of the Pareto improving activities are

undertaken. However, the level of the outside options that can be attained has hit the

maximum (F̄ in our model). As a result, some form of waste must occur in the early

phases of these arrangements because too high an ex ante payoff would carry the seeds of

its own destruction and hence would not be internally incentive feasible. While the long-

run arrangement is independent of social capital, the extent of short run money- or utility-

burning is increasing in social capital, and the ex ante welfare is flat. Our arrangements

feature explicit waste but this waste is front-loaded. In the long-run they are intertemporally,

but not statically efficient, just as with medium levels of social capital.
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Appendices

A Proofs for Section 5

We begin with a preliminary result.

Lemma A.1

1. C(F ′) ⊃ C(F ′′) for F ′ < F ′′, and so C(F ) 6= ∅ for all F ≤ F̄ .

2. C(F ) is closed and convex for all F ≤ F̄ .

3. C is a continuous correspondence at all F ≤ F̄ (at F̄ , the continuity is from the left).

Proof.

1. This is immediate.

2. This is also immediate.

3. Since C is a decreasing correspondence in F , we need only show upper hemicontinu-

ity from the left and lower hemicontinuity from the right. Upper hemicontinuity is

immediate, since all the constraints are closed. Turning to lower hemicontinuity, we

need to show that if c ∈ C(F ) and (Fk)k is a sequence with Fk ↘ F , then there exists

ck ∈ C(Fk) with ck → c. Fix c† ∈ C(F̄ ). We now verify that for all k, there exists

αk ∈ [0, 1] such that αkc
† + (1− αk)c ∈ C(Fk) and αk → 0.

Fix k, and let αk = (Fk − F )/(F̄ − Fk) > 0. Then,

W (yt, αkc
† + (1− αk)c) ≥ αkW (yt, c†) + (1− αk)W (yt, c)

≥ (1− β)u(yt) + αkβF̄ + (1− αk)βF
= (1− β)u(yt) + βFk,

and so incentive feasibility (6) is satisfied. Since (1) is trivially satisfied, we are done.

�

Proof of Proposition 4

1. Since, for ε small, the allocation in Example 1 is internally-incentive feasible for π = 1

and provides partial insurance, C(F ) 6= ∅ for some F > V A, and so F̄ > V A. This

also shows that V(V A) > V A.
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2. Suppose (Fk) ↗ F̄ is a sequence satisfying C(Fk) 6= ∅. Since the space of consump-

tion allocations is sequentially compact (being the countable product of sequentially-

compact spaces), we can assume there is a convergent sequence (ck)k, with ck ∈ C(Fk)
and limit c∞. Since all the constraints defining C are closed (and continuous in F ), the

limit also satisfies these constraints (including (6) at F = F̄ ), and so c∞ ∈ C(F̄ ), and

C(F̄ ) 6= ∅.

3. The continuity of V follows from the continuity of C (Lemma A.1) and the maximum

theorem.

4. We now verify that for all F ∈ (V A, F̄ ], F < V(F ),11 Example 1 having already

demonstrated that V A < V(V A). Since V is continuous, it is enough to show that

there is no F ∈ (V A, F̄ ] for which F = V(F ). The proof is by contradiction, so

suppose there is such an F . Then V(F ) is a fixed point of T (·; 1). Note first that

F = V(F ) = V A is impossible (since if F = V A, we immediately have V(F ) > V A),

and so F = V(F ) > V A.

For ŷt ∈ Y t, denote by c|ŷt the consumption allocation

c|ŷt(yτ ) = c(ŷtyτ ) ∀yτ ∈ Y τ .

Then,

W (yt, c) = (1− β)u(c(yt)) + βW 0(c|yt).

Suppose c achieves V(F ). Since F = V(F ) = maxc∈C(F )W
0(c), and c|yt ∈ C(F ), we

have F ≥ W 0(c|yth) for all yt ∈ Y t, and so (using (6) in the first line)

(1− β)u(c(yth)) + βF ≥ (1− β)u(h) + βF

=⇒ u(c(yth)) ≥ u(h) =⇒ c(yth) ≥ h.

But then F ≤ V A, a contradiction.

5. The function p : [V A, F̄ ]→ [0, π̄] defined by

p(F ) :=
F − V A

V(F )− V A

is strictly increasing, continuous, and onto (since V(V A) > V A). It is straightforward

to verify that for π ∈ (0, π̄], the fixed point is given by πV ∗(p−1(π)) + (1− π)V A. It is

11If β > βFB , the conclusion is immediate for F ≤ FFB , since V(F ) = V FB for such F .
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also immediate that this is increasing in π and

F̄ = T (F̄ ; π̄).

6. Finally, for π > π̄, the required F is strictly greater than F̄ , implying that the con-

straint set is empty, and so there is no fixed point.

�

Lemma A.2 If β > βFB, then F̄ > F FB.

Proof. Recall the allocation cζ defined in (5):

cζ(y
t) =

h− ζ, yt = h,

`+ ζ, yt = `.

We now argue that there exists ξ > 0 such that for all F ∈ (F FB, F FB + ξ], for

ζ = ζFB − 2β(F − F FB)/u′(ȳ), (A.1)

we have cζ ∈ C†(F ), and so F̄ > F FB.

Because marginal changes in ζ from ζFB result in only second losses to ex ante payoffs

(W 0(cζ)), we have

∂W (h, cFB)

∂ζ
=− (1− β)u′(ȳ),

and
∂W (`, cFB)

∂ζ
=(1− β)u′(ȳ).

Since

W (h, cFB) = (1− β)u(h) + βF FB,

we have

W (`, cFB) = W (h, cFB) > (1− β)u(`) + βF FB. (A.2)

Since
∂W (h, cFB)

∂ζ
= −(1− β)u′(ȳ),
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we have

W (h, cζ) =W (h, cFB)− u′(ȳ)(ζ − ζFB) + o((ζ − ζFB)2)

=W (h, cFB) + (ζFB − ζ)[u′(ȳ) + o((ζ − ζFB)2)/(ζ − ζFB)].

For ζFB − ζ < ξ′, where ξ′ > 0 is a sufficiently small constant, the magnitude of the last

term is less than u′(ȳ)/2, and so

W (h, cζ) > W (h, cFB) + (ζFB − ζ)u′(ȳ)/2.

For F = F FB + (ζFB − ζ)u′(ȳ)/(2β) (this is just a rewriting of (A.1)), we then have

W (h, cζ) > (1− β)u(h) + βF.

