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1 Introduction

New technologies are the key drivers of increases in living standards over long horizons. Yet,
more recently, a literature has shown that they may have strong distributional consequences
at shorter horizons.1 If an economy’s adjustment margins vary as horizons lengthen, then
focusing on short or long horizons alone risks missing the overall impact of technological in-
novations on labor markets as well as their average and distributional welfare consequences.
Such concerns are particularly important when the adjustment is slow and takes many gener-
ations. How then do economies adjust to technological innovations over different horizons?
Why are some technological transitions particularly unequal and slow to play out?

In this paper, we develop a theory to study technological transitions driven by both worker
reallocation within a generation and changes in the distribution of skills across generations.
We show that the transitional dynamics of this economy can be represented as a q-theory of
skill investment. We then use this representation in two ways. First, to characterize how the
nature of the technological innovation and associated skills determine the importance of the
two adjustment margins in the theory and, as a result, how slow and unequal technological
transitions are. Second, to connect these determinants to changes in labor market outcomes
within and between generations that can be measured at short horizons. We conclude by
empirically studying the adjustment of developed economies to recent cognitive-biased tech-
nological innovations. Our results indicate that, due to the high specificity of cognitive skills,
such innovations triggered a particularly unequal and slow transition unfolding over many
generations. In such cases, by missing most of the adjustment, naive extrapolations from
observed changes at short horizons overestimate the distributional consequences and under-
estimate the average welfare gains of cognitive-biased innovations.

The theory has four distinct features. First, there are overlapping generations of workers
with stochastic lifetimes, as in Yaari (1965) and Blanchard (1985). Second, within each gen-
eration, workers are heterogeneous over a continuum of skill types. A type determines the
worker’s productivity in the two technologies of the economy, as in Roy (1951). Given the
relative technology-specific wage at a point in time, there is a threshold determining which
skill types self-select into each of the two technologies. Technology-skill specificity —i.e., how
different skill types are in terms of their relative technology-specific productivity—then de-
termines how sensitive the assignment threshold is to changes in relative technology-specific
wages. Third, the output of the two technologies is combined to produce a final consumption
good, as in Katz and Murphy (1992), Ngai and Pissarides (2007), and Buera, Kaboski, and
Shin (2011). Fourth, given future relative technology-specific wages, workers make a costly
investment upon entering the labor market that determines their skill type for their lifetime,
similar to Chari and Hopenhayn (1991), Caselli (1999) and Galor and Moav (2002). The cost

1See Durlauf and Aghion (2005) for a review of the literature on the impact of new technologies and innovation on
long-run living standards. See Acemoglu and Autor (2011) and Autor and Salomons (2017) for reviews of the literature doc-
umenting the impact of new technologies on employment and wages of workers associated with different skills, occupations,
industries, and firms.
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of skill investment for entering workers then determines how different the skill distribution is
across generations following changes in future relative technology-specific wages.2

The equilibrium of this economy is a joint path for the skill distribution, the assignment
of skill types to technologies, and the relative technology-specific wage and output. It entails
a high-dimensional fixed-point problem: forward-looking entrants make skill investment de-
cisions based on the expected future path for the relative technology-specific wage, which
determines how the skill distribution evolves over time and, ultimately, the actual equilib-
rium path of relative technology-specific wage and all other outcomes.

Our first result reduces the dimensionality of this fixed-point problem. It establishes that
the approximate equilibrium of this economy can be represented as that from a q-theory of
skill investment.3 The path for the skill distribution is only a function of two variables at each
point in time: the present-discounted value of the log-relative technology-specific wage (q)
and the threshold determining the assignment of skills to technologies (which plays the role
of the pre-determined variable). We show that a simple system of linear differential equa-
tions characterizes the equilibrium dynamics of these two variables. Thus, we solve for the
equilibrium dynamics by keeping track of these variables and not the skill distribution itself.
Our approach is reminiscent of those in Perla and Tonetti (2014) and the special case with
linear objectives in Lucas and Moll (2014) which characterize the dynamics of a distribution
by tracking the evolution of a threshold.

Our second result derives in closed-form the transitional dynamics following a one-time,
permanent increase in the productivity of all skill types employed in one of the technolo-
gies. We refer to this as a skill-biased technological innovation. The logic of the economy’s
adjustment follows immediately from the q-theory representation of the equilibrium. The
relative productivity increase leads to an increase in the relative labor demand and wages in
the improved technology. On impact, marginal skill types within each generation reallocate
into that technology. The increase in current and future relative wages leads younger entering
generations to invest in those skills that are more complementary to the improved technology.
Along the transition, as younger generations replace older ones, q falls and relative output
increases because the economy’s skill distribution tilts towards skills more complementary to
the improved technology. To evaluate how slow the transition is, we define the discounted cu-
mulative impulse response (DCIR). For old generations born before the innovation, the DCIR
measures how different is the adjustment they expect to see during their lifetime compared to
the overall (long-run) adjustment. We say that the adjustment is slower whenever they expect
to miss more of the overall adjustment (i.e., the DCIR is smaller). Crucially, we also show that
the DCIR of q is a central determinant of the average and distributional welfare consequences
of new technologies.

2We incorporate investment on the continuum of skills by allowing ex-ante identical individuals to enter a skill lottery
whose utility cost is proportional to the relative entropy between the chosen lottery and a reference distribution of innate
ability. This formulation yields a tractable expression for the skill distribution of incoming generations that resembles a
multinomial logit function over the continuum of skill types.

3See Tobin (1969) and Hayashi (1982) for the original q-theory of capital investment.
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This result shows that the impact of new technologies on the economy may significantly
change over time due to the endogenous evolution of the skill distribution across generations.
It provides a micro-foundation for the idea that supply elasticities tend to be lower at shorter
horizons compared to longer horizons, a form of Samuelson’s LeChatelier principle. Our
micro-foundation points to two types of risks associated with ignoring dynamics induced by
changes in the skill distribution across generations. The first arises when extrapolating from
observed responses in the economy that span much less than a generation. Such extrapo-
lations will overestimate inequality changes and underestimate average welfare gains. The
second arises when extrapolating from past technological transitions to different contexts: a
type of threat to external validity. This leads to biased predictions about the economy’s dy-
namic adjustment whenever the nature of technology and skills, or the underlying flexibility
of skill investment, significantly differs across episodes.

Our third result presents comparative static exercises that speak to why some technolog-
ical transitions are particularly unequal and slow to play out. As such, these exercises help
interpret differences between past or future transitions where the nature of technological in-
novations and associated skills differ. First, we show that an economy where technology-skill
specificity is higher has a slower, more back-loaded adjustment path to the new long-run equi-
librium. The q-theory analogy again delivers the intuition for this result. When technology-
skill specificity is higher, there is less worker reallocation across technologies in the short-run
and, therefore, the increase in lifetime inequality q is larger. This strengthens the incentives
of young entering generations to invest in those skills that are more complementary to the
improved technology. As a result, the adjustment is slower because larger changes in the
skill distribution take place along the transition. Second, we show that a lower cost of skill
investment for young generations makes the adjustment slower as well, both directly and by
amplifying the effects of technology-skill specificity. In both cases, the more relevant margin
of adjustment is not the reallocation of workers within a generation but the changes in the
skill distribution across generations.

Our fourth result connects the degree of technology-skill specificity and the cost of skill in-
vestment to observable changes in labor market outcomes within and between generations. In
particular, we focus on short-run implications that can be credibly measured in most datasets.
Our measurement insight is that, in the short-run, economies with higher technology-skill
specificity are associated with weaker within-generation changes in the relative employment
of older workers across occupations (or sectors), but stronger between-generation differences
in the relative employment of younger and older workers. In contrast, a lower cost of skill
investment for entering generations is also associated with larger between-generation dif-
ferences in relative employment, but has no effect on the responses for older workers. Such
generation-specific changes are common in empirical analysis of how economies adjust to dif-
ferent types of shocks.4 By connecting them to structural parameters, our theory shows how

4For example, Kim and Topel (1995), Card and Lemieux (2001), Autor and Dorn (2009), Autor, Dorn, and Hanson (2013),
Guvenen et al. (2017), McCaig and Pavcnik (2018), Greenland, Lopresti, and McHenry (2019), Porzio and Santangelo (2019).
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these measurable moments in the short-run are informative about the economy’s transitional
dynamics and, consequently, how unequal and slow the adjustment will be.

In the second part of the paper, we explore our theory’s observable predictions to pro-
vide three pieces of evidence indicating that technology-skill specificity and changes in the
skill distribution across generations are relevant to understand how developed economies
adjusted to recent cognitive-biased technological innovations.5 First, we analyze employment
trends in nine broad occupation groups in eighteen developed countries. We document that,
in all countries, employment growth in the three most cognitive-intensive occupations was
stronger for younger workers than for older workers. Second, we use microdata to pro-
vide a more detailed investigation of these responses in Germany. Controlling for a number
of confounding factors, we show that employment and payroll grew more in occupations
that require more time spent performing cognitive-intensive tasks. We find that the effect of
cognitive intensity on these variables is strong for younger generations, but weak for older
generations. We also explore the unique large-scale German training program to document
higher growth in the number of trainees in more cognitive intensive occupations, suggesting
that incoming cohorts tilt investment towards cognitive skills. Finally, following Falck, Gold,
and Heblich (2014), we use pre-determined conditions of the German telephone network to
obtain quasi-experimental variation across regions in the adoption timing of broadband in-
ternet in the early 2000s. By comparing late to early adopting regions, we estimate impulse
response functions that show an increase in the relative employment and payroll of more
cognitive-intensive occupations starting in 2005. The estimates are again different for older
and young generations. The impact on relative employment is small and nonsignificant for
older generations, but it is positive and statistically significant for younger generations.

In sum, this evidence suggests that cognitive-skill specificity is high and that the sup-
ply of cognitive skills is elastic at longer horizons. Parameterizing our model to match the
empirical impulse responses for Germany, we find that these two features make cognitive-
biased transitions particularly unequal and slow. As a result, we quantify that, compared
to naively extrapolating from observed changes on impact, the true average welfare (lifetime
welfare inequality) increase across generations is about 50 percent higher (lower) following
a relatively large cognitive-biased innovation. Had technology-skill specificity been lower,
such innovation would have led to a faster and less unequal transition instead, featuring
smaller between-generation differences in occupation composition changes. Compared to
most recent years, we document that these between-generation differences were smaller in
the United States and Germany in the 1960s and 1970s, which is consistent with the nature of
technological innovations and skills being different in the two periods.

5Our approach follows an extensive literature documenting that the recent arrival of new technologies in the workplace,
like the computer and the internet, augmented the productivity of jobs intensive in cognitive tasks while substituted jobs
intensive in routine tasks —e.g. Autor, Levy, and Murnane (2003), Spitz-Oener (2006), Autor and Dorn (2013), Akerman,
Gaarder, and Mogstad (2015), Acemoglu and Restrepo (2017), and, for a review, Acemoglu and Autor (2011).
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Related literature. Our paper is related to several strands of the literature. A long literature
has analyzed structural transformation in the form of long-run worker reallocation across
sectors – e.g., Ngai and Pissarides (2007), Buera, Kaboski, and Shin (2011), Buera and Ka-
boski (2012), and, for a review, Herrendorf, Rogerson, and Valentinyi (2014). Recently, Young
(2014) and Lagakos and Waugh (2013) show that endogenous skill-sector sorting affects the
process of structural transformation. Moreover, a number of papers have also emphasized
between-generation differences in employment reallocation across sectors following long-run
changes in sectoral productivity growth (Kim and Topel (1995) and Hobijn, Schoellman, and
Vindas (2019)) or schooling (Porzio and Santangelo (2019)). We make two contributions to
this literature. First, we provide a tractable theory to analyze how skill heterogeneity within
and across generations shapes the transitional dynamics induced by technological innova-
tions. This allows us to characterize how fast the transition is, a focus we share with Gabaix,
Lasry, Lions, and Moll (2016). We use this characterization to point out which features of the
economy lead to slow adjustment dynamics and large biases from welfare calculations that
ignore them. Second, we estimate impulse response functions to a technological innovation
in Germany and show how they discipline our theoretical mechanisms.

The only source of dynamics in our theory is the endogenous change in the distribution
of skills across generations. This mechanism is consistent with recent evidence documenting
the impact of labor demand shocks on young individuals’ decisions of educational attainment
(Atkin (2016) and Charles, Hurst, and Notowidigdo (2018)) and field of study (Abramitzky,
Lavy, and Segev (2019), Ghose (2019) and, for a review, Altonji, Arcidiacono, and Maurel
(2016)). We add to this literature by documenting that cognitive-biased innovations differen-
tially affect employment and training in cognitive-intensive occupations across generations
in Germany. Several papers have proposed alternative sources of dynamics to study tech-
nological transitions, including sluggish labor mobility across sectors (Matsuyama, 1992),
technology diffusion across firms (Atkeson and Kehoe, 2007), firm-level investment in R&D
(Atkeson, Burstein, and Chatzikonstantinou, 2018), endogenous creation of new tasks for la-
bor in production (Acemoglu and Restrepo, 2018), mobility costs of heterogeneous workers
(Dvorkin and Monge-Naranjo, 2019), and rising wealth inequality via permanent changes in
the returns to wealth following increases in automation (Moll, Rachel, and Restrepo, 2019).
Our paper complements this literature by analyzing empirically and theoretically how the
endogenous dynamics of skill heterogeneity across generations affects the economy’s adjust-
ment to skill-biased technological innovations.

