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1 Introduction

New technologies are the key drivers of increases in living standards over long
horizons. Yet, more recently, a literature has shown that they may have strong
distributional consequences at shorter horizons (for a review, see Acemoglu and
Autor, 2011). If an economy’s adjustment margins vary as horizons lengthen,
then focusing on short or long horizons alone risks missing the overall impact of
technological innovations on labor markets as well as their average and distribu-
tional welfare consequences. Such concerns are particularly important when the
adjustment is slow and takes many generations. How then do economies adjust
to technological innovations over different horizons? Why are some technological
transitions particularly unequal and slow to play out?

We begin by developing a theory to study technological transitions driven by
both worker reallocation within a generation and changes in the distribution of
skills across generations. The transitional dynamics of this economy can be rep-
resented as a q-theory of skill investment. We use this in two ways. First, to
characterize how the nature of the technological innovation and associated skills
determine the importance of the two theoretical adjustment margins and, as a
result, how slow and unequal technological transitions are. Second, to connect
these determinants to measurable, short-horizon changes in labor market out-
comes within and between generations. Three related pieces of evidence for de-
veloped countries suggest that transitions following cognitive-biased innovations
are slow and unequal because they are mostly driven by skill changes across gen-
erations – rather than worker reallocation within a generation – due to the high
specificity of cognitive skills. Naively extrapolating from observed changes at
short horizons therefore misses much of the adjustment at longer horizons, thus
underestimating the average welfare gains and overestimating the distributional
consequences of cognitive-biased innovations.

The theory has four distinct features. First, there are overlapping generations
of workers with stochastic lifetimes, as in Yaari (1965) and Blanchard (1985). Sec-
ond, within each generation, workers are heterogeneous over a continuum of skill
types. A type determines the worker’s productivity in the two technologies of the
economy, as in Roy (1951). Given the relative technology-specific wage at a point
in time, there is a threshold determining which skill types self-select into each of
the two technologies. Technology-skill specificity – i.e., the change in productivity
when skill types are assigned to different technologies – then determines how

1



sensitive the assignment threshold is to changes in relative technology-specific
wages. Third, the output of the two technologies is combined to produce a final
consumption good, as in Katz and Murphy (1992), Ngai and Pissarides (2007),
and Buera et al. (2011). Fourth, given future relative technology-specific wages,
workers make a costly investment upon entering the labor market that deter-
mines their skill type for their lifetime, similar to Chari and Hopenhayn (1991),
Caselli (1999) and Galor and Moav (2002). The cost of skill investment for entering
workers then determines how different the skill distribution is across generations
following changes in future relative wages.1

The equilibrium of this economy is a joint path for the skill distribution, the as-
signment of skill types to technologies, and the relative technology-specific wage
and output. It entails a complex fixed-point problem: forward-looking entrants
make skill investment decisions based on the expected future path for the rela-
tive technology-specific wage, which determine how the skill distribution evolves
over time and, ultimately, the actual equilibrium path of the relative technology-
specific wage and all other outcomes.

Our first result reduces the dimensionality of this fixed-point problem. It es-
tablishes that the approximate equilibrium of this economy can be represented
as a q-theory of skill investment. The path for the skill distribution is only a
function of two variables at each point in time: the present-discounted value of
the log-relative technology-specific wage (q) and the threshold determining the
assignment of skills to technologies (which plays the role of the pre-determined
variable). We show that a simple system of linear differential equations charac-
terizes the equilibrium dynamics of these two variables. Thus, we solve for the
equilibrium dynamics by keeping track of these variables and not the skill distri-
bution itself. Our approach is reminiscent of those in Perla and Tonetti (2014) and
the special case with linear objectives in Lucas and Moll (2014) which characterize
the dynamics of a distribution by tracking the evolution of a threshold.

Our second result derives in closed-form the transitional dynamics following
a one-time, permanent increase in the productivity of all skill types employed
in one of the technologies. We refer to this as a skill-biased technological inno-
vation. The logic of the economy’s adjustment follows immediately from the q-
theory representation of the equilibrium. The relative productivity increase leads
to an increase in the relative labor demand and wages in the improved technol-

1We formalize this directed skill investment problem by allowing workers to enter a skill lottery whose
cost is proportional to the relative entropy between the chosen lottery and a reference distribution. The opti-
mal lottery is the multinomial logit function over a continuum, similar to standard discrete-choice models.
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ogy. On impact, marginal skill types within each generation reallocate into that
technology. The increase in current and future relative wages leads younger en-
tering generations to invest in those skills that are more complementary to the
improved technology. Along the transition, as younger generations replace older
ones, q falls and relative output increases because the economy’s skill distribution
tilts towards skills more complementary to the improved technology. To evaluate
how slow the transition is, we define the discounted cumulative impulse response
(DCIR). For old generations born before the innovation, the DCIR measures how
different the adjustment they expect to see during their lifetime is compared to
the overall (long-run) adjustment. We say that the adjustment is slower whenever
they expect to miss more of the overall adjustment (i.e., the DCIR is larger). Cru-
cially, we also show that the DCIR of q is a central determinant of the average and
distributional welfare consequences of new technologies.

This result shows that the impact of new technologies on the economy may
significantly change over time due to the endogenous evolution of the skill distri-
bution across generations. It provides a micro-foundation for the idea that supply
elasticities tend to be lower at shorter horizons than longer horizons, a form of
Samuelson’s LeChatelier principle. Our micro-foundation points to two types
of risks associated with ignoring dynamics induced by changes in the skill dis-
tribution across generations. The first arises when extrapolating from observed
responses in the economy that span much less than a generation. Such extrap-
olation will overestimate inequality changes and underestimate average welfare
gains. The second arises when extrapolating from past technological transitions
to different contexts: a type of threat to external validity. This leads to biased pre-
dictions about the economy’s dynamic adjustment whenever the nature of tech-
nology and skills, or the underlying flexibility of skill investment, significantly
differs across episodes.

Our third result presents comparative static exercises that speak to why some
technological transitions are particularly unequal and slow to play out. As such,
these exercises help interpret differences between past or future transitions where
the nature of technological innovations and associated skills differ. First, we show
that an economy where technology-skill specificity is higher has a slower, more
back-loaded adjustment path to the new long-run equilibrium. The q-theory anal-
ogy again delivers the intuition for this result. When technology-skill specificity
is higher, there is less worker reallocation across technologies in the short-run
and, therefore, the increase in lifetime inequality q is larger. This strengthens the
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incentives of young entering generations to invest in those skills that are more
complementary to the improved technology. As a result, the adjustment is slower
because transitional dynamics become more important as larger changes in the
skill distribution take place. Second, we show that a lower cost of skill investment
for young generations makes the adjustment slower as well, both directly and by
amplifying the effects of technology-skill specificity. In both cases, the more rele-
vant margin of adjustment is not the reallocation of workers within a generation
but the changes in the skill distribution across generations.

Our fourth result connects the degree of technology-skill specificity and the
cost of skill investment to observable changes in labor market outcomes within
and between generations. In particular, we focus on short-run implications that
can be credibly measured in most datasets. Our measurement insight is that,
in the short-run, economies with higher technology-skill specificity are associated
with weaker within-generation changes in the relative employment of older work-
ers across occupations (or sectors), but stronger between-generation differences in
the relative employment of younger and older workers. In contrast, a lower cost
of skill investment for entering generations is also associated with larger between-
generation differences in relative employment, but has no effect on the responses
for older workers. Such generation-specific changes are common in empirical
analysis of how economies adjust to different types of shocks.2 By connecting
them to structural parameters, our theory shows how these measurable moments
in the short-run are informative about the economy’s transitional dynamics and,
consequently, how unequal and slow the adjustment will be.

In the second part of the paper, we explore our theory’s observable predictions
to provide three pieces of evidence indicating that technology-skill specificity and
changes in the skill distribution across generations are relevant to understand
how developed economies adjusted to recent cognitive-biased technological inno-
vations. First, we analyze employment trends in nine broad occupation groups
in eighteen developed countries. We document that, in all countries, employ-
ment growth in the three most cognitive-intensive occupations was stronger for
younger workers than for older workers. Second, we use microdata to provide
a more detailed investigation of these responses in Germany. Controlling for
a number of confounding factors, we show that employment and payroll grew
more in occupations more intensive in cognitive tasks. This effect is strong for
younger generations but weak for older generations. We also explore the unique

2For example, see Kim and Topel (1995), Card and Lemieux (2001), Autor and Dorn (2009)
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large-scale German training program to document higher growth in the num-
ber of trainees in more cognitive intensive occupations, providing direct evidence
that younger generations invest more in cognitive skills. Finally, following Falck
et al. (2014), we use pre-determined conditions of the German telephone network
to obtain quasi-experimental variation across regions in the adoption timing of
broadband internet in the early 2000s. By comparing late to early adopting re-
gions, we estimate impulse response functions that show an increase in the rela-
tive employment and payroll of more cognitive-intensive occupations starting in
2005. The estimates are again different for older and younger generations. The
impact on relative employment is small and nonsignificant for older generations,
but it is positive and statistically significant for younger generations.

In sum, this evidence suggests that cognitive-skill specificity is high and that
the supply of cognitive skills is elastic at longer horizons. Parameterizing our
model to match the empirical impulse responses for Germany, we find that these
two features make cognitive-biased transitions particularly unequal and slow.
As a result, we quantify that, compared to naive extrapolations from observed
changes on impact, the true average welfare (lifetime welfare inequality) increase
across generations is about 50 percent higher (lower) following a relatively large
cognitive-biased innovation. Had technology-skill specificity been lower, such in-
novation would have led to a faster and less unequal transition instead, featuring
smaller between-generation differences in occupation composition changes.3

Related literature. Our paper is related to several strands of the literature. A
long literature has analyzed structural transformation in the form of long-run
reallocation driven changes in relative demand across sectors – e.g., Ngai and
Pissarides (2007), Rogerson (2008), Buera et al. (2011), and Buera and Kaboski
(2012). Recently, Lagakos and Waugh (2013) show that endogenous skill-sector
sorting affects the process of structural transformation. Moreover, a number of
papers have also emphasized between-generation differences in employment real-
location across sectors following long-run changes in sectoral productivity growth
(Kim and Topel, 1995 and Hobijn et al., 2019) or schooling (Porzio and Santangelo,
2019). We make two contributions to this literature. First, we provide a tractable
theory to analyze how skill heterogeneity within and across generations shapes
the transitional dynamics induced by technological innovations. This allows us to

3Consistent with the idea that the nature of technological innovations and skills may be different across
episodes, we also document that, compared to most recent years, these between-generation differences were
smaller in the United States and Germany in the 1960s and 1970s.
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characterize how fast the transition is, a focus we share with Gabaix et al. (2016).
We use this characterization to point out which features of the economy lead to
slow adjustment dynamics and large biases from welfare calculations that ignore
them. Second, we estimate impulse response functions to a technological innova-
tion in Germany and show how they discipline our theoretical mechanisms.

The only source of dynamics in our theory is the endogenous change in the
distribution of skills across generations. This mechanism is consistent with recent
evidence documenting the impact of labor demand shocks on young individu-
als’ decisions of educational attainment (Atkin, 2016 and Charles et al., 2018)
and field of study (Abramitzky et al., 2019, Ghose, 2019). We add to this litera-
ture by documenting that cognitive-biased innovations differentially affect young
employment and training in cognitive-intensive occupations in Germany. Several
papers have proposed alternative sources of dynamics to study technological tran-
sitions, including sluggish labor mobility across sectors (Matsuyama, 1992), tech-
nology diffusion across firms (Atkeson and Kehoe, 2007), firm-level investment
in R&D (Atkeson et al., 2018), endogenous creation of new tasks for labor in pro-
duction (Acemoglu and Restrepo, 2018), mobility costs of heterogeneous workers
(Dvorkin and Monge-Naranjo, 2019), and rising wealth inequality via permanent
changes in the returns to wealth following increases in automation (Moll et al.,
2019). Our paper complements this literature by analyzing empirically and theo-
retically how the endogenous dynamics of skill heterogeneity across generations
affects the economy’s adjustment to skill-biased technological innovations.

An extensive literature has analyzed the labor market consequences of techno-
logical innovations. We depart from the canonical framework in Katz and Murphy
(1992) by modeling the supply of skills across technologies at different time hori-
zons. Specifically, given the skill distribution at any point in time, the short-run
skill supply to each technology arises from the static sorting decision of workers.
This static assignment structure has been used in a recent literature analyzing
how labor markets respond to a variety of shocks – e.g, Costinot and Vogel (2010),
Hsieh et al. (2013), Burstein et al. (2016), and Adão (2016). In addition, our theory
entails slow-moving changes in skill supply that arise from the entry of young
generations with different skills than those of previous generations, as in Chari
and Hopenhayn (1991), Caselli (1999) and Galor and Moav (2002). We show that
the combination of these features yields tractable expressions for the equilibrium
dynamics that resemble a q-theory of skill investment. We exploit the parsimony
of our theory to establish that higher levels of technology-skill specificity and skill
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investment costs for younger generations generate slower adjustment following
skill-biased innovations. We then link the two adjustment margins in our theory
to observable responses of labor market outcomes within and between genera-
tions. Our empirical application indicates that separately allowing for these two
forces is important in the context of the recent experiences of developed countries
in general, and Germany in particular.

Our paper is also related to the literature that has estimated the distributional
consequences of shocks to the demand and supply of skills – for a review, see
Acemoglu and Autor (2011). Our empirical analysis follows the literature study-
ing the impact of new technologies on the demand of skills across occupations
with different task intensity – e.g., Autor et al. (2003) and Acemoglu and Restrepo
(2017). As Akerman et al. (2015), we estimate the labor market consequences
of broadband internet adoption. While they focus on the impact on educational
composition of employment in Norwegian firms, we estimate its effect on the oc-
cupation composition of employment across German local labor markets. Similar
to Autor and Dorn (2009), we find that the impact of new technologies differs
for younger and older workers. Relative to this literature, our results indicate that
reduced-form evidence estimated at short horizons is informative about structural
parameters governing the adjustment to new technologies, but they also caution
against directly extrapolating from it when technological transitions are slow.4

2 A Model of Skilled-biased Technological Transitions

We consider a closed economy in continuous time. There is a single final good
whose production uses the input of two intermediate goods. The production
technology of each intermediate good requires workers to perform a technology-
specific task bundle. We denote the two technologies as high-tech (k = H) and
low-tech (k = L). There is a continuum of worker skill types, i ∈ [0, 1]. The skill
type determines the worker’s productivity with each production technology.

4A full account of inequality trends would require analyzing not only the impact of shocks to skill demand
but also how the economy adjusts to shocks to the supply of skills, as in Katz and Murphy (1992) and Goldin
and Katz (2009). For instance, Card and Lemieux (2001) show that generation-specific skill supply shocks are
important determinants of inequality trends. Similarly, we incorporate skill differences across generations.
However, while it would be possible to study the consequences of skill supply shocks in our theory, we focus
on the consequences of shocks to skill demand when skill supply responds across generations.
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Final good. Production of the final good is a CES aggregator of the two inputs:

Yt =
[
(AtXHt)

θ−1
θ + (XLt)

θ−1
θ

] θ
θ−1 (1)

where θ > 0 is the demand elasticity of substitution between the low-tech and the
high-tech intermediate inputs, and At is a shifter of the relative productivity of
the high-tech input (as in Katz and Murphy, 1992).

Conditional on input prices, the cost minimization problem of firms producing
the final good implies that the relative spending on the high-tech input is

yt ≡ ωt
XHt

XLt
=

(
ωt

At

)1−θ

, (2)

where ωt ≡ ωHt/ωLt is the relative price of the high-tech good. We normalize the
price of the low-tech good to one, ωLt ≡ 1.

In a competitive environment with zero profits, the final good price is

Pt = (1 + yt)
1

1−θ . (3)

Assignment of skills to technologies. We assume that a worker’s skill type de-
termines her productivity with the two technologies in the economy. For a worker
of type i, α(i) is the overall productivity and σ(i) is her differential productivity
in high-tech production. The production functions of L and H are respectively

XLt =
∫ 1

0
α(i)sLt(i)di, (4)

XHt =
∫ 1

0
α(i)σ(i)sHt(i)di, (5)

where skt(i) is the density of workers employed with technology k at time t.
We assume a competitive labor market with zero profit in production. In

equilibrium, the wage of skill type i with the H and L technologies are respectively

wHt(i) = ωtσ(i)α(i) and wLt(i) = α(i). (6)

As in Roy (1951), workers self-select across technologies to maximize labor
income. Thus, the labor income of a worker with skill type i is

wt(i) = max{ωtσ(i), 1}α(i). (7)
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The technology-skill assignment in equation (7) plays a central role in deter-
mining the economy’s adjustment to technological shocks. Equation (7) illustrates
that such an assignment depends on the endogenous price ωt defining the rela-
tive value of one unit of effective labor employed in H production, as well as the
exogenous function σ(i) defining the differential productivity of type i in H pro-
duction. Without loss of generality, assume that σ(i) is increasing: we order types
such that higher i types have higher relative productivity in high-tech production.

In our theory, ωt is a natural measure of inequality as it is the endogenous
relative wage rate of skill types employed in different technologies conditional on
their productivity. In what follows, we will refer to ωt as the relative technology-
specific wage or, sometimes, simply as the relative wage.5

Skill investment. We now endogenize the distribution of skills by allowing
workers to direct their skill investment decisions to target particular skill types.
After the equilibrium definition, we discuss the interpretation of our main as-
sumptions and why they yield a tractable theory of technological transitions.