Moreover, there is ξ′′ > 0, such that for ζFB − ζ < ξ′′, the strict inequality on the

`-incentive constraint (A.2) is preserved:

W (`, cζ) > (1− β)u(`) + βF.

Setting

ξ := min{ξ′, ξ′′}u′(ȳ)/(2β)

completes the proof. �

Lemma A.3

lim
β↘u′(h)/u′(`)

π̄(β) = 0.

Proof. Consider the allocation

c+ε (yt) =



h− ε, yt = h,

`+ 2ε, yt−1 = h, yt = `,

`, yt−1 = yt = `,

`+ ε, y1 = `.
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Then,

W (h, c+ε ) = (1− β)u(h− ε) + β
2
(W (h, c+ε ) +W (h`, c+ε )),

W (h`, c+ε ) = (1− β)u(`+ 2ε) + β
2
(W (h, c+ε ) +W (``, c+ε )),

W (``, c+ε ) = (1− β)u(`) + β
2
(W (h, c+ε ) +W (``, c+ε )),

and W (`, c+ε ) = (1− β)u(`+ ε) + β
2
(W (h, c+ε ) +W (``, c+ε )).

Hence,

W (``, c+ε ) =
1

2− β {2(1− β)u(`) + βW (h, c+ε )}

and so

W (h`, c+ε ) = (1− β)u(`+ 2ε) +
β

2

{
W (h, c+ε ) +

1

2− β {2(1− β)u(`) + βW (h, c+ε )}
}

= (1− β)

{
u(`+ 2ε) +

β

2− βu(`)

}
+

β

(2− β)
W (h, c+ε ).

Thus,

W (h, c+ε ) = (1− β)u(h− ε) +
β

2

{
W (h, c+ε ) + (1− β)

{
u(`+ 2ε) +

β

2− βu(`)

}
+

β

(2− β)
W (h, c+ε )

}
= (1− β)

{
u(h− ε) +

β

2
u(`+ 2ε) +

β2

2(2− β)
u(`)

}
+

β

(2− β)
W (h, c+ε ),

which implies

2(1− β)W (h, c+ε ) = (1− β)(2− β)

{
u(h− ε) +

β

2
u(`+ 2ε) +

β2

2(2− β)
u(`)

}
,

that is,

W (h, c+ε ) =
(2− β)

2
u(h− ε) +

β(2− β)

4
u(`+ 2ε) +

β2

4
u(`). (A.3)

Note that W (h, c+ε ) is a strictly concave function of ε.

In order for c+ε to be internally incentive feasible, we need

W (h, c+ε ) ≥ (1− β)u(h) + π
β

2

[
W (h, c+ε ) +W (`, c+ε )

]
+ (1− π)βV A.
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For ε = 0, the above inequality holds with equality. Differentiating both sides with respect

to ε and evaluating at ε = 0, yields the necessary condition

∂

∂ε
W (h, c+ε ) ≥ π

β

2

[
∂

∂ε
W (h, c+ε ) +

∂

∂ε
W (`, c+ε )

]
,

that is,

(2− πβ)
∂

∂ε
W (h, c+ε ) ≥ πβ

∂

∂ε
W (`, c+ε ).

It is easy to verify that ∂W (`, c+ε )/∂ε > (1−β)u′(`), and so, differentiating (A.3), a necessary

condition is

(2− πβ)(2− β)(βu′(`)− u′(h)) ≥ πβ(1− β)u′(`).

We now consider the implications of taking limits as β falls from above to u′(h)/u′(`), so

that we always have βu′(`) > u′(h). For each β > u′(h)/u′(`), set ε > 0 so that

u′(h− ε) = βu′(`+ 2ε) (A.4)

(this is the value of ε that maximizes W (h, c+ε )). Denote by ĉ(β) the allocation c+ε with ε

satisfying (A.4). Note that if for any β > u′(h)/u′(`), the allocation c+ε is internally-incentive

feasible, then so is ĉ(β).

Denote by π̂(β) the maximum value of π for which the allocation ĉ(β) is internally-

incentive feasible. We then have

(2− π̂(β)β)(2− β)(βu′(`)− u′(h)) ≥ π̂(β)β(1− β)u′(`).

Hence, as βu′(`)− u′(h)↘ 0, π̂(β)→ 0.

Set (where β is included as an argument to make clear the dependence on β)

F (β) := π̂(β)W 0(ĉ(β)) + (1− π̂(β))V A ≤ F̄ (β).

Since ĉ(β) is internally-incentive feasible,

ĉ(β) ∈ C(F (β)) 6= ∅,

and so

V(F (β)) ≥ W 0(ĉ(β)),
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and finally

π̂(β) ≥ π(F (β)) :=
F (β)− V A

V(F (β))− V A
≥ π̄(β).

Since π̂(β)→ 0, π̄(β)→ 0, as β ↘ u′(h)/u′(`). �

B Proof of Proposition 5

We assume throughout this section that F > F FB and βu′(`) > u′(h).

Lemma B.1 There exists δt+1 < 1 such that if incentive feasibility does not bind at yt+1,

then
u′(c(yt))

u′(c(yt+1))
= δt+1

and so

c(yt) > c(yt+1).

Proof. We first argue that if incentive feasibility does not bind at ỹt+1, then for all ŷt+1

u′(c(ỹt))

u′(c(ỹt+1))
≤ u′(c(ŷt))

u′(c(ŷt+1))
. (B.1)

Suppose not, so that (B.1) holds with a strict inequality in the reverse direction.

Define a new allocation c† by setting

c†(yτ ) =



c(ỹt) + ε, yτ = ỹt

c(ŷt)− ε, yτ = ŷt

c(ỹt+1)− η, yτ = ỹt+1

c(ŷt+1) + η, yτ = ŷt+1

c(yτ ), otherwise.

Since Pr(ŷt) = Pr(ỹt) and Pr(ŷt+1) = Pr(ỹt+1), the allocation c† is resource feasible.

Choose η = η(ε) so that

u(c(ỹt) + ε) +
β

2
u(c(ỹt+1)− η(ε)) = u(c(ỹt)) +

β

2
u(c(ỹt+1))

ensures that incentive feasibility is satisfied along the sequence ỹt. For small η, it is also

satisfied at ỹt+1.

39



Differentiating with respect to ε and evaluating at ε = 0, we get

η′(0) =
2u′(c(ỹt))

βu′(c(ỹt+1))
.