An extensive literature has analyzed the labor market consequences of technological inno-
vations. We depart from the canonical framework in Katz and Murphy (1992) by modeling
the supply of skills across technologies at different time horizons. Specifically, given the skill
distribution at any point in time, the short-run skill supply to each technology arises from the
static sorting decision of workers. This static assignment structure has been used in a recent
literature analyzing how labor markets respond to a variety of shocks – e.g, Costinot and
Vogel (2010), Acemoglu and Autor (2011), Hsieh, Hurst, Jones, and Klenow (2013), Burstein,
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Morales, and Vogel (2016), and Adão (2016). In addition, our theory entails slow-moving
changes in skill supply that arise from the entry of young generations with different skills
than those of previous generations, as in Chari and Hopenhayn (1991), Caselli (1999) and
Galor and Moav (2002). We show that the combination of these features yields tractable
expressions for the equilibrium dynamics that resemble a q-theory of skill investment. We ex-
ploit the parsimony of our theory to establish that higher levels of technology-skill specificity
and skill investment costs for younger generations generate slower adjustments following
skill-biased innovations. We then link the two adjustment margins in our theory to observ-
able responses of labor market outcomes within and between generations. Our empirical
application indicates that separately allowing for these two forces is important in the context
of the recent experiences of developed countries, in general, and Germany, in particular.

Our paper is also related to the literature that has estimated the distributional conse-
quences of shocks to the demand and supply of skills – for a review, see Acemoglu and
Autor (2011). Our empirical analysis follows the literature studying the impact of new tech-
nologies on the demand of skills across occupations with different task intensity – e.g., Au-
tor, Levy, and Murnane (2003), Autor and Dorn (2013) and Acemoglu and Restrepo (2017).
As Akerman, Gaarder, and Mogstad (2015), we estimate the labor market consequences of
broadband internet adoption. While they focus on the impact on educational composition
of employment in Norwegian firms, we estimate its effect on the occupation composition
of employment across German local labor markets. Similar to Autor and Dorn (2009), we
find that the impact of new technologies differs for younger and older workers. Relative to
this literature, our results indicate that such reduced-form evidence estimated at short hori-
zons is informative about structural parameters governing the dynamic adjustment to new
technologies, but they also caution against directly extrapolating from it when technological
transitions are slow.6

Finally, we note that a full account of inequality trends in developed countries would re-
quire analyzing not only the impact of shocks to skill demand but also how the economy
adjusts to exogenous shocks to the supply of skills, as in Katz and Murphy (1992) and Goldin
and Katz (2009). For instance, Card and Lemieux (2001) show that generation-specific skill
supply shocks are important determinants of inequality trends. As in their paper, we incor-
porate skill differences across generations. However, while it would be possible to study the
consequences of skill supply shocks in our theory, we focus on the consequences of shocks to
skill demand when skill supply endogenously responds across generations.

Outline. Our paper is organized as follows. Section 2 presents our model and establishes
the q-theory representation of its equilibrium. In Section 3, we analyze how skill-biased
technological innovations affect welfare and labor market outcomes over different horizons.

6Heckman, Lochner, and Taber (1998) point out that such extrapolations may be biased because prices and skills ad-
just in general equilibrium. This motivated a quantitative literature studying the labor market consequences of sector- or
occupation-specific demand shocks – e.g., Lee and Wolpin (2006), Kambourov and Manovskii (2009), Dix-Carneiro (2014).
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Sector 4 shows how technology-skill specificity and the skill investment cost determine how
slow and unequal the transition is. Section 5 links the main ingredients of our theory to
responses in observable outcomes for different generations of workers in the short-run. In
Section 6, we empirically analyze the adjustment of developed economies to recent cognitive-
biased innovations. Section 7 presents our quantitative analysis. Section 8 concludes.

2 A Model of Skilled-biased Technological Transitions

2.1 Environment

We consider a closed economy in continuous time. There is a single final good whose pro-
duction uses the input of two intermediate goods. The production technology of each in-
termediate good requires workers to perform a technology-specific task bundle. We denote
the two technologies as high-tech (k = H) and low-tech (k = L). There is a continuum of
worker skill types, i ∈ [0, 1]. The skill type determines the worker’s productivity with each
production technology.

Final good. Production of the final good is a CES aggregator of the two inputs:

Yt =
[
(AtXHt)

θ−1
θ + (XLt)

θ−1
θ

] θ
θ−1 (1)

where θ > 0 is the demand elasticity of substitution between the low-tech and the high-tech
intermediate inputs, and At is a shifter of the relative productivity of the high-tech input (as
in Katz and Murphy (1992)).

Conditional on input prices, the cost minimization problem of firms producing the final
good implies that the relative spending on the high-tech input is

yt ≡ ωt
XHt

XLt
=

(
ωt

At

)1−θ

, (2)

where ωt ≡ ωHt/ωLt is the relative price of the high-tech good. We normalize the price of
the low-tech good to one, ωLt ≡ 1.

We consider a competitive environment where zero profit determines the final good price,

Pt = (1 + yt)
1

1−θ . (3)

Assignment of skills to technologies. We assume that a worker’s skill type determines
her productivity with the two technologies in the economy. For a worker of type i, α(i) is
the overall productivity and σ(i) is their differential productivity in high-tech production.
Specifically, we assume that the production function of the low-tech good is

XLt =
∫ 1

0
α(i)sLt(i)di, (4)
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and that of the high-tech good is

XHt =
∫ 1

0
α(i)σ(i)sHt(i)di, (5)

where skt(i) is the density function of workers employed with technology k at time t.
We assume a competitive labor market with zero profit in low-tech and high-tech pro-

duction. In equilibrium, the wage rates of skill type i with the H and L technologies are
respectively given by

wHt(i) = ωtσ(i)α(i) and wLt(i) = α(i). (6)

As in Roy (1951), workers self-select across technologies to maximize labor income. Thus,
the labor income of a worker with skill type i is

wt(i) = max{ωtσ(i), 1}α(i). (7)

The technology-skill assignment in equation (7) plays a central role in determining the
economy’s adjustment to technological shocks. Equation (7) illustrates that such an assign-
ment depends on the endogenous price ωt defining the relative value of one unit of effective
labor employed in high-tech production, as well as the exogenous function σ(i) defining the
differential productivity of type i in high-tech production. Without loss of generality, we
assume that σ(i) is increasing: we order types such that higher i types have higher relative
productivity in high-tech production. Recent papers have considered a similar structure of
endogenous sorting of workers to different technologies – e.g., Acemoglu and Autor (2011),
Costinot and Vogel (2010), Adão (2016).

In our theory, ωt is a natural measure of inequality as it is the endogenous relative wage
rate of skill types employed in different technologies conditional on their productivity. In
what follows, we will refer to ωt as the relative technology-specific wage or, sometimes,
simply as the relative wage. However, it is important to notice that movements in ωt are
not perfectly aligned with movements in the relative labor income of high-tech employees.
As pointed out by Heckman and Honore (1990), the endogenous assignment problem in (7)
implies that high-tech relative labor income may change due to changes in the “selection” of
skill types employed in high-tech production – that is, changes in the average σ(i) and α(i)
of types employed with the H technology. Adão (2016) shows that, depending on the shape
of α(i), these selection forces may amplify or offset the impact of ωt on the average income
of high-tech employees.

Skill investment. We now endogeneize the distribution of skills by allowing workers to
direct their skill investment decisions to target particular skill types. After we define the
competitive equilibrium, we discuss the economic interpretation of our main assumptions as
well as why they yield a mathematically tractable theory of technological transitions.
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We consider an overlapping generations setting in which the birth and death of workers
follows a Poisson process with rate δ.7 At each point in time, workers use their labor earnings
to purchase the final good. Utility is the present value of a logarithmic flow utility discounted
by a rate ρ. For a worker of type i born at time t, lifetime utility is

Vt(i) =
∫ ∞

t
e−(ρ+δ)(s−t)log

(
ws(i)

Ps

)
ds. (8)

Crucially, as in Chari and Hopenhayn (1991) and Caselli (1999), we allow workers to
acquire different skills at birth taking into account the value of future earnings streams. Given
the future path for the wage distribution {ws(i)}s>t, workers born at time t can pay a utility
cost to select a lottery s̃t(i) over skill types. If they do not pay the cost, their type is drawn
from an exogenous distribution of innate ability, s̄t(i). A worker’s type is then fixed during
their lifetime.8

Formally, we assume that the cost of the lottery is proportional to the Kullback-Leibler
divergence between the lottery s̃t(i) and the baseline distribution s̄t(i), so that workers of the
cohort born at time t solve the following skill investment problem:

max
s̃t(.):

∫ 1
0 s̃t(i)di=1

∫ 1

0
Vt(i)s̃t(i) di− 1

ψ

∫ 1

0
log
(

s̃t(i)
s̄t(i)

)
s̃t(i) di. (9)

The positive parameter ψ governs the cost of targeting particular skill types. In the limit
when ψ → 0, the cost of targeting a particular skill type is infinite and the economy’s skill
distribution does not respond to changes in the lifetime earnings of different skill types.
Whenever ψ > 0, the optimal lottery s̃t(i) endogenously responds to the relative present
discounted value of different skill types, Vt(i).

Equilibrium. The assumption that only new generations choose skill lotteries implies that
the evolution of the skill distribution st(i) is given by the following Kolmogorov-Forward
equation,

∂st(i)
∂t

= −δst(i) + δs̃t(i). (10)

Finally, the economy’s equilibrium must satisfy market clearing for all t. By Walras law, it
is sufficient that relative demand and supply of the high-tech good are equal:

yt = ωtxt (11)

where yt is given by (2) and xt is the ratio of high- to low-tech production given by (4)–(5).

7In Section 4.4, we consider an extension where population grows because the birth rate is higher than the death rate.
8In Section 4.4, we extend the model to allow workers to re-optimize later in life following following a technological

innovation.
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Definition 1 (Competitive Equilibrium) Given an initial skill distribution s0(i) and exogenous
paths for {At, s̄t(i)}t≥0, a competitive equilibrium is a path of the technology-skill assignment {Gt(i) :
i ∈ [0, 1] → {H, L}}t≥0, the skill distribution {st(i)}t≥0, the skill lottery {s̃t(i)}t≥0, the relative
value of output {yt}t≥0, the relative wage and final price index {ωt, Pt}t≥0, such that

1. Given ωt, the technology-skill assignment is given by the self-selection decisions in (7).

2. Given {ωt}t≥0, the skill lottery is given by the skill investment decisions of new cohorts in (9).

3. Given s0(i) and {s̃t(i)}t≥0, the skill distribution follows the Kolmogorov-Forward equation (10).

4. The final price index is given by (3).

5. For all t ≥ 0, the technology-skill assignment, the skill distribution, the relative value of output,
and the relative wage satisfy the market clearing condition in (11).

Discussion. A number of comments on the assumptions and their economic interpretation
are in order. There are admittedly four strong assumptions that we make for simplicity and
tractability. The first is that there is a continuum of skill types that determine the productivity
in each technology. The second is that s̄t(i) is exogenous. The third is that only new incoming
generations can invest in skills in response to changes in relative wages. Old generations may
only respond to such wage changes by moving across technologies but not by changing their
skill-type. The fourth is that skill investments have an uncertain outcome represented by the
skill lottery s̃t(i) whose cost takes the particular functional form in (9).

First, we assume the existence of a continuum of skills for two main reasons. As discussed
below, this assumption implies that changes in the technology-skill assignment are smooth
along the transition – that is, any relative wage change triggers the re-allocation of a positive
mass of skill types. Second, as discussed in Acemoglu and Autor (2011), Roy-like skill hetero-
geneity yields responses in worker allocations and wages following technological innovations
that do not arise in the canonical model with skills specified in terms of observable worker
attributes. Such heterogeneity then allows us to study, for example, how technology-skill
specificity affects the economy’s adjustment.

Regarding a skill-type’s economic interpretation, in Appendix E.1 we provide a micro-
foundation of (4)–(5) where the production of each good combines individual-level output
given by a Cobb-Douglas function of each worker’s "cognitive" and "non-cognitive" task in-
put. Production of the H good is more intensive in cognitive tasks, with σ(i) denoting the
H-to-L output ratio of i’s differential ability to perform cognitive tasks. Thus, to observe a
type i in this setting, it is necessary to know each worker’s ability to perform cognitive and
non-cognitive tasks. We assume that workers and firms observe such abilities, but treat them
as unobservable to researchers.

The second and third assumptions imply that the flow of new workers to a particular
point in the skill distribution is independent of the current skill distribution (as can be seen
from equation (10)). This simplifies the law of motion of the skill-distribution and allows
us to characterize its dynamics in general equilibrium. The independence results from the
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fact that skill investment decisions are independent from a worker’s current skill-type (since
only young workers invest and are born without a type) and because s̄t(i) is exogenous.
In Appendix B, we relax both assumptions. First, we endogenize s̄t(i) by considering an
extension where workers can "learn from others." Specifically, we assume that s̄t(i) depends
on the current skill distribution in a way that makes it is easier for workers to target skills that
are already abundant. Second, we allow old generations to re-optimize their skill investments
as well. We show that what is important for our main results in the coming sections is that
the cost of skill investment is lower for younger generations when compared to that for older
generations. It is not essential that this cost is infinite for older generations, as in our baseline
specification.

Our preferred economic interpretation of these baseline assumptions is that changes in
relative wages may induce older workers in the labor market to switch towards sectors or
occupations that require similar skills and may thus entail minimal re-training. To funda-
mentally change career paths by acquiring completely different skills, however, they may face
a high cost. For younger workers though, such skill investments are less costly due to lower
opportunity cost or higher ability to learn new skills.9 For tractability, we collapse these in-
vestments that in reality occur either through formal schooling or on-the-job into a one-time
decision upon entering the market.

Regarding the fourth assumption, we make it purely for reasons of tractability. Different
from theories of uni-dimensional human capital investment, workers in our theory can direct
their investments to target specific skill types. Yet, mathematically, this directed skill invest-
ment problem is in principle substantially more complex. As we will see below, assuming
that ex-ante identical workers choose an uninsurable lottery by incurring the entropy-based
cost delivers a tractable problem with a non-degenerate skill distribution as a solution. What
is important for our results though is not that workers are ex-ante identical,10 but (again) the
independence of the skill investment from a worker’s current skill-type.11 As for the entropy
cost function, it has a long tradition in macroeconomics.12 As discussed later, this function
yields the continuous time analog of the optimal skill investment in an environment in which
worker’s ability to acquire a discrete number of skills follows a Type 1 extreme-value distribu-

9In line with this interpretation, Lee and Wolpin (2006) show that older workers exhibit much lower mobility across
occupations and sectors than younger workers.