We consider an overlapping generations setting in which the birth and death
of workers follow a Poisson process with rate δ. At each point in time, workers
use their labor earnings to buy the final good. Utility from consumption is the
present value of the log-utility flow discounted at rate ρ. For type i born at time
t, expected utility from consumption is then

Vt(i) =
∫ ∞

t
e−(ρ+δ)(s−t)log

(
ws(i)

Ps

)
ds. (8)

Crucially, we next let workers invest in skills at birth taking into account the
value of future earnings streams. Given the future path for the wage distribution
{ws(i)}s>t, workers born at time t can pay a utility cost to select a lottery s̃t(i) over
skill types. If they do not pay the cost, their type is drawn from an exogenous
distribution of innate ability, s̄t(i). A worker’s type is then fixed during their
lifetime.6

Formally, we assume that the cost of the lottery is proportional to the Kullback-
Leibler divergence between the lottery s̃t(i) and the baseline distribution s̄t(i), so

5Note that changes in ωt are not identical to changes in the relative labor income of H employees because
of endogenous changes in the “selection” of skill types in H implied by (7) (Heckman and Honore, 1990).

6Appendix B includes extensions where (i) workers can re-optimize their skills after the arrival of a new
technology, and (ii) the innate ability density of type i is increasing in the density of workers with that type
in the economy – a form of “learning from others” externality.
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that workers of the cohort born at time t solve the skill investment problem:

max
s̃t(.):

∫ 1
0 s̃t(i)di=1

∫ 1

0
Vt(i)s̃t(i) di− 1

ψ

∫ 1

0
log
(

s̃t(i)
s̄t(i)

)
s̃t(i) di. (9)

The positive parameter ψ governs the cost of targeting particular skill types. In
the limit when ψ→ 0, the cost of targeting a particular skill type is infinite and the
economy’s skill distribution does not respond to changes in the lifetime earnings
of different skill types. Whenever ψ > 0, the optimal lottery s̃t(i) endogenously
responds to the relative present discounted value of different skill types, Vt(i).

Equilibrium. Because only new generations choose skill lotteries, the skill dis-
tribution st(i) follows the Kolmogorov-Forward equation,

∂st(i)
∂t

= −δst(i) + δs̃t(i). (10)

Finally, the economy’s equilibrium must satisfy market clearing for all t. By Wal-
ras’ law, it suffices that relative demand and supply of the H good are equal:

yt = ωtxt (11)

where yt is given by (2) and xt is the ratio of H to L production given by (4)–(5).

Definition 1 (Competitive Equilibrium) Given an initial skill distribution s0(i) and
exogenous paths for {At, s̄t(i)}t≥0, a competitive equilibrium is a path of the technology-
skill assignment {Gt(i) : i ∈ [0, 1] → {H, L}}t≥0, the skill distribution {st(i)}t≥0, the
skill lottery {s̃t(i)}t≥0, the relative value of output {yt}t≥0, the relative wage and final
price index {ωt, Pt}t≥0, such that

1. Given {ωt}t≥0, {Gt(i), s̃t(i)}t≥0 are determined by (7) and (9).

2. Given s0(i) and {s̃t(i)}t≥0, {st(i)}t≥0 is determined by (10).

3. For all t ≥ 0, the market clearing condition (11) is satisfied and Pt is given by (3).

Discussion. A number of comments on the assumptions and their economic
interpretation are in order. There are admittedly four strong assumptions that we
make for simplicity and tractability.

The first is that we consider a continuum of skills. As discussed below, this im-
plies that changes in the technology-skill assignment are smooth along the transi-
tion because any relative wage change triggers the reallocation of a positive mass
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of skill types. Moreover, the Roy-like skill heterogeneity yields equilibrium re-
sponses to technological innovations that do not arise in the canonical model with
skills specified with observable attributes (Acemoglu and Autor, 2011). This al-
lows studying how technology-skill specificity affects the economy’s adjustment.

Regarding a skill-type’s economic interpretation, Section 3.1 of the Online Ad-
ditional Material provides a microfoundation of (4)–(5) where production com-
bines individual-level output of each worker’s "cognitive" and "non-cognitive"
task input. A type determines the differential ability to perform cognitive tasks.

Second, we assume that s̄t(i) is exogenous and only new generations invest in
skills. These imply that the flow of new workers to a particular point in the skill
distribution is independent of the current skill distribution (see equation (10)),
allowing us to characterize the skill distribution’s law of motion and the equi-
librium transitional dynamics. This independence arises because skill investment
decisions are independent from a worker’s current skill type. By relaxing both as-
sumptions in Appendix B, we show that our main results do not depend on either
the cost of skill investment being infinite for older generations, nor on the skill
investment technology being independent of the economy’s skill distribution.

Our preferred economic interpretation of these two assumptions is that changes
in relative wages induce older workers to switch towards sectors or occupations
that require similar skills and thus entail minimal re-training. To fundamentally
change career paths by acquiring completely different skills, however, they may
face a high cost. For younger workers, such skill investments are less costly due to
lower opportunity cost, higher ability to learn new skills, or higher work-life hori-
zon. For tractability, we collapse these investments that in reality occur through
formal schooling or on-the-job into a one-time decision upon entry.

Third, we assume that skill investments yield an uncertain outcome in the
form of the skill lottery s̃t(i). We make this assumption only for tractability. Dif-
ferent from theories of uni-dimensional human capital investment, ex-ante identi-
cal workers in our theory can direct their investments to target specific skill types.
Yet, mathematically, this directed skill investment problem is in principle substan-
tially more complex. As we will see below, this assumption delivers a tractable
problem with a non-degenerate skill distribution as a solution. What is important
for our results though is not that workers are ex-ante identical, but (again) the
independence of the skill investment from a worker’s current skill type.7

7It is easy to extend our model to introduce worker-groups that have ex-ante different observed attributes
that only affect s̄(i) and ψ. The overall skill lottery would then be the average of lotteries across worker-
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Our preferred interpretation for the uncertainty of the skill type realization
is that individuals with different unobservables may have heterogeneous returns
to education and on-the-job training. This is in fact consistent with the evidence
in Carneiro et al. (2011). Our model treats this heterogeneity in unobservables
through the uncertainty of the type realization.

Finally, we impose that the cost of a skill lottery takes the form of the entropy
function in (9). Entropy cost functions have a long tradition in macroeconomics
(Sims, 2003, Hansen and Sargent, 2008).8 As discussed later, this function implies
that the optimal skill lottery is a multinomial logit over a continuum.

One interpretation of this environment then follows from its discrete-choice
analog where a worker’s innate ability to acquire skills associated with skill-types
follows a Type 1 extreme-value distribution (e.g., McFadden, 1973). An alterna-
tive interpretation follows from Matějka and McKay (2015). They show that a
multinomial logit choice structure arises when individuals choose actions with
imperfect information about their payoffs while paying an entropy cost for signal
acquisition. In our theory though, having a continuum of skill types is useful
when combined with continuous time because it implies that the dynamic adjust-
ment of all outcomes is smooth along the equilibrium path.

2.1 Static and dynamic equilibrium conditions

Static equilibrium conditions. The endogenous sorting decision in (7) deter-
mines the assignment of skill types to technologies. It implies that types self-select
to work with the technology that yields the highest labor earnings. Thus, high-i
types receive higher relative earnings in H and choose to be employed with that
technology. Since σ(i) is increasing, the assignment is described by a threshold lt
characterizing the type that is indifferent between working with any of the two
technologies. The following lemma formalizes this discussion.

Lemma 1 (Equilibrium Assignment) Worker types i ≤ lt are employed in L with
labor income of wt(i) = α(i). Worker types i > lt are employed in H with labor income
of wt(i) = ωtσ(i)α(i). The threshold is determined by the indifference condition,

ωtσ(lt) = 1. (12)
groups. However, this independence would be violated if the type of a worker affects the relative cost of
particular lotteries. This would be the case, for example, if there was inter-generation transmission of skills,
or skill acquisition had monetary costs in an environment with credit frictions.

8However, the entropy-based cost is not crucial for our main results, since in later sections we take a
log-linear approximation around the stationary equilibrium. What matters is the curvature of the distance
metric around the stationary equilibrium, similar to investment problems with a convex cost of adjustment.
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Lemma 1 links the relative wage ωt to the allocation of skill types across
technologies. Condition (12) is central to understand the impact of technologi-
cal shocks on the allocation of workers across technologies. The slope of σ(.) at
the threshold determines the strength of comparative advantage in H of skill types
slightly below lt compared to skill type lt. Thus, the inverse elasticity of σ(i)
controls the subset of skill types that reallocate across technologies in response to
changes in the relative wage. Formally, (12) implies

η ≡
∣∣∣∣∂ log lt(ωt)

∂ log ωt

∣∣∣∣ = (∂ log σ(lt)
∂ log lt

)−1

,

where lt(ωt) is the implicit function defined by (12).
We say that technology-skill specificity is higher when η is lower because the pro-

ductivity of skills associated with higher i types decreases more when deployed
to the L-technology rather than to the H-technology. As a result, a lower η implies
that the induced worker reallocation following relative wage changes is smaller
in the short-run (when the skill distribution is given).

The technology-skill assignment in Lemma 1 together with equations (4)–(5)
imply that the relative supply of high-tech production is

xt(lt, st) =

∫ 1
lt

σ(i)α(i)st(i)di∫ lt
0 α(i)st(i)di

. (13)

The threshold lt is then uniquely determined by market clearing in (11).

Lemma 2 (Equilibrium Threshold) Given st(i) and At, there is a unique equilibrium
threshold lt that guarantees goods market clearing,

Aθ−1
t σ(lt)θ

∫ lt

0
α(i)st(i)di =

∫ 1

lt
α(i)σ(i)st(i)di. (14)

Proof. See Appendix A.1.

Dynamic equilibrium conditions. We now turn to the entrant’s forward-looking
problem of choosing their skill lottery s̃t(i) given the path of the relative wage
{ωs}s>t. The following lemma shows that the solution to the problem in (9) takes
the form of a multinomial logit function over the continuum of types. In particu-
lar, the investment on high-i types is a function of the present value of the relative
wage in high-tech production as captured by Qt(i).
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Lemma 3 (Optimal Lottery) Define log (Qt(i)) ≡
∫ ∞

t e−(ρ+δ)(s−t) max{log (ωsσ(i)) , 0}ds.
The optimal lottery is

s̃t(i) =
s̄t(i)α(i)

ψ
ρ+δ Qt(i)ψ∫ 1

0 s̄t(j)α(j)
ψ

ρ+δ Qt(j)ψdj
. (15)

Proof. See Appendix A.2.
Note also that the parameter ψ governs the sensitivity of the optimal lottery

to changes in relative lifetime earnings. To see this more clearly, consider the
stationary equilibrium with ωt = ω such that

s(i) = s̃(i) =
s̄(i)W(i)ψ∫ 1

0 s̄(j)W(j)ψdj
(16)

where log(W(i)) = log(α(i)max{ωσ(i),1})
ρ+δ is the present discounted log-wage of i.

In this case, the skill distribution is a constant-elasticity function of relative
income across types, where the elasticity is ψ. Thus, a higher ψ implies that the
long-run supply of high-i types is more sensitive to changes in the relative wage
in high-tech production. Accordingly, ψ governs the long-run skill supply across
technologies, which we formally define as

ψ ≡ ∂ log s(i)/s(i′)
∂ log W(i)/W(i′)

.

In the rest of the paper, we refer to 1/ψ as the cost of skill investment, which is
inversely related to the long-run skill supply across technologies.

2.2 Skill distribution dynamics: A q-theory of skill investment

We now combine the static and dynamic equilibrium conditions to solve for the
equilibrium path of the skill distribution as well as all other variables, given an
arbitrary initial skill distribution s0(i) and a constant path for {At, s̄t(i)}t≥0.

In principle, this involves solving a complex infinite-dimensional fixed-point
problem. To see this, consider a conjectured path for the relative wage {ωt}t≥0.
This path determines the skill investment decisions of new generations in (15)
and, as such, the path for the skill distribution {st(i)}t≥0 from (10) given s0(i).
The relative wage path also determines the assignment threshold path ({lt}t≥0)
from the indifference condition (12). Taken together, the skill distribution and
the assignment threshold determine the relative supply of the high-tech input
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({xt}t≥0) in (13). In an equilibrium, the relative supply of the high-tech input
needs to be equal to its relative demand at the conjectured path for the relative
wage – i.e., they need to be consistent with market clearing.

Our first result approximates the solution of this fixed-point problem by con-
sidering a log-linear expansion around the stationary equilibrium. It establishes
that the approximate equilibrium of this economy can be represented as that of a
q-theory of skill investment, where log(q) refers to the present discounted value
of the log-relative wage or, as we call it from now on, lifetime inequality:

log(qt) ≡
∫ ∞

t
e−(ρ+δ)(s−t)log(ωs)ds.

Specifically, we show that one does not need to keep track of the whole skill
distribution to solve for the approximate equilibrium path of qt and the assign-
ment threshold lt. The approximate equilibrium dynamics of these two variables
are fully characterized by a simple system of linear differential equations. Let-
ting " ˆ " denote variables in log-deviations from the stationary equilibrium, the
following theorem presents the system of differential equations that, given l̂0, de-
termines the equilibrium path of {q̂t, l̂t}t when {At, s̄t(i)}t≥0 are constant over
time.9 It then characterizes the skill distribution, skill lottery, and relative output.

Theorem 1 (q-theory of skill investment) Suppose {At, s̄t(i)}t≥0 is constant over time.

1. Given initial condition l̂0 and terminal condition limt→∞ l̂t = 0, the equilibrium
dynamics of {q̂t, l̂t} are described by the system of differential equations

∂l̂t
∂t

= −δl̂t +
ηψ

θ + κη
δq̂t (17)

∂q̂t

∂t
= (ρ + δ)q̂t +

1
η

l̂t, (18)

where κ is a positive constant.

2. The equilibrium {q̂t, l̂t}t≥0 is saddle-path stable with rate of convergence λ.

3. The equilibrium dynamics of the skill distribution ŝt(i), the optimal lottery ˆ̃st(i),
and the value of relative high-tech output ŷt are determined by {q̂t, l̂t}t≥0 and ŝ0(i).

Proof. See Appendix A.3.
The first part of the theorem presents a system that is a rather standard one in

macroeconomics, with one control and one predetermined variable. The system
9The initial l0 is determined by the initial skill distribution s0(i) from the static equilibrium condition (14).
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is in fact mathematically isomorphic to the q-theory of capital investment. In our
model, q̂t is the present discounted value of the log-relative wage in high-tech
production, representing the shadow price of the human capital "asset" associ-
ated with having one additional unit of the high-tech good. Whenever this price
is higher, the incentives to invest in high-i skills are stronger. As in the semi-
nal q-theory, parameters governing the costs of adjustment in the economy (i.e.,
δ and ψ) affect the sensitivity of changes in the assignment threshold ∂l̂t

∂t to q̂t.
However, our model features both imperfect substitution of human capital across
technologies and heterogeneous skills. Thus, the impact of qt on the evolution of
lt also depends on the degree of technology-skill specificity (as controlled by η)
and substitutability between goods (as measured by θ).

The second part shows that (locally) the equilibrium exists and is unique—a
consequence of saddle-path stability. The proof further shows that, given an initial
condition l̂0, both l̂t and q̂t converge at a constant rate to the stationary equilib-
rium, where −λ is the negative eigenvalue of the system of differential equations.

The last part of the theorem links the equilibrium path of the optimal skill
lottery, the overall skill distribution and the relative value of output to the joint
dynamics of {q̂t, l̂t}. The proof shows that the change in the optimal skill lottery
along the transition depends centrally on the evolution of q̂t. Formally,

ˆ̃st(i) =
(

Ii>l −
∫ 1

l
s(i)di

)
ψq̂t + ot(i), (19)

where ot(i) is such that
∫

s(i)ot(i)di = 0. The parameter ψ crucially shapes the
extent to which a generation’s skill distribution tilts towards skills associated with
higher i types when they face a higher qt at birth. The overall skill distribution
is then simply a population-weighted average of the skill distributions of each
generation. Finally, relative output is driven by changes in the relative wage, with
1/η controlling how the latter responds to threshold changes.

Theorem 1 reduces the dimensionality of the equilibrium’s fixed-point prob-
lem. It characterizes {q̂t, l̂t}t≥0 without tracking the dynamics of the skill distri-
bution. This is possible for three reasons. First, the dynamics of st(i) only depend
on log(Qt(i)) via the optimal skill lottery. Yet, log(qt) suffices to determine the
value of most skill types in the investment decision – as opposed to the full path
of ωt in log(Qt(i)) – because most workers never switch technologies along an
equilibrium path if relative wages are close to their stationary level. Second, the
market clearing condition (14) only contains integrals of st(i). Because of the con-
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tinuum of skill types, the effect of the marginal types that switch technologies are
of second order when evaluating changes in these integrals. Taken together, the
two observations imply that changes in l̂t over time are a function of q̂t and l̂t, as
seen in (17). Finally, since condition (12) yields a mapping between ωt and lt, the
dynamics of q̂t can be written as a function of the path of lt, as seen in (18).10

3 The Adjustment to Skill-biased Innovations

We now analyze the dynamic adjustment of our economy to a permanent, unan-
ticipated increase in the relative productivity A. We refer to this shock as a
skill-biased technological innovation since it increases the relative productivity
of higher skill-types i sorted into the H technology. We show that the economy’s
adjustment may significantly change over time due to the endogenous evolution
of the skill distribution across generations, a form of Samuelson’s LeChatelier
principle. How slow this adjustment is then crucially determines the average and
distributional welfare consequences of new technologies.