At ε = 0, the derivative of

u(c(ŷt)− ε) +
β

2
u(c(ŷt+1) + η(ε))

is

−u′(c(ŷt)) +
β

2
u′(c(ŷt+1))η′(0) = −u′(c(ŷt)) +

β

2
u′(c(ŷt+1))

2u′(c(ỹt))

βu′(c(ỹt+1))

= u′(c(ŷt+1))

{
− u′(c(ŷt))

u′(c(ŷt+1))
+

u′(c(ỹt))

u′(c(ỹt+1))

}
> 0.

This implies that the values of the agents with histories ŷt and ŷt+1 have increased, and

so the ex ante value of c† must exceed c, contradicting the optimality of c.

Hence, (B.1) must hold as written. If incentive feasibility also does not bind at ŷt+1, then

the weak inequality holds as an equality.

We now argue that if incentive feasibility does not hold at ỹt+1, then

u′(c(ỹt))

u′(c(ỹt+1))
< 1.

If not, then for all histories,
u′(c(yt))

u′(c(yt+1))
≥ 1.

But this implies for all yt+1,

c(yt) ≤ c(yt+1).

This is only consistent with resource feasibility if c(yt) = c(yt+1), which implies c is the first

best allocation. But F > F FB precludes the first best allocation as an equilibrium.

�

Lemma B.2 At the optimal allocation c, if the incentive constraint binds at ỹt and ŷt with

ỹt = ŷt, then

c(ỹt) = c(ŷt).
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Proof. Suppose not. then the incentive constraint binds at two histories ỹt and ŷt with

ỹt = ŷt, and

c(ỹt) 6= c(ŷt).

Define a new consumption allocation c† as follows:

c†(yτ ) =

1
2
c(ŷtty

τ ) + 1
2
c(ỹtty

τ ), τ ≥ t,tyτ = ỹt, ŷt,

c(yτ ), otherwise,

where ty
τ is the last τ − t periods of the income history yt ( so that yτ = ty

τ
ty
τ )). Since

Pr(ỹt) = Pr(ŷt), c† satisfies (1).

Moreover, the incentive constraints are satisfied at all histories:

1. For τ < t, since the incentive constraints bind at two histories ỹt and ŷt with ỹt = ŷt,

W (ỹt, c) = W (ŷt, c), and so W (yt, c†) ≥ W (yt, c) for all yt (with equality holding for

yt 6∈ {ỹt, ŷt}). Hence,

W (yτ , c†) = (1− β)u(c(yτ )) + (1− β)
t−τ−1∑
r=1

βr
∑
yr

Pr(yr)u(c(yτyr))

+ βt−τ
∑
yt

Pr(yt)W (yt, c†)

≥ W (yτ , c).

2. For τ ≥ t, the concavity of u implies

W (yt, c†) ≥ min{W (ŷtty
τ , c),W (ỹtty

τ , c)} ≥ W F (yτ ).

Finally, concavity implies W 0(c†) > W 0(c), which is impossible, since c is by assumption

optimal. �

Lemma B.3 In the optimal allocation, incentive feasibility binds at all yt for which yt = h,

and so for all yt−1,

W (yt−1h, c) = W F (h) := (1− β)u(h) + βF.

Proof. Since F > F FB,

(1− β)u(ȳ) + βV FB < W F (h),
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and so

(1− β)u(ȳ) + βV(F ) < W F (h).

Thus, incentive feasibility at ŷt−1h requires c(ŷt−1h) > ȳ. Suppose

W (ŷt−1h, c) > W F (h).

Define

cε(yτ ) =


c(ŷt−1h)− ε, yτ = ŷt−1h,

c(ŷt−1`) + ε, yτ = ŷt−1`,

c(yt), otherwise.

Since h and ` are equally likely, cε satisfies resource feasibility. For sufficiently small ε > 0,

cε satisfies inetrnal-incentive feasibility, and so we have a contradiction (since cε has higher

ex ante utility than c). Thus, the incentive constraint binds at all ŷt for which ŷt = h. �

Lemma B.4 For all ỹt−1, ŷt−1,

c(ỹt−1) ≥ c(ŷt−1) =⇒ c(ỹt−1y) ≥ c(ŷt−1y) and W (ỹt−1`, c) ≥ W (ŷt−1`, c).

Proof. Lemmas B.2 and B.3, imply

c(ỹt−1h) = c(ŷt−1h) ∀ỹt−1, ŷt−1.

Suppose now, en route to a contradiction that there are two histories ỹt−1 and ŷt−1 such that

c(ỹt−1) ≥ c(ŷt−1) and c(ỹt−1`) < c(ŷt−1`).

The idea is to construct a dominating consumption allocation by moving consumption from

the relatively high-consumption histories to the low-consumption histories. For any small

ε > 0, define η(ε) as the value η solving

u(c(ỹt−1)− η) + β
2
u(c(ỹt−1`) + ε) = u(c(ỹt−1)) + β

2
u(c(ỹt−1`)),
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and define a new consumption allocation as

cε(yτ ) =



c(yτ )− η(ε), yτ = ỹt−1,

c(yτ ) + η(ε), yτ = ŷt−1,

c(yτ ) + ε, yτ = ỹt−1`,

c(yτ )− ε, yτ = ŷt−1`,

c(yτ ), otherwise.

From the concavity of u, u′(c(ỹt−1)) ≤ u′(c(ŷt−1)) and

ξ := u′(c(ỹt−1`))− u′(c(ŷt−1`)) > 0.

Moreover, the function η is C1 with η′(0) > 0. Then we have (where each function oj, for

j = 1, . . . , 4 satisfies oj(ε)/ε→ 0 as ε→ 0),

β
2
{u(c(ŷt−1`))− u(c(ŷt−1`)− ε)} = β

2
{u′(c(ŷt−1`))ε+ o1(ε)}

= β
2
{u′(c(ỹt−1`))ε− ξε+ o1(ε)}

= β
2
{u(c(ỹt−1`) + ε)− u(c(ỹt−1`))− ξε}+ o2(ε)

= u(c(ỹt−1))− u(c(ỹt−1)− η(ε))− β
2
ξε+ o2(ε)

= u′(c(ỹt−1))η(ε)− β
2
ξε+ o3(ε)

≤ u′(c(ŷt−1))η(ε)− β
2
ξε+ o3(ε)

= u(c(ŷt−1) + η(ε))− u(c(ŷt−1))− β
2
ξε+ o4(ε).

Rearranging,

u(c(ŷt−1)) +
β

2
u(c(ŷt−1`)) + β

2
ξε ≤ u(c(ŷt−1) + η(ε)) +

β

2
u(c(ŷt−1`)− ε) + o4(ε),

and so, if ε > 0 is sufficiently small that

|o4(ε)| < β
2
ξε,

we have

u(c(ŷt−1)) +
β

2
u(c(ŷt−1`)) < u(c(ŷt−1) + η(ε)) +

β

2
u(c(ŷt−1`)− ε).

