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1 Introduction

Structural empirical research can sometimes look like a black box. Once upon a time, a structural

paper might begin with an elaborate model setup containing dozens of assumptions, present a

similarly complex recipe for estimation, and then jump immediately to reporting model estimates

and counterfactuals that answer the research question of interest. A reader who accepted the full

list of assumptions could walk away having learned a great deal. A reader who questioned even

one of the assumptions might learn very little, as they would find it hard or impossible to predict

how the conclusions might change under alternative assumptions.

Modern research articles taking a structural approach often look very different from this carica-

ture. Many devote significant attention to descriptive analysis of important facts and relationships

in the data. Many provide detailed discussions of how these descriptive statistics relate to the struc-

tural estimates, connecting specific data features to key parameter estimates or conclusions. Such

analysis has the potential to make structural estimates more transparent, helping skeptical readers

learn from the results even when they do not fully accept all the model assumptions.

In this paper, we consider the value of transparency in structural research. We propose a formal

definition of the transparency of a statistical report. We argue that our definition provides a ratio-

nale for many current practices, and suggests ways these practices can be improved. We discuss

these potential improvements, emphasizing those that impose a minimal computational burden on

the researcher.

Our definition of transparency follows the one proposed in Andrews et al. (2017).1 We situate

it in a model of scientific communication based on Andrews and Shapiro (2018). In the model, a

researcher observes data informative about a quantity of interest c. The researcher reports an esti-

mate ĉ of c along with auxiliary statistics t̂ to a set of readers indexed by r. Under the researcher’s

maintained assumptions a0, ĉ is valid, for example in the sense that it is asymptotically normal and

unbiased. Not all readers accept a0, however, and different readers may entertain different alterna-

tive assumptions a 6= a0. After receiving the report (ĉ, t̂), each reader updates their prior beliefs,

selects an estimate dr of c, and realizes a quadratic loss (dr− c)2. For a given reader, we define the

transparency of the report to be the reduction in expected loss from observing (ĉ, t̂), relative to the

reduction from observing the full data. In other words, research is transparent to the extent that it

makes it easy for readers to reach the same inference about c that they would reach by analyzing

1See also the discussions of transparency in Angrist and Pischke (2010) and Heckman (2010).
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the data in full under their preferred assumptions. We show that transparency is distinct from other

econometric desiderata such as efficiency and robustness.

After describing our model and definition of transparency in section 2, we discuss several

practices that we believe can improve the transparency of structural estimation. We illustrate

throughout with stylized examples drawn from our model and real-world examples drawn from

the literature.

Section 3 discusses descriptive analysis, which we interpret as including in t̂ statistics ŝ that are

either directly informative about the parameter of interest c, or informative about the plausibility

of the assumptions a0. We argue that descriptive statistics of both kinds can aid transparency.

Section 4 discusses the analysis of identification. Although transparency is a distinct property

from model identification, we argue that clear discussion of identification can improve transparency

by sharpening readers’ beliefs about the appropriateness of the researcher’s assumptions.

Section 5 discusses ways to improve the transparency of the estimator. We argue that trans-

parency is improved when ĉ depends to a large degree on some interpretable statistics ŝ and when

the form of the relationship between the two is made clear to the reader. We suggest this as a

rationale for targeting descriptive statistics directly in estimation. Building on work by Andrews

et al. (2017, 2019), we discuss how local approximations can be used to clarify the relationship

between ĉ and ŝ.

Section 6 discusses sensitivity analysis, which we take to encompass a range of approaches

for demonstrating the sensitivity of conclusions to alternative assumptions. When readers are

concerned about a small number of known alternative assumptions a, the researcher can improve

transparency by reporting estimates ĉa that are valid under these alternatives, as in a traditional

sensitivity analysis. When readers are concerned about a richer or unknown set of alternatives a,

then it is no longer practical to report an estimate corresponding to each of these. Building on

work by Conley et al. (2012) and Andrews et al. (2017), we discuss how including in t̂ statistics

based on local approximations can help readers assess a larger set of assumptions. For cases where

a qualitative conclusion (e.g., the direction of a causal effect or welfare change) is important, we

also discuss the value of reporting features of alternative realizations of the data that would lead to

a conclusion different from the researcher’s.
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2 Transparency in a Model of Scientific Communication

2.1 Setup

A researcher observes data D∈D . The researcher makes a set of assumptions a0 under which D∼
F (a0,η) for η ∈H an unknown parameter. The researcher computes a point estimate ĉ = ĉ(D) of

a scalar quantity of interest c(a0,η) , along with a vector of auxiliary statistics t̂ = t̂ (D). The latter

may include descriptive evidence, sensitivity analysis, and various auxiliary statistics as discussed

in sections 3-6 below.2

The researcher reports (ĉ, t̂) to readers r ∈R who do not have access to the underlying data.

In most applications researchers and readers focus on statistics of much lower dimension than the

raw data (though researchers might also make the data available), so we will primarily consider

dim(t̂) � dim(D) and ask what readers learn from (ĉ, t̂). Readers are concerned that the re-

searcher’s model may be misspecified, and they consider assumptions a ∈A that may be different

from a0. Under assumption a ∈ A , D ∼ F (a,η) where η is again unknown, and the quantity

of interest is c(a,η) .3 Each reader r has a prior πr on the assumptions a and model param-

eter η , and aims to estimate c(a,η), choosing a decision dr ∈ R and incurring quadratic loss

L(dr,c(a,η)) = (dr− c(a,η))2.

Following Andrews and Shapiro (2018), we define reader r’s communication risk from (ĉ, t̂)

as their ex-ante expected loss from taking their optimal action based on (ĉ, t̂). Under squared error

loss this optimal action is simply r’s posterior mean for c given (ĉ, t̂), so

Er

[
min

dr
Er

[
(dr− c)2 |ĉ, t̂

]]
= Er [Varr (c|ĉ, t̂)] .

Here Er [·] and Varr (·) denote the expectation and variance under πr, respectively, and we write

c as shorthand for c(a,η). Reader r’s risk from observing the full data is Er [Varr (c|D)] ≤
Er [Varr (c|ĉ, t̂)] ≤ Varr (c) , with equality in the first comparison only if r’s posterior mean based

on (ĉ, t̂) is almost surely the same as that based on the full data.

We define the transparency of (ĉ, t̂) for r as the reduction in communication risk from observing

2In settings where c is partially identified under the assumptions a0, one could instead take ĉ to report an estimate for
the identified set. Some of our analysis (particularly in section 5 below) would need to be adapted to this case. See
Tamer (2010) and Molinari (2019) for overviews of the partial identification literature.

3We assume a common parameter η for simplicity, but one could more generally have different model parameters ηa
for each a ∈A . Alternatively, one can view a as just another unknown parameter, though in many interesting cases
(a,η) will not be jointly identified.
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(ĉ, t̂), relative to the reduction from observing the full data

Tr (ĉ(·) , t̂ (·)) =
Varr (c)−Er [Varr (c|ĉ, t̂)]
Varr (c)−Er [Varr (c|D)]

,

and define transparency to be one when the denominator is zero. Thus, the transparency of (ĉ, t̂)

for r lies between zero and one, is equal to one when observing (ĉ, t̂) yields the same risk for r as

observing the full data, and is equal to zero when observing (ĉ, t̂) yields no reduction in risk, while

observing D would yield some reduction.