10Note that it is straight forward to extend our model to introduce ex- ante heterogeneity in observed worker attributes
that only affect s̄(i) and ψ in the optimal skill investment problem in (9). The overall skill lottery in this extension is simply
the average of lotteries across worker-groups with different attributes. Such an extension does not affect our main theoretical
insights, but affects the mapping of the ingredients of the model to the data.

11Such assumptions would be violated if the type of an individual entering the skill lottery affects the relative cost
or benefit of particular lotteries. This is the case, for example, if there is inter-generation transmission of skills, or skill
acquisition has monetary costs in an environment with credit frictions.

12For example, it has been used to compute the distance between distributions in frameworks with rational inattention
(Sims (2003)) and model uncertainty (Hansen and Sargent (2008). Note, however, that the fact the cost is proportional to
the relative entropy is not as important for our main results, since in later sections we log-linearize the path for all variables
around the stationary equilibrium. Instead, what matters is the curvature of the distance metric around the stationary
equilibrium, similar to investment problems with a convex cost of adjustment.
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tion.13 In our theory though, having a continuum of skill types is useful when combined with
continuous time because it implies that the dynamic adjustment of all outcomes is smooth
along the equilibrium path. This helps us sharply characterize the economy’s transitional
dynamics in general equilibrium.

Our preferred interpretation for the uncertainty of the skill type realization is that in-
dividuals with different unobservables may have heterogeneous returns to education and
on-the-job training. This is in fact consistent with the evidence in Carneiro, Heckman, and
Vytlacil (2011). Our model treats this heterogeneity in unobservables through the uncertainty
of the type realization.

2.2 Static and dynamic equilibrium conditions

We now proceed to derive equilibrium conditions in two steps. First, we consider static
conditions that, given the skill distribution st(i) at time t, determine the technology-skill
assignment, the relative wage ωt, and the relative output value yt. Second, we consider
dynamic conditions that, given the path of the relative wage {ωt}t≥0, determine the optimal
skill lottery chosen by entering generations {s̃t(i)}t≥0 and thus the evolution of the skill
distribution {st(i)}t≥0.

Static equilibrium conditions. The endogenous sorting decision in (7) determines the as-
signment of skill types to technologies. It implies that types self-select to work with the
technology that yields the highest labor earnings. Thus, high-i (low-i) types receive higher
relative earnings in high-tech (low-tech) production and choose to be employed with that
technology. Since σ(i) is increasing, the assignment is described by a threshold lt charac-
terizing the type that is indifferent between working with any of the two technologies. The
following lemma formalizes this discussion.

Lemma 1 (Equilibrium Assignment) Worker types i ≤ lt are employed in low-tech production
with labor income of wt(i) = α(i). Worker types i > lt are employed in high-tech production with
labor income of wt(i) = ωtσ(i)α(i). The threshold is determined by the indifference condition

ωtσ(lt) = 1. (12)

Lemma 1 links the relative wage ωt to the allocation of skill types across technologies.
Condition (12) is central to understand the impact of technological shocks on the allocation
of workers across technologies. The slope of σ(lt) determines the strength of the comparative
advantage in high-tech production of skill types slightly below lt compared to that of skill type
lt. Thus, as shown by Acemoglu and Autor (2011) and Costinot and Vogel (2010), it essentially
determines how much the relative wage must increase to induce the reallocation of skill types
below lt from the L to the H technology. Accordingly, the inverse elasticity of σ(i) controls the

13With a discrete number of skill types, our specification yields skill choices that are isomorphic to those implied by a
discrete-choice problem a la McFadden et al. (1973). It can thus be seen as a generalization of this framework when there is
a continuous of available choices.
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subset of skill types that reallocate across technologies in response to changes in the relative
wage. Formally, (12) implies that

η ≡
∣∣∣∣∂ log lt(ωt)

∂ log ωt

∣∣∣∣ = (∂ log σ(lt)
∂ log i

)−1

.

where lt(ωt) is the implicit function defined by (12). Since the economy’s skill distribution
does not adjust instantaneously, the inverse elasticity of σ(i) plays the role of the short-run
elasticity of skill supply across technologies. Then, whenever the elasticity of σ(i) (i.e., 1/η) is
higher, we will say that the degree of technology-skill specificity is higher because the induced
short-run worker reallocation following relative wage changes is smaller.

The technology-skill assignment in Lemma 1 together with equations (4)–(5) imply that
the relative supply of high-tech production is

xt(lt, st) =

∫ 1
lt

σ(i)α(i)st(i)di∫ lt
0 α(i)st(i)di

. (13)

The threshold lt is then determined by the market clearing condition in (11). Whenever
lt is high, equation (12) implies that ωt is low and, therefore, the relative demand for good
H is high. In this case, however, the relative high-tech supply is low as only a small share
of types are employed in high-tech production. Whenever lt is low, the opposite is true. In
equilibrium, there is a single threshold that equalizes relative demand and supply given the
skill distribution st(i).

Lemma 2 (Equilibrium Threshold) Given st(i) and At, there is a unique equilibrium threshold lt
that guarantees goods market clearing,

Aθ−1
t σ(lt)θ

∫ lt

0
α(i)st(i)di =

∫ 1

lt
α(i)σ(i)st(i)di. (14)

Proof. See Appendix A.1.

Dynamic equilibrium conditions. We now turn to the entrant’s forward-looking problem
of choosing their skill lottery s̃t(i) given the path of the relative wage {ωs}s>t. The solution
of the maximization problem in (9) yields the following optimal lottery.

Lemma 3 (Optimal Lottery) Define log (Qt(i)) ≡
∫ ∞

t e−(ρ+δ)(s−t) max{log (ωsσ(i)) , 0}ds. The
optimal lottery is

s̃t(i) =
s̄t(i)α(i)

ψ
ρ+δ Qt(i)ψ∫ 1

0 s̄t(j)α(j)
ψ

ρ+δ Qt(j)ψdj
. (15)

Proof. See Appendix A.2.
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The optimal lottery in (15) is a multinomial logit function over a continuum of types. It
shows that the investment on high-i types is a function of the present value of the relative
wage in high-tech production as captured by Qt(i). The parameter ψ governs the sensitivity of
the optimal lottery to changes in relative lifetime earnings. To see this more clearly, consider
the stationary equilibrium with ωt = ω such that

s(i) = s̃(i) =
s̄(i)W(i)ψ∫ 1

0 s̄(j)W(j)ψdj
(16)

where log(W(i)) = log(α(i)max{ωσ(i),1})
ρ+δ is the present discounted log-wage of skill type i.

In this case, the skill distribution is a constant-elasticity function of relative wages across
types, where the elasticity is ψ.14 Thus, a higher ψ implies that the long-run supply of high-i
types is more sensitive to changes in the relative wage in high-tech production. Accordingly,
ψ governs the long-run skill supply across technologies, which we formally define as

ψ ≡ ∂ log s(i)/s(i′)
∂ log W(i)/W(i′)

.

In the rest of the paper, we refer to 1/ψ as the cost of skill investment, which is inversely related
to the long-run skill supply across technologies.

2.3 Skill distribution dynamics: A q-theory of skill investment

We now combine the static and dynamic equilibrium conditions to solve for the equilibrium
path of the skill distribution as well as all other equilibrium variables, given an arbitrary
initial skill distribution s0(i) and a constant path for {At, s̄t(i)}t≥0.

In principle, this involves solving a complex infinite-dimensional fixed-point problem. To
see this, consider a conjectured path for the relative wage {ωt}t≥0. This path determines
the skill investment decisions of new generations in (15) and, as such, the path for the skill
distribution {st(i)}t≥0 from (10) given s0(i). The relative wage path also determines the
assignment threshold path ({lt}t≥0) from the indifference condition (12). Taken together, the
skill distribution and the assignment threshold determine the relative supply of the high-tech
input ({xt}t≥0). In an equilibrium, the relative supply of the high-tech input needs to be equal
to its relative demand at the the conjectured path for the relative wage – i.e., they need to be
consistent with market clearing.

Our first result approximates the solution of this fixed-point problem by considering a
log-linear expansion around the stationary equilibrium. It establishes that the approximate
equilibrium of this economy can be represented as that of a q-theory of skill investment,
where q refers to the present discounted value of the log-relative wage or, as we call it from

14Notice that the long-run equilibrium of our model is a generalization with a continuum of types of the extension of the
assignment model in Acemoglu and Autor (2011) with endogenous skill supply – see Section 4.6 in Acemoglu and Autor
(2011). In our framework however, along the transitional equilibrium, the skill distribution differs from the stationary skill
distribution.
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now on, the relative lifetime wage:

log(qt) ≡
∫ ∞

t
e−(ρ+δ)(s−t)log(ωs)ds.

Specifically, we show that one does not need to keep track of the whole skill distribution to
solve for the equilibrium path of the relative lifetime wage, qt, and the assignment threshold,
lt. The equilibrium dynamics of these two variables are fully characterized by a simple system
of linear differential equations. Letting " ˆ " denote variables in log-deviations from the sta-
tionary equilibrium, the following theorem presents the system of differential equations that,
given l̂0, determines the equilibrium path of {q̂t, l̂t}t when {At, s̄t(i)}t≥0 are constant over
time.15 It also characterizes the skill distribution ŝt(i), the optimal lottery ˆ̃st(i) and relative
value of output ŷt, given the equilibrium path of {q̂t, l̂t}t and the initial distribution s0(i).

Theorem 1 (A q-theory of skill investment) Suppose that {At, s̄t(i)}t≥0 are constant over time.

1. Given initial condition l̂0 and terminal condition limt→∞ l̂t = 0, the equilibrium dynamics of
{q̂t, l̂t} are described by the system of differential equations

∂l̂t
∂t

= −δl̂t +
ηψ

θ + κη
δq̂t (17)

∂q̂t

∂t
= (ρ + δ)q̂t +

1
η

l̂t, (18)

where κ > 0 is a constant.

2. The equilibrium {q̂t, l̂t}t≥0 is saddle-path stable and given by

l̂t = l̂0e−λt and q̂t = ζ l̂t (19)

where

λ = −ρ

2
+

√(ρ

2

)2
+ δ

(
(ρ + δ) +

ψ

θ + κη

)
and ζ = −1

η

1
ρ + δ + λ

. (20)

3. The equilibrium dynamics of the skill distribution ŝt(i), the optimal lotteries ˆ̃st(i), and the value
of relative high-tech output ŷt are given by

ˆ̃st(i) =
(

Ii>l −
∫ 1

l
s(i)di

)
ψq̂t + ot(i), (21)

ŝt(i) = ŝ0(i)e−δt +
∫ t

0
eδ(τ−t) ˆ̃sτ(i)dτ, (22)

ŷt = (θ − 1)
1
η

l̂t, (23)

where ot(i) is such that
∫

s(i)ot(i)di = 0.
15Note that an initial l0 is determined by the initial skill distribution s0(i) from the static equilibrium condition (14).
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Proof. See Appendix A.3.

The first part of the theorem presents a system that is a rather standard one in macroe-
conomics. The assignment threshold, l̂t, is a state variable whose law of motion needs to be
solved backward. The present discounted value of relative technology-specific wages, q̂t, is
a control variable whose law of motion needs to be solved forward. The system is in fact
mathematically isomorphic to the q-theory of capital investment (Tobin, 1969, Hayashi, 1982).
In our model, q̂t is the present discounted value of the relative wage in high-tech produc-
tion, representing the shadow price of the human capital "asset" associated with having one
additional unit of the high-tech good. Whenever this price is higher, the incentives to invest
in high-i skills are stronger. As in the seminal q-theory, parameters governing the costs of
adjustment in the economy (i.e., δ and ψ) affect the sensitivity of changes in the assignment
threshold ∂l̂t

∂t to q̂t. However, our model features both imperfect substitution of human cap-
ital across technologies and heterogeneous skills. Thus, the impact of qt on the evolution
of lt also depends on the degree of technology-skill specificity (as measured by η) and the
substitutability of inputs (as measured by θ).

The other two parts of the theorem characterize the equilibrium dynamics of various out-
comes. The second part shows that (locally) the equilibrium exists and is unique—a conse-
quence of saddle-path stability. Given an initial condition l̂0, both l̂t and q̂t converge at a
constant rate of λ to the stationary equilibrium. The expressions in (19) show that, whenever
l̂0 < 0, lt increases and qt decreases along the equilibrium path. The last part of the theorem
links the equilibrium path of the skill distribution and the relative high-tech output to the
joint dynamics of {q̂t, l̂t}. The change in the optimal skill lottery in (21) along the transi-
tion depends centrally on the evolution of the relative return of skills employed in high-tech
production as measured by q̂t. The parameter ψ controls the sensitivity of the optimal skill
investment to such changes. The overall skill distribution in (22) is then simply a population-
weighted average of the skill distributions of each generation. Since generations are born and
die at rate δ, the population share at time t of the initial generation is e−δt whereas entering
generation τ has a weight δeδ(τ−t). Finally, the value of relative high-tech output is driven by
changes in relative wages, ŷt = (θ− 1)ω̂t. The sensitivity of such wage changes to changes in
the threshold depends on the degree of technology-skill specificity controlled by η.

Theorem 1 reduces the dimensionality of the equilibrium’s fixed-point problem. It charac-
terizes the equilibrium dynamics of {q̂t, l̂t}t≥0 without tracking the full skill distribution st(i).
This is possible for three reasons. First, the dynamics of st(i) only depend on log(Qt(i)) via
the optimal skill lottery. Yet, log(qt) suffices to determine the value of most skill-types in this
skill investment decision—as opposed to the full path of relative wages ωt in log(Qt(i))—because
most workers never switch technologies along an equilibrium path whenever relative wages
are close to their stationary level. Second, the market clearing condition (14) determining
lt only contains integrals of st(i). Because of the continuum of skill types, the effect of the
marginal types that switch technologies are of second order when evaluating changes in these
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integrals. Taken together, the two observations imply that changes in l̂t over time are a func-
tion of q̂t and l̂t, as described in (17). Finally, since the indifference condition (12) yields a
mapping between ωt and lt, the dynamics of q̂t can be written as a function of the future path
of lt, as described by (18).