Since c(yτ ) ≤ cε(yτ ) for all yτ , with a strict inequality on one positive-measure history, c

cannot have been optimal.
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The inequality on continuation values then immediately follows from the following cal-

culation: For any yt, denote by yt`k the history formed by adding k periods of ` after yt (so

that yt`0 = yt). Then,

W (yt, c) = (1− β)u(c(yt)) + β
2
{W F (h) +W (yt`, c)}

= (1− β)
∞∑
k=0

(β
2
)ku(c(yt`k)) + β

2−βW
F (h). (B.2)

�

Lemma B.5 If incentive feasibility at yt` is binding, then for all ŷt,

c(yt`) ≤ c(ŷt`).

Proof. Suppose

c(yt`) > c(ŷt`).

Then, from Lemma B.4,

u(c(yt`)) + β
2
{W F (h) +W (yt``, c)} > c(ŷt`) + β

2
{W F (h) +W (ŷt``, c)}

≥ W F (`),

which is impossible if incentive feasibility binds at yt`. �

Lemma B.6 Suppose incentive feasibility binds at some yt−1` in an optimal allocation.

Then incentive feasibility binds at yt−1``.

Proof. Suppose incentive feasibility binds at yt−1` but not at yt−1`2. Then

u(c(yt−1`)) + β
2
{W F (h) +W (yt−1`2, c)} = W F (`),

W (yt−1`2, c) = u(c(yt−1`2)) + β
2
{W F (h) +W (yt−1`3, c)} > W F (`),

and (because the last incentive feasibility constraint is not binding)

c(yt−1`) > c(yt−1`2).

Since

u(c(yt−1`)) > u(c(yt−1`2)),
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we therefore have (because incentive feasibility is binding at yt−1`)

W (yt−1`3, c) > W (yt−1`2, c) > W F (`), (B.3)

and incentive feasibility is also not binding at yt−1`3. This implies

c(yt−1`) > c(yt−1`3),

and so

W (yt−1`4, c) > W (yt−1`2, c) > W F (`).

Repeated applications of this argument shows that incentive feasibility is not binding for any

history yt−1`r, r ≥ 2, and so (c(yt−1`r))r≥1 is a monotonically declining sequence. Hence,

from (B.2), so is (W (yt−1`r, c))r≥1. But this contradicts (B.3). �

Lemma B.7 If incentive feasibility binds at yt`, then

c(yt`) = c`,

where c` > ` is the unique consumption satisfying

u(c`) = u(`) + β(F − V A) > u(`).

Note that c` is an increasing function of F , so that for F > F FB (i.e., for π > πFB) but

arbitrarily close, c` is bounded away from y.

Proof. Since incentive binds at yt` (and so at yty2
` ), we have

(1− β)u(c(yt`)) + β
2
{W F (h) +W F (`)} = W F (`).

Rearranging and dividing by (1− β) yields

u(c(yt`)) = (1− β
2
)u(`)− β

2
u(h) + βF,

which is the displayed equation (recall that V A = Eu(y)). �

Lemma B.8 Incentive feasibility does not bind in the initial period at `, nor after any

history of the form yth`.
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Proof. If the incentive feasibility binds in the initial period, then

V(F ) = 1
2
(1− β){u(h) + u(`)}+ βF

= (1− β)V A + βF

=⇒ V(F ) < F,

contradicting Proposition 4.

Suppose now incentive feasibility binds after a history of the form yth`. Since incentive

feasibility always binds after any realization of h, we have

(1− β)u(h) + βF = (1− β)u(c(yth)) + β{(1− β)V A + βF}
=⇒ (1− β)u(h) = (1− β)u(c(yth))− β(1− β)(F − V A)

=⇒ u(c(yth)) = u(h) + β(F − V A)

=⇒ c(yth) > h,

which is ruled out by resource feasibility and c(yt+1) ≥ c` > `. �

Lemma B.9 Suppose π > πFB. In the optimal allocation, there exists L such that the

incentive constraint binds at any history of the form yt`L.

Proof. Lemma B.4 implies that optimal consumption in any period is determined by the

number of ` realizations after the last h realization. From Lemma B.6, once the ` incentive

constraint binds, it continues to bind after each subsequent ` realization.

We need to prove that the number of ` realizations before the ` incentive constrain binds

is bounded as we vary the period in which h is realized.

We prove by contradiction: Suppose there is a subsequence (tn)n of periods with the

property that if h is realized in that period, the number of ` realizations before the `-

incentive constraint binds goes to ∞. Without loss of generality, assume there are at least

n realizations of ` after h in period tn before the `-incentive constraint binds.

For each tn, (c(ytn−1h`k))nk=1 is monotonically declining in k, is bounded above by h, and

below by `. Hence, for all ε > 0, the number of periods in the interval {tn+1, tn+2, . . . , tn+n}
for which δt < 1− ε is less than (h− `)/ε, a bound independent of n, the number of periods

in the interval. That is, asymptotically, the fraction of periods in which δt ∈ (1 − ε, 1)

converges to one. This implies that for all T , there exists t such that δτ ∈ (1 − ε, 1) for all

τ = t, t+ 1, . . . , t+ T .
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By choosing ε sufficiently small, for such t, resource feasibility implies c(yt+Th) is arbi-

trarily close to y (since for many k, c(yt+T−kh`k) will be close to c(yt+T−kh), which is no

smaller than y).

Since π > πFB and so F > F FB, the incentive constraint for yth is violated. �

C Proofs for Section 6.2

Proof of Proposition 6 The outside option F only affects V∗(h;F ) through c` (which is a

strictly increasing function of F , and so makes the constraints strictly more demanding).

Hence, V∗(h;F ) is strictly decreasing function of F . It remains to prove that V ∗(h;F ) =

W F (h) at F̄ .

If c∗ is the stationary ladder yielding V∗(h;F ), define an allocation as follows

cF (yt) :=


c∗(h), yt = h,

c∗(h`τ ), yt = yt−τ−1h`τ ,

ĉ(`t), yt = `t,

(C.1)

where

Pr(`t)ĉ(`t) = y −
∑

yt 6=`t
Pr(yt)cF (yt).

By construction, cF satisfies resource feasibility, and incentive feasibility for any history

ending in a realization of ` (since c∗ satisfies (14), ĉ(`t) ≥ c`).

If V∗(h;F ) ≥ W F (h), then the incentive constraint on yth is satisfied under cF for all yt.