It is sometimes straightforward to construct fully transparent reports, i.e., reports with trans-

parency equal to one. If t̂ is sufficient for (a,η), for instance, then (ĉ, t̂) is fully transparent for all

readers. When it is infeasible to report a sufficient statistic, we can still construct a fully transpar-

ent report for reader r by reporting that reader’s posterior mean t̂ = Er [c|D]. Note, however, that

in this case (ĉ, t̂) need not be transparent for readers r′ with πr′ 6= πr. Heterogeneity in πr across

readers is thus central to the study of transparency.

2.2 Example and Comparison to Other Econometric Properties

An example based on Conley et al. (2012) helps to fix ideas and clarify the difference between

transparency and other econometric properties.

Suppose that the data D = {(Yi,Xi,Zi)}n
i=1 consist of observations of an outcome Yi, an endoge-

nous regressor Xi, and a candidate instrument Zi, all of which are scalar. Readers believe that the

data follow

Yi = Xic+Zia+ εi (1)

Xi = Ziγ +Vi, (2)

where the instruments Zi are fixed. The reduced-form error from regressing Yi on Zi is Ui = cVi+εi.

We assume the errors (Ui,Vi) are i.i.d. normal across i, (Ui,Vi) ∼ N (0,Ξ), with Ξ commonly

known, so the parameter is η = (c,γ) ∈ R2. Suppose that A = R, so that assumptions a ∈ A

correspond to the coefficient on Zi in (1) above, and that the researcher’s assumption is a0 = 0.

Under assumption a0, Zi is a valid instrument in the regression of Yi on Xi, while under a 6= 0 the

exclusion restriction fails. Denote the usual IV estimate by ĉ = ∑ZiYi/∑ZiXi and the first-stage

coefficient by γ̂ = ∑ZiXi/∑Z2
i .

5



The report ĉ may not be fully transparent. For example, consider a reader r who has a degen-

erate prior on a 6= a0 but a continuous joint prior on (c,γ). Note that for n large, ĉ converges in

probability to c+a/γ under mild conditions. Because the reader is uncertain about the value of γ ,

however, they cannot infer the value of c from the estimate ĉ even in a large sample. By contrast,

with access to the full data they would learn the value of γ , and thus be able to infer c. Thus, as

n→ ∞ the transparency of ĉ for such a reader is bounded away from one. In contrast, the report

(ĉ, γ̂) has transparency Tr = 1 for all readers r, as (ĉ, γ̂) is sufficient for the unknown parameters

(c,γ). Reporting the auxiliary statistic γ̂ can thus improve transparency in this example.

Transparency is distinct from a number of other properties discussed in the econometrics liter-

ature. For example, estimators are often evaluated based on their efficiency in mean squared error,

where the mean squared error of ĉ under (a,η) is EF(a,η)

[
(c− ĉ)2

]
. The estimator c̃ dominates the

estimator ĉ in mean squared error under the assumptions a if it achieves a lower mean squared error

for all η , with strict inequality for some η . Efficiency and transparency can imply substantially

different rankings of estimators. To illustrate, continue with the instrumental variables example

and suppose along the lines of Andrews and Shapiro (2018) that all readers believe c lies between

values cL and cU with probability one, Prr {c ∈ [cL,cU ]} = 1 for all r. Let ĉ again denote the IV

estimator, and let c̃ denote the IV estimator censored to lie in [cL,cU ] , c̃ = max{cL,min{ĉ,cU}} .
The estimator c̃ dominates ĉ in mean squared error (indeed, the mean squared error of ĉ is infinite

whenever Ξ has full rank).4 At the same time, since c̃ is a non-invertible transformation of ĉ, the

report ĉ is weakly more transparent than the report c̃ for all readers r, and the report (ĉ, γ̂) achieves

full transparency (Tr = 1) for all readers r, while the report (c̃, γ̂) does not.

While we allow the possibility that the readers and the researcher contemplate different as-

sumptions, transparency is also distinct from traditional measures of robustness. To illustrate,

note that in our instrumental variables example with A = R, the report (ĉ, γ̂) is fully transparent,

but all estimators c̄ of c have infinite worst-case mean squared error over (c,a) ∈ R2 for any γ ,

sup(c,a)∈R2 EF(a,η)

[
(c− c̄)2

]
= ∞ , and so are non-robust in that sense.

Finally, transparency is distinct from identification. In our instrumental variables example,

(ĉ, γ̂) is fully transparent, but c is unidentified under A absent further restrictions, in the sense that

any distribution for D allowed by the model is consistent with any value of c.

4The absolute deviation of c̃ from c is weakly smaller than that of ĉ for all realizations of the data, and strictly smaller
for some, so c̃ also dominates ĉ in many other senses, e.g. as measured by quantiles of the absolute deviation.
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2.3 Routes to Improved Transparency

The remaining sections of the paper discuss practical approaches to improving transparency in

structural estimation. We emphasize alternative assumptions a that we think are likely to be of most

interest to readers of structural research. Likewise, we limit attention to reporting strategies that

we view as reasonable, ruling out for instance that researchers encode the full data in the decimal

expansion of t̂. Finally, because working with nonlinear structural models is often computationally

expensive, we emphasize approaches that impose a minimal additional computational burden on

the researcher.

3 Descriptive Analysis

The first element that can contribute to transparent structural research is descriptive analysis. In

our framework, a descriptive analysis takes the auxiliary statistics t̂ to include some statistics ŝ

that are either directly informative about c or informative about the plausibility of the assumptions

a0. Examples include summary statistics, data visualization, or correlations illustrating key causal

relationships. Such evidence is sometimes described as “model-free,” in the sense that it has a

meaningful interpretation that does not rely explicitly on the assumptions of the structural model.5

Pakes (2014) formalizes the role of descriptive analysis in providing a set of facts that the structural

model should rationalize.6

Our framework suggests two ways that such descriptive analysis can improve transparency.

First, descriptive statistics ŝ may provide evidence about c that is informative under a wider range

of assumptions than a0. This would be true, for example, if |Corrr (c, ŝ)| is large under many priors

πr, including those that do not put much mass on a0.7

A leading case is where ŝ includes convincing experimental or quasi-experimental estimates of

treatment effects closely related to c. Autor et al. (2019), for example, present quasi-experimental

evidence on the effects of disability insurance (DI) receipt in Norway on outcomes including total

income, consumption expenditure, and transfer income, using random assignment of DI judges

as a source of exogenous variation. They then estimate a structural model that allows them to

back out the welfare effects of DI awards. A reader who is skeptical of the structural model’s

5See, for example, Polyakova (2016) and Rossi and Chintagunta (2016).
6See also the discussion in Lewbel (2019, section 5.1).
7In particular note that for scalar ŝ, Er [Varr (c|ŝ)]≤Varr (c)

(
1−Corrr (c, ŝ)

2
)

, so a large correlation directly bounds
the average posterior variance.
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assumptions might still learn a lot about the welfare effects based on the descriptive evidence

alone. For example, such a reader might update positively on the welfare effects to the extent that

DI substantially increases consumption or update negatively to the extent that it crowds out other

transfer income.