3 The Adjustment to Skill-biased Technological Innovations

We now analyze the dynamic adjustment of our economy to a permanent, unanticipated
increase in the relative productivity A. Because this innovation increases the relative produc-
tivity of workers with higher skill-types i that are sorted into the H sector, we refer to it as
a skill-biased technological innovation. We use the results from the previous section to char-
acterize in closed-form the dynamic responses of qt, lt and yt, as well as the evolution of the
skill distribution st(i). The dynamic responses indicate that the impact of new technologies
on the economy may significantly change over time due to the endogenous evolution of the
skill distribution across generations. How slow this adjustment is then crucially determines
the average and distributional welfare consequences of new technologies.

Our results show that the economy’s adjustment is shaped by a form of Samuelson’s
LeChatelier principle: the elasticity of relative output supply increases over time due to
changes in the skill distribution across generations. The dynamics of this relative supply
elasticity points to the risk of using naive reduced-form representations of the economy to
extrapolate from observed changes for short horizons or different historical contexts. Our
theory formally establishes a micro-foundation for the idea that the relative supply elastic-
ity changes over time. In the rest of the paper, we use this micro-foundation to study the
determinants of skill-biased technological innovations, and to recover them from observed
short-run responses of labor market outcomes following technological innovations.

3.1 Dynamic responses of equilibrium outcomes

We assume that immediately prior to the shock at time t = 0− the economy is in a stationary
equilibrium. We let ∆ log(A) > 0 be the relative productivity shock, and denote log-changes
in outcomes as ∆ log(qt) ≡ log (qt/q0−), ∆ log(yt) ≡ log (yt/y0−), and ∆ log(lt) ≡ log (lt/l0−).

Proposition 1 (Dynamic responses) Given a skill-biased technological innovation ∆ log(A), the
dynamic responses ∆ log(lt), ∆ log(qt) and ∆ log(yt) are approximated by:

 ∆ log(lt)
∆ log(qt)

∆ log(yt)

 =

 −η
1

ρ+λ

1 + κη

 θ − 1
θ + κη

∆ log(A)

︸ ︷︷ ︸
Short-run

+
ψ

χ

 η
−1

ρ+δ+λ

θ − 1

 (1− e−λt)
θ − 1

θ + κη
∆ log(A)

︸ ︷︷ ︸
Short- to long-run transition

(24)

where χ ≡
(

θ + κη + ψ
ρ+δ

)
(ρ + δ).
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Proof. See Appendix A.4.

Figure 1 illustrates these dynamic responses together with the dynamics of the skill dis-
tribution and lottery. We do so for the case where the two technologies are substitutes in
production (θ > 1) and α(i) = 1. The first term in (24) is the immediate impact of the shock
represented by the responses at t = 0 in Figure 1. In the short-run, there are increases in
both relative output (∆ log(y0) > 0) and relative lifetime wages (∆ log(q0) > 0). The higher
relative wage in the H technology induces the reallocation of skill types in the existing worker
generations from the L to the H technology, as can be seen from the decline in the assignment
threshold lt, which in turn adds to the increase in relative output.

The second term in (24) describes the change in all variables along the transition. It shows
that these variables converge at the constant rate λ. The increase in the relative lifetime wage
in high-tech production causes entering worker generations to twist their skill lotteries s̃τ(i)
towards high-i types whose skills are more complementary to high-tech production, as il-
lustrated in the bottom left panel of Figure 1. This triggers changes in the economy’s skill
distribution st(i) as older generations are replaced with younger generations at rate δ. Along
the transition, the growing mass of high-i types employed with the H technology implies a
continuing process of relative output increase and relative wage decline. The rising relative
high-tech output implies that the consumption price index in (3) falls along the transition.
By reducing the relative high-tech wage, the arrival of more high-i types in younger genera-
tions triggers the displacement of marginal i types from high-tech production over time, as
illustrated by the increasing lt in Figure 1.

Figure 1: The economy’s adjustment to a skill-biased technological shock (θ > 1)
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In the long-run, the economy features higher relative wage and output in high-tech pro-
duction, and a larger mass of workers in the high-tech sector. The increase in high-tech
employment is driven both by a skill distribution with higher mass in high-i types and a
lower assignment threshold of skill types employed in technology H. It is important to notice
that the only source of dynamics in our theory is the skill investment decision of cohorts
born after the shock. Whenever incoming cohorts cannot invest in skills (i.e., ψ = 0) , the
transitional dynamics term in (24) disappears and the responses in the long-run are identical
to those observed in the short-run.

We conclude this section by defining the discounted cumulative impulse response (DCIR).
It conveniently summarizes the importance of transitional dynamics and thus relates to how
slowly economies adjust to skill-biased innovations. Intuitively, it is the answer to the ques-
tion: from the point of view of generations alive just before the innovation happens, how
different is the adjustment they expect to see during their lifetime compared to the overall
(long-run) adjustment? We will then say that the economy’s adjustment is faster when exist-
ing generations expect to see more of the overall adjustment during their lifetime (i.e., the
DCIR is smaller). Instead, the adjustment is slower when these generations expect to miss
more of it (i.e., the DCIR is larger).

Definition 2 (Discounted Cumulative Impulse Response) For any variable zt and innovation
∆log(A), the discounted cumulative impulse response DCIR(z) is:

DCIR(z) =
∣∣∣∣∫ ∞

0
δe−δt ∆ log(zt)

∆ log(A)
dt− ∆ log(z∞)

∆ log(A)

∣∣∣∣ .

Formally, the DCIR is the distance between the long-run response and the expected re-
sponse of log(zt) during the initial generations’ lifetime, since all generations born before the
shock have exponentially distributed death probabilities with rate δ. This is a natural and
convenient measure of the importance of transitional dynamics in our context for a number
of reasons. First, it encodes not only the rate of convergence λ but also other relevant features
of the impulse responses like how front-loaded they are. For instance, one could have an
adjustment where the short- and long-run changes are almost identical—implying a DCIR
close to zero—but the rate of convergence λ from the short- to the long-run is very low. Ac-
cording to the DCIR, we would intuitively say that it is a fast adjustment since almost all of
the overall adjustment is completed on impact, whereas looking at λ alone would give the
impression that the adjustment is slow. Second, the DCIR does not mechanically scale with
the replacement rate of generations. If δ is higher, this mechanically increases λ (making the
adjustment faster) but it also decreases the expected lifetime of a generation (meaning they
expect to miss more of the adjustment). Finally, in the next section, we show that this measure
of how slowly economies adjust is the relevant one for analyzing the welfare consequences of
skill-biased innovations.
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3.2 Changes in average welfare and lifetime welfare inequality

We now use the characterization of the economy’s transitional dynamics above to compute
the welfare consequences of skill-biased technological innovations. Our welfare measure is
the ex-ante expected utility of individuals born at each point in time, which is given by
the solution of the utility maximization problem in (9). Given the log-utility assumption, the
consumption-equivalent welfare gain is the change in the ex-ante utility multiplied by (ρ+ δ).
Equations (7) and (9) imply that the consumption-equivalent utility of cohort τ is

Uτ ≡ (ρ + δ)
∫ 1

0
s̃τ(i)

[
log
(

α(i)
1

ρ+δ Qτ(i)
)
−
∫ ∞

τ
e−(ρ+δ)(t−τ)log (Pt) dt− 1

ψ
log
(

s̃τ(i)
s̄(i)

)]
di,

where s̃τ(i) is the skill distribution of cohort τ, Qτ(i) is the present-discounted value of
max{log(ωtσ(i)), 0} defined in Lemma 3, and Pt is the ideal price index defined in (3).

To obtain an average welfare measure, we take an utilitarian approach by considering a
weighted average of the ex-ante utility of different cohorts where cohort τ’s weight is re−rτ

—as in Calvo and Obstfeld (1988) and Itskhoki and Moll (2019).16 The average welfare is

Ū = r
∫ ∞

0
e−rτUτdτ.

To obtain a measure of welfare inequality, notice that the relative wage is the only endoge-
nous component of the relative earnings of skill types employed in different technologies.
Thus, we define lifetime welfare inequality for cohort τ as the consumption-equivalent of the
present discounted value of the relative wage, (ρ + δ) log qτ. We again aggregate different
worker cohorts by defining the economy’s average lifetime welfare inequality as

Ω̄ ≡ (ρ + δ)r
∫ ∞

0
e−rτ log(qτ)dτ.

The following proposition characterizes the induced changes in average welfare ∆Ū ≡
Ū −U0− and lifetime welfare inequality ∆Ω̄ ≡ Ω̄− log(q0−).

Proposition 2 (Average welfare and lifetime welfare inequality) The changes in average wel-
fare ∆Ū and lifetime inequality ∆Ω̄ are approximately:

∆Ū =
y∞

1 + y∞
∆ log(A)−

(
y∞

1 + y∞
− e∞

1 + e∞

)
∆Ω̄

∆Ω̄ = (ρ + δ)

(
∆ log(q∞) +

λr
r + λ

∫ ∞

0
q̂τdτ

)
where e∞ ≡

(∫ 1
l∞

s(i)di
)

/
(∫ l∞

0 s(i)di
)

is the relative high-tech employment in the long-run.

16The parameter r captures the idea that the welfare of future generations may be discounted at each point in time. To see
this, it is useful to consider two extreme cases. When r → ∞, the social welfare function completely ignores the welfare of
all future cohorts. In the other extreme, when r → 0, the social welfare function only gives positive weight to generations
born in the new stationary equilibrium.
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Proof. See Appendix A.5.

First, consider the change in lifetime welfare inequality. It trivially increases when the
long-run change ∆ log(q∞) is larger, but also when the overall magnitude of the response
along the transition is larger, as measured by the cumulative impulse response

∫ ∞
0 q̂τdτ. Fur-

thermore, the relative importance of the cumulative impulse response is increasing in λ since
it governs how fast lifetime inequality decays, and as such, between-generation differences in
lifetime inequality.

Second, the proposition shows that the innovation causes average welfare to increase,
but this increase is partially offset by higher welfare inequality whenever the H technology
has a higher average wage than the L technology (i.e., y∞ > e∞).17 This offsetting effect of
inequality arises because there are two consequences of the increase in the relative high-tech
wage (i.e., ∆ log qt > 0). It increases the average wage in the economy by increasing the
wage of those employed in high-tech production – a share e∞

1+e∞
of workers. However, it also

raises the economy’s price index by increasing the consumption cost of the high-tech good
– a share y∞

1+y∞
of overall output. The negative impact of the price index on the average real

wage dominates whenever the high-tech output share is higher than its employment share.
Importantly, Proposition 2 shows that the average and distributional welfare consequences

of new technologies depend crucially on how slow the adjustment is. To see this, note that
when r = δ then ∆Ω̄ = (ρ + δ)(∆log(q∞) + DCIR(q)∆log(A)). Whenever the increase in
the relative supply of H goods happens mostly through changes in the distribution of skills
as opposed to worker reallocation within a generation, then such increases will take many
generations to materialize. This implies that the average wage increase will be back-loaded
and come far in the future, whereas the inequality increase will be front-loaded (i.e., DCIR(q)
larger). In other words, generations born before the shock expect to see a small fraction of
the long-run increase in relative output and decline in the price index during their lifetimes,
but expect to experience larger changes in inequality compared to the long-run. As a result,
the increase in average welfare (lifetime welfare inequality) will be smaller (larger) in such
economies.

3.3 LeChatelier Principle and the risks of extrapolation

In this section, we connect the adjustment predicted by our theory to that implied by a
reduced-form supply and demand framework. For each t, our model implies that the relative
output and wage in high-tech production solves the following system of equations:

∆ log(xt) = (θ − 1)∆ log(A)− θ∆ log(ωt), (25)

∆ log(xt) = ϕt∆ log(ωt). (26)

The first expression is the “relative demand equation” in (2). As discussed above, it is the
17Such a case arises if absolute advantage is positively correlated with the comparative advantage to operate the H-

technology – i.e., α(i) is increasing in i.
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cornerstone of the canonical model in Katz and Murphy (1992) and its extensions reviewed
by Acemoglu and Autor (2011). The demand equation relates changes in relative demand,
∆ log(xt), to changes in relative productivity, ∆ log(A), and relative wages, ∆ log(ωt). The
parameter θ is the elasticity of substitution between the output of skill types employed in
different technologies.

The second expression is the “relative supply equation” linking changes in relative output
supply, ∆ log(xt), to changes in relative wages, ∆ log(ωt). The parameter ϕt is the elasticity
of relative output supply, which is a function of the degree of skill-technology specificity and
the cost of adjusting skill investment. Specifically, we show in Appendix A.6 that the impulse
response functions in Proposition 1 yield

ϕt =
κηχ + θψ(1− e−λt)

(θ + κη)(δ + ρ) + ψe−λt , (27)

where ϕt > 0 and ∂ϕt
∂t ≥ 0 for all t.

The positive and increasing ϕt over time implies a form of Samuelson’s LeChatelier prin-
ciple: the relative supply of high-tech output is more elastic over longer horizons due to
changes in the skill distribution over time. This is the main difference between our theory
and the canonical model of Katz and Murphy (1992) in which relative supply does not re-
spond to changes relative wages (ϕt = 0).

The positive elasticity arises from two sources in our framework. First, even if skills
are exogenous (ψ = 0), the relative supply elasticity is positive because a fraction of the
heterogeneous workers in the economy decides to reallocate across technologies in response
to changes in the relative wages, as in Acemoglu and Autor (2011). Second, the change in the
skill investment decision of cohorts born after the shock introduces an additional adjustment
margin for relative supply. This margin becomes stronger over time as younger cohorts
replace older cohorts, driving ϕt upwards along the transition – in fact, ∂ϕt

∂t > 0 if, and only
if, ψ > 0.