3.1 Dynamic responses of equilibrium outcomes

We assume that immediately prior to the shock at time t = 0− the economy is in a
stationary equilibrium. Let ∆ log(A) > 0 be the relative productivity shock. The
following proposition characterizes the log-change in ∆ log(qt) ≡ log (qt/q0−),
∆ log(yt) ≡ log (yt/y0−), and ∆ log(lt) ≡ log (lt/l0−).

Proposition 1 (Dynamic responses) Given a skill-biased technological innovation ∆ log(A),
the dynamic responses ∆ log(lt), ∆ log(qt) and ∆ log(yt) are approximated by:

 ∆ log(lt)
∆ log(qt)

∆ log(yt)

 =

 −η
1

ρ+λ

1 + κη

 θ − 1
θ + κη

∆ log(A)

︸ ︷︷ ︸
Short-run

+
ψ

χ

 η
−1

ρ+δ+λ

θ − 1

 (1− e−λt)
θ − 1

θ + κη
∆ log(A)

︸ ︷︷ ︸
Short- to long-run transition

(20)
where χ ≡

(
θ + κη + ψ

ρ+δ

)
(ρ + δ).

Proof. See Appendix A.4.
10We conjecture that extending the model to multiple sectors is possible while keeping the q-theory repre-

sentation (albeit in vector form) if skills and sectors satisfy log-supermodularity.
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Figure 1 illustrates these dynamic responses together with the dynamics of the
skill distribution and skill lottery. We do so for the case where the two technolo-
gies are substitutes in production (θ > 1) and α(i) = 1.

Figure 1: The economy’s adjustment to a skill-biased technological shock (θ > 1)

The first term in (20) is the immediate impact of the shock represented by
the responses at t = 0 in Figure 1. In the short-run, there are increases in both
relative output (∆ log(y0) > 0) and lifetime inequality (∆ log(q0) > 0). The higher
relative wage in the H technology induces the reallocation of skill types in the
existing worker generations from the L to the H technology, as can be seen from
the decline in the assignment threshold lt. This reallocation contributes to the
relative output increase.

The second term in (20) shows that, along the transition, all variables converge
at rate λ. The increase in the relative lifetime wage in high-tech production causes
entering worker generations to twist their skill lotteries s̃τ(i) towards high-i types
whose skills are more complementary to H production (see bottom right panel of
Figure 1). This triggers changes in the economy’s skill distribution st(i) as older
generations are replaced with younger generations at rate δ. Along the transition,
the growing mass of high-i types employed with the H technology implies a
continuing process of relative output increase and inequality decline. The rising
relative high-tech output yields a decline in the consumption price index in (3). By
reducing the relative wage, the arrival of more high-i types in younger generations
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triggers the displacement of marginal i types from H production over time (i.e., lt
increases along the transition).

In the long-run, the H technology has higher relative wage, output and em-
ployment. The increase in H employment is driven both by a skill distribution
with higher mass in high-i types and a lower assignment threshold of skill types
employed in H. Finally, note that the only source of dynamics in our theory is the
skill investment decision of generations born after the shock. Whenever incoming
generations cannot invest in skills (i.e., ψ = 0), the transitional dynamics term in
(20) disappears and the responses in the long-run and short-run are identical.

We conclude this section by defining the discounted cumulative impulse re-
sponse (DCIR). It conveniently summarizes the importance of transitional dynam-
ics and thus relates to how slowly economies adjust to skill-biased innovations.
Intuitively, it is the answer to the question: from the point of view of genera-
tions alive just before the shock, how different is the adjustment they expect to
see during their lifetime compared to the long-run adjustment? We say that the
economy’s adjustment is slower when existing generations expect to miss more of
the overall adjustment during their lifetime (i.e., the DCIR is larger).

Definition 2 (Discounted Cumulative Impulse Response) For any variable zt and
innovation ∆ log(A), the discounted cumulative impulse response DCIR(z) is:

DCIR(z) =
∣∣∣∣∫ ∞

0
δe−δt ∆ log(zt)

∆ log(A)
dt− ∆ log(z∞)

∆ log(A)

∣∣∣∣ .

Formally, the DCIR is the distance between the long-run response and the
expected response of log(zt) during the initial generations’ lifetime, since all gen-
erations born before the shock have exponentially distributed death probabilities
with rate δ. This is a convenient measure of the importance of transitional dy-
namics in our context for a number of reasons. First, it encodes not only the
convergence rate λ, but also other relevant features of the impulse responses like
how front-loaded they are. For instance, one could have an adjustment where
the short- and long-run changes are almost identical—implying a DCIR close to
zero—but the rate of convergence λ from the short- to the long-run is very low.
According to the DCIR, we would intuitively say that it is a fast adjustment since
almost all of the overall adjustment is completed on impact, whereas looking at
λ alone suggests a slow adjustment. Second, the DCIR does not mechanically
scale with the replacement rate of generations. If δ is higher, this mechanically
increases λ (making the adjustment faster) but it also decreases the expected life-
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time of a generation. Finally, in the next section, we show that this measure is
relevant for analyzing the welfare consequences of skill-biased innovations.

3.2 Changes in average welfare and lifetime welfare inequality

We now compute the average and distributional welfare consequences of skill-
biased innovations. Our welfare measure is the ex-ante expected utility of indi-
viduals born at each point in time (equation (9)). Given the log-utility assumption,
the consumption-equivalent gain is the change in the ex-ante utility times (ρ + δ).
From equations (7) and (9), the consumption-equivalent utility of cohort τ is

Uτ ≡ (ρ+ δ)

(∫ 1

0
s̃τ(i)

(
log
(

α(i)
1

ρ+δ Qτ(i)
)
− 1

ψ
log

s̃τ(i)
s̄(i)

)
di−

∫ ∞

τ
e−(ρ+δ)(t−τ) log Ptdt

)
,

where s̃τ(i) is the skill distribution of cohort τ, log(Qτ(i)) is the present-discounted
value of max{log(ωtσ(i)), 0} defined in Lemma 3, and Pt is the price index in (3).

The welfare of each cohort has two components. The first is the average wage
across skill types net of the skill lottery cost. This term depends on the relative
wage ωt through log(Qτ(i)) because a fraction of workers is employed in high-
tech production. The second term is the consumption price index that equally
affects all skill types. Importantly, due to the cost of good H, the price index in
(3) is decreasing in high-tech productivity A but increasing in ωt.

To obtain an average welfare measure across generations Ū, we take an util-
itarian approach by considering a weighted average of the ex-ante utility of dif-
ferent generations, where generation-τ’s weight is re−rτ as in Calvo and Obstfeld
(1988). To obtain a measure of average lifetime welfare inequality Ω̄, we first con-
vert lifetime inequality for generation τ into a consumption-equivalent measure
(ρ+ δ) log qτ and then simply aggregate all generations using the welfare weights.
Then, average welfare and lifetime welfare inequality are

Ū = r
∫ ∞

0
e−rτUτdτ and Ω̄ ≡ (ρ + δ)r

∫ ∞

0
e−rτ log(qτ)dτ.

Appendix A.5 characterizes the first order changes in average welfare ∆Ū ≡
Ū −U0− and lifetime welfare inequality ∆Ω̄ ≡ Ω̄− log(q0−) caused by ∆ log(A).
Everything else equal, average lifetime welfare inequality trivially increases when
the long-run change of q is larger, but also when transitional dynamics are more
important since q remains high for longer. Moreover, while average welfare in-
creases following the innovation, this increase is partially offset if inequality is
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higher (for a given magnitude of the innovation) whenever the H income share is
larger than its employment share (i.e., the average wage of H workers is higher
than L workers). This is because the increase in the average wage of workers in H
is offset by the higher cost of H goods – and thus the price index – for all workers.

Importantly, the proposition below shows that the welfare consequences of
technological innovations depend crucially on how slow the adjustment is.

Proposition 2 (Changes in average welfare and lifetime welfare inequality) As-
sume that the H income share is larger than its employment share and that r = δ. Then,
for a given long-run elasticity ∆log(q∞)

∆log(A)
,

∂

(
∆Ū

∆ log(A)

)
∂DCIR(q)

< 0 and
∂

(
∆Ω̄

∆ log(A)

)
∂DCIR(q)

> 0.

Proof. See Appendix A.5.
Intuitively, a higher DCIR(q) arises when the relative supply of H goods in-

creases more slowly over many generations. This then implies that, during their
lifetimes, generations born before the shock expect to see a smaller fraction of
the long-run increase in relative output and decline in the price index. Yet, they
expect to experience even higher inequality compared to those generations born
in the long-run. As a result, everything else equal, the average welfare increase
will be smaller and the average lifetime welfare inequality increase will be larger.

3.3 LeChatelier Principle and the risks of extrapolation

This section connects the predictions of our theory to those of a reduced-form
demand-supply framework. Appendix A.6 shows that our theory yields a reduced-
form supply elasticity ϕt such that relative output and wage solve

∆ log(xt) = (θ − 1)∆ log(A)− θ∆ log(ωt), (21)

∆ log(xt) = ϕt∆ log(ωt). (22)

The main feature of our theory is a time-varying elastic supply of skills across
technologies, which implies that ϕt is positive and increasing over time.11 This
arises from two sources. First, even if skills are exogenous (ψ = 0), the relative
supply elasticity is positive because a fraction of the heterogeneous workers in the
economy decides to reallocate across technologies in response to changes in the

11The canonical model of Katz and Murphy (1992) is a special case of our theory with ϕt = 0.
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relative wage. Second, the change in the skill investment decision of cohorts born
after the shock introduces an additional adjustment margin for relative supply.
This margin becomes stronger over time as younger cohorts replace older cohorts,
driving ϕt upwards along the transition when ψ > 0. Thus, our theory implies a
form of Samuelson’s LeChatelier principle: the relative supply of high-tech output
is more elastic over longer horizons due to changes in the skill distribution.

By microfounding the dynamics of the relative supply elasticity, our results
point to two types of risks associated with using reduced-form estimates of ϕt.
The first arises when extrapolating from observed responses in the economy over
any given horizon. Consider a researcher who knows θ and obtains ϕT and
∆ log A from the estimated impact of a technological shock on relative output
and wages at horizon T. Suppose this researcher then uses her estimates to an-
alyze the consequences of skill-biased innovations. The time-varying nature of
ϕt implies that predictions will be biased for any period other than T. Specif-
ically, the researcher’s predictions will overestimate (underestimate) inequality
changes and underestimate (overestimate) relative output changes for any period
after (before) horizon T. The researcher will also obtain biased estimates of the
welfare consequences of the shock as she will wrongly conclude that the change
in lifetime welfare inequality is (ρ + δ)∆ log qT = ∆ log ωT, which may be higher
or lower than ∆Ω̄ depending on the estimation horizon T.

The second type of risk arises when extrapolating from past technological
transitions in different contexts: a type of threat to external validity. Consider
a researcher that obtains estimates of the path of ϕt from a particular historical
episode. Suppose this researcher uses such estimates to make predictions about
the dynamic consequences of a new technology in a different economy or histor-
ical context. Appendix A.6 shows that if either technology-skill specificity (η) or
the cost of skill investment (ψ) are different, then the path of ϕt will be different
as well. Thus, the researcher will obtain biased predictions about the economy’s
adjustment at all horizons whenever the nature of technology and skills or the un-
derlying flexibility of skill investment are significantly different across episodes.

4 Determinants of Skill-Biased Transitions

This section analyzes how parameters governing technology-skill specificity and
the cost of skill investment affect the economy’s adjustment to a skill-biased in-
novation. The comparative static exercises speak to when is it that technological
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transitions are more unequal and slower, with the adjustment mainly driven by
slow changes in the skill distribution across generations as opposed to fast real-
location of workers within a generation. As such, they help interpret differences
between historical episodes or future transitions where the nature of technological
innovations and associated skills are different.

Comparative statics with respect to technology-skill specificity. Consider first
how the economy’s dynamic responses change with the degree of technology-skill
specificity. As reminder, we say that technology-skill specificity is higher when η

is lower because the productivity of skills associated with higher i types decreases
more when deployed to the L-technology rather than to the H-technology. This
exercise speaks to differences in the dynamics across episodes in which skills of
incumbent workers were more or less transferable for use in the new technology.

Figure 2 shows the responses of two economies that differ in their technology-
skill specificity.12 The black lines show the responses of an economy with a high
value of η (i.e., low technology-skill specificity). The blue lines show the responses
of an economy with a low value of η (i.e., high technology-skill specificity). In
Appendix A.7, we support the graphical representation in Figure 2 with Proposi-
tion A.1 establishing how η affects the short- and long-run responses, the cumu-
lative impulse response, and the rate of convergence.

Figure 2: Comparative statics with respect to η
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12The figure shows the case where θ > 1 and the threshold’s cumulative response increases with η.
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In the short-run, when technology-skill specificity is higher (lower η), a smaller
mass of workers reallocate across technologies in response to the shock (i.e.,
∂|∆ log(l0)|

∂η > 0). As a result, the short-run increase in relative wages and lifetime

inequality q are larger (i.e., ∂|∆ log(q0)|
∂η < 0) and the increase in relative output is

smaller (i.e., ∂|∆ log(y0)|
∂η > 0). The larger increase in q then implies that younger en-

tering generations have stronger incentives to invest in those skills that are more
complementary to the H technology. As a consequence, there are larger differ-
ences in skill heterogeneity across generations.13 Then, the overall magnitude of
the adjustment of yt and qt that happens along the transition is larger because
larger changes in the skill distribution take place as younger generations replace
older generations. Formally, we measure this as the cumulative impulse response

function being larger (e.g. ∂
∫ ∞

0 q̂tdt
∂η < 0) – graphically, the blue shaded areas being

larger than the black shaded areas.
Moreover, while the larger changes in the skill distribution could have implied

a larger (smaller) overall long-run adjustment in relative output (lifetime inequal-
ity), it turns out that the smaller (larger) short-run response dominates. Thus, the
long-run adjustment in relative output (lifetime inequality) is smaller (larger) in
the economy with higher technology-skill specificity.

Finally, we can come back to the DCIR to summarize how technology-skill
specificity affects the importance of transitional dynamics.

Theorem 2.1 (DCIR comparative statics with respect to η) Following a skill-biased
innovation ∆ log(A), lifetime inequality (q) and relative output (y) adjust slower in
economies with a higher degree of technology-skill specificity (lower η). Formally,

∂DCIR(q)
∂η

< 0,
∂DCIR(y)

∂η
< 0.

Proof. We have that DCIR(q) = λδ
λ+δ

∣∣∣∣ ∫ ∞
0 q̂tdt

∆ log(A)

∣∣∣∣. From Proposition A.1 in Ap-

pendix A.7, we know that when η is higher then λ and
∣∣∫ ∞

0 q̂tdt
∣∣ are both smaller.

The proof for yt is analogous.

The theorem shows that the DCIR is larger and transitional dynamics are more
important in economies with a higher degree of technology-skill specificity. That
is, the adjustment is slower and more back-loaded, with generations alive before

13This follows directly from the fact that s̃τ(i) is proportional to q̂τ in (19) and q̂τ is larger for all τ when
technology-skill specificity is higher.
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the shock expecting to see less of the long-run changes during their lifetime.
Intuitively, this is because the muted reallocation of workers at shorter horizons
causes larger endogenous changes in the skill distribution along the transition due
to the larger increases in lifetime inequality.14

To summarize, these results show that when technology-skill specificity is
higher, technological transitions will be driven more by changes in the skill dis-
tribution across generations than the reallocation of workers within a generation.
Therefore, they will be more unequal and play out slower over many generations.

It is also worth noting that the slower adjustment in economies with higher
technology-skill specificity does not mechanically follow from the fact that reallo-
cation is smaller in the short-run, or from the fact that old generations are replaced
slowly at rate δ. Instead, it follows from the skill distribution responding more to
the stronger relative wage change. To make this point clear, Proposition 3 shows
that technology-skill specificity has no effect on the DCIR of q and y when either
skill distribution or inequality changes are muted (ψ→ 0 or θ → ∞).

Proposition 3 (Interaction of technology-skill specificity with ψ and θ) When
the cost of skill investment is large (ψ → 0) or when H and L are highly substitutable
(θ → ∞), then technology-skill specificity has no effect on how slow q and y adjust.

∂DCIR(y)
∂η

∣∣∣∣
ψ→0

=
∂DCIR(q)

∂η

∣∣∣∣
ψ→0

= 0,
∂DCIR(y)

∂η

∣∣∣∣
θ→∞

=
∂DCIR(q)

∂η

∣∣∣∣
θ→∞

= 0

Proof. See Appendix A.8.

Comparative statics with respect to the cost of skill investment. We now con-
sider how the parameter ψ affects the economy’s adjustment to a skill-biased
innovation. This comparative static exercise speaks to differences across historical
episodes in the gap between younger and older generations’ ability to invest in
skills. Specifically, it captures situations in which younger generations may have
found it easier to invest in skills in high demand than older generations due to,
for example, better educational systems, the availability of vocational training for
young workers, or the absence of re-training programs for older generations.