Similarly, Attanasio et al. (2012) present treatment-control differences from a randomized

evaluation of the PROGRESA conditional cash transfer that show how the program affected school

enrollment of children in various age groups. They then estimate a dynamic model of the school

enrollment decision that allows them to simulate alternative policies such as one that reallocates

grant funding from younger children to older children. The observed treatment-control differ-

ences do not speak directly to the effect of this reallocation because it was not part of the original

experiment. A reader who does not accept all of the assumptions of the structural model might

nevertheless learn a fair amount about the likely effects of the reallocation from comparing the

treatment effects on older and younger children.

Second, descriptive statistics ŝ may provide evidence that helps readers evaluate the researcher’s

assumptions a0. Allcott et al. (2019) estimate a structural model of grocery demand that allows

them to decompose sources of nutritional inequality in the US. To estimate price sensitivity, the

authors instrument for the price of a product in a given store with the price of the same product in

other stores in the same chain. The exclusion restriction is that the variation in prices due to the

composition of chains in a particular market is orthogonal to unobserved preference differences.

In their descriptive analysis, the authors support the plausibility of this assumption by showing that

this variation in prices is orthogonal to observed demographics that predict choices.

Agarwal et al. (2018) use an estimated structural model of bank lending to predict the extent

to which credit expansions are passed on to borrowers. A key assumption of the model is that

borrowers’ unobserved characteristics are smooth around a set of credit score thresholds where

credit limits change discontinuously. The authors’ descriptive analysis confirms the “first stage”

effect of the discontinuities on credit limits and then shows that observed borrower characteristics

are smooth around the discontinuities, increasing the plausibility of the assumption that unobserved

characteristics are smooth as well.

An important strength of descriptive analysis is that it permits a wider range of robustness

and sensitivity analysis than is typically possible for computationally demanding structural esti-

mates. Considering many alternative sets of controls, isolating variation along discontinuities, or

adding highly saturated fixed effects are often not possible in complex models. Performing such
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checks is typically easier for the statistics reported in a descriptive analysis, and reporting them

can strengthen confidence in model assumptions.

Descriptive statistics ŝ can improve a reader’s ability to evaluate the researcher’s model even

if they do not directly test its formal assumptions. For example, if an important assumption in

the model is that a jurisdiction-level policy variable is assigned independently of unobservables,

providing a map illustrating the spatial distribution of the policy can be very helpful to a reader.8

Because many readers will have prior beliefs on the spatial distribution of unobservables, such a

map can complement more formal balance tests that evaluate the correlation of the policy variable

with observable characteristics of the jurisdiction. In a similar way, many types of summary statis-

tics and data visualization can help to sharpen readers’ priors on the researcher’s assumptions and

thus aid readers’ interpretation of the estimator ĉ, in the sense that Corrr (c, ĉ|ŝ) is much larger than

Corrr (c, ĉ) for some realizations of ŝ.

4 Identification

A second element that can contribute to transparent research is explicit discussion of identification.

Such discussion is now common in much empirical research including structural research. Angrist

and Pischke (2010) call “a conceptual framework that highlights specific sources of variation” one

of the “hallmark[s] of contemporary applied microeconomics” (p. 12). Kleven (2018) shows that

the share of NBER working papers in public economics discussing identification has risen from

roughly zero percent in 1980 to almost 50 percent today. Of the 123 structural papers published

in the American Economic Review, Econometrica, the Quarterly Journal of Economics, and the

Journal of Political Economy between January 2018 and November 2019, 80 percent included

explicit discussion of identification.9

Formally, a quantity c is identified in the researcher’s model if c(a0,η) 6= c(a0,η
′) implies

F (a0,η) 6= F (a0,η
′) (Matzkin 2013; Lewbel 2019). In other words, distinct values of c cor-

respond to distinct distributions of the data under the researcher’s maintained assumptions. A

quantity c is identified by a specific vector of statistics ŝ if c(a0,η) 6= c(a0,η
′) implies distinct

distributions of ŝ under F (a0,η) and F (a0,η
′).

8See, for example, Fetter and Lockwood (2018, Figure 3), Bernard et al. (2019, Figure 8), and Hackmann (2019,
Figure 3).

9Here we define “structural” broadly to include any paper that explicitly estimates the parameters of an economic
model.
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There is a disconnect between this formal econometric definition and the discussions of identi-

fication that appear in some empirical papers. Keane (2010, p. 6) writes,

What is meant by ‘identified’ [by some authors] is subtly different from the traditional

use of the term in econometric theory.... Here, the phrase ‘how a parameter is identi-

fied’ refers... to a more intuitive notion that can be roughly phrased as follows: What

are the key features of the data, or the key sources of (assumed) exogenous variation

in the data, or the key a priori theoretical or statistical assumptions imposed in the

estimation, that drive the quantitative values of the parameter estimates, and strongly

influence the substantive conclusions drawn from the estimation exercise?

There are two important differences between the formal definition of identification and the “intu-

itive notion” Keane (2010) describes. First, point identification is formally a binary property. A

quantity of interest c either is or is not identified by a statistic ŝ. It is not clear in what meaningful

sense a particular feature or source of exogenous variation could be the “key” source of identifica-

tion. Second, identification is a property of a model, not a property of an estimator. Whether or

not c is identified by ŝ need not be related to whether or not ŝ “drive[s] the quantitative values of

the parameter estimates.” Indeed, it is possible that c is identified by ŝ yet the estimator ĉ does not

depend on ŝ at all.

Many discussions of identification in recent structural work fit Keane’s (2010) description. A

number refer to particular quantities as “primarily,” “mainly,” or “largely” identified by particular

data features.10 Some focus on properties of estimators rather than models, using “identification”

as essentially a synonym for “estimation.”11 Many acknowledge that they are departing from

formal statements by saying they discuss identification “intuitively” or “loosely,” or by noting

explicitly that they discuss relationships of individual parameters to specific statistics even though

all parameter estimates are determined jointly.12

10For example, Beraja et al. (2018) write, “Any empirical measure of refinancing elasticities to interest rate reductions
will always be primarily identified from recession periods” (p. 156, emphasis added). Fu and Gregory (2019) write,
“The dispersion... is thus identified mainly from the size of RDD parameter” (p. 407, emphasis added). Crawford et
al. (2018) write, “The pro-competitive effects of vertical integration are largely identified from the degree to which
RSN carriage is higher for integrated distributors” (p. 893, emphasis added).

11See, for example, the subsection titled “Identification Strategy” in Harasztosi and Lindner (2019, p. 2701), the
section titled “Identification of Structural Parameters” in Head and Mayer (2019, p. 3095), and the section titled
“Estimation and Identification” in Hackmann (2019, p. 1702).

12For example, Allcott et al. (2019) write, “Loosely, the first set of moments identify the β parameters...” (p. 1827,
emphasis added). Autor et al. (2019) write, “While the mapping between model parameters and sample moments
is less direct for the disutility parameters, there are data moments that intuitively provide identifying information.
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We believe that clear and precise discussions of identification have an important role to play in

making structural research transparent. In our framework, such discussions can be understood as

a way to communicate and clarify the implications of the baseline assumptions a0 and the space

of relevant alternatives a 6= a0, allowing readers to form more precise priors πr. Focusing on par-

tial identification, Tamer (2010) writes: “[The partial identification approach] links conclusions

drawn from various empirical models to sets of assumptions made in a transparent way. It al-

lows researchers to examine the informational content of their assumptions and their impacts on

the inferences made.” We believe clear discussions of point identification can likewise increase

transparency.