By microfounding the dynamics of the relative supply elasticity, our results point to two
types of risks associated with using reduced-form estimates of ϕt. The first arises when ex-
trapolating from observed responses in the economy over any given horizon. Consider a
researcher who knows θ and obtains ϕT and ∆ log A from the estimated impact of a techno-
logical shock on relative output and wages at horizon T. Suppose this researcher then uses
her estimates to analyze the consequences of skill-biased innovations. It is clear that the time-
varying nature of the reduced-form parameter ϕt implies that predictions will be biased for
any period other than T. Specifically, the researcher’s predictions will overestimate (underes-
timate) inequality changes and underestimate (overestimate) relative output changes for any
period after (before) horizon T. The researcher will also obtain biased estimates of the welfare
consequences of the shock as she will wrongly conclude that the change in lifetime welfare
inequality is (ρ + δ)∆ log qT = ∆ log ωT, which may be higher or lower than Ω̄ depending on

22



the estimation horizon T.18

The second type of risk arises when extrapolating from past technological transitions in
different contexts: a type of threat to external validity. Consider a researcher that has esti-
mates of the full path for the reduced-form elasticity ϕt obtained in a particular historical
episode. Suppose this researcher uses such estimates to make predictions about the dynamic
consequences of a new technological innovation in a different economy or historical context.
Our theory shows that if either technology-skill specificity (η) or the cost of skill investment
(ψ) are different, then the path of ϕt will be different as well. Thus, the researcher will obtain
biased predictions about the economy’s adjustment at all horizons whenever the nature of
technology and skills or the underlying flexibility of skill investment are significantly differ-
ent across episodes.

4 Determinants of Skill-biased Technological Transitions

In this section, we analyze how parameters governing technology-skill specificity and the
cost of skill investment affect the economy’s adjustment to a skill-biased technological inno-
vation. The comparative static exercises speak to when is it that technological transitions are
more unequal and slower, with the adjustment mainly driven by changes in the skill distri-
bution across generations as opposed to fast reallocation of workers within a generation. As
such, they help interpret differences between historical episodes or future transitions where
the nature of technological innovations and associated skills differ. Furthermore, describing
which type of economies adjust more slowly helps understanding the welfare consequences
of technological innovations and when is it that researchers should be more cautious when
extrapolating from reduced-form elasticities estimated using observations at short horizons.

4.1 Comparative statics with respect to technology-skill specificity

Consider first how the economy’s dynamic responses change with the degree of technology-
skill specificity, i.e., with how different skill types are in terms of their relative productivity
in the high-tech sector. In our theory, technology-skill specificity is inversely related to the
short-run skill supply elasticity η. Thus, this exercise speaks to differences in the dynamics
across episodes in which skills of incumbent workers were more or less easily transferable
for use in the new improved technology.

Figure 2 shows the responses of two economies that differ in their degree of technology-
18To see this, consider the bias in the extreme case of T = 0, which yields the highest possible value of ∆ log ω0:

∆ log ω0 − ∆Ω̄ =

(
1 +

ρ + δ

r + λ

)
λ2
∫ ∞

0
q̂tdt > 0.

In this case, the bias is proportional to the cumulative impulse response of inequality since an overall larger magnitude of
the transitional dynamics amplifies the difference between the relative wage at t = 0 and the present discounted value of
the change in lifetime inequality, ∆Ω̄. In Appendix E.2, we consider researchers taking alternative approaches that ignore
the dynamics of the skill distribution across generations.
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skill specificity.19 The black lines show the responses of an economy with a high value of η

(i.e., low technology-skill specificity). The blue lines show the responses of an economy with
a low value of η (i.e., high technology-skill specificity). In Appendix A.7, we support the
graphical representation in Figure 2 with Proposition A.1 which establishes how η affects the
short- and long-run responses, the cumulative impulse response, and the rate of convergence.

Figure 2: Comparative statics with respect to η
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In the short-run, when technology-skill specificity is higher (lower η), a smaller mass
of workers reallocate across technologies in response to the shock (i.e., ∂|∆ log(l0)|

∂η > 0). As
a result, the short-run increase in relative wages and lifetime inequality q are larger (i.e.,
∂|∆ log(q0)|

∂η < 0) and the increase in relative output is smaller (i.e., ∂|∆ log(y0)|
∂η > 0). The larger

increase in q then implies that younger entering generations have stronger incentives to invest
in those skills that are more complementary to the H technology. As a consequence, there are
larger differences in skill heterogeneity across generations.20 Then, the overall magnitude of
the adjustment of yt and qt that happens along the transition is larger as well because larger
changes in the skill distribution (the only slow moving state variable) take place as younger
generations replace older generations. Formally, we measure this as the cumulative impulse

response function being larger (e.g. ∂
∫ ∞

0 q̂tdt
∂η < 0). Graphically, it corresponds to the blue

19The figure shows the case where θ > 1 and the threshold’s cumulative impulse response increases with η.
20This follows directly from the fact that s̃τ(i) is proportional to q̂τ in (21) and q̂τ is larger for all τ when technology-skill

specificity is higher.
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shaded areas being larger than the black shaded areas.
Moreover, while the larger changes in the skill distribution could have implied a larger

(smaller) overall long-run adjustment in relative output (lifetime inequality), it turns out that
the smaller (larger) short-run response dominates. Thus, the long-run adjustment in relative
output (lifetime inequality) is smaller (larger) in the economy with higher technology-skill
specificity (i.e., ∂|∆ log(y∞)|

∂η > 0, ∂|∆ log(q∞)|
∂η < 0).

Finally, we can come back to the DCIR to summarize how technology-skill specificity
affects the importance of transitional dynamics.

Theorem 2.1 (DCIR comparative statics with respect to η) Following a skill-biased technologi-
cal innovation ∆ log(A), lifetime inequality (q) and relative output (y) adjust slower in economies
with a higher degree of technology-skill specificity (i.e., lower η). Formally,

∂DCIR(q)
∂η

< 0,
∂DCIR(y)

∂η
< 0.

Proof. We have that DCIR(q) = λδ
λ+δ

∣∣∣∣ ∫ ∞
0 q̂tdt

∆ log(A)

∣∣∣∣. From Proposition A.1 in Appendix A.7, we

know that when η is higher then the rate of convergence λ and the cumulative impulse
response

∣∣∫ ∞
0 q̂tdt

∣∣ are both smaller. The proof for yt is analogous.

The theorem shows that the DCIR is larger and transitional dynamics are more important
in economies with a higher degree of technology-skill specificity. That is, the adjustment is
slower and more back-loaded, with generations alive before the shock expecting to see less of
the long-run changes during their lifetime. Intuitively, this is because the muted reallocation
of workers at shorter horizons causes larger endogenous changes in the skill distribution along
the transition due to the larger increases in lifetime inequality.21

It is also worth noting that the slower adjustment in economies with higher technology-
skill specificity does not mechanically follow from the fact that reallocation is smaller in the
short-run, neither from the fact that old generations are replaced slowly at rate δ. Instead,
it follows from the skill distribution responding to stronger changes in relative wages. To
make this point clear, Proposition 3 shows that technology-skill specificity has no effect on
the DCIR of q and y when either the cost of skill investment for young generations is large
(ψ → 0) or the high- and low-tech inputs have a large elasticity of substitution and thus the
relative wage responds little to technological innovations (θ → ∞).

Proposition 3 (Interaction of technology-skill specificity with ψ and θ)

1. Small changes in the skill distribution (ψ→ 0)

∂DCIR(y)
∂η

∣∣∣∣
ψ→0

=
∂DCIR(q)

∂η

∣∣∣∣
ψ→0

= 0,

21More generally, after a shock, economies with a less mobile stock of a factor experience stronger changes in the flow of
entrants because of larger changes in relative prices. For example, when old vintages of physical capital are less adaptable
to use in a new sector, then the flow of firm entrants with newer capital vintages will be larger.
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2. Small changes in inequality (θ → ∞)

∂DCIR(y)
∂η

∣∣∣∣
θ→∞

=
∂DCIR(q)

∂η

∣∣∣∣
θ→∞

= 0

Proof. See Appendix A.8.

To summarize, the results in this section highlight that how economies adjust to tech-
nological innovations depends crucially on the degree of technology-skill specificity. When
technology-skill specificity is higher, technological transitions will be driven more by changes
in the skill distribution across generations than the reallocation of workers within a genera-
tion. As a result, they will be more unequal and play out slower over many generations.

4.2 Comparative statics with respect to the cost of skill investment

We now consider how the parameter ψ affects the economy’s adjustment to a skill-biased
technological innovation. This comparative static exercise speaks to differences across his-
torical episodes in the gap between younger and older generations’ ability to invest in skills.
Specifically, it captures situations in which younger generations may have found it easier to
invest in skills in high demand than older generations due to, for example, better educa-
tional systems, the availability of vocational training for young workers, or the absence of
re-training programs for older generations.

Figure 3 illustrates the responses of two economies that differ with respect to the skill
investment cost of young generations. The blue lines depict the adjustment of an economy
with a low investment cost (i.e., high value of ψ), and the black lines represent the responses
of an economy with a high investment cost (i.e., low value of ψ). Appendix A.7 presents a
formal proposition supporting the graphical representation in Figure 3.

In the short-run, both economies exhibit identical responses in relative output and worker
allocation. This follows from the fact that ψ does not affect the self-selection decisions of
generations born before the shock. However, a higher ψ attenuates the short-run increase in
lifetime inequality because future relative wages fall by more due to the larger increase in the
future supply of high-i skills implied by the more responsive skill lottery in (21). The larger
change in the skill distribution of the economy with a lower investment cost (i.e., higher ψ)
has two important implications for its dynamic adjustment to the shock. In the long run, it
implies that relative output (lifetime inequality) increases more (less). Along the transition, it
implies a larger cumulative impulse response in both lifetime inequality and relative output.
Thus, as the next theorem shows, economies with a lower cost of skill investment for younger
workers exhibit slower, more backloaded adjustment in relative output and inequality.
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Figure 3: Comparative statics with respect to ψ
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Theorem 2.2 (DCIR comparative statics with respect to ψ) Following a skill-biased technologi-
cal innovation ∆ log(A), lifetime inequality (q) and relative output (y) adjust slower in economies
with a lower cost of skill investment for younger workers (i.e., higher ψ). Formally,

∂DCIR(q)
∂ψ

> 0,
∂DCIR(y)

∂ψ
> 0

Proof. The proof is analogous to the one for Theorem 2.1 but using Proposition A.2 in
Appendix A.7 instead.

4.3 Back to LeChatelier Principle and the risks of extrapolation

To better understand the comparative statics with respect to η and ψ, it is useful to return
to the supply-demand representation of the economy’s adjustment introduced in Section 3.3.
The different dynamic implications of changing η or ψ arise because the two parameters
shape different horizons of the reduced-form elasticity of relative output supply. Figure 4
illustrate these implications.

Both higher values of η and ψ increase the elasticity of relative supply in the long-run.
However, the timing of the increase in ϕt differs when the economy has a higher η or a higher
ψ. Specifically, increasing η flattens the path of ϕt but increasing ψ steepens it. Intuitively, a
higher η front-loads more the response in the relative supply of H goods by making it easier
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Figure 4: Effect of η and ψ on the elasticity of relative output supply (ϕt)

for skill types to reallocate across technologies in response to the shock. This in turn reduces
the relative wage changes and, therefore, reduces the incentives of young workers to invest
in skills. As a result, there are smaller differences in the skill distribution across generations
and ϕt is more similar across horizons. In contrast, a higher ψ implies that it is easier for
new generations to invest in skills, amplifying the difference in the skill distribution across
generations and making ϕt more different across horizons.

This discussion also points to which type of economies should cause researchers to exer-
cise more caution when extrapolating from observed responses at short horizons. This is the
case precisely when technology-skill specificity is higher and/or the cost of skill investment
for young generations is lower. In such economies, increases in relative output and decreases
in relative wages are slower and more back-loaded.

4.4 Additional determinants of skill distribution dynamics

The theory so far has ignored several determinants of the dynamics of the skill distribu-
tion along the transition. In Appendix B, we consider three extensions that relax some of
the assumptions of our baseline model. For all extensions, the results above regarding the
economy’s comparative statics with respect to η and ψ remain valid.

Our first extension considers a “learning-from-others” externality. Specifically, we relax
the assumption that the reference distribution s̄t(i) in the skill investment problem is exoge-
nous and fixed over time. Instead, we assume that certain skills may be easier to acquire
than others because workers “learn from others” when such skills are already abundant in
the economy.22 This extended model yields impulse response functions that are qualitatively
similar to those of our baseline economy when ψ is higher and δ is lower. Thus, compared

22This mechanism implies that the skill distribution of existing workers directly affects the skill investment problem in (9)
for incoming generations. Such effects could make more abundant skills more attractive when skills of different generations
are complements in production, as in Chari and Hopenhayn (1991), or make them less attractive when skills of different
generations are substitutes in production, as in Card and Lemieux (2001).
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to our baseline model, learning from others makes the adjustment slower, with higher yt and
lower qt in the long-run.

Our second extension relaxes the assumptions that workers can only invest in new skills
upon birth by allowing a fraction of older generations to re-train when technology changes at
t = 0. This extension yields impulse response functions that are qualitatively similar to those
of our baseline economy when η is higher (i.e., lower technology-skill specificity).

Our third extension allows for population growth by making the birth rate higher than
the death rate. When population growth is higher, the convergence rate λ is also higher,
implying a faster adjustment for relative output and inequality, but no change in their long-
run adjustment.

5 Observable Implications at Short Horizons: changes within-
and between-generations

The previous sections have shown that the degree of technology-skill specificity and the skill
investment cost of young generations determine the extent to which economies adjust to
skill-biased technological innovations either through the reallocation of workers within a
generation or changes in the skill distribution across generations. In this section, we ask two
related questions. What are the observable implications of our theory that are informative
about η and ψ? Given observed responses, how can we tell if the economy’s adjustment will
be slower and more back-loaded?