Hence, cF ∈ C(F ), and so F ≤ F̄ .

Suppose V∗(h;F ) > W F (h). A marginal increase in F preserves the inequality and so

F < F̄ .

Finally, we prove that if F ≤ F̄ , then V∗(h;F ) ≥ W F (h). We do this by proving that

if C(F ) is nonempty, then it implies a feasible stationary ladder of the form (C.1). We

construct the stationary ladder by time averaging over histories that have the same number

of y realizations after an h realization.

Suppose c ∈ C(F ) is optimal. From Lemmas B.8 and B.9, there exists L ≥ 2 such that

for all τ ≥ L, the ` incentive constraint binds at any history of the form yt`τ . Moreover,

c(yt`τ ) = c`, ∀τ ≥ L. (C.2)
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For K ≥ 1, define the ladder (cKτ )T
‡

k=0 (recall that Pr(yt) = 2−t):

cKk =

 1
K+1

∑L+K
t=L

∑
yt−k−1(1

2
)t−k−1

c(yt−k−1h`k), 0 ≤ k < L

1
K+1

∑L+K
t=L

∑
yt−L(1

2
)t−T

†
c(yt−L`L), k = L

=

 1
K+1

∑L+K
t=L

∑
yt−k−1(1

2
)t−k−1

c(yt−k−1h`k), 0 ≤ k < L

c`, k = L.

We claim that (cKk )k satisfies (14) (where we set cKk = c` for k > L):

∞∑
k=0

(1
2
)k+1cKk =

L−1∑
k=0

(1
2
)k+1 1

K + 1

L+K∑
t=L

∑
yt−k−1

(1
2
)t−k−1

c(yt−k−1h`k) + (1
2
)Lc`

=
1

K + 1

L+K∑
t=L


L−1∑
k=0

(1
2
)k+1

∑
yt−k−1

(1
2
)t−k−1

c(yt−k−1h`k) + (1
2
)Lc`


=

1

K + 1

L+K∑
t=L


L−1∑
k=0

(1
2
)k+1

∑
yt−k−1

(1
2
)t−k−1

c(yt−k−1h`k) + (1
2
)Lc`


=

1

K + 1

L+K∑
t=L

 ∑
yt 6=yt−L`L

Pr(yt)c(yt) + (1
2
)Lc`

 .

But (C.2) implies

(1
2
)Lc` =

∑
yt=yt−L`L

Pr(yt)c(yt)

and so
∞∑
k=0

(1
2
)k+1cKk =

1

K + 1

L+K∑
t=L

Ec(yt) ≤ y.

Since c(yt − 1, `) ≥ c`, it is immediate that cKk satisfies (15).

We now show that accumulation points c∗ of (cKk )k)K satisfy W (h, c∗) ≥ W F (h). We do

this by considering time averages of continuation utilities for large K.

Since c is incentive feasible, for all yt,

W F (h) ≤ W (yth, c).
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Consequently,

W F (h) ≤ 1

K + 1

K+L∑
t=L

∑
yt−1

(1
2
)t−1W (yt−1h, c)

=
1

K + 1

K+L∑
t=L

∑
yt−1

(1
2
)t−1(1− β)

∞∑
k=0

(β
2
)ku(c(yt−1h`k)) + β

2−βW
F (h)

= (1− β)
∞∑
k=0

(β
2
)k

1

K + 1

K+L∑
t=L

∑
yt−1

(1
2
)t−1u(c(yt−1h`k)) + β

2−βW
F (h).

Now

1

K + 1

K+L∑
t=L

∑
yt−1

(1
2
)t−1u(c(yt−1h`k)) ≤ u

 1
K+1

K+L∑
t=L

∑
yt−1

(1
2
)t−1

c(yt−1h`k)

 ,

and so

W F (h) ≤ (1− β)
∞∑
k=0

(β
2
)ku

 1

K + 1

K+L∑
t=L

∑
yt−1

(1
2
)t−1

c(yt−1h`k)

+ β
2−βW

F (h). (C.3)

If the arguments of the utility function were cKk (which they are not), we would be done,

since then the expression on the right hand side is simply W (h, cK).

However, we are almost done, since the discrepancy can be made arbitrarily small. For

k < L < K, we have

cKk −
1

K + 1

K+L∑
t=L

∑
yt−1

(1
2
)t−1

c(yt−1h`k)

=
1

K + 1

L+K∑
t=L

∑
yt−k−1

(1
2
)t−k−1

c(yt−k−1h`k)− 1

K + 1

K+L∑
t=L

∑
yt−1

(1
2
)t−1

c(yt−1h`k)

=
1

K + 1

L+K∑
t=L

∑
yt−k−1

(1
2
)t−k−1

c(yt−k−1h`k)− 1

K + 1

K+L+k∑
t=L+k

∑
yt−k−1

(1
2
)t−k−1

c(yt−k−1h`k)

=
1

K + 1

L+k−1∑
t=L

∑
yt−k−1

(1
2
)t−k−1

c(yt−k−1h`k)− 1

K + 1

K+L+k∑
t=L+K+1

∑
yt−k−1

(1
2
)t−k−1

c(yt−k−1h`k).

The magnitude of this expression is bounded above by kh/(K + 1). An identical argument

shows that we have the bound of Lh/(K + 1) for the divergence of cKL .
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Using (C.2), we can rewrite (C.3) as

W F (h) ≤ (1− β)
L∑
k=0

(β
2
)ku

 1

K + 1

K+L∑
t=L

∑
yt−1

(1
2
)t−1

c(yt−1h`k)


+

2(1− β)

(2− β)

(
β

2

)L+1

u(c`) +
β

2− βW
F (h). (C.4)

For all ε > 0, there exists Kε such that if K > Kε, for all k = 0, . . . , L the upper bound

of Lh/(K + 1) on consumption divergences is sufficiently small that the right side of (C.4)

is within ε of W (h, cK), implying

W F (h) ≤ W (h, cK) + ε.

Since (cKk )k ∈ [0, h]L, a closed and bounded set, the sequence ((cKk )k)K has a convergent

subsequence with limit (c∗k)k. Moreover,

W F (h) ≤ W (h, c∗).

�

The proof of Proposition 7 is broken into several lemmas.

Lemma C.1 Suppose F = F̄ . The equilibrium allocation c converges to the unique solution

to problem (13), c̄∗, that is,

lim
t→∞

ct(h`
k) = c̄∗(h`

k) for any k < L

and

ct(`
L) = c̄∗(`

L) = c`(F̄ ).