Figure 3 illustrates the responses of two economies that differ with respect to
the skill investment cost of young generations. The blue lines depict the adjust-
ment of an economy with a low investment cost (i.e., high value of ψ), and the

14More generally, after a shock, economies with a less mobile stock of a factor experience stronger changes
in the flow of entrants because of larger changes in relative prices – e.g., if old vintages of physical capital are
less adaptable to a new sector, then the flow of firm entrants with newer capital vintages will be larger.

25



black lines represent the responses of an economy with a high investment cost
(i.e., low value of ψ). Proposition A.2 in Appendix A.7 supports this figure.

Figure 3: Comparative statics with respect to ψ
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In the short-run, both economies exhibit identical responses in relative output
and worker reallocation. This follows from the fact that ψ does not affect the
self-selection decisions of generations born before the shock. However, a higher
ψ attenuates the short-run increase in lifetime inequality because future relative
wages fall by more due to the larger increase in the future supply of high-i skills
implied by the more responsive skill lottery in (19). The larger change in the
skill distribution of the economy with a lower investment cost (i.e., higher ψ) has
two important implications for its dynamic adjustment to the shock. First, in
the long run, it implies that relative output (lifetime inequality) increases more
(less). Second, as the following theorem shows, it implies a slower, more back-
loaded adjustment in relative output and inequality. Intuitively, when the cost of
skill investment for younger workers is lower, transitional dynamics become more
important since there are larger changes in the skill distribution.

Theorem 2.2 (DCIR comparative statics with respect to ψ) Following a skill-biased
innovation ∆ log(A), lifetime inequality (q) and relative output (y) adjust slower in
economies with a lower cost of skill investment for younger workers (higher ψ). Formally,

∂DCIR(q)
∂ψ

> 0,
∂DCIR(y)

∂ψ
> 0
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Proof. The proof is analogous to the one for Theorem 2.1 but using Proposi-
tion A.2 in Appendix A.7 instead.

Back to LeChatelier Principle and the risks of extrapolation. To better under-
stand the previous comparative statics, it is useful to return to the reduced-form
supply elasticity ϕt introduced in Section 3.3. The different dynamic implications
of changing η or ψ arise because the two parameters shape different horizons of
this elasticity. Figure 6 in Appendix A.6 illustrates these implications. Both higher
values of η and ψ increase the elasticity in the long-run, but the timing differs.
Specifically, increasing η flattens the path of ϕt but increasing ψ steepens it. In-
tuitively, a higher η front-loads more the response in the relative supply of H by
making it easier for skill types to reallocate across technologies in response to the
shock. This in turn reduces the relative wage changes and, as a result, attenuates
changes in the skill distribution across generations and ϕt over time. In contrast, a
higher ψ implies that it is easier for new generations to invest in skills, amplifying
changes in the skill distribution across generations and ϕt across horizons.

This discussion indicates when researchers should be more cautious about ex-
trapolating from observed changes at short horizons: economies where technology-
skill specificity is higher and/or the cost of skill investment for young generations
is lower. In such economies, the adjustment is slower and more back-loaded, im-
plying larger changes in all outcomes across generations.

Additional determinants of skill distribution dynamics. The theory so far has
ignored several determinants of the dynamics of the skill distribution along the
transition. In Appendix B, we present three extensions that relax some of the
assumptions of our baseline model. For all extensions, our comparative static
results above with respect to η and ψ remain valid.

Our first extension considers a “learning-from-others” externality. This relaxes
the assumption that the reference distribution s̄t(i) in the skill investment problem
is exogenous and fixed over time. Instead, we assume that certain skills may
be easier to acquire than others because workers learn from others when such
skills are already abundant in the economy. This extended model yields dynamic
responses that are qualitatively similar to those of our baseline economy when ψ

is higher and δ is lower, thus making the adjustment slower. Our second extension
relaxes the assumptions that workers can only invest in new skills upon birth by
allowing a fraction of older generations to re-train after the shock. This yields
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responses that are qualitatively similar to our baseline when η is higher, making
the adjustment faster. Our third extension allows for population growth. This
increases the rate of convergence λ, making the adjustment faster.

5 Observable Implications at Short Horizons

The results above show that technology-skill specificity and skill investment cost
determine how unequal and slow technological transitions are. We now establish
observable implications of our theory that are informative about η and ψ. We
focus on implications at short horizons because: (i) the technologies of interest
may be recent and the transition ongoing, or (ii) the effects of new technologies
are typically harder to separate from other confounding shocks at longer horizons.

In deriving such observable predictions, we also take into account that mea-
suring several of our theoretical outcomes would require strong assumptions and
hence lack robustness. For example, "selection forces" imply that the relative
wage in efficiency units, ωt, is different than the relative average labor income.
Furthermore, qt is a forward-looking variable, so measuring it measure would
require observing ωt along the entire transition. Finally, the measurement of the
skill distribution st(i) and the technology-skill assignment lt requires taking an
explicit stance on observable attributes determining a worker’s skill vector (e.g.,
college graduation), leading to misspecification if the chosen attributes do not
fully determine technology-specific skills.

Given these challenges, we focus on changes in payroll and employment across
sectors/occupations which are widely available across countries and periods. Our
novel insight is that relative employment changes for different worker generations
are connected to the technology-skill specificity and the cost of skill investment.
As a result, even if we only observe these changes at short horizons, they are
informative about how economies adjust at longer horizons.15

Specifically, we consider the short-run responses in (i) the outcomes of the
“old” generation born before t = 0 (i.e., within-generation change) and (ii) the
difference between outcomes of the “young” generations born at t = 0 and the
“old” generations born before t = 0 (i.e., between-generation change). We formally
define these elasticities for relative employment in high-tech production as

15The estimation of generation-specific responses are common in analysis of the impact of different types
of shocks – e.g., Kim and Topel (1995) and Autor and Dorn (2009). We use our theory to connect such
responses to structural parameters controlling the economy’s dynamic adjustment to new technologies.

28



εwithin
0 ≡

log

 ∫ 1
l0

s0(i)di/
∫ l0

0 s0(i)di∫ 1
l0−

s0(i)di/
∫ l0−

0 s0(i)di


∆ log(A)

and εbetween
0 ≡

log

( ∫ 1
l0

s̃0(i)di/
∫ l0

0 s̃0(i)di∫ 1
l0

s0(i)di/
∫ l0

0 s0(i)di

)
∆ log(A)

.

The following theorem shows how η and ψ affect these elasticities.

Theorem 3 (Observable implications in the short-run)

∂|εwithin
0 |
∂η

> 0,
∂|εwithin

0 |
∂ψ

= 0, and
∂|εbetween

0 |
∂η

< 0,
∂|εbetween

0 |
∂ψ

> 0

Proof. See Appendix A.9.
In terms of relative employment in the short run, economies with higher

technology-skill specificity (i.e., lower η) experience weaker within-generation re-
sponses for older workers, but stronger between-generation response differences
for younger and older workers. Intuitively, the lower η weakens the reallocation
of skill types across technologies, which reduces the reallocation of older work-
ers, amplifies the increase in relative wages, and, consequently, increases skill
differences across generations. In contrast, the lower investment cost (i.e., higher
ψ) does not affect the within-generation response because older workers chose
their skills before the shock. The lower cost however leads to stronger changes in
the skill investment decisions of young workers, giving rise to stronger between-
generation response differences.

Theorem 3 is informative about when a technological transition will be slower
and more back-loaded given responses observed in the short-run. For example,
suppose the within-generation elasticity is small, but the between-generation elas-
ticity is large. Our results indicate that this is consistent with high technology-skill
specificity and/or small costs of skill investment for young workers. As a con-
sequence, through the lens of our theory, this technological transition should be
more unequal and unfold slowly over many generations.

Finally, we note that the within- and between-generation employment elastici-
ties are defined in terms of the shock, ∆ log(A). Yet, in some applications (like the
one in the following sections), the shock is not directly observed. To circumvent
this empirical challenge, we can use the observed response of relative payroll in
Proposition 1 since it depends on the parameters of technology-skill specificity
and skill investment costs, as well as the size of the shock.
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6 Application: Cognitive-Biased Transitions

Our theoretical results established that technology-skill specificity and the cost of
skill investment for entering generations are connected to within- and between-
generation changes in relative employment following skill-biased technological
innovations. In this section, we provide three pieces of evidence studying how
these two margins affected the adjustment of developed economies to recent
cognitive-biased innovations.

First, in 18 developed countries, employment growth in the most cognitive-
intensive occupations was stronger for young workers than for old workers. Sec-
ond, turning to a detailed investigation of these responses in Germany, we show
that in the cross-section of occupations, growth of employment and payroll was
increasing in the time spent performing cognitive-intensive tasks. We find that
these responses are stronger for younger than for older generations. In line with
our theory’s predicted changes in skill investment, we use the unique features of
the large-scale German training system to document higher growth in the num-
ber of trainees in more cognitive intensive occupations. Finally, we explore quasi-
random cross-regional variation in adoption timing to estimate empirical impulse
response functions to one cognitive-biased technological innovation: the arrival
of broadband internet in the early 2000s. We find that the impact on relative em-
ployment is small for older generations at all horizons, but increasing over time
for younger generations. Taken together, the evidence suggest that, for recent
cognitive-biased innovations, technology-skill specificity is high and the cost of
skill investment is smaller for younger generations. Therefore, cognitive-biased
transitions are slow and unequal because they are mostly driven by skill changes
across generations rather than worker reallocation within a generation.

6.1 Cognitive-intensive employment in developed economies

We define cognitive-intensive occupations as being those disproportionately aug-
mented by recent innovations, like the computer and the internet, corresponding
to the H technology in the theory. We follow an extensive literature documenting
that recent innovations had different effects on jobs with different task content
—e.g. Autor et al. (2003), Spitz-Oener (2006), Autor and Dorn (2013), Akerman
et al. (2015). Specifically, this literature has documented that new technologies
have a more positive impact on cognitive-intensive jobs whose daily activities re-
quire problem-solving, creativity, or complex interpersonal interactions. In fact,
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Appendix C.1 shows that internet and computer usage is strongly correlated with
performing cognitive tasks across occupations in Germany. We also document
that there are no systematic differences in internet and computer usage across
worker cohorts employed in the same occupation.

For 18 developed countries, we analyze changes in the occupation composition
of males in two age groups: “Young” workers aged 15-39 yrs and “Old” work-
ers aged 40-64 yrs. We consider employment in 9 aggregate occupation groups
(2-digit ISCO occupations).16 Using the German BERUFNET dataset, we rank oc-
cupations by time spent on tasks that intensively require analytical non-routine
and interactive skills.17 The cognitive-intensive occupations are the top 3 in this
ranking: Managers, Professionals, Technicians and Associate Professionals.

Figure 4 displays the recent trends of employment in cognitive-intensive occu-
pations across countries. The dashed bars indicate that employment in cognitive-
intensive occupations has been expanding in 16 out of the 18 countries in our
sample. This trend is a reflection of the occupation polarization process docu-
mented by Goos et al. (2009) and Autor and Dorn (2013).

Figure 4: Recent trends in cognitive-intensive employment growth in developed countries

Note. The figure reports the log-change in the share of males employed in cognitive-intensive occupations in 1997-2017 for
European countries, in 2000-2010 for the US, and in 2001-2011 for Canada. Sample of males in two age groups: “Young”
workers aged 15-39yrs and “Old” workers aged 40-64yrs. Cognitive-intensive occupations are the top 3 occupation
in terms of time spent on cognitive tasks among the 9 2-digit ISCO occupations (Managers, Professionals, Technicians
and Associate Professionals). For each country, annualized growth rate is the log-change of the cognitive-intensive
employment share in the period divided by the number of years.

16Our data comes from Eurostat for European countries and IPUMS International for Canada and US.
17The BERUFNET dataset is based on the knowledge of experts about the skills required to perform tasks

in each occupation. The occupation’s cognitive intensity is the simple average of the time spent on analytical
non-routine and interactive tasks in 2011-2013.
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Figure 4 also shows that, while older workers increased cognitive-intensive
employment in most countries, this increase was substantially stronger for younger
generations. Across all countries, the annualized growth in cognitive-intensive
employment of younger workers was 73% higher than that of older workers. The
young-old gap was higher whenever overall reallocation was higher: there is a
correlation of 0.43 between the young-old gap in cognitive-intensive employment
growth and that of all workers.18

As discussed in Section 5, the different employment responses for young and
old workers is consistent with an elastic supply of cognitive skills in the long-
run driven by younger generations tilting their investment towards skills used
in cognitive-intensive occupations. However, the trends in Figure 4 are subject
to concerns about confounding shocks causing cognitive-intensive employment
growth. They also do not provide any direct evidence about the skill investment
mechanism in our theory. Moreover, by not relying on a specific innovation, they
are not informative about the dynamic adjustment of economies to new technolo-
gies. For these reasons, we now turn to a more detailed investigation of the impact
of cognitive-biased technologies on the German labor market.

6.2 Cognitive-intensive employment in Germany

We now study how the Germany adjusted to recent cognitive-biased innovations.
We first describe the data used in our analysis. We then investigate the relative
performance of occupations with a higher cognitive intensity in terms of em-
ployment, payroll, and numbers of trainees. Finally, we exploit quasi-random
cross-regional variation in adoption timing of broadband internet to estimate the
dynamic impact of this new technology on cognitive-intensive occupations.

6.2.1 Data

Our main data source is the LIAB Longitudinal Model in 1995-2014. We follow
Card et al. (2013) to construct a sample of employed males aged 15-64. We first
construct a dataset with yearly outcomes for 120 occupations in West Germany.
We then construct a second dataset with annual outcomes for each occupation in
323 districts in West Germany.19 We again use the BERUFNET data to measure

18Our new stylized fact complements the finding in Autor and Dorn (2009) that the average age of workers
employed in contracting middle-wage occupations increased in the US in 1980-2005.

19Section 1.1 of the Online Additional Material describes the sample construction procedure. Our definition
of a district as a regional labor market is the same used in Huber (2018).
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each occupation’s cognitive intensity using the share of time spent on analytical
non-routine and interactive tasks.

We construct outcomes for two worker generations. The “Young” generation
comprises workers born after 1960, and the “Old” generation includes all other
workers. The young generation was at most 35 years old in 1995 when it rep-
resented 58% of the German labor force. Its overall employment share then in-
creased to 89% in 2014 when workers were at most 54 years old. We also define a
trainee sub-sample with workers whose employment status was a trainee, student
trainee, or intern. In this sub-sample, 98% of all workers are below 30 years old
and the mean age is 21.

6.2.2 Cognitive intensity and labor market outcomes across occupations

We now study the relationship between employment growth and cognitive inten-
sity in our sample of 120 occupations in West Germany. We therefore move from
the sharp predictions of the two-technology theory to look at employment trends
across multiple occupations. This yields more variation to empirically investigate
the main mechanisms in our theory. Specifically, for each worker generation g
and year t, we estimate the following linear regression:

log Yg
o,t − log Yg

o,1995 = α
g
t + β

g
t C̄o + ε

g
o,t (23)

where Yg
o,t is an outcome in occupation o at year t for workers of generation g,

and C̄o is the cognitive intensity of occupation o.
Table 1 reports the estimation of equation (23) in the periods of 1995-2000

(Panel A) and 1995-2014 (Panel B). We report the estimated impact of the occu-
pation’s cognitive intensity on the log-change of employment in columns (1)–(3),
payroll in columns (4)-(6), and number of trainees in column (7).

Column (1) indicates that occupations with higher cognitive intensity expe-
rienced stronger employment growth. This differential employment response
is larger over longer horizons. Compared to the least cognitive-intensive occu-
pation, the employment growth in the most cognitive-intensive occupation was
143% higher in 1995-2014. Importantly, columns (2)–(3) indicate that cognitive-
intensive employment growth was weaker for older generations than for younger
generations. In fact, estimated coefficients for the old generation are at most one-
half those of the young generations. These results show that the German trends
in Figure 4 also hold across more disaggregated occupations with different levels
of cognitive intensity.
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Table 1: Cognitive intensity and labor market outcomes across occupations in Germany

Dependent variable: Employment Growth Real Payroll Growth Trainee
All Young Old All Young Old Growth
(1) (2) (3) (4) (5) (6) (7)

Panel A: Change in 1995-2000

Cognitive intensity 0.388*** 0.650*** 0.113*** 0.340*** 0.616*** 0.157*** 0.379*
(0.076) (0.098) (0.043) (0.048) (0.070) (0.037) (0.209)

Panel B: Change in 1995-2014

Cognitive intensity 1.488*** 1.894*** 0.871*** 1.535*** 2.029*** 1.044*** 2.121***
(0.225) (0.234) (0.229) (0.227) (0.238) (0.223) (0.385)

Note. Sample of 120 occupations. Each panel reports the estimate for the dependent variable over the indicated time period. Young
cohort defined as all workers born after 1960 and Old cohort as all workers born before 1960. Robust standard errors in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

Columns (4)-(6) show that the relative payroll responses are slightly stronger
than the relative employment responses in 1995-2014. This suggests that there
were only small relative changes in the average earnings of those employed in
cognitive-intensive occupations. As discussed before, in our theory, these relative
payroll responses combine changes in both the relative marginal value of labor
and the worker “selection” in more cognitive intensive occupations. So, the dif-
ference between columns (4) and (1) do not correspond to the response of the
relative wage per efficiency unit of more cognitive-intensive occupations. In fact,
the small responses in relative average earnings for both young and old are con-
sistent with strong selection forces created by entry of marginal workers with
lower occupation-specific productivity than infra-marginal workers.20

Column (7) shows that occupations with a higher cognitive intensity experi-
enced stronger growth in the number of trainees. Trainee programs are an im-
portant part of the formal training of young individuals in Germany – especially
for non-degree occupations (Eckardt, 2019). As such, changes in the occupation
allocation among trainees are a proxy for the changes in the skill investment deci-
sion of incoming generations in our theory. So, the estimated coefficient suggests
that new generations tilted their investments towards cognitive-intensive skills in
1995-2014.