There are a number of practical challenges in addressing these questions. The first is that,
typically, researchers can only credibly measure the effects of new technologies over short
horizons. This is either because the new technologies are recent and the transition is ongo-
ing, or because ex-post it is hard to separate such effects from other confounding shocks at
long horizons. The second is that many of the theoretical objects in the previous sections are
hard to measure in the data without strong assumptions. For example, the relative wage ωt

in efficiency units is different than the relative average labor income (which is measurable)
because of "selection" forces.23 Furthermore, as in the q-theory of capital investment, qt is a
forward-looking variable whose measurement requires knowledge of the entire equilibrium
path of ωt. So, to construct qt, we would need to observe ωt along the entire transition
to the new stationary equilibrium. Finally, the direct measurement of the skill distribution
st(i) and the technology-skill assignment lt requires taking an explicit stance on observable
attributes that determine worker skills in different activities (e.g., college graduation or occu-
pation history). The empirical analysis is misspecified whenever the chosen attributes do not
completely determine the relative productivity of workers in the two technologies.

Given these challenges, we focus on observable changes in relative payroll and relative
employment across sectors/occupations over short horizons. These variables are common in

23In fact, recent empirical applications of assignment models that use log-linear functions σ(i) and α(i) yield identical
distributions of labor income across technologies – e.g., see Hsieh et al. (2013) and Burstein, Morales, and Vogel (2016).
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most datasets and available across many countries and time periods. Our novel measurement
insight is that relative employment changes for different worker generations are connected
to the degree of technology-skill specificity and the cost of skill investment. As a result,
even though we observe these changes at short horizons, they are informative about how
economies adjust at longer horizons.24

Specifically, we consider two types of responses in the short-run: (i) the within-generation
change in outcomes of the "old" generation born before the shock, and (ii) the between-
generation difference in outcomes of "young" generations entering at the time of the shock
and "old" generations born before the shock. For relative employment in high-tech produc-
tion, we formally define the within- and between-generation elasticities as

εwithin
0 ≡ 1

∆ log(A)

log

 ∫ 1
l0

s0(i)di∫ l0
0 s0(i)di

− log

 ∫ 1
l0−

s0(i)di∫ l0−
0 s0(i)di

 ,

εbetween
0 ≡ 1

∆ log(A)

log

 ∫ 1
l0

s̃0(i)di∫ l0
0 s̃0(i)di

− log

 ∫ 1
l0

s0(i)di∫ l0
0 s0(i)di

 .

The following theorem shows how these measures are affected by changes in η and ψ.

Theorem 3 (Observable implications in the short-run)

1. Within-generation elasticity

∂|εwithin
0 |
∂η

> 0,
∂|εwithin

0 |
∂ψ

= 0

2. Between-generation elasticity

∂|εbetween
0 |
∂η

< 0,
∂|εbetween

0 |
∂ψ

> 0

Proof. See Appendix A.9.

The theorem states that, in the short-run, economies with a higher degree of technology-
skill specificity (i.e., lower η) experience weaker within-generation growth in the relative
employment of older workers, but stronger between-generation differences in the relative
employment of younger and older workers. Intuitively, as discussed above, the higher
technology-skill specificity diminishes the reallocation of skill types across technologies, which
reduces the re-allocation of older workers, amplifies the short-run increase in relative wages,

24The estimation of generation-specific responses are common in empirical analysis of how economies adjust to different
types of shocks – e.g., Kim and Topel (1995), Card and Lemieux (2001), Autor and Dorn (2009), Autor, Dorn, and Hanson
(2013), Guvenen et al. (2017), McCaig and Pavcnik (2018), Greenland, Lopresti, and McHenry (2019), Porzio and Santangelo
(2019). Our insight is not that such responses can be estimated, but that, through the lens of our theory, they are connected
to structural parameters and are thus informative about the economy’s dynamic adjustment to technological innovations.
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and, consequently, increases skill differences across generations. In contrast, the lower in-
vestment cost (i.e., higher ψ) does not affect older workers whose skills were chosen before
the shock, so within-generation employment change remains the same. The lower cost how-
ever triggers larger changes in the skill investment decisions of younger generations, creating
stronger between-generation differences in relative employment.

We can now use these results to return to the questions in the beginning of this section.
Suppose that we observe a technological transition with small within-generations employ-
ment elasticity, but large between-generation employment elasticity. The results above indi-
cate that such observed responses are consistent with high technology-skill specificity and/or
small costs of skill investment for young workers. As a consequence, through the lens of our
theory, this technological transition should have a more unequal and slower adjustment. Al-
ternatively, transitions with both relatively large within- and between-generation elasticities
are consistent with low technology-skill specificity and small costs of skill investment, leading
to a slower adjustment but only a small short-run increase in inequality.

Finally, note that the within- and between-generation employment elasticities are defined
with respect to the shock, ∆ log(A). This is the relevant measure of the magnitude of the
shock inducing relative employment responses in the economy. Yet, in some applications
(like the one in the following sections), the shock is not directly observed. To circumvent this
empirical challenge, we can use the observed response of relative payroll in Proposition 1
since it depends on the parameters of technology-skill specificity and skill investment costs,
as well as the size of the shock.

6 Application: Cognitive-biased Technological Transitions

Our theoretical results established that technology-skill specificity and the cost of skill invest-
ment for entering generations are connected to within- and between-generation differences in
relative employment following skill-biased technological innovations. In this section, we pro-
vide three pieces of evidence indicating the extent to which these two determinants affected
the adjustment of developed economies to new cognitive-biased technologies.

First, in 18 developed countries, employment growth in the most cognitive-intensive occu-
pations was stronger for young workers than for old workers. Second, turning to a detailed
investigation of these responses in Germany, we show that in the cross-section of occupations,
growth of employment and payroll was increasing in the time spent performing cognitive-
intensive tasks. We find that these responses are stronger for younger than for older gener-
ations. In line with our theory’s predicted changes in skill investment, we use the unique
features of the large-scale German training system to document higher growth in the number
of trainees in more cognitive intensive occupations. Finally, we explore cross-regional vari-
ation in adoption timing to estimate empirical impulse response functions to one cognitive-
biased technological innovation: the arrival of broadband internet in the early 2000s. We find
that the impact on relative employment is small for older generations at all horizons, but
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increasing over time for younger generations. Taken together, the evidence suggest that, for
recent cognitive-biased innovations, technology-skill specificity is high and the cost of skill
investment is smaller for younger generations.

6.1 Cognitive-intensive employment growth in developed economies

We define cognitive-intensive occupations as being the set of production activities that were
disproportionately augmented by recent technological innovations. In our theory, we will
interpret these activities as those corresponding to high-tech production. Our approach fol-
lows an extensive literature documenting that the recent arrival of new technologies in the
workplace, like the computer and the internet, had different effects on jobs with different
task content —e.g. Autor, Levy, and Murnane (2003), Spitz-Oener (2006), Autor and Dorn
(2013), Akerman, Gaarder, and Mogstad (2015), and, for a review, Acemoglu and Autor
(2011). Specifically, this literature has documented that these new technologies augmented the
productivity of cognitive-intensive jobs whose daily activities require problem-solving, cre-
ativity, or complex interpersonal interactions. On the other hand, these recent technological
innovations substituted for routine-intensive jobs whose tasks follow well-understood pro-
cedures that can be codified in computer software, performed by machines or, alternatively,
offshored over computer networks to foreign work sites.25

We analyze the evolution of the occupation employment composition of 18 developed
countries. We use data on the number of males employed by occupation for two age groups:
“Young” workers aged 15-39 yrs and “Old” workers aged 40-64 yrs. We consider employ-
ment in 9 aggregate occupation groups.26 Using the German BERUFNET dataset, we rank
occupations according to their share of time spent on tasks that intensively require analytical
non-routine and interactive skills. We classify as cognitive-intensive the top 3 occupations in
this ranking: Managers, Professionals, Technicians and Associate Professionals.27

Figure 5 displays the recent trends of employment in cognitive-intensive occupations for
several developed countries. The dashed bars indicate that employment in cognitive-intensive
occupations has been expanding in 16 out of the 18 countries in our sample. This trend
is a reflection of the occupation polarization process documented by Goos, Manning, and
Salomons (2009) for European countries, Autor and Dorn (2013) for the United States, and
Green and Sand (2015) for Canada.

25In Appendix C.3, we use the German Qualification and Working Conditions Survey to show that internet and computer
usage is strongly correlated with time spent on cognitive tasks across occupations. We also document that there are no
systematic differences in internet and computer usage across different cohorts of workers employed in the same occupation.

26Our sample of countries includes Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy,
Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, United Kingdom, United States. As data sources, we use
Eurostat for European countries and IPUMS International for Non-European countries. For all countries, these data sources
report the number of persons employed in the following 2-digit ISCO occupations: Managers, Professionals, Technicians and
Associate Professionals, Clerical Workers, Service and Sales Workers, Skilled Agricultural Workers, Craft Trades workers,
Plant and Machine Operators, and Elementary Occupations.

27The German Federal Employment Agency produces the BERUFNET dataset using expert knowledge about the skills
required to perform the daily tasks in each occupation. We define an occupation’s cognitive intensity as the simple average
of the time spent on analytical non-routine and interactive tasks in the years of 2011-2013.
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Figure 5: Recent trends in cognitive-intensive employment growth in developed countries

Note. The figure reports the log-change in the share of males employed in cognitive-intensive occupations in 1997-2017 for
European countries, in 2000-2010 for the United States, and in 2001-2011 for Canada. Sample of males in two age groups:
“Young” workers aged 15-39yrs and “Old” workers aged 40-64yrs. Cognitive-intensive occupations defined as the 3 occupa-
tion groups spending more time performing cognitive tasks on the job among the 9 occupation groups in the 2-digit ISCO
classification: Managers, Professionals, Technicians and Associate Professionals. For each country, annualized growth rate is
the log-change of the cognitive-intensive employment share in the period divided by the number of years.

Figure 5 also shows how annualized growth in the employment of cognitive-intensive
occupations differed for younger and older generations of workers. While older workers
increased their employment in cognitive-intensive occupations in most countries, this increase
was substantially stronger for younger generations. Across all countries, the annualized
growth in cognitive-intensive employment of younger workers was 73% higher than that of
older workers. The young-old gap is higher whenever overall reallocation is higher: across
countries, there is a correlation of 0.43 between the young-old gap in cognitive-intensive
employment growth and that of all workers. These new stylized facts complement the finding
in Autor and Dorn (2009) that the average age of workers employed in contracting middle-
wage occupations increased in the United States between 1980 and 2005.

As discussed in Section 5, the different employment responses for young and old workers
is consistent with an elastic supply of cognitive skills in the long-run driven by younger gen-
erations tilting their investment towards skills used in cognitive-intensive occupations. How-
ever, the aggregate trends in Figure 5 are subject to concerns about potential confounding
shocks causing the expansion of cognitive-intensive employment. They also do not provide
any direct evidence about the skill investment mechanism in our theory. Moreover, by not
relying on a specific innovation, they are not informative about the dynamic adjustment of
economies to new technologies. For these reasons, we now turn to a more detailed investiga-
tion of the impact of cognitive-biased technologies on the German labor market.
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6.2 Cognitive-intensive employment growth and new technologies: Evi-
dence from Germany

We next study how the German economy adjusted to recent cognitive-skill-biased technolog-
ical shocks. We first describe the data used in our analysis. We then investigate the relative
performance of occupations with a higher cognitive intensity in terms of employment, pay-
roll, and numbers of trainees. Finally, we exploit quasi-experimental cross-regional variation
in adoption timing of broadband internet to estimate the dynamic impact of this new tech-
nology on cognitive intensive occupations.

6.2.1 Data

Our main source of information on German labor market outcomes is the LIAB Longitudinal
Model between 1995 and 2014. We follow Card, Heining, and Kline (2013) to construct a
sample of employed males aged 15-64 years old residing in West Germany. We first use
individual-level information to construct yearly series of outcomes for 120 occupations. While
our theory features only two technologies, this is an abstraction, and we obtain more variation
empirically by using more detailed occupation information. We therefore now move from
the sharp predictions of the two-technology theory to look at employment trends across
occupations more generally. Appendix C.1 lists the steps involved in constructing our sample.

We then construct a second dataset with annual data on employment and payroll for
each occupation in 323 regional labor markets. Following Dauth, Findeisen, and Suedekum
(2014) and Huber (2018), we use administrative districts to define regional labor markets
in West Germany.28 We use the BERUFNET dataset discussed previously to define each
occupation’s cognitive intensity as the share of time spent performing analytical non-routine
and interactive skills.

We construct labor market outcomes for different groups of individuals in our sample.
We first construct outcomes for “Young” and “Old” generations of workers. We define the
“Young” generation as all individuals born after 1960, and the “Old” generation as all other
individuals in the sample. The young generation was at most 35 years old in the beginning of
our period of analysis in 1995, representing 57.5% of the German labor force in that year. Over
time, the young generation increased its overall employment share, reaching around 89% by
the end of the analysis period in 2014 (when the young generation was at most 54 years
old). Appendix C shows that the results in this section are robust to alternative definitions of
worker generations.

We also define a sub-sample of trainees composed of workers whose employment status is
trainee, student trainee, or intern. In this trainee sub-sample, 97.5% of all workers are below
30 years old and the mean age is 20.8 years old. Thus, we interpret the changes in occupation

28We construct our data using the district of the establishment of the main job of each individual in any given year. Since
this information is only available after 1999, we use the establishment’s district in 1999 to construct the worker’s district
affiliation in 1995-1998.
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allocation in this trainee sample as a proxy for the changes in the skill investment decision of
incoming generations in our theory.29

6.2.2 Cognitive intensity and labor market outcomes across occupations

We now study the relationship between employment growth and cognitive intensity across
occupations in Germany. Motivated by the predictions in Section 5, we estimate the following
linear regression for each worker generation g and year t:

log Yg
o,t − log Yg

o,1995 = β
g
t C̄o + ε

g
o,t (28)

where Yg
o,t is a labor market outcome in occupation o at year t of workers of generation g, and

C̄o is the cognitive intensity of occupation o.30

Table 1 reports the estimation of equation (28) in the periods of 1995-2000 (Panel A) and
1995-2014 (Panel B). We report the estimated impact of the occupation’s cognitive intensity
on the log-change of employment in columns (1)–(3), payroll in columns (4)-(6), and number
of trainees in column (7).