Proof. Resource feasibility in period t is

L−1∑
k=0

2−k+1
ct(h`

k) + 2−Lc`(F ) ≤ y. (C.5)

We denote the period-t consumption ladder by (since by Proposition 5, we can ignore

the history before the last realization of h)

(ct+k(h`
k)L−1
k=0 , c`).
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t1 2 t + 1 t + 2 t + 3 t + 4 t + 5 t + 6

k

L

L− 1

2

1

0

s

1 2

1 2 s + 1 s + 2 s + 3 s + 4 s + 5 s + 6

Figure C.1: Illustrating the reindexing for the proof (the reindexing omits k = L, since
ct(`

L) = c`(F ) is determined by Lemma B.7). The ladder-s resource constraints sum over
the diagonal dashed lines, while the period-t resource constraints sum vertically. Since there
is at most one realization of ` in any history in period 1, k can only equal 0 or 1; similarly,
in period 2, k ≤ 2.

Summing inequality (C.5) over periods 1, . . . , T , and rearranging to sum over ladders

rather than periods (see Figure C.1), for T ≥ L, gives

0 ≥
T∑
t=1

L−1∑
k=0

2−k+1
ct(h`

k) + T2−Lc`(F )− Ty

=
0∑

s=2−L

L−1∑
k=1−s

2−k+1
cs+k(h`

k) +
T−L+1∑
s=1

L−1∑
k=0

2−k+1
cs+k(h`

k)

+
T∑

s=T−L+2

T−s∑
k=0

2−k+1
cs+k(h`

k) + T2−Lc`(F )− Ty

≥
T−L+1∑
s=1

L−1∑
k=0

2−k+1
cs+k(h`

k) + T2−Lc`(F )− Ty.

Since the consumption ladder that yields V∗(h, F̄ ) is unique, and since the h-incentive

constraint is satisfied in every period, we must have, for all t,

L−1∑
k=0

2−k+1
ct+k(h`

k) + 2−Lc`(F ) ≥ y, (C.6)
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with equality holding if and only if the consumption ladder equals c̄∗, the unique solution

to problem (13).

We now argue that

lim
s→∞

L−1∑
k=0

2−k+1
cs+k(h`

k) + 2−Lc`(F ) = y.

The proof is by contradiction. If not, inequality (C.6) implies there exists an ε > 0 such that

L−1∑
k=0

2−k+1
cs+k(h`

k) + 2−Lc`(F )− y > ε (C.7)

for infinitely many values of s. Let S denote the infinite set of values of s for which (C.7)

holds, and define the function h(T ) := |S ∩ {s ≤ T − L+ 1}|. Observe that h(T )→ +∞ as

T →∞. Then,

0 ≥
T−L+1∑
s=1

L−1∑
k=0

2−k+1
cs+k(h`

k) + T2−Lc`(F )− Ty

≥ (T − L)(y − 2−Lc`(F )) + εh(T ) + T2−Lc`(F )− Ty
= εh(T ) + L(2−Lc`(F )− y),

which is impossible for large T .

Since the resource constraint is satisfied by the period-s ladder asymptotically, the se-

quence of ladders must converge to the unique solution to problem (13) (if not, there is a

subsequence converging to a different ladder limit also satisfying the resource and incentive

constraints, which is impossible). �

Lemma C.2 If utility is CRRA, the equilibrium consumption allocation for F = F̄ does not

start immediately on the stationary ladder, that is, it is not given by (C.1) for c = c̄∗.

Proof. When utility is CRRA with coefficient γ, solving (13) for the optimal stationary

ladder gives, for g = β1/γ < 1,

c̄∗(h`
k+1) = gc̄∗(h`

k) (C.8)

when the incentive constraint is not binding on h`k+1. To ease notation, define (where ĉ is

defined in (C.1))

c̄h := c̄∗(h), ct := ĉ(`t), and c̄` := c`(F̄ ).
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Let L be the length of the ladder, so that

gL−1c̄h > c̄` ≥ gLc̄h.

The ladder resource constraint is

L−1∑
k=0

2−(k+1)gkc̄h + 2−Lc̄` = ȳ.

From (C.1),

2−tct = ȳ −
t−1∑
k=0

2−(k+1)gkc̄h,

and so

2−tct =
L−1∑
k=t

2−(k+1)gkc̄h + 2−Lc̄`.

Then,

2−t−1ct+1 =
L−1∑
k=t+1

2−(k+1)gkc̄h + 2−Lc̄`

=
g

2

L−2∑
k=t

2−(k+1)gkc̄h + 2−Lc̄`

=
g

2

{
L−1∑
k=t

2−(k+1)gkc̄h − 2−LgL−1c̄h

}
+ 2−Lc̄`

=
g

2

{
2−tct − 2−Lc̄` − 2−LgL−1c̄h

}
+ 2−Lc̄`.

Hence,

ct+1 = gct + 2t
{
−g2−Lc̄` − 2−LgLc̄h + 2−L+1c̄`

}
.

Finally, since

−g2−Lc̄` − 2−LgLc̄h + 2−L+1c̄` = 2−Lc̄`(1− g) + 2−L(c̄` − gLc̄h) > 0,

we have

ct+1 > gct,
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and so

u′(ct) > βu′(ct+1). (C.9)

Consider now the following local change:

ĉ1(h) = c̄h − ε, ĉ1(`) = c1 + ε,

ĉ2(h`) = gc̄h + η(ε), and ĉ2(`
2) = c2 − η(ε),

where η satisfies

u(c̄h) + β
2
u(gc̄h) = u(c̄h − ε) + β

2
u(gc̄h + η(ε)).

From the implicit function theorem and (C.8),

η′(0) =
2

β

u′(c̄h)

u′(gc̄h)
= 2.

The impact on payoff to the low income agents is

u(c1 + ε) + β
2
u(c2 − η(ε)),

which has slope at ε = 0 of

u′(c1)− β
2
u′(c2)η

′(0) = u′(c1)− βu′(c2),

which is strictly positive from (C.9). This implies the local change is ex ante welfare im-

proving over the stationary ladder. �

Lemma C.3 If utility is CRRA, the equilibrium consumption allocation for F = F̄ does not

reach the stationary ladder c̄∗ in finite time, that is, for all T , there exists t > T and k < L,

for which

ct(h`
k) 6= c̄∗(h`

k).

Proof. Suppose not, that is, suppose there exists some T such that for all t > T and

k < L,

ct(h`
k) = c̄∗(h`

k).