Taken together, this evidence again speaks qualitatively to the main mecha-
nisms in our model. The small responses in employment for old workers suggest

20An extreme version of this pattern arises in assignment models with a Frechet distribution of technology-
specific skills where average earnings are identical in all occupations (Hsieh et al., 2013; Burstein et al., 2016).
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that skills are very specific to occupations with the same cognitive content. The
large differences in employment responses between generations suggest that the
cost of skill investment is smaller for younger workers than for older workers.
In fact, young workers increase their investment on cognitive skills by becom-
ing trainees in occupations with a higher cognitive intensity. The larger overall
responses at longer horizons are consistent with LeChatelier’s principle.

One concern with this interpretation of our estimates is that they may not be
a consequence of a single technological innovation. Instead, they may be driven
by different innovations introduced sequentially in the period – e.g. computers,
industrial robots, or the internet. Thus, while our interpretation remains qualita-
tively valid, it is hard to quantitatively connect the estimates above to the mech-
anism in our theory because the empirical estimates are not impulse response
functions to one-time permanent shocks. That is, the estimated dynamics may
potentially confound both the endogenous skill distribution dynamics and the
exogenous sequence of innovations. We address this concern in the next section.

Robustness. Section 1.3 in the Online Additional Material investigates the ro-
bustness of our findings. Table 1.2 shows that results are qualitatively similar
over different horizons. Table 1.3 shows that the positive relative employment
growth in cognitive occupations is driven by the top third of occupations by cog-
nitive intensity. Table 1.4 shows that results are similar when changing the defi-
nition of the young generation, restricting the sample to native-born Germans, or
controlling for exposure to trade and immigration shocks.

6.2.3 Dynamic adjustment to broadband internet adoption

In this section, we analyze the dynamic response to one cognitive-biased innova-
tion: the introduction of broadband internet in the early 2000s.21 There are two
main reasons to focus on this particular innovation in Germany. First, it resem-
bles the one-time permanent shock studied in Section 3 since its adoption was
fast: the share of households with broadband access increased from 0% in 2000
to over 90% in 2009. Second, it is possible to explore cross-regional variation in
adoption timing to estimate impulse response functions of labor market outcomes
for different worker generations. We do so by following Falck et al. (2014) to iso-

21As shown by Akerman et al. (2015), broadband internet expanded the relative demand for more educated
workers in non-routine jobs inside firms. In Appendix C.1, we show that this technology is disproportionately
used in more cognitive-intensive occupations.
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late exogenous spatial variation in adoption timing implied by the suitability of
pre-existing local telephone networks for broadband internet transmission.

Empirical Strategy. Our goal is to estimate the dynamic impact of broadband
internet adoption on labor market outcomes across districts in Germany. For
each year between 1996 and 2014, we estimate the following linear specification

Yg
io,t −Yg

io,1999 = ∑
c∈{young, old}

(αc
t + βc

tC̄o) 1[g=c]DSLi + δo,t + ζg,t + Xg
io,tγ

g
t + ε

g
io,t,

(24)
where o is an occupation, i is a district, and g is a generation. In this specification,
Yg

io,t is an outcome, DSLi is the broadband internet penetration in district i in
2005 (normalized to have standard deviation of one), and C̄o is the time-invariant
measure of the cognitive intensity of occupation o. The specification includes
generation-year fixed effects that capture nationwide trends for different cohorts,
as well as occupation-year fixed effects that absorb confounding shocks affecting
an occupation equally in all regions. We also include a control vector Xg

io,t to
absorb confouding shocks associated with the pretrend growth in 1995-1999 and
the initial demographics of the district.22

We are mainly interested on the impact of broadband internet adoption on the
relative outcomes of more cognitive intensive occupations for each generation: β

g
t

in equation (24). To understand the interpretation of this coefficient, consider re-
gion A whose broadband internet penetration in 2005 was one standard deviation
higher than that of region B. At year t, β

g
t is the difference between regions A and

B in the relative outcome of more cognitive intensive occupation among workers
of generation g.

The unbiased estimation of β
g
t requires an exogenous source of variation on

the adoption of broadband internet across districts. However, internet penetration
is unlikely to be random since adoption should be faster in regions with workers
more suitable to use that technology. For instance, this would be the case if
broadband internet expands first in regions with a growing number of young
individuals specialized in cognitive-intensive occupations.

22We follow Dix-Carneiro and Kovak (2017) and Freyaldenhoven et al. (2018) by explicitly controlling
for pretrends. As argued by the latter paper, pretrends caused by unobserved confounding effects might
exist even when they are not actually observed in the data due to estimation error, implying they should
be controlled for in estimation. The demographic controls are the college graduate population share, the
manufacturing employment share, the immigrant employment share, and the age composition of the labor
force. In the Online Additional Material, we report estimates based on alternative control sets.
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To circumvent this issue, we follow Falck et al. (2014) by exploiting variation
in the location of pre-existing main distribution frames (MDFs) of the telephone
network. The initial roll-out of DSL internet in Germany used the pre-existing
telephone network. The transmission technology could not supply high-speed
internet to areas more than 4200m away from an existing MDF. Thus, regions
located close to MDFs were more likely to adopt broadband internet early. The
use of MDF location as an instrument then requires that, conditional on con-
trols, the determinants of MDF construction in the 1960s were orthogonal to the
determinants of changes in labor market outcomes in the 2000s, except through
their effect on broadband internet penetration in 2005. As argued by Falck et al.
(2014), the location of MDFs in the 1960s did not take into account how attrac-
tive the nearby region was for broadband internet suppliers in the 2000s. This
is reasonable because one of the main determinants of the MDF location was the
availability of large empty building sites.

We construct two instrumental variables that measure the district’s population
share located in areas where the existing telephone network could not be used to
supply high-speed internet. These variables are aggregates of the municipality-
level variables in Falck et al. (2014). The first variable is a simple count of the
number of municipalities in the district that did not have a MDF within the mu-
nicipality, and whose population-weighted centroid was further than the cut-off
threshold of 4200m to the municipality’s MDF. The second variable counts the
number of municipalities that satisfied the conditions in the first variable, but
were further hampered by the lack of any MDFs in neighboring municipalities
that were closer than 4200m. We then estimate (24) using the exogenous varia-
tion induced by these two measures. Specifically, since the observation unit in
equation (24) is an occupation-generation-district triple, our instrument vector in-
cludes the two measures interacted with generation dummies and the cognitive
intensity of each occupation o, C̄o.23

Results. Panel A of Figure 5 reports the estimates of βold
t and β

young
t implied by

equation (24) for each year between 1996 and 2014. Prior to 2003, regions with
early DSL expansion did not experience differential growth in the relative out-

23Appendix C.2 investigates how broadband internet penetration in 2005 responded to our two measures
of the cost of expanding broadband access across districts. Figure 1.2 in the Online Additional Material
presents the pattern of cross-district variation in the cost measures. Appendix Table 3 shows that regions
with higher values of these cost measures had a lower share of households with broadband access in 2005.
To test for weak instruments for the multiple endogenous variables in (24), Appendix Table 4 shows that we
obtain high values for the Sanderson-Windmeijer F-statistics (Sanderson and Windmeijer, 2016).
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comes of more cognitive intensive occupations for old and young workers. After
2005, there is a significant impact on the relative employment of young cohorts
in more cognitive intensive occupations. In 2014, the point estimate suggests that
a region with a one-standard deviation higher broadband internet penetration
in 2005 had 0.5 log-points more young workers employed in the most cognitive-
intensive occupation than in the least cognitive-intensive occupation. However,
we do not find such an effect for old cohorts – if anything, the effect is negative.24

In our theory, the small relative employment response of old generations sug-
gests that technology-skill specificity is high (i.e., η ≈ 0). In this case, most work-
ers from old generations do not switch occupations as their skills would have
a lower value in the more cognitive-intensive occupations augmented by the in-
novation. The positive between-generation difference in the relative employment
response indicates that incoming cohorts tilt their investments towards skills more
suitable for cognitive-intensive jobs (i.e., ψ > 0).25 This creates changes in the skill
distribution across generations.

In Panel B of Figure 5, we investigate how early broadband expansion affected
the relative payroll of more cognitive intensive occupations for all worker genera-
tions. Specifically, we estimate equation (24) with a single generation c containing
workers of all ages in the district. This is the empirical analog of the impulse
response function for relative output yt presented in Section 3. Again, we find no
evidence of responses in the pre-shock period of 1996-2005. Starting in 2006, there
is a slow and steady increase in the relative payroll of more cognitive-intensive oc-
cupations. In our theory, this is consistent with broadband internet augmenting
the relative productivity of cognitive intensive occupations when cognitive and
non-cognitive intensive occupations are substitutes in production (i.e., θ > 1).

Additional results and robustness. In the Online Additional Material, we ana-
lyze the robustness of our estimates. Table 1.5 shows that results are qualitatively
similar when we drop the pretrend control, but estimated coefficients are less pre-
cise and slightly smaller in magnitude. Results are also similar when controlling
for district-generation-year fixed-effects, so that identification comes purely from
the differential effect of the shock on occupations with a higher cognitive inten-
sity. Table 1.6 further shows that our estimates are similar when we use alternative

24Appendix Figure 9 shows that the between-generation difference is statistically significant for every year
after 2006.

25In line with this mechanism, Table 1.7 of the Online Additional Material shows that early adopting
regions experienced stronger growth in the number of trainees in more cognitive intensive occupations.
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Figure 5: Impact of early DSL adoption on more cognitive-intensive occupations

(a) Relative employment response for each gen-
eration

(b) Relative payroll response for all generations

Note. Left panel: estimation of equation (24) for log-employment as dependent variable in the sample of 2 generations,
120 occupations and 323 districts. Right panel: estimation of equation (24) for log-payroll as dependent variable in
the sample of 120 occupations, 323 districts, and a single generation with all working-age employed individuals. For
each year, the dot is the point estimate of β

g
t . All regressions are weighted by the district population size in 1999 and

include occupation-time and generation-time fixed-effects. Baseline controls include the following district variables in
1999: college graduate population share, manufacturing employment share, immigrant employment share, district age
composition, and the dependent variable pre-shock growth in 1995-1999. Bars are the 90% confidence interval implied
by the standard error clustered at the district level.

definitions of the young generation. Finally, Table 1.6 reports estimates using a
sample excluding workers employed in large establishments that might have re-
ceived broadband internet access early through private networks. Consistent with
this intuition, this sample yields quantitatively stronger estimates.

6.3 Are cognitive-biased transitions different?

The evidence above suggests that recent cognitive-biased innovations triggered a
transition that is particularly slow and unequal because of both high cognitive-
technology specificity and large changes in skill investment of younger genera-
tions (compared to old generations). However, our theoretical results indicate
that not all technological transitions are the same. The adjustment may be less un-
equal and faster if the transition entails more similar changes in relative employ-
ment for young and old workers. We build on this insight to investigate whether
past changes in employment composition featured weaker between-generation
differences and, consequently, may have been part of a transition with lower
technology-skill specificity. Here, we only comment on the main results and leave
the details for Appendix C.3.
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Our analysis compares changes in the occupation composition of young and
old workers in Germany and United States before and after 1990. To obtain a time-
consistent measure of top expanding occupations, we compute generation-specific
employment growth in the top tercile of occupations in terms of employment
expansion among young workers.

We find that, in both countries, the two periods exhibit similar employment
growth in the top expanding occupations among old workers. As in Figure 4,
there is a large between-generation difference in recent years when most expand-
ing occupations were cognitive intensive. However, such a between-generation
difference was much smaller before 1990. In this earlier period, the set of expand-
ing occupations was less cognitive intensive, with services and retail occupations
at the top of the list in both countries. In fact, Germany did not have any cog-
nitive intensive occupation among the fastest growing occupations before 1990.
This evidence is consistent with lower technology-skill specificity for the expand-
ing occupations before 1990, leading to a faster and less unequal transition.26

7 A Numerical Illustration of the Theory

We conclude the paper by using the evidence in the preceding section to analyze
how economies adjust to cognitive-biased innovations. Our goal is not to provide
a full quantitative account of such technological transitions, but rather to numeri-
cally illustrate our theoretical insights. In particular, we are interested in giving a
sense of how large are the impacts of technology-skill specificity and skill invest-
ment cost on the economy’s dynamic adjustment following technological shocks.
In addition, by presenting the full non-linear equilibrium dynamics, the numeri-
cal exercise also demonstrates that our theoretical insights are not driven by the
first-order approximations.

We map the H technology to cognitive-intensive occupations, and use the em-
pirical impulse responses of Section 6 to parameterize the model. We first ex-
ternally calibrate the discount rate ρ to match an annual interest rate of 2% and
the demand elasticity of substitution to θ = 3. We then select the parameters
governing production technologies (α(i), σ(i)) and the skill distribution dynam-
ics (δ, ψ, η) to match the estimates in Figure 5. The decline in the share of the
old workers in total employment from 1997 to 2014 implies δ = 0.057, i.e, an ex-

26This is just one of many possible interpretations of this evidence. For example, the generation-specific
shocks in college graduation rates documented in Card and Lemieux (2001) may help explain why young
and old generations have similar changes in employment composition in the 1970s and 1980s.
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pected working life-span of about 18 years after age 35. The small response in the
cognitive-intensive employment of old generations yields an η close to zero, and
the large young-old gap in the relative employment response implies ψ = 0.35.
Section 2 of the Online Additional Material presents the matching procedure,
along with the model’s goodness of fit.

We use the parameterized model to study the consequences of a cognitive-
biased innovation that increases the employment share in the cognitive-intensive
technology from 20% to 50%.27 We focus here on the impact of the shock on
average welfare (∆Ū) and lifetime welfare inequality (∆Ω̄), as well as the impor-
tance of transitional dynamics as measured by DCIR(q).28 Section 2 of the Online
Additional Material shows the dynamic responses to the shock.

Table 2: Changes in Average Welfare and Lifetime Welfare Inequality

Baseline Low specificity
(η ≈ 0, ψ = 0.35) (η = 0.75, ψ = 0.35)

∆Ū ∆Ω̄ ∆Ū ∆Ω̄

True 46% 39% 44% 29%
Short-run 31% 76% 40% 45%
Long-run 55% 30% 47% 24%

DCIR(q) 0.9 0.4

Note. The table reports the the changes in average welfare ∆Ū and lifetime welfare inequality ∆Ω̄ implied by a shock
calibrated to increase the employment share in cognitive-intensive occupations from 20% to 50% between stationary
equilibria. ‘True’ corresponds to the measures that fully account for the economy’s transitional dynamics. ‘Short-run’
assumes that changes at impact are permanent. ‘Long-run’ assumes that long-run changes happened at impact.

Table 2 shows that the increase in the average consumption-equivalent welfare
is 46% and the increase in lifetime welfare inequality is 39%. These large effects
follow from the substantial shock size necessary to induce the reallocation of
almost one-third of the economy’s labor force.

Following up on the discussions in Section 3.3, the remaining rows of Table 2
compare these figures to those obtained with two calculations that ignore the
adjustment across generations. The ‘Short-run’ calculation assumes that changes
observed at impact are permanent, while the ‘Long-run’ calculation assumes that

27These values approximately correspond to the cognitive-intensive employment share in 1997 of the coun-
tries with the lowest and the highest cognitive-intensive employment share among those listed in Figure 4
(Portugal and Netherlands, respectively). Thus, our results can be seen as analyzing the transitional dynam-
ics of a shock that generates convergence in cognitive-intensive employment shares across such countries.

28Our analysis specifies the discount rate of social welfare to r = ρ + δ, so that the social discounting of
future generations is identical to the discounting of worker’s future utility.
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the changes observed in the long-run were permanent and happened at impact.
We can see that these two calculations lead to substantial biases in welfare anal-

ysis. The ‘Short-run’ calculation severely understates the average welfare gains
and overstates the inequality increases. The opposite is true for the ‘Long-run’
calculation. The biases arise because of the slow adjustment in the economy’s
skill distribution. For instance, the DCIR(q) of 0.9 reported in the last row im-
plies that a worker born right before the shock expects to experience in her life-
time a relative wage that is 90 percent larger than the long-run relative wage.
Thus, the ‘Short-run’ approach misses the future accumulation of skills that in-
creases relative output– thus reducing the price index– and reduces relative wage
of cognitive-intensive occupations. In contrast, the ‘Long-run’ approach misses
the fact that it takes generations for the economy to accumulate the cognitive
skills necessary to achieve the long-run levels of relative output and wages.

In the remaining columns of Table 2, we analyze the same shock in an economy
with a lower degree of technology-skill specificity (i.e., higher η). As discussed in
Section 5, in this case, the between-generation difference in the relative employ-
ment response is smaller due to the smaller change in the skill distribution across
generations. As such, we interpret the comparison between our baseline and this
alternative calibration as a numerical illustration of the welfare consequences of
the same shock if a lower technology-skill specificity resulted in more similar oc-
cupation composition changes for old and young workers (for example, as those
discussed in Section 6.3 for the US and Germany before 1990). The second panel
of Table 2 shows that the higher η implies a faster transition with DCIR(q) falling
from 0.9 to 0.4. This results from the stronger reallocation of old workers at im-
pact which then leads to weaker increases in inequality and changes in the skill
distribution. The larger short-run reallocation also leads to a stronger decline in
the price index, which translates into a higher average welfare gain in the short-
run. Importantly, the faster transition implies smaller biases from the short- and
long-run welfare calculations.