Over all horizons, column (1) indicates that occupations with a higher cognitive intensity
experienced stronger growth in employment. This differential employment response is larger
over longer horizons. Compared to the least cognitive-intensive occupation, the employment
growth in the most cognitive-intensive occupation was around 143 percent higher by 2014.
These results show that the German trends in Figure 5 also hold when we consider variation
across occupations with different levels of cognitive intensity. Comparing the responses by
generation in columns (2)–(3), we find that employment growth in cognitive-intensive occu-
pations was weaker for older generations than for younger generations. In fact, the coefficient
estimates for the old generations are between one-third and one-half of that for the young
generations at all horizons. Column (2) also shows that young generations display very strong
employment growth in occupations with a higher cognitive intensity in all sample periods.

Columns (4)-(6) show that the relative payroll responses are slightly stronger than the rel-
ative employment responses between 1995 and 2014. This suggests that there were only small
relative changes in the average earnings of those employed in cognitive-intensive occupations.
As discussed in Section 2.1, in our theory, these relative payroll responses include the rise in
the marginal productivity of labor in more cognitive-intensive occupations, as well as the
change in overall productivity of workers employed in cognitive-intensive occupation (i.e.,
the selection effect created by the change in worker allocations). So, the difference between
columns (4) and (1) do not correspond to the response of the relative wage per efficiency unit
of more cognitive-intensive occupations. In fact, the small responses in relative average earn-

29In line with this interpretation, Eckardt (2019) shows that the occupation classification of trainees in Germany is unique
in its ability to capture a worker’s field of study.

30We do not include any controls in our baseline specification. Appendix Table B4 shows that results are similar when we
include controls that capture potential confounding effects from the occupation’s exposure to immigration and trade shocks
in the period of analysis.
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Table 1: Cognitive intensity and labor market outcomes across occupations in Germany

Dependent variable: Employment Growth Real Payroll Growth Trainee
All Young Old All Young Old Growth
(1) (2) (3) (4) (5) (6) (7)

Panel A: Change in 1995-2000

Cognitive intensity 0.388*** 0.650*** 0.113*** 0.340*** 0.616*** 0.157*** 0.379*
(0.076) (0.098) (0.043) (0.048) (0.070) (0.037) (0.209)

Panel B: Change in 1995-2014

Cognitive intensity 1.488*** 1.894*** 0.871*** 1.535*** 2.029*** 1.044*** 2.121***
(0.225) (0.234) (0.229) (0.227) (0.238) (0.223) (0.385)

Note. Sample of 120 occupations. Each panel reports the estimate for the dependent variable over the indicated time period. Young
cohort defined as all workers born after 1960 and Old cohort as all workers born before 1960. Robust standard errors in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

ings for both young and old are consistent with strong selection forces created by entry of
marginal workers with lower occupation-specific productivity than infra-marginal workers.
Such a pattern arises in assignment models with a Frechet distribution of technology-specific
ability, as in Hsieh et al. (2013) and Burstein, Morales, and Vogel (2016).

Column (7) shows that occupations with a higher cognitive intensity experienced stronger
growth in the number of trainees. As discussed above, trainee programs are an important
part of the formal training of young individuals in Germany – especially for non-degree
occupations. As such, our estimates suggest that investment in cognitive-intensive skills by
incoming generations became stronger throughout this period.

Taken together, this evidence again speaks qualitatively to the main mechanisms in our
model. The small responses in employment for old workers suggest that skills are very
specific to occupations with the same cognitive content. The large differences in employment
responses between generations suggest that the cost of skill investment is smaller for younger
workers. In fact, young workers seem to increase their investment on cognitive skills by
becoming trainees in occupations with a higher cognitive intensity. The differences in overall
responses at longer horizons are in line with LeChatelier’s principle.

That said, one concern with this interpretation is that the occupation-level responses may
not be a consequence of a single technological innovation in a particular year. Instead, they
may be driven by different innovations introduced sequentially throughout the period of
analysis – e.g. computers, industrial robots, or the internet. Thus, while our interpretation
remains qualitatively valid, it is hard to quantitatively connect the estimates above to the
mechanism in our theory because the empirical estimates are not impulse response functions
to one-time permanent shocks. That is, the estimated dynamics may potentially confound
both the endogenous skill distribution dynamics and the exogenous sequence of technological
innovations. We address this concern in the next section.
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Additional results. Appendix C.4 presents additional results that attest the robustness of the
findings presented in this section. Table B2 shows that results are qualitatively similar over
different horizons. Second, Tables B3 shows that the positive relative employment growth in
cognitive occupations is driven by the top third of occupations by cognitive intensity (for all
workers and separately for each worker generation). Table B4 shows that results are similar
when restricting the sample to native-born Germans, changing the definition of the young
generation, or including controls for each occupation’s exposure to trade and immigration
shocks.

6.2.3 Dynamic adjustment to broadband internet adoption

In this section, we analyze the dynamic response to one cognitive-biased technological in-
novation: the introduction of broadband internet in the early 2000s.31 There are two main
reasons to focus on this particular innovation in Germany. First, it resembles the one-time
permanent shock studied in Section 3 since its adoption was fast: the share of households
with broadband access increased from 0% in 2000 to over 90% in 2009. Second, it is possible
to explore cross-regional variation in adoption timing to estimate the impulse response func-
tions of labor market outcomes for different worker generations. Our strategy relies on the
fact that the timing of broadband adoption was spatially heterogeneous: across German dis-
tricts in 2005, the mean share of household with broadband internet access was 76% and the
standard deviation was 16%. In addition, following Falck, Gold, and Heblich (2014), we iso-
late exogenous spatial variation in adoption timing implied by the suitability of pre-existing
local telephone networks for broadband internet transmission.

Empirical Strategy. Our goal is to estimate the dynamic impact of broadband internet adop-
tion on labor market outcomes across districts in Germany. For each year between 1996 and
2014, we estimate the following linear specification

Yg
io,t −Yg

io,1999 = ∑
c∈{young, old}

(αc
t + βc

tC̄o) 1[g=c]DSLi + δo,t + ζg,t + Xg
io,tγ

g
t + ε

g
io,t, (29)

where o is an occupation, i is a German district, and g is a worker generation. In this spec-
ification, Yg

io,t is a labor market outcome (employment or payroll), DSLi is the broadband
internet penetration in district i in 2005 (normalized to have standard deviation of one), and
C̄o is the time-invariant measure of the cognitive intensity of occupation o. As above, we con-
sider two generations: the old generation born before 1960 and the young generation born
after 1960. The specification includes two sets of fixed-effects: generation-year fixed effects
that capture nationwide labor market trends of different worker cohorts, and occupation-year
fixed-effect that absorbs any confounding shock that has the same impact on an occupation

31As shown Akerman, Gaarder, and Mogstad (2015), broadband internet expanded the relative demand for more educated
workers in non-routine jobs inside firms. In Appendix C.3, we show that this new technology is disproportionately used by
individuals employed in more cognitive-intensive occupations.
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in all regions. We also include a control vector Xg
io,t to absorb confouding effects associated

with the pretrend growth in 1995-1999 and initial district demographic characteristics. These
controls account for differential performance of cognitive-intensive occupations in regions
with characteristics that may affect the profitability of broadband internet adoption.32

We are mainly interested on the impact of broadband internet adoption on the relative
outcome of cognitive-intensive occupations for each generation: β

g
t in equation (29). To un-

derstand the interpretation of this coefficient, consider region A whose broadband internet
penetration in 2005 was one standard deviation higher than that of region B. In each year t,
β

g
t is the difference between regions A and B in the relative outcome of workers of generation

g in more cognitive intensive occupation.
The unbiased estimation of β

g
t requires an exogenous source of variation on the adoption

of broadband internet across German districts in 2005. However, internet penetration is un-
likely to be random since adoption should be faster in regions with workers more suitable to
use that technology. For instance, this would be the case if broadband internet expands first
in regions with a growing number of young individuals specialized in cognitive-intensive
occupations. To circumvent this issue, we follow Falck, Gold, and Heblich (2014) to obtain
exogenous variation in broadband internet adoption across German districts stemming from
pre-existing conditions of the regional telephone networks. In West Germany, the telephone
network constructed in the 1960s used copper wires to connect households to the municipal-
ity’s main distribution frame (MDF). The initial roll-out of DSL internet access in Germany
used these pre-existing copper wire lines to provide high-speed internet to households. As
argued by Falck, Gold, and Heblich (2014), the copper wire transmission technology did not
support high-speed internet provision over long distances. In fact, provision was impossible
in areas located more than 4200m away from an existing main distribution frame (MDF). It
was necessary to set up an entirely new system to provide DSL access to areas connected to
a MDF located more than 4200m away. Thus, areas initially located close to MDFs obtained
broadband internet access before areas located far away from them.

This discussion suggests that the initial location of MDFs is an exogenous shifter of DSL
access in 2005. This requires that, conditional on controls, the determinants of MDF construc-
tion in the 1960s were orthogonal to the determinants of changes in labor market outcomes in
the 2000s, except through their effect on broadband internet penetration in 2005.33 Building
on this idea, we construct two instrumental variables at the district-level that measure the

32We follow Dix-Carneiro and Kovak (2017) and Freyaldenhoven, Hansen, and Shapiro (2018) by explicitly controlling
for pretrends. As argued by the latter paper, pretrends caused by unobserved confounding effects might exist even when
they are not actually observed in the data due to estimation error, implying they should be controlled for in estimation.
The demographic controls are the college graduate population share, the manufacturing employment share, the immigrant
employment share, and the age composition of the labor force. Appendix Table B7 shows results for different control sets.

33While some of these MDFs were built in population centers, others were built in locations where large empty building
sites were available. Falck, Gold, and Heblich (2014) provide a detailed discussion of why the main orthogonality assumption
is plausible in this setting. Our strategy is similar to the geographic barriers exploited in Akerman, Gaarder, and Mogstad
(2015) to estimate the impact of broadband internet on within-firm skill upgrading in Norway. In contrast, our empirical
strategy uncovers reduced-form responses in regional outcomes, which combine adjustment margins within and between
firms at the regional-level.
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region’s population share located in areas where the existing telephone network could not be
used to supply high-speed internet. These variables are aggregates of the municipality-level
instrumental variables used in Falck, Gold, and Heblich (2014). The first variable is a simple
count of the number of municipalities in the district that did not have a MDF within the mu-
nicipality, and whose population center (measuring as a population-weighted centroid) was
further than the cut-off threshold of 4200m to the MDF used by the municipality. We refer
to this variable as the “MDF density measure.” The second variable counts the number of
municipalities that satisfied the conditions in the first variable, but were further hampered by
the lack of any MDFs in neighboring municipalities that were closer than 4200m. The mu-
nicipalities in the second group required the installation of completely new networks since it
was not possible to install copper wire lines connecting them to any existing MDF. We refer
to this variable as “Alternative MDF availability.”

We then estimate (29) using the exogenous variation induced by these two measures of the
cost of expanding broadband availability in the district, which we summarize in the vector
Zi. Specifically, since the observation unit in equation (29) is an occupation-generation-district
triple, we use an instrument vector that includes Zi interacted with generation dummies and
the cognitive intensity of each occupation o, C̄o. Figure B2 in Appendix C.1 presents the pat-
tern of cross-district variation in Zi. Table B5 in Appendix C.4 shows that regions with higher
values of these cost measures had a lower share of households with broadband access in 2005.
Intuitively, this is the main source variation in the first-stage of our strategy to estimate equa-
tion (29). Formally, to test for weak instruments for the multiple endogenous variables in (29),
Table B6 in Appendix C.4 shows that we obtain high values for the Sanderson-Windmeijer
F-statistics (Sanderson and Windmeijer, 2016).

Results. We now turn to the estimation of βold
t and β

young
t in equation (29). Panel A of

Figure 6 reports the estimates for each year between 1996 and 2014. Prior to 2003, regions
with early DSL expansion did not experience differential growth in the relative outcomes
of cognitive-intensive occupations for old and young workers. After 2005, there is a sig-
nificant impact on the relative employment of young cohorts in cognitive-intensive occupa-
tions. In 2014, the point estimate suggests that a region with a one-standard deviation higher
broadband internet penetration in 2005 had 0.5 log-points more young workers employed
in the most cognitive-intensive occupation than in the least cognitive-intensive occupation.
However, we do not find such an effect for old cohorts – if anything, the effect is negative.
Thus, our estimates indicate a positive between-generation difference in relative employment
growth. Figure B7 in Appendix C.4 shows that the between-generation difference is statisti-
cally significant for every year after 2006.

We can use the theoretical predictions in Section 5 to interpret these empirical results.
The small relative employment response of old generations suggests that technology-skill
specificity is high (i.e., η is low). In this case, most workers from old generations do not
switch occupations as their skills would have a lower value in the more cognitive-intensive
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occupations augmented by the technological innovation. Furthermore, the positive between-
generation difference in the relative employment response indicates that incoming cohorts tilt
their investments towards skills more suitable for cognitive-intensive jobs. This suggests that
the technological innovation induced skill heterogeneity across generations (i.e., ψ is positive).

In Panel B of Figure 6, we investigate how early broadband expansion affected the relative
payroll of more cognitive intensive occupations for all worker generations. Specifically, we
estimate equation (29) with a single generation c containing workers of all ages in the district.
This is the empirical analog of the impulse response function for relative output yt presented
in Section 3. Again, we find no evidence of responses in the pre-shock period of 1996-2005.
Starting in 2006, there is a slow and steady increase in the relative payroll of more cognitive-
intensive occupations.34 In our theory, these results are consistent with broadband internet
augmenting the relative productivity of cognitive intensive occupations when cognitive and
non-cognitive intensive occupations are substitutes in production (i.e., θ > 1).

Figure 6: Impact of early DSL adoption on more cognitive-intensive occupations

(a) Relative employment response for each generation (b) Relative payroll response for all generations

Note. Left panel: estimation of equation (29) for log-employment as dependent variable in the sample of 2 generations, 120 occupations
and 323 districts. Right panel: estimation of equation (29) for log-payroll as dependent variable in the sample of 120 occupations, 323
districts, and a single generation with all working-age employed individuals. For each year, the dot is the point estimate of β

g
t . All

regressions are weighted by the district population size in 1999 and include occupation-time and generation-time fixed-effects. Baseline
controls include the following district variables in 1999: college graduate population share, manufacturing employment share, immigrant
employment share, district age composition, and the dependent variable pre-shock growth in 1995-1999. Bars are the 90% confidence
interval implied by the standard error clustered at the district level.