Such clarifying discussions would of course be unnecessary if readers could fully evaluate all

of a model’s assumptions directly. In reality, doing so is difficult. The abstract mathematical space

in which assumptions are stated is often not one in which readers have well-formed intuitions.

An assumption that sounds innocuous may in fact be highly restrictive, while another that sounds

obviously unrealistic may in fact be a reasonable approximation. Identification discussions can

illuminate the way the model’s assumptions map the distribution of observables to the key quantity

c. This is often a valuable complement to direct inspection of the assumptions in mathematical

terms.

To illustrate what we mean, suppose a discrete-choice demand model assumes that the utility of

a consumer i for a good j contains an additive error εi j which is i.i.d. type 1 extreme value. How

would a reader unfamiliar with such models evaluate the distributional assumption on the error

term? Mathematically, the assumption is that the CDF of εi j is F (ε) = exp(−exp(−ε)). Plotting

the implied CDF or PDF would show that this is a single-peaked distribution not too different from

a normal. It seems challenging to judge by introspection whether either the formula or the plot is

a reasonable representation of the distribution of consumer utility, or under what circumstances it

would be a better or worse approximation.

Studying the implications of the extreme value assumption for identification turns out to be

instructive. As is now well understood (e.g., Anderson et al. 1992), imposing this form on the

errors can mean that the share of consumers choosing each good j is alone sufficient to identify:

(i) the relative own-price elasticities and markups of any two goods j and k; (ii) how consumers

While all parameters are estimated simultaneously, it can be instructive to focus on one parameter at a time” (p.
2644, emphasis added). Fu and Gregory (2019) write, “Although all of the structural parameters are identified
jointly, we provide a sketch of identification here by describing which auxiliary models are most informative about
certain structural parameters” (p. 407).
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reallocate if any good is removed from the choice set; (iii) relative consumer welfare under different

choice sets. An unfamiliar reader who learned these implications might update in the direction of

thinking the distributional assumption is stronger than they thought and worth additional scrutiny.

The reader might also be able to form new intuitions about what alternative assumptions a are

most relevant to consider — for example, alternative error distributions that decouple substitution

patterns from market shares (Berry et al. 1995).

We suggest that two principles should guide discussions of identification. First, these discus-

sions should be precise, with the verb “identify” used only in its formal econometric sense. It is

best to avoid quantitative modifiers like “primarily identifies” or “mainly identifies” with uncer-

tain meaning. Like any other theoretical statement, statements about identification that are not

immediately obvious should either be accompanied by formal proof or introduced explicitly as

conjectures.

The statement that a quantity c “is identified by” a particular vector of statistics ŝ should mean

that the distribution of ŝ is sufficient to infer the value of c under the model. If this statement applies

only given knowledge of some other parameters, then this should be made explicit. Looking over

cases in the recent literature where authors claim something is “identified by” specific features of

the data, one sees three common structures of argument.13 The first structure is to prove identifi-

cation as a formal proposition.14 The second structure is an informal “triangular” argument. In the

case where the object of interest is a parameter vector η , this might show that η1 is identified by a

statistic ŝ1 alone, η2 is identified by ŝ2 once the value of η1 is known, η3 is identified by ŝ3 once

the values of η1 and η2 are known, and so on.15 When formalized, this can of course be a valid

method of proof that η is identified by ŝ. The final structure is an elementwise argument where say-

ing that η j is identified by ŝk means this is true given that all other elements of η are known. Many

“heuristic” or “informal” discussions of identification seem to take this form, though sometimes

without making explicit the requirement that the other elements of η are known.16 Enumerating

such relationships for all η j does not establish identification of η from ŝ. In many models, the

statement that η j is identified by ŝk in this sense will be true for many different statistics ŝk. Such

discussions may nevertheless provide some useful intuition about the model.

13See also Gentzkow et al. (2014, sections V.A and VI.A).
14See, for example, Agarwal and Somaini (2018); Bonhomme et al. (2019); Chiappori et al. (2019).
15See, for example, Eckstein et al. (2019, pp. 235-236); Fréchette et al. (2019, p. 2976); Fu and Gregory (2019, pp.

407-409).
16Two papers that make this requirement explicit are Autor et al. (2019, pp. 2644-5) and David and Venkateswaran

(2019, pp. 2548-9).

12



Some authors support discussions of identification with simulations showing how the distribu-

tions of some statistics ŝ change when each parameter is varied in turn, holding all other parameters

constant.17 A statistic is then sometimes said to “identify a parameter” if the distribution of the

statistic responds strongly as the parameter varies. Note that this amounts to a version of the third

argument structure above, establishing elementwise relationships that do not imply formal identi-

fication of the model as a whole. We see this kind of simulation as valuable provided it is clear that

it speaks to identification of the parameter of interest only if the values of the other parameters are

known.

The second principle we would recommend is that discussion of model identification be clearly

distinguished from discussion of estimation. How ŝ and c are related under the model is distinct

from how ŝ is related to the specific estimator ĉ, and the statement “c is identified by ŝ j” need not

imply that ŝ j is an important determinant of ĉ. How to clarify the data features that actually do

drive ĉ is the topic we take up in section 5. As we note there, transparency is often improved when

the discussion of identification elucidates the same relationships that turn out to be important in

estimation.

In some cases, discussion of the construction of an estimator can itself constitute a heuristic

proof of identification. For example, it may be that estimation consists of a series of plug-in

or linear estimators for parameters whose identification is well understood.18 Such cases may

explain how “identification strategy” has come to be used in some of the literature as a synonym

for “estimation strategy.”19

5 Estimation

Descriptive analysis and discussion of identification can together help readers understand how

the researcher’s model maps features of the data to conclusions about c, and assess the validity

of the assumptions underlying this mapping. Research is most transparent when readers can use

this and other information to interpret the structural estimates ĉ taking account of the forms of

misspecification they find most relevant.

In order to do so, the reader needs to understand how the specific estimator ĉ depends on the

data D. There are often many distinct vectors of intuitive statistics ŝ that each identify c under

17See, for example, Autor et al. (2019, Figure 4) and David and Venkateswaran (2019, section III.C).
18See, for example, the section titled “Identification of Structural Parameters” in Head and Mayer (2019, p. 3095).
19The “Identification Strategy” section in Harasztosi and Lindner (2019, p. 2701) is a recent example.
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the researcher’s model, and in over-identified settings there are many different transformations of

a given vector ŝ that estimate c. Identification discussions can at best clarify the sets of possible

statistics and transformations.

Knowing the form of the estimator ĉ is essential to transparency for two reasons. First, for

reasons related to the discussion in section 4, the statistics ŝ on which the estimator depends—the

statistics that “drive” the estimator in common parlance—influence which violations of assump-

tions matter most. Second, as we elaborate below, knowing how the estimator depends on these

statistics can allow a reader to judge the likely bias induced by specific violations.