8 Conclusions

We develop a theory where overlapping generations of workers are heteroge-
neous over a continuum of technology-specific skills. Technological transitions
are driven both by the reallocation of workers within a generation and changes in
the skill distribution across generations. We show that this economy can be rep-
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resented as a q-theory of skill investment. This allow us to sharply characterize
the transitional dynamics and welfare implications of a skill-biased innovation, as
well as derive observable predictions for changes in labor market outcomes within
and between generations. We use these insights to study the adjustment of de-
veloped economies to recent cognitive-biased technological innovations. Several
pieces of evidence show strong responses of cognitive-intensive employment for
young but not old generations.

Taken together, we derive two broad takeaways from this piece. First, the evi-
dence suggests that cognitive-biased transitions may be particularly unequal and
slow to play out because of the high specificity of cognitive skills. Most of the
adjustment happens through slow changes in the skill distribution across gener-
ations as opposed to the fast reallocation of workers within a generation. These
features are not universal though. They may be different in past or future techno-
logical transitions where a broader set of skills can be transferred to the occupa-
tions or sectors improved by the technological innovation. Second, caution should
be exercised when interpreting technological transitions based on evidence span-
ning much less than a generation. This may lead to overly pessimistic views of
the consequences of new technologies for inequality and average welfare. Yet, ob-
served changes for different generations, even at short horizons, are useful when
combined with a theory of technological transitions. Looking at the decisions of
younger workers allows us to “see the future” and thus appropriately derive the
full implications of technological innovations.

We think the ideas developed here can also help tackle other problems with a
similar structure. It is straightforward to extend the theory to multiple sectors to
study how economies adjust to more nuanced labor demand shocks (e.g., trade
liberalizations, routine-biased innovations), to include different worker groups
(e.g, gender, race) to analyze changes in discrimination, or to reinterpret sectors
as regions to study migration. Moreover, future work can address normative
questions related to the optimal speed of adjustment to technological (and trade)
shocks or the role of workers with more transferable skills in providing aggre-
gate insurance against them. Finally, the notion that within- and between-cohort
changes at short horizons are informative about structural parameters governing
elasticities at longer horizons can be used both to improve on empirical projec-
tions about future labor market conditions as well as to discipline other dynamic
models with, for instance, incumbents and entrant firms.
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Online Appendix

Appendix A Proofs

A.1 Proof of Lemma 2
We obtain (14) by applying this expression into the relative supply expression in
(13) and the relative demand expression in (2). We can re-write it as

Aθ−1
t =

∫ 1
lt

α(i)σ(i)st(i)di

σ(lt)θ
∫ lt

0 α(i)st(i)di

The right-hand side is strictly decreasing in lt, converges to zero as lt → 1, and
converges to infinity as lt → 0. Then, existence and uniqueness of a solution
follows from applying Bolzano’s theorem.

A.2 Proof of Lemma 3
The FOC of workers’ skill-accumulation problem are:

Vt(i)−
1
ψ

(
1 + log

(
s̃t(i)
s̄t(i)

))
− λt = 0

λt

(∫ 1

0
s̃t(x)dx− 1

)
= 0

Integrating over i ∈ [0, 1], we obtain an equation characterizing λt:

log
(∫ 1

0
s̄t(i)eψVt(i)di

)
= ψλt + 1

Therefore,

s̃t(i) =
s̄t(i)eψVt(i)∫ 1

0 s̄t(j)eψVt(j)dj
.

Using the wage expressions and assignment function in Lemma 1, we can

48



write the value function of a worker i at time t as

Vt(i) =
∫ ∞

t
e−(ρ+δ)(s−t)log(ws(i))ds−

∫ ∞

t
e−(ρ+δ)(s−t)log(Ps)ds

=
∫ ∞

t
e−(ρ+δ)(s−t) (log(ωsσ(i)α(i))Ii≥ls + log(α(i)) (1− Ii<ls)) ds−

∫ ∞

t
e−(ρ+δ)(s−t)log(Ps)ds

=
log(α(i))

ρ + δ
+
∫ ∞

t
e−(ρ+δ)(s−t)log (ωsσ(i)) Ii≥ls ds−

∫ ∞

t
e−(ρ+δ)(s−t)log(Ps)ds

By defining Qt(i) ≡ e
∫ ∞

t e−(ρ+δ)(s−t)log(ωsσ(i))Ii≥ls ds, we obtain

s̃t(i) =
s̄t(i)α(i)

ψ
ρ+δ Qt(i)ψ∫ 1

0 s̄t(j)α(j)
ψ

ρ+δ Qt(j)ψdj
.

A.3 Proof of Theorem 1
Part 1. We start by taking a first order approximation around the stationary
equilibrium of equations (10), (12) and (14). We obtain

∂ŝt(i)
∂t

= −δŝt(i) + δ ˆ̃st(i) (A.1)

l̂t =
η

θ − 1
ŷt (A.2)

l̂t =
η

κη + θ

(∫ 1

l
ŝt(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ŝt(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
(A.3)

where

κ ≡ α(l)s(l)l∫ l
0 α(i)s(i)di

+
α(l)σ(l)s(l)l∫ 1

l α(i)σ(i)s(i)di
.

Differentiating (A.3) with respect to time, we get that

∂l̂t
∂t

=
η

κη + θ

(∫ 1

l

∂ŝt(i)
∂t

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0

∂ŝt(i)
∂t

α(i)s(i)∫ l
0 α(i)s(i)di

di

)

Applying (A.1) to this expression, we obtain

∂l̂t
∂t

= −δl̂t +
η

κη + θ
δ

(∫ 1

l
ˆ̃st(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ˆ̃st(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
.

(A.4)

We now guess and verify that lt converges monotonically along the equilib-
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rium path. We establish this starting from l̂0 < 0. We omit the analogous proof
for l̂0 > 0. Whenever l̂0 < 0 and increases monotonically along the equilibrium
path, we have that for all s > t, types i < lt are employed in technology L and
types i > l are employed in technology H. Also, for workers with i ∈ (lt, l), there
exist a τ(i) such that they work in H for all t < s < t + τ(i) and in L for all
s > t + τ(i). Thus, given the definition of Qt(i), we get

Qt(i) =


1 i ≤ lt
e
∫ t+τ(i)

t e−(ρ+δ)(s−t)log(ωsσ(i))ds i ∈ (lt, l)

σ(i)
1

ρ+δ qt i ≥ l

(A.5)

This implies the following expression for the optimal lottery:

s̃t(i) =


s̃(i)
s̃(l) s̃t(l)e−ψ

∫ ∞
t e−(ρ+δ)(s−t)log(ωs

ω )ds i ≤ lt

s̃(i)
s̃(l)

(
σ(i)
σ(l)

) ψ
ρ+δ (1−e−(ρ+δ)τ(i))

s̃t(l)e
−ψ

∫ ∞
t+τ(i) e−(ρ+δ)(s−t)log(ωs

ω )ds i ∈ (lt, l)
s̃(i)
s̃(l) s̃t(l) i ≥ l

(A.6)

The log-linearization of (A.6) implies

ˆ̃st(i) = ˆ̃st(l)− ψq̂tIi≤lt − ψq̂t+τ(i)Ii∈(lt,l). (A.7)

By replacing (A.7) into the expression inside the parenthesis in (A.4), we obtain

(∫ 1

l
ˆ̃st(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ˆ̃st(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
=

∫ l

0
ψ
(

q̂tIi≤lt + q̂t+τ(i)Ii≥lt

) α(i)s(i)∫ l
0 α(x)s(x)dx

di =

ψq̂t − ψ
∫ l

lt

(
q̂t − q̂t+τ(i)

) α(i)s(i)∫ l
0 α(x)s(x)dx

di

where the last line uses our guess that lt ≤ l for all t.
Then, given our guess that lt increases monotonically along the equilibrium

path, from (12) we see that ωt decreases monotonically along the equilibrium
path. This implies that q̂t > q̂t+τ(i) > 0 for all i and all t. So, we can show that the
term inside the integral is of second order:

0 ≤
∫ l

lt

(
q̂t − q̂t+τ(i)

) α(i)s(i)∫ l
0 α(x)s(x)dx

di ≤
∫ l

lt
q̂t

α(i)s(i)∫ l
0 α(x)s(x)dx

di ≤
maxi∈(lt,l) α(i)s(i)l∫ l

0 α(x)s(x)dx
l̂tq̂t ≈ 0.
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We then obtain (17) by replacing this expression back in (A.4).
To show (18), we differentiate the definition of log(qt) with respect to time:

∂log(qt)

∂t
= −log(ωt) + (ρ + δ)log(qt).

Notice that indifference condition (A.4) immediately implies that ω̂t = −(1/η)l̂t.
Then, by log-linearizing the expression above and replacing, we obtain (18)

∂q̂t

∂t
=

1
η

l̂t + (ρ + δ)q̂t.

Part 2. We now derive the policy functions, show that the equilibrium is saddle-
path stable, and verify that lt increases monotonically along the equilibrium path.

We start by guessing that the policy functions are given by ∂l̂t
∂t = −λl̂t and

q̂t = ζ l̂t. By replacing this guess into (17)–(18), we obtain the following system:

−λ =− δ +
η

κη + θ
δψζ

−ζλ =
1
η
+ (ρ + δ)ζ.

The second equation immediately yields the expression for ζ. To get the ex-
pression for λ, notice that substituting the expression for ζ into the first equation
implies that

(δ− λ)(ρ + δ + λ) +
ψδ

κη + θ
= 0,

which yields the following solutions

λ = −ρ

2
±

√(ρ

2

)2
+ δ

(
(ρ + δ) +

ψ

κη + θ

)
.

Because the term inside the square root is always positive, two solutions al-
ways exist with one being positive and the other negative. This implies that the
equilibrium is saddle-path stable. The positive solution is the speed of conver-
gence of lt.

Finally, the equilibrium threshold is l̂t = l̂0e−λt. Then, if l̂0 < 0, this implies
that lt increases monotonically along the equilibrium path, which verifies our
initial guess and completes the proof of the theorem.
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Part 3. Notice that
∫

s(i) ˆ̃st(i)di =
∫
(s̃t(i) − s(i))di = 0. Using (A.7) , we have

that

0 =
∫ 1

0
s(i) ˆ̃st(i)di

= ˆ̃st(l)− ψ
∫ l

0

(
q̂tIi<lt + q̂t+τ(i)Ii∈(lt,l)

)
s(i)di

= ˆ̃st(l)−
(∫ l

0
s(i)di

)
ψq̂t + ψ

∫ l

lt

(
q̂t − q̂t+τ(i)

)
s(i)di

We can use use the same arguments as in Appendix A.3 to show that the last
term is of second order. Thus,

ˆ̃st(l) =
(∫ l

0
s(i)di

)
ψq̂t

and, therefore,

ˆ̃st(i) =
(∫ l

0
s(i)di

)
ψq̂t − ψq̂tIi<l + ψ(q̂t − q̂t+τ(i))Ii∈(lt,l).

To prove the result, we use the fact that q̂t+τ(i) = q̂te−λτ(i). So,

ˆ̃st(i) =
(∫ l

0
s(i)di

)
ψq̂t − ψq̂tIi<l + ψ(q̂t − q̂t+τ(i))Ii∈(lt,l)

= Ii>lψq̂t −
(

1−
∫ l

0
s(i)di

)
ψq̂t + ψq̂t(1− e−λτ(i))Ii∈(lt,l)

=

(
Ii>l −

∫ 1

l
s(i)di

)
ψq̂t + ot(i)

where ot(i) ≡ ψq̂t(1− e−λτ(i))Ii∈(lt,l) and has
∫

s(i)ot(i)di = 0.
Finally, the dynamics of the skill distribution and the relative value of output

follow from equations A.1 and A.2:

ŝt(i) = ŝ0(i)e−δt +
∫ t

0
eδ(τ−t) ˆ̃sτ(i)dτ,

ŷt = (θ − 1)
1
η

l̂t

A.4 Proof of Proposition 1
Using the definitions yt and qt together with Theorem 1, we have
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∆log(yt) = (θ − 1) (∆log(A)− ∆log(ω)− ω̂t)

= (θ − 1)
(

∆log(A)−
(

∆log(ω) + ω̂0e−λt
))

(A.8)

∆log(qt) = ∆log(q) + q̂t

=
1

ρ + δ
∆log(ω) +

1
ρ + δ + λ

ω̂0e−λt (A.9)

Furthermore,

∆log(lt) = −η∆log(ωt) = −η
(

∆log(ω) + ω̂0e−λt
)

(A.10)

We next derive the long-run change ∆log(ω) and the short-to-long-run change ω̂0

Long-run. In this case the skill distribution is given by (16), so that the equilibrium
threshold solves

Aθ−1σ(l)θ
∫ l

0
s̄(i)α(i)(α(i))

ψ
ρ+δ di =

∫ 1

l
s̄(i)α(i)σ(i)

(
α(i)

σ(i)
σ(l)

) ψ
ρ+δ

di

Consider a log-linear approximation around the final stationary equilibrium:

(θ − 1)∆log(A) +

((
θ +

ψ

ρ + δ

)
1
η
+ κ

)
∆log(l) = 0

Thus,
∆log(l) = − η(

θ + ψ
ρ+δ

)
+ ηκ

(θ − 1)∆log(A)

From equation (12), ∆log(ω) = − 1
η ∆log(l) and, therefore,

∆log(ω) =
1(

θ + ψ
ρ+δ

)
+ ηκ

(θ − 1)∆log(A) (A.11)

Short-to-Long We start by deriving the change in the skill distribution using (16):
ŝ0(i) = ŝ0(l) if i < l and ŝ0(i) = ŝ0(l)− ψ

ρ+δ ∆log(ω) if i > l. Along the transition,
the change in the assignment threshold is determined by (14) given the change in
the skill distribution: (

θ

η
+ κ

)
l̂0 = − ψ

ρ + δ
∆log(ω)
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Then,

ω̂0 =
1

θ + κη

ψ

ρ + δ
∆log(ω) (A.12)

Dynamic responses We now use the derivations above to show that

∆log(lt) = −
η

θ + κη

1 +
1

θ + κη + ψ
ρ+δ

ψ

ρ + δ
(e−λt − 1)

 (θ − 1)∆ log(A)

∆log(yt) =
1

θ + κη

(1 + κη) +
(θ − 1)

θ + κη + ψ
ρ+δ

ψ

ρ + δ
(1− e−λt)

 (θ − 1)∆log(A)

∆log(qt) =
1

θ + κη + ψ
ρ+δ

1
ρ + δ

(
1 +

λ− δ

δ
e−λt

)
(θ − 1)∆log(A)

where the last line uses the solution to λ from Theorem 1.

A.5 Proof of Proposition 2
The following proposition first characterizes the induced changes in average wel-
fare ∆Ū ≡ Ū0 −U0− and lifetime inequality ∆Ω̄ ≡ Ω̄0 − log(q0−). It is easy to
then see that Proposition 2 follows from the expressions for ∆Ū and ∆Ω because,
when r = δ, rλ

r+λ

∫ ∞
0

q̂τ

∆log(A)
dτ = DCIR(q).

Proposition 4 (Average welfare and lifetime welfare inequality) The changes in
average welfare ∆Ū and lifetime inequality ∆Ω̄ are approximately:

∆Ū =
y∞

1 + y∞
∆ log(A)−

(
y∞

1 + y∞
− e∞

1 + e∞

)
∆Ω̄

∆Ω̄ = (ρ + δ)

(
∆ log(q∞) +

λr
r + λ

∫ ∞

0
q̂τdτ

)
where e∞ ≡

(∫ 1
l∞

s(i)di
)

/
(∫ l∞

0 s(i)di
)

is the relative high-tech employment in the long-
run.