Additional results. Appendix Tables B7–B9 provide additional results that complement the
estimates in Figure 6. Table B7 shows that results are qualitatively similar when we drop the
pretrend control, but estimated coefficients are less precise and slightly smaller in magnitude.
We also demonstrate that results are similar when controlling for district-generation-year
fixed-effects. This is reassuring as this restrictive set of controls absorbs all potential con-

34Figure B8 in Appendix C.4 shows that we obtain similar qualitative responses for the relative employment of more
cognitive intensive occupations among all generations of workers in the district.
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founding shocks that affect each district-generation pair in a year. In this case, identification
comes purely from the differential effect of early broadband expansion on occupations with
a higher cognitive intensity. That is, this control set captures any variation that might have
resulted in a district receiving broadband access early, including differential immigration into
a district that received DSL or differential aging or birth patterns in the district over time.

Table B8 presents results when we vary the definition of the young generation, as well as
when we restrict the sample to only native-born males. We consider several definitions of the
young generation: those born after 1955, 1965 or 1970, and those aged less than 35, 40 or 45
in each year. Once again, the results are qualitatively similar across specifications. However,
in line with our theory, the estimated coefficients for the young generation are stronger when
we restrict the young generation to include only more recent cohorts.

In addition, Table B8 also reports estimates with outcomes in a sample that includes only
workers employed in small establishments. The rationale is that larger establishments might
have received broadband internet access prior to the roll-out for households across Germany.
In this case, we would expect adjustment in these establishments to have occurred earlier,
biasing our results to zero. Consistent with this intuition, we find that our results are quanti-
tatively stronger in the sample of small establishments.

Finally, Table B9 shows that early adopting regions experienced stronger growth in the
number of trainees in more cognitive intensive occupations. This evidence is consistent with
our theory’s prediction that, after the arrival of a cognitive-intensive innovation, incoming
cohorts increase their investment on cognitive skills.

6.3 Is this time different?

The evidence above suggests that recent cognitive-biased innovations triggered a transition
that is particularly slow and unequal. However, our theoretical results indicate that not all
technological transitions are the same. The adjustment may be less unequal and faster if the
economy features lower technology-skill specificity. The results in Section 5 indicate that, in
this case, old and young generations exhibit more similar changes in relative employment
across occupations along the transition. We now build on this insight to investigate whether
past changes in employment composition featured weaker between-generation differences
and, consequently, may have been part of a transition with lower technology-skill specificity.

We focus on the evolution of the occupation employment composition in Germany and
the United States over different time periods. We again use the nine aggregate occupations
in the 2-digit ISCO classification used in Section 6.1. Due to data availability, our early
period is 1970-1987 for Germany and 1960-1990 for the United States. For both countries, the
recent period is the same as the one used to compute the trends in Figure 5.35 To obtain a

35Our primary data source for the early period is the individual-level Census data downloaded from IPUMS international,
which contains information on the 2-digit ISCO occupation of males aged 16-64 in each Census year. For the recent period,
we compute all outcomes using the same underlying data of Figure 5. We select a sample of employed males in each
country-year and split them into two age groups: “Young” workers aged 15-39yrs and “Old” workers aged 40-64yrs.
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measure of the expanding occupations that is consistent over time, we no longer rely on the
set of cognitive intensive occupations since past shocks may have augmented a different set
of skills. Instead, for each country and period, we define the expanding occupations as the
three occupations with the highest change in log employment share among young workers.
Through the lens of our theory, since young workers adjust their skills to work on occupations
that became more attractive, their employment decisions provide a revealed-preference way
of recovering the occupations experiencing positive demand shocks under the assumption of
no shocks to the cost of investing on different skills.

Table 2 reports the employment growth trends in the three occupations with the highest
growth among young workers. Columns (1) and (3) report substantial growth in these oc-
cupations for both periods and countries. Interestingly, columns (2) and (4) show that the
two periods differ in the relative magnitude of the between- and within-generation compo-
nents of employment changes. As in Figure 5, there is a large between-generation difference
in recent years when most expanding occupations were cognitive intensive. However, such a
between-generation difference was much smaller before 1990 when changes in the occupation
composition was more similar for young and old generations.36 In this earlier period, the set
of expanding occupations was less cognitive intensive with services and retail occupations at
the top of the list in both countries. In fact, Germany did not have any cognitive intensive
occupation among the fastest growing occupations in 1970-1987.

Through the lens of our theory, these aggregate trends are consistent with a lower degree
of technology-skill specificity in the occupations expanding before 1990. In this case, changes
in the skill distribution across generations are smaller, giving rise to a faster and less unequal
transition. It is important to notice that this is just one of many possible interpretations of the
evidence in Table 2. For example, the generation-specific shocks in college graduation rates
documented in Card and Lemieux (2001) may help explain why young and old generations
have similar changes in employment composition in the 1970s and 1980s.

7 A Numerical Illustration of the Theory

We conclude the paper by using the evidence in the preceding section to analyze how
economies adjust to cognitive-biased innovations. Our goal is not to provide a full quan-
titative account of such technological transitions, but rather to numerically illustrate our the-
oretical insights. In particular, we are interested in giving a sense of how large are the impacts
of technology-skill specificity and skill investment cost on the economy’s dynamic adjustment
following technological shocks. In addition, by presenting the full non-linear equilibrium dy-
namics, the numerical exercise also demonstrates that our theoretical insights are not driven
by the first-order approximations.

36Appendix C.5 provides additional evidence of this trend reversal by investigating the correlation between the change in
the average age and the employment share across occupations in the United States over different time periods. We show
that such a correlation is strongly negative in periods after 1990, but it was much weaker between 1960 and 1990.
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Table 2: Changes in between-generation employment differences and employment shares across occu-
pations in different periods

Early period Recent period
1
T ∆ log eall

t
∆ log(eyoung

t /eold
t )

∆ log eold
t

1
T ∆ log eall

t
∆ log(eyoung

t /eold
t )

∆ log eold
t

(1) (2) (3) (4)
Germany 1.94% 0.173 1.59% 0.456
United States 0.91% 0.206 1.45% 0.476

Note. Columns (1) and (3) report the annualized growth rate in the three 2-digit ISCO occupations with
the highest change in log employment share in the period among young workers in the country (where
T is the number of years in the period). For the top 3 occupations by log-employment growth for
young workers, columns (2) and (4) report the ratio between the log-change in the between-generation
employment share and the log-change in employment share for old workers. Early period: 1970-1987
for West Germany and 1960-1990 for the United States. Recent period: 1997-2017 for Germany and
2000-2015 for the United States. Sample of males in two age groups: “Young” workers aged 15-39yrs
and “Old” workers aged 40-64yrs.

We map the H technology to cognitive-intensive occupations, and use the empirical im-
pulse responses of Section 6 to parameterize the model. We first externally calibrate the
discount rate ρ to match an annual interest rate of 2% and the demand elasticity of substitu-
tion to θ = 3. We then select the parameters governing production technologies (α(i), σ(i))
and the skill distribution dynamics (δ, ψ) to match the estimates in Figure 6. The decline
in the share of the old workers in total employment from 1997 to 2014 implies δ = 0.057,
i.e, an expected working life-span of about 18 years after age 35. The small response in the
cognitive-intensive employment of old generations yields an η close to zero, and the large
young-old gap in the relative employment response implies ψ = 0.35. Appendix D describes
the matching procedure in detail, along with the model’s goodness of fit.

We use the parameterized model to study the consequences of a cognitive-biased inno-
vation that increases the employment share in the cognitive-intensive technology from 20%
to 50%.37 We focus here on the impact of the shock on average welfare (∆Ū) and lifetime
welfare inequality (∆Ω̄), as well as the importance of transitional dynamics as measured by
DCIR(q).38 Appendix D.3 shows the dynamics of the skill distribution and other outcomes.

Table 3 shows that, for our baseline parameterization, the increase in average welfare
across all generations (in consumption equivalent units) is 46% and the increase in lifetime
welfare inequality is 39%. These large effects follow from the substantial shock size necessary
to induce the reallocation of almost one-third of the economy’s labor force.

The remaining rows of Table 3 compare these figures to those obtained with two calcula-
tions that ignore the adjustment across generations. The ‘Short-run’ calculation assumes that
changes observed at impact are permanent, while the ‘Long-run’ calculation assumes that the

37These values approximately correspond to the cognitive-intensive employment share in 1997 of the countries with the
lowest and the highest cognitive-intensive employment share among those listed in Figure 5 (Portugal and Netherlands,
respectively). Thus, our quantitative results can be seen as analyzing the transitional dynamics of a cognitive-biased shock
that generates convergence in cognitive-intensive employment shares across such countries.

38Our analysis specifies the discount rate of social welfare to r = ρ + δ, so that the social discounting of future generations
is identical to the discounting of worker’s future utility.
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Table 3: Changes in Average Welfare and Lifetime Welfare Inequality

Baseline Low specificity
(η ≈ 0, ψ = 0.35) (η = 0.75, ψ = 0.35)

∆Ū ∆Ω̄ ∆Ū ∆Ω̄

True 46% 39% 44% 29%
Short-run 31% 76% 40% 45%
Long-run 55% 30% 47% 24%

DCIR(q) 0.9 0.4

Note. The table reports the the changes in average welfare ∆Ū and lifetime welfare inequality ∆Ω̄ implied
by a shock calibrated to increase the employment share in cognitive-intensive occupations from 20% to
50% between stationary equilibria. ‘True’ corresponds to the measures that fully account for the economy’s
transitional dynamics. ‘Short-run’ assumes that changes at impact are permanent. ‘Long-run’ assumes that
long-run changes happened at impact.

changes observed in the long-run were permanent and happened at impact. As discussed in
Section 3.3, these calculations are equivalent to those that would be obtained by researchers
using a reduced-form model that ignores changes in the supply elasticity over time.

We can see that these two calculations lead to substantial biases in welfare analysis. The
‘Short-run’ calculation severely understates the average welfare gains and overstates the in-
equality increases. The opposite is true for the ‘Long-run’ calculation. The biases arise be-
cause of the slow adjustment in the economy’s skill distribution. For instance, the DCIR(q)
of 0.9 reported in the last row implies that a worker born right before the shock expects to
experience in her lifetime a relative wage that is 90 percent larger than the relative wage in
the long-run equilibrium of the economy. Thus, the ‘Short-run’ approach misses the future
accumulation of skills that increases relative output– thus reducing the ideal price index and
increasing average real wages– and reduces relative wage of cognitive-intensive occupations.
In contrast, the ‘Long-run’ approach misses the fact that it takes generations for the economy
to accumulate the cognitive skills necessary to achieve the levels of relative output and wages
observed in the long-run.

In the remaining columns of Table 3, we analyze the same shock in an economy with a
lower degree of technology-skill specificity (i.e., higher η). As discussed in Section 5, in this
case, the between-generation difference in the relative employment response is smaller due
to the smaller change in the skill distribution across generations. As such, we interpret the
comparison between our baseline and this alternative calibration as a numerical illustration
of the welfare consequences of the same shock if a lower technology-skill specificity resulted
in more similar occupation composition changes between old and young workers– as those
reported in Section 6.3 for the United States and Germany before 1990. The second panel
of Table 3 shows that the higher η implies a faster transition with DCIR(q) falling from 0.9
to 0.4. This is a consequence of the stronger reallocation of old workers at impact which
then leads to weaker increases in inequality and changes in the skill distribution, as well as
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a stronger decline in the price index in the short-run (which translates into higher average
welfare gain in the short-run). Importantly, the faster transition implies that there are smaller
biases from the short- and long-run welfare calculations.

8 Conclusions

We develop a theory where overlapping generations of workers are heterogeneous over a
continuum of technology-specific skills. Technological transitions are driven both by the
reallocation of workers within a generation and changes in the skill distribution across gen-
erations. We show that this economy can be represented as a q-theory of skill investment.
This allow us to sharply characterize the transitional dynamics and welfare implications of a
skill-biased innovation, as well as derive observable predictions for changes in labor market
outcomes within and between generations. We use these insights to study the adjustment
of developed economies to recent cognitive-biased technological innovations. Several pieces
of evidence show strong responses of cognitive-intensive employment for young but not old
generations.

Taken together, we derive two broad takeaways from this piece. First, the evidence sug-
gests that cognitive-biased transitions may be particularly unequal and slow to play out be-
cause of the high specificity of cognitive skills. Most of the adjustment happens through
slow changes in the skill distribution across generations as opposed to the fast reallocation of
workers within a generation. These features are not universal though. They may be different
in past or future technological transitions where a broader set of skills can be transferred to
the occupations or sectors improved by the technological innovation. Second, caution should
be exercised when interpreting technological transitions based on evidence spanning much
less than a generation. This may lead to overly pessimistic views of the consequences of
new technologies for inequality and average welfare. Yet, observed changes for different gen-
erations, even at short horizons, are useful when combined with a theory of technological
transitions. Looking at the decisions of younger workers allows us to “see the future” and
thus appropriately derive the full implications of technological innovations.

Some of the ideas we presented may be useful to tackle other questions where transitional
dynamics are important. Extensions of our theory with multiple sectors and regions can be
used to study how various sources of labor demand shocks (e.g., trade liberalizations, routine-
biased innovations) affect the economy over different horizons through within-generation
worker reallocation and between-generation changes in skills. Moreover, future work can
address normative questions related to the optimal speed of adjustment to such labor demand
shocks or the role of workers with more transferable skills in providing aggregate insurance
against them. Finally, the notion that within- and between-cohort changes at short horizons
are informative about structural parameters governing elasticities at longer horizons can be
used both to improve on empirical projections about future labor market conditions as well
as to discipline other dynamic models with, for instance, incumbents and entrant firms.
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