We first claim that

cT (h) = c̄∗(h).
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This is true because the h-incentive-feasibility constraint just binds on the agents who re-

ceived an h income realization in period T , and their consumptions in all future periods are

determined by the stationary ladder c̄∗.

Since the `-incentive-feasibility constraint is not binding in period T+1, the consumption

decay gT+1 is given by

gT+1 =
cT+1(h`)

cT (h)
=

c̄∗(h`)

c̄∗(h)
= β1/γ =: g,

where the first equality is (9), the second is from the claim just proved, and the third comes

from the CRRA assumption.

The same consumption decay applies in period T at all histories at the `-incentive-

feasibility constraint is not binding, and so we have

cT (h`k) = g−1
cT+1(h`

k+1) for all k < L− 1,

and so

cT (h`k) = c̄∗(h`
k) for all k < L− 1,

The h-incentive-feasibility constraint just binds on the agents who received an h-income

realization in period T −1, and since their consumptions in all future periods are determined

by the stationary ladder c̄∗, current consumption must equal c̄∗(h). But this implies that

the stationary consumption decay also applies in period T − 1. Proceeding in this way, we

conclude that the consumption for the initial h-realization agents must be c̄∗(h). But this

is impossible by Lemma C.2, and so we have a contradiction. �

D Appendix for Section 7

In this section we provide the details of how we compute equilibria in Section 7 of the main

text. Section D.1 describes how to compute a stationary ladder that delivers an outside

option F ∈ (V A, F̄ ). Section D.2 describes how to determine the value of F̄ together with

the stationary ladder attaining it. Finally, Section D.3 describes the calculation of an entire

dynamic equilibrium consumption allocation converging to a stationary ladder.

D.1 Stationary Ladder

For a fixed F, a stationary ladder c∗ = (c∗(h), gc∗(h), g2c∗(h), . . . , c`) that satisfies resource

feasibility and h-incentive feasibility with equality (as well as `-incentive feasibility) is fully
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characterized by the upper and lower bound of consumption (c∗(h), c`), the decay rate g and

the length of the ladder L. These values, all functions of a given F ∈ (V A, F̄ ), are calculated

as follows:

1. Determine the consumption floor c` = c`(F ) from Proposition 5.4, i.e.,

u(c`(F )) = u(`) + β
(
F − V A

)
and recall (10), which defines the value of the outside option for the high income agents

as

W F (h) := (1− β)u(h) + βF.

2. The ladder is then determined by three equations in three unknowns c∗(h), g, L from

L = max
{
k : gk−1c∗(h) > c`(F )

}
, (D.1)

1

2

L−1∑
t=0

(
1

2

)t
c∗(h)gt +

(
1

2

)L
c`(F ) = ȳ, (D.2)

and (using W (h, c∗) = W F (h) in (12))

W F (h) =

(
1− β

2

)[L−1∑
k=0

(
β

2

)k
u(c∗(h)gk)

]
+

(
β

2

)L
u(c`(F )). (D.3)

This system of equations can be reduced to one non-linear equation in one unknown

g ∈ [`/h, 1]. Use equation (D.1) to solve for L(g, c∗(h)) and then equation (D.2) to

solve for c∗(h) and insert into (D.3) to obtain one equation in the unknown decay rate

g. The result is a stationary ladder summarized by (c∗(h)(F ), g(F ), L(F )) as a function

of the outside option F .

In general the stationary ladder associated with an outside option F need not be unique,

although it is for F = F̄ , as we have seen in Section 6.2. To better understand the potential

multiplicity of stationary ladders, instead of calculating the consumption decay rate g (and

the associated (c∗(h), L)) as a function of F, we can in step 2 above reverse the order and

calculate, for a given stationary consumption decay rate g ∈ (`/h, 1) , the outside option

F (g) associated with this g.

Numerically, we find that the mapping F (·) is hump-shaped with a maximum at ḡ =

β1/γ < 1 that delivers the maximum value F̄ . The reason for the hump-shape of F (·) is as

follows. Start at g = 1, and thus a constant consumption allocation with full insurance, and
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now lower g infinitesimally. Individuals with current income y = h strictly prefer a more

front loaded consumption allocation even though it entails more consumption risk in the

future. As g initially falls from g = 1, both W (h, c∗) and c∗(h) increase, which in turn leads

the fixed point F (g) to increase as g falls. At g = β1/γ the optimal front loading is attained

from the perspective of the current h types; by reducing g further the associated increased

future consumption risk more than offsets the higher current consumption c∗(h) chosen to

satisfy the resource constraint. Thus W (h, c∗) and F (g) decline as g falls beyond g = β1/γ.

We cannot prove that F (g) is hump-shaped in g but always found this to be the case in

our examples. This implies, in particular, that for F < F̄ there are two associated stationary

ladders that deliver the same outside option F, one with little risk sharing (g < ḡ) and one

with more risk sharing (g > ḡ). Since the algorithm for computing a dynamic equilibrium is

based on the convergence of the allocation to a stationary ladder, it is important to know

which ladder to pick, for a given F < F̄ . The following lemma is informative for this choice.

Lemma D.1 No equilibrium allocation converges to a stationary ladder with decay g < β1/γ.

Proof. Suppose an equilibrium allocation for some F converges to a stationary ladder. It

is immediate that the stationary ladder cannot be Pareto dominated by another stationary

ladder. We now argue that any stationary ladder c∗ with g < β1/γ is Pareto dominated by

another ladder stationary (with the same number of steps), which proves the lemma.

Since c∗(h`)/c∗(h) = g,

c∗(h`)−γ

c∗(h)−γ
=
u′(c∗(h`))

u′(c∗(h))
>

1

β
. (D.4)

Define a new stationary ladder as

cε∗(h`
k) =



c∗(h)− ε, k = 0,

c∗(h`) + η(ε), k = 1,

c∗(h`k), k = 2, . . . , L− 1,

c`(F ) + 2L ·
(

1
2
ε− 1

22η(ε)
)
, k = L,

where η(ε) satisfies

u(c∗(h)− ε) +
β

2
u(c∗(h`) + η(ε)) = u(c∗(h)) +

β

2
u(c∗(h`))). (D.5)

The new stationary ladder cε∗ satisfies the resource constraint because the change in the

aggregate consumption is −1
2
ε+ 1

22η(ε) + 1
2L
· 2L ·

(
1
2
ε− 1

22η(ε)
)

= 0.
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Applying the envelope theorem to (D.5) and using (D.4), we have

η′(0) =
2u′(c∗(h))

βu′(c∗(h`))
< 2.