In this section, we consider how to make estimation more transparent. We focus on the value

of both highlighting a specific vector of statistics ŝ that determine the estimator ĉ either exactly or

approximately, and making the form of the relationship between the two clear to the reader. To fix

ideas, without loss of generality we can write

ĉ = h(ŝ)+νh,

where h(·) is some function and νh is a residual whose structure depends on h(·). The first ap-

proach we discuss is to choose an estimator ĉ such that νh = 0 and then characterize the form of

the function h(·). The second approach we discuss is to choose an estimator ĉ such that νh 6= 0 and

then demonstrate that νh is small in an appropriate sense so that ĉ≈ h(ŝ). In section 6, we discuss

how a reader can assess specific forms of misspecification in the context of such estimators.

5.1 Target Descriptive Statistics in Estimation

The first approach is to target ŝ directly in estimation, so that ĉ = h(ŝ). This is of course only

sensible when c is identified by ŝ. If c is identified by the population value s of ŝ and the implied

relationship c = Γ(s,a) does not vary across the alternatives a of interest (i.e., c = Γ(s) for all

a ∈A ), the plug-in estimator ĉ = h(ŝ) = Γ(ŝ) may have high transparency for all readers. Related

ideas appear in the literature as a justification for basing model estimation and testing on matching

certain statistics of interest. (See, for example, Dridi et al. 2007, DellaVigna 2018, and Nakamura

and Steinsson 2018.) Even when Γ(s,a) depends on a, an estimator of the form ĉ= h(ŝ) =Γ(ŝ,a0)

may still be reasonably transparent if the form of the relationship c = Γ(s,a0) is made clear.

In practice, estimation based on targeting a vector of descriptive statistics ŝ is often imple-

mented via some form of minimum distance estimation that chooses parameters to match the ob-
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served ŝ to the value predicted under the model. Transparency provides a potential justification for

choosing such estimators even when more efficient estimators, such as the MLE, are available.

The literature contains numerous examples of estimators that target descriptive statistics. Gour-

inchas and Parker (2002) estimate a lifecycle model of consumption and savings with a precau-

tionary motive. After estimating properties of the income process in a first step, Gourinchas and

Parker (2002) estimate structural preference parameters in a second step by minimizing the dis-

tance between the observed age profile of consumption and the profile predicted by their economic

model. De Nardi et al. (2010) likewise estimate a model of consumption and savings by retirees

by targeting observed median asset profiles for different groups of individuals. See also Goettler

and Gordon (2011), DellaVigna et al. (2012), Nikolov and Whited (2014), and Autor et al. (2019).

These examples have in common that the estimator is (at least asymptotically) a function of

descriptive statistics that a reader might find intuitively related to the parameters of interest. Part

of the reason for this choice of estimator may be computational, for example due to the difficulty

of computing the likelihood. However, in some cases the authors invoke non-computational con-

siderations in justifying their choice of moments to match, some of which seem related to the

considerations we discuss here.20

To formalize the value of targeting descriptive statistics, we consider a variant of the instru-

mental variables example introduced in section 2.2.

Example. Suppose that the underlying data consist of n i.i.d. draws
{
(Yi,Xi,Zi,1, ...Zi,J)

}n
i=1 for

Zi = (Zi,1, ...Zi,J) a vector of J mutually orthogonal and mean-zero instruments proposed by the

researcher. For c ∈ R and a ∈A = RJ , the data follow

Yi = Xic+Z′ia+ εi,

where we now treat the instruments Zi as random and allow the error εi to be non-normal. Let G

denote the joint distribution of (Zi,Xi,εi) and assume all readers believe that G ∈ G for some class

of distributions with EG [Ziεi] = 0 for all G ∈ G .

20For example, De Nardi et al. (2010) write that “Because our underlying motivations are to explain why elderly
individuals retain so many assets and to explain why individuals with high income save at a higher rate, we match
median assets by cohort, age, and permanent income” (p. 47). Nikolov and Whited (2014) write that “The success of
[the approach to estimation] relies on model identification, which requires that we choose moments that are sensitive
to variations in the structural parameters...We now describe and rationalize the ... moments that we match” (p. 1899).
Autor et al. (2019) include certain moments “...to discipline the model to recover our estimates of the causal effects
of” a policy variable of interest (p. 2645).
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The instruments are valid under the researcher’s assumption a0 = 0, but readers suspect they

may in fact be invalid. Suppose that each instrument j has a non-zero first-stage coefficient,

EG
[
Zi, jXi

]
6= 0 for all G ∈ G . Under distribution G, true parameter value c, and assumptions

a, the probability limit of the instrumental variables estimator based on the jth instrument alone,

ĉ j = ∑Zi, jYi/∑Zi, jXi, is

E(G,a,c)
[
Zi, jYi

]
EG
[
Zi, jXi

] = c+
EG

[
Z2

i, j

]
EG
[
Zi, jXi

]a = c+
a j

γ j
,

for γ j = EG
[
Zi, jXi

]
/EG

[
Z2

i, j

]
the first stage coefficient on the jth instrument.

To illustrate the value of targeting descriptive statistics in this example, let the descriptive

statistics ŝ consist of the first m single-instrument coefficients ŝ=(ĉ1, ..., ĉm) for m< J. We suppose

that readers have sharp priors on the bias in these estimates, in the sense that reader r believes the

first m elements of the bias vector b = (a1/γ1, ...,aJ/γJ)
′ equal a known vector br with probability

one, Prr =
{
(a1/γ1, ...,am/γm)

′ = br
}
= 1. Thus, all readers are certain about the bias from using

the first m instruments, while they may be uncertain about the remaining instruments. This could

be because the potential biases from the first m instruments are especially intuitive, for instance

because these instruments are highly credible and br = 0, or because the researcher has clarified

the potential biases, for example through descriptive analysis and discussion of identification.

In this case, an estimator targeting the descriptive statistics ŝ may be more transparent than the

maximum-likelihood estimator under the researcher’s assumption a0 = 0. To provide a concise

illustration, suppose the sample size is large enough that ĉ is approximately normal and neglect the

approximation error to obtain

ĉ = ιc+b+ξ , ξ ∼ N (0,Ω) , (3)

for ι the vector of ones. In this asymptotic model η = (c,γ,Ω). Suppose further that the researcher

observes only D = (ĉ,Ω), that c and (b,Ω) are independent under πr for all r ∈R, and that Ω is

commonly known.

We let ĉ0 =
(
ι ′Ω−1ι

)−1
ι ′Ω−1ĉ denote the maximum-likelihood estimator under the assump-

tion a0 = 0, and we let ĉs denote the estimator that efficiently minimizes the distance between Sc

and ŝ = Sĉ for S the selection matrix such that Sĉ picks out the first m elements of ĉ. The variance
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of ĉ0 given c under πr is

Varr (ĉ0|c) =
(
ι
′
Ω
−1

ι
)−1

+
(
ι
′
Ω
−1

ι
)−2

ι
′
Ω
−1Varr (b)Ω

−1
ι

where the first term is the sampling variance of the MLE and the second term reflects instrument

invalidity. By contrast, the variance of ĉs given c under πr is simply the sampling variance of

ĉs. When reader r is very uncertain about instrument validity (in the sense that the variance of

the last J−m elements of b is large), ĉs may be more transparent than ĉ0.21 This is intuitive in

the case where br = 0, so reader r believes that the first m instruments are valid. Note, however,

that it remains true even when br 6= 0. Hence, what is important for transparency in this setting is

not that the first m instruments are valid, but that readers have precise beliefs about the bias these

instruments induce.