Proof.
We have that, because of the envelope theorem, for any τ ≥ 0−

Uτ =
∫

s̃τ(i)Vτ(i)di− 1
ψ

∫
s̃τ(i)log

(
s̃τ(i)
s̄(i)

)
di

≈
∫

s(i)(Vτ(i)−V(i))di + U∞
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Then, for τ ≥ 0

Uτ −U∞ =
∫ ∞

τ
e−(ρ+δ)(t−τ)

∫
s(i)log

(
α(i)max(ωtσ(i), 1)

Pt

)
didt

−
∫ ∞

0
e−(ρ+δ)t

∫
s(i)log

(
α(i)max(ωσ(i), 1)

P

)
didt

≈
∫ 1

l
s(i)di

(∫ ∞

τ
e−(ρ+δ+λ)(t−τ)ω̂τdt

)
−
(∫ ∞

τ
e−(ρ+δ+λ)(t−τ)P̂τdt

)
= −

(
y∞

1 + y∞

1
1− θ

ŷ0 −
∫ 1

l
s(i)diω̂0

)
1

ρ + δ + λ
e−λτ

= −
(

y∞

1 + y∞
−
∫ 1

l
s(i)di

)
q̂τ

Also, for τ = 0−

U∞ −U0− ≈
(∫ 1

l
s(i)di

)
1

ρ + δ
∆log (ω∞) +

y∞

1 + y∞

1
θ − 1

1
ρ + δ

∆log(y∞)

=

(∫ 1

l
s(i)di

)
1

ρ + δ
∆log (ω∞) +

y∞

1 + y∞

1
ρ + δ

(∆log(A)− ∆log(ω∞))

=
y∞

1 + y∞

1
ρ + δ

∆log(A)−
(

y∞

1 + y∞
−
∫ 1

l
s(i)di

)
∆log (q∞)

Then,

∆Ū = (ρ + δ)(U∞ −U0−) + (ρ + δ)r
∫ ∞

0
e−rτ(Uτ −U∞)dτ

≈ (ρ + δ)(U∞ −U0−)−
(

y∞

1 + y∞
−
∫ 1

l
s(i)di

)
(ρ + δ)r

∫ ∞

0
e−rτ q̂τdτ

=
y∞

1 + y∞
∆log(A)−

(
y∞

1 + y∞
−
∫ 1

l
s(i)di

)
∆Ω̄

Finally, using Proposition 1,

∆Ω̄ = (ρ + δ)r
∫ ∞

0
e−rτ∆log(qτ)dτ

= (ρ + δ)∆log(q∞) + (ρ + δ)r
∫ ∞

0
e−rτ q̂τdτ

≈ (ρ + δ)∆log(q∞) + (ρ + δ)
r

r + λ
q̂0

≈ (ρ + δ)∆log(q∞) + (ρ + δ)
rλ

r + λ

∫ ∞

0
q̂τdτ
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A.6 Proof of Demand-Supply representation in (21)–(22)

The demand equation in (2) immediately implies that

∆ log xt = (θ − 1)∆ log(A)− θ∆ log ωt.

We guess and verify the responses in Proposition 1 can be derived from a
relative supply equation with the following form:

∆ log xt = ϕt log ωt.

By combining the supply and demand equations, the change in relative wage
is given by

∆ log ωt =
1

ϕt + θ
(θ − 1)∆ log(A)

We now derive the expression for ∆ log ωt implied by Proposition 1. The de-
mand equations in (2) implies that

∆ log ωt = ∆ log(A) +
1

1− θ
∆ log yt,

which combined with Proposition 1 yields

∆ log ωt =

[(
1

θ + κη

)
− ψ

χ
(1− e−λt)

1
θ + κη

]
(θ − 1)∆ log(A).

Equalizing the two expressions above for ∆ log ωt, we obtain

ϕt + θ =
θ + κη

1− ψ
χ (1− e−λt)

,

which implies that

ϕt =
κηχ + θψ(1− e−λt)

(θ + κη)(δ + ρ) + ψe−λt .

This establishes the representation in (21)–(22) that yields the same path for
∆ log ωt and ∆ log yt implied by Proposition 1. Since e−λt ≤ 1 for all t ≥ 0, this
expression implies that ϕt > 0 for all t. In addition, we can verify that ϕt is
increasing over time because

∂ϕt

∂t
=

θ(θ + κη)(δ + ρ) + κηχ + θψ

((θ + κη)(δ + ρ) + ψe−λt)
2 ψλe−λt > 0.

Finally, Figure 6 illustrates how these elasticities change with η and ψ.
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Figure 6: Effect of η and ψ on the elasticity of relative output supply (ϕt)

A.7 Comparative Statics with respect to η and ψ

Proposition A.1 (Comparative statics with respect to η) Assume that θ > 1. Then,

1. Short-run adjustment

∂∆ log(y0)

∂η
> 0,

∂|∆ log(l0)|
∂η

> 0,
∂∆ log(q0)

∂η
< 0;

2. Long-run adjustment

∂∆ log(y∞)

∂η
> 0,

∂|∆ log(l∞)|
∂η

> 0,
∂∆ log(q∞)

∂η
< 0;

3. Rate of convergence

∂λ

∂η
< 0

4. Cumulative impulse response

∂
(∫ ∞

0 |ŷt| dt
)

∂η
< 0,

∂
(∫ ∞

0

∣∣∣l̂t∣∣∣ dt
)

∂η

?

S 0,
∂
(∫ ∞

0 q̂tdt
)

∂η
< 0;

Proposition A.2 (Comparative statics with respect to ψ) Assume that θ > 1. Then,
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1. Short-run adjustment

∂∆log(y0)

∂ψ
= 0,

∂|∆log(l0)|
∂ψ

= 0,
∂∆log(q0)

∂ψ
< 0

2. Long-run adjustment

∂∆log(y∞)

∂ψ
> 0,

∂|∆log(l∞)|
∂ψ

< 0,
∂∆log(q∞)

∂ψ
< 0

3. Rate of convergence

∂λ

∂ψ
> 0

4. Cumulative impulse response

∂
(∫ ∞

0 |ŷt| dt
)

∂ψ

∣∣∣∣∣
ψ=0

> 0,
∂
(∫ ∞

0

∣∣∣l̂t∣∣∣ dt
)

∂ψ

∣∣∣∣∣∣
ψ=0

> 0,
∂
(∫ ∞

0 q̂tdt
)

∂ψ

∣∣∣∣∣
ψ=0

> 0

Next, we prove each of the items of the two propositions above.

1. Short-run adjustment

∆log(y0) =

(
1− θ − 1

θ + κη

)
(θ − 1)∆log(A)

∆log (q0) =
1

θ + κη + ψ
ρ+δ

λ

δ

1
ρ + δ

(θ − 1)∆log(A)

=
1

θ + κη

1
ρ + λ

(θ − 1)∆log(A)

|∆log(l0)| =
η

θ + κη
(θ − 1)∆log(A)

The first and last lines show that ∆log(y0), |∆log(l0)| are increasing in η and
independent of ψ. Since λ is decreasing in η, the second line shows that
∆log(q0) is decreasing in η. Since λ is increasing in ψ, the third line shows
that ∆log(q0) is decreasing in ψ.
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2. Long-run adjustment

∆log(y∞) =

1− θ − 1

θ + κη + ψ
ρ+δ

 (θ − 1)∆log(A)

∆log (q∞) =
1

θ + κη + ψ
ρ+δ

1
ρ + δ

(θ − 1)∆ log(A)

∆log(l∞) = − η

θ + κη + ψ
ρ+δ

(θ − 1)∆log(A)

Then, it is straightforward to see that ∆log(y∞) is increasing in both η and ψ,
while the opposite holds for ∆log(q∞). Moreover, , |∆log(l∞)| is increasing
in η but decreasing in ψ.

3. Rate of convergence

From the expression for λ in Theorem 1 it is straightforward to see that is
decreasing in η and increasing in ψ.

4. Cumulative impulse response

∫ ∞

0
|ŷt|dt = − 1

λ
ŷ0 =

1
λ

ψ
ρ+δ

θ + κη + ψ
ρ+δ

θ − 1
θ + κη

(θ − 1)∆log(A)

∫ ∞

0
q̂tdt =

1
λ

q̂0 =
1

θ + ηκ + ψ
ρ+δ

λ− δ

λ

1
δ

1
ρ + δ

(θ − 1)∆log(A)

∫ ∞

0
|l̂t|dt =

η

θ − 1

∫ ∞

0
|ŷt|dt

The second line shows that
∫ ∞

0 q̂tdt is decreasing in η, since λ is decreasing
in η. Furthermore,

∫ ∞
0 q̂tdt is increasing in ψ around ψ = 0. This is because

λ is increasing in ψ, λ = δ when ψ = 0, and
∂

(
1
λ

1
θ+κη+

ψ
ρ+δ

)
∂ψ is bounded.

The first line shows that
∫ ∞

0 |ŷt|dt is increasing in ψ around ψ = 0 since

∂

(
1
λ

1
ρ+δ

θ+κη+
ψ

ρ+δ

)
∂ψ is bounded. To show that it is decreasing in η, we show that:
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∂log( 1
λ

ψ
ρ+δ

θ+κη+
ψ

ρ+δ

θ−1
θ+κη )

∂η
=

1
λ

1
ρ + 2λ

ψδκ

(θ + κη)2 −
κ

θ + κη + ψ
ρ+δ

− κ

θ + κη

= −


1− λ− δ

λ

ρ + δ + λ

ρ + 2λ︸ ︷︷ ︸
<1 because λ>δ

 1
(θ + κη)

+
1

θ + κη + ψ
ρ+δ

 κ < 0

Finally,
∫ ∞

0 |l̂t|dt is increasing in ψ around ψ = 0, since it is proportional to∫ ∞
0 |ŷt|dt. However, the derivative with respect to η is ambiguous. This is

because the constant of proportionality η/(θ − 1) is increasing in η while∫ ∞
0 |ŷt|dt is decreasing in η.

A.8 Proof of Proposition 3
From the proof of Proposition A.1 in Appendix A.7, we have that

DCIR(q) =
δλ

λ + δ

∫ ∞
0 |q̂t|dt

∆log(A)
=

 1

θ + ηκ + ψ
ρ+δ

δ

λ + δ

 (λ− δ)
|θ − 1|

δ(ρ + δ)

DCIR(y) =
δλ

λ + δ

∫ ∞
0 |ŷt|dt

∆log(A)
=

δ

λ + δ

ψ
ρ+δ

θ + κη + ψ
ρ+δ

(θ − 1)2

θ + κη
=

δ

λ + δ

(ρ + δ + λ)

λ(ρ + λ)
(λ− δ)

(θ − 1)2

(θ + κη)2 .

The definition of λ in Theorem 1 implies that λ|ψ→0 = λ|θ→∞ = δ and
∂λ
∂η |ψ→0 = ∂λ

∂η |θ→∞ = 0. Taken together, they immediately imply that ∂DCIR(q)
∂η |ψ→0 =

∂DCIR(q)
∂η |θ→∞ = 0 and ∂DCIR(y)

∂η |ψ→0 = ∂DCIR(y)
∂η |θ→∞ = 0

A.9 Proof of Theorem 3
We start by deriving the elasticity of relative employment of old generations with
respect to ∆ log(A). We first use a first-order approximation to write the log-
change in relative high-tech employment in terms of changes in the high-tech
employment share:

εwithin
0 ≈ 1

∆log(A)

1
e∞(1− e∞)

(∫ 1

l0
s0(i)di−

∫ 1

l0−
s0(i)di

)
Taking a first-order approximation around l,
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∫ 1

l0
s0(i)di−

∫ 1

l0−
s0(i)di ≈ −s0(l)l

(
l̂t + ∆ log(l∞)

)
≈ s0(l)lη∆ log(ωt)

≈ s0(l)l
e∞(1− e∞)

η

(
− 1

θ − 1
∆ log y0 + ∆ log A

)
.

where the last line uses the demand expression in (2).
Then, using Proposition 1,

εwithin
0 ≈ s0(l)l

e∞(1− e∞)

η

θ + κη
(θ − 1),

Thus,

∂|εwithin
0 |
∂η

=
s0(l)l

e∞(1− e∞)

θ

(θ + κη)2 |θ − 1| > 0 and
∂|εwithin

0 |
∂ψ

= 0.

We first use a first-order approximation to write the relative high-tech employ-
ment in terms of changes in the high-tech employment share:

εbetween
0 ≈ 1

e∞(1− e∞)

1
∆ log A

(∫ 1

l0
(s̃0(i)− s0(i))di

)
≈ 1

e∞(1− e∞)

1
∆ log A

(∫ 1

l
s(i)( ˆ̃s0(i)− ŝ0(i))di

)

To write this expression in term of fundamentals, we derive the changes in
the skill distribution between stationary equilibria. Using the expression for the
stationary skill distribution in (16),

s0(i) =
s̄(i)α(i)

ψ
ρ+δ (ω0−σ(i))

ψ
ρ+δ Ii>l0−∫ l0−

0 s̄(j)α(j)
ψ

ρ+δ dj +
∫ 1

l0−
s̄(j)α(j)

ψ
ρ+δ (ω0−σ(j))

ψ
ρ+δ dj

=⇒

ŝ0(i) ≈ −
(

Ii>l −
∫ 1

l
s(j)dj

)
ψ

ρ + δ
∆ log(ω)

Recall also that the third part of Theorem 1 yields

ˆ̃s0(i) =
(

Ii>l −
∫ 1

l
s(i)di

)
ψq̂0 + o0(i).
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Combining the expressions above,

εbetween
0 ≈ 1

∆ log A

(
ψq̂0 +

ψ

ρ + δ
∆ log(ω)

)
≈ 1

∆ log A
ψ (q̂0 + ∆ log(q∞))

≈ 1
∆ log A

ψ∆ log(q0)

Using the expression for ∆ log(q0) in Proposition 1,

εbetween
0 ≈ ψ

(ρ + λ)(θ + κη)
(θ − 1).

Using the expressions derived in Appendix A.8 and defining $ ≡
( ρ

2

)2
+

δ
(
(ρ + δ) + ψ

θ+κη

)
, we obtain

∂|εbetween
0 |
∂ψ

=
1− e∞

(θ + κη)(ρ + λ)2

(
ρ + λ− ψ

∂λ

∂ψ

)
|θ − 1|

=
1

(θ + κη)(ρ + λ)2

(
ρ

2
+ $1/2 − 1

2
$−1/2 δψ

θ + κη

)
|θ − 1|

=
1

(θ + κη)(ρ + λ)2 $−1/2
(

ρ

2
$−1/2 + $− 1

2
δψ

θ + κη

)
|θ − 1|

=
1

(θ + κη)(ρ + λ)2 $−1/2
(

ρ

2
$−1/2 +

(ρ

2

)2
+ δ (ρ + δ) +

1
2

δψ

θ + κη

)
|θ − 1|,

which implies that ∂|εbetween
0 |
∂ψ > 0.

Using the expressions derived in Appendix A.8,

∂|εbetween
0 |
∂η

=− (1− e∞)
ψ

[(ρ + λ)(θ + κη)]2

(
κ(ρ + λ) + (θ + κη)

∂λ

∂η

)
|θ − 1|

=− ψ

[(ρ + λ)(θ + κη)]2
κ$−1/2

(
ρ

2
$−1/2 + $− 1

2
δψ

(θ + κη)

)
|θ − 1|

=− ψ

[(ρ + λ)(θ + κη)]2
κ$−1/2

(
ρ

2
$−1/2 +

(ρ

2

)2
+ δ(ρ + δ) +

1
2

δψ

(θ + κη)

)
|θ − 1|,

which implies that ∂|εbetween
0 |
∂η < 0.
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Appendix B Extensions

This section discusses the extensions described in Section 4.

B.1 Learning-from-others

We relax the assumption that the reference distribution s̄τ(i) in the skill invest-
ment problem is exogenous and fixed over time. Instead, we assume that certain
skills may be easier to acquire than others because workers can "learn from oth-
ers" when such skills are already abundant in the economy. Formally, we assume
that the baseline distribution s̄τ(i) is a geometric average of a fixed distribution
ε̄(i) and the current skill distribution in the economy sτ(i) at the time where
generation τ is born,

s̄τ(i) = sτ(i)
γε̄(i)1−γ, γ ∈ [0, 1).

Note that as γ increases it becomes easier for workers to choose skill lotteries
that put more weight in those skill types that are already abundant in the econ-
omy. As opposed to our benchmark case (γ = 0), this extension with γ > 0
introduces a backward-looking element to the skill investment problem and com-
plementarities in skill investment decisions across generations.

In what follows, we reproduce the key steps that change in the proofs in Ap-
pendix A.3. First, we log-linearize the extended version of (A.6). We begin by
noting that the stationary distribution exist and is

s(i) =
s(i)γε(i)1−γw(i)

ψ
ρ+δ∫ 1

0 s(j)γε(j)1−γw(j)
ψ

ρ+δ dj
=⇒ s(i) =

ε(i)w(i)
1

1−γ
ψ

ρ+δ∫ 1
0 ε(i)w(i)

1
1−γ

ψ
ρ+δ di

.

Then, we obtain that

ˆ̃st(i) = γ (ŝt(i)− ŝt(l)) + ˆ̃st(l)− ψq̂tIi<lt − ψq̂t+τ(i)Ii∈(lt,l).

Second, replacing the above in the expression inside the parenthesis in (A.4),

(∫ 1

l
ˆ̃st(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ˆ̃st(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
=

γ
∫ 1

l
ŝt(i)

α(i)σ(i)s(i)∫ 1
l α(x)σ(x)s(x)dx

di−
∫ l

0

(
γŝt(i)− ψq̂tIi<lt − ψq̂t+τ(i)Ii>lt

) α(i)s(i)∫ l
0 α(x)s(x)dx

di =

γ
κη + θ

η
l̂t + ψq̂t − ψ

∫ l

lt

(
q̂t − q̂t+τ(i)

) α(i)s(i)∫ l
0 α(x)s(x)dx

di
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where the last line uses (A.3) annd (A.2).
Third, as in the proof in Appendix A.3, we can show that the last term inside

the integral is of second order. Thus, replacing the above expression back in
(A.4), we obtain the Kolmogorov-Forward equation for l̂t in the economy with
learning-from-others,

∂l̂t
∂t

= −δ(1− γ)l̂t +
η

κη + θ
δψq̂t.

Fourth, since the law of motion for q̂t is the same as in the benchmark model,
this implies that the equilibrium is saddle-path stable where the new λ in the
economy with learning-from-others is the positive solution to

(δ(1− γ)− λ)(ρ + δ + λ) +
ψδ

κη + θ
= 0.

Finally, the optimal lottery in the economy with learning-from-others is

ˆ̃st(i) = γŝt(i) +
(

Ii>l −
∫ 1

l
s(i)di

)
ψq̂t + ot(i).