Since η(0) = 0, for small ε > 0, 1
2
ε − 1

22η(ε) > 0, and so cε∗(h`
L) > c`(F ) and so cε∗ satisfies

`-incentive feasibility. With (D.5), this also implies cε∗ satisfies h-incentive feasibility.

Finally, cε∗ clearly Pareto dominates c∗ �

D.2 Determination of the Outside Option F̄

To determine F̄ we proceed as follows: At F = F̄ , Proposition 6 implies that there is a

unique stationary ladder satisfying h-incentive feasibility and this ladder solves (13), so we

know that the consumption decay rate is given by

g(F̄ ) = β1/γ.

In effect, F̄ is the peak of the F (·) map discussed above, and is reached at g = ḡ. Since the

value of F̄ itself is unknown, we have to determine the lower consumption floor c` = c`(F̄ )

jointly with F̄ , c∗(h), and L. The relevant equations, with g = g(F̄ ) = β1/γ are

u(c`) = u(`) + β
(
F̄ − V A

)
, (D.6)

ȳ =
1

2

L−1∑
t=0

(
1

2

)t
c∗(h)gt +

(
1

2

)L
c`, (D.7)

L = max{k : gk−1c∗(h) > c`}, and (D.8)

(1− β)u(h) + βF̄ =

(
1− β

2

)[L−1∑
k=0

(
β

2

)k
u(c∗(h)gk)

]
+

(
β

2

)L
u(c`). (D.9)

The algorithm to determine F̄ is then a slightly modified version of the procedure from

the previous subsection, with F̄ replacing g as the unknown to be computed (and identical

to the computations we do when solving for F (g) for a gven g 6= ḡ.)

1. Guess F̄ ∈ (V A, V FB).

2. For a given F̄ :

(a) Solve for c` from (D.6).

(b) Jointly solve for (c∗(h), L) from (D.7) and (D.8).

58



(c) Calculate the right side of (D.9).

3. Solve F̄ such that (D.9) holds.

D.3 Computation of the Transition

As discussed in the main text, the computational procedure solves for the equilibrium al-

location, imposing the stationary ladder from an exogenously specified period T . We now

describe the computation of the allocations for fixed T and fixed outside option F ≤ F̄ . We

take as given the stationary ladder associated with F , summarized by (c∗(h)(F ), g(F ), L(F )),

including the lifetime utilities Vi,∞(F ), as described in the previous two subsections.12 As

described in the main text, the algorithm calculates consumption in three phases.

In the first t ≤ T periods the algorithm picks time-varying consumption of individuals

with currently high income (and so have binding incentive constraints), (ct(h))Tt=1 and uses

the resource constraints and the fact that individuals without binding constraints have com-

mon consumption decay rates (or consume the lower bound consume c`(F )) to pin down the

remainder of the consumption allocation. In a second phase, from t = T + 1, ..., T + L(F )

the allocation blends into the stationary ladder: all individuals with high income consume

according to the stationary ladder, and all households with low income drift down from con-

sumption in the previous period at a common (but time-varying) decay rate gt.
13 Finally,

for all t > T +L(F ), the allocation coincides with the stationary ladder. More precisely, the

algorithm works as follows:

1. Guess (ct(h))Tt=1 ∈ (ȳ, h)T .

2. Calculate the consumption allocation implied by this guess, imposing the characteriza-

tion of an equilibrium allocation: the h-incentive-feasibility constraint binds in every

period, and all agents with low income either have non-binding constraints and their

consumption decays at a common rate or they consume c`. The implied consumption

allocations (ci,t)
t
i=0 for all t = 1, . . . , T, T + 1, . . . , T + L(F ), are calculated as follows,

where i again indicates the position on the consumption ladder:

12The only part that distinguishes the calculations for F < F̄ and F = F̄ is the calculation of the stationary
ladder(s), and in case of F < F̄ , the selection of the right ladder.

13Similar arguments to those proving Proposition 5.1 show that this property must also hold for constrained
optimal allocations.
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(a) Set

c0,t = ct(h) for t = 1, . . . , T,

and c0,t = c∗(h)(F ) for t = T + 1, . . . , T + L(F ).

(b) For t = 1, determine c1,1 from

1

2
[c0,1 + c1,1] = ȳ.

(c) For t = 2, . . . , T , determine the consumption decay rates (gt)
T
t=2 recursively (be-

ginning with t = 2) as follows:

The consumption decay gt solves

1

2

t−1∑
i=0

(
1

2

)i
ci,t +

(
1

2

)t
ct,t = ȳ,

where for all i = 1, . . . , t,

ci,t = max{gtci−1,t−1, c`(F )}.

For each t, gt is determined by one equation. The equations are solved forward

in time since the allocations {ci,t} require knowledge of allocations {ci−1,t−1}.
(d) For t = T + 1, . . . , T + L(F ), part of the consumption allocations are on the

stationary ladder. For each t = T + 1, . . . , T + L(F ), the consumption decay gt

solves
1

2

t−1∑
i=0

(
1

2

)i
ci,t +

(
1

2

)t
ct,t = ȳ,

where

ci,t =

gich(F ), for i = 1, . . . , t− T − 1,

max{gtci−1,t−1, c`(F )}, for i = t− T, . . . , t.

3. For a given guess (ct(h))Tt=1, the previous step delivers the entire allocation (ci,t)
t
i=0

for periods t = 1, . . . , T, T + 1, . . . , T + L(F ). From date t = T + L(F ) + 1 on the

consumption allocation coincides, by assumption, with the stationary ladder. Now we

need to determine (ct(h))Tt=1. These values must yield a consumption allocation that

delivers the outside option W F (h) for all t = 1, . . . , T . Construct the lifetime utility

in period t after the history yt−1−ih`i, Vi,t, from the consumption allocation computed
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in the previous step. This can be done recursively, going backward in time. Lifetime

utilities are given by, for each t = T + L, . . . , 1 (working backwards in time) and all

i = 0, . . . , t,

Vi,t = (1− β)u(ci,t) +
β

2
[V0,t+1 + Vi+1,t+1.]

Note that these calculations are the same before and in the blended phase, because V0,t

is a function of Vi,t+i for i = 1, . . . , L, with VL,T+L = (1− β)u(`) + βF and t ≤ T + L.

The only role the consumptions from the stationary ladder play is in step 2 above in

determining ci,t via resource feasibility.

Finally we need to check whether the entry consumption levels (ct(h))Tt=1 are such that

the resulting consumption allocation hits the outside option for each t = 1, . . . , T

V0,t = (1− β)u(h) + βF.

If yes, we are done. If not, go back to step 1 and adjust the guess for (ct(h))Tt=1.
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