While we have motivated (3) as an asymptotic approximation to over-identified instrumental

variables regression with potentially invalid instruments, it is equivalent to some other important

problems. For instance, (3) can be interpreted as a regression model for Y = ĉ with omitted vari-

able b. As discussed in Armstrong and Kolesár (2019), this model can also be understood as an

asymptotic approximation to GMM under local misspecification.

Knowing that the estimator has the form ĉ = h(ŝ) means that readers know the estimator de-

pends on the data only through the statistics ŝ, but they may not know the nature of the dependence.

As noted above, there are often many different functions h(·) that constitute valid estimators under

the model—in particular, whenever different subsets or transformations of s are each sufficient to

identify c. Some of these functions h(·) may be convincing to a large set of readers, in the sense

that Γ(s,a) ≈ h(s) for many a ∈ A , while others may only be convincing to readers who accept

a0. In such cases, communicating the geometry of h(·) can help readers evaluate the estimator and

so improve transparency.

In practice, research papers typically provide a formal definition of the estimator. Even a

precise definition may not make the geometry of h(·) obvious, however. In linear models, for in-

stance, recent papers characterized regression discontinuity estimators (Gelman and Imbens 2019)

and two-way fixed effect estimators (e.g., Athey and Imbens 2018, Abraham and Sun 2019, de

Chaisemartin and D’Haultfoeuille 2019, Goodman-Bacon 2019, Imai and Kim 2019) and in some

21For such a reader, if we hold Varr (c) fixed and take Varr (ĉ0|c) → ∞ by taking Varr (b) → ∞, we have that
Varr (c|ĉ0)→Varr (c).
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cases argued that these estimators use the data in ways that may be unanticipated and undesired by

many readers and researchers.

In nonlinear models, such characterizations may be even more difficult to come by and there-

fore even less obvious ex ante. One solution could be to fully describe h(·) by brute-force enu-

meration, but this is often infeasible. For example, Gourinchas and Parker (2002) summarize the

age profile of consumption with the mean adjusted log consumption at each of the 40 ages from 26

through 55. As even a single estimation step may be computationally demanding, computing and

visualizing Gourinchas and Parker’s (2002) estimator on a 40-dimensional domain seems daunting.

Andrews et al. (2017) propose to focus on the local sensitivity of the estimator to the statistics

targeted in estimation. Sensitivity corresponds (in a sense made precise in Andrews et al. 2017)

to the derivatives of h(·) when h(·) is differentiable. It is possible to approximate this derivative

numerically, for example by evaluating the estimator at perturbations of the form ŝ+ εe j for ε a

small number and e j the jth standard basis vector, and then computing the numerical derivative(
h
(
ŝ+ εe j

)
−h(ŝ)

)
/ε . Repeated estimation may be computationally demanding, but Andrews

et al. (2017) show that in many applications (including Gourinchas and Parker 2002) repeated

estimation is unnecessary if the reader is willing to focus on the asymptotic value of the derivative.

Andrews et al. (2017) plot the local sensitivity of the estimators of key structural parameters in

Gourinchas and Parker (2002) with respect to the statistics ŝ targeted in estimation. They argue that

the local properties of h(·) revealed by this exercise make qualitative sense in light of the economic

analysis and discussion in Gourinchas and Parker (2002), and that knowledge of sensitivity could

be useful to a reader who wishes to learn from ĉ but is concerned about misspecification of the

assumptions a0.

Example. (continued) Continue to suppose that the first m elements of b are known under πr, but

now suppose that Ω may not be commonly known. The estimator ĉS can be written as

ĉS =
(

ι
′S′
(
SΩS′

)−1 Sι

)−1
ι
′S′
(
SΩS′

)−1 ŝ = ΛSŝ

for ŝ = Sĉ and ΛS the sensitivity of ĉS to ŝ as defined by Andrews et al. (2017), which depends on

Ω. Reporting (ĉS,σS,ΛS) — that is, taking ĉ = ĉS and t̂ = (σS,ΛS) for σS the standard error of ĉS

— is weakly more transparent for all readers r than reporting (ĉS,σS) alone. To see that it may be

strictly more transparent, suppose that reader r has a normal prior on c, c∼N
(
0,ω2

r
)
. The average

posterior variance for reader r based on the full data is then bounded below by Er [Varr (c|D,b)] =
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Er

[(
ω−2

r +σ
−2
0
)−1
]

for σ0 the usual standard error of ĉ0, while the average posterior variance

based on observing (ĉS,σS,ΛS) is Er

[(
ω−2

r +σ
−2
S

)−1
]
. This bounds the transparency of reporting

(ĉS,σS,ΛS) from below. By contrast, the transparency of (ĉS,σS) alone may be small when br is

large. Consider, for instance, priors which imply that σS is fixed while ΛSbr is uniformly distributed

on some interval. The transparency of (ĉS,σS) goes to zero as Varr (ΛSbr)→ ∞. Intuitively, even

if the reader knows the bias br of estimates based on the first m instruments, to infer the bias of

ĉS they must also know how these m estimates are combined to form ĉS. Absent such knowledge,

uncertainty about how the bias in ŝ translates to bias in ĉS renders ĉS uninformative when br is

large.

5.2 Show How Much the Estimator Depends on the Descriptive Statistics

Basing estimation directly on ŝ may not be feasible or desirable. For example, it may be that

even though ŝ are intuitive statistics closely related to c, their distribution is not sufficient for

identification. It may be that ŝ identifies c but that identification using these statistics alone is weak.

Or, it may be that the share of readers who accept the researcher’s exact parametric assumptions is

large enough that the efficiency gain for these readers from learning the MLE outweighs the loss

of transparency for those who are more skeptical.

In these cases, ĉ = h(ŝ)+νh for νh not necessarily equal to zero. Then, making clear to readers

the magnitude of νh as well as the form of h(·) can improve transparency. An example is where

at least some readers believe that c = Γ(s,a), in which case they may find ĉ especially informative

when νh ≈ 0 and h(·)≈ Γ(·,a).
Characterizing the finite-sample relationship between ĉ and ŝ, either analytically or numeri-

cally, can be difficult. For example, numerical exploration by repeatedly drawing data D from one

or more data-generating processes and then computing the implied values of ĉ and ŝ may be very

computationally demanding.

Andrews et al. (2019) show that, under asymptotic conditions related to those considered in

Andrews et al. (2017), many common estimators can be represented in the form

ĉ≈ constant +Λŝ+ν

for Λ an analogue of the local sensitivity defined in Andrews et al. (2017), and ν asymptotically

uncorrelated with ŝ. Andrews et al. (2019) propose to measure the size of ν by the local informa-
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tiveness of ŝ for ĉ, which is given by

∆ =
AVar (Λŝ)
AVar (ĉ)

= 1− AVar (ν)
AVar (ĉ)

for AVar (V ) the asymptotic variance of a random variable V . When local informativeness ∆ = 1,

Andrews et al. (2019) show that (under the maintained conditions) ν = 0 and the setting collapses

to that considered in section 5.1. When local informativeness ∆ = 0, ĉ is asymptotically indepen-

dent of ŝ, in which case a reader believing that c = Γ(s,a) may not find ĉ to be very informative

about c.