Next, we reproduce the key steps that change in Appendices A.4 and A.7. First,
from the expression for the stationary distribution above, note that the long-run
skill supply elasticity in the learning-from-others economy is 1

1−γ ψ as opposed to
simply ψ.

This implies that the dynamic responses are

∆log(lt) = −
η

θ + κη

1 +
1

θ + κη + 1
1−γ

ψ
ρ+δ

1
1− γ

ψ

ρ + δ
(e−λt − 1)

 (θ − 1)∆ log(A)

∆log(yt) =
1

θ + κη

(1 + κη) +
(θ − 1)

θ + κη + 1
1−γ

ψ
ρ+δ

1
1− γ

ψ

ρ + δ
(1− e−λt)

 (θ − 1)∆log(A)

∆log(qt) =
1

θ + κη + 1
1−γ

ψ
ρ+δ

1
ρ + δ

(
1 +

λ− δ(1− γ)

δ(1− γ)
e−λt

)
(θ − 1)∆log(A)

where the last line follows from the equation for the new λ.
Second, note that the short-run responses for lt and yt are identical than in

the benchmark model. The long-run responses are larger (smaller) in magnitude
for yt (for lt) in the economy with learning-from-others since the long-run skill
supply elasticity is larger and thus 1

θ+κη+ 1
1−γ

ψ
ρ+δ

1
1−γ

ψ
ρ+δ is larger. As for the DCIR,

note that λ is smaller in the learning-from-others economy. Together with the fact

64



that 1
θ+κη+ 1

1−γ
ψ

ρ+δ

1
1−γ

ψ
ρ+δ is larger, they imply that the DCIR of both yt and lt is

higher in the learning-from-others economy.
Third, for qt we have that

∆log(q∞) =
1

θ + κη + 1
1−γ

ψ
ρ+δ

1
ρ + δ

(θ − 1)∆log(A)

∆log(q0) =
1

θ + κη

1

(ρ + δ + ψδ
θ+κη

1
ρ+δ+λ )

(θ − 1)∆log(A)

∫ ∞

0
q̂tdt =

1
1−γ

ψ
ρ+δ

θ + κη + 1
1−γ

ψ
ρ+δ

1
ρ + δ + λ

1
λ

1
θ + κη

(θ − 1)∆log(A).

Then, since λ is smaller, the short- and long-run responses are smaller in mag-
nitude and the DCIR is larger in the economy with learning-from-others.

Finally, we note that the proofs for the comparative statics in Appendix A.7
with respect to η and ψ are unchanged. To see this, it suffices to show that the
dynamics for qt, lt, yt in the economy with learning-from-others are equivalent to
those from a re-parameterized benchmark economy where δ′ = δ(1− γ), ψ′ =

1
1−γ ψ and ρ′ = ρ + δγ.

B.2 Old generations skill investment
We now let a fraction of workers that were present before the shock re-optimize
their skill investment "as if" they were a young generation entering at time t = 0.
Formally, the skill distribution on impact now becomes

s0(i) = (1− β)s0−(i) + βs̃0(i),

where β is the fraction of workers in the generation present before the shock that
can re-optimize.

The first thing to note is that this does not change any of the transitional
dynamics given the new initial skill distribution on impact. As such Theorem 1
is unchanged. However, the initial conditions and the dynamic responses do
change. Next, we reproduce the key steps that change in Appendix A.4.

The deviation from the skill distribution on impact from the new stationary
distribution is now

ŝ0(i) = ŝ0−(i) + β
(

ˆ̃s0(i)− ŝ0−(i)
)

= (1− β)

(
ŝ0(l)− Ii>l

ψ

ρ + δ
∆log(ω)

)
+ β

(
Ii>l −

∫ 1

l
s(i)di

)
ψq̂0 + βo(i)
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where the long-run change ∆log(ω) is the same as in the benchmark model.
Following the same steps as in the benchmark proof, this then implies that

(
θ

η
+ κ

)
l̂0 =

∫ 1

l

σ(i)α(i)s(i)∫ 1
l σ(i)α(i)s(i)

ŝ0(i)di−
∫ l

0

α(i)s(i)∫ l
0 α(i)s(i)

ŝ0(i)di

= −(1− β)
ψ

ρ + δ
∆log(ω) + βψq̂0.

Thus,

ω̂0 = − 1
η

l̂0

=
1

θ + κη

(
ψ

ρ + δ
∆log(ω)− β

(
ψ

ρ + δ
∆log(ω) + ψq̂0

))
=

1
θ + κη

(
ψ

ρ + δ
∆log(ω)− β

(
ψ

ρ + δ
∆log(ω) +

ψ

ρ + δ + λ
ω̂0

))
=

1− β

1 + β
ψ

ρ+δ+λ
1

θ+κη

1
θ + κη

ψ

ρ + δ
∆log(ω).

Finally, using the above together with the expression for ∆log(ω) in equations
(A.8)-(A.10), we obtain:

∆log(yt) =
1

θ + κη

(
1 + κη + (θ − 1)

ψ

χ

(
1− 1− β

1 + β λ−δ
δ

e−λt

))
(θ − 1)∆log(A)

∆log(qt) =
1
χ

(
1 +

λ− δ

δ

1− β

1 + β λ−δ
δ

e−λt

)
(θ − 1)∆log(A)

∆log(lt) = −
η

θ + κη

(
1 +

ψ

χ

(
1− β

1 + β λ−δ
δ

e−λt − 1

))
(θ − 1)∆log(A)

Then, mathematically, the dynamic responses in the economy where old gener-
ations can re-optimize their skills are similar to those in the benchmark economy
except that the function e−λt is now multiplied by 1−β

1+β λ−δ
δ

< 1. This immediately

implies that: the long-run responses are the same in both economies, the short-
run responses of y and l (of q ) are now larger (smaller) in magnitude, and the
DCIR of all variables is now smaller. Hence, in many ways, this new economy be-
haves qualitatively similar to an economy with a lower degree of skill specificity
(higher η), with the exception that long-run responses are unchanged.

66



B.3 Population growth
We now assume that the size of entering generations is µ as opposed to δ. This im-
plies that the population growth rate is µ− δ. The Kolmogorov-Forward equation
describing the evolution of the skill distribution becomes

∂e(µ−δ)tst(i)
∂t

= −δe(µ−δ)tst(i) + µe(µ−δ)t s̃t(i).

Then, we have that

∂st(i)
∂t

= −µst(i) + µs̃t(i).

The remaining elements in the model remain the same. Hence, the economy
with population growth is identical to our benchmark economy except that the
convergence rate λ is higher iff µ > δ since it is now the positive solution to:

(λ− µ)(ρ + δ + λ) =
ψµ

θ + κη
.

Then, if µ > δ, the short- and long-run dynamic responses for yt, lt remain
unchanged, the short-run response of q is smaller in magnitude, and the DCIR of
all variables is lower. The opposite holds when µ < δ.

Appendix C Empirical Analysis

C.1 Cognitive intensity and use of new technologies across oc-
cupations in Germany

This section analyzes the types of tasks required by cognitive-intensive occupa-
tions. Figure 7 reports the correlation between the occupation’s intensity in cogni-
tive skills and the share of individuals in that occupation reporting they intensely
perform each of the listed tasks. The top tasks performed in cognitive-intensive
occupations are directly related to technological innovations recently introduced
in the workplace: working with internet, in particular, and with computers, more
generally. On the other extreme, individuals employed in the least cognitive-
intensive occupations tend to perform routine tasks associated with manufac-
turing and repairing. The results in Figure 7 are consistent with the evidence
establishing the heterogeneous impact of new technologies on different tasks per-
formed by workers – e.g., Autor et al. (2003), Spitz-Oener (2006), Autor and Dorn
(2013), and Akerman et al. (2015).
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Figure 7: Cross-occupation correlation between cognitive intensity and perfomance of
different tasks

Note. Sample of 85 occupations. The occupation task intensity is the share of individuals in that occupation
reporting to intensively perform the task in the 2012 Qualification and Working Conditions Survey. The occu-
pation cognitive-skill intensity is the share of time spent on cognitive-intensive tasks in the BERUFNET dataset
(2011-2013).

We then investigate whether these new technologies affected worker genera-
tions differently conditional on their occupation. We consider two generations: a
young generation aged less than 40 years and an old generation aged more than
40 years.29 Figure 8 shows that, while internet and computer usage are biased
towards cognitive-intensive occupations, there were only small differences in the
usage of these new technologies across worker cohorts employed in the same oc-
cupation in 2012. These results complement the finding in Spitz-Oener (2006) that
there were small between-cohort differences in the change of the task content of
German occupations in the 1990s.

C.2 Dynamic adjustment to broadband internet adoption across
regions and occupations

We start by examining the first-stage regression that relates the initial telephone
network to DSL access. Although the unit of observation in equation (24) is a
district-occupation-generation triple, the exogenous variation in the instrument
vector comes only from cross-district variation. Therefore, to provide a clear pic-
ture of the exogenous variation underlying the first-stage regression, we first ex-
amine the impact of the instrument vector Zi on the district’s share of population

29Results are similar if we define young generations to include workers who are less than 30, 35 or 45 years
old.
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Figure 8: Internet and Computer Usage by Occupation: Within- and Between-Generation

Note. Sample of 85 occupations in Working Condition Survey. For each occupation, we compute the share of individuals
reporting intensive internet and computer usage on their job. Young generations defined as workers aged below 40 years
and Old generations defined as all workers aged above 40 years. The occupation cognitive-skill intensity is the share of time
spent on cognitive-intensive tasks in the BERUFNET dataset (2011-2013). Figure reports the lowess smooth fit.

with broadband internet access in 2005, DSLi. That is, we begin by estimating the
following linear regression:

DSIi = Ziρ + Xiγ + εi

where Zi is the vector of instruments described in Section 6.2 and Xi is the vec-
tor of district-level controls used in the estimation of (24). We refer to the first
instrument as "MDF Density Measure" (number of municipalities in the district
without a MDF in a 4200m radius) and to the second instrument as "Alternative
MDF Availability" (number of municipalities in the district without a MDF in a
4200m radius and without access to an alternative MDF in a neighboring district
in a 4200m radius).

Table 3 shows that districts with adverse initial conditions for internet adop-
tion had a lower share of households with high-speed internet in 2005. Columns
(1) reports the first-stage estimates controlling for the baseline set of district-level
controls. We can see that the F statistic of excluded variables remains high in the
presence of these controls.

As discussed in Section 6, equation (24) has multiple endogenous variables
since they include DSL access interacted with occupation cognitive intensity and
worker generation dummies. To test for weak instruments in this setting, we
provide the Sanderson-Windmeijer F-statistics (Sanderson and Windmeijer, 2016)
for the first stage of each specification in Table 4. This test statistic checks for
whether any of our endogenous variables are weakly instrumented, as well as
whether there are sufficiently many strong instruments to instrument the multiple
endogenous variables. As shown in the table, we obtain uniformly high first-
stage SW F-statistics in all specifications, indicating that our instrument vector
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has enough power to estimate responses for different worker cohorts.

Table 3: First-stage regressions – Share of households with DSL access in 2005

(1) (2)
MDF density measure -0.020∗∗∗ -0.018∗∗∗

(0.005) (0.005)
Alternative MDF availability 0.002 -0.001

(0.001) (0.002)
Baseline controls Yes No
F statistic 26.49 43.06

Note. Sample of 323 districts in West Germany. All regressions are weighted by the district popula-
tion size in 1999. Baseline controls include the following district variables in 1999: college graduate
population share, manufacturing employment share, immigrant employment share and workforce age
composition. Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: First-stage SW F-statistics for estimation of equation (24) reported in Panel A of
Figure 5

Instrumented Variable 1997 2007 2014
Young Generation*DSL Access 18.74 18.78 19.04
Old Generation* DSL Access 19.04 17.57 20.45
Young Generation*DSL Access*Cognitive Intensity 21.95 20.48 19.77
Old Generation*DSL Access*Cognitive Intensity 21.31 18.57 22.32

Note. Sample of 2 cohorts, 120 occupations and 323 districts. Table reports the Sanderson-Windmeijer
F-statistic for each endogenous regressor when estimating equation (24).

Finally, Figure 9 shows the between-generation employment differences

C.3 Occupations composition changes for young and old work-
ers in different periods

This section analyzes occupation composition trends for young and old workers
in the fastest growing occupations in different periods. We focus on Germany
and United States before and after 1990. We again use the nine aggregate occupa-
tions in the 2-digit ISCO classification used in Section 6.1. Due to data availability,
our early period is 1970-1987 for Germany and 1960-1990 for the United States.
For both countries, the recent period is the same as the one used to compute the
trends in Figure 4.30 To obtain a measure of the expanding occupations that is

30Our primary data source for the early period is the individual-level Census data downloaded from
IPUMS international, which contains information on the 2-digit ISCO occupation of males aged 16-64 in each
Census year. For the recent period, we compute all outcomes using the same underlying data of Figure 4.
We select a sample of employed males in each country-year and split them into two age groups: “Young”
workers aged 15-39yrs and “Old” workers aged 40-64yrs.
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Figure 9: Impact of early DSL adoption on employment in more cognitive-intensive oc-
cupations: Old and Young generations

(a) Relative employment response for each gen-
eration

(b) Between-generation response difference

Note. Estimation of equation (24) in the sample of 2 cohorts, 120 occupations and 323 districts. Dependent variable: log employment.
The left panel reports β

g
t for olf and young generations, and the right panel reports β

young
t − βold

t . All regressions are weighted by
the district population size in 1999 and include occupation-time and cohort-time fixed-effects. Baseline controls include the following
district variables in 1999: college graduate population share, manufacturing employment share, immigrant employment share, district
age composition, and the dependent variable pretrend growth in 1995-1999. Bars are the associated 90% confidence interval implied by
the standard error clustered at the district level.

consistent over time, we no longer rely on the set of cognitive intensive occupa-
tions since past shocks may have augmented a different set of skills. Instead, for
each country and period, we define the expanding occupations as the three occu-
pations with the highest change in log employment share among young workers.
Through the lens of our theory, since young workers adjust their skills to work
on occupations that became more attractive, their employment decisions provide
a revealed-preference way of recovering the occupations experiencing positive
demand shocks under the assumption of no shocks to the cost of investing on
different skills.

Table 5 reports the employment growth trends in the three occupations with
the highest growth among young workers. Columns (1) and (3) report substan-
tial growth in these occupations for both periods and countries. Interestingly,
columns (2) and (4) show that the two periods differ in the relative magnitude
of the between- and within-generation components of employment changes. As
in Figure 4, there is a large between-generation difference in recent years when
most expanding occupations were cognitive intensive. However, such a between-
generation difference was much smaller before 1990 when changes in the oc-
cupation composition was more similar for young and old generations. In this
earlier period, the set of expanding occupations was less cognitive intensive with
services and retail occupations at the top of the list in both countries. In fact, Ger-
many did not have any cognitive intensive occupation among the fastest growing
occupations in 1970-1987.

To further investigate this trend reversal, we focus on the United States be-
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cause it has individual-level data from the U.S. Census containing 2-digit ISCO
occupation information for 1960, 1970, 1980, 1990, 2000, 2010, and 2015. We use
this data to select a sample of males aged 16-64 years old in each year. For each
occupation o, we use this sample to compute the change in the average age of
its workers between years t and t0 (∆Āo,t ≡ Āo,t − Āo,t0) and the change in the
employment share in the same period (∆eo,t ≡ eo,t − eo,t0). We then compute the
correlation between ∆Āo,t and ∆eo,t across the nine occupations weighted by their
employment share in 1960.

Table 6 shows that, in line with Figure 4, the expanding occupations in recent
periods attracted young individuals, leading to reductions in the average age of
its workers. However, this was not the case in previous periods. Between 1960
and 1990, the correlation between changes in average age and employment share
were much weaker. In fact, this correlation was positive in 1960-1980.

Table 5: Changes in between-generation employment differences and employment shares
across occupations in different periods

Early period Recent period
1
T ∆ log eall

t
∆ log(eyoung

t /eold
t )

∆ log eold
t

1
T ∆ log eall

t
∆ log(eyoung

t /eold
t )

∆ log eold
t

(1) (2) (3) (4)
Germany 1.94% 0.173 1.59% 0.456
United States 0.91% 0.206 1.45% 0.476

Note. Columns (1) and (3) report the annualized growth rate in the three 2-digit ISCO occupations with the highest
change in log employment share in the period among young workers in the country (where T is the number of years
in the period). For the top 3 occupations by log-employment growth for young workers, columns (2) and (4) report
the ratio between the log-change in the between-generation employment share and the log-change in employment
share for old workers. Early period: 1970-1987 for West Germany and 1960-1990 for the United States. Recent period:
1997-2017 for Germany and 2000-2015 for the United States. Sample of males in two age groups: “Young” workers
aged 15-39yrs and “Old” workers aged 40-64yrs.

Table 6: Changes in mean age and employment share across occupations, United States

Period Corr(∆Āo,t, ∆eo,t)

2000-2015 -0.53
1990-2010 -0.63
1980-2000 -0.60
1970-1990 -0.03
1960-1980 0.35

Note. For each period, the table reports the correlation between ∆Āo,t and ∆eo,t
across the nine 2-digit ISCO occupations (weighted by their employment share in
1960). For each occupation and period, ∆Āo,t is the change in the mean age and
∆eo,t is the change in employment share. Sample of males 16-64 years old in the
United States.
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