Andrews et al. (2019) show that it is often possible to approximate local sensitivity and

local informativeness without the need for additional simulation or estimation of the structural

model. Moreover, although both local sensitivity and local informativeness can depend on the

data-generating process, Andrews et al. (2017, 2019) show that the approximations they consider

hold under local violations of the researcher’s assumptions, meaning that these objects can be

interpreted even if the reader does not have complete confidence in the researcher’s model.

Andrews et al. (2019) apply their framework to Hendren’s (2013) study of the market for long-

term care insurance. They take ĉ to be the maximum likelihood estimator for the minimum pooled

price ratio, a quantity that determines the range of preferences for which insurance markets cannot

exist, and ŝ to be statistics summarizing the joint distribution of individuals’ subjective beliefs

about the likelihood of needing long-term care and their eventual need for such care. Andrews et

al. (2019) estimate that these descriptive statistics have an informativeness of 0.7 for the estimator

ĉ. Andrews et al. (2019) discuss reasons why learning informativeness could help readers of

Hendren (2013) interpret the estimate ĉ.

Example. (continued) The asymptotic results of Andrews et al. (2019) hold exactly in this ex-

ample. To illustrate the value of informativeness calculations, let us again suppose that under πr

the first m elements of b are known to equal br, and c ∼ N
(
0,ω2

r
)
. Let us further suppose that

reader r thinks the degree of misspecification is bounded relative to sampling uncertainty, in the

sense that Prr

{√
b′Ω−1b < µ2

}
= 1 for some constant µ . In this case, one can show that for ĉ0

again the maximum likelihood estimator, the increase in reader r’s average posterior variance from

observing (ĉ0,σ0,Λ0) for σ0 the standard error of ĉ0 and Λ0 the sensitivity of ĉ to ŝ, rather than the
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full data, is bounded above by

Er

[(
ω2

r

ω2
r +σ2

0

)2

σ
2
0 µ

2 (br)(1−∆)

]

for µ (br) =

√
µ2−b′r (SΩS′)−1 br.22 Thus, when reader r is confident about the impact of mis-

specification on ŝ and the informativeness ∆ of ŝ for ĉ0 is high, observing ĉ0 is nearly as good as

observing the full data.

6 Sensitivity Analysis

A key premise of the model in section 2 is that different readers may accept different assumptions.

Ideally the researcher would report the estimator that is optimal for each reader. When the set of

assumptions entertained by the readers is small enough, this ideal may be achievable. This situation

is one way to understand the sensitivity analysis that is common in research articles, showing how

the key conclusions of the analysis change under a small set of assumptions different from those on

which most of the analysis is based. When the set of assumptions entertained by the readers is rich,

however, such an approach has limits, and it is desirable to help each reader assess how their own

ideal estimator differs from the one reported by the researcher. In cases where a key conclusion of

the researcher’s analysis is qualitative, it may be useful, in addition, to report the properties of a

data realization that would have led to a different qualitative conclusion.

6.1 Show the Conclusion under Specific Alternative Assumptions

Suppose that under each set of assumptions a ∈A there is a natural estimator ĉa (e.g. maximum

likelihood or efficient GMM). If the researcher knows that all (or many) readers entertain only a

limited set of assumptions, in the sense that each prior πr puts mass on a single a ∈ A and the

number of distinct elements |A | is small, then it is natural to report the estimate ĉa under each of

element of A .

22Reader r’s average posterior variance from observing D is bounded below by that from observing both D and b. In
the latter case, r’s posterior mean is Er [c|D,b] = w2

r
w2

r+σ2
0

(
ĉ0− Λ̃b

)
, for Λ̃ =

(
ι ′Ω−1ι

)−1
ι ′Ω−1 the sensitivity of ĉ0

to ĉ. When r observes only (ĉ0,σ0,Λ0) they cannot construct Er [c|D,b], but can construct c∗ = w2
r

w2
r+σ2

0
(ĉ0−Λ0br) ,

and the results of Andrews et al. (2019) show that if
√

b′Ω−1b < µ2, then
(

Λ̃b−Λ0br

)2
≤ σ2

0 µ2 (br)(1−∆) .
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For example, in their study of automobile demand Berry et al. (1995, Table IX) report how

a key conclusion—the markup associated with each of a set of vehicle models—changes under

six different alternative models, each of which corresponds to a modification of the cost or utility

function specified in the baseline model. A reader who believes in one of these alternative speci-

fications a j is therefore able to learn about c from an estimator that is asymptotically valid under

a j. Tables reporting estimates of key parameters of interest under alternative assumptions are a

common feature of many applied research papers (see, e.g., Gourinchas and Parker 2002, Table

V).23

It is useful to contrast such a sensitivity analysis with a bounds analysis that reports the set

of estimates {ĉa : a ∈A } without specifying which estimate corresponds to which assumption

(see e.g. Leamer 1981). In some cases the mapping from assumptions to elements of the set of

estimates may be obvious, at least for extreme points (e.g. the upper and lower bounds). In other

cases, however, a bounds analysis can be less transparent than a sensitivity analysis with respect

to the same set of assumptions. Similar considerations can apply to a partial identification-robust

analysis that ensures validity under all a∈A .24 At the same time, bounds and identification-robust

analyses often remain feasible with large sets of assumptions (again, see e.g. Leamer 1981).

6.2 Show How the Conclusion Depends on Assumptions

If the set of assumptions A entertained by the readers is sufficiently rich, then reporting an esti-

mator ĉa associated with each assumption a ∈ A is no longer feasible. A possible alternative is

to provide information about the (possibly random) function u(a) = ĉa− ĉa0 that relates the esti-

mator under the researcher’s baseline assumption a0 to the natural one under the reader’s preferred

assumption a. If all readers knew u(·), then each reader could adjust the baseline estimate ĉa0 to

reflect the reader’s own preferred assumption a.

The omitted variables bias formula (OVBF) is perhaps the most famous tool for intuiting the

23We focus on cases where c is point-identified under each a ∈A . When point identification may fail, the researcher
can report an estimate of the identified set under each a∈A . If the assumptions in A can be ranked in increasing or-
der of strength, this approach allows the reader to see how conclusions sharpen with each incremental strengthening
of the assumptions. See the discussion in, for example, Manski (2003, 2007) and Tamer (2010).

24To give an extreme example, consider the instrumental variables model discussed in section 2.2. The maximum
likelihood estimator for c under assumption a in this setting is ĉ−a/γ̂ , for ĉ again the usual instrumental variables
estimator, so the set of maximum likelihood estimators under a ∈ A is equal to R almost surely, and thus has
transparency equal to zero for readers r who find the full data informative. Correspondingly, the identified set for c
under A is equal to R, and therefore any confidence set with coverage 1−α for c under all a ∈A and η ∈ H must
have infinite length with probability at least 1−α . See Dufour (1997).
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properties of u(·). Given beliefs a about the covariance properties of an omitted regressor, the

OVBF allows a reader to determine the bias in the estimator of a given coefficient resulting from

the exclusion of that regressor, which might correspond to a researcher’s baseline assumption a0.

The OVBF thus avoids the need to enumerate the bias implied by all possible beliefs about omitted

regressors. Conley et al. (2012) generalize the OVBF to an instrumental variables setting, showing

how to translate beliefs about violations of the exclusion restriction to beliefs about bias in the

IV estimator. Like the OVBF, Conley et al.’s (2012) approach allows different readers to reach

different conclusions regarding the appropriate adjustments to the reported estimator.

Andrews et al. (2017) study the problem of translating these ideas to nonlinear structural mod-

els, where the OVBF does not apply directly. In the wide class of models that can be estimated via

minimum distance, the identifying assumptions can be represented as restrictions on the popula-

tion value a of a moment condition under the true value of the structural parameters. For example,

in nonlinear instrumental variables estimators such as that in Berry et al.’s (1995) study of automo-

bile demand, the restriction is that a vector of observed instruments is orthogonal in population to

a vector of unobserved structural errors. In indirect inference and other moment-matching type es-

timators, such as that in Gourinchas and Parker (2002), the restriction is that the population values

of some statistics must match those predicted by the model.

In such settings, specific violations of the identifying assumptions can be represented as spe-

cific alternative restrictions—for example, that the covariance between the instruments and the

structural error takes some specific nonzero value in population, or that the model systematically

mispredicts the population value of some statistics by some specific amount. For linear models,

the OVBF and its analogues tell the reader how to adjust the estimator to accommodate such per-

turbations to the researcher’s identifying assumptions. For nonlinear models, we are not aware of

a similar formula, and exhaustively checking the implications of each possible perturbation can be

costly or impossible.

Andrews et al (2017) show that if the perturbations are local—that is, small in an appropriate

asymptotic sense—then the implied asymptotic bias of the estimator is given by Λ(a−a0), where

the coefficients Λ are the local sensitivity discussed in section 5.1, now replacing the descriptive

statistics with the vector of estimation moments evaluated at the true parameter value. It is thus

practical to approximate and report the coefficients of the asymptotic bias formula in many appli-

cations. In this sense, local sensitivity provides an analogue of the OVBF for general minimum

distance estimators under small violations of identifying assumptions.
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Andrews et al. (2017) report the local sensitivity of the estimated average vehicle markup

to violations of the identifying assumptions in Berry et al. (1995). This analysis shows that the

estimator is especially sensitive to violations of the assumption that unobserved shocks to the utility

from or cost of producing a given vehicle model are orthogonal to the number of other models

offered by the same or rival firms. Berry et al. (1995, p. 854) discuss the economic interpretation

of these and other identifying assumptions. Andrews et al. (2017) show how a reader could use

information on sensitivity to approximate the effect of different economically interesting violations

of the identifying assumptions. Importantly, this approach does not require the researcher to know

the alternative assumptions a of interest in advance, as readers can use information about sensitivity

to calculate the implications of different assumptions a for themselves. Andrews et al. (2017)

report a similar analysis of the sensitivity of the estimated preference parameters in Gourinchas

and Parker (2002) to violations of the identifying assumptions.

6.3 Show How to Reverse the Conclusion

Some of the questions answered by structural analysis are qualitative—e.g., will a given policy in-

crease or decrease consumer surplus? Will a merger increase or decrease product quality? Empiri-

cal answers to such questions depend, by definition, on the realization of the data. To characterize

this dependence, it can be helpful for researchers to discuss data realizations that would have led

to the opposite conclusion. In some cases the properties of the data required for such a reversal

are obvious. For example, if the effect of some policy on an outcome is estimated in a multivariate

linear regression, then to reverse the researcher’s conclusion about whether the policy increases the

outcome requires changing the sign of the residual covariance between the policy and the outcome.

For estimators in nonlinear models, by contrast, it is sometimes not obvious what realizations

of the data would lead to conclusions different from the one reached by the researcher’s analysis,

or even whether such realizations exist. We think that exhibiting such realizations can improve

transparency, both by showing that the researcher’s answer to the qualitative question is indeed

an empirical one, and (in the spirit of section 5.1 above) showing what sort of data realization is

associated with a given conclusion.

Such an exercise might be called a reverse sensitivity analysis: rather than changing the in-

puts (e.g., data or assumptions) and investigating the effects on the outputs (conclusions), as in a

traditional sensitivity analysis, here we seek to change the outputs and reverse engineer sufficient

changes to the inputs. In this section we focus on describing the required changes in the data or
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parameters. A complementary approach characterizes the required change in assumptions (see e.g.

Horowitz and Manski 1995, Kline and Santos 2013, and Masten and Poirier forthcoming).

Goettler and Gordon (2011) study whether Intel is more innovative in the production of micro-

processors as a result of competition from AMD. To answer this question they estimate a dynamic

model of the microprocessor industry and simulate behavior under alternative market structures.

Goettler and Gordon (2011) conclude that the presence of AMD reduces the rate at which Intel

innovates. They observe that their model is able to generate the opposite conclusion and exhibit

parameter values for which the presence of the competitor increases the rate of innovation.

Likewise, Cuésta et al. (2019) study whether vertical integration between hospitals and insurers

raises total surplus in the health care system. They find that it does. The paper shows that changing

the degree of consumer price sensitivity can reverse this qualitative conclusion.

Example. (continued) For simplicity, we limit attention to a binary conclusion (e.g., that ĉ is

positive). Following Abadie (forthcoming), consider how much reader r updates their beliefs about

c based on learning that ĉ > 0. As noted in Abadie (forthcoming), the law of total probability

implies that for any set of values C for c,

|Prr {C }−Prr {C |ĉ > 0}|= Prr {ĉ≤ 0}
Prr {ĉ > 0}

|Prr {C }−Prr {C |ĉ≤ 0}| ≤ Prr {ĉ≤ 0}
Prr {ĉ > 0}

.

Hence, if reader r thinks it very likely that the model will generate a positive estimate, Prr {ĉ > 0}≈
1, they barely update their beliefs when told that ĉ > 0. By contrast, if a researcher can provide

evidence that plausible realizations of the data would have led to a different conclusion, learning

that ĉ > 0 becomes much more informative. To formalize this in our model, suppose the report is

(1{ĉ > 0} , t̂ (X ,Ω)), where Prr {ĉ > 0|t̂}� Prr {ĉ > 0}. For example, t (X ,Ω) might record a set

of values Y for Y that would have led to negative estimates. Since we still have

|Prr {C |t̂}−Prr {C |ĉ > 0, t̂}|

=
Prr {ĉ≤ 0|t̂}
Prr {ĉ > 0|t̂}

|Prr {C |t̂}−Prr {C |ĉ≤ 0, t̂}| ,

the reader may now update substantially after learning that ĉ > 0.
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7 Conclusion

Estimators of nonlinear models with multiple interacting agents or sectors can be complicated

functions of the data and therefore difficult for readers to understand. Yet such models form an

important part of the economist’s toolkit for many real-world problems. Fortunately, economists

working with such models have developed many practices that aid the transparency of their re-

search. Here we survey those practices and suggest areas for further improvement. Many of these

improvements can be adopted at little or no computational cost to the researcher.
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betting data to individual risk preferences. Econometrica 87(1): 1-36.

Conley, Timothy G., Christian B. Hansen, and Peter E. Rossi. 2012. Plausibly exogenous. Review

of Economics and Statistics 94(1): 260–272.
Crawford, Gregory S., Robin S. Lee, Michael D. Whinston, and Ali Yurukoglu. 2018. The welfare

effects of vertical integration in multichannel television markets. Econometrica 86(3): 891-
954.
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